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PREFACE 

THE theory of relativity has now reached its furthest con­
ceivable generalization in the direction of the covariance of the 
laws of nature under transformations of coordinates. The 
older theory of relativity remains valid as a special case of the 
general theory and may well serve as an introduction to its 
more far-reaching aspects. Accordingly, in the present (second) 
edition of this monograph I have retained the older theory in 
precisely the same form as in the first edition, the matter cover­
ing Chapters I to VI of the present treatment, and have added 
the longer Chapter VII to give a compact account of the general­
ized theory. The tendency now is to call the latter the theory 
of relativity and to distinguish the older from it by giving to 
the older theory the name of the restricted theory of relativity. 

In the opening section (§37) of the new chapter, I give a 
brief simimary of results from the restricted theory. Anyone 
who is acquainted with these, whether derived as in this book 
or otherwise, may proceed at once to the reading of Chapter 
VII. It is beheved that he wiU find in it about as brief an account 
of the new theory as can be given so as to be easily intelligible 
and at the same time to reach the general theory of gravitation, 
to make clear the nature of the three famous crucial phenomena, 
to associate the theory with Maxwell's electromagnetic equa­
tions, and to place the whole in its proper setting with respect 
to the general body of scientific truth. 

The new as well as the older matter in the booklet has been 
written from the point of view of the usefulness of the theory 
of relativity in the development of physical science. No 
applications are given other than those which are directly and 
immediately associated either with the fundamental ideas or 
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4 PREFACE. 

with certain crucial phenomena for testing the validity of the 
theory. In this way only may the central elements of novelty 
most readily be brought to light. 

No attempt has been made to give a complete account of 
the theory. The purpose of the monograph is best served by 
presenting only those fundamental developments which are 
needed for and contribute directly to making clear the main 
characteristics of the theory. The more detailed statements 
are to be found elsewhere, especially in the memoirs which have 
now reached a considerable number. 

Every exposition of the general theory of relativity must be 
deeply indebted to the basic memoir of Einstein, pubHshed in 
1916 in Annalen der Physik, volume 49. Very useful to me 
also, as every reader will observe, has been the report of A. S. 
Eddington to the Physical Society of London on "The Relativity 
Theory of Gravitation," a booklet to which one may be referred 
who wishes to go further into the theory than the exposition of 
the present monograph will carry him. 

R. D. CAEMICHAEL. 

UNIVERSITY or ILLINOIS, 

April, 1930. 
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THE THEORY OF RELATIVITY. 

CHAPTER I. 

INTRODUCTION. 

§1. T H E FOUNDATIONS OF PHYSICS. 

THOSE who look on physics from the outside not infrequently 
have the feehng that it has forgotten some of,its philosophical 
foundations. Even among its own workers this condition of 
the science has not entirely escaped notice. 

The physicist, who, above all other men, has to deal with 
space and time, has fallen into certain conventions concerning 
them of which he is often not aware. I t may be true that these 
conventions are just the ones which he should make. I t is 
certain, however, that they should be made only by one who 
is fully conscious of their nature as conventions and does not 
look upon them as fixed realities beyond the power of the 
investigator to modify. 

Likewise, a question arises as to what element of conven­
tion is iuvolved in our usual conceptions of mass, energy, etc.; 
that the question is not easily answered becomes apparent on 
reflection. 

These and many other considerations suggest the desira-
bihty of a fresh analysis of the foundations of physical science. 
Now it is a ground of gratulation for all those interested in 
this matter that there has arisen within modern physics itself 
a new movement—that associated with the Theory of Rela­
tivity—which is capable of contributing most effectively to the 
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« THE THEORY OF RELATIVITY. 

construction of a more satisfactory foundation for its super­
structure of theory. 

It is at once admitted that the theory of relativity is not 
yet estabHshed on an experimental basis which is satisfactory 
to all persons; in fact, some of those who dispute its claim to 
acceptance are among the most eminent men of science of the 
present time. On the other hand there is an effective body 
of workers who are pushing forward investigations the inspira­
tion for which is afforded by the theory of relativity. 

This state of affairs will probably give rise to a consider­
able controversial literature. If the outcome of this contro­
versy is the acceptance in the main of the theory of relativity, 
then this theory will afford just the means needed to arouse 
in investigators in the field of physics a lively sense of the phil­
osophical foundations of their science. If the conclusions of 
relativity are refuted this will probably be done by a careful 
study of the foundations of physical science and a penetrating 
analysis of the grounds of our confidence in the conclusions 
which it reaches. This of itself will be sufficient to correct 
the present tendency to forget the philosophical basis of the 
science. 

It follows that in any event the theory of relativity will 
force a fresh study of the foundations of physical theory. If 
it accomplishes no more than this it will have done well. 

§ 2. ARE THE LAWS OE NATURE RELATIVE TO THE OBSERVER? 

The fundamental question asked in the theory of relativity 
is this: In what respect are our enunciated laws of nature rela­
tive to us who investigate them and to the earth which serves 
us as a system of reference? How would they be modified, 
for instance, by a change in the velocity of the earth? 

To put the matter more precisely, let us suppose that we 
have two relatively moving platforms with an observer on each 
of them. Suppose further that each observer considers a 
system of reference, say cartesian axes, fixed to his platform, 
and expresses the laws of nature, as he determines them, by means 
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of mathematical equations involving the cartesian coordinates 
as variables. To what extent will the laws in the two cases be 
identical? What transformations of the time and space variables 
must be carried out in order to go from the equations in one 
system to those in the other; that is, what relations must exist 
between the variables on the two platforms in order that the 
results of observation in the two cases shall be consistent? 
Any theory which states these relations is a theory of rela­
tivity. 

I t is obvious that the questions above must be fundamental 
in any system of mechanics. In fact, a detailed analysis of thfe 
matter would show that such a system is characterized pri­
marily by the answers which it gives to these questions. This 
is the feature which distinguishes between the Newtonian and 
the various systems of non-Newtonian Mechanics. The theory 
of relativity, in the sense of this book, belongs to one of the lat­
ter. I t is developed from a small number of fundamental 
postulates, or laws, which have been enunciated as the probable 
teaching of experiment. Some account of these experimental 
investigations will now be given. 

§ 3. T H E STATE OE THE ETHER. 

Those who postulate the existence of an ether as a means 
of explaining the facts about fight, electricity and magnetism 
have usually been in general agreement as to the conclusion 
that the parts of this ether have no relative motion among 
themselves, that is, that the ether may be considered station­
ary. Experimental facts, which have to be accounted for, 
cannot be explained satisfactorily on the hypothesis of a mobile 
ether. 

The aberration of light is one of the most conspicuous of 
those phenomena which seem to require for their explanation 
the hypothesis of a stationary ether. 

The experiment of Fizeau, in which a comparison was made 
between the velocities of hght when going with, and against, 
a stream of water, was interpreted by Fresnel as indicating 
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a certain entrainment of the ether; but a later examination 
of the matter by Lorentz * has led to the conclusion that 
Fizeau's experiment requires a stationary ether for its explana­
tion. 

A result which leads to a similar conclusion has been 
obtained in electrodynamics by H. A. Wilson f in measuring 
the.electric force produced by moving an insulator in a magnetic 
field. 

§4. MOVEMENT OE THE EARTH THROUGH THE ETHER. 

The theory of a stationary ether leads us to expect certain 
modifications in the phenomena of Hght and electricity when 
there is no relative motion of material bodies, but when both 
the observer and all his apparatus are carried along through 
the ether with a velocity v. The effects to be expected are of 
the order v^/c^, where c is the velocity of light. Although 
these effects are very small even when v is the velocity of the 
earth in its orbit, the possible accuracy of certain optical and 
electrical experiments is such that these effects could certainly 
be found if they existed without some compensating effect 
to mask them. Thus it should be possible for an observer, 
by making optical and electrical measurements on the earth 
alone, to detect the motion of the earth relative to the ether. 

§5. T H E TEST OF MICHELSON AND MORLEY. 

Thus it was predicted that the time which would be required 
for a beam of light to pass a given distance and return would 
be different in the two cases when the path of hght was parallel 
to the direction of motion and when it was perpendicular to 
this direction. Michelson and Morley % devised an experiment 
the object of which was to put this prediction to a crucial test. 

The experiment was a bold one, seeing that the difference 
to be measured was so small; but it was carried out in such a 

* See Lorentz, Versuch einer Theorie der Elektrischen und Optischea 
Erscheinungen, in Bewegten Korpern, § 68. 

t Proc. Roy. Soc. 73 (1904): 490. 
% American Journal of Science (3), 34 (1887): 333-345-
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brilliant way as to permit no serious doubt of the accuracy of 
the results. The difference of time predicted by theory was 
found by experiment not to exist; there was not the slightest 
difference of time in the passage of light along two paths of 
equal length, one in a direction parallel to the earth's motion 
and the other in a direction perpendicular to it. 

Owing to the great importance which this famous experiment 
has in the theory of relativity some further account of it will 
be given here. The essential parts of the apparatus used are 
shown in Fig. i, and the experiment was carried out in the fol­
lowing manner: 

Let a ray of Hght from a point source S fall on a semi-reflect­
ing mirror A, which is set at such an angle that it wiU reflect 

B B' 

j g ^ 

ir 
FIG. I . 

H O 
C C 

half the ray to the mirror B and allow the other half to pass on 
to a third mirror C. The fines AB and AC cross at right 
angles and the distance AB is made equal to the distance AC. 
Half of the reflected ray from B will pass through A and on to 
the telescope T. Also, half of the reflected ray from C will be 
reflected at A to T. Now the paths ABAT and AC AT are 
by measurement equal, so that the ray along ABA and the 
one along AC A should reach T simultaneously, provided that 
the apparatus is at rest in the ether. 

Now suppose that the ether is stationary and that the 
earth is moving through it with little or no disturbance. Then 
the whole system of apparatus, which is fixed to the earth, 
wiU be moving with respect to the ether with the effect indicated 
ia Fig. 2. 
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While the light is going from mirror A to mirrors B and C 
and back again to A, the whole apparatus is carried forward 
in the direction of the incident Hght to the position A'B'C'. 
The ray reflected from B, which interferes with a given ray 
from C along the line A'T, must be considered as traveHng 
along the fine AB'A', the angle BAB' being the angle of aberra­
tion. 

Suppose that the ether remains at rest. Denote by c the-
velocity of light, and by v the velocity of the apparatus. Let 
t be the time required for the Hght to pass from mirror A to 
mirror C, and let t' be the time required in returning from 
C to ^ ' At the time when the reflection takes place at the 
mirror C, this mirror is approximately half way between C and 
C of the figure. 

Let D represent the distance AB or AC Then 

ct=D+vt, ct'=D-vt'; 
whence 

D , D 
c-\-v' 

The whole time required for the passage of the Hght in both 
directions is 

c^ — v^ 
and the distance traveled in this time is 

{i+t')c = 2D/^, = 2D(l+J^, 

the terms of fourth order and higher being neglected in the 
last member. 

