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Abstract 
 

Influenza virus is one of the most pervasive pathogenic threats to the global public 

health on an annual basis. Each year, this RNA virus causes hundreds of thousands of 

deaths and billions of dollars in economic damage. The influenza vaccine is a key 

contributor in the fight against influenza infection and is available in several formulations, 

including the Live Attenuated Influenza Vaccine (LAIV). Although LAIV was sequenced 

nearly 20 years ago, the role of some of its genomic mutations have yet to be 

characterized. 

I believe the NS gene segment contributes to the attenuation phenotype of LAIV. 

To test this hypothesis, a panel of NS reassortant viruses in both the LAIV and 

A/Victoria/361/2011 backbones were generated. Additionally, a panel of recombinant 

viruses expressing a mutation at amino acid residue position 153 in the non-structural 

protein 1 (NS1) C-terminal domain were generated in both the LAIV and 

A/Victoria/361/2011 backbones. The NS reassortant viruses were generated, sequence 

verified, and characterized in MDCK and A549 cell culture systems. We show that a 

reassortant virus with LAIV NS in the A/Victoria/361/2011 backbone display faster growth 

kinetics in MDCK and A549 cell systems than its wild-type NS counterpart in the 

A/Victoria/361/2011 backbone. In MDCK cells, a reassortant virus with LAIV NS in the 

LAIV backbone displayed faster growth kinetics than a reassortant LAIV virus with wild-

type NS. However, there was no significant difference in A549 cells. These data indicate 

the NS gene segment of influenza has a role in viral replication. 

 

Primary Reader: Andrew Pekosz, Ph.D. 

Secondary Reader: Jay Bream, Ph.D.  
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Chapter 1 - Public Health Importance of Influenza 
 

1.1 Influenza in the Population 
 

 1.1.1 History 
 

 Influenza has been a persistent threat to global public health for hundreds, if not 

thousands of years. Some of the earliest reports of influenza infections can be traced back 

to the Hellenic Era in Greece during the 5th century BC 1. Historians suggest the first 

pandemic started in Asia in 1580 AD, spread to North Africa and Asia Minor into Europe 

2. In the span of six months, the pandemic had spread across the entirety of Europe and 

even to America. The ability for influenza to spread so readily is particularly impressive 

considering the lack of modern transportation like airplanes and motor vehicles. Nearly 10 

other pandemics have been reported since 1580, the most notorious being the 1918 

pandemic 1. 

 Although commonly referred to as the “Spanish Flu”, the name of the 1918 

pandemic is a bit of a misnomer. Some accounts attribute the source of the outbreak to 

Spain, others to America, and others still to China 1. Modeling by Taubenberger and 

Morens estimated that “one third of the world's population (or ≈500 million persons) were 

infected and had clinically apparent illnesses . . .total deaths were estimated at ≈50 million 

and were arguably as high as 100 million” 3. Hallmarks of the Spanish Flu included 

excessive morbidity in young adults (20-40 years old), a demographic that is historically 

quite resilient to influenza infections, and an increased susceptibility to secondary 

respiratory infections 4. The pandemic of 1918 perfectly illustrates the volatile and 

dangerous nature of influenza. Antigenically similar strains of an influenza virus can be 
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transmitted regionally on a year-to-year basis and have a mild impact on mortality and 

morbidity, however, antigenically novel pandemic viruses can arise with little warning and 

devastate public health on a global level. 

 

 1.1.2 Classification and Diversity 
 

 Influenza is an RNA virus that belongs to the family Orthomyxoviridae. Influenza 

A, B, and C are capable of infecting humans, however Influenza A and B are of major 

concern for seasonal infection.  Specific viruses are named in accordance with their 

influenza genera, location where strain was isolated, isolate number, and year isolated 5. 

For example, A/Victoria/361/1972 was isolate number 361 of an influenza A virus isolated 

in Victoria, Australia during 1972. Influenza A viruses can be further classified by the 

antigenic properties of their hemagglutinin  (HA) and neuraminidase (NA) surface 

glycoproteins 6. To date, 18 HA and 9 NA subtypes have been identified and 

characterized. Of these HA and NA subtypes, only H1, H2, H3 and N1, N2 are known to 

maintain continued transmission within human populations.   

 

 1.1.3 Mortality and Morbidity 
 

 Influenza has a tangible and significant impact on public health in the US and 

abroad. Molinari et al. examined domestic influenza infections for 2003 and modeled its 

burden on patient health and financial toll on the healthcare system. Influenza infects 

around 25 million Americans each year, which results in 31 million outpatient visits to 

healthcare facilities 7. Of these 31 million outpatient visits, up to 300,000 Americans are 

hospitalized each year as a result of influenza infection. Furthermore, around 30,000 
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patients will succumb to infection and die. It’s very important to note that many of these 

fatalities are not directly attributable to the influenza virus, but rather opportunistic 

secondary infections that present in the days and weeks following influenza infection.  

 The Molinari et al. study also examined the financial burden of influenza in the US. 

Roughly $87 billion was spent in 2003 to treat influenza and its sequelae. The vast majority 

of these costs (83%) were attributable to the healthcare of patients who would eventually 

succumb to infection. When examining financial burden in regards to age strata, adults 

over the age of 65 accounted for over 60% of the total economic burden. In America, 

influenza primarily affects the elderly and older adults. Only 15% of total influenza 

expenditures can be attributed to people between the ages of 0-49. 

 

 1.1.4 High Risk Populations 
 

 The very young ( < 5 years of age) are at elevated risk of influenza when compared 

to adult populations. It should be noted that of total pediatric influenza-related fatalities in 

the US between 2004 and 2015, healthy children under the age of 5 without pre-disposing 

medical conditions accounted for roughly 50% of case fatalities 8. Nearly half of these 

patients either died before being admitted to the hospital, had clinical illness for < 3 days 

(typical infection lasts 7 days), or had secondary bacterial infection 8. 

 On the other end of the age spectrum, the elderly ( > 65 years of age) also bear a 

disproportionate amount of morbidity and mortality to influenza infection. Approximately 

70-85% of seasonal influenza deaths and 55-70% of hospitalizations can be attributed to 

this age demographic 9.  Furthermore, when compared to the non-elderly, the elderly face 

a significantly greater risk of death (odds ratio = 2.95) in response to influenza infection 10. 
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There is also research to suggest that flu seasons in which H3N2 strains are predominant, 

the elderly face a much greater risk of influenza-related hospitalizations 11. 

 Exacerbation of pre-existing co-morbidities including Chronic Obstructive 

Pulmonary Disease (COPD), heart disease, and diabetes also significantly impacts a 

patient’s health outcomes. The presence of any co-morbidity was associated with an 

increased risk of death (odds ratio = 2.04) 10. These co-morbidities enhance the likelihood 

of hospitalization and the risk of developing pneumonia. When combined with pneumonia 

deaths, influenza was the #8 cause of death in the US in 201412. 

 Pregnant women are another group. During the 2009 pandemic H1N1 outbreak, 

when compared to their non-pregnant female counterparts, pregnant women exhibited 

higher rates of hospitalization, more admissions to the intensive care unit, and an 

increased likelihood of pre-term births and emergency cesarean sections 13. It’s believed 

that hormonal changes following conception disrupt inflammatory immune responses 

including natural killer cell activation, macrophages, and other Th1 response pathways 

that are crucial for combating diseases that are inflammatory, e.g. influenza 14. 

 The immunocompromised are at elevated risk of severe influenza infection 15. 

These patients typically have a chronic infection like HIV, have undergone organ 

transplant, or are undergoing treatment for certain types of cancer. Unlike healthy 

individuals in the general populations, they are unable to mount T cell responses, are 

taking immunosuppressive drugs, or are receiving bone marrow transplants, respectively. 

These factors make it easier for them to contract, and more difficult to clear influenza 

infection. While, they are still advised to receive their annual flu shot, Kunisaki and Janoff 

identified that this group has dampened humoral immune responses following vaccination 

and thus vaccination may have reduced efficacy in this patient population 15.  
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 The data presented thus far represents high-risk groups in developed nations, 

however, influenza also has a huge impact within the developing world. Nair et al. 

conducted a meta-analysis of 43 different studies that examined the mortality and 

morbidity of children within developing settings around the world. In 2008 alone, they 

estimated there were 90 million influenza infections in children under the age of 5, one 

third of which resulted in an influenza-related acute lower respiratory infection 16. Of the 

roughly 30 million children who contracted a secondary infection, around 100,000 children 

died. The study found a 15-fold difference in case fatality ratio between developed and 

developing settings. Much of this can be attributed to a lack of resources and infrastructure 

needed to provide basic healthcare to patients. In stark contrast to developed countries 

that see the elderly as bearing the brunt of influenza morbidity and mortality, the very 

young are the most impacted by influenza infection in developing nations. 

 

1.2. The Viral Lifecycle 
 

 1.2.1 Genome Structure and Organization 
 

 Influenza has a negative sense, single-stranded RNA genome consisting of 8 

unique gene segments. These gene segments are organized in order of decreasing gene 

segment size and each have a distinct role in the influenza life cycle: 
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1.2.2 Virus Infection and Assembly 
 

 Mature influenza A and B virions can be either spherical or filamentous in shape 

and recognize host epithelial cells via sialic acid residues on their surface 5. These sialic 

acid residues will either be in an α-2,3 or α-2,6- linkage conformation. HAs have different 

preferences for sialic acid linkage conformation, which help define host range and 

restriction. In the avian gut epithelium, α-2,3 linkages predominate, while the respiratory 

epithelium of humans varies based on location: the upper respiratory tract, the site of 

primary influenza infection, has mostly α-2,6 linkages, but α-2,3 linkages are more 

common in the lower lung 17,18. Like humans, swine posses both sialic acid receptor 

linkages. Since HA is the primary glycoprotein responsible for host cell recognition, 

neutralizing antibodies are often directed to HA-specific epitopes. This places a selective 

 Segment Approx. Length (base 
pairs)  Protein Encoded and Function 

1 PB2 2300 PB2- RNA Polymerase subunit 

2 PB1 2300 PB1 - RNA Polymerase subunit 

3 PA 2200 PA - RNA Polymerase subunit 

4 HA 1750 HA - binding and membrane fusion 

5 NP 1550 NP -  structural nucleoprotein 

6 NA 1450 NA - possesses a viral receptor destroying 
function necessary for vial release 

7 M 1000 M1 and M2 - encodes matrix proteins 

8 NS 875 
NS1 - antagonization of host immune 
responses 
NEP - viral RNP export from the nucleus 

Table 1. The Eight Gene Segments of the Influenza Virus 
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pressure on the virus to develop slight mutations in HA such that the host must generate 

new memory cells directed against the drift HA. This subtle process of mutation is termed 

antigenic drift. 

 Following HA binding of sialic acid, the virion is endocytosed into the host cell. 

Acidification of the endosome triggers a conformational change in HA that merges the viral 

envelope with the endocytic membrane, forming a pore 19. The influenza M2 protein then 

forms an ion channel for H+ ions to be pumped into the viral particle. The further 

acidification denatures protein-protein interactions and allows freed viral RNPs to be 

exported into the host cytosol. 

