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Abstract

We consider a multiple testing scenario encountered in the biological sciences and

elsewhere: there are a great many null hypotheses about the distribution of a high-

dimensional random variable but only a very small fraction are false (or “active”);

moreover, controlling the false positives rate through FWER or FDR is imperative.

Not surprisingly, the usual methods applied to control the two former criteria are

often too conservative and lead to a small number of true detections. Clearly, some

additional assumptions or domain-specific knowledge are then necessary to improve

power. Motivated by applications in genomics, particularly genome-wide association

studies, we suppose the set indexing the hypotheses has a natural hierarchical struc-

ture, the simplest case being a partition into “cells.” In principle, it should then be

possible to gain power if the active hypotheses tend to cluster within cells. We explore

different coarse-to-fine, two-level multiple testing strategies, which control the FWER

or the FDR and are designed to gain power relative to usual single level methods, in

so far as clustering allows it. Simulations confirm a sharp improvement for in data

models we consider.

ii



ABSTRACT

iii



Acknowledgments

I owe a lot of gratitude to Professors Donald Geman and Laurent Younes for their

great help and encouragement throughout this research work. Without their valuable

advice, insights, challenging interaction and continuous support, this thesis would not

have taken shape. I have been lucky and privileged to benefit from their rich research

and teaching experience.

iv



Dedication

I dedicate this thesis to my wife for her moral support and full understanding.

My thanks also go to my parents for their relentless encouragement and push for

perseverance and for my brother and sister for being on my side when I need them. I

also dedicate this thesis to my grandmother whose strong moral support and affection

have been a source of strength for me. Finally, I have a special thought for my friends

and extended family for stimulating discussions and their joyful company.

v



Contents

Abstract ii

Acknowledgments iv

List of Tables ix

List of Figures xi

1 Introduction and background 1

1.1 A high-level introduction . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 A short introduction to hypothesis testing . . . . . . . . . . . . . . . 5

1.3 The multiple testing framework and background. . . . . . . . . . . . 8

1.4 Motivation of the coarse-to-fine procedure via FWER control . . . . . 16

1.5 The coarse-to-fine paradigm . . . . . . . . . . . . . . . . . . . . . . . 17

1.6 Invariance of distributions under group actions . . . . . . . . . . . . . 19

1.7 Applications and related work . . . . . . . . . . . . . . . . . . . . . . 23

1.8 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 30

vi



CONTENTS

2 A Bonferroni coarse-to-fine procedure 32

2.1 Coarse-to-fine framework . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 Non-parametric coarse-to-fine testing . . . . . . . . . . . . . . . . . . 36

2.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.2 Asymptotic resampling scores . . . . . . . . . . . . . . . . . . 38

2.2.3 Finite resampling scores . . . . . . . . . . . . . . . . . . . . . 44

2.3 Estimating the number of indices inside active cells . . . . . . . . . . 58

2.3.1 Asymptotic resampling scores . . . . . . . . . . . . . . . . . . 58

2.3.2 Finite resampling scores . . . . . . . . . . . . . . . . . . . . . 61

2.3.3 Application to the coarse-to-fine algorithm . . . . . . . . . . . 65

2.3.4 Suggested Coarse-to-fine Procedure . . . . . . . . . . . . . . . 66

2.4 Model-based Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.4.1 Regression model . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.4.2 Scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.4.3 Optimal thresholds . . . . . . . . . . . . . . . . . . . . . . . . 74

2.5 Simulations and power comparison . . . . . . . . . . . . . . . . . . . 76

2.5.1 Simulations under the parametric model . . . . . . . . . . . . 77

2.5.2 Simulations using the PLINK software . . . . . . . . . . . . . 83

3 Dependence adapted coarse-to-fine procedure controlling the FWER 88

3.1 Dependence adapted coarse-to-fine procedure assuming asymptotic

resampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

vii



CONTENTS

3.1.1 Notations and assumptions . . . . . . . . . . . . . . . . . . . . 90

3.1.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.2 Dependence adapted coarse-to-fine procedure based on finite resampling 97

3.2.1 First method . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.2.2 Second method . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.2.3 Dependence adapted coarse-to-fine procedure with finite resam-

pling: third method. . . . . . . . . . . . . . . . . . . . . . . . 108

3.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4 Coarse-to-fine procedures controlling the FDR 117

4.1 Asymptotic resampling procedure . . . . . . . . . . . . . . . . . . . . 119

4.1.1 Procedure with known J assumption . . . . . . . . . . . . . . 120

4.1.2 Procedure with an estimated upper bound of J . . . . . . . . . 128

4.1.3 Procedure with general dependency structure . . . . . . . . . 130

4.2 Finite resampling procedure . . . . . . . . . . . . . . . . . . . . . . . 135

4.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5 Conclusion and discussion 141

Curriculum Vitae/Bio 145

Bibliography 149

viii



List of Tables

2.1 Average number of true detections for each of the 4 methods, from
left to right: coarse-to-fine using the optimized thresholds, parametric
coarse-to-fine using the default thresholds, non parametric coarse-to-
fine using default parameters, and Bonferoni-Holm. The total number
of active indices is 20 in all cases. . . . . . . . . . . . . . . . . . . . . 81

2.2 Comparison between the true number of indices in active cells (J)
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Chapter 1

Introduction and background

1.1 A high-level introduction

Multiple hypotheses testing problems, sometimes called multiple comparisons

problems, are encountered when one needs to test a number of statistical hypotheses,

and accepts or rejects each one of them. The final output of this procedure has the

form of a subset, representing the subset of rejected null hypotheses. One can view a

multiple testing procedure as a strategy allowing to answer multiple yes/no questions.

Common sense suggests that the more questions we ask and try to answer, the larger

will be the number of sources of errors. Moreover, if these questions are of the yes/no

type and we want to avoid making one type of incorrect answers, say for example

answering yes while the correct answer is negative , one will tend to systematically

answer negatively to almost all of the questions.
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CHAPTER 1. INTRODUCTION AND BACKGROUND

In fact, imagine a game with the following setting:

⊙ A player is put in front of 60 boxes that can be labeled with either 0 or 1.

⊙ He is told that each of the boxes is either empty or contains a certain amount

of money.

⊙ If he opens any empty box or misses a box containing money, he needs to pay

a certain amount; otherwise he wins the amount of money in the boxes if and

only if he opens all the boxes containing money and only those boxes.

⊙ The player is given the information that if a box is empty, its label has been

generated such that the probability of labeling it with 0 is 0.001. Moreover, all

boxes with money inside are labeled with the number 0.

⊙ Once the labels revealed, the player can decide whether or not to open each

box.

⊙ Lastly, he knows that in case he looses the game, he will have to pay 19000

dollars. If he wins, the total amount of money he will find in the boxes is 1000

dollars.

Considering the potential gains and losses, the player decides that he needs to

control the probability of loosing at a level less than 0.05; otherwise the game is

not worth playing. He obviously decides that in case he opens boxes having a certain

label, this label will necessarily be 0. He then computes the probability of opening any

2



CHAPTER 1. INTRODUCTION AND BACKGROUND

empty box which is is guaranteed to be controlled at approximately 0.06. Therefore,

he comes to the conclusion to leave the game before it is too late! Generally, as long

as the number of boxes is greater than 50, the player shouldn’t open any box with his

requirement that the probability of opening any empty box should be less than 0.05.

Moreover he cannot decide to consider a smaller subset of the boxes prior to seeing

the labels, as he needs to make sure to open all the boxes containing money.

A similar situation is frequently encountered in multiple hypothesis testing. Usu-

ally, one needs to control the false positives in a specific way. The larger is the number

of hypotheses, the stronger is the evidence required to reject the null hypotheses. The

strength of this evidence, which corresponds to the label of the box in the previous

example, depends on the number of observations that we have and, very frequently,

we face a situation where the number of tested hypotheses is large enough compared

to the number of observations, to make the number of detections considerably lower

than the actual number of true positives. To address this issue, the work proposed

in this thesis will consist of procedures assuming that the false null hypotheses tend

to cluster together. As a result these procedures will be less conservative provided

our assumption is correct while controlling the false positives at the desired level.

A legitimate question to ask is whether we could still control the false positives if

the clustering assumption made is incorrect. The answer to this question is positive,

although the power of detecting true positives in that situation will be lower.

To see the big picture, let us go back to our game. Assume now that the boxes are

3



CHAPTER 1. INTRODUCTION AND BACKGROUND

placed in groups of four, so that we have 15 groups of 4 boxes. The player is given the

information that all boxes in a same group are of the same type: either they are all

empty or they all contain a certain amount of money. Being a smart player, he notices

that all he needs to do is to choose a predetermined representative box for each of the

15 groups so that he looks at 15 boxes in total. His strategy is then the following: for

each of these boxes, if the label of the box is 1, then don’t open all the boxes in the

same group. If the label of the box is 0, then open all the boxes in the same group.

This strategy guarantees a probability of winning the game of at least 98.5% and the

game becomes worth playing. In this situation, the clustering information is a game

changer. In reality, the situation is not as extreme in the multiple testing context.

The first reason is obviously that it is generally impossible to guarantee detecting all

the true positives. The second reason is that it is not possible to be sure about such

kind of clustering assumptions. To maintain boxes game analogy, imagine now that

the player will need to pay money only if he opens an empty box. He decides to play

the game only if he is sure to control the probability of having to pay a certain amount

at a level less than 5%. The clustering information is no longer certain, i.e more of a

rumor that he heard from the organizers of the game but it is not guaranteed that it is

a correct information. The player notices the following: What if I only decide to open

the 15 representatives from of each group? If the clustering rumor is correct, then I’ll

open exactly 25% of the boxes containing money which is a decent amount. If it is

incorrect, I might not win as much money, but in any case I control the probability

4



CHAPTER 1. INTRODUCTION AND BACKGROUND

of having to pay money. Therefore I’m going to play the game anyway!

The family of multiple testing procedures that we propose in this thesis will present

analogous behavior: The procedures will be designed and adapted for situations where

the clustering assumption is true, but they will control the false positives regardless.

Even if the last strategy described in our imaginary game can be seen as a coarse-to-

fine strategy, it is radical in the sense that it throws away 75% of the boxes without

even looking at them. Our procedures will more closely resemble the following pattern:

for each group, first look at all the labels of all the boxes as a total information and

then decide either to keep all the boxes or throw them away. After that first filter,

look individually at the label of the remaining boxes and decide whether or not to

open them. However, controlling false positives in this situation is mathematically

more challenging than the strategy described in the boxes game. The bulk of this

work is to prove that the proposed strategies control the false positives in a sense that

will be defined. For this, we first need to formally pose the problem.

1.2 A short introduction to hypothesis test-

ing

A statistical model is a triple (U ,F ,P(P∈P)) where U is a set, usually of the form

Rn×m, F is a σ-algebra on U and P(P∈P) is a family of probability measures defined

on the measurable space (U ,F) indexed by a set of probability measures P . A

5
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statistical hypothesis testing can be viewed as follows. One observes a random vector

U belonging to the set U that has been generated by an unknown probability law

P ∈ P . The goal is to use that observation in order to determine whether P belongs to

a certain subset P0 ⊂ P or to its complement in P denoted by P1. The first hypothesis

is called null hypothesis, usually denoted byH0 and the second the alternative, usually

denoted by H1. Formally, one needs to design a measurable binary function φ : U →

{0, 1} where 0 corresponds to deciding that P is in P0 and 1 to deciding that it is in P1.

Clearly, our decision can be incorrect in two ways: either the unknown probability

P came from the set P0 and φ(U) = 1, or the true probability belongs to P1 and

φ(U) = 0. The probability of making the first kind of incorrect decision is called the

type 1 error, and the second one the type 2 error. It is easy to see that if the supports

of P1 and P0 are not disjoint, it is not possible to design a test with any arbitrarily

fixed type 1 and type 2 errors. Therefore, one needs to prioritize one type of errors

over the second one, in the sense that we fix an arbitrary level of error for a chosen

type that cannot be exceeded by the test. The convention is to fix the level for the

type one error. One needs, for a fixed α ∈ [0, 1]:

P (φ(U) = 1) ≤ α, ∀ P ∈ P0.

Therefore, the null hypothesis should be chosen such that one is conservative to-

wards the null and skeptical towards the alternative. We can then compare dif-

6
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ferent tests controlling the type 1 error at a fixed level by comparing their re-

spective type 2 errors 1. A famous example is when we observe two different i.i.d

populations X1, X2, ...Xn and Y1, Y2, ..., Ym coming from two normal distributions

N (µx, σ2) and N (µy, σ2), and want to decide if µ1 is different from µ2. In this setting,

U = (X1, X2, ..., Xn, Y1, Y2, ...Ym) and U = Rn+m. Here P = {p⊗n
µ1,σ ⊗ p⊗m

µ2,σ : µ1, µ2 ∈

R, σ > 0} and P0 is the set of probabilities such that µ1 = µ2. An appropriate test

for this setting is the well known t-test:

T (U) =
X̄ − Ȳ

s
√

( 1n + 1
m)

,

where X̄ = 1
n

∑n
i=1 Xi, Ȳ = 1

n

∑n
i=1 Yi and s =

√

(

(n−1)s2x+(m−1)s2y
n+m−2

)

, with s2x =

1
n−1

∑n
i=1(Xi − X̄)2 and s2y =

1
m−1

∑m
i=1(Yi − Ȳ )2. One can easily show that for every

P ∈ P0, T (U) follows a Student’s t distribution with n +m − 2 degrees of freedom.

Therefore, a reasonable choice to control the type 1 error at a particular level, consists

of defining φ(U) as 1T (U)∈Γ, where Γ is a subset of R such that P (Z ∈ Γ) ≤ α for any

random variable Z having a Student distribution with n+m− 2 degrees of freedom.

Starting from this particular example, a legitimate question to ask is the following:

Imagine that instead of 2 populations, we had N populations (X1,1, X1,2..., X1,n1),

(X2,1, X2,2..., X2,n2),..., (XN,1, XN,2..., XN,nN
), and we would like to compare the pop-

1In practice the alternative hypothesis is composite. In some cases, one can fix a subfamily of
alternative hypotheses and consider the worst case or consider a sequence of alternatives converging
to the worst case probability among the alternative hypotheses

7
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ulations pairwise. Clearly, we have multiple questions and multiple decisions to make.

The number of ways in which one can make an incorrect decision is also certainly

larger. Would it make sense to talk about type 1 and type 2 errors? The multiple

testing framework formalizes this kind of settings.

1.3 The multiple testing framework and

background.

Here also, we consider a statistical model (U ,F ,P(P∈P)) and we observe a random

vector U coming from an unknown probability distribution P belonging to the family

P . The difference is that we are not asking a single question anymore about the

probability P. Instead, we consider a set V indexing |V | (cardinality of the set)

number of questions where for each v ∈ V , we are asking whether or not P belongs

to a subset Pv of P . To these questions corresponds a family of null hypotheses

(H0(v), v ∈ V ). Evidently, for each question, we need to design a test appropriate for

that particular question v, namely φv(U) : U → {0, 1}. φv(U) will generally have the

form 1Tv(U)∈Γv for some family of statistics (Tv, v ∈ V ) and rejection regions (Γv, v ∈

V ). To go back to the example of comparing N populations pairwise, the set V would

be the set of subsets {i, j} with i ̸= j of subsets of size 2 of {1, 2, 3, ...N}, so that |V | =

N(N+1)
2 . The random vector U will be (X1,1, X1,2..., X1,n1), (X2,1, X2,2..., X2,n2),...,

(XN,1, XN,2..., XN,nN
) so that U is R

∑N
i=1 ni . The family P is P = {⊗N

i=1p
⊗ni
µi,σ : µi ∈

8
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R ∀i ∈ {1, ..., N}, σ > 0}. The questions we are asking are therefore for each v =

{i, j} ∈ V , whether or not µi = µj, and Pv are the P ∈ P such that µi = µj. Finally,

one choice of the family (Tv, v ∈ V ) could be 2 the following for v = {i, j}:

Tv(U) =
X̄i,. − X̄j,.

si,j
√

( 1n + 1
m)

,

where X̄i,. =
1
ni

∑ni

k=1 Xi,k, X̄j,. =
1
nj

∑nj

k=1 Xj,k and s =

√

(

(ni−1)s2i,.+(nj−1)s2j,.
ni+nj−2

)

, with

s2i,. =
1

ni−1

∑n
k=1(Xi,k − X̄i,.)2 and s2j,. =

1
nj−1

∑n
k=1(Xj,k − X̄j,.)2. For every v, the

statistic Tv(U) follows a t-distribution with ni + nj − 2 degrees of freedom whenever

P is in Pv. It is therefore possible to control P (Tv(U) ∈ Γv) for every P that is in

Pv. However, the number of ways to make an incorrect decision in this setting is

(2|V | − 1)2|V |. Hence it makes no sense to talk about such a thing as type 1 and

type 2 errors. How should we therefore control the probability of making incorrect

decisions.

A natural way to look at this problem is the following: Define the set A ⊂ V of

the indices v ∈ V such that P /∈ Pv, or in other words the set of indices over which

the null hypotheses are false. In this thesis, we will refer to A as ”the active set”. On

the other hand, define Â(U) as the estimator of A based on the random vector U:

Â(U) = {v ∈ V : φv(U) = 1}.
2This is definitely not the best choice of statistics under this setting. Here, the purpose is to

introduce the multiple testing framework in the simplest way. We refer to2 for the appropriate
statistics to use.

9
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Here, we will refer to Â(U) as detections or discoveries. With these definitions, we

would like to control in some way the size of the intersection between the detection

set and the non-active set, i.e the complement of of the active set in V . This size can

be expressed as |Â(U)∩Ac|. Naturally, the goal of a multiple testing procedure is to

control the former quantity and maximize at the same time the number |A ∩ Â(U)|

of detected true positives. There are two widely used criteria for controlling false

positives :

FWER: Assume that U is defined on the probability space (Ω,P). The family-

wise error rate (FWER) is

FWER(Â) = P

(

Â(U) ∩ Ac ̸= ∅
)

,

which is the probability of making at least one false discovery. This is usually

controlled using Bonferroni bounds and their refinements,3–6 or using resampling

methods or random permutations. To set the stage, suppose we are given a fam-

ily {Tv = Tv(U), v ∈ V } of test statistics and can assume that deviations from the

null are captured by small values of Tv(U) (e.g., p-values). Assume that individual

rejection regions are of the form {u ∈ U : Tv(u) ≤ θ} for a constant θ independent of

v. Defining Â(U) = {v : Tv(U) ≤ θ}, the Bonferroni upper-bound is

FWER ≤
∑

v∈Ac

P(Tv(U) ≤ θ) ≤ |V |max
v∈Ac

P(Tv(U) ≤ θ).

10
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To ensure that FWER ≤ α, θ = θB is selected such that P(Tv(U) ≤ θB) ≤ α/|V |

whenever v ∈ Ac. The Bonferroni bound can only be marginally improved (see, in

particular the estimator in,4 which will be referred to as Bonferroni-Holm in the rest

of the thesis) in the general case. The Bonferroni-Holm algorithm can be described

as follows. Assume that under H0(v), the statistic Tv(U) follows (dominates) a uni-

form distribution on [0, 1]. First, order the statistics (Tv(U), v ∈ V ) in an ascending

order. Denote the corresponding ordered statistics by T(1)(U), T(2)(U), ....T(|V |)(U)

and the corresponding ranks of the Tv’s by r(v) for each v. Compute k∗(U) as

min{k : T(k)(U) > α
|V |−k+1}. Given k∗(U), the detection set Â(U) is therefore defined

as {v ∈ V : r(v) < k∗(U)}. This procedure is an example of a procedure where the

rejection regions depend on the random vector U. While alternative procedures (in-

cluding permutation tests) can be designed to take advantage of correlations among

tests, the Bonferroni bound is sharp when |V | ≫ |A| and tests are independent. We

will postpone a brief description of a class of resampling methods taking advantage

of the correlations between tests to Section 1.6.

The second criterion is the false discovery rate. Before defining this criterion, let us

mention that it is always smaller than the FWER. Therefore, any procedure control-

ling the FWER will control the false discovery rate.

FDR: Several procedures in the literature7–11 also focused on controlling the false

discovery rate (FDR), which is the expected ratio between the number of false alarms

11
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|Ac ∩ Â(U)| and the number of discoveries |Â(U)|:

E

(

|Â(U) ∩ Ac|
|Â(U)| ∨ 1

)

.

The most famous procedure is certainly the Benjamini-Hochberg7 procedure. Here

also, we assume that the statistics Tv(U) are following (dominating) a uniform dis-

tribution on [0, 1]. Moreover, we assume that (Tv(U), v ∈ V ) are independent 3. The

procedure consists in computing k∗(U) = max{k : T(k)(U) ≤ αk
|V |}. Then define Â(U)

as {v ∈ V : r(v) ≤ k∗(U)}. One can view the Benjamini-Hochberg method in the

following equivalent way. If we fix a threshold t and define the detection set Ât(U)

as all the indices having a corresponding statistic less than t, a reasonable estimator

of the FDR will be |V |t

|Ât(U)|∨1
. Notice that in this expression, |V | can be viewed as a

conservative estimator of Ac. The Benjamini-Hochberg procedure computes t∗(U) as

max{t : |V |t

|Ât(U)|∨1
≤ α}. In the same spirit and under the same conditions,11 propose

a family of estimators |Âc(U,λ)| of |Ac| indexed by a positive real number λ between

0 and 1. For each λ, the estimator is defined as: .

|Âc(U,λ)| = |{v : Tv(U) ≥ λ}|+ 1

1− λ
.

The idea behind this estimator relies on two observations. Under the null hypoth-

esis, the statistic Tv(U) will follow a uniform on [0, 1]. If we choose λ large enough,

3In fact, this assumption can be relaxed to the so called positive regression dependency assump-
tion. This assumption will be defined precisely later in this thesis

12
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all the statistics Tv(U) where H0(v) is false will be less than λ. With this estimator,

a threshold t∗(U,λ) is defined as max{t ≤ λ : |Âc(U,λ)|t

|Ât(U)|∨1
≤ α}, and the set Â(U,λ) is

defined as the set {v ∈ V : Tv(U) ≤ t∗(U,λ)}. In reality, the described procedure

controls the FDR at the desired level α for any deterministic value of λ. However,

the author proposes a heuristic for choosing the value of λ based on Bootstrap meth-

ods.12–14 It is important to note that with such a λ, there is no theoretical guarantee to

control the FDR at the desired level. On another note,10 proposes a generalization of

the Benjamini-Hochberg method that allows to control the FDR for any dependency

structure between the tests, at the expense of the power of detections. It replaces the

definition of k∗(U) in Benjamini-Hochberg by k∗(U) = max{k : T(k)(U) ≤ αβ(k)
|V | },

where β(k) is any function having the form β(k) =
∑k

r=0 rν(r) and ν is any probabil-

ity measure on the set of integers. In the rest of the thesis, we will refer to the family

of these procedures as ν-procedures. To compare, with the Benjamini-Hochberg pro-

cedure, where β(k) is replaced by k, one can immediately see that β(k) is always less

or equal than k , with equality at a certain integer k0 only if ν(k) is a Dirac measure

on k0. Therefore, these methods will always be more conservative. This family of

procedures encompasses different procedures that have been proposed prior to.10 We

refer for example to.8,15 Recently,16–18 proposed the so called knock-off filters method

that we briefly describe here.