The length of the path ABA' is evidently 

2 Z ? ^ I + | = 2Z) ( l - f^ ) , 

to the same degree of accuracy as before. The difference of 
the two lengths is, therefore, approximately Dv^/c^. 

If the whole apparatus is now turned through an angle of 
90°, the difference will be in the opposite direction, and hence 
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the displacement of interference fringes along A'T should be 

This is a very small difference even when v is the velocity 
of the earth in its orbit; but it is altogether sufficient to be 
detected and measured if it were present with no other effect 
to mask it. The result of the experiment was that practically 
no displacement of interference fringes was observed; at most 
the displacement was less than one-fortieth of that expected. 

The conclusions which are to be drawn from this experiment 
we shall state in the next chapter. 

§ 6. OTHER EXPERIMENTAL INVESTIGATIONS. 

On the electrical side the problem of detecting the move­
ment of the earth through the ether has been attacked by 
Trouton and Noble.* They hung up an electrical condenser 
by a torsion wire and looked for a torque the presence of which 
was predicted on the hypothesis of a stationary ether through 
which the condenser was carried by the motion of the earth. 
Although the sensitiveness of their electrical arrangement was 
ample for the observation of the expected effect, no evidence 
of it was found. 

Therefore both on the optical and on the electrical side the 
attempt to detect the motion of the earth through the ether 
fails; no experiment is known by which it can be put in evidence. 

In addition to this negative evidence concerning the pre­
dicted effect of the earth's motion through the ether there is 
also the positive evidence which comes from the verification 
of contrary predictions based on other principles. This will 
come in incidentally for discussion in our later chapters, and 
consequently will be dismissed here. 

The experiments which we have described (and others related 
to them) are fundamental in the theory of relativity. The 
postulates of the next chapter are based on them. These 
postulates are in the nature of generalizations of the facts, 
established by the experiments. 

*Phil. Trans. Roy. Soc. (A), 202 (1904): 165. 
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§ 7. THE THEORY OF RELATIVITY IS INDEPENDENT OE 

THE E T H E R . 

In the next chapter we shall begin the systematic develop­
ment of the theory of relativity. It wiU be seen that its 
fundamental postulates, or laws, are based on the experiments 
of which we have given a brief account and on others related 
to them. These experiments have been carried out to test 
predictions which have been made on the basis of a certain 
theory of the ether. But the results which have been obtained 
are of a purely experimental character and can be formulated 
so as not to depend in any way on a theory of the ether. In 
other words, the laws stated in the postulates in the next 
chapter are in no way dependent for their truth on either the 
existence or the non-existence of the ether or on any of its 
properties. 

It is important to keep this in mind on account of the 
confusion which has sometimes arisen as to the relation between 
the theory of relativity and the theory of the ether. The 
postulates, as we shall see, are simply generalizations of exper­
imental facts; and, unless an experiment can be devised to 
show that these generalizations are not legitimate, it is natural 
and in accordance with the usual procedure in science to accept 
them as " laws of nature." They are entirely independent 
of any theory of the ether. 



CHAPTER II . 

THE POSTULATES OF RELATIVITY. 

§ 8. INTRODUCTION. 

THERE are two fundamental postulates concerning the 
nature of space and time which underlie all physical theory. 
They assert in part that every point of space is like every other 
point and that every instant of time is like every other instant. 
To make the statement of these properties more exact and 
complete we may say that space is isotropic and homogeneous 
and three-dimensional, while time is homogeneous and one-
dimensional. One important mathematical meaning of this 
is that the transformations of the space and time coordinates 
are to be linear. 

All our theorems wiU depend directly or indirectly on these 
two postulates concerning the nature of space and time. Since 
it is certain that no one will be disposed seriously to call them 
in question, it is considered unnecessary to give any further 
statement of them or to make explicit reference to them as part 
of the basis on which any particular theorem depends, it being 
understood once for all that they underlie all our work. 

In the previous chapter we gave some account of the 
experiments of Michelson and Morley and of Trouton and Noble. 
There are different points of view from which one may look 
at these experiments. In the theory of relativity they are 
taken in the light of an attempt to detect the earth's motion 
through space by means of the effect of this motion on terrestrial 
phenomena. So far as the experiments go, they indicate that 
such motion cannot be detected in this way. Furthermore, 
no one has yet been able to devise an experiment by means of 
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16 THE THEORY OF RELATIVITY. 

which the earth's motion through space can be detected by 
observations made on the earth alone. 

The question arises: Is it possible to have any such exper­
iment at all? In the theory of relativity this question is 
answered in the negative. The Michelson-Morley experiment 
and other experiments have been further generalized into the 
hypothesis that it is impossible to detect motion through space 
as such; that is, that the only motion of which we can have 
any knowledge is the motion of one material body or system 
of bodies relative to another. A sharp formulation of this 
conclusion constitutes the first characteristic postulate of 
relativity. 

§9. SYSTEMS OF REFERENCE. 

Before stating the postulate, however, it will be necessary 
to introduce a definition. In order to be able to deal with such 
quantities as are involved in the measurement of motion, time, 
velocity, etc., it is necessary to have some system of reference 
with respect to which measurements can be made. Let us 
consider any set of things consisting of objects and any kind 
of physical quantities whatever * each of which is at rest with 
reference to each of the others. Let us suppose that among 
these objects are clocks, to be used for measuring time, and 
rods or rules, to be used for measuring length. Such a set of 
objects and quantities, at rest relatively to each other, together 
with their units for measuring time and length, we shaU call 
a system of reference, f Throughout the book we shall denote 
such a system by 5. In case we have to deal at once with two 
or more systems of reference we shall denote them by Si, S2, 
Ss, or by S, S', Furthermore, it will be assumed 

that the units of any two systems Si and S2 are such thai 
the same numerical result will be obtained in measuring with 

• As, for instance, charges, magnets, light-sources, telescopes, etc. 
t If any number of these objects or quantities are absent we shall sometimes 

refer to what remains as a system of reference. Thus the system might consist 
of a single light-source alone. 
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the units of Si a quantity Li and with the units of S2 a quantity 
L2 when the relation of Li to Si is precisely the same as that of 
L2 to S2. 

§ 10. T H E FIRST CHARACTERISTIC POSTULATE. 

With this definition before us we are now able to state the 
first characteristic postulate of relativity: 

POSTULATE M. The unaccelerated motion of a system of 
reference S cannot be detected by observations made on S alone, 
the units of measurement being those belonging to S. 

The postulate, as stated, is a direct generalization from 
experiment. None of the actually existing experimental evidence 
is opposed to it. The conviction that future evidence wiU 
continue to corroborate it is so strong that objection has seldom 
or never been offered to this postulate by either the friends 
or the foes of relativity. No means at present known wiU 
enable the observer to detect motion through space or through 
any sort of medium which may be supposed to pervade space. 
Furthermore, in every case where the usual theories have 
predicted the possibility of detecting such motion and where 
sufficiently exact observations have been made, it has turned 
out that no such motion was detected. Moreover, one at 
least of these contradictions of theory—the Michelson-Morley 
experiment—^has been outstanding for a period of twenty-
five years and no satisfactory explanation has been offered unless 
one is wilHng to accept the law stated in postulate M above. 
I t would appear, therefore, that the experimental evidence fov 
the postulate is to be considered of strong character. 

§ 11. T H E SECOND CHARACTERISTIC POSTULATE. 

The so-caUed second postulate of relativity, in the form in 
which it has frequently been stated,* involves two entirely 
distinct parts. To the present writer it appears that no incon­
siderable part of the difficulty which has been felt concerning 

* See postulate £. below and the remarks which lead up to it. 
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this second postulate has been due to a failure to perceive the 
interdependence of these two parts and of postulate M above. 
Precisely that part of the second postulate to which most objec­
tion has been raised is a logical consequence of M and of the 
other part, the part last mentioned being a statement of a 
law which for a long time has been accepted by physicists. 
Consequently, we shall state separately the two parts of the 
second postulate and bring out with care the interdependence 
of these and of postulate M above. 

The part which we shall give first states a principle which 
has long been famiHar in the theory of Hght, namely, that the 
velocity of Hght is unaffected by the velocity of the source. 
Stated in exact language this postulate is as foUows: 

POSTULATE R'. The velocity of light in free space, measured 
on an unaccelerated system of reference S by means of units belong­
ing to S, is independent of the unaccelerated velocity of the source 
of light. 

The law stated in this postulate is a conclusion which follows 
readily from the usual undulatory theory of light and will 
therefore be accepted by any one who holds to that theory. 
But it should be emphasized that R' does not depend for its 
truth on any theory of Hght. It is a matter for direct experi­
mental verification or disproof, and this should be made in such 
a way as to be independent, as far as possible, of aU general 
theories of Hght, at least insofar as they are not supported by 
direct experimental evidence. So far as the writer is aware, 
there is no experimental evidence which is undoubtedly opposed 
to postulate M, while on the other hand there is direct experi­
mental evidence which is beHeved by some to be definitely 
in its favor. Tolman,* in particular has considered this matter 
in relation to the Doppler effect and to the velocity of light from 
the two limbs of the sun; and has concluded that experiment 
bears out the postulate. Stewart,! on the other hand, has 
examined the same experiments and has found an explanation 

* Physical Review, 21. ( igio): 26-40. 
^ Physical Review, 22 ( i g n ) : 418-428. 
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for them in Thomson's electromagnetic emission theory of light. 
According to Stewart these experiments are in agreement with 
our postulate M but are opposed to our postulate R'. All 
other attempted proof or disproof of the postulate appears 
to be in the same state; it is capable of two interpretations 
which are directly opposed to each other with respect to their 
conclusions as to the validity of R'. Thus at present there 
is no undoubted experimental evidence for or against postu­
late R'. If the assumption is to be proved at all, either new 
experiments must be devised or it must be proved by indirect 
means by showing that it is a consequence of experiment and 
accepted laws. 

Now any one who accepts postulates M and R' will perforce 
accept also all the logical consequences which necessarily flow 
from them. Of these logical consequences we shall now prove 
one which is of great importance in the theory of relativity: 

THEOREM I. The velocity of light in free space, measured on 
an unaccelerated system of reference S by means of units belonging 
to S, is independent of the direction of motion of S{MR').* 

Siace by R' the velocity of Hght is independent of that of 
the Hght-source we may suppose that the light-source belongs 
to the system of reference S. Now let the velocity of Hght, 
as it is emitted from this source in various directions, be observed 
and tabulated. On account of the homogeneity and isotropy 
of space mere direction through space will have no effect on these 
observed velocities; and therefore if they differ at aU, the 
difference will be due to the velocity of S. Now if there were 
a difference due to the direction of motion of S this difference 
would put in evidence the motion of S. But by M it is impos­
sible to detect such motion in this way. Hence the observed 
velocity must be the same in aH directions. In other words, 
it is independent of the direction of motion of S; and thus 
the theorem is proved. 