 Once in the cytosol, nuclear localization signals on the viral RNPs communicate 

their transport into the host nucleus. One of these RNPs, the RNA-dependent RNA 

Polymerase, synthesizes mRNA templates for viral protein synthesis and a complimentary 

negative sense genome to be packaged into immature virions 20. For proper maturation 

and export out of the nucleus, the PB1 subunit on the RNA Polymerase complex 

“snatches” 5’-guanosine caps from host pre-mRNA transcripts 21. This has a dual effect to 

shut down host mRNA translation while allowing for maturation of viral mRNA. The poly-

A tail of viral mRNAs is formed by encoding a series of 5-7 uracil residues on the negative 

sense script, which will then be transcribed into adenosine residues 22. Once the 5’-end 

has been capped and 3’-tail polyadenylated, viral mRNAs are transported out of the 

nucleus using host mRNA machinery; M1 and NEP mediates this process by interacting 

with viral RNA and bringing them into contact with the RNP complex 20. The viral genome 

assembles and is packaged into virions at the cellular membrane. Influenza virions bud 

from the cell membrane and the HA glycoprotein spikes continue to bind sialic acid 

residues on the cell surface. Viral release occurs when the NA protein utilizes its enzymatic 
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activity to cleave the sialic acid residue and release the influenza virion to infect other cells 

23. 

 1.2.3 Symptoms and Transmission 
 

 Although pandemics are rare in occurrence, influenza is transmitted from individual 

to individual year-round across the globe. Of the three types of flu, only Types A and B 

contribute to seasonal epidemics24. The virus is spread through aerosolized droplets that 

are released as part of coughing and sneezing. These droplets contain infectious virions 

that infect nearby individuals either through inhalation or direct contact. Infection occurs in 

the epithelial cells of the upper respiratory tract of a host, and clinical symptoms can 

manifest as soon as 24 hours post infection with the appearance of a fever (38oC - 40oC) 

25.  

 Symptoms are commonly characterized by malaise, body aches, runny nose, dry 

cough, excessive sputum production, and other generalized respiratory symptoms (WHO, 

2017). In healthy individuals with few pre-existing co-morbidities, symptoms typically 

resolve in one or two weeks26. However, those with chronic conditions are at greatest risk 

of fatal influenza infection, and may experience sequelae such as pneumonia that can 

complicate and prolong recovery12 

  There is a seasonality to influenza transmission (Figures 1 and 2). Generally 

speaking, the Northern Hemisphere experiences their peak transmission during the winter 

months - November through March. The Southern Hemisphere experiences their peak 

transmission during the late spring and summer months - April through August. The 

seasonality of influenza transmission in the tropics is much less defined, and outbreaks 

occur sporadically through the year.  
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Figure 1. Positive Influenza Infection Tests in the Northern Hemisphere during 2016-2017. 
WHO, 2017 
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Unfortunately for epidemiologists and public health professionals, there is no 

discrete, singular reason why influenza infections peak during the winter months. One 

theory posits that serum levels of Vitamin D drop during this time as people are less likely 

to be outside27. Vitamin D has been connected to promoting mucosal and CD4+ T cell 

responses, so influenza may be able to infect hosts more readily as Vitamin D levels drop 

28. Some believe the seasonality of flu is related to social and behavioral factors including 

crowding which helps transmission by exposing more people to the aerosolized droplets 

of an infected individual 29. A new theory suggests that the innate immune response is 

dampened by a drop in ambient temperature. Foxman et al. demonstrated that rhinovirus 

is able to infect humans more readily at 33o C due to diminished response by Type I 

interferons 30. It would be particularly interesting to see if lowered ambient temperatures 

Figure 2. Positive Influenza Infection Tests in the Southern Hemisphere during 2016-2017. 
WHO, 2017 
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enable influenza infection, or if viral proteins are better at inhibiting host immune 

responses at lower temperatures. A leading theory believes that a combination of 

temperature and humidity is the driving force in influenza seasonality. Guinea pigs held in 

cages at 5oC and low humidity were much more prone to influenza infection than those 

held at 30oC and normal/high humidity conditions 31. Lowen and Steel attribute the higher 

infection rates to an increase in virion stability while aerosolized, however this is also highly 

dependent on the pH and salt balance of the droplets. 

 The underlying seasonality of influenza infection is far too complex to attribute to 

a single environmental or host immune factor. It’s much more likely that a series of factors 

work in sync to increase infection rates during particular times of the year. 

 

1.3 Influenza Vaccines 
 

 1.3.1 Vaccine Development 
 

 The manufacture of the influenza vaccine is a yearlong process that is coordinated 

through 80 different countries and requires a large amount of collaboration to ensure a 

viable vaccine is produced in sufficient quantity for distribution. Throughout the year, 

sentinel physicians send nasopharyngeal swabs from suspected influenza cases to WHO 

centers to sequence the HA and NA surface glycoproteins from the patients to monitor 

mutations that may change the antigenicity of either protein. Novel strains are sent to one 

of four influenza research centers for further molecular and genetic analyses 32. The 

strains included in the annual influenza vaccine reflect the isolated strains obtained from 

yearlong surveillance. For countries in the Northern Hemisphere, circulating flu strains are 

reviewed in February to determine their potential for circulation during the next flu season. 
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The antigenic drift of existing vaccine strains is also evaluated in case a strain update 

needs to be made. Once the vaccine composition has been decided, vaccine companies 

have around 8 months to produce and release vaccines to health care providers 32.   

 In recent years, seasonal vaccines have included one H1N1, H3N2, and Influenza 

B strain which reflect the predominant circulating strains. Reassortant viruses are 

generated by growing the selected H1N1 and H3N2 strains in embryonated hen’s eggs 

alongside an A/PR8/1934 strain which grows to high titer in eggs 33. The surface proteins 

of progeny viruses are antigenically very similar to their wild type circulating precursors, 

but are still tested for their absence of genes coding for A/PR8/1934 surface glycoproteins. 

As part of the serial passage process, progeny viruses also develop mutations in order to 

propagate within eggs - these mutations must be tested to ensure they have not changed 

the antigenicity of the virus. There are no “master strains” for reassortant Influenza B 

viruses, so field isolates must be used.  

 The surface antigens of candidate strains are tested for their homology to the 

reference viruses and then sent to vaccine manufacturers to evaluate their potential for 

mass production. Strains that meet both of these criteria are selected for the annual 

vaccine. Vaccine strains are grown in the allantoic cavity of embryonated eggs, harvested, 

and inactivated by formalin or another similar agent. Next, the strains are partially purified 

by ultra-centrifugation and mild detergent disruption. After these steps, manufacturers 

must prove the purified strains have had no changes to the HA and NA genes. Finally, the 

antigen concentration of the purified viruses is quantified by an immune-diffusion assay. 
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In European countries, finalized vaccine candidates must undergo clinical studies to prove 

their safety and immunogenicity - this is not required in the United States. 

 1.3.2 Vaccine Composition 
 

 There are two formulations for the annual vaccine. The most common is the 

injectable formulation that contains formalin-inactivated virions34. These virions have no 

ability to replicate within the host, but are capable of inducing a memory response by the 

immune system. The inactivated vaccine has greatest efficacy in patients above the age 

of 6 35. The increased efficacy in older children is most likely attributable to past infection 

with influenza virus.  

 The other formulation is a live attenuated influenza vaccine (LAIV) that is 

administered through a nasal spray into the nasopharyngeal region of the upper 

respiratory tract36. As the name implies, this is a live virus that can replicate within the 

host, but does not cause disease. This area of the body maintains a temperature around 

32oC which permits localized viral growth, but prevents systemic infection into the lower 

airways which maintain a temperature around 37oC. LAIV is of note because its 

administration has been connected to a broad and systemic IgA mucosal response to not 

Figure 3. Flu Vaccine Development Timeline for the Northern Hemisphere. USA Today, 2009 
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only the vaccine strains, but also strains that have undergone genetic drift/shift 37. The live 

virus formulation is currently only recommended for people between the ages of 2-49 and 

those who are not immunocompromised. 

 The inactivated and live attenuated formulations can be either trivalent or 

quadrivalent. The trivalent vaccines have two influenza A strains and one influenza B 

strain. The trivalent vaccine for the 2016-2017 season consisted of A/California/7/2009 

(H1N1) pdm09-like, A/Hong Kong/4801/2014 (H3N2), and B/Brisbane/60/200834. The 

quadrivalent vaccines are identical to their trivalent counterparts except they contain a 

second influenza B strain. 

 Growing vaccine strains in eggs has the disadvantages of scalability, potential for 

undesirable mutations that decrease antigenicity of vaccine strains, contamination, and 

constraints on egg availability, which has led to alternative means of production being 

investigated. Cell lines may minimize some of these disadvantages, such as reducing the 

risk of accidental mutations during the production process 38. Furthermore, cells have the 

advantage of being cryopreserved, stored, and scaled up if the need arises. Grown in 

Madin-Darby Canine Kidney cells, FLUCELVAX® is the first cell-based vaccine to be 

approved by the FDA and was first offered during the 2016-2017 flu season39. Clinical 

studies indicated this vaccine induced immunogenicity to circulating influenza strains while 

also demonstrating similar side effects to egg-derived vaccines 40.  

 Baculovirus expression vectors also represent a step forward in influenza vaccine 

development. In this system, recombinant baculoviruses are engineered to encode a 

cDNA for a foreign protein of interest 41. These viruses then infect insect or plant cells, 

producing the mRNA transcripts which can then be harvested and translated to the desired 

protein. Flublok® is a novel vaccine though which recombinant influenza hemagglutinin is 

produced, harvested, and purified into a vaccine formulation through these baculovirus 
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vectors. There are numerous advantages to baculovirus vectors when compared to eggs 

for vaccine production. One of the greatest benefits of this system is its safety. 

Baculoviruses are present on nearly every type of leafy green vegetable (and are ingested 

on a daily basis by humans) and are only known to infect moths and butterflies. 

Furthermore, much like cell culture systems, baculovirus systems are very scalable and 

take less time to clone, express, and manufacture the recombinant HA 42. 

 

1.4 Non-Structural Protein 1 
 

 1.4.1 Protein Overview 
 

 The NS gene of influenza viruses encodes two separate proteins, non-structural 

protein 1 (NS1) and nuclear export protein (NEP). Both of these proteins are produced 

during an infection, but are not packaged into progeny virions. The NS1 protein is a 

multifunctional protein, however its overall role in antagonizing innate immune responses 

can be connected to one of its two functional domains. The first is the N-terminal domain, 
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also known as the RNA-binding domain, and then the C-terminal domain, also known as 

the effector domain 43.  

 

 1.4.2 Structure and Function of the N-terminal Domain 
 

 The N-terminal domain is roughly defined as amino acids 1-73 of the NS1 protein. 