Assume that the random vector U has the form (Y, (Xv), v ∈ V ), where Y and the

Xv’s are random vectors. For each v, the hypothesis H0(v) is: Y and Xv are indepen-

13
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dent given (Xv′ , v′ ∈ V \ {v}). The procedure requires the generation of ”knock-off”

variables (X̃v, v ∈ V ) satisfying the following criteria:

⊙ For any subset S of V , the joint distribution of (Xv, v ∈ V, X̃v, v ∈ V ) is the

same as the distribution of the vector SwapS

(

(Xv, v ∈ V, X̃v, v ∈ V )
)

, where

SwapS

(

(Xv, v ∈ V, X̃v, v ∈ V )
)

is the vector obtained from (Xv, v ∈ V, X̃v, v ∈

V ) by exchanging (Xv, v ∈ S) and (X̃v, v ∈ S).

⊙ The vectors (X̃v, v ∈ V ) and Y are independent given (Xv, v ∈ V ).

Once the knock-off variables are constructed, the next step is to compute statistics

Wv

(

Y, (Xv, v ∈ V, X̃v, v ∈ V )
)

for each v, satisfying the two following properties.

⊙ Wv

(

Y, (Xv, v ∈ V, X̃v, v ∈ V )
)

= Wv

(

Y, SwapS

(

Xv, v ∈ V, X̃v, v ∈ V
))

if v /∈

S.

⊙ Wv

(

Y, (Xv, v ∈ V, X̃v, v ∈ V )
)

= −Wv

(

Y, SwapS

(

Xv, v ∈ V, X̃v, v ∈ V
))

if v ∈

S.

Larger values ofWv’s correspond to stronger evidence to reject the nullH0(v). The

idea behind generating such statistics is to reduce the problem to the independent

tests case, starting with any dependence structure. Finally, the detection set Â(U)

is defined in this way:

⊙ Compute t∗(U) = min{t > 0 : 1+|v∈V :Wv≤−t|
|v∈V :Wv≥t| }.

14
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⊙ Â(U) = {v ∈ V : Wv ≥ t∗(U)}.

In fact, the coarse-to-fine procedures that we will propose for controlling the FDR

are a modified version of (generalized) Benjamini-Hochberg methods. Even if for a

future work, we intend to propose a coarse-to-fine version in the same spirit of knock-

off filters, this is the only place in the thesis where we mention the knock-off filters

procedure.

Other criteria have been proposed in order to generalize either the FWER or the

FDR. We refer for example to.19,20 One criterion worth mentioning is:

pFDR = E

(

|Â(U) ∩ Ac|
|Â(U)|

|Â(U)| > 0

)

.

In reality, this criterion fits very nicely in the Bayesian multiple testing framework

and has a very neat interpretation. Our work however does not overlap with the

Bayesian vision of multiple testing problems. We refer the interested readers to.21,22

Finally, let us mention that in its largest part, our work will focus on procedures

controlling the first criterion, namely the FWER.
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1.4 Motivation of the coarse-to-fine pro-

cedure via FWER control

In many cases, including the settings in computational biology that directly mo-

tivate this work, we find |A| ≪ |V |, n ≪ d as well as small “effect sizes.” This is the

case, for example, in genome-wide association studies (GWAS) where U = (Y,Xv, v ∈

V ) and the dependence of the “phenotype” Y on the “genotype” (Xv, v ∈ V ) is often

assumed to be linear; the active set A are those v with non-zero coefficients and effect

size refers to the fraction of the total variance of Y explained by a particular Xv.

Under these challenging circumstances, the methods used to guarantee the FWER

criterion are usually very conservative and power is limited; that is, number of true

positive detections is often very small (if not null) compared to |A| (the “missing her-

itability”). This is why the less conservative FDR criterion is sometimes preferred:

it allows for a higher number of true detections, but of course at the expense of false

positives. However, there are situations, such as GWAS, in which this tradeoff is un-

acceptable; for example, collecting more data and doing follow-up experiments may

be too labor intensive or expensive, and therefore having even one false discovery may

be deemed undesirable.

Clearly some additional assumptions or domain-specific knowledge are necessary

to ameliorate the reduction in power resulting from controlling the FWER. Motivated

by applications in genomics, we suppose the set V has a natural hierarchical structure.

16



CHAPTER 1. INTRODUCTION AND BACKGROUND

In principle, it should then be possible to gain power if the active hypotheses are not

randomly distributed throughout V but rather have a tendency to cluster within

cells of the hierarchy. In our work , we shall consider in detail the simplest example

consisting of only two levels corresponding to individual hypotheses indexed by v ∈ V

and a partition of V into non-overlapping subsets (g ⊂ V, g ∈ G), which we call “cells.”

We propose different multiple testing strategies that are coarse-to-fine with respect

to this structure. The greatest part of the work focuses on strategies controlling the

FWER, and whose power will exceed standard approaches for typical models and

realistic parameters when a minimal degree of clustering is present. We will also

present coarse-to-fine procedures controlling the FDR. It is important to note that

the clustering property is not a condition for a correct control of the FWER at a

given level using our coarse-to-fine procedure, but only for its increased efficiency in

discovering active hypotheses.

1.5 The coarse-to-fine paradigm

We are now ready to introduce the general pattern of our coarse-to-fine procedures.

Our estimate of A will be based on two families of test statistics: {Tv(U), v ∈ V }, as

above, and {Tg(U), g ∈ G}. Without loss of generality, assume that rejection regions

will correspond to small values of these statistics. The cell-level test Tg is designed to

assume small values only when g is “active,” meaning that g ∩A ̸= ∅. Our estimator

17
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of A is now

Â(U) = {v : Tg(U) ≤ θG, Tv(U) ≤ θV },

where θV and θG can possibly be random thresholds depending on the random vector

U. In other words, the index needs to pass two levels in order to reject the null

hypothesis H0(v). One theoretical challenge of this method is to derive a tractable

method for controlling a specified error (FWER or FDR) at a given level α. Roughly

speaking, the general behavior of the coarse-to-fine proposed procedures will be the

following. Given a parameter J that is the number of indices belonging to active cells

4 we compute thresholds θV and θG and then define the detection set Â(U, θG, θV , J).

The thresholds θG and θV will be chosen such that our error criterion associated

to the detection set will be controlled at a given level. The smaller is J , the less

conservative will be the thresholds θG and θV for the same fixed level. Therefore,

the more clustered the active indices, the more detections we make. While J is not

known in general, we will estimate an upper bound, Ĵ , based on the random vector

(U). The parameter J measures the degree of clustering of active indices inside active

cells.

In contrast to the usual single level based procedures, the main technical difficulty

arises from the correlation between the test statistics Tg and Tv for v ∈ g. This

must be taken into account since it increases the likelihood of an individual index v
4Not all the procedures will be explicitly based on this parameter, but the general pattern of all

the procedures is similar to procedures based on J.
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being falsely declared active when the cell g(v) that contains it is falsely discovered

(survivorship bias). More specifically, we require estimates of quadrant probabilities

under the joint distribution of Tg(v)(U) and Tv(U) when g(v), the cell containing v,

is inactive. Clearly, these probabilities will depend on the behavior of the unknown

probability P when it belongs to subsets of the form ∩v∈A0Pv where A0 is some subset

of Ac. In this context, we now present the framework associated to the null hypotheses

treated in this work.

1.6 Invariance of distributions under group

actions

Before presenting a formal definition, let us go back to our example of pair-

wise comparisons between N normal populations with the same variance, and as-

sume for simplicity that all the populations have the same size denoted by n. Let

us take a family of tuples ({i1, j1}, {i2, j2}, ...{iK , jK}) such that {ik, jk} is in Ac

for every k ≤ K. One can therefore notice that for every permutation ξ in the

group S2n of permutations over 2n elements and every k, the distribution of ξ ⊙

(Xik,1,..., Xik,n, Xjk,1, ..., Xjk,n), where ξ ⊙ Z is the vector obtained from Z ∈ R2n by

permuting its 2n coordinates , is invariant in that we mean that it has the same distri-

bution for every ξ ∈ S2n. Now, if we denote by ξ ⊙
(

(Xik,l)1≤l≤n, (Xjk,l)1≤l≤n

)

1≤k≤K
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the vector
(

ξ ⊙ ((Xik,l)1≤l≤n, (Xjk,l)1≤l≤n)
)

1≤k≤K
, we notice that since {ik, jk} is in Ac

for every k ≤ K, the distribution of the vector ξ ⊙
(

(Xik,l)1≤l≤n, (Xjk,l)1≤l≤n

)

1≤k≤K

is also invariant under the action of ξ, the group acting on the dataset being S2n

in this case. Another example is when the random vector U has the form of i.i.d

random variables
(

(Y k, Xk), k = 1, ..., n)
)

where the Y ’s are real valued and the vari-

ables Xk = (Xk
v , v ∈ V ) is a high-dimensional family of variables indexed by the set

V . In this setting, if H0(v) corresponds to the hypothesis that (Xk
v , k = 1, ....n) is

independent from
(

Y k, , k = 1, ..., n
)

, then for any element ξ belonging to the group

of permutations over n elements, the distribution of:

ξ ⊙
(

Y k, Xk
v , k = 1, ..., n; v ∈ A0

)

=
(

Y ξk , Xk
v , k = 1, ..., n; v ∈ A0

)

is the same for every ξ ∈ Sn whenever the set A0 ⊂ Ac. In fact, the elements ξ are not

necessarily elements of the permutation group. Imagine for example a situation where

U = (Xk
v , k = 1, ..., n; v ∈ V ), where for each v the vector (Xk

v , k = 1, ...n) consists of

i.i.d real valued random variables. Imagine moreover that the vectors (Xk
v1 , k = 1, ...n)

and (Xk
v2 , k = 1, ...n) are independent whenever v1 and v2 are different. Suppose that

H0(v) for each v ∈ V is that the distribution of (Xk
v , k = 1, ...n) is symmetric. Then,

if ξ = (ξ1, ..., ξn) is any element belonging to the group {−1, 1}n, the distribution of:

ξ ⊙ (Xk
v , k = 1, ..., n and v ∈ A0) = (ξkX

k
v , k = 1, ..., n and v ∈ A0)
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is the same for any ξ, whenever A0 ⊂ Ac.

More generally, in the spirit of the previous examples, we will assume in this work

that the statistical model (U ,F ,P(P∈P)) and its associated family of null hypotheses

(H0(v), v ∈ V ) satisfy the following property. There exists a group S such that

for every subset A0 of Ac, there exists a random vector UA0 that is a measurable

transformation of the random vector U, belonging to some set X , possibly depending

on A0, and a group action from ⊙ : S×X → X such that the distribution of ξ⊙UA0

is the same for every ξ ∈ S. We will say that the distribution of UA0 is invariant

under the action of ξ ∈ S.

As mentioned in Section 1.3, we are now ready to describe a procedure controlling

the FWER that accounts for the dependency structure of the tests and can improve

upon the Bonferroni-Holm method when the test statistics are highly correlated. This

procedure plays an important role in our work in the sense that we will derive a coarse-

to-fine method in the same spirit. Namely, we would like to estimate the distribution

of min{Tv(U), v ∈ Ac}. If we knew t∗ = max{t : P (min{Tv(U), v ∈ Ac} < t) ≤ α},

then immediately, by defining:

Â(U) = {v ∈ V : Tv(U) < t∗},

we would have a procedure controlling the FWER at a desired level α. Obviously,

the distribution of min{Tv(U), v ∈ Ac} is unknown and it is not possible to compute
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t∗. To address this issue, the group action framework allows to have a conservative

estimator of t∗ that can be defined as following. Imagine for simplicity that we are

able to generate in a short time all the elements ξ ∈ S (we will later refer to this

assumption as asymptotic resampling) and therefore have access to the distribution

of min{Tv(ξ ⊙ U), v ∈ V } given U. Here we view the elements ξ as random ele-

ments generated uniformly on S. This point of view will be formalized and described

precisely later in the thesis. Denote by µ the distribution associated to the ξ’s. An

estimator of t∗ will therefore be:

t̂(U) = max{t : µ (ξ : min{Tv(ξ ⊙U), v ∈ V } < t) ≤ α}.

One can simply imagine that the elements ξ as permutations. µ (ξ : min{Tv(ξ ⊙U), v ∈ V } < t)

is therefore the number of permutations among the total number of permutations

where we observed a statistic (among all statistics) less than t. If we define Â(U) as

:

Â(U) = {v ∈ V : Tv(U) ≤ t̂(U)},

then the FWER is controlled at a desired level α. Here, the rejection set depends

on the random vector U.
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1.7 Applications and related work

As indicated above, our work (and some of our notation) is inspired by statistical

issues arising in GWAS23–25 and related areas in computational genomics. In the most

common version of GWAS, the “genotype” of an individual is represented by the

genetic states Xv at a very large family of genomic locations v ∈ V ; these variations

are called single nucleotide polymorphisms or SNPs. These SNPs are used as markers

of genomic regions. The majority of these SNPs don’t have any biological impact. The

final goal of GWAS is , for a particular study, to find the rare SNPs that are associated

to a certain trait or phenotype. At this stage, one needs to carefully explain what is

meant by associated. In reality, there are two types of association: the first type is

called direct association as opposed to the second type: indirect association.26 If the

SNP is directly associated to the trait, the SNP is the functional SNP, in the sense that

it causes a change in gene expression having an effect on the particular phenotype.

This can happen for example via modifications in amino acids, mRNA transcript

stability or changes to transcription factor binding affinity.27 Indirect association

occurs in the situation where there is a correlation between the phenotype and a

particular SNP, but the SNP is not causal. It happens when the SNP in question is

correlated with a second SNP that is in direct association with the trait, but is not

causing any functional change having an effect on the phenotype. When two SNPs are

in a such situation, we say that they are in linkage disequilibrium (LD). When a set

of SNPs are in mutual linkage disequilibrium, we say that they form an LD block. To
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avoid collecting redundant information, GWAS studies try to select a representative

SNP for each LD block. Such a SNP is called a tag SNP, since it is tagging the whole

LD to which it belongs. As a consequence, a causal SNP can be absent from a study,

and looking just for a causality relationship between SNPs and the trait can lead to

missing a tag SNP that is associated to an important functional SNP. Therefore, our

objective will be to find those SNPs A ⊂ V “in (both types) association” with a given

phenotype, for example a measurable trait Y such as height or blood pressure. The

null hypothesis for a SNP v is that Y and Xv are independent random variables, and

whereas |V | may run into the millions, the set A of active variants is expected to be

fewer than one hundred. Obviously, the set Â will not represent a set of causal SNPs

and further studies will be required, typically investigating the LD blocks associated

to the set Â. The number of hypotheses tested |V | corresponds to the number of tag

SNP’s, which is roughly the number of LD blocks. The number of LD blocks depends

on the number of recombination events that occurred within a studied population.

For example, the number of LD blocks in African populations is higher than the

number of blocks in European population due to a larger number of recombination

events. The number |V | of blocks in a study involving European populations has a

magnitude of 106.28 For a given population studied, the power of detection of a given

SNP v is driven by two factors: The minor allele frequency and the effect size. The

minor allele frequency is simply the frequency of the allele that is less frequent in a

population for the SNP v. As for the effect size of v, it is typically a statistic reflecting
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the degree of dependency between Y and Xv. Different definitions of the effect size

have been given in different contexts,29 depending on whether Y is a quantitative or

categorical trait in our context. In our case, we are interested in the case where Y

can take binary values 0 or 1. This setting corresponds to what is defined as case

control studies. Xv can take 3 possible values 0, 1 or 2. These correspond to counts

of the number of minor alleles at the particular locus. In this particular setting, the

effect size associated to SNP is defined as the couple of odds ratios:

odds ratio =
P (Y = 1|Xv = 1, Xv′)/P (Y = 0|Xv = 1, Xv′)

P (Y = 1|Xv = 0, Xv′)/P (Y = 0|Xv = 0, Xv′)

and

odds ratio =
P (Y = 1|Xv = 2, Xv′)/P (Y = 0|Xv = 2, Xv′)

P (Y = 1|Xv = 0, Xv′)/P (Y = 0|Xv = 0, Xv′)

If moreover, we assume that the second odds ratio is the square of the first ratio, then

the effect size is simply defined as the first odds ratio. Figure 1.1 gives an idea about

effect sizes and minor allele frequencies of certain traits.

Finally, the situation in GWAS can be well adapted to coarse-to-fine strategies

because of the following reason. If the considered variants are confined to coding

regions, then the set of genes provides a natural partition of V . In reality this is not a

necessary condition. Instead, what is needed is any mapping/function that associates

SNPs to sets of SNPs based on some biological knowledge. Also, the fact that genes

are organized into pathways provides a natural three-level hierarchy.30
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Figure 1.1: Representation of minor allele frequencies and effect sizes for some
diseases. The majority of diseases are caused by common SNPs with small effect
sizes. Figure taken from1
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Another application of large-scale multiple testing is variable filtering in high-

dimensional prediction: the objective is to predict a categorical or continuous vari-

able Y based on a family of potentially discriminating features Xv, v ∈ V . Learning

a predictor Ŷ from i.i.d. samples of U = (Y,Xv, v ∈ V ) is often facilitated by limit-

ing a priori the set of features utilized in training Ŷ to a subset A ⊂ V determined

by testing the features one-by-one for dependence on Y and setting a significance

threshold. In most applications of machine learning to artificial perception, no pre-

mium is placed on pruning A to a highly distinguished subset; indeed, the particular

set of selected features is rarely examined or considered of significance. In contrast,

the identities of the particular features selected and appearing in decision rules are

often of keen interest in computational genomics, e.g., discovering cancer biomarkers,

where the variables Xv represent “omics” data (e.g., gene expression), and Y codes

for two possible cellular or disease phenotypes. Obtaining a “signature” Â devoid of

false positives can be beneficial in understanding the underlying biology and inter-

preting the decision rules. In this case the Gene Ontology (GO)31 provides a very rich

hierarchical structure, one example being the organization of genes in pathways. In-

deed, building predictors to separate “driver mutations” from “passenger mutations”

in cancer would appear to be a promising candidate for coarse-to-fine testing due to

the fact that drivers are known to cluster in pathways.

There is a literature on coarse-to-fine pattern recognition (see, e.g.,32 and the ref-

erences therein), but the emphasis has traditionally been on computational efficiency
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rather than error control. Computation is not considered here. Moreover, in most of

this work, especially applications to vision and speech, the emphasis is on detecting

true positives (e.g., patterns of interest such as faces) at the expense of false positives.

Simply “reversing” the role of true positives and negatives is not feasible due to the

loss of reasonable invariance assumptions; in effect, every pattern of interest is unique.

In,33 a hierarchical testing approach is used in the context of the FWER. How-

ever, the intention in this paper is to improve the power of detection relative to the

Bonferroni-Holm methods only at level of clusters of hypotheses; in contrast to our

method, the two approaches have comparable power at the level of individual hy-

potheses. To briefly describe the method proposed in the context of two levels, the

procedure consists in computing three types of statistics. First, compute a global

statistic TV (U) in order to reject or not the global null hypothesis: For every v ∈ V

H0(v) is true. Under the global null the statistic is assumed to follow (dominates)

a uniform distribution on [0, 1]. At a second stage, compute the statistics Tg(U) for

every cell g. For each g, if H0(v) is true for every v ∈ g, then Tg(U) would follow

(dominate) a uniform distribution on [0, 1]. Finally, compute the statistics Tv(U)

at the indices level v, assuming also that these statistics are following (dominating)

a uniform distribution on [0, 1]. Once the statistics are computed, the method first

decides to reject the global null if and only if TV (U) ≤ α. If the global null is rejected,

reject the null for each cell g if and only if Tg(U) ≤ |g|α
|V | . Finally, each null H0(v)

at the indices level is rejected if and only if Tg(v)(U) ≤ |g|α
|V | and Tv(U) ≤ α

|V | , where
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g(v) is the cell containing v for each v ∈ V . One immediately notices that there is no

improvement over the Bonferroni bound at the indices level. In reality, the interest

of the mentioned work consists in obtaining a Bonferroni bound at the cell level, but

controlling an error that is more conservative than the FWER. The point of view

that is taken in33 is the following. We are not just interested in a detection set Â(U)

at the indices level. The final detection set that is considered comes in three stages:

Âglobal(U), ÂG(U) and ÂV (U). The first detection set is either the empty set or a

singleton and corresponds to rejecting or not the global null. The second detection

consists in all the cells where the null has been rejected. Finally, the third detection

corresponds to the same detection set that we are considering in our work and con-

sists in all the indices where the null has been rejected. In fact, the procedure that

is described here controls an error that is more conservative than the FWER that

is usually considered: P

(

ÂV (U) ∩ Ac
V ̸= ∅

)

, where Ac
V is the true set of non active

indices. Let us denote by Ac
global the set that is either the empty set if the global null

is false or the singleton V otherwise. Also, denote by Ac
G the true set of non-active

cells. The FWER that is controlled here is then the following:

P

(

{Âglobal(U) ∩ Ac
global ̸= ∅}

⋃

{ÂG(U) ∩ Ac
G ̸= ∅}

⋃

{ÂV (U) ∩ Ac
V ̸= ∅}

)

.

It is indeed guaranteed to be less than α in the described method. To compare with

our procedures, we are not interested in controlled errors at the coarse level and our
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goal is to control only the error at the indices level, and at the same time improve

the Bonferroni bounds. One needs to mention though that a slight improvement over

the Bonferroni bound is derived in the mentioned paper, in the particular case where

the cells g form a partition of V of size 2. In this case, the detected indices are those

such that Tg(v)(U) ≤ |g|α
|V | and Tv(U) ≤ 2α

|V | .

Finally, two-stage procedures have been proposed (see for example15,34) to control

the FDR. However, these procedures are coarse-to-fine in the sense that the two stages

for each v are based on the statistics Tv(U). The general pattern of these strategies

consists in computing a first stage threshold on the statistics (Tv(U), v ∈ V ) that

will output a first detection set. At a second stage a second threshold is computed

depending on the first detection set and threshold.

1.8 Organization of the thesis

In the next chapter, we will present a procedure considered as a Bonferroni coarse-

to-fine version, in the sense that it is derived using Bonferroni bounds. This procedure

will control the FWER. In Chapter 4, we will take into account the setting where the

statistics associated to the multiple hypotheses are correlated and derive a coarse-

to-fine procedure adapted for high correlations within the statistics associated to

the hypotheses. This procedure will also control the FWER. Finally, in Chapter 5

we will consider a procedure controlling the FDR. We will first consider coarse-to-
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fine procedures controlling the FDR under dependency structure assumptions within

the statistics associates to the hypotheses, and then present procedures controlling

the FDR under any dependency structure at the expense of the power of detection

compared to the first family of procedures.
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Chapter 2

A Bonferroni coarse-to-fine

procedure

This chapter is organized in the following way. We will start by a formal introduc-

tion of the coarse-to-fine framework. This framework will be used for the remaining

part of the manuscript. We then give a Bonferroni coarse-to-fine method in the con-

text described in section 1.6 , assuming asymptotic resampling. The next section

provides a modification of the former procedure that takes into account finite resam-

pling. Finally, in order to illustrate in a simpler way the ideas behind the Bonferroni

coarse-to-fine procedure, we propose a model based version of the method, where we

assume a gaussian linear model. The performance of the methods that are derived in

this chapter are compared at the end of the chapter via simulations.
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2.1 Coarse-to-fine framework

The finite family of null hypotheses will be denoted by (H0(v), v ∈ V ), where H0

is either true or false. We are interested in the active set of indices, A = {v ∈ V :

H0(v) = false} and will write V0 = Ac for the set of inactive indices. Suppose our

data U takes values in U . The set Â(U) is commonly designed based on individual

rejection regions Γv ⊂ U , with Â(U) = {v : U ∈ Γv}. As indicated in the previous

section, in the conservative Bonferroni approach, the FWER is controlled at level α

by assuming |V |maxv∈V0 P(U ∈ Γv) ≤ α. If the rejection regions are designed so that

this probability is independent of v whenever H0(v) is true, then the condition boils

down to P(U ∈ Γv) ≤ α/|V | for v ∈ V0. Generally, Γv = {u ∈ U : Tv(u) ≤ t} for a

constant t (or tv) for some family of test statistics (Tv, v ∈ V ).