I t is clear, however, that we cannot take the next step and 

* Letters attached to a theorem in this way indicate those of the postulates 
on which the theorem depends. 
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prove that this observed velocity of light is independent of the 
numerical value of the velocity of S. To see this clearly, let 
us suppose that the numerical value of the velocity of 5 does 
effect the observed velocity of light. On account of R' it will 
have the same effect on the observed velocity of Hght whatever 
may be the unaccelerated motion of the light-source. Hence, 
from all possible observations, the experimenter will have only 
a single datum from which to determine the effect of one phe­
nomenon on another; namely, a datum in which the two phe­
nomena are connected in a certain definite way. It is obvious 
then that he cannot determine the effect of one of the phenomena 
on the other; for he can never observe the one without the 
other being present also and the connection which exists between 
them is always the same however he may vary the experiment. 
And if the observer cannot determine an existing effect it is 
clear that he cannot prove the absence of any effect whatever. 

But, although the absence of this effect cannot be proved, it is 
probably impossible to conceive any satisfactory way in which 
it could be present. Physical intuition is emphatic in asserting 
that if the direction of the velocity of 5 has no effect on the 
observed velocity of Hght then the numerical value of the veloc­
ity of 5 has no effect on such observed velocity. But this does 
not constitute a proof. There is in this, however, nothing to 
invahdate the naturalness of the assumption of such independence 
of the two velocities; in fact, it would be unscientific to make 
a different assumption (which would necessarily introduce 
greater complications) unless we were forced to it by unques­
tioned experimental fact. Accordingly, we shaU make the 
assumption and shaU state it as postulate R": 

POSTULATE R" The velocity of light in free space, measured 
on an unaccelerated system of reference S by means of units belong­
ing to S, is independent of the numerical value of the velocity of S. 

POSTULATE R . The postulate obtained by combining R' 
and R" will, for convenience, often be referred to as postulate R. 

Now since unaccelerated velocity is completely determined 
when the numerical value of the velocity and the direction of 
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the motion are given the truth of the following theorem is an 
immediate consequence of theorem I and postulate R": 

THEOREM II. The velocity of light in free space, measured 
on an unaccelerated system of reference S by means of units belong­
ing to S, is independent of the velocity of S {MR). 

The second postulate of relativity has usually been stated 
in a form different from that given above in R' and R" or R. 
In fact, the truth of theorem I has often been taken as part of 
the assumption in this postulate, notwithstanding that I can 
be derived from M and R'. Now, it is precisely the assump­
tion of I that has given most difficulty to some persons. I t 
is believed that a part of this difficulty will disappear in view 
of the fact that I is here demonstrated by means of M and R'. 

For the sake of convenience in future discussion one of the 
customary formulations of the second postulate is appended 
here. I t must be remembered, however, that it is not a separate 
constituent part of our present body of doctrine but is already 
contained in M and R, in part directly and in part as a nec­
essary consequence of these postulates. 

POSTULATE R. The velocity of light in free space, measured 
on an unaccelerated system of reference S by means of units belonging 
to S, is independent of the velocity of S and of the unaccelerated 
velocity of the light-source. 

From the very nature of the postulate R" it is difficult 
to obtain direct experimental evidence for or against it. I t 
seems, however, as we have previously pointed out, that one 
who accepts theorem I can hardly refuse to assume R" But 
theorem I is a logical consequence of postulates M and R', 
as we have shown. Moreover, from what follows it will be 
seen that we have occasion to make no further assumptions 
which can in any way rim counter to currently accepted notions. 
Consequently, it would seem that the experimental evidence for 
or against the whole theory of relativity must center around 
postulates M and R'. We have already given some account 
of the experimental evidence for these postulates. In connec­
tion with theorems to be derived later further reference wiU 
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be given to the existing experimental evidence and some other 
possible fines of research in this direction will be pointed out. 

I t is generally conceded that the strange conclusions which 
are obtained in the theory of relativity are due to postulate 
R (or to postulate R in the customary formulation). In 
view of theorem I above and the discussion of its consequences, 
it is now clear that the strangeness in the conclusions of 
relativity is due to that part of R which is contained in R'. 
I t is important therefore to have a careful analysis of this pos­
tulate and especially to know alternative forms, which, in view 
of the other postulates, are logically equivalent to it. We 
shall return to this matter in Chapter VI. 

§ 12. T H E POSTULATES V AND L. 

I t has been customary for writers on relativity to state 
explicitly only the postulates M and R. But every one, as a 
matter of fact, has made further assumptions concerning the 
relations of the two systems. These assumptions in some form 
are essential to the initial arguments and to the conclusions 
which are drawn by means of them. To the present writer 
it seems preferable to have these assumptions expHcitly stated. 
Among several forms, any one of which might be chosen, there 
is one which seems to be decidedly simpler than any of the 
others; and it is this one which we shaU employ here. We 
state the postulates V and L as follows: 

POSTULATE V. If the velocity of a system of reference S2 
relative to a system of reference Si is measured by means of the 
units belonging to Si and if the velocity of Si relative to S2 is 
measured by means of the units belonging to S2 the two results 
will agree in numerical value. 

This velocity we shall call the relative velocity of the two 
systems. The direction fine of this velocity will be called the 
line of relative motion of the two systems. 

POSTULATE L. If two systems of reference Si and S2 move 
with unaccelerated relative velocity and if a line segment I is per-
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pendicular to the line of relative motion of Si and S2 and is fixed 
to one of these systems, then the length of I measured by means 
of the units belonging to Si ivill be the same as its length measured 
by means of the units belonging to S2-

The essential content of these two postulates may be stated 
in simpler terms (but less accurately) if one allows the expHcit. 
introduction of the observer. Thus V is roughly equivalent 
to the following statement: Two observers whose relative motion 
is uniform will agree in their measurement of that uniform relative 
motion. As an approximate equivalent of L we have: Two 
observers whose relative motion is uniform will agree in their 
measurement of length in a line perpendicular to their line of 
relative motion. 

I t will be observed that these two postulates are nothing 
more than explicit statements of notions which underlie the 
classic theories of mechanics. The first is assumed in suppos­
ing that there exists such a thing as the relative motion of two-
bodies which are not at rest relatively to each other. The second. 
is nothing more than the statement of a portion of the idea which 
lies at the bottom of our conception of such a thing as the 
length of a rod or other object. 

Since these two postulates are universally accepted, the 
question might naturally arise. Why state them at all? Is 
it not enough simply to take them for granted? The answer 
is that there are other notions which have heretofore met 
with the sarAe universal acceptance and which do not agree 
with the postulates of relativity. Therefore it seems to be 
desirable—^in fact, to be essential to proper logical procedure— 
to state explicitly just those assumptions concerning the rela­
tion of the two systems of reference wliich we shall have occasion 
to employ in argument. Only in this way is one able to see 
exactly on what basis our strange conclusions rest. 

We shaU make a digression here to say one further word 
about postulate L. In the next chapter we shaU draw the 
conclusion that length in the line of motion is not independent 
of the velocity with which the system is moving. In view of. 
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this the question arises as to why we must assume that length 
in a line perpendicular to the line of motion is independent 
of the motion. The answer is that we are under no such ne­
cessity, that we are at liberty to assume that length in a line 
perpendicular to the fine of motion is dependent on the velocity 
of such motion. In fact, the general formulation of such an 
hypothesis has already been made by E. Riecke.* This hypoth­
esis, however, is undoubtedly more compHcated and less 
elegant than the one which we have made; and the latter, as 
we shaU see, is in conflict with no known experimental facts. 
Therefore, foUowing that instinct which has always wisely 
guided the physicist, we make the simplest hypothesis which 
is in agreement with and explanatory of the totaHty of exper­
imental facts at present known. If at any time experiments 
are set forth which do not agree with the theory developed on 
the basis of the above postulates, then will be the time to con­
sider the question of introducing a more compHcated postulate 
in place of our postulate L above. 

§ 13. CONSISTENCY AND INDEPENDENCE OF THE 

POSTULATES. 

Throughout our treatment it wiU be assumed that the 
postulates as stated above are consistent; that is to say, no 
attempt will be made to prove their consistency. The fact 
that no contradictory conclusions have been drawn from them 
will be accepted as (partial) evidence that they are mutually 
consistent. Moreover, from their very nature and from the 
differing range of appHcabiHty of the several postulates it is 
difficult to conceive how any of them can possibly contradict 
conclusions which may be drawn from the others. 

There is another question also which it is our purpose 
to pass over without discussion, namely, the question of the 
logical independence of the postulates. Is any postulate or a 
part of any postulate a logical consequence of the remaining 
postulates? This question is important from the point of view 

* Gottinger Nachrichten, Math. Phys., 1911, pp. 271-277. 
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of formal logic, but in the present case its value to physical 
science is probably small. 

§ 14. OTHER POSTULATES NEEDED. 

From the postulates stated above it is possible to draw only 
those conclusions of the theory of relativity which are of a 
general nature and have to do merely with the measurement 
of time and space. They alone are employed in Chapters 
HI and IV. 

If it is desired to study the nature of mass or the relation 
of mass and energy in the theory of relativity, it is necessary 
to have some assumption concerning mass in the first case 
and concerning both mass and energy in the second case. Thus 
we might assume the conservation laws of energy, electricity 
and momentum and deduce the joint consequences of these 
assumptions and those given above. It is our purpose to take 
up these matters in Chapters V and VI. It is convenient 
to state the postulates here; and this we do, after giving some 
necessary definitions. 

If m, M and v are respectively the mass, momentum and 
velocity of a body we shall assume (as in the classical mechanics) 
that they are connected by a relation of the form 

M=mv. 

We shall take mass and velocity to be the fundamental quanti­
ties and shall define momentum in terms of them by the above 
relation. 

Likewise we shall define the kinetic energy E of a moving 
body by means of the usual relation 

E = j^Mdv = jjmvdv. 

Later we shaU see that " mass " is variable and is not in general 
independent of the direction in which it is measured; conse­
quently, we must take for m in the above formulae the mass 
of the body in the direction of its motion. 

We shah take for granted the following laws of conservation 
of momentum and energy and electricity: 
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POSTULATE Ci. The sum total of momentum in any isolated 
system remains unaltered, whatever changes m.-ay take place in the 
system, provided that it is not afected by any forces from without. 

POSTULATE C2. The sum total of energy in any isolated 
system remains unaltered, whatever changes may take place in 
the system, provided that it is not affected by any forces from 
without. 

POSTULATE C3. The sum total of electricity in any isolated 
system remains unaltered, whatever changes may take place in the 
system, provided that the system as a whole neither receives elec­
tricity from nor gives out electricity to bodies not belonging to the 
system. 

The " action " of a moving body in passing from one posi­
tion to another may be defined as the space integral of the 
momentum taken over the path of motion. If we denote this 
action by A we have therefore 

A = j Mds=jmvds. 

Now ds = vdt, so that we have also 

A = jmv^dt. 

If several bodies are involved we have 

A = 2_, j'lnvds = 2 . {fnv'^it, 

where the summation is for the various bodies in the system. 
We may state the fundamental principle of least action in 

the following form: 
PRINCIPLE OF LEAST ACTION. The free motion of a con­

servative system between any two given configurations has the 
property that the action A is a minimum, the admissible values 
A of the action with which A is compared being obtained from 
varied motions in which the total energy has the same constant 
value as in the actual free motion. 