As mentioned previously, the N-terminal domain of NS1 is responsible for directly binding 

host RNA and preventing its transcription into proteins. The N-terminal domain forms a 

homodimer in solution that consists of three α-helical domains which constitute the 

majority of secondary structure for this region of the protein. This dimerization is crucial 

for RNA binding. The α-helices of the homodimer form a unique chain fold that binds RNA 

between the 2 and 2’ chains 43. Research has determined that within the second α-helix, 

R38 and K41 are the two crucial amino acids needed for RNA-binding 44 

 The NS1 N-terminal domain is well-known for inhibiting the 2’-5’ oligoadenylate 

synthetase (OAS)/RNAse L pathway. The OAS/RNAse L pathway is activated by IL-1β, a 

Figure. 4. Structure of the NS1 Protein and Cellular Targets of Immune Inhibition. Hale et al., 2005 



 17 

key cytokine in initiating a wide array of innate immune responses, and is known to induce 

an antiviral response by recognizing and degrading foreign dsRNA 45. It was originally 

thought that NS1 inhibited production of IL-1β which would block OAS/RNAse L. However, 

work conducted by Min and Krug found that NS1 functions not to prevent the transcription 

of IL-1β, but rather to directly bind viral dsRNA and sequester it from the OAS recognition 

complex and thus prevent its degradation via RNAse L 46. Furthermore, Min and Krug 

found that an R38A mutation in the N-terminal domain effectively abolished NS1 inhibition 

of the OAS/RNAse L pathway. This discovery implicates point mutations as key mediator 

of NS1 antagonism of the innate immune system. 

 The N-terminal domain has also been proven to directly inhibit the production of 

key innate cytokines including IL-1β and IL-18. Stasakova et al. utilized A/Puerto 

Rico/1934 viruses with nucleotide base deletions in the C-terminal of the NS1 protein. The 

levels of IL-1β and IL-18 in the truncated NS1 mutant viruses were found to be similar to 

that of the full-length A/Puerto Rico virus 47. Furthermore, mutant viruses expressing an 

impaired N-terminal domain resulted in IL-1β levels that were 10-50 times higher, and IL-

18 levels that were five times higher than the full length virus. These data implicate the N-

terminal domain of NS1 in IL-1β and IL-18 inhibition. 

 

 1.4.3 Structure and Function of the Linker Region 
 

 There is a short linker region of roughly 11 amino acids that separates the N-

terminal and C-terminal domains. The length of the linker region is strain dependent and 

is believed to give NS1 a certain degree of flexibility with the C-terminal rearranging itself 

around a stationary N-terminus 48. This will influence the three-dimensional structure of 

the protein and potentially alter its interaction with other cellular factors. Truncated linker 
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regions have been connected to an increase in virulence in some H5N1 viruses, 

suggesting its potential importance in modulating NS1 function 49. 

 

 1.4.4 Structure and Function of the C-terminal Domain 
 

 The C-terminal domain of NS1 is characterized as extending from amino acids 85 

to the end of the protein; the exact length of the C-terminus is strain-dependent. Although 

the N-terminus remains dimeric throughout the course of infection, the C-terminus is 

capable of forming dimers or remaining monomeric 48. Since both functional domains of 

NS1 act as dimers, researchers now believe the protein acts as a dimer in vivo 50. 

However, NS1 can cycle between monomeric and dimeric conformations to determine 

which is most beneficial at that point of the infection. For example, the protein may be 

monomeric during early infection when the protein concentration is low, but may then cycle 

to an open dimer during later stages when the protein concentration has increased and 

can bind host factors like CPSF30. These structures can be further influenced in a strain-

dependent manner. The tertiary structure of the C-terminal domain, as well as the N-

terminal domain is fairly conserved across influenza strains. However, the effector domain 

is known to display polymorphisms that influence its interaction with host mRNA 

transcripts and cellular factors. Carrillo et al. determined there are three main classes of 

NS1 effector domain orientation: open, semi-open, and closed 48. Furthermore, there is 

evidence to suggest that these orientations are influenced by linker region length and 

residue composition. This flexibility may allow for varying conformations in quaternary 

structure that would influence NS1’s interactions with host factors and result in the 

protein’s known multi-functionality 51.  
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 The C-terminal domain of NS1 is multifunctional and works to inhibit host cell 

innate immune responses to various degrees. 

 One of the most studied targets of NS1’s C-terminal domain is cleavage specific 

polyadenylation factor (CPSF30). CPSF30 is responsible for the maturation of host pre-

mRNA by cleaving the 3’-end of the transcript and then polyadenylating the end of the 

cleavage site 52. This process is critical for proper development of host mRNA such that it 

can be exported from the nucleus. NS1 functions to bind and sequester CPSF30 so it 

cannot complete this function. The result is a bottleneck on the export of host mRNA, most 

notably mRNA encoding Type I interferons. As the host mRNA accumulates, the viral 

replication complex binds host transcripts via the PB2 subunit, cleaves the transcripts via 

the PA subunit, and finally prepares viral mRNA synthesis with the PB1 subunit 53. It’s 

necessary to note that these viral RNA transcripts can be transcribed independently of 

host machinery and are thus selectively omitted from this block on transcription.  

 Discrete amino acids are crucial for the bioactivity of the NS1 effector domain. 

Work conducted by Twu et al. demonstrated that viruses with mutations at residues 144 

and/or 186 in their NS1 C-terminus had 40 times more IFN-β than their wild type 

counterpart 54. These researchers also implicated the a.a. 144-186 region as the binding 

site for the F2F3 zinc finger on CPSF30 54. These findings were built upon by Das et al. 

who demonstrated that amino acids F103 and M106 were crucial to maintain the stability 

of the NS1-CPSF30 complex 55. These residues were highly conserved across > 99% of 

Influenza A strains and present an interesting target for anti-viral drug design in the future 

These data further reinforce the belief that point mutations in the NS1 protein can 

drastically influence the attenuation of influenza A viruses. It is also necessary to note that 

circulating seasonal influenza viruses show a strong capability to bind CPSF30, while egg 

adapted strains lack this trait 56. Further work needs to be conducted to determine if egg 
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adapted strains attribute their adaptation specifically to inability to bind and inactivate 

CPSF30. 

 PABPII works in conjunction with the CPSF30 complex. CPSF30 cleaves the 3’-

end of the pre-mRNA transcripts while PABPII ligates the complex following cleavage. 

Unsurprisingly, NS1 targets PABPII in addition to CPSF30. NS1 inhibition of PABPII is 

also believed to affect export of mRNAs. The PABPII complex is known to shuttle between 

the nucleus and cytoplasm and it has been hypothesized it may play a role in both the 

maturation and delivery of host mRNAs. Li et al. demonstrated that cells transfected with 

NS1 have sequestered and relocalized PABPII in the nucleus where it cannot interact with 

host mRNA 57. Furthermore, the NS1 C-terminal domain appears to have non-overlapping 

regions that bind CPSF30 and PABPII - this means one protein can effectively bind and 

neutralize two host transcription factors. CPSF30 and PABPII also bind each other in vitro 

and form a complex. These data suggest that although CPSF30 may be able to bind host 

pre-mRNAs during an influenza infection, the conjoined binding with PABPII on the NS1 

protein may still inhibit the proper maturation of host transcripts. Once again, point 

mutations in the aa 223-237 were implicated in NS1 binding on PABPII. 

 Protein kinase R is an intracellular sensor for dsRNA and serves as an important 

part of the innate immune system. Once activated by dsRNA, PKR phosphorylates the 

eIF2 translation factor which in turn halts host protein synthesis for both normal host 

function and viral invaders 58. Influenza counteracts this in two ways. The first is inhibition 

of p58IPK, a factor that is required to activate PKR 59. Secondly and more important for 

this research, is inhibition of PKR by NS1. NS1 binds amino acids 123-127 in the C-

terminal domain and is believed to trigger a conformational change in PKR 60,61. This 

conformational change prevents PKR from binding viral dsRNA and thus inhibiting its 
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translation. Once more, point mutations are implicated in maintenance of pro-viral 

functions in the host. 

 

1.5 The Live Attenuated Influenza Virus 
 

 1.5.1 Overview and Description 
 

 The live attenuated influenza virus (LAIV) was developed concurrently in the US 

and USSR during the 1960s. The A/Ann Arbor/6/60 (US) and A/Leningrad/134/47/57 

(USSR) wild type strains are both H2N2 viruses that were serially passaged at 

progressively lower temperatures in embryonated hens eggs 62. As part of the serial 

passaging process, the wild type strains developed a set of mutations in its genome that 

allowed for its propagation under these conditions. The result was an antigenically distinct 

cold adapted (ca) progeny strain of the clinically isolated wt A/Ann Arbor/6/60. Genomic 

analyses have connected these mutations to three main phenotypes of LAIV that 

contribute to its attenuation. 

 

1) Cold Adaptation - LAIV can propagate at 25oC. This is considerably lower than the 

core human body temperature of 37oC. 

 

2) Temperature Sensitivity - LAIV has diminished replication efficiency at 37oC. LAIV 

is delivered into the nasopharyngeal tract via intranasal administration where the 

virus can replicate at 32oC. Although the upper airways permit a small, localized 

infection, the temperature sensitivity of the virus prevents it from spreading into the 

lower airways (temp. ≈ 37oC) which is associated with a more severe infection. 
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Instead, the virus remains localized to the upper airways where it can be controlled 

by the immune response. 

 

3) Attenuation - Ferrets represent an animal model of influenza infection 63. It has 

been shown that LAIV infection in these mammals limits influenza infection to the 

upper airways, but still induces a protective antibody response 64. Furthermore, 

histological analyses of ferrets infected with LAIV demonstrated fewer lesions than 

those who were inoculated with the wild-type strains. 

 

 1.5.2 LAIV Formulation 
 

 In terms of an annual influenza vaccine, reverse genetics are used to create an 

LAIV through a 6:2 reassortment with the circulating wt virus of concern. The allantoic 

cavity of an embryonated hen’s egg is infected with a cold adapted influenza strain like 

A/Ann Arbor/6/60 and the circulating strain of choice. In the egg, the six internal gene 

segments (PB2, PB1, PA, NP, M, NS) of the cold adapted strain reassort with the HA and 

NA from the circulating strain 65. The resulting virus inherits the temperature sensitivity and 

attenuation of the cold adapted virus, but contains the external genes of the circulating 

strains that are necessary for generating an immune response. 
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1.5.3 NS1 Mutations in LAIV 

 

 It’s clear that point mutations are responsible for the attenuation and temperature 

restriction of LAIV. Most of the mutations occur in the genes encoding viral polymerases, 

however a few have been discovered elsewhere in the genome, notably in the NS gene.  

 Work conducted by Cox et al. mapped one mutation in the coding region of the NS 

gene segment. Occurring at amino acid 153, the mutation from an alanine (wt) to a 

threonine (LAIV) was the only difference in the coding region of the NS gene of cold 

adapted A/Ann Arbor/6/60 when compared to the wt 66. When examined in the same 

context as some of the other gene segments, it’s reasonable to infer that the mutation at 

aa 153 of NS might have a role in LAIV attenuation.  

Figure 5. Formulation of LAIV. Modified from NIAID. 
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1.5.4 Previous Data 
 

 Work conducted by Fenstermacher and Forero examined the growth kinetics of 

HA/NA-antigenically matched LAIV and wt A/Victoria/361/2011 in cultures of human nasal 

epithelial cells (hNECs) at 33oC. They found that over a seven day period, infectious 

particle production as well as growth rate in LAIV was less than its wt counterpart 67.  

 In addition to altered growth kinetics, LAIV differentially induces the host innate 

immune response when compared to a wt virus. When hNEC cells were infected at a high 

multiplicity of infection (MOI), LAIV induced a larger number of genes distinct from the wt 

virus. 