While there is not much to do in the general case to improve on the Bonferroni

method, it is possible to improve power if V is structured and one has prior knowledge

about the way the active hypotheses are organized relative to this structure. In this

paper, we consider a coarse-to-fine framework in which V is provided with a partition

G, so that V =
⋃

g∈G g, where the subsets g ⊂ V (which we will call cells) are non-

overlapping. For v ∈ V , we let g(v) denote the unique cell g that contains it. The

“coarse” step selects cells likely to contain active indices, followed by a “fine” step

in which a Bonferroni or equivalent procedure is applied only to hypotheses included

in the selected cells. More explicitly, we will associate a rejection region Γg to each
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g ∈ G and consider the discovery set

Â(U) = {v ∈ V : U ∈ Γg(v) ∩ Γv}. (2.1)

We will say that a cell g is active if and only if g ∩A ̸= ∅, which we shall also express

as H0(g) = false, implicitly defining H0(g) as the logical “and” of all H0(v), v ∈ g.

We will also consider the double null hypothesis H00(v) = H0(g(v)) of v belonging

in an inactive cell (which obviously implies that v is inactive too), and we will let

V00 ⊂ V0 be the set of such v’s.

Let |g| denote the size of each cell g in G, G0 and Gc
0 respectively the set of non-

active cells and active cells. Then, define J =
∑

g∈Gc
0
|g|, the number of active indices

contained in active cells. We will develop our procedure under the assumption that

J is known, or, at least bounded from above. While this can actually be a plausible

assumption in practice, we will relax it in section 2.2 in which we will design a

procedure to estimate a bound on J .

With this notation, we have the following result:

Proposition 2.1.1. With Â defined by (2.1):

FWER(Â) ≤ |V | max
v∈V00

P
(

U ∈ Γg(v) ∩ Γv

)

+ J max
v∈V0

P (U ∈ Γv) .

Notice that the result will obviously still be valid if we replace J by an upper

bound.
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Proof. This is just the Bonferroni bound applied to the decomposition

(Â(U) ∩ V0 ̸= ∅) =
⋃

v∈V00

(U ∈ Γg(v) ∩ Γv) ∪
⋃

v∈V0\V00

(U ∈ Γg(v) ∩ Γv)

⊂
⋃

v∈V00

(U ∈ Γg(v) ∩ Γv) ∪
⋃

v∈V0\V00

(U ∈ Γv)

so that

P (Â(U) ∩ V0 ̸= ∅) ≤ |V00|max
v∈V00

P
(

U ∈ Γg(v) ∩ Γv

)

+ |V0 \ V00|max
v∈V0

P(U ∈ Γv)

and the proposition results from |V00| ≤ |V | and |V0 \ V00| ≤ J .

The sets Γg and Γv will be designed using statistics Tg(U) and Tv(U) setting

Γg = (Tg(U) ≤ θG) and Γv = (Tv(U) ≤ θV ) for some constants θG and θV . Letting

p00(θG, θV ) be an upper-bound of P
(

(Tg(v)(U) ≤ θG) ∩ (Tv(U) ≤ θV )
)

for v ∈ V00 and

p0(θV ) of P (Tv(U) ≤ θV ) for v ∈ V0, the previous upper bound becomes

FWER(Â) ≤ |V | p00(θG, θV ) + J p0(θV ). (2.2)

In the following sections our goal will be to design θG and θV such that this upper

bound is smaller than a predetermined level α. Controlling the second term will lead

to less conservative choices of the constant θV (compared to the Bonferroni estimate),

as soon as J ≪ |V | , depending on the degree of clustering, the probability p00 of

false detection in the two-step procedure can be made much smaller than p0 without
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harming the true detection rate and the coarse-to-fine procedure will yield an increase

in power for a given FWER. We require tight estimates of p00 and taking into account

the correlation between Tg(v)(U) and Tv(U) is necessary to deal with “survivorship

bias.”

2.2 Non-parametric coarse-to-fine testing

2.2.1 Notation

Recall that U denotes the random variable representing all the data, taking values

in U . We will build our procedure from user-defined scores, denoted ρv (at the locus

level) and ρg (at the cell level), both defined on U , i.e., functions of the observed data.

Moreover, we assume that there exists a group action of some group S on U ,

which will be denoted

(ξ,u) 3→ ξ ⊙ u.

The product in S will be denoted (ξ, ξ′) 3→ ξξ′. For example, if the observation is a

realization of an i.i.d. family of random variables U = ((Y k, Xk), k = 1, . . . n) where

the Y ’s are real-valued and the variables Xk = (Xk
v , v ∈ V ) is a high-dimensional

family of variables indexed by the set V , one will take U =
(

(Y k, Xk), k = 1, . . . , n
)

.
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S will be the permutation group of {1, . . . , n} with

ξ ⊙U =
(

(Y ξk , Xk), k = 1, . . . , n
)

.

To simplify the discussion, we will assume thatS is finite and denote by µ the uniform

probability measure on S, so that

∫

S

f(ξ)dµ(ξ) =
1

|S|
∑

ξ∈S

f(ξ).

Our running assumption will be that,

1. For any v ∈ V00, the joint distribution of (ρg(v)((ξ′ξ)⊙U), ρv((ξ′ξ)⊙U))ξ′∈S is

independent of ξ ∈ S.

2. For any v ∈ V0, the joint distribution of (ρv((ξ′ξ) ⊙ U))ξ′∈S is independent of

ξ ∈ S.

We will also use the following well-known result.

Lemma 2.2.1. Let X be a random variable and let FX(x) = P (X ≤ x) denote its

cumulative distribution function, with left limit F−
X (x) = P (X < x). Define, for

z ∈ [0, 1]

F̄X(x, z) := (1− z)
(

1− F−
X (x)

)

+ z (1− FX(x)) = P(X > x) + (1− z)P(X = x).
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Then, if Z : Ω → [0, 1] is uniformly distributed and independent from X, one has, for

t ∈ [0, 1],

P
(

F̄X(X,Z) ≤ t
)

= t.

The reader can refer, for example, to35 for a proof of this lemma in the case of

discrete variable X (which will suffice for our purposes).

2.2.2 Asymptotic resampling scores

Let Z : Ω → [0, 1] be uniformly distributed and independent of U. We define the

asymptotic scores at the cell and variable level by

Tg(U, Z) = µ (ξ : ρg(U) < ρg(ξ ⊙U)) + Z µ (ξ : ρg(U) = ρg(ξ ⊙U)) (2.3)

and

Tv(U, Z) = µ (ξ : ρv(U) < ρv(ξ ⊙U)) + Z µ (ξ : ρv(U) = ρv(ξ ⊙U)) (2.4)

Tg(U, Z) and Tv(U, Z) are the typical statistics used in permutation tests, estimating

the proportion of scores that are higher than the observed one after randomizing

the sample using the group action, while counting ties with a uniformly distributed

weight.

For the coarse-to-fine procedure, we will need one more “conditional” statistic.
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For a given constant θG and a uniform random variable Z̃ independent of U and Z,

we define

N θG
g (U, Z) = µ (ξ : Tg(ξ ⊙U, Z) ≤ θG) . (2.5)

We then let

T θG
v (U, Z, Z̃) =

1

N θG
g(v)(U, Z)

µ
(

ξ : ρv(U) < ρv(ξ ⊙U);Tg(v)(ξ ⊙U, Z) ≤ θG
)

+

Z̃

N θG
g(v)(U, Z)

× µ
(

ξ : ρv(U) = ρv(ξ ⊙U);Tg(v)(ξ ⊙U, Z) ≤ θG
)

. (2.6)

We call our scores asymptotic in this section because exact expectations over µ cannot

be computed in general, and can only be obtained as limits of Monte-Carlo samples.

The practical finite-sample case will be handled in the next section.

With this notation, we let

Â = {v : Tg(v)(U, Z) ≤ θG and T θG
v (U, Z, Z̃) ≤ θV and Tv(U, Z) ≤ θ′V }

which depends on the choice of three constants, θV , θG and θ′V . We then have:

Theorem 2.2.1. For all v ∈ V0:

P

(

v ∈ Â
)

≤ θ′V (2.7)
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and for all v ∈ V00,

P

(

v ∈ Â
)

≤ θGθV (2.8)

This result tells us how to control the FWER for a two-level permutation test based

on any scores in the (generally intractable) case in which we can exactly compute the

test statistics, when we declare an index v active if and only if Tg(U, Z) ≤ θG and

T θG
v (U, Z, Z̃) ≤ θV and Tv(U, Z) ≤ θ′V (or max

(

T θG
v (U, Z, Z̃), θVθ′V

Tv(U, Z)
)

≤ θV if

one wants to use a single v-indexed statistic as considered in section 2.1).

Proof. For (2.7), we use a standard argument justifying randomization tests, that we

provide here for completeness. If v ∈ V0, we have

P

(

v ∈ Â
)

= P

(

Tg(U, Z) ≤ θG;T
θG
v (U, Z, Z̃) ≤ θV ;Tv(U, Z) ≤ θ′V

)

≤ P (Tv(U, Z) ≤ θ′V ) .

From the invariance assumption, we have

P (Tv(U, Z) ≤ θ′V ) = P (Tv(ξ ⊙U, Z) ≤ θ′V ) for all ξ ∈ S

=

∫

S

P (Tv(ξ ⊙U, Z) ≤ θ′V ) dµ(ξ)

= E (E (µ (ξ : Tv(ξ ⊙U, Z) ≤ θ′V ) |U))

It now remains to remark that, for fixed U, Tv(ξ ⊙ U, Z) = F̄ζU(ζU(ξ), Z) with
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ζU(ξ′) = ρv(ξ′ ⊙U) for x′ ∈ S. Therefore, by Lemma 2.2.1,

E (µ (ξ : Tv(ξ ⊙U, Z) ≤ θ′V ) |U) = E
(

µ
(

ξ : F̄ζU(ζU(ξ), Z) ≤ θ′V
)

|U
)

= θ′V , (2.9)

which proves (2.7). Similarly, one has

E(N θG
g (U, Z)|U) = P (Tg(U, Z) ≤ θG|U) = θG. (2.10)

Let us now prove (2.8), assuming v ∈ V00 and letting g = g(v). We write

P

(

v ∈ Â
)

≤ P

(

Tg(v)(U, Z) ≤ θG;T
θG
v (U, Z, Z̃) ≤ θV

)

.

and find an upper bound for the right-hand side of the inequality. Using the invariance

assumption, we have

P
(

Tg(U, Z) ≤ θG;T
θG
v (U, Z) ≤ θV

)

=

∫

S

P

(

Tg(ξ
′ ⊙U, Z) ≤ θG;T

θG
v (ξ

′ ⊙U, Z, Z̃) ≤ θV
)

dµ(ξ′)

= E

(

µ
(

ξ′ : Tg(ξ
′ ⊙U, Z) ≤ θG;T

θG
v (ξ

′ ⊙U, Z, Z̃) ≤ θV
))

= E

(

E

(

µ
(

ξ′ : Tg(ξ
′ ⊙U, Z) ≤ θG;T

θG
v (ξ

′ ⊙U, Z, Z̃) ≤ θV
)

|U, Z
))
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Notice that, since µ is right-invariant, we have N θG
g (ξ′ ⊙U, Z) = N θG

g (U, Z) for all ξ′

and

T θG
v (ξ

′ ⊙U, Z, Z̃)

=
1

N θG
g (ξ′ ⊙U, Z)

µ
(

ξ : ρv(ξ
′ ⊙U) < ρv((ξ ◦ ξ

′
)⊙U);Tg((ξ ◦ ξ′)⊙U, Z) ≤ θG

)

+
Z̃

N θG
g (ξ′ ⊙U, Z)

µ
(

ξ : ρv(ξ
′ ⊙U) = ρv((ξ ◦ ξ

′
)⊙U);Tg((ξ ◦ ξ′)⊙U, Z) ≤ θG

)

=
1

N θG
g (U, Z)

µ
(

ξ : ρv(ξ
′ ⊙U) < ρv(ξ ⊙U);Tg(ξ ⊙U, Z) ≤ θG

)

+
Z̃

N θG
g (U, Z)

µ
(

ξ : ρv(ξ
′ ⊙U) = ρv(ξ ⊙U);Tg(ξ ⊙U, Z) ≤ θG

)

Let µ̃ denote the probability µ conditional to the event (Tg(ξ ⊙U, Z) ≤ θG) (U,

Z and Z̃ being fixed). Then

1

N θG
g (U, Z)

µ
(

Tg(ξ
′ ⊙U, Z) ≤ θG;T

θG
v (ξ′ ⊙U, Z, Z̃) ≤ θV

)

= µ̃
(

ξ′ : p(ξ′, Z̃) ≤ θV
)

,

where

p(ξ′, Z̃) = µ̃ (ξ : ρv(ξ ⊙U) > ρv(ξ
′ ⊙U)) + Z̃µ̃ (ξ : ρv(ξ ⊙U) = ρv(ξ

′ ⊙U))

Hence, Lemma 2.2.1 implies that:

E

(

1

N θG
g (U, Z)

µ
(

ξ′ : Tg(ξ
′ ⊙U, Z) ≤ θG;T

θG
v (ξ

′ ⊙U, Z, Z̃) ≤ θV
) ∣

∣

∣
U, Z

)

= θV .

42



CHAPTER 2. A BONFERRONI COARSE-TO-FINE PROCEDURE

Hence,

P

(

Tg(U, Z) ≤ θG;T
θG
v (U, Z, Z̃) ≤ θV

)

= E
(

N θG
g (U, Z)θV

)

= θVE
(

N θG
g (U, Z)

)

= θV θG.

Note that Theorem 2.2.1 is still true if one takes Z = Z̃ = 1 in the definition of

the test statistics, because the obtained detection set would then be a subset of Â.

This would have resulted in a simpler expression in which ties are fully counted, with

very little practical loss because the probability of ties in over such permutations is

typically minuscule. However, equality in equations such as (2.9) will be needed in

the proof of Theorem 2.2.2.

As an immediate corollary, we have:

Corollary 2.2.1.

FWER(Â) ≤ |V |θGθV + Jθ′V .

As mentioned above, this result does not have practical interest because it requires

applying all possible permutations to the data. In practice, a random subset of

permutations is picked instead, and we develop the related theory in the next section.
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2.2.3 Finite resampling scores

We now replace Tg, T θG
v and Tv with Monte-Carlo estimates and describe how the

upper bounds in Theorem 2.2.1 need to be modified. We therefore introduce an i.i.d.

random sample ξ = (ξ1, ..., ξK) : Ω → SK , where ξk ∼ µ and K is a positive integer.

We also introduce the empirical measure:

µ̂ξ =
1

K

K
∑

k=1

δξk .

With this notation, we let:

T̂g(U, ξ) = µ̂ξ (ξ
′ : ρg(U) ≤ ρg(ξ

′ ⊙U)) ,

Ť−
g (U, ξ, ξ′) = µ̂ξ (ξ

′ : ρg(ξ
′ ⊙U) < ρg(ξk ⊙U)) ,

T̂v(U, ξ) = µ̂ξ (ξ
′ : ρv(U) ≤ ρv(ξ

′ ⊙U)) ,

and

T̂ θG,εG
v (U, ξ) =

1

θG
µ̂ξ

(

ξ′ : ρv(U) ≤ ρv(ξ
′ ⊙U); Ť−

g (U, ξ, ξ′) ≤ θG + εG
)

.

We denote by Gβ(x, a, b) the c.d.f. of a beta distribution with parameters a and

b evaluated at x ∈ [0, 1], i.e.,

Gβ(x, a, b) =
1

β(a, b)

∫ x

0

ta−1(1− t)b−1dt

44



CHAPTER 2. A BONFERRONI COARSE-TO-FINE PROCEDURE

with β(a, b) = Γ(a)Γ(b)/Γ(a + b). We recall that if X is binomial with parameter n

and p (X ∼ Bin(n, p)) then, for an integer t ∈ {0, . . . , n}

P (X ≤ t) = Gβ(1− p, n− t, t+ 1).

We can now define

Â =
{

v : T̂g(v)(U, ξ) ≤ θG − εG and T̂ θG,εG
v (U, ξ) ≤ θV and T̂v(U, ξ) ≤ θ′V

}

and state:

Theorem 2.2.2. For v ∈ V0,

P

(

v ∈ Â
)

≤ ⌊Kθ′V⌋+ 1

K + 1
. (2.11)

and, for v ∈ V00 and g = g(v),

P

(

v ∈ Â
)

≤ cK(θG, εG) + θGθV (2.12)
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where

cK(θG, εG) =
⌊K(θG − εG)⌋+ 1

K + 1
Gβ(1− θG, K − ⌊K(θG − εG)⌋, ⌊K(θG − εG)⌋+ 2)

(2.13)

− θGGβ(1− θG, K − ⌊K(θG − εG)⌋, ⌊K(θG − εG)⌋+ 1)

+ θGGβ

(

θG, ⌊K(θG + εG)⌋, K − ⌊K(θG + εG)⌋
)

.

Here, ⌊x⌋ denotes the integer part of x.

Corollary 2.2.2. The FWER using the finite resampling scores is controlled by :

FWER ≤ |V |cK(θG, εG) + |V |θGθV + J
⌊Kθ′V⌋+ 1

K + 1
.

Neglecting the rounding error in the last term (letting (⌊Kθ′V⌋+ 1)(K + 1) ≃ θ′V ),

this theorem therefore adds the finite-sample correction cK(θG, εG) to the asymptotic

upper bound (theorem 2.2.1). Figure 2.1 plots the level curves of the logarithm of

this correction as a function of K and εG, fixing θG to values that are used in our

simulations.

The proof of Theorem 2.2.2 is based on the introduction of randomized finite

sampling scores, allowing us to use lemma 2.2.1 at multiple occurrences. These ran-

domized scores will be less conservative (but significantly more complex) than the

scores that were introduced before Theorem 2.2.2, which will therefore be obtained
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Figure 2.1: Level curves of the logarithm of cK(θG, εG), with θG = 2.1× 10−3
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as a corollary of the present proof.

Let us first recall our notation and introduce some new one. For a positive integer

K, we let µ be the uniform probability on S and let ξ = (ξ1, ..., ξK) ∈ SK where

ξ1, . . . , ξK are independent and have distribution µ. Also, we define Z = (Z1, ..., ZK)

and Z̃ = (Z̃1, ..., Z̃K) where Z1, . . . , ZK and Z̃1, . . . , Z̃K are independent random vari-

ables uniformly distributed on [0, 1], that are also independent of U and ξ. We will

also need two additional independent uniformly distributed variables, Z and Z̃, also

independent of all other variables. All these variables are assumed to be defined on

a probability space (Ω,P). We also introduce the empirical measures

µ̂ξ =
1

K

K
∑

k=1

δξk , µ̂ξ,Z =
1

K

K
∑

k=1

δξkδZk
, and µ̂ξ,Z̃ =

1

K

K
∑

k=1

δξkδZ̃k
.

With these notations, we let:

T̂g,r(U, ξ,Z, Z)

= µ̂ξ (ξ
′ : ρg(U) < ρg(ξ

′ ⊙U)) + µ̂ξ,Z ((ξ
′, z′) : ρg(U) = ρg(ξ

′ ⊙U); z′ ≤ Z)

=
1

K

K
∑

k=1

(

1ρg(U)<ρg(ξk⊙U) + 1ρg(U)=ρg(ξk⊙U)1Zk≤Z

)

Ťg,r(U, ξ,ZK , ξ
′, Z) = T̂g(ξ

′ ⊙U, ξ ◦ ξ′−1,Z, Z)

=
1

K

K
∑

k=1

(

1ρg(ξ′⊙U)<ρg(ξk⊙U) + 1ρg(ξ′⊙U)=ρg(ξk⊙U)1Zk≤Z

)

,
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T̂v,r(U, ξ,Z, Z) = µ̂ξ (ξ
′ : ρv(U) < ρv(ξ

′ ⊙U))+µ̂ξ,Z ((ξ
′, z′) : ρv(U) = ρv(ξ

′ ⊙U); z′ ≤ Z)

and

T̂ θG,εG
v,r (U, ξ,Z, Z̃, Z, Z̃)

=
1

θG
µ̂ξ

(

ξ′ : ρv(U) < ρv(ξ
′ ⊙U); Ťg(U, ξ,Z, ξ′, Z) ≤ θG + εG

)

+
1

θG
µ̂ξ,Z̃

(

(ξ′, z′) : ρv(U) = ρv(ξ
′ ⊙U); z′ ≤ Z̃; Ťg(U, ξ,Z, ξ′, Z) ≤ θG + εG

)

We can now define:

Âr =
{

v : T̂g(v),r(U, ξ,Z, Z) ≤ θG − εG and T̂ θG,εG
v,r (U, ξ,Z, Z) ≤ θV

and T̂v,r(U, ξ,Z, Z̃, Z, Z̃) ≤ θ′V

}

It is easy to see that Â ⊂ Âr. Therefore, the following result implies Theorem 2.2.2.

Theorem 2.2.3. For v ∈ V0,

P

(

v ∈ Âr

)

≤ ⌊Kθ′V⌋+ 1

K + 1
. (2.14)
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and, for v ∈ V00 and g = g(v),

P

(

v ∈ Âr

)

≤ ⌊K(θG − εG)⌋+ 1

K + 1
Gβ(1− θG, K − ⌊K(θG − εG)⌋, ⌊K(θG − εG)⌋+ 2)

− θGGβ(1− θG, K − ⌊K(θG − εG)⌋, ⌊K(θG − εG)⌋+ 1)

+ θGGβ

(

θG, ⌊K(θG + εG)⌋, K − ⌊K(θG + εG)⌋+ 1
)

+ θGθV . (2.15)

Proof of Theorem 2.2.3.

Step 1. We start with (2.14) which is simpler and standard. Let v ∈ V0. Conditionally

to U and Z, KT̂v,r(U, ξ,Z, Z) follows a binomial distribution Bin(K,Tv(U, Z)) (with

Tv defined by equation (2.4)), so that

P(v ∈ Âr) ≤ P(T̂v,r(U, ξ,Z, Z) ≤ θ′V ) = E (Gβ(1− Tv(U, Z), K − ⌊Kθ′V⌋, ⌊Kθ′V⌋+ 1)) .