CHAPTER II I . 

THE MEASUREMENT OF LENGTH AND TIME. 

§ 15. RELATIONS BETWEEN THE TIME UNITS OF TWO SYSTEMS. 

L E T US consider three systems of reference S, Si and 52 
related to each other in the following manner: The lines of 
relative motion of S and Si, of S and S2, of Si and S2 are all 
paraUel; Si and S2 have a relative velocity * v; S and Si 
have a relative velocity fa in one sense and S and S2 have a 
relative velocity ^v in the opposite sense. The system 5 con­
sists of a single Hght-source, and this source is symmetrically 
placed with respect to two points of which one is fixed to Si 
and the other is fixed to 52. This is possible as a permanent 
relation on account of the relative motions of the three systems. 
For convenience, let us assume S to be at rest. 

We shall now suppose that observers on the systems ^ i and 
S2 measure the velocity of light as it emanates from the source 5 . 
Let a point A on Si and a 
point B on S2, which are 2= c B GM,F_ 
symmetrically placed with 
respect to the light-source S, 
move along the lines h and k A D E 
h; these fines are paraUel. -pio. 3. 
From postulate L it foUows 
that the observers on Si and S2 will obtain the same measure­
ment of the distance between h and h- Denote tins distance 
by d. From postulate M it follows that neither observer is 
able to detect his motion. Therefore he will make his observa­
tions on the assumption that his system is at rest; that is to 
say, his measurements will be made by means of the units 

* Note that postulate V is required to make this hypothesis legitimate. 
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belonging to his system and no corrections wiU be made on 
account of the motion of the system. Let the observer on Si 
reflect a ray of light SA from a point 4 to a pomt C on h and 
back to A; and let the observed time of passage of the Hght 
from ^ to C and back to A be t. Since the observer assumes 
his system to be at rest he wiU suppose that the ray of Hght 
passes (in both directions) along the fine AC which is perpendic­
ular to h and h. His measurement of the distance traversed 
by the ray of fight in time t wiU therefore be 2d. Hence he 
will obtain as a result 

2d 

where c is his observed velocity of light. 

Similarly, an observer on S2, supposing his system to be at 
rest finds the time ti which it requires for a ray of Hght to pass 
from B to D and return, the ray employed being gotten by 
reflecting a ray SB at B. Thus the second observer obtains 

2d 

where ci is his observed velocity of Hght. 
Now, from the assumed relations among the systems S, 

Si and S2 and from the homogeneity of space it foUows that the 
two observations which we have supposed to be made must lead 
to the same estimate for the velocity of Hght. This is readily 
seen from the fact that the observations were made in such a 
way that the effect due to either the numerical value or the 
direction of the motion of the systems Si and S2 is the same 
in the two cases. In other words, if we denote by Li and L2 
the quantities measured on Si and S2 respectively, then the 
relation of Li to Si is precisely the same as that of L2 to ^2; 
and hence the numerical results are equal, as one sees from the 
definition of systems of reference. Therefore we have ci=c. 

Let us now suppose that the observer at A is watching the 
experiment at B. I'o him it appears that B is moving with a 
velocity v, since by hypothesis the two systems have the relative 
velocity v and A and B measure this velocity alike. We shall 
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assume that the apparent motion is in the direction indicated 
by the arrow in the figure. To the observer at B it appears 
that the ray of light traverses BD from B to D and returns 
along the- same fine to B. To the observer at A it appears 
that the ray traverses the line BEF, F being the point which 
B has reached by the time that the ray has returned to the 
observer at this point. If EG is perpendicular to h and di 
is the length of EF as measured by means of units belonging 
to ^ i , then, evidently, GF (when measured in the same units) 
is ^di, where ^=v/c and c is the (apparent) velocity of light as 
estimated in this case by the observer at A. From the right 
triangle EFG it follows at once that we have 

V l - g 2 -

Now, if t is the time which is required, according to the observer 
at A, for the light to traverse the path BEF, then we have 

2di 2d 

So far in our argument in this section we have employed 
only those of our postulates which are generally accepted by 
both the friends and the foes of relativity. Now we come to 
the place where the men of the two camps must part company. 

Let us introduce for the moment the following additional 
hypothesis: 

ASSUMPTION A. The two estimates c and c of the velocity 
of light obtained as above by the observer at A are equal. 

Now we have shown that c is equal to ci. Hence we may 
equate the values of ci and c given above; thus we have 

2d 2d 

h j V i - S 2 ' 

or / i = ; V ' i - g 2 , 

But ti and t are measures of the same interval of time, ti being 
in units belonging to 52 and t being in units belonging to 5 i . 
Hence to the observer on 5i , the ratio of his time unit to that of 
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the system 52 appears to be V i —ĝ  . j Qn the other hand, 
i t may be shown in exactly the same way that to the observer 
on 52 the ratio of his time unit to that of the system 5i appears 
to be V i —g2 . j._ That is, the time units of the two systems 
are different and each observer comes to the same conclusion 
as to the relation which the unit of the other system bears to 
his own. 

This important and striking result may be stated in the 
following theorem: 

THEOREM III. If two systems of reference Si and S2 move 
with a relative velocity v and ^ is defined as the ratio of v to the 
•velocity of light estimated in the manner indicated above, then to 
afi observer on Si the time unit of Si appears to be in the ratio 
V I — i^^'.ito that of S2 while to an observer on S2 the time unit 
of S2 appears to be in the ratio V i — <^'^:ito that of Si (MVLA). 

Let us now bring into play our postulate R'. In theorem I 
we have already seen that a logical consequence of M and R' 
is that the velocity of light, as observed on a system of reference, 
is independent of the direction of motion of that system. Now, 
if c and c as estimated above differ at all, that difference can be 
due only to the direction of motion of 5i , as one sees readily 
from postulate R' and the method of determining these quan­
tities. Hence the statement which we made above as assump­
tion ^ is a logical consequence of postulates M and R'. There­
fore we are led to the following corollary of the above theorem: 

COROLLARY. Theorem III may be stated as depending on 
(MVLR') instead of on (MVLA). 

Let us now go a step further and employ postulate R" 
From theorem I and postulates R' and R" it follows that the 
observed velocity of light is a pure constant for all admissible 
methods of observation. If we make use of this fact the 
preceding result may be stated in the foUowing simpler form: 

THEOREM IV. If two systems of reference Si and S2 move 
with a relative velocity v and P is the ratio of v to the velocity of light, 
then to an observer on Si the time unit of Si appears to be in the 
ratio V i —^2 : i to that of S2 while to an observer on S2 the time 
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imit of S2 appears to be in the ratio V i — ĝ  • j fg ;^^^ gj ^^ 
{MVLR). 

Let us subject these remarkable results to a further 
analysis. Theorem III , its corollary and theorem IV all agree 
in the extraordinary conclusion that the time units of the two 
systems of reference 5i and 52 are of different lengths. Just 
how much they differ is a secondary matter; that they differ 
at all is the surprising and important thing. As postulates 
M, V, L are generally accepted and have not elsewhere led 
to such strange conclusions it is natural to suppose that the 
strangeness here is not due to them. 

Referring to the argument carried out above, we see that 
no unusual conclusions were reached until we had introduced 
and made use of assumption A. Moreover we have seen 
that this assumption itself is a logical consequence of M and R'. 
Further, R" is not involved either in theorem I I I or in its 
coroUary. But these already contain the strange features of 
our results. Hence the conclusion is irresistible that the 
extraordinary element in these results is due to postulate R'— 
or to speak more accurately, to just that part of it which it is 
necessary to use in connection with M in order to prove A as 
a theorem. 

This result is important, as the following considerations 
show. Postulates V and L state laws which have been univer­
sally accepted in the classical mechanics. Postulate I f is a 
direct generalization from experiment, and the generalization 
is legitimate according to the usual procedure of physicists 
in like situations. Postulate R' is a statement of a principle 
which has long been famiHar in the theory of Hght and has 
met with wide acceptance. Thus we see that no one of these 
postulates, in itself, runs counter to currently accepted physical 
notions. And yet just these postulates alone are sufficient 
to enable us to conclude that corresponding time units in 
two systems of reference are of different magnitude. In the 
next section we shaU show on the basis of the same postulates 
that the corresponding units of length in the two systems 
are also different. Thus the most remarkable elements in the 
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conclusions of the theory of relativity are deducible from 
postulates M, V, L, R' alone; and yet these are either generaliza­
tions from experiment or statements of laws which have usually 
been accepted. Hence we conclude: The theory of relativity, 
in its most characteristic elements, is a logical consequence of 
certain generalizations from experiment together with certain 
laws which have for a long time been accepted. 

One other remark, of a totally different nature, should be 
made with reference to the characteristic result of theorem 
IV. It has to do with the relation between the time units of 
the two systems. This relation is intimately associated with 
the fact that each observer makes his measurements on the 
hypothesis that his own system is at rest, while the other sys­
tem is moving past him with the velocity v. If both observers 
should agree to call 5 fixed and if further in this modified 
" universe " our postulates V. L, R were stiff valid it would 
turn out that the two observers would find their time units 
in agreement. But, in view if M, the choice of 5 as fixed would 
undoubtedly seem perfectly arbitrary to both observers; and 
the content of the modified postulate R would be essentially 
different from that of the postulate as we have employed it. 
Hence, if we accept R as it stands—or, indeed, even a certain 
part of it, as we have shown above—we must conclude that 
the time units in the two systems are not in agreement, in fact, 
that their ratio is that stated in the theorems above. 

§16. RELATIONS BETWEEN THE UNITS OF LENGTH OF TWO 

SYSTEMS. 

Let us consider three systems of reference 5, 5i and 52 
related in the same manner as in the preceding section except 
that now the two lines h and h coincide. We suppose that 5i 
is moving in the direction indicated by the arrow at A and that 
52 is moving in the direction indicated by the arrow at B. 

We suppose that observers at A and B again measure the 
velocity of light as it emanates from 5, this time in the direc­
tion of the line of motion. Each wiU carry out his observations 
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on the supposition that his system is at rest, for from M it fol­
lows that he cannot detect the motion of his system. The 
observer at A measures the 
time ti of passage of a ray of j^ ^ ^ j^ 
light from ^ to C and return *r2 s T^ ' 
to A, the length of ^ C being pic. 4. 
d when the measurement is 
made with a unit belonging to 5i . Likewise, the observer at 
B measures the time fc of passage of a ray of Hght from B to 
D and return to B, the length BD being d when measured with 
a unit belonging to 52. 

Just as in the preceding case it may be shown that the two 
observers must obtain the same estimate for the velocity of 
Hght. But the estimate of the observer at A is 2d/ti while 
that of the observer at B is 2d/t2. Hence 

^ 1 = ^ 2 ; 

that is, the number of units of time required for the passage of 
the ray at A and of the ray at B is the same, the former being 
measured on 5i and the latter on 52. Moreover, the measure 
of length is the same in the two cases. But the units of time, 
as we saw in the preceding section, do not have the same magni­
tude. Hence the units of length of the two systems along 
their line of motion do not have the same magnitude; and the 
ratio of units of length is the same as the ratio of units of time. 