 

 

 

 

 

Segment Coding Changes Mutation Effect 

PB2 1 N265S Attenuation, Temp. Sensitivity 

PB1 4 K391E, E457D, E581G, 
A661T Attenuation, Temp. Sensitivity 

PA 2 K613E, L715P Cold Adaptation, Attenuation 

NP 2 T23N, A34G ? 

M 1 A86S Attenuation 

NS 1 A153T ? 

Table 2. Mutations in A/Ann Arbor/6/60 Arising During the Serial Passage and Cold 
Adaptation Process 
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At 24 hours post infection, LAIV induces over twice the amount of unique genes 

when compared to the wt. Furthermore, at 36 hours post infection, LAIV induces six times 

Figure 7. LAIV Differentially Induces the Immune Response. Forero and Fenstermacher et al., 
ahead of print. 

Figure 6. LAIV Demonstrates Altered Growth Kinetics when Compared to wt 
A/Victoria/361/2011. Forero and Fenstermacher et al., ahead of print. 
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the amount of genes distinct from wt. These data indicate LAIV and circulating wt viruses 

differ in both replication and induction of the immune response, however the mechanistic 

basis of these differences remains to be fully understood. 

 Previous work indicates that discrete amino acids are crucial for NS1’s bioactivity. 

Recent work conducted by Nogales et al. demonstrated that D189N and V194I mutations 

in clinical isolates contributed to viral attenuation and temperature sensitivity, particularly 

at aa 194 (Nogales et al., 2016). Furthermore, DeDiego et al. has shown that H3N2 viruses 

bearing an I64T mutation are particularly susceptible to IFN-based responses 68. 

 In the context of these data, we believe the aa 153 mutation in the NS segment 

may contribute to the attenuation of LAIV by participating in restricting viral growth and/or 

differentially inducing immune genes distinct from wt influenza infection. 

 

Chapter 2 - NS Segment Reassortant Viruses between 
wild-type influenza A virus and live attenuated influenza 
virus vaccine 
 
2.1 Introduction 
 

 2.1.1 Influenza and Gene Reassortment 
 

 Reassortment of the influenza genome is a normal part of the virus lifecycle in 

which entire gene segments are replaced by those of another influenza strain. This often 

occurs in an intermediary species, swine for example, where avian and human influenza 

viruses can co-mingle within the same pig 69. For example, a human influenza can some 

of its gene segments with that of an avian strain. The resulting reassorted virus has traits 
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of both its parental viruses which can have a profound impact on virulence within a naive 

host.  

 This process of reassortment is commonly known as genetic shift when it involves 

the HA gene segment and is a hallmark of influenza diversity and adaptation. Many 

pandemic strains have formed as a result of gene reassortment including the 1918 H1N1, 

1957 H2N2, 1968 H3N2, and most recently 2009 H1N1 outbreak. A closer look at the 

1918 pandemic strain shows the acquisition of an avian HA gene which drastically 

enhanced virulence when compared to its original lineage (Pappas et al. 2007). 

 

 

 

 

 

 

 
 
 
 
 

 
2.1.2 Reassortant Viruses in the Laboratory 
 

 In the laboratory, we are able to manually induce gene reassortment to create new 

influenza viruses. In fact, this is done on an annual basis with LAIV which contains the six 

internal cold adapted genes from the attenuated virus, as well as the two external genes 

Figure 8. Hypothetical Reassortment of Influenza within a Swine Host. Stevens et al., 2006. 



 28 

from the circulating virus subtypes. When a single segment is substituted for another, the 

resulting virus is referred to as a “7:1 virus” to represent the seven original segments and 

the one transplant segment. These reassortant viruses are useful in determining the 

influence of a particular segment on viral phenotype. For example, the aforementioned 

work conducted by Pappas et al. was done with reassorted H1N1 viruses to elucidate that 

HA was the crucial segment conferring enhanced virulence in the 1918 pandemic strain. 

For the purposes of this project, we intend to do NS gene swaps between LAIV and wt 

A/Victoria/361/2011.  

 

 Lineage of Segments 1-7 Lineage of NS 
Segment Abbreviation 

1 A/Victoria/361/2011 A/Victoria/361/2011 WT/WT 

2 A/Victoria/361/2011 LAIV WT/LAIV 

3 LAIV LAIV LAIV/LAIV 

4 LAIV A/Victoria/361/2011 LAIV/WT 

 

Table 3. 7:1 Virus Panel 

Figure 9. Representation of 7:1 NS Gene Swaps between wt A/Victoria/361/2011 and LAIV 
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Since the NS segment encodes two proteins, NS1 and NEP, sequence alignments 

of wild type A/Victoria/361/2011 and LAIV NS1 and NEP were performed in order to 

examine amino acid differences. There are 28 discrete amino acid differences between 

the wild type and LAIV NS1 proteins. In regards to NEP, there are 7 discrete amino acid 

differences.  When used in our NS reassortant virus system, this variation in amino acids 

between the protein sequences might shed light on LAIV attenuation. 

 

2.2 Materials and Methods 
 

 2.2.1 Cell Lines 
 

 Madin-Darby canine kidney (MDCK) cells were maintained in Dulbecco’s Modified 

Eagle’s Medium (DMEM) with 10% fetal bovine serum (FBS), 100 U/mL penicillin, 100 

ug/mL streptomycin and 2mM L-glutamine at 37oC with 5% CO2 and passaged at a 1:10 

dilution every 3-4 days. 

Figure 10. Sequence Alignment of wild type A/Victoria/361/2011 and LAIV NS1 

Figure 11. Sequence Alignment of wild type A/Victoria/361/2011 and LAIV NEP 
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 Transformed human embryonic kidney 293 cells (293T) were maintained in DMEM 

with 10% fetal bovine serum (FBS), 100 U/mL penicillin, 100 ug/mL streptomycin and 2mM 

L-glutamine at 37oC with 5% CO2 and passaged at a 1:10 dilution every 3-4 days. 

 Adenocarcinomic human alveolar basal cells (A549) were maintained in DMEM 

with 10% fetal bovine serum (FBS), 100 U/mL penicillin, and100 ug/mL streptomycin at 

37oC with 5% CO2 and passaged at a 1:10 dilution every 3-4 days. 

 

 2.2.2. Recombinant Viruses 
 

 A 12 plasmid recombinant virus rescue system was utilized to generate the panel 

of reassortant viruses (Neumann et al., 1999). 6-well plates were coated with poly-L-lysine 

and 293T cells were plated at 40-60% confluence 24 hours prior to transfection. For the 

reassortant viruses with the A/Victoria/361/2011 genome, 293T cells were transfected with 

A/Victoria/361/2011 pHH21 plasmids encoding the A/Vic PB2, PB1, PA, NP, NA, HA, M 

(0.5 μg each) and the LAIV NS segment (1.0 μg). For reassortant viruses with the LAIV 

genome, 293T cells were transfected with LAIV pHH21 plasmids encoding PB2, PB1, PA, 

NP, NA, HA, M (0.5 μg each) and the A/Vic segments HA, NA, and NS (1.0 μg). All pHH21 

plasmids were transfected with helper plasmids encoding the ORFs of the A/Udorn/72 

PB1, PB2, NP (1.0 ug each) and PA (0.2 uh) under the control of RNA polymerase II 

promoters which allows for expression of the viral proteins needed for RNA replication.  

 Transfection reagent TransIT-LT-1 (LT1) (Mirus) (20 μL/transfection) was mixed 

with OptiMEM medium (Gibco) (100 μL/transfection) and incubated at room temperature 

for 15 minutes. Plasmids were mixed at the aforementioned quantities, added to the 

LT1/OptiMEM mixture, and incubated at room temperature for another 15 minutes. DMEM 

was aspirated from 6-well plates containing 293T cells and replaced with 2 mL/well of 
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OptiMEM. The corresponding transfection mix was added dropwise to each well. The 

plates were incubated at 32oC with 5% CO2. 24 hours following transfection, 2.24 μL of 5 

μg/mL N-acetyl trypsin (NAT) (Sigma) was added to each well to bring the total 

concentration of NAT to 10 μg/mL. The cells were incubated at 32oC with 5% CO2 for 4 

hours and then each well overlaid with approx. 5*105 MDCK cells suspended in 100 μL 

OptiMEM. The plates were transferred to a 37oC incubator. Every 24 hours for approx. 

five days, 1 mL of supernatant was removed from the cells and replaced with 1 mL DMEM 

with 4 μg/mL NAT, 100 U/mL penicillin, 100 μg/mL streptomycin, 2mM L-glutamine, and 

0.5% bovine serum albumin (BSA) (Sigma) (IM+NAT). Transfection was discontinued 

when indications of comprehensive cytopathic effects were observed. 

 WT/WT, WT/LAIV, LAIV/LAIV, and LAIV/WT reassortant viruses were generated 

in accordance with this protocol. 

 

 2.2.3 TCID50 Assay 
 

 Fifty percent tissue culture infectious dose (TCID50) were utilized to determine viral 

titers. MDCK cells were plated to confluence in 96-well plates. Viral supernatants were 

diluted at concentrations from 10-1 to 10-8 in IM+NAT. 20 μL of each 10-fold dilution was 

added to six consecutive wells on a confluent 96-well plate containing MDCK cells. These 

plates were incubated at 32oC with 5% CO2 for 7 days. The cells were fixed with 4% 

formaldehyde and stained with naphthol blue-black overnight. Cytopathic effects (CPE) 

were scored visually and TCID50 was quantified using the Reed and Muench calculation. 

 

 2.2.4 Plaque Purification 
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 Recombinant influenza viruses generated following transfection must be purified 

from the transfection supernatant. 6-well plates were seeded with MDCK cells and seeded 

to confluence. 100 μL of transfection supernatant was serially diluted ten-fold from 10-1 to 

10-8 with IM+NAT. 6-well plates were aspirated and washed twice with PBS+. 250 μL of 

diluted virus (dilutions determined from TCID50 of transfection supernatant) was added to 

each well. The 6-well plates were incubated for one hour at 32oC for the LAIV/LAIV and 

LAIV/WT viruses and 37oC for the WT/WT and WT/LAIV viruses. During the incubation 

period, the plates were gently tapped every 15 minutes to evenly distribute virus. Following 

incubation, the inoculum was aspirated and replaced with ~ 4 mL of a mixture of 2% 

agarose, 2X Modified Eagle’s Medium (MEM), and 4 μg/mL NAT. Plates were incubated 

at 32oC for 72-120 hours. Clear, defined, and singular plaques were picked using a 1 mL 

serological pipette, placed into tubes containing 500 μL IM, and stored at -80oC. 

 

 2.2.5 Virus Infection to Generate Viral Stocks 
 

 MDCK cells were grown to confluence in T150 (150 cm2) flasks. 100 μL of the 

media containing the plaque plug was added to 5 mL IM+NAT. The media was aspirated 

from the T150 flasks and replaced by the virus and IM mixture. The flasks were incubated 

for one hour at 32oC for viruses with LAIV polymerase genes and 37oC for viruses with 

A/Victoria/361/2011 polymerase genes. During the incubation period, the plates were 

gently tapped every 15 minutes to evenly distribute virus. Following the one hour 

incubation, the inoculum was aspirated and replaced with 20 mL IM. The cells were 

monitored daily for CPE and the supernatants harvested after 30-40% of cells were dead 

or had detached from the flask. The infected cell supernatants were aliquoted into 200 μL 

volumes and stored at -70oC to establish a bank of viral seed stocks. The seed stocks 
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were sequenced to confirm a purified virus product and later infectious virus titers 

determined via TCID50 assay. Once viral sequencing was completed, working stocks were 

generated from the seed stocks (MOI = 0.001) in the manner described above. Working 

stocks were also titrated for infectious virus via TCID50 assay. 