Theorem 2.2.1 states that Tv(U, Z) follows a uniform distribution on [0, 1]. Therefore,

P(v ∈ Âr) ≤
∫ 1

0

Gβ(t,K − ⌊Kθ′V⌋, ⌊Kθ′V⌋+ 1)dt =
⌊Kθ′V⌋+ 1

K + 1
.
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Step 2. We now consider (2.15) and take v ∈ V00, g = g(v). We first prove that:

P

(

T̂g,r(U, ξ,Z, Z) ≤ θG − εG; T̂
θG,εG
v,r (U, ξ,Z, Z̃, Z, Z̃) ≤ θV

)

(2.16)

≤ P

(

Tg(U, Z) ≤ θG; T̂
θG,εG
v,r (U, ξ,Z, Z̃, Z, Z̃) ≤ θV

)

+
⌊K(θG − εG)⌋+ 1

K + 1
Gβ(1− θG, K − ⌊K(θG − εG)⌋, ⌊K(θG − εG)⌋+ 2)

− θGGβ(1− θG, K − ⌊K(θG − εG)⌋, ⌊K(θG − εG)⌋+ 1)

Notice that:

P

(

T̂g,r(U, ξ,Z, Z) ≤ θG − εG; T̂
θG,εG
v,r (U, ξ,Z, Z̃, Z, Z̃) ≤ θV

)

−

P

(

Tg(U, Z) ≤ θG; T̂
θG,εG
v,r (U, ξ,Z, Z̃, Z, Z̃) ≤ θV

)

≤ P

(

T̂g,r(U, ξ,Z, Z) ≤ θG − εG; Tg(U, Z) ≥ θG
)

Now, write:

P

(

T̂g,r(U, ξ,Z, Z) ≤ θG − εG; Tg(U, Z) ≥ θG
)

= E

(

P

(

T̂g,r(U, ξ,Z, Z) ≤ θG − εG; Tg(U, Z) ≥ θG |U, Z
))

.
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By the same remark used to prove (2.14), we have that:

P

(

T̂g,r(U, ξ,Z, Z) ≤ θG − εG; Tg(U, Z) ≥ θG |U, Z
)

= 1Tg(U,Z)≥θGGβ(1− Tg(U, Z), K − ⌊K(θG − εG)⌋, ⌊K(θG − εG)⌋+ 1).

Taking the expectation over U and Z, and using the fact that 1 − Tg(U, Z) is

uniformly distributed over [0, 1] under the “double null” hypothesis:

P

(

T̂g,r(U, ξ,ZK , Z) ≤ θG − εG; Tg(U, Z) ≥ θG
)

=

∫ 1

θG

Gβ(1− t,K − ⌊K(θG − εG)⌋, ⌊K(θG − εG)⌋+ 1)dt

=
⌊K(θG − εG)⌋+ 1

K + 1
Gβ(1− θG, K − ⌊K(θG − εG)⌋, ⌊K(θG − εG)⌋+ 2)

− θGGβ(1− θG, K − ⌊K(θG − εG)⌋, ⌊K(θG − εG)⌋+ 1)
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Step 3. Let

T̃ θG
v,r (U, ξ,Z, Z̃, Z, Z̃) =

1

KθG

K
∑

k=1

1ρv(U)<ρv(ξk⊙U)1Tg(ξk⊙U,Z)≤θG

+
1

KθG

K
∑

k=1

1ρv(U)=ρv(ξk⊙U)1Z̃k≤Z̃1Tg(ξk⊙U,Z)≤θG

=
1

KθG
µ̂ξ (ξ

′ : ρv(ξ
′ ⊙U) > ρv(U); Tg(ξ

′ ⊙U, Z) ≤ θG)

+
1

KθG
µ̂ξ,Z̃

(

(ξ′, z′) : ρv(ξ
′ ⊙U) = ρv(U); z′ ≤ Z̃ Tg(ξ

′ ⊙U, Z) ≤ θG
)

We now prove that

P

(

Tg(U, Z) ≤ θG; T̂
θG,εG
v,r (U, ξ,Z, Z̃, Z, Z̃) ≤ θV

)

≤ P

(

Tg(U, Z) ≤ θG; T̃
θG
v,r (U, ξ,Z, Z̃, Z, Z̃) ≤ θV

)

+ θGGβ(θG, ⌊K(θG + εG)⌋+ 1, K + 1).

Notice that:

P

(

Tg(U, Z) ≤ θG; T̂
θG,εG
v,r (U, ξ,Z, Z̃, Z, Z̃) ≤ θV

)

−P

(

Tg(U, Z) ≤ θG; T̃
θG
v,r (U, ξ,Z, Z̃, Z, Z̃) ≤ θV

)

≤ P

(

Tg(U, Z) ≤ θG; T̂
θG,εG
v,r (U, ξ,Z, Z̃, Z, Z̃) ≤ T̃ θG

v,r (U, ξ,Z, Z̃, Z, Z̃)
)

(2.17)
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Conditioning on U and Z taking the expected value:

P

(

Tg(U, Z) ≤ θG; T̂
θG,εG
v,r (U, ξ,Z, Z̃, Z, Z̃) ≤ T̃ θG

v,r (U, ξ,Z, Z̃, Z, Z̃)
)

= E

(

1Tg(U,Z)≤θGP

(

T̂ θG,εG
v,r (U, ξ,Z, Z̃, Z, Z̃) ≤ T̃ θG

v,r (U, ξ,Z, Z̃, Z, Z̃) |U, Z
))

We rewrite the last expectation as:

E

(

1Tg(U,Z)≤θGP

(

K
∑

k=1

(1ρv(U)<ρv(ξk⊙U) + 1ρv(U)=ρv(ξk⊙U)1Z̃k≤Z̃)

× (1Ťg,r(U,ξ,ξk,Z,Z)≤θG+εG
− 1Tg(ξk⊙U,Z)≤θG) ≤ 0

∣

∣

∣
U, Z

))

.

In order that

K
∑

k=1

(1ρv(U)<ρv(ξk⊙U) + 1ρv(U)=ρv(ξk⊙U)1Z̃k≤Z̃)

× (1Ťg,r(U,ξ,ξk,Z,Z)≤θG+εG
− 1Tg(ξk⊙U,Z)≤θG) ≤ 0, (2.18)

there must exist k0 ∈ {1, 2, ..., K} such that Ťg,r(U, ξ, ξk,Z, Z) > θG+εG and Tg(ξk⊙

U, Z) ≤ θG. Letting Mg(ξ,U,Z) denote the number of indexes k such that Tg(ξk ⊙

U, Zk) ≤ θG, the existence of such a k0 implies that Mg(ξ,U,Z) > K(θG + εG).

Indeed, we first notice that, for a every 0 ≤ j, k ≤ K:

1ρg(ξk⊙U)<ρg(ξj⊙U) + 1ρg(ξk⊙U)=ρg(ξj⊙U)1Zj≤Z ≤ 1Tg(ξj⊙U,Zj)≤Tg(ξk⊙U,Z).
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This statement is obvious when ρg(ξk ⊙ U) = ρg(ξj ⊙ U) and Zj ≤ Z and can be

checked by proving that Tg(ξj ⊙U, 1) ≤ Tg(ξk ⊙U, 0) when ρg(ξk ⊙U) < ρg(ξj ⊙U).

Therefore, if k0 exists, we must have

Ťg,r(U, ξ, ξk0 ,Z, Z) ≤
1

K

K
∑

j=1

1Tg(ξj⊙U,Zj)≤Tg(ξk0⊙U,Z)

≤ 1

K

K
∑

j=1

1Tg(ξj⊙U,Zj)≤θG .

Because E (µ(Tg(ξ ⊙U, Z) ≤ θG)|U) = θG, we can bound the probability of (2.18)

conditional to U and Z by the probability that a binomial Bin(K, θG) is larger than

⌈K(θG + εG)⌉, which is given by

Gβ(θG, ⌊K(θG + εG)⌋+ 1, K − ⌊K(θG + εG)⌋).

We therefore have

P

(

T̂ θG,εG
v,r (U, ξ,Z, Z̃, Z, Z̃) ≤ T̃ θG

v,r (U, ξ,Z, Z̃, Z, Z̃) |U, Z
)

≤ Gβ(θG, ⌊K(θG + εG)⌋+ 1, K − ⌊K(θG + εG)⌋).

Now, finally notice that

P (Tg(U, Z) ≤ θG) = θG,
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and we have proved (2.17).

Step 4. We finally show that

P

(

Tg(U, Z) ≤ θG; T̃
θG
v,r (U, ξ,Z, Z̃, Z, Z̃) ≤ θV

)

≤ θV θG (2.19)

For this, we note that

KθGT̃
θG
v,r (U, ξ,Z, Z̃, Z, Z̃) =

K
∑

k=1

1ρv(U)<ρv(ξk⊙U)1Tg(ξk⊙U,Z)≤θG

+
K
∑

k=1

1ρv(U)=ρv(ξk⊙U)1Z̃k≤Z̃1Tg(ξk⊙U,Z)≤θG .

Conditionally to U, Z and Z̃, this variable follows a binomial distribution with prob-

ability of success N θG
g (U, Z)T θG

v (U, Z, Z̃). Therefore:

P

(

Tg(U, Z) ≤ θG; T̃
θG
v,r (U, ξ,Z, Z̃, Z, Z̃) ≤ θV

)

= E

(

1Tg(U,Z)≤θGGβ(1−N θG
g (U, Z)T θG

v (U, Z, Z̃), K − ⌊KθGθV⌋, ⌊KθGθV⌋+ 1)
)

We now use the fact that The distribution of U is invariant under the action of the

group S and that N θG
g (ξ ⊙U, Z) = N θG

g (U, Z) for all ξ ∈ S to write, introducing a
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new random variable ξ̄ independent from the others in the expectation

P

(

Tg(U, Z) ≤ θG; T̃
θG
v,r (U, ξ,Z, Z̃, Z, Z̃) ≤ θV

)

= E

(

1Tg(ξ̄⊙U,Z)≤θGGβ(1−N θG
g (U, Z)T θG

v (ξ̄ ⊙U, Z, Z̃), K − ⌊KθGθV⌋, ⌊KθGθV⌋+ 1)
)

Now, using lemma 2.2.1, we notice that, given U and Z, the random variable T θG
v (ξ⊙

U, Z, Z̃) is, conditionally to Tg(ξ ⊙ U, Z) ≤ θG, uniformly distributed over [0, 1].

Recall also that N θG
g (U, Z) is, by definition, equal to P(Tg(ξ̄ ⊙ U, Z) ≤ θG|U,Z).

From this, it follows that

P

(

Tg(U, Z) ≤ θG; T̃
θG
v,r (U, ξ,Z, Z̃, Z, Z̃) ≤ θV

)

= E

(

N θG
g (U, Z)

∫ 1

0

Gβ(1−N θG
g (U, Z)t, Z, Z̃), K − ⌊KθGθV⌋, ⌊KθGθV⌋+ 1)dt

)

= E

(

N θG
g (U, Z)

∫ 1

0

∫ 1−N
θG
g (U,Z)t

0

sK−⌊KθGθV⌋−1(1− s)⌊KθGθV⌋dsdt

)

= E

⎛

⎝N θG
g (U, Z)

∫ 1

0

sK−⌊KθGθV⌋−1(1− s)⌊KθGθV⌋

∫ min

(

1−s

N
θG
g (U,Z)

,1

)

0

dtds

⎞

⎠

≤ E

(

N θG
g (U, Z)

∫ 1

0

sK−⌊KθGθV⌋−1(1− s)⌊KθGθV⌋

∫ 1−s

N
θG
g (U,Z)

0

dtds

)

= E

(
∫ 1

0

sK−⌊KθGθV⌋−1(1− s)⌊KθGθV⌋+1ds

)

=
⌊KθGθV⌋+ 1

K + 1
.

Hence we proved (2.19), which finishes the proof of lemma 2.2.3 and of theorem

2.2.2.
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2.3 Estimating the number of indices in-

side active cells

We now focus on the issue of estimating from observed data the number J of

indices belonging to active cells.

2.3.1 Asymptotic resampling scores

Recall that:

J =
∑

g∈Gc
0

|g|,

where G0 is the set of inactive cells. Our estimation will be made based on cell

statistics (Tg(U), g ∈ G) under the following assumption. We will assume that Tg

takes small values when g is active, so that, for a suitable non conservative threshold

t0, we have P (Tg(U) ≤ t0) ≃ 1. To simplify the argument, we will actually make the

approximation that:

[A] There exists t0 ∈ (0, 1) such that P(Tg(U) ≤ t0) = 1 if g ∩ A ̸= ∅.

This assumption is sometimes called the zero assumption (see for example22) because

it is assuming that the probability for each of the scores at the cell level, when the cells
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are non active, to be in a certain region is zero. The zero assumption is usually made

at the indices level and is common under the Bayesian multiple testing framework.22

Notice that if we denote by:

G0(U) = {g ∈ G : Tg(U) > t0},

then assumption [A] implies that G0(U) ⊂ G0. This in turn implies that:

N0(U) :=
∑

g∈G0(U)

|g| ≤
∑

g∈G0

|g| = |V |− J.

Assumption [A] therefore implies an estimator for a lower bound for |V | − J and

therefore an upper bound for J , with holds with probability one. However, since the

choice of t0 will not be conservative (typically greater than 0.25), this upper bound

will not be sharp enough to be able to take advantage of the clustering assumption.

The purpose of this part is to use the set G0(U) to derive a less obvious and sharper

upper bound of J . We start by defining the statistics that will be used to derive the

estimator. We will as usual denote our group of transformations by S, the elements

of the group by ξ and the group action by ⊙. We furthermore define:

⊙ for each ξ ∈ S, N1(U, ξ) =
∑

g∈G0(U) 1Tg(ξ⊙U)≤t0 |g|,

⊙ q1(U, ϵ) = sup {n ∈ N : µ (ξ : N1(U, ξ) ≥ n) > 1− ϵ} .
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⊙ Finally,

Ĵ(U, ϵ) = |V |− (N0(U) + q1(U, ϵ)) . (2.20)

With this notation, we have the following main result.

Theorem 2.3.1. Assuming [A], we have:

P

(

Ĵ(U, ϵ) < J
)

≤ ϵ. (2.21)

Proof. First, let us remark that proving (2.21) is equivalent to proving:

P

(

N0(U) + q1(U, ϵ) ≥
∑

g∈G0

|g|
)

≤ ϵ, (2.22)

and that we can write

P

(

N0(U) + q1(U, ϵ) ≥
∑

g∈G0

|g|
)

= P

(

q1(U, ϵ) ≥
∑

g∈G0

1Tg(U)≤t0 |g|
)

.

Now define:

Ñ1(U) =
∑

g∈G0

1Tg(U)≤t0 |g|.

Since G0(U) ⊂ G0, we have Ñ1(ξ ⊙ U) ≥ N1(U, ξ) for every ξ ∈ S, and q̃1(U, ϵ)

defined as:

q̃1(U, ϵ) = sup
{

n ∈ N : µ
(

ξ : Ñ1(ξ ⊙U) ≥ n
)

> 1− ϵ
}
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satisfies q̃1(U, ϵ) ≥ q1(U, ϵ) so that

P

(

q1(U, ϵ) ≥
∑

g∈G0

1Tg(U)≤t0 |g|
)

≤ P

(

q̃1(U, ϵ) ≥
∑

g∈G0

1Tg(U)≤t0 |g|
)

.

By noticing that q̃1(U, ϵ) = q̃1(ξ ⊙U, ϵ) for every ξ ∈ S by definition of q̃1, and that

the distribution of
∑

g∈G0
1Tg(U)≤t0 |g| is invariant under the action of any element

ξ ∈ S, we have the following:

P

(

q̃1(U, ϵ) ≥
∑

g∈G0

1Tg(U)≤t0 |g|
)

= E

(

µ
(

ξ : q̃1(U, ϵ) ≥ Ñ1(ξ ⊙U)
))

.

But

µ
(

ξ : q̃1(U, ϵ) ≥ Ñ1(ξ ⊙U)
)

≤ ϵ

by definition of q̃1 and (2.22) is proved.

2.3.2 Finite resampling scores

We now discuss how the previous estimation of J can be modified when the uni-

form measure on S is approximated by random sampling. Assuming two independent

groups of i.i.d. samples of µ, ξ = (ξ1, ξ2, ..., ξK) and ξ
′

= (ξ
′

1, ξ
′

2, ...ξ
′

K′), and using the

notation of section 2.2.3, we define:

T̂g(U, ξ) = µ̂ξ (ξ
′ : ρg(U) ≤ ρg(ξ

′ ⊙U)) =
1

K

K
∑

k=1

1ρg(U)≤ρg(ξk⊙U)
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and for every i ∈ {1, 2, ..., K ′}:

Ťg(U, ξ, ξ
′

i) = T̂g(ξ
′ ⊙U, ξ ◦ ξ′

i

−1
) =

1

K

K
∑

k=1

1ρg(ξ
′
i⊙U)≤ρg(ξk⊙U), .

We replace the assumption [A] of the previous section by the assumption [Â]:

[Â] There exists t0 ∈ (0, 1) such that P(T̂g(U, ξ) ≤ t0) = 1 if g ∩ A ̸= ∅.

Notice that is is possible to keep the previous assumption [A] and replace t0 by t0 + ϵ

in [Â] and the probability 1 by 1− exp (−2Kϵ2), using a Hoeffding bound. We now

provide an upper bound Ĵ of the number of indices belonging to active cells using the

finite resampling scores. We will use the following notation.

⊙ Let Ĝ0(U, ξ) = {g ∈ G : T̂g(U, ξ) > t0}. (Notice that assumption [Â] implies

that Ĝ0(U, ξ) ⊂ G0).

⊙ Let N̂0(U, ξ) =
∑

g∈G |g|1T̂g(U,ξ)>t0
and N̂1(U, ξ) =

∑

g∈G0
|g|1T̂g(U,ξ)≤t0

, so that

N̂0(U, ξ) + N̂1(U, ξ) = |V |− J.

⊙ For each i ∈ {1, 2, ..., K ′}, Ň1(U, ξ, ξ
′

i) =
∑

g∈Ĝ0(U,ξ) |g|1Ťg(U,ξ,ξ
′
i)≤t0

.

⊙ The order statistics of the K
′
random variables

Ň1(U, ξ, ξ
′

1), Ň1(U, ξ, ξ
′

2), ..., Ň1(U, ξ, ξ
′

K′),
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will be denoted by:

Ň1(U, ξ, ξ
′

(1)), Ň1(U, ξ, ξ
′

(2)), ..., Ň1(U, ξ, ξ
′

(K′)).

(Ň1(U, ξ, ξ
′

(1)) being the smallest statistic).

⊙ Finally, define

Ĵ(U, ξ, ξ
′

, p) = |V |−
(

N̂0(U, ξ) + Ň1(U, ξ, ξ
′

(p))
)

.

Notice that the computation of Ĵ(U, ξ, ξ
′

, p) requires the computation of just

K +K ′ scores.

We have the following result.

Theorem 2.3.2.

P

(

Ĵ(U, ξ, ξ
′

, p) < J
)

≤ p− 1

K ′ .

Proof. We first notice that Ĵ(U, ξ, ξ
′

, p) = J + N̂1(U, ξ)− Ň1(U, ξ, ξ
′

(p)), so that

P

(

Ĵ(U, ξ, ξ
′

, p) < J
)

= P

(

Ň1(U, ξ, ξ
′

(p)) > N̂1(U, ξ)
)

≤ P

(

Ñ1(U, ξ, ξ
′

(p)) > N̂1(U, ξ)
)
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where for each i ∈ {1, 2, ..., K ′},

Ñ1(U, ξ, ξ
′

i) =
∑

g∈G0

|g|1Ťg(U,ξ,ξ
′
i)≤t0

and Ñ1(U, ξ, ξ
′

(p)) is the corresponding pth order statistic. The last inequality holds

because, for every j, Ñ1(U, ξ, ξj) ≥ Ň1(U, ξ, ξ
′

j), which implies

Ñ1(U, ξ, ξ
′

(p)) ≥ Ň1(U, ξ, ξ
′

(p))

We then have:

P
(

Ñ1(U, ξ, ξ
′

(p)) > N̂1(u, ξ)
)

= P
(

|{i : Ñ1(U, ξ, ξ
′

i) < N̂1(U, ξ)}| < p
)

.

Notice that given ξ and U, the variable |{i : Ñ1(U, ξ, ξ
′

i) < N̂1(u, ξ)}| follows a

Binomial distribution with K
′
number of trials and a probability of success that is

equal to:

µ
(

ξ′ : Ñ1(U, ξ, ξ
′
) < N̂1(U, ξ)

)

.

Using the fact that Ťg(U, ξ, ξ
′
) = Ťg(ξ′ ⊙U, ξ ◦ ξ′−1

), we have:

Ñ1(U, ξ, ξ
′
) = Ñ1(ξ

′ ⊙U, ξ ◦ ξ′−1
),
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and

µ
(

ξ′ : Ñ1(U, ξ, ξ
′
) < N̂1(U, ξ)

)

= µ
(

ξ′ : Ñ1(ξ
′ ⊙U, ξ ◦ ξ′−1

) < N̂1(U, ξ)
)

.

At this point, we notice that S acts on U ×SK via the group action:

(

ξ
′
, (U, ξ)

)

→ (ξ
′ ⊙U, ξ ◦ ξ′−1

),

and this group action leaves invariant the joint distribution of (U, ξ). Therefore, the

distribution of µ
(

ξ′ : Ñ1(U, ξ, ξ
′
) < Ñ1(U, ξ)

)

is dominated by the distribution of a

uniform random variable on [0, 1] and the proof of the 2.3.2 follows immediately using

the same argument used to prove inequality (2.14) in Theorem 2.2.2.

2.3.3 Application to the coarse-to-fine algorithm

Subsection 2.3.2 provided us with an estimator Ĵ = Ĵε in (2.20) such that Ĵ > J

with probability larger than 1− ε, which implies that

FWER(Â) ≤ |V | p00(θG, θV ) + Ĵ p0(θ
′
V ),

with probability 1− ε at least.

In section 2.2, we provided a nonparametric coarse-to-fine procedure controlling

the FWER by choosing constants θG, θV and θ′V controlling the upper-bound at a
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significance level α. This was done using a deterministic upper-bound of J , but cannot

be directly applied with a data-based estimation of J because this would define data-

dependent constants, which cannot be plugged into the definition of the set Â without

invalidating our estimation of the FWER. In other terms, if, for a fixed number J ′,

one defines ÂJ ′ to be the discovery set obtained by optimizing θG and θV subject to

|V | p00(θG, θV ) + J ′ p0(θ′V ) ≤ α, our previous results imply that FWER(ÂJ ′) ≤ α for

all J ′ ≥ J , but not necessarily that FWER(ÂĴ) ≤ α + ε.

A simple way to address this issue is to replace ÂĴ with

Ã =
⋂

J ′≤Ĵ

ÂJ ′ .

Because Ã ⊂ ÂJ with probability at least 1− ε, we have

FWER(Ã) = P (Ã ∩ V0 ̸= ∅) ≤ P (ÂJ ∩ V0 ̸= ∅) + ε = FWER(ÂJ) + ε,

so that Ã controls the FWER at level α + ε as intended.