Combining this result with theorem III , its coroUary and 
theorem IV we have the following three results: 

THEOREM V. If two systems of reference Si and S2 move 
with a relative velocity v and ^ is defined as the ratio of v to the 
velocity of light estimated in the manner indicated in the first 
part of %I5, then to an observer on Si the unit of length of Si along 
the line of relative motion appears to be in the ratio V i — ĝ  . j-
to that of S2 while to an observer on S2 the unit of length of S2 
along the line of relative motion appears to be in the ratio Vi — ^^:i 
to that of SiiMVLA). 

COROLLARY. Theorem V may be stated as depending on 
{MVLR') instead of on {MVLA). 
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THEOREM VI. If two systems of reference Si and S2 move 
with a relative velocity v and- ^ is the ratio of v to the velocity of light, 
then to an observer on Si the unit of length of Si along the line of 
relative motion appears to be in the ratio ^i-'^'^ : 1 to that of S2 
while to an observer on S2 the unit of length of S2 along the line of 
relative motion appears to be in the ratio V i - ^ ^ . j ^̂  ^̂ ^̂  ^j ^^ 
{MVLR). 

We might make an analysis of these results similar to that 
which we gave for the corresponding results in the preceding 
section. But it would be largely a repetition. It is sufficient 
to point out that the remarkable conclusions as to units of length 
in the two systems rest on just those postulates which led to 
the strange results as to the units of time. 

§ 17. DISCUSSION OF THE NOTION OF LENGTH. 

In the preceding section we saw that two observers A and B 
on relatively moving systems of reference 5i and 52 respectively 
are in a very pecuUar disagreement as to units of length along 
a line I parallel to their line of relative motion. To A it appears 
that B'i units are longer than his own. On the other hand, 
it seems to B that his units are shorter than ^ ' s . In the two 
cases the apparent ratio is the same; more precisely, the unit 
which appears to either observer to be the shorter seems to 
him to have the ratio Vi — ĝ  ; j -̂Q (-ĵ aj- -syiuch appears to him 
to be the longer. Although they are thus in disagreement 
there is yet a certain symmetry in the way in which their 
opinions diverge. 

Let us suppose that these two observers now undertake to 
bring themselves into a closer agreement in measurements of 
length along the line /. Suppose that B agrees arbitrarily to 
shorten his imit so that it will appear to A that the units of A 
and B are of the same length. Then, so far as A is concerned, 
aU difficulty has disappeared. How is B affected by this change? 
We see that the difficulty which he experienced is not disposed 
of; on the other hand it is greater than before. Already, it 
seemed to him that his unit was shorter than ^ ' s . Now, since 
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he has shortened his unit, the divergence appears to him to be 
increased. Moreover, the symmetry which we found in the 
former case is now absent. 

Furthermore, if any other changes in the units of A and B 
are made we shall always find difficulties as great as or greater 
than those which we encountered in the initial case. There is 
no other conclusion than this: We are face to face with an essen­
tial difficulty—one that is not to be removed by any mere 
artifice. What account of it shall we render to ourselves? 

This much is already obvious: The length of an object 
depends in an essential way upon the measurer and the system 
to which he belongs. 

We have certain intuitive notions concerning the nature of 
matter which it is necessary for us to examine if we are to dis­
cuss adequately the notion of length. We have usuaUy supposed 
that to revolve a steel bar, for instance, through an angle of 
ninety degrees has no effect upon its length. Let us suppose 
for the moment that this is not so; but that the bar is shorter 
when pointing in some directions than in others, so that its length 
is the product of two factors one of which is its length in a cer­
tain initial position and the other of which is a function of the 
direction in which the body pomts relative to that in the initial 
position. Suppose that at the same time all other objects 
experience precisely the same change for varpng directions. 
I t is obvious that in this case we should have no means of 
ascertaining this dependence of length upon the direction in 
which the body points. 

To an observer placed in a situation Hke this it would be 
natural to assume that the length of the steel bar is the same 
in all directions. In other words, in arriving at his definition 
of length he would make certain conventions to suit his con­
venience. 

Now suppose that the system of such an observer is set in 
motion with a uniform velocity v relative to the previous state 
of the system; and that at the same time all bodies on his 
system undergo simultaneously a continuous dilatation or contrac-
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tion. This observer would have no means of ascertaining that 
fact; and accordingly he would suppose that his steel bar 
had the same length as before. In other words, he would 
unconsciously introduce a new convention concerning his 
measurement of length. 

There is no a priori reason why our actual universe should 
not be such as the hypothetical one just described. To sup­
pose it so unless our experience demands such a supposition 
would be unnatural; because it would introduce an unnecessary 
inconvenience. But suppose that in our growing knowledge of the 
universe there should come a time when we could more con­
veniently represent to ourselves the actual facts of experience by 
supposing that aU material things are subject to some such 
deformations as those which we have indicated above; there is 
certainly no a priori reason why we should not conclude that 
such is the essential nature of the structure of the universe. 

NaturaUy we would not come to this conclusion without 
due consideration. We would first enquire carefully if there 
is not some more convenient way by which we can reconcile 
all experimental facts; and only in the event of a failure to find 
such a way would we be willing to modify so profoundly our 
views of the material world. 

Now, if we agree to suppose that our actual universe is 
subject to a certain (appropriately defined) deformation of 
the general type discussed above it would foUow that observers 
A and B on the respective systems 5i and 52 would be in a dis­
agreement as to units of length similar to that which exists, 
according to the theory of relativity. Therefore, that which at 
the outset seemed to be of such essential difficulty is explained 
easily enough, if we are willing to modify so profoundly our 
conception of the nature of material bodies. 

Whether in the present state of science experimental facts 
demand such a radical procedure is a question which wUl 
be answered differently by different minds. To one who 
accepts the postulates of relativity there is indeed no other 
recourse; one who refuses to accept them must find some other 
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satisfactory way to account for experimental facts. The 
Lorentz theory of electrons gives striking evidence in favor 
of supposing that matter is subject to some such deforma­
tions as those mentioned above; and this evidence is the more 
important and interesting in that the deformations (as con­
ceived in this theory) were assumed to exist simply in order 
to be able to account directiy for experimental facts. 

§ 18. DISCUSSION OF THE MEASUREMENT OF TIME.* 

That two observers in relative motion are in hopeless dis­
agreement as to the measurement of length in their line of 
relative motion is a conclusion which is probably (at first) 
sufficiently disconcerting to most of us; but it is an even greater 
shock to intuition to conclude, as we are forced to do accord­
ing to the theory of relativity, that there is a fike ineradicable 
disagreement in the measurement of time. A discussion 
similar to that in the preceding section brings out the fact 
that our observers A and B cannot possibly arrive at con­
sistent means of measuring intervals of time. The treatment 
is so far similar to the preceding discussion for length that we 
need not repeat it; we shall content ourselves with a brief 
discussion of conclusions to be drawn from the matter. 

Why is this inability of A and B to agree in measuring time 
received in our minds with such a distinct feefing of surprise 
and shock? I t is doubtless because we have such a Hvely sense 
of the passage of time. I t seems to be a thing which we know 
directly, and the conclusion in question is contrary to our 
unsophisticated intuition concerning the nature of time. 

But what is it that we know directly? We have an imme­
diate perception of what it is for two conscious phenomena 
to coexist in our mind, and consequently we perceive imme-

* In connection with this section and the following one the reader should 
compare the excellent and interesting treatment of the problem of measuring 
time to be found in Chapter I I of Poincare's Value of Science (translated into 
English by Halsted). 
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diately the simultaneity of events in our mind. Further, we 
have a perfectiy clear sense of the order of succession of events 
in our own consciousness. Is not that aU that we know directly? 

The difficulties which A and B experience in correlating 
their measurements of time grow out of two things, of neither 
of which we have direct perception. 

In the first place there are two consciousnesses involved; 
and what reason have we to suppose that succession of events 
is the same for these two? This question we shaU not treat, 
assuming that the principal matter can be put into such imper­
sonal form as to obviate this difficulty altogether. (As a mat­
ter of fact, so far as anything characteristic of the theory of 
relativity is concerned this can be done.) 

The other difficulty has to do with the measurement of time 
as opposed to the mere psychological experience of its passage. 
In this matter we are entirely without any direct intuition to 
guide us. We have no immediate sense of the equality of two 
intervals of time. Therefore, whatever definition we employ 
for such equality wUl necessarily have in it an important ele­
ment of convention. To keep this well in mind will facilitate 
our discussion. 

Our problem is this: How shall we assign a numerical 
measure of length to a given time interval; say to an interval 
in which a given physical phenomenon takes place? We 
shall arrive at the answer by asking another question: Why 
should we seek to measure time intervals at all, seeing that 
we have no immediate consciousness of the equaHty of such 
intervals? There can be only one answer: we seek to measure 
time as a matter of convenience to us in representing to our­
selves our experiences and the phenomena of which we are 
witnesses. In such a way we can render to ourselves a better 
account of the world in which we five and of our relation to it. 

Now, since our only reason for attempting to measure time 
is in a matter of convenience, the way in which we measure 
it wiU be determined by the dictates of that convenience. The 
system of time measurement which we shall adopt is just that 
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system by means of which the laws of nature may be stated 
in the simplest form for our comprehension. 

Let us return to the case of the two observers A and B 
of the preceding section. Suppose that each of them has chosen 
a system of measuring time that suits his convenience in the 
interpretation of the laws of nature on his system. There is 
no a priori reason why the two observers should measure time 
intervals in the same way. In fact, since there is an arbitrary 
element in the case of each method of measurement and since 
the two systems are in a state of relative motion, it is not at 
all unnatural that the units of A and B should differ. 

Now it is to be noticed that each of the observers A and 
B is in just the situation in which we find ourselves. We have 
chosen a method of measuring time which seems to us conven­
ient. Insofar as that method depends on convenience it is rela­
tive to us who are observers, and therefore it has in it something 
which is arbitrary. There is no doubt that it would be desir­
able for us to know what it is which is arbitrary, which is relative. 
to us who observe; but it is equally obvious that it must be 
difficult for us to determine what this arbitrary element is. 

The theory of relativity makes a contribution to the solu­
tion of this problem. We suppose that two observers on dif­
ferent systems find the laws of nature the same as we find them; 
or, more exactly, we suppose that they find certain specific 
laws the same as we find them. Then we inquire as to their 
agreement in measuring time and see that they differ in a 
certain definite way. This difference is due to things which 
are relative to the two observers; and thus we begin to get 
some insight into the ultimate basis of our own method of 
measurement. I t is obviously an important service which 
the theory of relativity renders to us when it enables us to 
to make an advance towards a better understanding of such a 
fundamental matter as this. 

This matter will become clearer if we speak of the simulta­
neity of events which happen at different places; and therefore 
we turn to a discussion of this topic. 



AO THE THEORY OF RELATIVITY. 

§ 19. SIMULTANEITY OF EVENTS HAPPENING AT DIFFERENT 

PLACES. 