 

 2.2.6 Low MOI Growth Curves 
 

 Growth curves were implemented to examine virus replication kinetics and peak 

viral titers mimicking natural infection. 24-well plates were seeded to confluence with either 

MDCK or A549 cells. Viruses were diluted to a multiplicity of infection (MOI) of 0.01 

infectious viral particles per cell in IM+NAT. The NAT was added at a 1:1000 dilution for 

MDCK cells and 1:5000 dilution for A549 cells. The media was aspirated from the 24-well 

plates and each well was washed twice with PBS+. 250 μL of virus was added to 

appropriately labeled wells and incubated for one hour at 32oC or 37oC. The viral inoculum 

was removed after the one hour incubation, the cells were washed twice with PBS+, and 

500 μL IM+NAT added to each well. The IM+NAT was removed, stored, and replaced with 

fresh media at 1, 12, 24, 36, 48, and subsequent 24 hour time points until the cells has 

comprehensive CPE. The infectious virus titers were determined via TCID50 assay. Virus 

particle production was graphed using Prism 7 software. 

  

2.2.7 High MOI Growth Curves 
 

 Growth curves were implemented to examine virus replication kinetics and peak 

viral titers. 24-well plates were seeded to confluence with A549 cells. Viruses were diluted 

to a multiplicity of infection (MOI) of 0.55 infectious viral particles per cell in IM+NAT. The 
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media was aspirated from the 24-well plates and each well was washed twice with PBS+. 

250 μL of virus was added to appropriately labeled wells and incubated for one hour at 

32oC and 37oC. The viral inoculum was removed after the one hour incubation, the cells 

were washed three times with PBS+, and 500 μL  IM+NAT added to each well. The 

IM+NAT was removed, stored, and replaced with fresh media at 1, 12, 18, 24, 36, 48, and 

subsequent 24 hour time points until the cells had comprehensive CPE. The collected 

supernatant was titered via TCID50 assay. Virus particle production was graphed using 

Prism 7 software. 

 

2.3 Results 
 

 2.3.1 Rescue of NS Reassortant Viruses 
 

  NS reassortant viruses were successfully rescued. All eight gene segments were 

sequenced to ensure there were no incidental mutations that occurred during the 

transfection process. 

 

 2.3.2 Replication of NS Reassortant Viruses at 32oC in MDCK Cells 
 

 To characterize replication kinetics and peak viral titers of NS reassortant viruses, 

a multi-step growth curve was performed on MDCK cells at 32oC. This temperature was 

selected in order to mimic the temperature of the upper respiratory tract. When matched 

for genetic backbone, the LAIV/LAIV virus had significantly faster replication kinetics than 

the LAIV/WT virus, however they both reached the same peak titer at 72 hours post 

infection (Fig. 12). The WT/LAIV virus also had significantly faster replication kinetics than 
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the WT/WT virus, however both reached roughly the same peak titer at 72 hours post 

infection (Fig. 13). 
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Figure 12. Effect of NS Gene Swap in the LAIV backbone at 32oC in MDCK Cells. A multistep 
growth curve was performed on MDCK cells with the indicated viruses. Statistical differences 
were determined by MANOVA followed by Bonferroni post-test. *=P < 0.05; **= P < 0.01; 
***=P<0.001. L.O.D=limit of detection=2.37. 
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2.3.3 Replication of NS Reassortant Viruses at 37oC in MDCK Cells 
 

 A multistep growth curve was also performed at 37oC to mimic an infection of the 

lower respiratory tract, which is also representative of core body temperature. Once again, 

the LAIV/LAIV virus had significantly faster replication kinetics than LAIV/WT, but both 

viruses achieved roughly the same peak titer at 48 hours post infection (Fig. 14). 

Additionally, the WT/LAIV virus had significantly faster replication kinetics than the WT/WT 

virus, however both strains reached roughly the same peak titer at 48 hours post infection 

(Fig. 15). 
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Figure 13. Effect of NS Gene Swap in the A/Victoria/361/2011 backbone at 32oC in MDCK 
Cells. A multistep growth curve was performed on MDCK cells with the indicated viruses. 
Statistical differences were determined by MANOVA followed by Bonferroni post-test. *=P < 
0.05; **= P < 0.01; ***=P<0.001. L.O.D=limit of detection=2.37. 



 37 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 24 48 72 96
0

2

4

6

8

LLOD

Hours Post Infection

lo
g 10

TC
ID

50

37C - LAIV/WT vs LAIV/LAIV

LAIV/WT

LAIV/LAIV
**

MDCK Cells
MOI = 0.01

Figure 14. Effect of NS Gene Swap in the LAIV backbone at 37oC in MDCK Cells. A multistep 
growth curve was performed on MDCK cells with the indicated viruses. Statistical differences 
were determined by MANOVA followed by Bonferroni post-test. *=P < 0.05; **= P < 0.01; 
***=P<0.001. L.O.D=limit of detection=2.37. 
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2.3.4 Replication of NS Reassortant Viruses at 32oC in A549 Cells 
 

 A549 cells were infected to further evaluate viral growth kinetics for the NS 

reassortant viruses. Originating from adenocarcinomic alveolar basal epithelial cells, 

A549s present a more humanized model for influenza infection than MDCK cells. The 

A549 cells were infected at an MOI = 0.55. 

 A multistep growth curve was performed at 32oC. For the viruses in the LAIV 

backbone, the LAIV/LAIV and LAIV/WT viruses show no significant difference in 

replication kinetics – both viruses reached roughly the same peak titer at a similar rate 

(Fig. 16). For the viruses in the A/Victoria/361/2011 backbone, the WT/LAIV virus reached 

a peak titer nearly 100-fold greater than its WT/WT counterpart. Furthermore, the WT/LAIV 

virus reached its peak titer at a faster rate than the WT/WT virus (Fig. 17).  
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Figure 15. Effect of NS Gene Swap in the A/Victoria/361/2011 backbone at 37oC in MDCK 
Cells. A multistep growth curve was performed on MDCK cells with the indicated viruses. 
Statistical differences were determined by MANOVA followed by Bonferroni post-test. *=P < 
0.05; **= P < 0.01; ***=P<0.001. L.O.D=limit of detection=2.37. 
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Figure 16. Effect of NS Gene Swap in the LAIV backbone at 32oC in A549 Cells. A multistep 
growth curve was performed on MDCK cells with the indicated viruses. Statistical differences 
were determined by MANOVA followed by Bonferroni post-test. *=P < 0.05; **= P < 0.01; 
***=P<0.001. L.O.D=limit of detection=2.37. 
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 2.3.5 Replication of NS Reassortant Viruses at 37oC in A549 Cells 
 

Multistep growth curves were also performed at 37oC to evaluate any temperature 

sensitive phenotypes in the virus panel. The A549 cells were inoculated at an MOI = 0.55.  

Similar to what was observed at 32oC, the LAIV/LAIV and LAIV/WT viruses 

demonstrated no significant differences in replication kinetics at 37oC (Fig. 18). They both 

reached roughly the same peak titer in the same amount of time. For the WT viruses, 

however, the WT/LAIV virus reached its peak titer faster than the WT/WT virus. Both 

viruses achieved roughly the same peak titer (Fig. 19). 
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Figure 17. Effect of NS Gene Swap in the A/Victoria/361/2011 backbone at 32oC in A549 Cells. 
A multistep growth curve was performed on MDCK cells with the indicated viruses. Statistical 
differences were determined by MANOVA followed by Bonferroni post-test. *=P < 0.05; **= P < 
0.01; ***=P<0.001. L.O.D=limit of detection=2.37. 



 41 

  

  

 

0 12 24 36 48
0

2

4

6

8

LLOD

Hours Post Infection

lo
g 10

TC
ID

50

37C - LAIV/WT vs LAIV/LAIV

LAIV/WT

LAIV/LAIV
ns

Figure 18. Effect of NS Gene Swap in the LAIV backbone at 37oC in A549 Cells. A multistep 
growth curve was performed on MDCK cells with the indicated viruses. Statistical differences 
were determined by MANOVA followed by Bonferroni post-test. *=P < 0.05; **= P < 0.01; 
***=P<0.001. L.O.D=limit of detection=2.37. 
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2.4 Discussion 
 
 Previous work suggests that mutations which arise in the NS gene during the serial 

passage process of LAIV may contribute to viral attenuation and/or temperature sensitivity 

66. We examined this through NS gene segment reassortments in a panel of viruses. 

Although this does not allow us to determine the specific mutations that may contribute to 

an attenuation phenotype, we would be able to determine what role, if any, the entire gene 

segment has in viral replication. To test this, we performed several multistep growth curves 

between the NS reassortant viruses outlined in Table 3.  

In MDCK cells at a low MOI (MOI = 0.01), there were significant differences 

between LAIV/LAIV and LAIV/WT, as well as significant differences between WT/LAIV 

and WT/WT. In both backbones, the virus with the LAIV NS gene segment had faster 

Figure 19. Effect of NS Gene Swap in the A/Victoria/361/2011 backbone at 37oC in A549 Cells. 
A multistep growth curve was performed on MDCK cells with the indicated viruses. Statistical 
differences were determined by MANOVA followed by Bonferroni post-test. *=P < 0.05; **= P < 
0.01; ***=P<0.001. L.O.D=limit of detection=2.37. 
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replication kinetics than its wild-type matched NS counterpart. However, all viruses 

eventually reached roughly the same peak titer. This trend was observed at both 32oC and 

37oC, which indicates that the NS gene is not responsible for the temperature sensitive 

phenotype in cell culture. 

We also conducted multistep growth curves at a high MOI (MOI = 0.55) in A549 

cells, which represents a more humanized model of infection (compared to canine kidney 

cells). In the A549 cell culture system, the LAIV-backbone viruses were found to have no 

significant differences in growth kinetics or peak titer from one another at 32oC or 37oC. In 

the WT backbone, the WT/LAIV had significantly faster growth at both 32oC and 37oC. At 

32oC, the WT/LAIV virus had a higher peak titer (~100 fold greater) than WT/WT. For the 

WT viruses, these data indicate the NS gene has a role in viral replication. However, in 

the context of these data, we are unable to determine which of the two proteins encoded 

by the NS gene, NS1 or NEP, are contributing to this phenotype. NEP is likely to be the 

larger contributor because it associates with the M2 protein during viral assembly, 

whereas NS1 primarily antagonizes the innate immune response. 

 

Chapter 3 - Recombinant influenza expressing mutations 
at amino acid 153 that are associated with the cold 
adaptation of live attenuated influenza virus vaccines 
 

3.1 Introduction 
 

 3.1.1 Interest in aa 153 
 

 The genome of LAIV has developed a series of mutations which allow it to survive 

and propagate at 25oC in embryonated hen’s eggs. I wanted to take a deeper look into 
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how these mutations influence viral growth and replication. Of particular interest is the aa 

153 mutation in the NS1 protein. I want to generate a panel of NS1 aa 153 mutant viruses 

in both the LAIV and circulating wt A/Victoria/361/2011 backbones. This will allow us to 

determine if the aa 153 mutation first observed by Cox et al. has any influence on the 

attenuation of LAIV. 