2.3.4 Suggested Coarse-to-fine Procedure

The coarse-to-fine estimator relies on the choices of the constants θG, θV , θ′V and

εG and on the number of simulations, K. They were determined as follows in our

experiments, for a control of the FWER at level α.
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i. Fix ϵ < α and compute Ĵϵ, the estimated upper bound of J . We took ϵ = α
10 in

our experiments.

ii. Fix a small δ > 0 (δ = 10−4 in our experiments), and select θV = θG and

θ′V = |V |θ2G/Ĵϵ such that 2|V |θ2G ≤ α− ϵ− δ.

iii. We choose any K and εG such that |V |cK(θG, εG) ≤ δ, for some small δ > 0.

These choices, which have the merit to be simple, albeit non-optimal, were found

to perform well in our simulations (see section 2.5).

2.4 Model-based Analysis

In this section, we propose an alternate coarse-to-fine testing procedure, adapted

to a specific regression model. In this framework, it is possible to obtain estimates for

the power of the obtained test, and optimize its parameters on this basis. We will use

this analysis as a benchmark to compare with the general non-parametric approach

provided in the previous sections. We will assume, for simplicity, that all the cells

have the same size, so |g| is constant for g ∈ G.

2.4.1 Regression model

We assume that the observation is a realization of an i.i.d. family of random vari-

ables U = ((Y k, Xk), k = 1, . . . n) where the Y ’s are real-valued andXk = (Xk
v , v ∈ V )
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is a high-dimensional family of variables indexed by the set V . We also assume that

Xk
v , v ∈ V , are independent and centered Gaussian, with variance σ2

v , and that

Y k = a0 +
∑

v∈A

avX
k
v + ψk

where ψ1, . . . ,ψn are i.i.d. Gaussian with variance σ2, and av, v ∈ A, are un-

known real coefficients. We will denote by Y the vector (Y 1, . . . , Y n) and let Ȳ =

(
∑n

k=1 Y
k/n

)

1n where 1n is the vector composed by ones repeated n times. We also

let Xv = (X1
v , . . . , X

n
v ) and ψ = (ψ1, . . . ,ψn), so that

Y =
∑

v∈A

avXv +ψ.

Finally, we will denote by σ2
Y the common variance of Y 1, . . . , Y n and assume that

it is known (or estimated from the observed data).

2.4.2 Scores

For v ∈ V , we denote by πv the orthogonal projection on the subspace Sv spanned

by the two vectors Xv and 1n. We will also denote by πg (g ∈ G) the orthogonal
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projection on the subspace Sg spanned by the vectors Xv, v ∈ g, and 1n, and let

Tg(U) =
∥πgY∥2 − ∥Ȳ∥2

σ2
Y

,

Tv(U) =
∥πvY∥2 − ∥Ȳ∥2

σ2
Y

.

(The projections are simply obtained by least-square regression of Y on Xv, v ∈ g,

for πg and on Xv for πv.) We now provide estimates of

p00(θG, θV ) = P

(

∥πgY∥2 − ∥Ȳ∥2

σ2
Y

> θG;
∥πvY∥2 − ∥Ȳ∥2

σ2
Y

> θV

)

for v ∈ V00 and g = g(v) and

p0(θV ) = P

(

∥πvY∥2 − ∥Ȳ∥2

σ2
Y

> θV

)

for v ∈ V0. Note that, because we consider residual sums of squares, we here use large

values of the scores in the rejection regions (instead of small values in the introduction

and other parts of the paper), hopefully without risk of confusion.

Proposition 2.4.1. For all θG and θV and g ∈ G0:

p00(θG, θV ) ≤ C(|g|) exp
(

−θG
2

)

θ
|g|
2
G

(

1−Gβ

(

θV
θG

,
1

2
,
|g|+ 1

2

))

+(1− F1(θG − |g|+ 1)) ,
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where F1 is the c.d.f. of a chi-squared distribution with one degree of freedom and

C(|g|) =
exp ( |g|−1

2 )
√
2(|g|− 1)(

|g|−1
2 )

Γ( |g|2 + 1
2)

Γ( |g|2 + 1)
.

Moreover

p0(θV ) ≤ 1− F1(θV ).

Note that the upper-bound for p00 is larger than 1 when θG ≤ |g|− 1, so that this

estimate is useful only when θG > |g|− 1.

Proof. For v ∈ V00 and g = g(v), we have

σ2
Y =

∑

v∈A

a2vσ
2
v + σ2 =

∑

v∈A∩gc

a2vσ
2
v + σ2

because A ∩ gc = A. Consider the conditional probability:

P

(

∥πgY∥2 − ∥Ȳ∥2

σ2
Y−g

> θG;
∥πvY∥2 − ∥Ȳ∥2

σ2
Y−g

> θV
∣

∣

∣
(Xv)v∈g

)

.

The conditional distribution of Y given (Xv)v∈g is Gaussian N (0, σ2
Y In) (where In

is the n-dimensional identity matrix). Denote by π′
v the projection on the orthogonal

complement of J in Sv and by π′
g the projection on the orthogonal complement of Sv

in Sg, so that

∥πgY∥2 − ∥Ȳ∥2 = ∥π′
gY∥2 + ∥π′

vY∥2
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and

∥πvY∥2 − ∥Ȳ∥2 = ∥π′
vY∥2.

This implies that:

P

(

∥πgY∥2 − ∥Ȳ∥2

σ2
Y

> θG;
∥πvY∥2 − ∥Ȳ∥2

σ2
Y

> θV
∣

∣

∣
(Xv)v∈g

)

=

P

(

∥π′
gY∥2 + ∥π′

vY∥2

σ2
Y

> θG;
∥π′

vY∥2

σ2
Y

> θV
∣

∣

∣
(Xv)v∈g

)

At this stage, one can apply Cochran’s theorem to P ′
g(Y/σY) and P ′

v(Y/σY), which

are conditionally independent given Xv, v ̸∈ G, to reduce the problem to finding an

upper bound for:

P (η + ζ ≥ θG; ζ ≥ θV ) ,

where η is χ2(|g|− 1) and ζ is χ2(1), and the two variables are independent.

Assume that θ′G = θG − |g|+ 1 > 0 and write this probability as

P (η + ζ ≥ θG, θV ≤ ζ < θ′G) + P (η + ζ ≥ θG, ζ ≥ θV , ζ ≥ θ′G) ,

which is less than:

P (η + ζ ≥ θG, θV ≤ ζ < θG) + (1− F1(θ
′
G)).
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The first term in the sum can be re-written as

E
(

P(η ≥ θG − ζ|ζ)1θV ≤ζ<θ′G

)

.

We will use the following tail inequality for the c.d.f., Fk, of a χ2(k) random variable,

stating that

1− Fk(zk) ≤ (z exp(1− z))
k
2 ,

for any z > 1. We apply this result to k = |g|− 1 and z = θG−V
|g|−1 and write (using the

fact that the p.d.f. of a χ2(1) is z−1/2ez/2/(
√
2Γ(1/2)) for z > 0)

E
(

P(η ≥ θG − ζ|ζ)1θV ≤ζ<θ′G

)

≤ E

(

(

θG − ζ

|g|− 1
exp

(

1− θG − ζ

|g|− 1

))

|g|−1
2

1θV ≤ζ<θG

)

=

∫ θG

θV

(θG − z)|g|/2−1/2

Γ(1/2)
√
2(|g|− 1)|g|/2−1/2

z−1/2e−
tg′

2 dz

≤ θ
|g|
2
G e−

θ′G
2

Γ(1/2)
√
2(|g|− 1)|g|/2−1/2

∫ 1

θV /tg

(1− z)|g|−1/2z−1/2dz

= C(|g|)θ
|g|
2
G e−

θG
2

(

1−Gβ

(

θV
θG

,
1

2
,
|g|+ 1

2

))

.

The second upper-bound, for p0(θV ), is easily obtained, and left to the reader.

This leads us immediately to the following corollary:
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Corollary 2.4.1. With the thresholds θG and θV , an upper bound of the FWER is:

FWER(Â) ≤ |V |C(|g|) exp
(

−θG
2

)

θ
|g|
2
G

(

1−Gβ

(

θV
θG

,
1

2
,
|g|+ 1

2

))

+ |V | (1− F1(θG − |g|+ 1)) + J |g| (1− F1(θV )) . (2.23)

Figure 2.2 provides an illustration of the level curves associated to the above

FWER upper bound. More precisely, it illustrates the tradeoff between the conser-

vativeness at the cell level and at the individual index level. In the next section, the

optimization for power will be made along these level lines. Figure 1 also provides

the value of the Bonferroni-Holm threshold. For the coarse-to-fine procedure to be

less conservative than the Bonferroni-Holm approach, we need the index-level thresh-

old to be smaller, i.e., the optimal point on the level line to be chosen below the

corresponding dashed line.

The derivation of (2.23) is based on the assumption that we have a fixed cell size

(across all the cells). If this is not true, it is easy to generalize the previous upper

bound. Letting

φ(|g|, θG, θV ) = C(|g|) exp
(

−θG
2

)

θ
|g|
2
G

(

1−Gβ

(

θV
θG

,
1

2
,
|g|+ 1

2

))

,

it suffices to replace |V |φ(|g|, θG, θV ) in (2.23) with
∑

g∈G |g|φ(|g|,
√

|g|θG, θV ) where

θG does not depend on the cell g.
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Figure 2.2: Level curves of the upper bound of the FWER for the levels 0.2 (blue),
0.1 (green) and 0.05 (red). The horizontal dashed lines represent the thresholds at
the individual level for a Bonferroni-Holm test, with corresponding colors. For this
figure, V = 104, J = 600 and g = 10

2.4.3 Optimal thresholds

Equation (2.23) provides a constraint on the pair (θG, θV ) to control the FWER

at a given level. We now show how to obtain “optimal” thresholds (θ∗G, θ
∗
V ) that

maximize the probability of detection subject to this constraint. The discussion will

also help understanding how active indices clustering in cells improves the power of

the coarse-to-fine procedure.

The conditional distribution ofY given (Xv, v ∈ g) isN (
∑

v∈g∩A avXv, σ2
Y−g) with

σ2
Y−g =

∑

v∈A∩gc a
2
vσ

2
v +σ2. It follows from this that, conditionally to these variables,

(∥PgY∥2 − ∥Ȳ∥2)/σ2
Y−g follows a non-central chi-square distribution χ2(ρg(Xv, v ∈
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g), |g|), with

ρg(Xv, v ∈ g) =
∥
∑

v∈g∩A av(Xv − X̄v)∥2

σ2
Y−g

where X̄v =
1
n

∑n
k=1 X

k
v1n. Using the fact that ρg(Xv, v ∈ g)/n converges to

ρg :=

∑

v∈g∩A a2vσ
2
v

σ2
Y−g

,

we will work with the approximation

∥PgY∥2 − ∥Ȳ∥2

σ2
Y−g

∼ χ2(nρg, |g|).

With a similar analysis, and letting for v ∈ A, σ2
Y−v =

∑

v′∈A\v a
2
v′σ

2
v′ + σ2, we will

assume that

∥PvY∥2 − ∥Ȳ∥2

σ2
Y−v

∼ χ2(nρv, 1)

with

ρv :=
a2vσ

2
v

σ2
Y−v

.

Therefore, an approximation of a lower bound for the probability of detection of an

active index v in a cell g will be:

P

(

v ∈ Â
)

≥ 1− F|g|(θG, nρg)− F1(θV , nρv), (2.24)

where Fk(x, δ) is the c.d.f of a non-central chi-squared distribution with k degrees of
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freedom and δ as a non-centrality parameter evaluated at x.

We use the lastest result in the following way. One can fix a target effect size

η (the ratio of the effect of Xv compared to the total variance of Y), and a target

cluster size, k, that represents the number of active loci that we expect to find in

an active cell, and take ρv = η and ρg = kη to optimize the lower-bound in (2.24)

subject to the FWER constraint (2.23). This provides optimal constants (θG, θV ) for

this target case. This is illustrated with numerical simulations in the next section.

2.5 Simulations and power comparison

In this section, we will first generate simulations under the model of section 2.4.

The purpose of the simulations will be to first show the effect of the coarse-to-fine algo-

rithm on the detection power. It will also illustrate the effect of optimizing the thresh-

olds, assuming a parametric model. Of course, as mentioned in the introduction, the

default coarse-to-fine algorithm that should be considered is the non-parametric ver-

sion of section 2.2. Therefore, we will compare it with the Bonferroni-Holm approach

but also the parametric coarse-to-fine when the data has been generated by the para-

metric model.

Our second set of experiments uses the software PLINK36 to simulate case control

genome-wide association studies, where the indices will corresponds to SNPs and com-

pare the (non-parametric) coarse-to-fine approach to the Bonferroni-Holm procedure.
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In this setting we will also allow the variables Xv to be correlated.

As a main expected observation, all these simulations will illustrate the idea that

the more clustered the active indices, the more powerful the coarse-to-fine procedure

will be compared to the Bonferroni-Holm procedure.

2.5.1 Simulations under the parametric model

We let |V | = 104 with 400 cells of size |g| = 25 each. We assume n = 300

observations for the model

Y k = a0 +
∑

v∈A

avX
k
v + ψk, k = 1, . . . , n

with a0 = 0 and av = 1, for all v ∈ A. We also let the Xv’s and ψ be i.i.d standard

normals. We will control the FWER at level α = 0.1.

We will consider two versions of the parametric coarse-to-fine procedure. The first

one is a best-case scenario, run under the optimistic assumption that the true values

of ρg and ρv are known in (2.24). The second is a more realistic, but sub-optimal,

procedure in which the sum of the first two terms in (2.23), and the last term in

the same equation are adjusted to both equal α/2. Both will be compared to the

Bonferroni-Holm procedure.

The first simulation illustrates the effect of optimization over the thresholds on

the parametric version of the coarse-to fine algorithm. More precisely, we consider
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Figure 2.3: Probability of detection as a function of θV in the admissible space,
using the parametric coarse-to-fine procedure for an active cell with 1 active index.
The value of θG is determined by the implicit equation FWER(θV , θG) = α. Coarse-
to-fine true represents the estimated true probability of detection via Monte Carlo
simulation. Coarse-to-fine lower bound represents the lower bound of the probability
of detection obtained via (2.24). We fixed Ĵ0.01 to the value 40 × 25, which is an
upper bound of Ĵ for all the simulations performed. As expected, the Bonferroni-
Holm procedure is better, given that the clustering assumption is not true.

3 scenarios of a fixed active index contained in a cell having respectively 0,1 and 2

other active indices. For each of these scenarios, we will be interested in the prob-

ability of detection of such an index. This is illustrated in figures 2.3, 2.4 and 2.5.

Unsurprisingly, the procedure using optimized parameters outperforms the other two

but the coarse-to-fine approach using default parameters significantly improves on

Bonferroni-Holm when the number of active indices in the cell is more than 1. We

also note that the lower bound computed in (2.24) is most of the time quite close to

the true probability of detection.

In the second set of simulations, we consider five scenarios varying the number of
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Figure 2.4: Probability of detection as a function of θV in the admissible space,
using the parametric coarse-to-fine procedure for an active cell with 2 active indices.
The CTF procedure outperforms Bonferroni-Holm in this case (even when using the
default choice for the thresholds). See Fig. 2.3 for additional details.
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Figure 2.5: Probability of detection as a function of θV in the admissible space,
using the parametric coarse-to-fine procedure for an active cell with 3 active indices.
The CTF procedure outperforms Bonferroni-Holm. See Fig. 2.3 for additional details.
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Active indices Optimal Parametric Nonparametric
per active cell CTF CTF CTF BH

1 3.88 3.88 3.85 5.11

2 7.82 7.35 6.09 5.11

4 9.69 8.56 8.13 5.11

5 11.03 8.68 8.15 5.11

20 11.52 9.34 9.12 5.11

Table 2.1: Average number of true detections for each of the 4 methods, from left to
right: coarse-to-fine using the optimized thresholds, parametric coarse-to-fine using
the default thresholds, non parametric coarse-to-fine using default parameters, and
Bonferoni-Holm. The total number of active indices is 20 in all cases.

active cells and indices, namely (1) 20 active cells with 1 active index each; (2) 10

active cells with 2 active indices; (3) 4 active cells with 5 active indices; (4) 2 active

cells with 10 active indices; (5) 1 active cell with 20 active indices. In each case, we

ran 100 simulations from which we computed the average number of true detections.

The results are provided in table 2.1 and also include the non-parametric coarse-to-

fine method. We found that the fully-informed parametric methods outperforms all

others with some margin, the parametric method with default parameters is only

slightly better than the non-parametric one. All three outperform Bonferroni-Holm

as soon as the number of active indexes in cells is more than 1.

Figure 2.6 provides the average estimated upper-bound for the number of active

cells used in the coarse-to-fine methods. Even is this upper-bound is conservative and

estimate about 20 more cells that their real number, the number of detections is only

slightly affected.
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Figure 2.6: Plot of the average upper bound of the number of active cells as a
function the true number. Even though this upper bound is not particularly tight,
it will be sufficient to ensure that coarse-to-fine outperforms the Bonferroni-Holm
procedure.
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2.5.2 Simulations using the PLINK software

In a second set of simulations, we use the PLINK software to generate case control

studies, where the indexes v ∈ V represent SNPs. The variable Xv takes ternary

values: 0 if both alleles in the SNP are wild-type (the major allele in the population),

1 if one of the alleles is a variant and 2 if both alleles are. The major allele frequency

range is [0.8, 0.95]. The total number of SNPs is |V | = 104. The Xv’s will either be

simulated as independent variables, of with some “linkage disequilibrium” (LD) in

which case each SNP is paired is another with a correlation equal to 0.8.

From these SNPs, a binary phenotype Y (cases vs. controls) is generated, yielding

n = 600 samples, 300 cases (Y = 1) and 300 controls (Y = 0). The generative model

for Y is logistic

P (Y = 1|Xv, v ∈ V ) ∝ exp

(

a0 +
∑

v∈A

avXvY

)

,

with av = log 2 for v ∈ A. This sets the odds ratio for active SNPs is set to 2, where

odds ratio =
P (Y = 1|Xv = 1, Xv′ , v′ ̸= v)/P (Y = 0|Xv = 1, Xv′ , v′ ̸= v)

P (Y = 1|Xv = 0, Xv′ , v′ ̸= v)/P (Y = 0|Xv = 0, Xv′ , v′ ̸= v)
= eav .

We consider cells (loosely interpreted as “genes”) of fixed size, νG, with a ran-

dom assignment of active SNPs to cells based on a variant of a Chinese restaurant

process.37 More precisely, assume that the active indices are 1, 2, ..., |A|, and denote
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by C1, C2, . . . , C|A| the random variables representing the cells to which each active

index is assigned. The sequence C1, . . . , C|A| is generated as follows.

i) C1=1

ii) Iterate over k = 1, 2, . . . , |A| (|A| = 25 for all cases). For a given k, let Nk =

maxk{C1, . . . , Ck} and for i = 1, . . . , Nk, let ni =
∑k

j=1 1Cj=i be the number of

indices assigned to cell i. Then

P (Ck+1 = i) ∝

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

α

k + α
if i = Nk + 1

ni

k + α
if i ≤ Nk and ni < νG

0 otherwise

Here, α is a parameter controlling the clustering of the indices. The smaller α, the

more clustered the active indices will be within active cells (see figure 2.7).

We generated datasets with the previous parameters, iterating over α = 0.5, 1, 5,

10, 20, 30, 40 and 50 in the Chinese restaurant process and considering four cases:

(I) νG = 10, no LD; (II) νG = 25, no LD; (III) νG = 10, LD = 0.8; (III) νG = 25,

LD = 0.8. In each case, we took the average over 50 simulations.

Since we are interested in the effect of clustering on the performance of the coarse-

to-fine algorithm compared to the Bonferroni-Holm procedure, and not the effect of α

itself, we excluded the rare events where we generated a random clustering where the
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Figure 2.7: Expected number of active indices per active cell as a function of α, the
clustering parameter of our assignment process. In this case where the size of a cell is
greater or equal than the number of active indices, our clustering process corresponds
exactly to a Chinese restaurant process.

number of active cells decreased after increasing the parameter α. Table 2.2 illustrates

the estimation of the upper bound of the number of active cells for the independent

and correlated datasets. Tables 2.3 compares the performance of the non-parametric

coarse-to-fine procedure with the Bonferroni-Holm procedure.
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Independent SNPs Correlated SNPs

|g| = 25 |g| = 10 |g| = 25 |g| = 10

α J Ĵ J Ĵ J Ĵ J Ĵ

0.5 50 595 30.4 344.2 85 535 34.2 184.6

1 132.5 658 51.2 373.8 128 556.5 50.6 192

5 232 711 94 398.4 218.5 600 89.8 217.2

10 316 754.5 124.4 426.6 298 632.5 119.4 232.8

20 390.5 791 154.4 447.2 376 690 151.2 255.6

30 454 809 178.8 463.2 441 704.5 177.6 271.2

40 502 821.5 192.6 481 500.5 730.5 197 282

50 530.5 830 202.2 482.4 525 750 212.2 285.8

Table 2.2: Comparison between the true number of indices in active cells (J) and
the estimated upper bound (Ĵ) averaged over 50 simulations, as a function of the
clustering parameter of the Chinese restaurant process (α), for cell sizes |g| = 25 or
10, in the independent and correlated cases.
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Independent SNPs Correlated SNPs

|g| = 25 |g| = 10 |g| = 25 |g| = 10

α CTF BH CTF BH CTF BH CTF BH

0.5 10.6 5.2 9.4 5.08 10.6 4.76 11.6 3.7

1 9.94 5.2 8.66 5.08 10.14 4.76 10.08 3.7

5 9.18 5.2 7.76 5.08 9.52 4.76 10.02 3.7

10 8.14 5.2 7.36 5.08 8 4.76 9.68 3.7

20 7.22 5.2 7.04 5.08 7.28 4.76 8.24 3.7

30 6.26 5.2 6.88 5.08 6.68 4.76 7.64 3.7

40 4.06 5.2 5.2 5.08 5.06 4.76 5.8 3.7

50 3.8 5.2 5 5.08 4.6 4.76 4.98 3.7

Table 2.3: Comparison between the average number of true detections for the coarse-
to-fine (CTF) and Bonferroni-Holm (BH) procedures averaged over 50 suimulations,
as functions of the clustering parameter of the Chinese restaurant process (α), for cell
sizes |g| = 25 or 10, in the independent and correlated cases.
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Chapter 3

Dependence adapted coarse-to-fine

procedure controlling the FWER

Even if the coarse-to-fine procedure derived in the previous chapter controls the

FWER for any dependence structure between the tests, it is well suited for the situa-

tion where the test statistics Tv(U) are independent. To see this, imagine the extreme

situation where all the statistics Tv(U) are identical: Tv(U) = Tv′(U) for any v and

v′, and that all null hypotheses are false. The Bonferroni bound will reject all the

hypotheses if and only if one of the Tv’s is less than α
|V | . Otherwise, the detection

set will be empty. As for our coarse-to-fine strategy, using proposition 2.1.1, one can

see that a necessary condition to have a non empty detection set is that Tv(U) ≤ α
Ĵ
.