Let us now assume two systems of reference 5 and 5' moving 
w îth a uniform relative velocity v. Let an observer on 5' 
undertake to adjust two clocks at different places so that they 
shaU simultaneously mark the same hour. We wiU suppose 
that he does this in the following very natural manner: Two 
stations A and B are chosen in the line of relative motion of 5 
and S' and at a distance d apart. The point C midway between 
these two stations is found by measurement. The observer 

is himseff stationed at C and 
, , . , „ , „ has assistants at A and B. A 

c "-^ single light signal is flashed from 
FIG. S- C to A and to B, and as soon 

as the Hght ray reaches each 
station the clock there is set at an hour agreed upon before­
hand. The observer on 5' now concludes that his two clocks, 
the one at A and the other at B, are simultaneously marking 
the same hour; for, in his opinion (since he supposes his 
system to be at rest) the light has taken exactly the same 
time to travel from C to ^ as to travel from C to B. 

Now let us suppose that an observer on the system 5 has 
watched the work of regulating these clocks on 5' The dis­
tances CA and CB appear to him to be 

i ^ V l - p 2 

instead of ^d. Moreover, since the velocity of Hght is independ­
ent of the velocity of the source, it appears to him that the Hght 
ray proceeding from C to ^ has approached A at the velocity 
c-\-v, where c is the velocity of light, while the ray going from 
C to B has approached B at the velocity c-v. Thus to him 
it appears that the Hght has taken longer to go from C to 5 
than from C to ^ by the amount 

1 j V i _ 2̂ ^dVi--^ _v_dVi--f_ 
c—v c-\-v c^—iP' 
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But since %=vlc the last expression is readily found to be equal 
to 

V d 

ĉ  Vi-g2-

Therefore, to an observer on 5 the clocks of 5 ' appear to mark 
different times; and the difference is that given by the last 
expression above. 

Thus we have the following conclusion: 

THEOREM VII. Let two systems of reference 5 and S' have 
a uniform relative velocity v. Let an observer on S' place two clocks 
at a distance d apart in the line of relative motion of 5 and S' and 
adjust them so that they appear to him to mark simultaneously 
the same hour. Then to an observer on 5 the clock on S' which 
is forward in point of motion appears to be behind in point of 
time by the amount 

V d 
C2 V l - p 2 ' 

where c is the velocity of light and <^ = v/c {MVLR). 

I t should be emphasized that the clocks on 5 ' are in agree­
ment in the only sense in which they can be in agreement for 
an observer on that system who supposes (as he naturally wUl) 
that his own system is at rest—notwithstanding the fact that 
to an observer on the other system there appears to be an 
irreconcilable disagreement depending for its amount directly 
on the distance apart of the two clocks. 

According to the result of the last theorem the notion of 
simultaneity of events happening at different places is indefinite 
in meaning until some convention is adopted as to how simul­
taneity is to be determined. In other words, there is no such 
thing as the absolute simultaneity of events happening at different 
places. 

How shall we adjust this remarkable conclusion to our 
ordinary intuitions concerning the nature of time? We shall 
probably most readily get an answer to this question by inquir-
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mg further: What shaU we mean by saying that two events 
which happen at different places are simultaneous? 

First of aU it. should be noticed that we have no direct sense 
of what such simultaneity should mean. I have a direct per­
ception of the simultaneity of two events in my own con­
sciousness. I consider them simultaneous because they are 
so interlocked that I cannot separate them without mutUating 
them. If two things happen which are far removed from each 
other I do not have a direct perception of both of them in such 
way that I perceive them as simultaneous. When should I 
consider such events to be simultaneous? 

To answer this question we are forced to the same consider­
ations as those which we met in the preceding section. There 
can be no absolute criterion by which we shall be able to fix 
upon any definition as the only appropriate one. We must 
be guided by the demands of convenience, and by this alone. 

In view of these considerations there is nothing unthink­
able about the conclusion concerning simultaneity which we 
have obtained above. An observer A on one system of refer­
ence regulates clocks so that they appear to him to be simulta­
neous. It is apparent that to him the notion of simultaneity 
appears to be entirely independent of position in space. His 
clocks, even though they are separated by space, appear to 
him to be running together, that is, to be together in a sense 
which is entirely independent of all considerations of space. 

But when B from another system of reference observes 
the clocks of A's system they do not appear to Ifim to be mark­
ing simultaneously the same hour; and their lack of agreement 
is proportional to their distance apart, the factor of propor­
tionality being a function of the relative velocity of the two 
systems. 

Thus instants of time at different places which appear to 
A to be simultaneous in a sense which is entirely independent 
of aU considerations of space appear to B in a very different 
Hght; namely, as if they were different instants of time, the 
one preceding the other by an amount directiy proportional 
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to the distance between the points in space at which events 
occur to mark these instants. Even the order of succession 
of events is in certain cases different for the two observers, as 
one can readily verify. 

I t thus appears that the notion of simultaneity at different 
places is relative to the system on which it is determined. The 
only meaning which it can have is that which is given to it by 
convention. 



CHAPTER IV. 

EQUATIONS OF TRANSFORMATION. 

§20. TRANSFORMATION OF SPACE AND TIME COORDINATES. 

IT is now an easy matter to derive the Einstein formulae 
for the transformation of space and time coordinates. Let 
two systems of reference 5 and S' have the relative velocity 
V in the line I. Let systems of rectangular coordinates be 
attached to the systems of reference 5 and 5' in such a way 
that the ic-axis of each system is in the line I, and let the y-axis 
and the z-axis of one system be parallel to the y-axis and the 
z-axis respectively of the other system. Let the origins of the 
two systems coincide at the time t = o. Furthermore, for the 
sake of distinction, denote the coordinates on 5 by x, y, z, t 
and those on S' by x', y'. z', t'. We require to find the value 
of the latter coordinates in terms of the former. 

From postulate L it follows at once that y'^y and z'^z. 
Let an observer on 5 consider a point which at time t=o appears 
to him to be at distance * x from the y'z'-plane; at time t=t 
it will appear to him to be at the distance x—vt from the y'z'-
plane. Now, by an observer on S' this distance is denoted 
by x'. Then from theorem VI we have 

x'Vi — <^^=x—vt. 

Now consider a point at the distance x from the yz-plane at 
time ^ = / in units of system 5. From theorem VII it foUows 

* The algebraic sign of the distance is supposed to be taken into account in 
the value of x. 
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that to an observer on 5 the clock on 5' at the same distance 
X from the yz-plane will appear behind by the amount 

V 

where c is the velocity of Hght. That is to say, in units of 5 
this clock would register the time 

V 
I 1̂  X. 

c^ 

Hence, by means of theorem IV, we have at once the result 
i V l - ^ 2 = i - - X . 

C^ 

Solving the two equations involving x' and t' and coUecting 
results, we have 

^'=v=p(^->)' 
{A) x' = —^=4x-vt), {MVLR) 

V I —^^ 

y'=y, 

where ^ = v/c and c is the velocity of light. 

In the same way we may obtain the equations which express 
t, X, y, z in terms of t', x', y', z'. But these can be found more 
easily by solving equations {A) for t, x, y, z. Thus we have 

t= ,- (t'+\x'), 

{Ai) x= J—^^{x'-\-vt'), {MVLR) 

y = y' 

z = z'. 

These two sets of equations {A) and (^i) are identical in form 
except for the sign of v. This symmetry in the transforma­
tions constitutes one of their chief points of interest. 
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§ 21. T H E ADDITION OF VELOCITIES. 

We shall now derive the formulas for the addition of veloc­
ities. 

Let the velocity of a point in motion be represented in units 
belonging to 5 ' and to 5 by means of the equations 

x' = Uxt'^ y'=Uyt', z'= ujt'; 

x = Uxt, y = Uyt, z = Uzt, 

respectively. In the first of these substitute for /', x', y', z' 
their values given by {A), solve for x/t, y/t, z/t and replace 
these quantities by their equals Ux, Uy, u^ respectively. Thus 
we have 

Ux'-\-V 
Ux-

VUx' 

(-B) Uy^-^-^uj, {MVLR) 

c' 

Vl-g2 

VUx' 

From these results it follows that the law of the paraUelo-
gram of velocities is only approximate. This conclusion of 
the theory of relativity has given rise, in the minds of some 
persons, to the most serious objections to the entire theory. 

Suppose that both the velocities considered above are in 
the line of relative motion of 5 and 5 ' . Then we have 

v-\-u' 
u = - vu 

This equation gives rise to the foUowing theorem: 

THEOREM VIII. If two velocities, each of which is less than 
c, are combined the resultant velocity is also less than c{MVLR). 
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To prove this we substitute in the preceding equation for 
f and u' the values 

v = c — k, u'= c—l 

where each of the numbers k and I is positive and less than c. 
Then the equation becomes 

2C — k — l 
u = c , , kr 

2C — k — l-\— 

The second member is evidently less than c. Hence the theorem. 

If, however, either one (or both) of the velocities v and u' 
is equal to c—and hence ^ or / (or both) is equal to zero—we 
see at once from the last equation that u = c. Hence, we have 
the following result: 

THEOREM IX. If a velocity c is compounded with a velocity 
equal to or less than c, the resultant velocity is c{MVLR). 

§22. MAXIMUM VELOCITY OF A MATERIAL SYSTEM. 

A conclusion of importance is implicity involved in the pre­
ceding results. I t can probably be seen in the simplest way 
by reference to the first two equations {A), these being nothing 
more nor less than an analytic formulation of theorems IV 
and VI. If ^ is in numerical value greater than i—whence 
I —^̂  is negative—the transformation of time coordinates 
from one system to the other gives an imaginary result for 
the time in one system if the time in the other system is real. 
Likewise, measurement of length in the direction of motion 
is imaginary in one system if it is real in the other. Both of 
these conclusions are absurd and hence the numerical value of 
P is equal to or less than i. If it is i, then any length in one 
system, however short, would be measured in the other as infin­
ite; and a like result holds for time. Hence g is numerically 
less than i. But ^=v/c, the ratio of the relative velocity of 
the two systems to the velocity of light. Hence: 
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THEOREM X. The velocity of light is a maximum which 
the velocity of a material system may approach but can never 
reach {MVLR). 

I t should be pointed out that this theorem may also be proved 
directly by means of theorem IX. 

§ 23. TIME AS A FOURTH DIMENSION. 

I have no intention of asserting that time is a fourth dimen­
sion of space in the sense in which we ordinarily employ the 
word " dimension"; such a statement would have no meaning. 
I wish to point out rather that it is in some measure connected 
with space, and that in many formulas it must enter as it would 
if it were essentially and only a fourth dimension. 

We shall see this readily if we examine the formulae {A) 
of transformation from one system of reference to another. 
Here the time variable t enters in a way precisely analogous to 
that in which the space variables x, y, z enter. 

Suppose now that the law of some phenomenon as observed 
on S' is given by the equation 

F{x',y',z',t')=o 

and we desire to know the expression of this law on 5. We 
substitute for x', y', z', t' their values in terms of x, y, z, t 
given in {A); and thus we obtain an equation stating the law 
in question. 