 

 3.1.2 Virus Mutant Selection 
 

 When observing the relative amino acid frequency of current H3N2 human clinical 

isolates, glutamic acid is by far the most prevalent genotype, accounting for roughly 99% 

of collected samples. 

 For our mutations in the A/Victoria/361/2011 backbone, E153 will serve as the 

baseline genotype. However, when we use the same search parameters for avian species, 

aspartic acid is the most prevalent phenotype, accounting for roughly three-quarters of 

isolates. - glutamic acid accounts for the remaining one-quarter of isolates. Although the 

side chains are very similar in structure and property, it would also be interesting to see 

what effect a D153 mutation has on virus phenotype. 

 LAIV exhibits a T153 genotype - this will serve as the baseline amino acid for all 

work conducted in the LAIV backbone. When compared to the original wt A/Ann 

Arbor/6/60 clinical isolate, a A153 genotype is observed. I wanted to create mutations in 

the LAIV backbone that reflect a reversion to the A153 genotype, a conversion to the wt 

H3N2 E153 genotype, and a conversion to the avian D153 genotype. Furthermore, we will 

create similar mutations in the A/Victoria/361/2011 backbone that reflect conversions to 
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the wt A/Ann Arbor/6/60 A153 genotype, LAIV’s T153 genotype, and the avian D153 

genotype. These viruses are listed in Tables 4 and 5. 

 

 

Table 4. Panel of aa 153 Viruses in A/Victoria/361/2011 Backbone 

Table 5. Panel of aa 153 Viruses in LAIV Backbone 
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3.2 Materials and Methods 
 

 3.2.1 Cell Lines 
 

 Madin Darby canine kidney (MDCK) cells were maintained in Dulbecco’s Modified 

Eagle’s Medium (DMEM) with 10% fetal bovine serum (FBS), 100 U/mL penicillin, 100 

ug/mL streptomycin and 2mM L-glutamine at 37oC with 5% CO2 and passaged at a 1:10 

dilution every 3-4 days. 

 Transformed human embryonic kidney 293 cells (293T) were maintained in DMEM 

with 10% fetal bovine serum (FBS), 100 U/mL penicillin, 100 ug/mL streptomycin and 2mM 

L-glutamine at 37oC with 5% CO2 and passaged at a 1:10 dilution every 3-4 days. 

 

 3.2.2 Plasmids 
 

Table 6. Frequency of Amino Acids Isolated from North American Clinical Samples (aa 153) 
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 The pHH21 plasmid for the NS segment encodes the influenza 

A/Victoria/361/2011 and LAIV NS segment under the control of human RNA polymerase 

I promoter and murine RNA polymerase I terminator. This pHH21 plasmid encoding the 

NS segment was mutated using the the Quickchange Site-Directed Mutagenesis Kit 

(Stratagene) to induce mutations at aa 153. Forward and reverse primers were designed 

to create desired mutations and their sequences are shown in Table 7 (Integrated DNA 

Technologies). The pHH21 plasmid and the primers of interest were subjected to PCR. 

Dpn1 enzyme was used to cleave and remove supercoiled parental plasmid from the PCR 

mixtures. The purified PCR mixture was transformed into competent bacterial (Ultra Gold) 

cells. Several bacterial colonies were selected for each mutant and their DNA purified 

using the QIAprep Spin Miniprep Kit (Qiagen). The DNA was sequenced using the FluA5 

and FluA6 primers. 
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 3.2.3 Recombinant Viruses 
 

 A 12 plasmid recombinant virus rescue system was utilized to generate the panel 

viruses (Neumann et al., 1999). 6-well plates were coated with poly-L-lysine and 293T 

cells were plated at 40-60% confluence 24 hours prior to transfection. For the 

A/Victoria/361/2011 viruses, 293T cells were transfected with A/Victoria/361/2011 pHH21 

plasmids encoding PB2, PB1, PA, NP, NA, HA, M (0.5 μg each) and NS (1.0 μg). For the 

Plasmid Forward Primer Reverse Primer 

pHH21 A/Vic-NS1-E153A 5’ CCA ACA ATT GCT CCG 

GCT TCG GTG AAA GCC 

CTT AGT AAT ACT AT 3’ 

5’ ATA GTA TTA CTA AGG 

GCT TTC ACC GAA GCC 

GGA GCA ATT GTT GG 3’ 

pHH21 A/Vic-NS1-E153D 5’ CCA ACA ATT GCT CCG 

TCT TCG GTG AAA GCC 

CTT AGT AAT ACT AT 3’ 

5’ ATA GTA TTA CTA AGG 

GCT TTC ACC GAA GAC 

GGA GCA ATT GTT GG 3’ 

pHH21 A/Vic-NS1-E153T 5’ CCA ACA ATT GCT CCC 

GTT TCG GTG AAA GCC 

CTT AGT AAT ACT AT 3’ 

5’ ATA GTA TTA CTA AGG 

GCT TTC ACC GAA ACG 

GGA GCA ATT GTT GG 3’ 

pHH21 LAIV-NS1-T153A 5’ CCA ACA ATT GCT CCG 

GCT TCG GTG AAA GCC 

CTT AGT AAT AAT AT 3’ 

5’ CTA ATA TTA CTA AGG 

GCT TTC ACC GAA GCC 

GGA GCA ATT GTT GG 3’ 

pHH21 LAIV-NS1-T153D 5’ CCA ACA ATT GCT CCG 

TCT TCG GTG AAA GCC 

CTT AGT AAT ATT AT 3’ 

5’ CTA ATA TTA CTA AGG 

GCT TTC ACC GAA GAC 

GGA GCA ATT GTT GG 3’ 

pHH21 LAIV-NS1-T153E 5’ CCA ACA ATT GCT CCC 

TCT TCG GTG AAA GCC 

CTT AGT AAT ATT AT 3’ 

5’ CTA ATA TTA CTA AGG 

GCT TTC ACC GAA GAG 

GGA GCA ATT GTT GG 3’ 

Table 7. Sequences of Primers used to Generate Recombinant Viruses at aa 153
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with the LAIV genome, 293T cells were transfected with LAIV pHH21 plasmids encoding 

PB2, PB1, PA, NP, NA, HA, M (0.5 μg each) and NS (1.0 μg). All viruses were transfected 

with helper plasmids under the control of RNA polymerase II promoters encoding 

A/Udorn/72 PB1, PB2, NP (1μg each) and PA (0.2 μg).  

 Transfection reagent TransIT-LT-1 (LT1) (Mirus) (20 μL/transfection) was mixed 

with OptiMEM medium (Gibco) (100 μL/transfection) and incubated at room temperature 

for 15 minutes. Plasmids were mixed at the aforementioned quantities, added to the 

LT1/OptiMEM mixture, and incubated at room temperature for another 15 minutes. DMEM 

was aspirated from 6-well plates containing 293T cells and replaced with 2 mL/well of 

OptiMEM. The corresponding transfection mix was added dropwise to each well. The 

plates were incubated at 32oC with 5% CO2. 24 hours following transfection, 2.24 μL of 5 

μg/mL N-acetyl trypsin (NAT) (Sigma) was added to each well to bring the total 

concentration of NAT to 10 μg/mL. The cells were incubated at 32oC with 5% CO2 for 4 

hours and then each well overlaid with approx. 5*105 MDCK cells suspended in 100 μL 

OptiMEM. The plates were transferred to a 37oC incubator. Every 24 hours for approx. 

five days, 1 mL of supernatant was removed from the cells and replaced with 1 mL DMEM 

with 4 μg/mL NAT, 100 U/mL penicillin, 100 μg/mL streptomycin, 2mM L-glutamine, and 

0.5% bovine serum albumin (BSA) (Sigma) (IM+NAT). Transfection was discontinued 

when indications of comprehensive cytopathic effects were observed. 

 

 3.2.4 TCID50 Assay 
 

 Fifty percent tissue culture infectious dose (TCID50) were utilized to determine viral 

titers. MDCK cells were plated to confluence in 96-well plates. Viral supernatants were 

diluted at concentrations from 10-1 to 10-8 in IM+NAT. 20 μL of each 10-fold dilution was 
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added to six consecutive wells on a confluent 96-well plate containing MDCK cells. These 

plates were incubated at 32oC with 5% CO2 for 7 days. The cells were fixed with 4% 

formaldehyde and stained with naphthol blue-black overnight. Cytopathic effects (CPE) 

were scored visually and TCID50 was quantified using the Reed and Muench calculation. 

 

 3.2.5 Plaque Purification 
 

 Recombinant influenza viruses generated following transfection must be purified 

from the transfection supernatant. 6-well plates were seeded with MDCK cells and seeded 

to confluence. 100 μL of transfection supernatant was serially diluted ten-fold from 10-1 to 

10-8 with IM+NAT. 6-well plates were aspirated and washed twice with PBS+. 250 μL of 

diluted virus (dilutions determined from TCID50 of transfection supernatant) was added to 

each well. The 6-well plates were incubated for one hour at 32oC for viruses with LAIV 

polymerase genes and 37oC for viruses with A/Victoria/361/2011 polymerase genes. 

During the incubation period, the plates were gently tapped every 15 minutes to evenly 

distribute virus. Following incubation, the inoculum was aspirated and replaced with ~ 4 

mL of a mixture of 2% agarose, 2X Modified Eagle’s Medium (MEM), and 4 μg/mL NAT. 

Plates were incubated at 32oC for 72-120 hours. Clear, defined, and singular plaques were 

picked using a 1 mL serological pipette, placed into tubes containing 500 μL IM, and stored 

at -80oC. 

 

 3.2.6 Virus Infection to Generate Viral Stocks 
 

 MDCK cells were grown to confluence in T150 (150 cm2) flasks. 100 μL of the 

media from the plaque resuspension was added to 5 mL IM+NAT. The media was 
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aspirated from the T150 flasks and replaced by the virus and IM mixture. The flasks were 

incubated for one hour at 32oC for viruses with LAIV polymerase genes and 37oC for 

viruses with A/Victoria/361/2011 polymerase genes. During the incubation period, the 

plates were gently tapped every 15 minutes to evenly distribute virus. Following the one 

hour incubation, the inoculum was aspirated and replaced with 20 mL IM. The cells were 

monitored daily for CPE and the supernatants harvested after 30-40% of cells were dead 

or had detached from the flask. 200 μL of supernatant was harvested and used to establish 

a bank of viral seed stocks. The seed stocks were sequenced to confirm a purified virus 

product and later titered via TCID50 assay. Once viral sequencing was completed, working 

stocks were generated from the seed stocks (MOI = 0.001) in the manner described 

above. Working stocks were also titered via TCID50 assay. 

 

3.3 Results 
 

3.3.1 Rescue of Recombinant Influenza Viruses Encoding NS1 aa 153 Mutations 
 

 Viruses encoding a mutation at aa 153 in both the A/Victoria/361/2011 and LAIV 

backbone were successfully rescued. The NS gene was sequenced to confirm presence 

of desired aa 153 mutation. The seven remaining gene segments were sequenced to 

ensure there were no incidental mutations that occurred during the transfection process. 

