Molecular characterization of an aquaporin cDNA from brain: candidate osmoreceptor and regulator of water balance

Embargo until
Date
1994-12-20
Journal Title
Journal ISSN
Volume Title
Publisher
National Academy of Sciences
Abstract
The aquaporins transport water through membranes of numerous tissues, but the molecular mechanisms for sensing changes in extracellular osmolality and regulating water balance in brain are unknown. We have isolated a brain aquaporin by homology cloning. Like aquaporin 1 (AQP1, also known as CHIP, channel-forming integral membrane protein of 28 kDa), the deduced polypeptide has six putative transmembrane domains but lacks cysteines at the known mercury-sensitive sites. Two initiation sites were identified encoding polypeptides of 301 and 323 amino acids; expression of each in Xenopus oocytes conferred a 20-fold increase in osmotic water permeability not blocked by 1 mM HgCl2, even after substitution of cysteine at the predicted mercury-sensitive site. Northern analysis and RNase protection demonstrated the mRNA to be abundant in mature rat brain but only weakly detectable in eye, kidney, intestine, and lung. In situ hybridization of brain localized the mRNA to ependymal cells lining the aqueduct, glial cells forming the edge of the cerebral cortex and brainstem, vasopressin-secretory neurons in supraoptic and paraventricular nuclei of hypothalamus, and Purkinje cells of cerebellum. Its distinctive expression pattern implicates this fourth mammalian member of the aquaporin water channel family (designated gene symbol, AQP4) as the osmoreceptor which regulates body water balance and mediates water flow within the central nervous system.
Description
Keywords
Water-Electrolyte Balance, Nerve Tissue Proteins/physiology, Ions Channels/physiology, Brain/physiology, Aquaporins
Citation
Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):13052-6. http://www.pnas.org/content/91/26/13052.abstract
Collections