From these considerations it appears that in many of our 
problems, namely in those which have to do at once with two 
or more systems of reference, the time and space variables 
taken together play the role of four variables each having to 
do with one dimension of a four-dimensional continuum. 

This conclusion raises phUosophical questions of profound 
importance concerning the nature of space and time; but into 
these we cannot enter here. 



CHAPTER V. 

MASS AND ENERGY. 

§ 24. DEPENDENCE OF MASS ON VELOCITY. 

SUPPOSE that we have two systems of reference 5i and 52 
moving with a relative velocity v. We inquire as to whether, 
and in what way, the mass of a body as measured on the two 
systems depends on v. WUl a given body have the same measure 
of mass when that mass is estimated in units of 5i and in 
units of 52? And wiU the mass of a body depend on the direc­
tion of its motion by means of which that mass is measured? 
Our purpose in this section is to answer these two questions. 

The two most important directions in which to measure 
the mass of a body are, first, that perpendicular to the line of 
relative motion of 5i and 52, and, secondly, that parallel to 
this fine of motion. For convenience in distinguishing these 
we shaU speak of the " transverse mass " of a body as that with 
which we have to deal when we are concerned with the motion 
of the body in a direction perpendicular to the line of relative 
motion of 5i and 52; when the motion is paraUel to this Hne 
we shall speak of the " longitudinal mass " of the body. 

Lewis and Tolman (PhU. Mag. i8 : 510-523) determine 
what they call the "mass of a body in motion," employing 
for this purpose a very simple and elegant method. This 
" mass " is what we have just defined as the transverse mass 
of the body. We employ the exceUent method of these authors 
in deriving the formula for transverse mass. 

Suppose that an experimenter A on the system 5i constructs 
a ball Bi of some rigid elastic material, with unit volume, and 
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puts it in motion with unit velocity in a direction perpendicular 
to the Hne of relative motion of 5i and 52, the units of measure­
ment employed being those belonging to 5i. Likewise sup­
pose that an experimenter C on 52 constructs a ball B2 of the 
same material, also of unit volume, and puts it in motion with 
unit velocity m a direction perpendicular to the line of relative 
motion of Si and 52; we suppose that the measurements made 
by C are with units belonging to 52. Assume that the exper­
iment has been so planned that the balls will collide and rebound 
over their original paths, the path of each ball being thought 
of as relative to the system to which it belongs. 

Now the relation of the baU B2 to the system 5i is the same 
as that of the ball Bi to the system 52, on account of the perfect 
symmetry which exists between the two systems of reference 
in accordance with previous results. Therefore the change of 
velocity of B2 relative to its starting point on 52 as measured 
by A is equal to the change of velocity of Bi relative to its 
starting point on 5i as measured by C. Now velocity is equal 
to the ratio of distance to time: and in the direction perpendicular 
to the line of relative motion of the two systems the units of 
length a,re equal; but the units of time are unequal. Hence 
to either of the observers the change of velocity of the two 
balls, each with respect to its starting point on its own system, 
will appear to be unequal. 

To A the time unit on 52 appears to be longer than his own 
in the ratio i : V i — 2̂ (ggg theorem IV). Hence to A it 
must appear that the change in velocity of B2 relative to its 
starting point is smaller than that of Bi relative to its starting 
point in the ratio V i —p2 . j gy^ ĵ̂ g change in velocity of 
each baU multipHed by its mass gives its change in momentum. 
From postulate Ci it foUows that these two changes of momentum 
are equal. Hence to A it appears that the mass of the ball 
Bi is smaUer than that of the baU B2 in the ratio V i — <^^:T. 

Similarly, it may be shown that to C it appears that the 
mass of the ball B2 is smaller than that of -Bi in the ratio 
V i - a ^ : I. 
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From our general results concerning the measurement of 
length it follows that if the ball which has been constructed 
by A were transferred to C's system it would be impossible 
for C to distinguish .4's ball from his own by any considerations 
of shape and size. Likewise, as A looks at them from his own 
system he is similarly unable to distinguish them. It is there­
fore natural tp take the mass of C's ball as that which ^ ' s 
would have ff it had the velocity v with respect to 5i of the 
system 52. Thus we obtain a relation existing between the 
mass of a body in motion and at rest. 

Now, " mass " as we have measured it above is the trans­
verse mass of our definition. From the argument just carried 
out we are forced to conclude that the transverse mass of a body 
in motion depends (in a certain definite way) on the velocity 
of that motion. The result may be formulated as follows: 

THEOREM XI. Let mo denote the mass of a body when at rest 
relative to a system of reference 5. When it is moving with a 
velocity v relative to S denote by t{m,) its transverse mass, that is, 
its mass in a direction perpendicular to its line of motion. Then 
we have 

where '^=v/c and c is the velocity of light {MVLRCi). 

In the statement of this theorem we have tacitly assumed 
that the mass of a body at rest relative to 5, when measured 
by means of units belonging to 5, is independent of the direc­
tion in which it is measured. If this assumption were not 
true we should have a means of detecting the motion of 5„ 
a conclusion which is in contradiction to postulate M. 

In order to find the longitudinal mass of a moving body 
we fixst find the relation which exists between longitudinal 
mass and transverse mass. We employ for this purpose the 
elegant method of Bumstead (Am. Journ. Science (4) 26: 
498-500). 

Let us as usual consider two systems of reference 5i and 
52 moving with a relative velocity v, observers A and B being 
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Stationed on Si and 52 respectively. Suppose that B per­
forms the foUowing expermaent: He takes a rod of two units 
length, whose mass is so smaU as to be negfigible, and attaches 
to its ends two balls of equal mass. Then he suspends this 
rod by a wire so as to form a torsion pendulum. We assume 
that the line of relative motion of the two systems is perpendic­
ular to the line of this wire. 

Let us consider the period of this torsion pendulum in the 
two cases when the rod is clamped to the wire so as to be in 
equilibrium in each of the foUowing two positions: (i) With 
its length perpendicular to the line of relative motion of 5i 
and 52; (2) with its length parallel to this line of motion. 

As B observes it the period must be the same in the two 
cases; for, otherwise, he would have a means of detecting his 
motion by observations made on his system alone, contrary to 
postulate M. Then from the relation of time units on 5i 
and 52 it follows that the two periods will also appear the same 
to A. As observed by B the apparent mass of the baUs is 
the same in both cases. We inquire as to how they appear 
to A. Let mi and W2 be the apparent masses, as observed by 
A, in the first and second cases respectively. It is obvious 
that mi is the longitudinal mass and W2 the transverse mass 
of the baUs in question. 

When the pendulum is in motion it appears to B that each 
ball traces a circular arc. From the relations between the units 
of length in the two systems it follows that to A it appears 
that the balls trace arcs of an eUipse whose semiaxes are i 
and V I —g2 and lie perpendicular and parallel, respectively, 
to the Hne of relative motion of the two systems. 

Let us now determine the period of each of these two 
pendulums as they are observed by ^ . By equating the expres­
sions for these periods we shall find the relation which exists 
between mi and W2. 

Let X and y be the cartesian coordinates of a point as deter­
mined by A. the axes of reference being the major and minor 
axes of the eUipse in which the baUs move. Let x' and y' be 
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the coordinates of the same point as determined by B. Then 
the circular path of motion, as determined by B, has the equations 

a;' = cos 0, y = sin 6, 

the angle 6 being measured from the major axis of the elHpse. 
The equations of the ellipse, as determined by A, are 

a; = cos e, 3' = \ / i — 2̂ sjjj Q_ 

In the first case—when the rod is perpendicular to the 
Hne of relative motion of 5 i and 52—the amount of twisting 
in the wire when the baU is in a given position is the numerical 
value of the corresponding angle 6; and therefore the potential 
energy * is proportional to 02, say that it is ^k Ĝ . Now from 
the values of y and x above we have 

y=xVi-^^ tan 0. 

For smaU oscillations we have x = i and tan 0 = 0; and therefore 

3' = V i -g2 .6_ 

Hence the potential energy is 

1 - ^ , 2 . 

and the equation of motion of the particle becomes 

d^y k 

Hence the period Ti of oscillation is 

r i = 2 u ^ — I — 

*That the potential energy is. proportional to 6̂  when measured b y S is 
obvious. Since A observes a different apparent angle 6' (say) corresponding to 
B's observed angle 8 it might at first sight appear that the potential energy as 
observed by A is proportional to 6' ĵ that this is not the case is seen from the 
fact that for a given twist in the wire 6' depends on the direction of equilibrium 
of the bar, that is, it depends on the way in which the bar is attached to the wire; 
hence, if the potential energy as observed by A were proportional to 6'^, it 
would depend on the way in which the bar is attached. Since this is obviously 
not the case we conclude that the potential energy is proportional to 6 .̂ 
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In the second case—when the rod is paraUel to the Hne of 
relative motion of 5i and 52—the amount of twisting in the 
wire for a given position of the baUs is the numerical value 

of—— 0. The potential energy is I ^(—— 0) We have 

y 
x= , ^cot 6. 

\ / i - p 2 

For small oscillations we have 

y = V I - 2̂̂  cot 0 = t a n ( — - 0 j = — - 0 . 

Hence the potential energy is \kx^, and the period T2 of 
oscillation is therefore 

T2 = 2•K^^-J. 

Equating the two periods of osciUation found above we have 

W2 = ( l —P^)W1. 

Remembering that mi and m2 are the longitudinal mass and 
the transverse mass, respectively, and making use of theorem 
XI , we have the following result: 

THEOREM XII. Let ma denote the mass of a body when at 
rest relative to a system of reference S. When it is moving with 
a velocity v relative to 5 denote by l{m„) its longitudinal mass, 
that is, its mass in a direction parallel to its line of motion. Then 
we have 

mo 

where <^=v/c and c is the velocity of light {MVLRC1C2). 

§25. ON THE DIMENSIONS OF UNITS. 

Denote the fundamental measurable physical entities mass, 
length and time by M, L and T respectively. Then the definition 
of derived entities gives rise to the so-caUed dimensional equa-
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tions. Thus if V denote velocity we have the dimensional, 
equation 

F = ^ 

r 
That such equations must be useful in obtaining the relations, 
of units in two systems of reference is obvious. Thus from 
the above dimensional equation for V we may at once derive 
the fundamental result (see theorem VI) concerning the relation 
of units of length in the Hne of relative motion of two systems 
not at rest relatively to each other. For this purpose it is 
sufficient to employ postulate V and theorem IV. The reader-
can easily supply the argument. Or, conversely, if one knows 
the relations which exist between units of length and units 
of time in two systems one concludes readily to the truth of 
postulate V 

Likewise, from the dimensional equation 
acceleration = 7f^, 

one may readily determine the relations which exist between 
units of acceleration on two systems, it being assumed that 
the relations of time units and length units are known. Making 
this assumption, then, the two dimensional equations above 
give us the foUowing theorem: 

THEOREM XIII. Let two systems Si and S2 move with a 
relative velocity v in the direction of a line I, and let ^=v/c where 
c is the velocity of light. Then to an observer on Si it appears that 
the unit of velocity [acceleration] on Si bears to the unit of velocity 
[acceleration] on S2 the ratio i : i[i : V i —p2] ^^ j. . -y/i —^2-
[ 1 : 1 — p2] according as the motion is parallel to I or perpendicular 
to 1{MVLR). 