 

3.4 Discussion 
 
 Unfortunately, due to time constraints, the viral growth kinetics of the aa 153 

viruses could not be evaluated. However, a panel of these viruses in both the LAIV and 
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A/Victoria/361/2011 backbones were generated, sequenced, and aliquoted into seed 

stocks for a future thesis project. 

 

Chapter 4 – Conclusion and Future Directions 
 
 Previous research conducted in our lab demonstrated that in human nasal 

epithelial cells at 32oC, wild-type A/Victoria/361/2011 reached higher peak titers at a faster 

rate than LAIV. For my NS reassortant viruses, I would have anticipated this trend to 

remain the same, and those reassortants with the wild-type NS to have faster growth 

kinetics than the lineage-matched reassortant with LAIV NS. However, the opposite trend 

was observed and those reassortants with LAIV NS had faster growth kinetics than the 

reassortants with wild-type NS. These data indicate the NS gene may play a role in 

influenza replication.  

Since LAIV is developed in embryonated hen’s eggs, we believe we can apply this 

project to an avian model. We could study NS gene reassortment in embryonated hen’s 

eggs or primary chick fibroblasts and compare that to our data in A549 cells. Ideally, we 

would like to conduct research in a more humanized model like human nasal epithelial 

cells and/or human tracheal cells and compare that to avian cells. Based off the data 

presented in this project, I’d expect the reassortant viruses with LAIV NS to have faster 

growth kinetics than the viruses with wild-type NS in a human model. I would expect the 

same in an avian model. LAIV has adapted to replicate efficiently within embryonated 

hen’s eggs whereas wild-type viruses have adapted to growth within epithelial cells. In an 

avian model, viruses with LAIV NS would likely have a replication advantage.  



 53 

The data presented in this project primarily investigated the role of the NS gene in 

viral replication, however we know one of its encoded proteins, NS1, is an immune system 

antagonist. We believe the NS reassortment viruses should also be evaluated for their 

innate immune inhibition. Reporter gene assays will allow us to measure the induction of 

cellular signaling pathways including NF-KB, JAK/STAT, and MAPK. We can also take a 

more in depth look at innate immune responses by specifically measuring known viral 

response factors including IRF3/7 phosphorylation and Type I and III interferon induction. 

Furthermore, we’d like to analyze the chemokines and cytokines that are secreted in 

human nasal epithelial cells in response to influenza infection. When taken from harvested 

supernatants from a growth curve, we can look at what/when chemokines and cytokines 

are excreted after being infected with influenza. Furthermore, since these cells are 

polarized, we can compare the apical and basolateral media to see if there are any 

differences in secretion. Analyzing the supernatants for specific chemokines and cytokines 

will provide insight into what innate immune cells may be recruited to combat influenza 

infection. 

Although time constraints prevented characterization of the aa 153 recombinant 

viruses, we can still hypothesize how they might replicate in humanized cells. For the wild-

type viruses, I’d expect E153A to have the fastest growth kinetics, as this is the amino 

acid found at residue 153 in the A/Ann Arbor/6/60 wild-type virus. The other mutation, 

E153T, represents the LAIV sequence. Since other point mutations within the LAIV 

genome have been connected to attenuation and temperature-sensitive phenotypes, we 

believe the same would be true for our viruses, and predict that E153T would likely confer 

a degree of attenuation. For the LAIV viruses, there is less experimental evidence to 
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predict how these mutations would affect their growth. 153A is the WT A/Ann Arbor/6/60 

sequences and 153E is found in currently circulating H3N2 viruses.  

We believe this work can be applied to the development of an adapted LAIV 

vaccine strain. Based on the data in this project, it’s important to keep the LAIV polymerase 

genes as the core of the virus – this confers a temperature sensitive phenotype that inhibits 

the virus from replicating at 37oC. However, our data indicates that a wild-type NS gene 

should be swapped with the LAIV NS. Our LAIV NS reassortant viruses had faster growth 

rates and even significantly higher titers than the viruses with wild-type NS. For a LAIV 

vaccine strain, we want a virus that is both temperature sensitive and attenuated – a virus 

with LAIV polymerase genes and a wild-type NS fits both of these criteria. 
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Figure 1. Positive Influenza Infection Tests in the Northern Hemisphere during 2016-2017. 
WHO, 2017 
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Unfortunately for epidemiologists and public health professionals, there is no 

discrete, singular reason why influenza infections peak during the winter months. One 

theory posits that serum levels of Vitamin D drop during this time as people are less likely 

to be outside27. Vitamin D has been connected to promoting mucosal and CD4+ T cell 

responses, so influenza may be able to infect hosts more readily as Vitamin D levels drop 

28. Some believe the seasonality of flu is related to social and behavioral factors including 

crowding which helps transmission by exposing more people to the aerosolized droplets 

of an infected individual 29. A new theory suggests that the innate immune response is 

dampened by a drop in ambient temperature. Foxman et al. demonstrated that rhinovirus 

is able to infect humans more readily at 33o C due to diminished response by Type I 

interferons 30. It would be particularly interesting to see if lowered ambient temperatures 

Figure 2. Positive Influenza Infection Tests in the Southern Hemisphere during 2016-2017. 
WHO, 2017 
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In European countries, finalized vaccine candidates must undergo clinical studies to prove 

their safety and immunogenicity - this is not required in the United States. 

 1.3.2 Vaccine Composition 
 

 There are two formulations for the annual vaccine. The most common is the 

injectable formulation that contains formalin-inactivated virions34. These virions have no 

ability to replicate within the host, but are capable of inducing a memory response by the 

immune system. The inactivated vaccine has greatest efficacy in patients above the age 

of 6 35. The increased efficacy in older children is most likely attributable to past infection 

with influenza virus.  

 The other formulation is a live attenuated influenza vaccine (LAIV) that is 

administered through a nasal spray into the nasopharyngeal region of the upper 

respiratory tract36. As the name implies, this is a live virus that can replicate within the 

host, but does not cause disease. This area of the body maintains a temperature around 

32oC which permits localized viral growth, but prevents systemic infection into the lower 

airways which maintain a temperature around 37oC. LAIV is of note because its 

administration has been connected to a broad and systemic IgA mucosal response to not 

Figure 3. Flu Vaccine Development Timeline for the Northern Hemisphere. USA Today, 2009 
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also known as the RNA-binding domain, and then the C-terminal domain, also known as 

the effector domain 43.  

 

 1.4.2 Structure and Function of the N-terminal Domain 
 

 The N-terminal domain is roughly defined as amino acids 1-73 of the NS1 protein. 

As mentioned previously, the N-terminal domain of NS1 is responsible for directly binding 

host RNA and preventing its transcription into proteins. The N-terminal domain forms a 

homodimer in solution that consists of three "-helical domains which constitute the 

majority of secondary structure for this region of the protein. This dimerization is crucial 

for RNA binding. The "-helices of the homodimer form a unique chain fold that binds RNA 

between the 2 and 2’ chains 43. Research has determined that within the second "-helix, 

R38 and K41 are the two crucial amino acids needed for RNA-binding 44 

 The NS1 N-terminal domain is well-known for inhibiting the 2’-5’ oligoadenylate 

synthetase (OAS)/RNAse L pathway. The OAS/RNAse L pathway is activated by IL-1#, a 

Figure. 4. Structure of the NS1 Protein and Cellular Targets of Immune Inhibition. Hale et al., 2005 
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1.5.3 NS1 Mutations in LAIV 

 

 It’s clear that point mutations are responsible for the attenuation and temperature 

restriction of LAIV. Most of the mutations occur in the genes encoding viral polymerases, 

however a few have been discovered elsewhere in the genome, notably in the NS gene.  

 Work conducted by Cox et al. mapped one mutation in the coding region of the NS 

gene segment. Occurring at amino acid 153, the mutation from an alanine (wt) to a 

threonine (LAIV) was the only difference in the coding region of the NS gene of cold 

adapted A/Ann Arbor/6/60 when compared to the wt 66. When examined in the same 

context as some of the other gene segments, it’s reasonable to infer that the mutation at 

aa 153 of NS might have a role in LAIV attenuation.  

Figure 5. Formulation of LAIV. Modified from NIAID. 
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1.5.4 Previous Data 
 

 Work conducted by Fenstermacher and Forero examined the growth kinetics of 

HA/NA-antigenically matched LAIV and wt A/Victoria/361/2011 in cultures of human nasal 

epithelial cells (hNECs) at 33oC. They found that over a seven day period, infectious 

particle production as well as growth rate in LAIV was less than its wt counterpart 67.  

 In addition to altered growth kinetics, LAIV differentially induces the host innate 

immune response when compared to a wt virus. When hNEC cells were infected at a high 

multiplicity of infection (MOI), LAIV induced a larger number of genes distinct from the wt 

virus. 

 

 

 

 

 

Segment Coding Changes Mutation Effect 

PB2 1 N265S Attenuation, Temp. Sensitivity 

PB1 4 K391E, E457D, E581G, 
A661T Attenuation, Temp. Sensitivity 

PA 2 K613E, L715P Cold Adaptation, Attenuation 

NP 2 T23N, A34G ? 

M 1 A86S Attenuation 

NS 1 A153T ? 

Table 2. Mutations in A/Ann Arbor/6/60 Arising During the Serial Passage and Cold 
Adaptation Process 
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At 24 hours post infection, LAIV induces over twice the amount of unique genes 

when compared to the wt. Furthermore, at 36 hours post infection, LAIV induces six times 

Figure 7. LAIV Differentially Induces the Immune Response. Forero and Fenstermacher et al., 
ahead of print. 

Figure 6. LAIV Demonstrates Altered Growth Kinetics when Compared to wt 
A/Victoria/361/2011. Forero and Fenstermacher et al., ahead of print. 
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of both its parental viruses which can have a profound impact on virulence within a naive 

host.  

 This process of reassortment is commonly known as genetic shift when it involves 

the HA gene segment and is a hallmark of influenza diversity and adaptation. Many 

pandemic strains have formed as a result of gene reassortment including the 1918 H1N1, 

1957 H2N2, 1968 H3N2, and most recently 2009 H1N1 outbreak. A closer look at the 

1918 pandemic strain shows the acquisition of an avian HA gene which drastically 

enhanced virulence when compared to its original lineage (Pappas et al. 2007). 

 

 

 

 

 

 

 
 
 
 
 

 
2.1.2 Reassortant Viruses in the Laboratory 
 

 In the laboratory, we are able to manually induce gene reassortment to create new 

influenza viruses. In fact, this is done on an annual basis with LAIV which contains the six 

internal cold adapted genes from the attenuated virus, as well as the two external genes 

Figure 8. Hypothetical Reassortment of Influenza within a Swine Host. Stevens et al., 2006. 
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from the circulating virus subtypes. When a single segment is substituted for another, the 

resulting virus is referred to as a “7:1 virus” to represent the seven original segments and 

the one transplant segment. These reassortant viruses are useful in determining the 

influence of a particular segment on viral phenotype. For example, the aforementioned 

work conducted by Pappas et al. was done with reassorted H1N1 viruses to elucidate that 

HA was the crucial segment conferring enhanced virulence in the 1918 pandemic strain. 

For the purposes of this project, we intend to do NS gene swaps between LAIV and wt 

A/Victoria/361/2011.  