Moreover, our method for computing Ĵ is likely to have the following issue in this

situation: all the statistics will be less than the conservative threshold t0, and Ĵ will
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simply be the total number of tests |V |. As a consequence, the procedure will be at

least as conservative as the Bonferroni procedure. Imagine now an ”oracle” testing

procedure having the information that all the statistics are identical. The procedure

therefore knows that it is sufficient to set α as a threshold instead of α
|V | , which is a

considerable improvement. In the general case, if the rejection region is the same for

every hypothesis v ∈ V and is denoted by Γ, the FWER can be written as following:

P

(

min
v∈V0

(Tv(U), v ∈ V0) ∈ Γ

)

.

It is then sufficient for the oracle procedure to know the distribution of the statistic

minv∈V0(Tv(U), v ∈ V0). The idea behind the procedure described at the end of section

1.6 addresses this very issue via estimating in a conservative way that distribution.

The purpose of this chapter is to derive a coarse-to-fine procedure in the same spirit.

The high level idea consists in controlling an upper bound of the FWER that is

sharper than the Bonferroni bound in a setting where the tests are highly dependent.

This is done by just writing the FWER as a union of events and avoid breaking this

union and replacing them by a sum of probabilities. Similarly to the previous chapter,

we will first present a procedure assuming asymptotic resampling. In a second part

we will propose 3 different ways of modifying the asymptotic resampling procedure

in order to have a finite resampling procedure controlling the FWER. Finally, we will

first propose simulations under a toy example in order to see the effect of dependence
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between tests on different procedures. We will then present simulations comparing all

the procedures presented so far using PLINK under a setting identical to the previous

chapter’s simulations.

3.1 Dependence adapted coarse-to-fine pro-

cedure assuming asymptotic resampling

As announced, we start by presenting the procedure assuming asymptotic resam-

pling. Before presenting the algorithm, let us first set notations, and the assumptions

under which the FWER will be controlled.

3.1.1 Notations and assumptions

Let I be an interval of R. In this setting, we will consider a family of triples

parametrized by a real number t ∈ I, denoted by (θG(t), θV (t), ϵ(t)). The parametriza-

tion will satisfy the following conditions:

A1. The function t → θV (t)− ϵ(t) is nondecreasing.

A2. The function t → θG(t) is nondecreasing.

A3. The function t → ϵ(t) is nondecreasing

A4. The function t → (θG(t), θV (t), ϵ(t)) is left continuous.
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In the following procedure, θG(t) and θV (t)−ϵ(t) will correspond to the thresholds

at the cell level and at the index level, and the scores Tv(U) and Tg(U) defined

respectively for every v ∈ V and g ∈ G can be any scores. The assumptions [A1.]

and [A2.] will therefore ensure that the detection set will get larger as t increases,

since we will reject the index when the scores at the corresponding cell level and the

index level will be less than these thresholds. Assumptions [A3.] and [A4.] (together

with the two first assumptions) are made in order to satisfy the following lemma that

will be used to show that our procedure will control the FWER at a given level α.

Lemma 3.1.1. Denote by R(U, θG) the set: {v ∈ V : Tg(v)(U) < θG}. Let V1, V2

and V3 be any subsets of V . Denote by:

∆(U, V2, V3, θG) = min
v∈V2∩R(U,θG)

Tv(U)−min
v∈V3

Tv(U).

Then:

t → µ

(

ξ :
⋃

v∈V1

(

Tv(ξ ⊙U) < θV (t), Tg(v)(ξ ⊙U) < θG(t)
)

⋃

∆(ξ ⊙U, V2, V3, θG(t)) ≥ ϵ(t)

)

is left continuous.

Proof. We start by rewriting

µ

(

ξ :
⋃

v∈V1

(

Tv(ξ ⊙U) < θV (t), Tg(v)(ξ ⊙U) < θG(t)
)

⋃

∆(ξ ⊙U, V2, V3, θG(t)) ≥ ϵ(t)

)
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as:

1

|S|
∑

ξ∈S

max

(

max
v∈V1

(1Tv(ξ⊙U)<θV (t)1Tg(v)(ξ⊙U)<θG(t)),1∆(ξ⊙U,V2,V3,θG(t))≥ϵ(t)

)

.

It is therefore sufficient to prove the following:

1. for every ξ ∈ S and every v ∈ V1: t → 1Tv(ξ⊙U)<θV (t) and t → 1Tg(v)(ξ⊙U)<θG(t)

are left continuous.

2. for every ξ ∈ S: t → 1∆(ξ⊙U,V2,V3,θG(t))≥ϵ(t) is left continuous.

The statement (1) is true because for every v ∈ V1, t → 1Tv(ξ⊙U)<t and t →

1Tg(v)(ξ⊙U)<t are left continuous and t → θV (t) and t → θG(t) are left continuous

nondecreasing. To prove the statement (2), we notice that 1∆(ξ⊙U,V2,V3,θG(t))≥ϵ(t) is :

1minv∈V2∩R(U,θG) Tv(ξ⊙U)−minv∈V3 Tv(ξ⊙U)−ϵ(t)≥0,

which in turn can be rewritten as:

1
minv∈V2

(

Tv(ξ⊙U)+1{Tg(v)(ξ⊙U)≥θG(t)}−minv∈V3 Tv(ξ⊙U)−ϵ(t)
)

≥0
.

Now, for each v ∈ V2, the function t → Tv(ξ ⊙U) + 1Tg(v)(ξ⊙U)≥θG(t) −minv∈V3 Tv(ξ ⊙

U)− ϵ(t) is non-increasing and left continuous, and so is:

t → minv∈V2

(

Tv(ξ ⊙U) + 1Tg(v)(ξ⊙U)≥θG(t) −minv∈V3 Tv(ξ ⊙U)− ϵ(t)
)

. We finally
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notice that t → 1t≥0 is right continuous. Combining these two last fact, we conclude

that t → 1∆(ξ⊙U,V2,V3,θG(t))≥ϵ(t) is left continuous, which ends the proof.

3.1.2 Algorithm

We now describe the procedure and will show that under assumptions [A1,A2,A3,A4],

in addition to the assumption [A] of 2.3, we will control the FWER at a desired level.

First denote by S(U, V1, V2, V3,α) the admissible set of triples (θV , θG, ϵ) satisfying:

µ

(

ξ :
⋃

v∈V1

(

Tv(ξ ⊙U) < θV , Tg(v)(ξ ⊙U) < θG
)

⋃

(∆(ξ ⊙U, V2, V3, θG) ≥ ϵ)

)

≤ α.

Also, keeping the notations of section 2.3, define V00(U) := {v ∈ V : g(v) ∈ G0(U)}

and V01(U) = V \ V00(U), where:

G0(U) = {g ∈ G : Tg(U) > t0}.

The dependent coarse-to-fine procedure is performed in these two steps:

Algorithm 1 Dependence adapted coarse-to fine procedure

1: Compute t̂(U,α) = sup{t ∈ I : (θG(t), θV (t), ϵ(t)) ∈ S(U, V, V00(U), V01(U),α)}
2: Define the rejection set as:

Â(U, t̂(U,α)) = {v ∈ V : Tv(U) < θV (t̂(U,α))−ϵ(t̂(U,α))∩Tg(U) < θG(t̂(U,α))}.

The dependence adapted coarse-to-fine procedure defined via these two steps con-
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trols the FWER at the desired level:

Theorem 3.1.1. Under the assumptions [A1-4] and [A], the dependent coarse-to-fine

procedure defined by Â(U, t̂(U,α)) controls the FWER at a level α :

P

(

Â(U, t̂(U,α)) ∩ Ac ̸= ∅
)

≤ α.

Remark: compared to the previous chapter, assumption [A] is central for the

definition of the algorithm. In fact, in Chapter 2, assumption [A] was only necessary

for deriving an upper bound of the number of indices in active cells J . If J is given,

one can use the Bonferroni coarse-to-fine procedure without assuming [A]. For the

dependence adapted coarse-to-fine procedure, we assume [A] so that V00(U) is almost

surely included in V00. Therefore, in order to get rid of assumption [A] here, we need

to assume that we are given a set that is contained in V00, which is a much stronger

assumption than knowing J .

Proof. First, remark that by assumption [A], V00(U) ⊂ V00 and V0 \ V00 ⊂ V01(U).

Therefore, we have that:

min
v∈V00(U)∩R(U,θG)

Tv(U)− min
v∈V01(U)

Tv(U) ≥ min
v∈V00∩R(U,θG)

Tv(U)− min
v∈V0\V00

Tv(U),

and:
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∆(U, V00(U), V01(U), θG) ≥ ∆(U, V00, V0 \ V00, θG),

so that:

S(U, V, V00(U), V01(U),α) ⊃ S(U, V00, V00, V0 \ V00,α).

Hence, if we define t̂0(U,α) as:

t̂0(U,α) := sup{t ∈ I : (θG(t), θV (t), ϵ(t)) ∈ S(U, V00, V00, V0 \ V00,α)},

we have that t̂0(U,α) ≥ t̂(U,α). Hence Â(U, t̂(U,α) ⊂ Â(U, t̂0(U,α)). We

then rewrite the event Â(U, t̂0(U,α)) ∩ Ac ̸= ∅ as
⋃

v∈Ac(Tv(U) < θV (t̂0(U,α)) −

ϵ(t̂0(U,α));Tg(U) < θG(t̂0(U,α)). The intersection of this event with the event

∆(U, V00, V0, θG(t̂0(U,α))) < ϵ(t̂0(U,α)), is included in the event:

⋃

v∈V00

(

Tv(U) < θV (t̂0(U,α));Tg(U) < θG(t̂0(U,α)
)

,

which implies that Â(U, t̂0(U,α)) ∩ Ac ̸= ∅ is included in:

95



CHAPTER 3. DEPENDENCE ADAPTED COARSE-TO-FINE PROCEDURE
CONTROLLING THE FWER

⋃

v∈V00

(

Tv(U) < θV (t̂0(U,α));Tg(U) < θG(t̂0(U,α)
)

⋃

∆(ξ ⊙U, V00, V0, θG(t̂0(U,α))) ≥ ϵ(t̂0(U,α)).

We will therefore prove that the probability of the last event is less than α. Let

us define the event Â0(U, t) as:

⋃

v∈V00

(Tv(U) < θV (t);Tg(U) < θG(t))
⋃

∆(U, V00, V0 \ V00, θG(t)) ≥ ϵ(t).

We therefore need to prove that P
(

Â0(U, t̂0(U,α))
)

≤ α. At this point let us mention

that for every ξ ∈ S, we have:

S(U, V00, V00, V0 \ V00,α) = S(ξ ⊙U, V00, V00, V0 \ V00,α).

This in turn implies that for every ξ ∈ S, t̂0(ξ ⊙ U,α) = t̂0(U,α). Using this

fact together with the property that the probability of Â0(U,α, t̂0(U,α)) is invariant

under the action of any ξ ∈ S, we have
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P

(

Â0(U, t̂0(U,α))
)

= E

(

µ
(

ξ : Â0(ξ ⊙U, t̂0(U,α))
))

.

Recall now that by definition of t̂0(U,α) and lemma 3.1.1, t̂0(U,α) ∈ S(U, V00, V00, V0\

V00,α) and this implies :

µ
(

ξ : Â0(ξ ⊙U, t̂0(U,α))
)

≤ α,

which terminates the proof.

3.2 Dependence adapted coarse-to-fine pro-

cedure based on finite resampling

Here again, the procedure described in 3.1 requires the generation of an infinite

number of elements ξ ∈ S. In practice, we will be able to generate uniformly a

finite number K of elements ξ1, ξ2, ...ξK which are independent. We will keep the

notations of section 2.2, and present three different ways of addressing this issue.

The first method that we will present will be exactly the empirical version of the

asymptotic resampling procedure, in the sense that we will replace the steps of the

former procedure requiring asymptotic resampling by their empirical versions, taking

into account the error of estimation coming from the finite resampling. This method

will however require a very large K in the sense that the bound on the FWER derived
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for this method will require a number K of ξ’s generated of order 107 if we want the

FWER to be controlled at levels belonging to the usual range (less than 0.1). We

will then slightly modify the asymptotic resampling based procedure in two different

ways and get two procedures that will control the FWER at a desired level with a

lower number of permutations K of ξ’s ∈ S needed to be generated.

3.2.1 First method

We will now define the set Ŝ(U, ξ, V1, V2, V3,α) that will replace the set S(U, V1, V2, V3,α).

It is the set of triples (θV , θG, ϵ) satisfying:

µ̂

(

ξ :
⋃

v∈V1

(

Tv(ξ ⊙U) < θV , Tg(v)(ξ ⊙U) < θG
)

⋃

∆(ξ ⊙U, V2, V3, θG) ≥ ϵ

)

≤ α.

(3.1)

The dependent coarse-to-fine procedure with finite resampling scores will here be

the following:
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Algorithm 2 Dependence adapted coarse-to-fine procedure with finite resampling:
first method.
1: Compute:

t̂K(U, ξ,α, ϵ1) = sup{t ∈ I : (θG(t
′), θV (t

′), ϵ(t′)) ∈ Ŝ(U, ξ, V, V00(U), V01(U),α−ϵ1)}

2: Define the rejection set as:

Â(U, ξ, t̂K(U, ξ,α, ϵ1)) = {v ∈ V : Tv(U) < θV (t̂
K(U, ξ,α, ϵ1))

− ϵ(t̂K(U,α)) ∩ Tg(v)(U) < θG(t̂
K(U, ξ,α, ϵ1))}.

—

Notice here that the parameter t̂K(U, ξ,α, ϵ1) depends on the random elements

ξ1, ξ2, ..., ξK that are generated. We now provide an upper bound on the FWER of

this procedure:

Theorem 3.2.1. Under the assumptions [A1-4] and [A], for any positive integer K

and ϵ >
√

2
K :

P

(

Â(U, ξ, t̂K(U, ξ,α, ϵ1)) ∩ Ac ̸= ∅
)

≤ α + 2K2 exp {2− Kϵ21
8

}.

Figure 3.1 gives an idea on the number K of generated elements ξ as a function

of ϵ for a fixed error term. By error term we mean the term 2K2 exp {2− Kϵ21
8 }. For

this we plotted the level curves of the logarithm in base 10 of this term.

Before proving the theorem, let us remind that in Chapter 3, the scores Tv(U)

and Tg(U) can be any scores. In particular, they do not require generating an infinite

number of ξ’s belonging to S in order to compute them. To prove theorem 3.2.1, we
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Figure 3.1: Level curves of the logarithm in base 10 of the error term in theorem
3.2.1
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will use a version of the Vapnik-Chervonenkis theorem38–40 that we restate according

to our context in the following way:

Theorem 3.2.2 (Vapnik and Chervonenkis). Let F be a class of binary functions

from R2 to {0,1}. Let s(F , 2K) be the shattering number of order 2K of the class F .

The shattering number of order k of the class F for any integer k being defined as:

max
(x1,x2,....xk)∈R2×k

{| (f(x1), ...f(xk), f ∈ F) |}.

Then, for every ϵ >
√

2
K :

µ̂ (ξ : supf∈F((µ̂− µ)f > ϵ)) ≤ 2s(F , 2K) exp {−n
K2

8
},

where µ̂f and µf are respectively the expectations of the function f under the

empirical measure µ̂ and the asymptotic resampling measure µ, where we interpret

points in R2 as measurable functions of the elements ξ.

We will also combine 3.2.2 with the following lemma :

Lemma 3.2.1. Under the assumptions [A1, A2, A3, A4], for every subsets V1, V2

and V3 of V , there exist two functions φ1 : U → R and φ2 : U → R such that for

every t ∈ I:
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{
⋃

v∈V1

(

Tv(U) < θV (t), Tg(v)(U) < θG(t)
)

⋃

∆(U, V2, V3, θG(t)) ≥ ϵ(t)}

is equal to:

{φ1(U) < t ∪ φ2(U) ≥ t.}

Proof. To prove lemma 3.2.1, we will construct φ1 and φ2 such that:

⋃

v∈V1

(

Tv(U) < θV (t), Tg(v)(U) < θG(t)
)

⇐⇒ φ1(U) < t (3.2)

and

∆(U, V2, V3, θG(t)) ≥ ϵ(t) ⇐⇒ φ2(U) ≥ t (3.3)

For this, simply define:

φ1(U) := supt′∈I{
⋂

v∈V1

(

Tv(U) ≥ θV (t
′) ∪ Tg(v)(U) ≥ θG(t

′)
)

}

and

φ2(U) := supt′∈I{∆(U, V2, V3, θG(t
′)) ≥ ϵ(t′)}.

102



CHAPTER 3. DEPENDENCE ADAPTED COARSE-TO-FINE PROCEDURE
CONTROLLING THE FWER

Indeed, with φ1 and φ2 defined this way, 3.2 and 3.3 hold because, for any t1 ≤ t2

we have:

⋂

v∈V1

(

Tv(U) ≥ θV (t2) ∪ Tg(v)(U) ≥ θG(t2)
)

⇒
⋂

v∈V1

(

Tv(U) ≥ θV (t1) ∪ Tg(v)(U) ≥ θG(t1)
)

,

and:

∆(U, V2, V3, θG(t1)) ≥ ϵ(t1) ⇒ ∆(U, V2, V3, θG(t2)) ≥ ϵ(t2).

Moreover, using the same arguments as in lemma 3.1.1, we know that

t′ → 1{
⋂

v∈V1
(Tv(U)≥θV (t′)∪Tg(v)(U)≥θG(t′))}

and

t′ → 1{∆(U,V2,V3,θG(t′))≥ϵ(t′)}

are left continuous, which terminates the proof of lemma 3.2.1.

We are now ready to prove theorem 3.2.1:

Proof of theorem 3.2.1 . Here again, we first notice that the event Â(U, ξ, t̂K(U, ξ,α, ϵ1))∩

Ac ̸= ∅ is included in the event Â(U, ξ, t̂K0 (U, ξ,α, ϵ1)∩Ac ̸= ∅) where t̂K0 (U, ξ,α, ϵ1)
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is defined as:

t̂K0 (U, ξ, ,α) := sup{t ∈ I : (θG(t), θV (t), ϵ(t)) ∈ Ŝ(U, ξ, V00, V00, V0 \ V00,α)}.

The inclusion is true because t̂K0 (U, ξ,α−ϵ1) ≥ t̂K(U, ξ,α−ϵ1). Keeping the notations

of the proof of theorem 3.1.1, we will therefore show that:

P

(

Â0(U, t̂K0 (U, ξ,α− ϵ1))
)

≤ α + 2K2 exp {2− Kϵ21
8

}.

By theorem 3.1.1, the event Â0(U, t̂K0 (U, ξ,α−ϵ1))∩{t̂K0 (U, ξ,α−ϵ1) ≤ t̂0(U,α)}

is less than α. Therefore it is sufficient to prove that:

P
(

{t̂K0 (U, ξ,α− ϵ1) > t̂0(U,α)
)

≤ 2K2 exp {2− Kϵ21
8

}.

Therefore, it is sufficient in turn to prove that P
(

µ
(

ξ : Â0(U, t̂K0 (U, ξ,α− ϵ1)) > α
))

is less than K2 exp {2− Kϵ21
8 }. In order to prove this result, we will prove that:

P

(

supt∈I{µ̂(ξ : Â0(ξ ⊙U, t))− µ(ξ : Â0(ξ ⊙U, t))} > ϵ1
)

≤ 2K2 exp {2− Kϵ21
8

}.

Using lemma 3.2.1, we know that there exist two functions φ1 and φ2 such that

1Â0(ξ⊙U,t) is nothing but 1{φ1(ξ⊙U)<t∪φ2(ξ⊙U)≥t}. Therefore, using theorem 3.2.2:
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P

(

supt∈I{µ̂(ξ : Â0(ξ ⊙U, t))− µ(ξ : Â0(ξ ⊙U, t))} > ϵ1
)

≤ 2s(F , 2K) exp {−Kϵ21
8

},

where F is the class of indicators on the complements of the lower left quadrants

on the 2 dimensional plane. The VC dimension of this class is equal to 2. To see this,

it suffices to remark that for any configuration of three points in the plane, there will

be two points such that it is impossible to include them in lower left quadrants without

including the remaining point. therefore, using Sauer’s lemma (see for example40),

s(F , 2K) ≤ (Ke)2, which gives:

P

(

supt∈I{µ̂(ξ : Â0(ξ ⊙U, t))− µ(ξ : Â0(ξ ⊙U, t))} > ϵ1
)

≤ 2K2 exp {2− Kϵ21
8

},

which terminates the proof.

3.2.2 Second method

Here, we keep the same definition as in equation 3.1 for the set Ŝ(U, ξ, V1, V2, V3,α)

that will replace the set S(U, V1, V2, V3,α).

The dependent coarse-to-fine, second method procedure with finite resampling
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scores is the following:

Algorithm 3 Dependence adapted coarse-to-fine procedure with finite resampling:
second method.
1: Compute:

t̂K(U, ξ,α) = sup{t ∈ I : (θG(t
′), θV (t

′), ϵ(t′)) ∈ Ŝ(U, ξ, V, V00(U), V01(U),α), ∀t′ ≤ t}

2: Define the rejection set as:

Â(U, ξ, t̂K(U, ξ,α)) = {v ∈ V : Tv(U) < θV (t̂
K(U, ξ,α))−ϵ(t̂K(U, ξ,α))∩Tg(v)(U) < θG(t̂

K(U, ξ,α))}.

Notice that as opposed to the infinite resampling scores procedure, here we re-

quire that (θG(t′), θV (t′), ϵ(t′)) ∈ Ŝ(U, V, V00(U), V01(U),α) ∀t′ ≤ t which is more

conservative than the condition (θG(t), θV (t), ϵ(t)) ∈ Ŝ(U, V, V00(U), V01(U),α). To

see why it is the case, remark that the set ∆(ξ⊙U, V00, V0 \V00, θG(t)) ≥ ϵ(t) shrinks

when t increases. More precisely, ∆(ξ ⊙ U, V00, V0 \ V00, θG(t)) ≥ ϵ(t) implies that

∆(ξ ⊙ U, V00, V0 \ V00, θG(t′)) ≥ ϵ(t′) for every ξ when t > t′. This is the case

because ϵ(t) and θG(t) are nondecreasing functions of t. Therefore, we can have

situations where t > t′ with (θG(t′), θV (t′), ϵ(t′)) /∈ Ŝ(U, ξ, V, V00(U), V01(U),α) but

(θG(t), θV (t), ϵ(t)) ∈ Ŝ(U, ξ, V, V00(U), V01(U),α).

Now, we claim that the described procedure controls the FWER at the following

desired level.

Theorem 3.2.3. Under the assumptions [A1-4] and [A], for any positive integer K:

P

(

Â(U, ξ, t̂K(U, ξ,α)) ∩ Ac ̸= ∅
)

≤ ⌊Kα⌋+ 1

K + 1
.
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Proof. First, as it was noticed in the proof for the asymptotic resampling scores case,

we have that:

Ŝ(U, V, V00(U), V01(U),α) ⊂ Ŝ(U, V00, V00, V0,α),

and if we define t̂K0 (U,α) as:

t̂K0 (U,α) := sup{t ∈ I : (θG(t), θV (t), ϵ(t)) ∈ Ŝ(U, V00, V00, V0 \ V00,α) ∀t′ ≤ t},

we have that t̂K0 (U, ξ,α) ≥ t̂K(U, ξ,α) and:

P

(

Â(U, ξ, t̂K(U, ξ,α)) ∩ Ac ̸= ∅
)

≤ P

(

Â(U, ξ, t̂K0 (U, ξ,α)) ∩ Ac
)

.

