EVALUATION OF HAPTIC FEEDBACK METHODS FOR TELEOPERATED EXPLOSIVE ORDNANCE DISPOSAL ROBOTS

Embargo until
Date
2011-01
Journal Title
Journal ISSN
Volume Title
Publisher
Johns Hopkins University
Abstract
This thesis reports on the effects of sensory substitution methods for force feedback during teleoperation of robotic systems used for Explosive Ordnance Disposal (EOD). Existing EOD robotic systems do not feature any type of haptic feedback. It is currently unknown what benefits could by gained by supplying this information to the operator. In order to assess the benefits of additional feedback, a robotic gripper was procured and instrumented in order to display the forces applied by the end effector to an object. In a contact-based event detection task, users were asked to slowly grasp an object as lightly as possible and stop when a grasp was achieved. The users were supplied with video feedback of the gripper and either (1) no haptic feedback, (2) surrogate visual feedback, or (3) surrogate vibrotactile feedback. The force information came exclusively from the current being used to drive the gripper. Peak grasp forces were measured and compared across conditions. The improvements gained from vibrotactile over no haptic feedback feedback were statistically significant and reduced the threshold at which event detection took place from an average of 8.43 N to an average of 5.97 N. Qualitative information from the users showed a significant preference for this type of feedback. Vibrotactile feedback was shown to be very useful, while surrogate visual force feedback was not found to be helpful quantitatively nor was it preferred by the users. This feedback information would be inexpensive to implement and could be easily added to existing systems, thereby improving their capabilities to the EOD technician.
Description
Keywords
Haptics, Robotics, Teleoperation, Explosive Ordnance Disposal, Sensory Substitution, Telepresence
Citation