 

 Lineage of Segments 1-7 Lineage of NS 
Segment Abbreviation 

1 A/Victoria/361/2011 A/Victoria/361/2011 WT/WT 

2 A/Victoria/361/2011 LAIV WT/LAIV 

3 LAIV LAIV LAIV/LAIV 

4 LAIV A/Victoria/361/2011 LAIV/WT 

 

Table 3. 7:1 Virus Panel 

Figure 9. Representation of 7:1 NS Gene Swaps between wt A/Victoria/361/2011 and LAIV 
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Since the NS segment encodes two proteins, NS1 and NEP, sequence alignments 

of wild type A/Victoria/361/2011 and LAIV NS1 and NEP were performed in order to 

examine amino acid differences. There are 28 discrete amino acid differences between 

the wild type and LAIV NS1 proteins. In regards to NEP, there are 7 discrete amino acid 

differences.  When used in our NS reassortant virus system, this variation in amino acids 

between the protein sequences might shed light on LAIV attenuation. 

 

2.2 Materials and Methods 
 

 2.2.1 Cell Lines 
 

 Madin-Darby canine kidney (MDCK) cells were maintained in Dulbecco’s Modified 

Eagle’s Medium (DMEM) with 10% fetal bovine serum (FBS), 100 U/mL penicillin, 100 

ug/mL streptomycin and 2mM L-glutamine at 37oC with 5% CO2 and passaged at a 1:10 

dilution every 3-4 days. 

Figure 10. Sequence Alignment of wild type A/Victoria/361/2011 and LAIV NS1 

Figure 11. Sequence Alignment of wild type A/Victoria/361/2011 and LAIV NEP 
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the WT/WT virus, however both reached roughly the same peak titer at 72 hours post 

infection (Fig. 13). 
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Figure 12. Effect of NS Gene Swap in the LAIV backbone at 32oC in MDCK Cells. A multistep 
growth curve was performed on MDCK cells with the indicated viruses. Statistical differences 
were determined by MANOVA followed by Bonferroni post-test. *=P < 0.05; **= P < 0.01; 
***=P<0.001. L.O.D=limit of detection=2.37. 
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2.3.3 Replication of NS Reassortant Viruses at 37oC in MDCK Cells 
 

 A multistep growth curve was also performed at 37oC to mimic an infection of the 

lower respiratory tract, which is also representative of core body temperature. Once again, 

the LAIV/LAIV virus had significantly faster replication kinetics than LAIV/WT, but both 

viruses achieved roughly the same peak titer at 48 hours post infection (Fig. 14). 

Additionally, the WT/LAIV virus had significantly faster replication kinetics than the WT/WT 

virus, however both strains reached roughly the same peak titer at 48 hours post infection 

(Fig. 15). 
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Figure 13. Effect of NS Gene Swap in the A/Victoria/361/2011 backbone at 32oC in MDCK 
Cells. A multistep growth curve was performed on MDCK cells with the indicated viruses. 
Statistical differences were determined by MANOVA followed by Bonferroni post-test. *=P < 
0.05; **= P < 0.01; ***=P<0.001. L.O.D=limit of detection=2.37. 
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Figure 14. Effect of NS Gene Swap in the LAIV backbone at 37oC in MDCK Cells. A multistep 
growth curve was performed on MDCK cells with the indicated viruses. Statistical differences 
were determined by MANOVA followed by Bonferroni post-test. *=P < 0.05; **= P < 0.01; 
***=P<0.001. L.O.D=limit of detection=2.37. 
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2.3.4 Replication of NS Reassortant Viruses at 32oC in A549 Cells 
 

 A549 cells were infected to further evaluate viral growth kinetics for the NS 

reassortant viruses. Originating from adenocarcinomic alveolar basal epithelial cells, 

A549s present a more humanized model for influenza infection than MDCK cells. The 

A549 cells were infected at an MOI = 0.55. 

 A multistep growth curve was performed at 32oC. For the viruses in the LAIV 

backbone, the LAIV/LAIV and LAIV/WT viruses show no significant difference in 

replication kinetics " both viruses reached roughly the same peak titer at a similar rate 

(Fig. 16). For the viruses in the A/Victoria/361/2011 backbone, the WT/LAIV virus reached 

a peak titer nearly 100-fold greater than its WT/WT counterpart. Furthermore, the WT/LAIV 

virus reached its peak titer at a faster rate than the WT/WT virus (Fig. 17).  
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Figure 15. Effect of NS Gene Swap in the A/Victoria/361/2011 backbone at 37oC in MDCK 
Cells. A multistep growth curve was performed on MDCK cells with the indicated viruses. 
Statistical differences were determined by MANOVA followed by Bonferroni post-test. *=P < 
0.05; **= P < 0.01; ***=P<0.001. L.O.D=limit of detection=2.37. 
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Figure 16. Effect of NS Gene Swap in the LAIV backbone at 32oC in A549 Cells. A multistep 
growth curve was performed on MDCK cells with the indicated viruses. Statistical differences 
were determined by MANOVA followed by Bonferroni post-test. *=P < 0.05; **= P < 0.01; 
***=P<0.001. L.O.D=limit of detection=2.37. 
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 2.3.5 Replication of NS Reassortant Viruses at 37oC in A549 Cells 
 

Multistep growth curves were also performed at 37oC to evaluate any temperature 

sensitive phenotypes in the virus panel. The A549 cells were inoculated at an MOI = 0.55.  

Similar to what was observed at 32oC, the LAIV/LAIV and LAIV/WT viruses 

demonstrated no significant differences in replication kinetics at 37oC (Fig. 18). They both 

reached roughly the same peak titer in the same amount of time. For the WT viruses, 

however, the WT/LAIV virus reached its peak titer faster than the WT/WT virus. Both 

viruses achieved roughly the same peak titer (Fig. 19). 
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Figure 17. Effect of NS Gene Swap in the A/Victoria/361/2011 backbone at 32oC in A549 Cells. 
A multistep growth curve was performed on MDCK cells with the indicated viruses. Statistical 
differences were determined by MANOVA followed by Bonferroni post-test. *=P < 0.05; **= P < 
0.01; ***=P<0.001. L.O.D=limit of detection=2.37. 
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Figure 18. Effect of NS Gene Swap in the LAIV backbone at 37oC in A549 Cells. A multistep 
growth curve was performed on MDCK cells with the indicated viruses. Statistical differences 
were determined by MANOVA followed by Bonferroni post-test. *=P < 0.05; **= P < 0.01; 
***=P<0.001. L.O.D=limit of detection=2.37. 
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2.4 Discussion 
 
 Previous work suggests that mutations which arise in the NS gene during the serial 

passage process of LAIV may contribute to viral attenuation and/or temperature sensitivity 

66. We examined this through NS gene segment reassortments in a panel of viruses. 

Although this does not allow us to determine the specific mutations that may contribute to 

an attenuation phenotype, we would be able to determine what role, if any, the entire gene 

segment has in viral replication. To test this, we performed several multistep growth curves 

between the NS reassortant viruses outlined in Table 3.  

In MDCK cells at a low MOI (MOI = 0.01), there were significant differences 

between LAIV/LAIV and LAIV/WT, as well as significant differences between WT/LAIV 

and WT/WT. In both backbones, the virus with the LAIV NS gene segment had faster 

Figure 19. Effect of NS Gene Swap in the A/Victoria/361/2011 backbone at 37oC in A549 Cells. 
A multistep growth curve was performed on MDCK cells with the indicated viruses. Statistical 
differences were determined by MANOVA followed by Bonferroni post-test. *=P < 0.05; **= P < 
0.01; ***=P<0.001. L.O.D=limit of detection=2.37. 
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the wt A/Ann Arbor/6/60 A153 genotype, LAIV’s T153 genotype, and the avian D153 

genotype. These viruses are listed in Tables 4 and 5. 

 

 

Table 4. Panel of aa 153 Viruses in A/Victoria/361/2011 Backbone 

Table 5. Panel of aa 153 Viruses in LAIV Backbone 
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3.2 Materials and Methods 
 

 3.2.1 Cell Lines 
 

 Madin Darby canine kidney (MDCK) cells were maintained in Dulbecco’s Modified 

Eagle’s Medium (DMEM) with 10% fetal bovine serum (FBS), 100 U/mL penicillin, 100 

ug/mL streptomycin and 2mM L-glutamine at 37oC with 5% CO2 and passaged at a 1:10 

dilution every 3-4 days. 

 Transformed human embryonic kidney 293 cells (293T) were maintained in DMEM 

with 10% fetal bovine serum (FBS), 100 U/mL penicillin, 100 ug/mL streptomycin and 2mM 

L-glutamine at 37oC with 5% CO2 and passaged at a 1:10 dilution every 3-4 days. 

 

 3.2.2 Plasmids 
 

Table 6. Frequency of Amino Acids Isolated from North American Clinical Samples (aa 153) 
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 3.2.3 Recombinant Viruses 
 

 A 12 plasmid recombinant virus rescue system was utilized to generate the panel 

viruses (Neumann et al., 1999). 6-well plates were coated with poly-L-lysine and 293T 

cells were plated at 40-60% confluence 24 hours prior to transfection. For the 

A/Victoria/361/2011 viruses, 293T cells were transfected with A/Victoria/361/2011 pHH21 

plasmids encoding PB2, PB1, PA, NP, NA, HA, M (0.5 $g each) and NS (1.0 $g). For the 

Plasmid Forward Primer Reverse Primer 

pHH21 A/Vic-NS1-E153A 5! CCA ACA ATT GCT CCG 

GCT TCG GTG AAA GCC 

CTT AGT AAT ACT AT 3! 

5! ATA GTA TTA CTA AGG 

GCT TTC ACC GAA GCC 

GGA GCA ATT GTT GG 3! 

pHH21 A/Vic-NS1-E153D 5! CCA ACA ATT GCT CCG 

TCT TCG GTG AAA GCC 

CTT AGT AAT ACT AT 3! 

5! ATA GTA TTA CTA AGG 

GCT TTC ACC GAA GAC 

GGA GCA ATT GTT GG 3! 

pHH21 A/Vic-NS1-E153T 5! CCA ACA ATT GCT CCC 

GTT TCG GTG AAA GCC 

CTT AGT AAT ACT AT 3! 

5! ATA GTA TTA CTA AGG 

GCT TTC ACC GAA ACG 

GGA GCA ATT GTT GG 3! 

pHH21 LAIV-NS1-T153A 5! CCA ACA ATT GCT CCG 

GCT TCG GTG AAA GCC 

CTT AGT AAT AAT AT 3! 

5! CTA ATA TTA CTA AGG 

GCT TTC ACC GAA GCC 

GGA GCA ATT GTT GG 3! 

pHH21 LAIV-NS1-T153D 5! CCA ACA ATT GCT CCG 

TCT TCG GTG AAA GCC 

CTT AGT AAT ATT AT 3! 

5! CTA ATA TTA CTA AGG 

GCT TTC ACC GAA GAC 

GGA GCA ATT GTT GG 3! 

pHH21 LAIV-NS1-T153E 5! CCA ACA ATT GCT CCC 

TCT TCG GTG AAA GCC 

CTT AGT AAT ATT AT 3! 

5! CTA ATA TTA CTA AGG 

GCT TTC ACC GAA GAG 

GGA GCA ATT GTT GG 3! 

Table 7. Sequences of Primers used to Generate Recombinant Viruses at aa 153
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