Let us define:

t∗(U) = sup{t ∈ I : ∀v ∈ V00 : (Tv(U) ≥ θV (t
′) or Tg(U) ≥ θG(t

′))

and ∆(U, V00, V0 \ V00, θG(t
′)) < ϵ(t′), ∀t′ ≤ t}.

The distribution of t∗(U) is by construction invariant under the action of any

ξ ∈ S, and:
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P

(

Â(U, ξ, t̂K0 (U, ξ,α)) ∩ Ac
)

≤ P

(

K
∑

k=1

1t∗(U)≤t∗(ξk⊙U) ≤ ⌊Kα⌋
)

≤ E (Gβ(1− µ (ξ : t∗(U) ≤ t∗(ξ ⊙U)) , K − ⌊Kα⌋, ⌊Kα⌋+ 1))

≤
∫ 1

0

Gβ(t,K − ⌊Kα⌋, ⌊Kα⌋+ 1)dt

≤ ⌊Kα⌋+ 1

K + 1

where the third inequality follows from the fact that µ (ξ : t∗(U) ≤ t∗(ξ ⊙U)) dom-

inates the uniform distribution on [0, 1] and Gβ(t,K − ⌊Kα⌋, ⌊Kα⌋ + 1) is increasing

in t, which terminates the proof.

3.2.3 Dependence adapted coarse-to-fine procedure

with finite resampling: third method.

.

For the third method, we will modify the definition of Ŝ(U, ξ, V1, V2, V3,α), in the

sense that it will no longer be the natural empirical version of asymptotic resampling

set S(U, V1, V2, V3,α). More precisely, for this method, the set Ŝ(U, ξ, V1, V2, V3,α)

of triples (θV , θG, ϵ) will be defined as the triples satisfying:
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µ̂

(

ξ :
⋃

v∈V1

(

Tv(ξ ⊙U) < θV , Tg(v)(ξ ⊙U) < θG
)

)

≤ α

2

and µ̂ (ξ : ∆(ξ ⊙U, V2, V3, θG) ≥ ϵ) ≤ α

2
.

With this definition, the coarse-to-fine method is the following:

Algorithm 4 Finite resampling algorithm: third method

1: Compute:

t̂K(U, ξ,α) = sup{t ∈ I : (θG(t), θV (t), ϵ(t)) ∈ Ŝ(U, ξ, V, V00(U), V01(U),α)}.

2: Define the rejection set as:

Â(U, ξ, t̂K(U, ξ,α)) = {v ∈ V : Tv(U) < θV (t̂
K(U, ξ,α))−ϵ(t̂K(U, ξ,α))∩Tg(U) < θG(t̂

K(U, ξ,α))}.

For this third method, the FWER will be controlled at the following level for any

number K of generated elements in S:

Theorem 3.2.4. Under the assumptions [A1-4] and [A], for any positive integer K:

P

(

Â(U, ξ, t̂K(U, ξ,α)) ∩ Ac ̸= ∅
)

≤ 2
⌊K2 α⌋+ 1

K + 1
..

Proof. The starting point of the proof of theorem 3.2.4 is identical to the proof in the

other methods:

Ŝ(U, ξ, V, V00(U), V01(U),α) ⊂ Ŝ(U, ξ, V00, V00, V0 \ V00,α),
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and take t̂K0 (U, ξ,α) as:

t̂K0 (U, ξ,α) := sup{t ∈ I : (θG(t), θV (t), ϵ(t)) ∈ Ŝ(U, ξ, V00, V00, V0,α)},

we have that t̂K0 (U, ξ,α) ≥ t̂K(U, ξ,α), and we will prove that:

P

(

Â(U, t̂K0 (U, ξ,α)
)

≤ α.

At this point, define:

t∗1(U) = sup{t ∈ I : ∀v ∈ V00 : (Tv(ξ ⊙U) ≥ θV (t
′) or Tg(ξ ⊙U) ≥ θG(t

′))},

and:

t∗2(U) = sup{t ∈ I : ∆(ξ ⊙U, V00, V0 \ V00, θG(t
′)) ≥ ϵ(t′)}.

Using these two statistics, we bound the probability:
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P

(

Â0(U, t̂K0 (U, ξ,α)
)

≤ P

(

µ̂ (ξ : t∗1(U) ≤ t∗1(ξ ⊙U)) ≤ α

2

⋃

µ̂ (t∗2(ξ ⊙U) ≤ t∗2(U))) ≤ α

2

)

≤ P

(

µ̂ (ξ : t∗1(U) ≤ t∗1(ξ ⊙U)) ≤ α

2

)

+ P

(

µ̂ (ξ : t∗2(ξ ⊙U) ≤ t∗2(U)) ≤ α

2

)

≤ 2
⌊K2 α⌋+ 1

K + 1
.

which terminates the proof.

3.3 Simulations

In the first set of simulations, we consider the following toy model. We observe a

random variable Y and a set of random variables (Xv, v ∈ V ) such that:

Y =
∑

v∈A

Xv + 5η,

where η is a standard Gaussian independent from the variables (Xv, v ∈ V ). The set

A has size 25 and all the variables (Xv, v ∈ A) are i.i.d standard Gaussian random

variables independent from (Xv, v ∈ Ac). As for the random variables (Xv, v ∈

Ac), they are constructed in the following way. Let (X̃v, v ∈ Ac) be i.i.d standard

Gaussian variables and η̃ a standard Gaussian variable independent from all the

other variables. For each v, Xv = η̃ + σX̃v, where σ is a varying parameter driving
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the dependence between the variables (Xv, v ∈ V ). In our simulations, we look at

4 scenarios where σ takes four possibles values: 0.01, 0.1, 1 and 10. For all of the

simulations, the sample size is 600 and the size of each cell is 25. The number of

tests |V | is 104 . We generate the clustering according to the the Chinese restaurant

process described in section 2.5 with a clustering parameter that is equal to 1. We will

compare the performance of the second dependence adapted coarse-to-fine method,

the third dependence adapted coarse-to-fine method, the coarse-to-fine Bonferroni,

the single level dependence adapted method that is described in section 1.6 and

finally the Bonferroni-Holm method with the default thresholds setting. For the

dependence adapted coarse-to-fine procedures, we took θV (t) = θG(t) = t and ϵ(t) =

t
10 with t ∈ [0, 1]. The number of permutations performed for each simulation is

105 and for each σ, we average the performance of 50 independent simulations. The

FWER is controlled at 0.1. Finally, let us mention that we did not include the first

dependence adapted coarse-to-fine procedure because it turned out to be identical

to the second dependence adapted coarse-to-fine procedure for these simulations.

The results obtained are summarized in table 3.1. The interpretation of the last

column is simple, the performance of the Bonferroni-Holm estimator does not depend

on the parameter σ. In fact, we averaged over all the simulations for the column

corresponding to the Bonferroni-Holm method. The interpretation of the column

corresponding to the dependence adapted one level method is also simple: the smaller

is sigma, the higher is the dependence between the variables (Tv(U), v ∈ Ac) and the
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larger will be the estimated quantiles of the statistic minv∈Ac Tv(U). As a consequence,

the number of detections is higher. As for the Bonferroni coarse-to-fine method, as

mentioned earlier in this section, the quality of the estimator Ĵ deteriorates when the

dependence between the tests is higher, and it is clear that the number of detections of

this method increases with the parameter σ. Finally, for the two remaining methods,

the situation is more complicated. First, notice that they outperform the remaining

methods for all values of σ (Recall that the clustering parameter is fixed here). The

second dependence adapted coarse-to-fine method is by definition less conservative

than the third method, and this is observed in the two first columns of table 3.1. The

more surprising effect for these two columns is that the performance is not decreasing

with the value of σ. The reason is that the effect σ on these two methods is a

mix between the effect on the Bonferroni coarse-to-fine method and the dependence

adapted one level method. More precisely, using the notations of lemma 3.2.1 with

V1 = V, V2 = V00(U) and V3 = V01(U), the smaller is σ, the larger the estimated

quantiles of the function φ1(U) will be, which leads to less conservative thresholds

and more detections. The situation for the function φ2 is the opposite. The smaller

is the parameter σ, the larger the estimated quantiles of the function φ2(U) will be ,

which leads to more conservative thresholds and less detections. Notice however that

the two procedures seem to take advantage of the dependence when the dependence

is not extreme.

In the second set of simulations, we used PLINK generated datasets and the setting
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Value of Dep adapted Dep adapted Bonferroni Dep
σ CTF 2 CTF 3 CTF adapted BH

0.01 16.12 13.48 5.54 9.18 5.36

0.1 18.46 17.22 7.72 8.66 5.36

1 18.28 17.56 8.9 8.14 5.36

10 16.72 16.54 12.16 6.2 5.36

Table 3.1: Average number of true detections for each of the 5 methods, from
left to right: second dependence adapted coarse-to-fine method, third dependence
adapted coarse-to-fine method , Bonferroni coarse-to-fine, dependence adapted one
level method and Bonferroni-Holm.

is identical to Section 2.5. We generated datasets with parameters from section 2.5,

with 105 permutations for each simulation, iterating over α = 0.5, 1, 5, 10, 20, 30, 40

and 50 in the Chinese restaurant process and considering four cases: (I) νG = 10, no

LD; (II) νG = 25, no LD; (III) νG = 10, LD = 0.8; (III) νG = 25, LD = 0.8. In each

case, we took the average over 50 simulations. The only difference is that the active

set has size 50 instead of 25.

Tables 3.2, 3.3, 3.4 and 3.5 summarize the results obtained under the different

settings.

114



CHAPTER 3. DEPENDENCE ADAPTED COARSE-TO-FINE PROCEDURE
CONTROLLING THE FWER

Table 3.2: Cell size 10, independent SNPs

Value of Dep adapted Dep adapted Bonferroni Dep
α CTF 2 CTF 3 CTF adapted BH

0.5 19.68 19.46 17.6 13.62 13.62

1 19.06 18.86 16.12 13.62 13.62

5 17.48 17.14 14.58 13.62 13.62

10 16.22 15.96 13.7 13.62 13.62

20 15.04 14.62 12.02 13.62 13.62

30 14.08 13.18 11.16 13.62 13.62

40 12.46 11.94 10.34 13.62 13.62

50 11.58 10.66 10.08 13.62 13.62

Table 3.3: Cell size 10, correlated SNPs

Value of Dep adapted Dep adapted Bonferroni Dep
α CTF 2 CTF 3 CTF adapted BH

0.5 22.74 20 12.72 9.27 8.73

1 22.1 19.42 12..34 9.27 8.73

5 20.32 17.68 10.62 9.27 8.73

10 19.04 15.94 10.46 9.27 8.73

20 17.66 14.26 9.24 9.27 8.73

30 15.58 13.18 8.9 9.27 8.73

40 14.46 12.3 6.58 9.27 8.73

50 11.12 10.36 6.32 9.27 8.73
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Table 3.4: Cell size 25, independent SNPs

Value of Dep adapted Dep adapted Bonferroni Dep
α CTF 2 CTF 3 CTF adapted BH

0.5 13.26 11.98 7.74 4.29 4.27

1 12.24 10.72 7.72 4.29 4.27

5 9.96 8.5 5.58 4.29 4.27

10 8.1 6.82 3.92 4.29 4.27

20 6 5.24 3.54 4.29 4.27

30 4.78 4.1 2.82 4.29 4.27

40 4.06 3.76 2.78 4.29 4.27

50 3.62 3.42 2.66 4.29 4.27

Table 3.5: Cell size 25, correlated SNPs

Value of Dep adapted Dep adapted Bonferroni Dep
α CTF 2 CTF 3 CTF adapted BH

0.5 24.48 20.94 14.28 10.23 9.96

1 23.16 20.46 12.92 10.23 9.96

5 20.54 17.86 10.46 10.23 9.96

10 18.24 15.64 9.3 10.23 9.96

20 15.84 13.08 7.44 10.23 9.96

30 13.76 11.42 5.32 10.23 9.96

40 12.02 9.74 4.56 10.23 9.96

50 10.9 10.12 4.38 10.23 9.96
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Chapter 4

Coarse-to-fine procedures

controlling the FDR

As presented in the introductory part, the other popular criterion for controlling

errors in multiple hypotheses testing is the FDR. Several procedures for controlling

the FDR have been proposed, and we described the main contributions in Section

1.3. Contrarily to procedures aiming at controlling the FWER, the procedures con-

trolling the FDR usually require additional assumptions. Two types of assumptions

are usually made: either the tests are independent, or we assume positive regression

dependence on each of a subset (PRDS).8 This property will be precisely defined in

the next section. In the coarse-to-fine setting, the assumption of independence be-

tween the tests does not make sense. The reason is that for each v, the decision of

the rejection or not of hypotheses H0(v) depends on the statistic Tg(v)(U). Evidently,
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unless v is the unique index belonging to the cell g(v), the tests associated to two

indices in the same cell will not be independent, even when the statistics Tv(U) are

independent. We will therefore work under the PRDS framework. In fact, we will

derive a coarse-to-fine procedure controlling the FDR under that assumption, in addi-

tion to the assumption that J is a known integer. We will see that unlike the FWER

setting, we will need an additional assumption if we want to replace J by an estimated

upper bound Ĵ . There exists a less popular family of procedures summarized by,10

controlling the FDR under any dependence structure. However, these procedures are

very conservative and usually comparable to Bonferoni procedures. This leads to a

number of detections significantly lower than the widely used procedures for control-

ling the FDR.

We propose coarse-to-fine procedures versions of this family of procedures, in order

to improve the power of detection when the clustering assumption is true. As a con-

sequence, we will illustrate via simulations how we can get algorithms controlling

the FDR under any dependence setting, and having a power of detection comparable

to the Benjamini-Hochbebrg procedure, provided that the clustering assumption is

true. The chapter is organized as follows: we first propose a procedure that controls

the FDR under the PRDS assumption and assumes that J is a known integer. We

then present a procedure replacing J by an estimated upper bound Ĵ and show that

we control the FDR provided that we add an assumption slightly stronger than the

PRDS assumption. Finally, we derive a family of procedures controlling the FDR
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under any dependence assumption between the tests. Let us mention that all the

procedures will be presented in the asymptotic resampling framework. The reason

is that the modifications required for the finite resampling case is immediate. We

will briefly describe how it is done. Finally, we compare our coarse-to-fine procedures

with the Benjamini-Hocheberg procedure and examples from the family of procedures

controlling the FDR under any dependence between tests that described in.10 The

comparison is done via simulation using the PLINK dataset under the same setting

as the previous chapters.

4.1 Asymptotic resampling procedure

In this part, we propose a coarse-to-fine method designed to control the False

Discovery Rate. The procedure described in this part will correspond to choosing the

thresholds at the cell level and at the indices level adaptively (with respect to the

data). Recall that we denote the scores at the index level for any v ∈ V by ρv(U),

where ρv is a real valued function from U to R. The scores at the cell level, for any

cell g ∈ G will be denoted by ρg(U) where ρg is a real valued function from U to R.

We define two additional functions φv and φg that we assume to be nondecreasing

functions from R to R. Also, we define two asymptotic resampling scores for every

v ∈ V as following:
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T 0
v (U) :=

1

|S|
∑

ξ∈S

1ρv(U)≤ρv(ξ⊙U),

and

T 00
v (U) :=

1

|S|
∑

ξ∈S

1min(φV (ρv(U)),φG(ρg(v)(U)))≤min(φV (ρv(ξ⊙U)),φG(ρg(v)(ξ⊙U)).

4.1.1 Procedure with known J assumption

The detection set will be a function of (T 0
v (U), T 00

v (U))v∈V . Before describing the

procedure, let us first state the assumptions under which assumptions our procedure

will control the FDR at a desired level:

⊙ A1. We first assume that J = |V0 \ V00| is known. We will later relax this

assumption at the cost of strengthening the assumption that will follow.

⊙ A2. We also assume that the random vector (T 0
v (U), T 00

v (U))v∈V is PRDS (posi-

tive regression dependence on each of a subset) on the vector (T 0
v (U), T 00

v (U))v∈V .

We define below the notion of positive regression dependency.

Definition 4.1.1. We define the PRDS (positive regression dependence on each of a

subset) property as following:

⊙ For any integer k, we say that x ≥ y for any two vectors x and y in Rk if and
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only if xi ≥ yi for every i ∈ [1 : k].

⊙ For any integer k and any set D ⊂ Rk, we say that D is a nondecreasing set if

and only if y ∈ D and x ≥ y implies that x ∈ D. Finally, for any Rk valued

random vector X = (Xi)i∈[1:k], and any random sub-vector of X denoted by

Y = (Xi)i∈I and I ⊂ {1, 2, ..k}, we will say that X is PRD on each of Y if for

every i ∈ I, the function defined as:

xi → P (X ∈ D|Xi = xi) ,

is a nondecreasing function for any nondecreasing set D ⊂ Rk.

The definition of the PRDS notion of a vector X on a sub-vector Y implies a

property that will play a central role in controlling the FDR in our procedure.

Lemma 4.1.1. let k be any integer and an Rk valued random vector X. Let Y =

(Xi)i∈I and I ⊂ {1, 2, ..k} be any random sub-vector of X. if X is PRDS on Y , then

for any i ∈ I and nondecreasing set D ⊂ Rk:

xi → P (X ∈ D|Xi ≤ xi) ,

is a nondecreasing function of xi.

Proof. let t1 ≤ t2 be any two real numbers. We have
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P (X ∈ D|Xi ≤ t2) = E (P (X ∈ D|Xi) |Xi ≤ t2)

= E (P (X ∈ D|Xi)1t1<Xi≤t2 |Xi ≤ t2) + E (P (X ∈ D|Xi)1Xi≤t1 |Xi ≤ t2)

≥ E (P (X ∈ D|Xi ≤ t1)1t1<Xi≤t2 |Xi ≤ t2) + E (P (X ∈ D|Xi)1Xi≤t1 |Xi ≤ t2)

= P (X ∈ D|Xi ≤ t1)P (t1 < Xi ≤ t2|Xi ≤ t2)

+ P (X ∈ D|Xi ≤ t1)P (Xi ≤ t1|Xi ≤ t2)

We deduce the third from the second line because:

P (X ∈ D|Xi)1t1<Xi≤t2 ≥ P (X ∈ D|Xi = t1)1t1<Xi≤t2 ,

and

P (X ∈ D|Xi ≤ t1)1t1<Xi≤t2 ≤ P (X ∈ D|Xi = t1)1t1<Xi≤t2 ,

which terminates the proof.

We are now ready to describe our coarse-to-fine FDR procedure and the theorem

stating that it controls the FDR at a desired level α. First, define for any integer

i ≤ |V |, the family of random subsets of V :
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L00(U, i,α) := {v ∈ V : T 00
v (U) ≤ αi

|V |},

and

L0(U, i,α, J) := {v ∈ V : T 0
v (U) ≤ αi

J
}.

Using this family of sets, the coarse-to-fine FDR procedure, which we will refer to

as the Benjamini-Hochberg coarse-to-fine method, is the following:

Algorithm 5 Benjamini-Hochberg coarse-to-fine with knwon J

1: Compute i∗ = max{i ≤ |V | : i ≤ |L00(U, i,α) ∩ L0(U, i,α, J)|}
2: Define the rejection set as:

Â(U,α, J) = L00(U, i∗,α) ∩ L0(U, i∗,α, J).

Algorithm 5 allows one to control the coarse to fine procedure at a desired level

α. More precisely:

Theorem 4.1.1. Under the assumption [A2.], we have:

E

(

|Â(U,α, J) ∩ Ac|
|Â(U,α, J) ∨ 1|

)

≤ α.

Before proving theorem 4.1.1, let us justify that the procedure described by the

algorithm 5 is a coarse-to-fine procedure. To see this let us assume, as a simplification,

that :

⊙ S1. For every v ∈ V and U ∈ U , we have :
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Fv(U, .) : t → µ
(

ξ : φV (ρv(ξ ⊙U)),φG(ρg(v)(ξ ⊙U)) ≤ t
)

is continuous.

Under the simplification S1, one can state the following proposition:

Proposition 4.1.1. Assume that the function φG and φV are cadlag (right continuous

left limits). Denote by:

φ∗
V (t) = inf{x : φ−

V (x) ≥ t},

φ∗
G(t) = inf{x : φ−

G(x) ≥ t}

and

F ∗
v (U, t) = inf{x : F−

v (U, x) ≥ t},

where φ−
V ,φ

−
G and F−

v are respectively the right limits of φV ,φG and Fv. With these

notations, we have, for every i ≤ |V |:

L00(U, i,α) = {v ∈ V : ρg(v)(U) ≥ φ∗
G(F

∗
v (U, 1− iα

|V |))} and ρv(U) ≥ φ∗
V (F

∗
v (U, 1− iα

|V |))}.
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Proof.

L00(U, i,α) = {v ∈ V : T 00
v (U) ≤ αi

|V |}

= {v ∈ V : 1− Fv

(

U,min(φV (U),φG(ρg(v)(U)))
)

≤ αi

|V |}

= {v ∈ V : min(φV (ρv(U)),φG(ρg(v)(U))) ≥ F ∗
v (U, 1− αi

|V |)}

= {v ∈ V : ρv(U) ≥ φ∗
V (F

∗
v (U, 1− αi

|V |)) and ρg(v)(U) ≥ φ∗
G(F

∗
v (U, 1− αi

|V |)) }

We now prove theorem 4.1.1:

Proof of theorem 4.1.1. We first notice that the sets L00(U, i,α) and L0(U, i,α, J)

are increasing with i, and so are the intersections. Therefore:

i ≤ |L00(U, i,α) ∩ L0(U, i,α, J)|

is equivalent to:

L00 (U, i,α) ∩ L0 (U, i,α, J) ⊂

L00 (U, |L00(U, i,α) ∩ L0(U, i,α, J)|,α)∩L0 (U, |L00(U, i,α) ∩ L0(U, i,α, J)|,α, J) .

This implies that Â(U,α, J) = L00(U, i∗,α) ∩ L0(U, i∗,α, J) is included in the set
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L00(U, |Â(U,α, J)|,α) ∩ L0(U, |Â(U,α, J)|,α, J). Therefore:

E

(

|Â(U,α, J) ∩ Ac|
|Â(U,α, J) ∨ 1|

)

=
∑

v∈V0

E

(

1v∈L00(U,i∗,α)∩L0(U,i∗,α,J)

|Â(U,α, J) ∨ 1|

)

≤
∑

v∈V0

E

(

1v∈L00(U,|Â(U,α,J)|,α)∩L0(U,|Â(U,α,J)|,α,J)

|Â(U,α, J) ∨ 1|

)

≤
∑

v∈V00

E

(

1v∈L00(U,|Â(U,α,J)|,α)

|Â(U,α, J) ∨ 1|

)

+
∑

v∈V0\V00

E

(

1v∈L0(U,|Â(U,α,J)|,α,J)

|Â(U,α, J) ∨ 1|

)

.

It will be then sufficient to prove that for every v ∈ V00:

E

(

1v∈L00(U,|Â(U,α,J)|,α)

|Â(U,α, J) ∨ 1|

)

≤ α

|V | ,

and for every v ∈ V0 \ V00:

E

(

1v∈L0(U,|Â(U,α,J)|,α,J)

|Â(U,α, J) ∨ 1|

)

≤ α

J
.

For any v ∈ V00:
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E

(

1v∈L00(U,|Â(U,α,J)|,α)

|Â(U,α, J) ∨ 1|

)

=
|V |
∑

k=1

E

(

1v∈L00(U,k,α)

k
1|Â(U,α,J)|=k

)

=
|V |
∑

k=1

1

k
P

(

|Â(U,α, J)| = k|T 00
v (U) ≤ kα

|V |

)

P

(

T 00
v (U) ≤ kα

|V |

)

≤ α

|V |

|V |
∑

k=1

P

(

|Â(U,α, J)| = k|T 00
v (U) ≤ kα

|V |

)

At this point, one can rewrite the last sum as following:

α

|V |

|V |−1
∑

k=0

P

(

|Â(U,α, J)| ≤ k + 1|T 00
v (U) ≤ kα

|V |

)

−P

(

|Â(U,α, J)| ≤ k|T 00
v (U) ≤ kα

|V |

)

.

But notice that for every k ≥ 0, we can rewrite the event |Â(U,α, J)| ≤ k +

1 as (T 00
v (U), T 0

v (U))v∈V ∈ Dk+1, where Dk+1 is some nondecreasing set of R2|V |.

Therefore, we can apply lemma 4.1.1, and state that the last sum is less than:

α

|V |

|V |−1
∑

k=0

P

(

|Â(U,α, J)| ≤ k + 1|T 00
v (U) ≤ (k + 1)α

|V |

)

−P

(

|Â(U,α, J)| ≤ k|T 00
v (U) ≤ kα

|V |

)

.

And the last sum is immediately less than 1. For the term E

(

1v∈L0(U,|Â(U,α,J)|,α,J)

|Â(U,α,J)∨1|

)

,

the steps are identical and it suffices to notice that P
(

T 0
v (U) ≤ kα

|V |

)

≤ αk
J for every
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k, which finishes the proof.

4.1.2 Procedure with an estimated upper bound

of J

Algorithm 5 requires the knowledge of (an upper bound) of the number J . As

announced, we will know relax assumption [A1], and assume instead that we have a

procedure giving an estimator Ĵ(U, ϵ) of J satisfying P

(

Ĵ(U, ϵ) ≤ J
)

≤ ϵ. However,

the relaxation comes with the cost of strengthening the PRDS assumption. More

precisely, the assumptions that we make are the following:

⊙ A1. We assume that we have an estimator Ĵ(U, ϵ) of J satisfying P
(

Ĵ(U, ϵ) ≤ J
)

≤

ϵ. For a procedure providing such a J , we refer to section 2.3.

⊙ A2. We also assume that the random vector
(

(T 0
v (U), T 00

v (U))v∈V ,−R(U,α, Ĵ(U, ϵ))
)

is PRDS (positive regression dependence on each of a subset) on the vector

(T 0
v (U), T 00

v (U))v∈V , where:

R(U,α, Ĵ(U, ϵ)) = L00(U, Ĵ(U, ϵ),α− ϵ) ∩ L0(U, Ĵ(U, ϵ),α− ϵ)

With this new assumption, we present the following procedure:
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Algorithm 6 Benjamini-Hochberg coarse-to-fine procedure with an unknown J

1: Compute Ĵ(U, ϵ) such that P
(

Ĵ(U, ϵ) ≤ J
)

≤ ϵ

2: Compute i∗ = max{i ≤ |V | : i ≤ |L00(U, i,α− ϵ) ∩ L0(U, i,α− ϵ, Ĵ(U, ϵ))|}
3: Define the rejection set as:

Â(U,α, Ĵ(U, ϵ)) = L00(U, i∗,α− ϵ) ∩ L0(U, i∗,α− ϵ, Ĵ(U, ϵ)).

Algorithm 6 allows to control the coarse to fine procedure at a desired level α.

More precisely:

Theorem 4.1.2. Under the assumptions [A1.] and [A2.], we have:

E

(

|Â(U,α, Ĵ(U, ϵ)) ∩ Ac|
|Â(U,α, Ĵ(U, ϵ)) ∨ 1|

)

≤ α.

Proof. The key observation here is that L0(U, i,α − ϵ, J1) ⊂ L0(U, i,α − ϵ, J2) if

J1 ≥ J2. Indeed:

E

(

|Â(U,α, Ĵ(U, ϵ)) ∩ Ac|
|Â(U,α, Ĵ(U, ϵ)) ∨ 1|

)

≤ E

(

|Â(U,α, Ĵ(U, ϵ)) ∩ Ac|
|Â(U,α, Ĵ(U, ϵ)) ∨ 1|

1Ĵ(U,ϵ)>J

)

+P

(

Ĵ(U, ϵ) ≤ J
)

,

which is less than:

∑

v∈V0

|V |
∑

k=1

E

(

1v∈L00(U,k,α−ϵ)∩L0(U,k,α−ϵ,Ĵ(U,ϵ))

k
1Ĵ(U,ϵ)>J1|Â(U,α,Ĵ(U,ϵ))|=k

)

+ ϵ,
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which in turn is less than:

∑

v∈V0

|V |
∑

k=1

E

(

1v∈L00(U,k,α−ϵ)∩L0(U,k,α−ϵ,J)

k
1|Â(U,α,Ĵ(U,ϵ))|=k

)

+ ϵ ≤ α− ϵ+ ϵ,

which ends the proof (the steps required to get the last inequality form the third line

are identical to the known J case). |Â(U,α, Ĵ(U, ϵ))| ≤ k is non decreasing because

of assumption [A2.]. Unfortunately, it is not possible to prove this property without

strengthening the PRDS assumption via [A2.] and one can argue that it is impossible

in general to check [A2.].

4.1.3 Procedure with general dependency struc-

ture

In reality, it is possible to avoid making assumptions on the dependency structure

of the statistics (T 0
v (U), T 00

v (U))v∈V and R(U,α, Ĵ(U, ϵ)). In this part, we will present

a family of coarse-to-fine procedures that will control the FDR under any dependency

structure. More precisely, we only assume:

⊙ A.We assume that we have an estimator Ĵ(U, ϵ) of J satisfying P
(

Ĵ(U, ϵ) ≤ J
)

≤

ϵ.

Of course, these procedures will have the disadvantage of being more conservative
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than the coarse-to-fine procedure presented above.10 In this part we will let ν00 and ν0

be any probability measures on the set {1, 2.., |V |}. Let us define, for every probability

measures ν00 and ν0, the functions β00,ν00 and β0,ν0 from {1, 2, ..., |V |} to R+ as :

β00,ν(i) =
i

∑

k=1

kν00(k),

and

β0,ν(i) =
i

∑

k=1

kν0(k).

With these notations, we define for any ν00 and ν0 the family of detection sets:

L00(U, i,α, ν) := {v ∈ V : T 00
v (U) ≤ αβ00,ν00(i)

|V | },

and

L0(U, i,α, J) := {v ∈ V : T 0
v (U) ≤ αβ0,ν0(i)

J
}.

Using these detection sets, the family of procedures we propose, which we refer to

as coarse-to-fine ν-procedures, is defined as the following :
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Algorithm 7 Coarse-to-fine ν-procedures.

1: Compute Ĵ(U, ϵ) such that P
(

Ĵ(U, ϵ) ≤ J
)

≤ ϵ

2: Compute i∗ = max{i ≤ |V | : i ≤ |L00(U, i, α−ϵ
2 , ν) ∩ L0(U, i, α−ϵ

2 , Ĵ(U, ϵ))|}
3: Define the rejection set as:

Â(U,α, Ĵ(U, ϵ), ν) = L00(U, i∗,
α− ϵ

2
) ∩ L0(U, i∗,

α− ϵ

2
, Ĵ(U, ϵ)).

Assuming [A.], algorithm 7 controls the FDR at the desired level. Namely:

Theorem 4.1.3.

E

(

|Â(U,α, Ĵ(U, ϵ), ν) ∩ Ac|
|Â(U,α, Ĵ(U, ϵ)) ∨ 1|

)

≤ α.

To, prove theorem 4.1.3, we will need the following central lemma:

Lemma 4.1.2 ( See10). Let c be any positive constant, ν any probability measure on

the positive real line, Z a random variable that dominates a uniform on [0, 1] and Z

any random variable. Finally let βν be the function defined as:

βν(x) =

∫ x

0

y dν(y).

Therefore, we have:

E

(

1Z≤cβν(W )

W ∨ 1

)

≤ c

Proof of lemma 4.1.2. The key and simple idea is to write 1
W∨1 as

∫∞

0
1
z21{z≥W∨1} dz,

so that:
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E

(

1Z≤cβν(W )

W ∨ 1

)

= E

(
∫ ∞

0

1

z2
1{z≥W∨1}1Z≤cβν(W ) dz

)

≤ E

(
∫ ∞

0

1

z2
1Z≤cβν(z) dz

)

=

∫ ∞

0

P (Z ≤ cβν(z))
1

z2
dz

≤ c

∫ ∞

0

y

∫ ∞

0

1

z2
1z≥ydzdν(y)

= c

We will now prove theorem 4.1.3.

Proof.

E

(

|Â(U,α, Ĵ(U, ϵ)) ∩Ac|
|Â(U,α, Ĵ(U, ϵ)) ∨ 1|

)

≤ E

(

|Â(U,α, Ĵ(U, ϵ)) ∩Ac|
|Â(U,α, Ĵ(U, ϵ)) ∨ 1|

1Ĵ(U,ϵ)>J

)

+ P

(

Ĵ(U, ϵ) ≤ J
)

=
∑

v∈V00

E

(

1v∈L00(U,i∗,
α−ϵ

2
)

|Â(U,α, Ĵ(U, ϵ)) ∨ 1|

)

+
∑

v∈V0\V00

E

(

1v∈L0(U,i∗,
α−ϵ

2
,Ĵ(U,ϵ))1Ĵ(U,ϵ)>J

|Â(U,α, Ĵ(U, ϵ)) ∨ 1|

)

+ ϵ
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But for every v ∈ V00:

E

(

1v∈L00(U,i∗,
α−ϵ
2 ,ν)

|Â(U,α, Ĵ(U, ϵ), ν) ∨ 1|

)

≤ E

(

1v∈L00(U,|Â(U,α,Ĵ(U,ϵ),ν)∨1|,α−ϵ
2 )

|Â(U,α, Ĵ(U, ϵ), ν) ∨ 1|

)

= E

⎛

⎝

1
T 00
v (U)≤

(α−ϵ)β00,ν (|Â(U,α,Ĵ(U,ϵ),ν)|)

2|V |

|Â(U,α, Ĵ(U, ϵ), ν) ∨ 1|

⎞

⎠

≤ α− ϵ

2|V | ,

where we used lemma 4.1.2 for the last inequality.

Now, let us take some v ∈ V0 \ V00. We first claim that if J2 ≥ J1, then

L0(U, |Â(U,α, Ĵ(U, ϵ), ν)|,α, J2) ⊂ L0(U, |Â(U,α, Ĵ(U, ϵ), ν)|,α, J1). Indeed, for

any J2 ≤ J1:

αβ0,ν0(|Â(U,α, Ĵ(U, ϵ), ν)|)
J2

≤ αβ0,ν0(|Â(U,α, Ĵ(U, ϵ), ν)|)
J2

This implies that :

∑

v∈V0\V00

E

(

1v∈L0(U,i∗,
α−ϵ
2 ,Ĵ(U,ϵ))1Ĵ(U,ϵ)>J

|Â(U,α, Ĵ(U, ϵ)) ∨ 1|

)

≤
∑

v∈V0\V00

E

(

1v∈L0(U,|Â(U,α,Ĵ(U,ϵ))|,α−ϵ
2 ,J)

|Â(U,α, Ĵ(U, ϵ)) ∨ 1|

)

≤
∑

v∈V0\V00

E

( 1
T 0
v (U)≤

(α−ϵ)β0,ν0
(i)

2J

|Â(U,α, Ĵ(U, ϵ)) ∨ 1|

)

≤ (α− ϵ)

2J
,
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where here again we used lemma 4.1.2 for the last inequality, which terminates

the proof.

4.2 Finite resampling procedure

In fact, we will skip details in this part since all the procedures developed in section

are immediately applicable to the finite resampling case and it suffices generate i.i.d

elements ξ1, ξ2, .....ξK for any integer K, and replace for every v ∈ V , the statistics

T 0
v (U) and T 00

v (U) by:

T̂ 0
v (U) :=

1

K

K
∑

k=1

1ρv(U)≤ρv(ξk⊙U),

and

T̂ 00
v (U) :=

1

K

K
∑

k=1

1min(φV (ρv(U)),φG(ρg(v)(U)))≤min(φV (ρv(ξk⊙U)),φG(ρg(v)(ξk⊙U)).

With these natural modifications, we have the following theorems, which proofs

are immediate:

Theorem 4.2.1. Assume without loss of generality that Kα
|V | and Kα

J are integers.

Then:

135



CHAPTER 4. COARSE-TO-FINE PROCEDURES CONTROLLING THE FDR

⊙ With the assumption of theorem 4.1.1, the finite resampling version of algorithm

5 controls the FDR at level α + |V |+J
K+1

⊙ With the assumption of theorem 4.1.2, the finite resampling version of algorithm

6 controls the FDR at level α + |V |+J
K+1

⊙ With the assumption of theorem 4.1.3, the finite resampling version of algorithm

7 controls the FDR at level α + |V |+J
K+1

4.3 Simulations

Similarly to the previous simulations , we used PLINK generated datasets, and

the setting is identical to Section 2.5. We generated datasets with parameters from

Section 2.5, iterating over α = 0.5, 1, 5, 10, 20, 30, 40 and 50 in the Chinese restaurant

process and considering four cases: (I) νG = 10, no LD; (II) νG = 25, no LD; (III)

νG = 10, LD = 0.8; (III) νG = 25, LD = 0.8. In each case, we took the average over

50 simulations with K = 106. The only difference here with the setting of previous

chapters is that the active set has size 50 instead of 25. In total, We compare 11

different methods. The first 10 methods consist in looking at 5 one level methods and

their equivalent coarse-to-fine version, and the 11th method is the Bonferroni-Holm

estimator. The first method considered is the Benjamini-Hochberg method and its

coarse-to-fine version with an estimated Ĵ . Then we looked at the family of procedures

controlling the FDR for all dependence setting proposed in10 and described in 1.3.
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Table 4.1: Cell size 10. Independent SNPs. Average number of detections for single
level procedures.

Benjamini ν-procedure ν-procedure ν-procedure ν-procedure
Hochberg β = 0.1 β = 0.5 β = 2 Uniform Bonferroni

25.31 15.86 12.05 11.94 12.16 12.14

We took ν(k) ∝ exp (−βk) for β = 0.1, 0.5 and 2. We then looked at their coarse-

to-fine versions with ν0 = ν00 = ν in each of the three cases. Finally, we took ν a

uniform on {1, 2, ..., |V |}, ν00 = ν and ν0 a uniform on {1, 2, ..., Ĵ}. At this stage,

one can argue that the support of ν0 depends on Ĵ and there is no guarantee that

the FDR will be controlled for any setting. In reality, this is not the case and one

just needs to notice that
β0,νJ (k)

J is decreasing in J for every integer k where νJ is

the uniform distribution on {1, 2, ..., J}. Using this remark, proving that the FDR is

always controlled is identical to the proof of 4.1.3. In all of the simulations, the desired

FDR level to control is 0.1. Even if there is no theoretical guarantee for the coarse-to-

fine Benjamini-Hochberg method, we mention that in practice, the FDR is controlled

at the desired level. Finally, let us mention that when the clustering assumption is

true, the ν-coarse to fine procedure with β equals to 0.1 has a performance that is

comparable to the Benjamini-Hochberg method. Recall that this procedure presents

theoretical guarantees that the FDR is controlled under any dependence setting.
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Table 4.2: Cell size 10. Independent SNPs. Average number of detections for
coarse-to-fine procedures

Value of CTF Benjamini CTF ν-procedure CTF ν-procedure CTF ν-procedure CTF ν-procedure
α Hochberg β = 0.1 β = 0.5 β = 2 Uniform

0.5 34.26 27.18 21.74 18.62 12.68

1 32.78 25.34 19.8 16 12.18

5 29.88 22.16 8.9 15.28 11.24

10 26.49 19.04 15.76 13.26 10.2

20 23.42 15.68 13.56 11.52 8.78

30 20.09 13.54 12.32 10.8 8

40 16.48 11.51 11.26 9.44 7.22

50 14.26 10.96 10.54 9.98 6.76

Table 4.3: Cell size 10. Correlated SNPs. Average number of detections for single
level procedures

Benjamini ν-procedure ν-procedure ν-procedure ν-procedure
Hochberg β = 0.1 β = 0.5 β = 2 Uniform Bonferroni

23.74 15.65 12.15 12.07 12.46 12.45

Table 4.4: Cell size 10. Correlated SNPs. Average number of detections for coarse-
to-fine procedures

Value of CTF Benjamini CTF ν-procedure CTF ν-procedure CTF ν-procedure CTF ν-procedure
α Hochberg β = 0.1 β = 0.5 β = 2 Uniform

0.5 29.62 24.56 21.6 16.62 11.82

1 29.04 24.12 20.78 16.94 11.7

5 26.64 22.06 18.82 15.56 11.22

10 24.44 20.32 17.06 14.68 10.94

20 22.06 18.08 15.02 13.2 10.16

30 20 16.3 13.44 11.46 9.6

40 18.14 11.86 12.16 10.1 9.12

50 17.97 11.66 12.16 8.22 8.48
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Table 4.5: Cell size 25. Independent SNPs. Average number of detections for single
level procedures

Benjamini ν-procedure ν-procedure ν-procedure ν-procedure
Hochberg β = 0.1 β = 0.5 β = 2 Uniform Bonferroni

25.48 16.01 12.37 12.08 12.36 12.37

Table 4.6: Cell size 25. Independent SNPs. Average number of detections for
coarse-to-fine procedures

Value of CTF Benjamini CTF ν-procedure CTF ν-procedure CTF ν-procedure CTF ν-procedure
α Hochberg β = 0.1 β = 0.5 β = 2 Uniform

0.5 35.12 29.66 21.74 19.36 12.62

1 33.08 27.54 20.22 17.42 11.64

5 28.34 22.56 17.18 14.36 10.28

10 24.42 18.66 14.86 12.3 8.9

20 19.92 14.54 12.2 10 7.36

30 16.46 11.26 10.48 8.68 6.34

40 13.26 8.7 9.06 7.84 5.16

50 10.7 6.82 7.66 7.18 5.48

Table 4.7: Cell size 25. Correlated SNPs. Average number of detections for single
level procedures

Benjamini ν-procedure ν-procedure ν-procedure ν-procedure
Hochberg β = 0.1 β = 0.5 β = 2 Uniform Bonferroni

23.64 15.36 11.95 12 12.13 11.7
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Table 4.8: Cell size 25. Correlated SNPs. Average number of detections for coarse-
to-fine procedures

Value of CTF Benjamini CTF ν-procedure CTF ν-procedure CTF ν-procedure CTF ν-procedure
α Hochberg β = 0.1 β = 0.5 β = 2 Uniform

0.5 31.86 26.44 23.24 20.04 14.8

1 31 25.5 21.88 18.74 12.76

5 26.58 21.76 19.12 16.32 10.94

10 22.56 18.2 16.34 13.84 9.12

20 18.48 14.42 13.4 11.02 7.14

30 15.02 11.24 10.72 8.88 6.32

40 11.74 7.98 7.88 6.36 5.38

50 11.5 6.96 6.11 5.2 5.06
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Conclusion and discussion

Given a partition of the space of hypotheses, the basic assumption which allows

the coarse-to-fine multiple testing algorithm to obtain greater power than single level

approaches at the same FWER or FDR level is that the distribution of the numbers

of active hypotheses across the cells of the partition is non-uniform. One can separate

our work into three main parts. In the first part, we gave a coarse-to-fine version of the

Bonferroni procedure based on a resampling method . At the beginning, we assumed

that we have access to asymptotic resampling and to the number of non-active indices

J in active cells and showed that we control the FWER. We then modified this

algorithm in order to control the FWER in the finite resampling case. Later on,

we relaxed the known J assumption, replacing it by an estimated upper bound Ĵ .

We also derived a coarse-to-fine Bonferroni method for a Gaussian linear parametric

model. The main interest of this model was the possibility to have estimates of
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the power of detection as a function of the thresholds under known alternatives and

compare, through simulations, the power of detection of the coarse-to-fine method

using the default parameters to the method using the optimal parameters. In the

second part, we argued that the Bonferroni coarse-to-fine method wasn’t well suited

when there is high dependence between the tests. Using the so called zero assumption

that we introduced to compute Ĵ , we replaced it by a dependence adapted coarse-to-

fine method that proved to be superior to the previous coarse-to-fine method when we

look at the simulations. We first described the procedure in the infinite resampling

case, before modifying the procedure in three different ways suited for the finite

resampling framework. In the third part of the manuscript, we switch gears and

focus on coarse-to-fine methods controlling the FDR. We began proposing a coarse-

to-fine version of the Benjamini-Hochberg procedure under a known J and PRDS

assumptions. We saw that it is possible to replace J by an estimated Ĵ , provided

that we make an assumption slightly stronger than the PRDS property. Finally, we

derived a family of coarse-to-fine algorithms controlling the FDR under any given

dependence between the test, that is however more conservative than the coarse-to-

fine Benjamini-Hochberg procedure. Let us mention that for all the procedures in

this third part, the modification required between the infinite resampling case and

the finite resampling case was immediate.

All of the coarse-to-fine procedures mentioned in these three parts showed to

be efficient under the clustering assumption. This scenario was motivated by the
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situation encountered in genome-wide association studies, where the hypotheses are

associated with genetic variations (e.g., SNPs), each having a location along the

genome, and the cells are associated with genes. In principle, our coarse-to-fine

procedure will then detect more active variants to the extent that these variants

cluster in genes. Of course, this extent will depend in practice on many factors,

including effect sizes, the representation of the genotype (i.e., the choice of variants

to explore) as well as the phenotype, and complex interactions within the genotype.

It may be very difficult and uncommon to know anything specific about the expected

nature of the combinatorics between genes and variants. Looking ahead, we have

only analyzed the coarse-to-fine approach for the simplest case of two-levels and a

true partition, i.e., non-overlapping cells. The methods for controlling the FWER for

both the parametric and non-parametric cases generalize naturally to multiple levels

assuming nested partitions. However, one will need to be careful when taking into

account the finite resampling case, checking that the number K required does not

grow with the number of levels. In reality, except for the coarse-to-fine Bonferroni

method, we claim that the increase of K as a function of the number of levels is

negligible, and the generalization in these cases will be easy. The other analytical

challenge is to generalize the coarse-to-fine approach to overlapping cells, even for

two levels: while our methods for controlling the FDR and FWER remain valid,

they are likely to become overly conservative if cells overlap (however, one could

artificially create the partitions by imposing the constraint of assigning at most one
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cell to an index). This case is of particular interest in applications, where genes

are grouped into overlapping “pathways.” For example, in Systems Biology, cellular

phenotypes, especially complex diseases such as cancer, are studied in the context

of these pathways and mutated genes and other abnormalities are in fact known to

cluster in pathways; indeed, this is the justification for a pathway-based analysis.

Hence the clustering properties may be stronger for variants or genes in pathways

than for variants in genes.
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