Let us use F to denote force. Then from the dimensional 
equation 

'• J 2 ' 

we shaU be able to draw an interesting conclusion concerning 
the measurement of force. 
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Suppose that an observer 5 on a system 52 carries out 
some observations concerning a certain rectifinear motion, 
measuring the quantities M', L', T', so that he has the equation 

M'L' 
F'=- f'2 

Another observer ^ on a system 5i (having with respect to 52 
the velocity v in the fine /) measures the same force calling 
it F. Required the value of F in terms of F', when the motion 
is parallel to I and when it is perpendicular to /, the estimate 
being made by A. 

When the motion is perpendicular to I—^that is, when the 
force acts in a line perpendicular to /—we have 

„ ML M'Vi-^^-L' F' 
Fi=-

T2 r 2 ( l - p 2 ) ^ ^ _ j 

When the motion is parallel to / we have 

ML A r ^ ( i - g 2 ) f . £ V i - g 2 

These results may be stated in the following theorem: 

THEOREM XIV In the same systems of reference as in theorem 
XIII, let an observer on S2, measure a given force F' in a direction 
perpendicular to I and in a direction parallel to I, and let Fi and F2 
be the values of this force as measured in the first and second cases 
respectively by an observer on Si. Then we have 

Fl=-^==r F2 = {l-^^)F' {MVLRC1C2). 
V i —p^ 

I t is obvious that a similar use may be made of the dimen­
sional equation of any derived unit in determining the relation 
which exists between this unit in two relatively moving systems 
of reference. 
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§26. MASS AND ENERGY. 

If, as is frequently done, we employ for the definition of 
the kinetic energy E the relation (compare § 14) 

Mdv= I mvdv. 

it is clear that for the mass w we should take the longitudinal 
mass l{mt). Then let mo denote the mass of the body at rest, 
Eo its energy when at rest (that is, the energy due to its internal 
activity), and £„ its energy when moving at the velocity v. 
Then clearly E=Ev—Eo, so that in view of theorem XI I we 
have 

movdv 
E—Exi — Eo — I / nO\3.J 

( l - g 2 ) , ' 
whence, on integration, we have 

' 0 = 1 7 
Jo (i-

E = E,-Eo = moc^ , - - i . (i) 
\ V l - ^ 2 / 

Hence for the kinetic energy of a moving body we have 
£ = moc2(J^2+|^4+ ). 

or, to a first approximation only, 

E=\moi?'. 

Therefore the usual formula for kinetic energy in the classical 
mechanics is only a first approximation. 

Since relation (i) is to be true for aU values of v it is obvious 
that we have 

£„= , =-\-k, Eo = moc^-Vk, 
V I — 2̂ 

where ;% is a constant, that is, a quantity independent of v. 
From the first of these equations we conclude further that 

E, = c^-t{m^^k 

so that the total energy of a body, decreased by the constant k, 
is directly proportional to its transverse mass. In case the body 
is at rest its mass in one direction is the same as in another; 
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hence mo = i{mo). Bearing this in mind we have the foUowing 
theorem: 

THEOREM XV. Let m^ be the mass of a body when at rest 
with respect to a given system of reference and let t{m^ denote 
its transverse mass when it is moving with the velocity v {the case 
v = o is not excluded). Then the total energy E, which it possesses 
is c^-t{mv)+k, where k is a constant. 

§27. ON MEASURING THE VELOCITY OF LIGHT. 

The following relations are immediate consequences of 
equations written out above: 

Ev~Eo -J T7 z. Eo — k 
03 t{m,)-mo ' ' V I —p2 

Now, suppose that an experimenter contributes to a body 
which is at rest a known amount of energy and determines 
the velocity which this causes the body to acquire. If the 
two measurements are made with sufficient accuracy one wiU 
be able, by substituting the results in the first of the above 
equations, to determine in this way the velocity of light. 
ActuaUy to carry out this remarkable method for measuring 
c would doubtless be very difficult; but the obvious great 
importance of the result is certainly such as to justify a care­
ful consideration of the problem. If the value of c determined 
in this way should agree well with its value as otherwise found, 
this would give us an interesting confirmation of the theory 
of relativity. 

Let us consider the mass of a rotating top, the mass being 
measured along the axis of rotation. According to our results 
this mass should be different from that of the same top when 
at rest, and the difference should bear a definite relation to 
the amount of energy which is involved in the rotation. If 
the measurements here involved could be made with sufficient 
accuracy we would have another means, independent of light 
itself, for the measurement of the light-velocity c. Again, 
this experiment would afford us a measure of transverse mass 
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and in that way could lead to a confirmation of the theory of 
relativity, provided that we assume c as known from inde­
pendent measurements; and this confirmation, it is to be 
noticed, would be independent of electrical considerations. 

Remark.—It seems to be impossible to determine the con­
stant k which enters into the above discussion. But in the 
absence of any evidence to the contrary it would appear natural 
tentatively to assume that k is zero. On the basis of this 
assumption we should have the following remarkable con­
clusions: The mass of a body at rest is simply the measure 
of its internal energy. The transverse mass of a body in motion 
is the measure of its internal energy and its kinetic energ}' 
taken together. Its longitudinal mass is its total energy mul­
tipHed by a simple factor. One can hardly resist the conclusion 
that the transverse mass of a body depends entirely on its 
energy, and therefore that matter is merely one manifestation 
of energy. 

§ 28. O N THE PRINCIPLE OF LEAST ACTION. 

In § 26 we saw that in the theory of relativity the classical 
formula E = ̂ mv^ for the measure of kinetic energy is true 
only as a first approximation. This is due to the fact that 
mass is a variable quantity. But the conclusion does not 
appear to necessitate our surrender of the law of conservation 
of energy. 

The same causes which lead to a modification in the formula 
for E wiU also require a corresponding modification in the 
value of the action A as defined in § 14. The question arises 
as to whether the principle of least action is left intact. I 
cannot enter upon the investigation here; but the problem 
seems to me to be of importance and consequently I am stating 
it in the hope that some one will be led to consider the solution. 

Undoubtedly the principle of least action is one which should 
be given up only when there are strong reasons for it. I t is 
a mathematical formulation of the law that nature accom-
pHshes her ends with the least expenditure of labor, so to 
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speak. Certainly this law is one which appeals to our minds 
with strong force. There is something about it which is aesthet-
icaUy satisfying in a high degree. I t seems to me, however, 
that a fresh study of it should be made in the Hght of the 
theory of relativity. 

§ 29. A MAXIMUM VELOCITY FOR MATERIAL BODIES. 

There are several ways by which it may be shown that 
a material body cannot have a velocity as great as that of 
light. One of these we used in § 22, showing that, if a material 
body had a velocity greater than that of Hght, the numerical 
measure of length and time on that body would be imaginary, 
while if its velocity were just equal to that of light a given 
time interval would have an infinite measure. 

We may also prove the same theorem by means of a con­
sideration of mass. Let us consider the equation 

mo 

where mo is the mass of a body at rest relative to a given 
• system of reference 5 and l{mi) is the longitudinal mass of 
the body moving with a velocity v with respect to 5. If we 
consider larger and larger values of the velocity v we see that 
l{m^ increases and becomes infinite as v approaches c. This 
is equivalent to saying that the longitudinal mass of any material 
body becomes infinite as the velocity of that body approaches 
c. Therefore it would require an infinite force to give to a 
material body the velocity c; that is, c is a maximum velocity 
which the velocity of a material body may approach but can 
never reach. 

§30. O N THE NATURE OF MASS. 

This conclusion concerning the maximum velocity of a 
material body brings up important considerations concerning 
the essential nature of mass and material things. How shaU 
we conceive of matter so that it should have this astonishing 
property? 
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In the present state of science any answer to this question 
must necessarily be of a speculative character; but it is probably 
worth whUe to mention briefly a theory of mass which is con­
sistent with the existence of a maximum velocity for a material 
body. 

Let us suppose that the mass of a piece of matter is due 
to a kind of strain in the ether, and that this strain is prin­
cipally locaHzed in a relatively small portion of space, but that 
from this center of localization there go out to infimty in all 
directions lines of strain which belong essentially to the piece 
of matter. (We make no assumption as to how this strain 
is set up; it may be due largely or entirely to the motion of 
electrons in the molecules of the matter.) Suppose that these 
fines of strain, except in the immediate neighborhood of the 
center of locafization, are of such nature as to escape detection 
by our usual methods. Suppose further that when the piece of 
matter is moved, that is, when the center of localization is 
displaced, these lines of strain have a corresponding displace­
ment, but that the ether of space resists this displacement, 
the degree of resistance depending on the velocity. 

If the mass of matter is due to such a strain in the ether 
it is natural to suppose that mass is a measure of the amount 
of that strain. But, on our present hypothesis, we see that 
when matter is moved through space there is an increase of the 
strain on the ether due to such motion. This manifests itself 
to us in the way of an increase in the mass of the given piece 
of matter. 

Moreover, when the body is in motion it is natural to suppose 
that these fines of strain are not distributed evenly in all direc­
tions. On account of this fact it would not be a matter for 
surprise if the mass of a moving body were different in different 
directions. 

I t thus appears that appropriate h3^otheses (which have 
nothing in them inherently unnatural) would lead us to expect 
the same descriptive properties of mass as those which are 
actually found to exist if one accepts the postulates of rela­
tivity. Hence we conclude that there is nothing a priori 
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improbable in the conclusions of relativity concerning the 
jiature of mass. Therefore if we find satisfactory grounds 
for accepting the initial postulates of relativity, we shall not 
throw these postulates overboard because of the strange con­
clusions concerning mass to which they have led us. 

Now, if mass is merely a manifestation of energy in the 
form of a strain in the ether it would follow that gravitation 
is simply an interaction among these several strains. A strain 
principally locafized in one place would have lines of strain 
going out from it in all directions, and the action of these fines 
of strain upon one another would afford the effective means 
by which gravitation acts. 

§31. T H E MASS OF LIGHT. 

From some results in the preceding discussion it has appeared 
that the transverse mass of a body is merely a manifestation 
of its total energy, that it is in fact a measure of that energy. 
I t is then natural to suppose, on the other hand, that anything 
which possesses energy has mass; and we thus conceive of 
mass and energy as coextensive. 

Now a beam of light possesses energy; whence we con­
clude naturally that it also has mass. But we have seen that 
no " material body " can have a velocity as great as that of 
Hght. How are these two facts to be reconciled? If we define 
" matter " as that which possesses mass (and this is probably 
the best definition) we shall, as we have seen, perhaps best 
be able to represent to ourselves the nature of matter if we 
think of it as a strain in the ether. Then the two facts which 
we have to reconcUe would be entirely consistent if we suppose 
that the beam of Hght sets up a strain in the ether (whence 
its mass) but that this strain as a whole is not propagated 
with the velocity of light. In fact, if it moves at all it is 
probably with a velocity much smaller than that of light. 



CHAPTER VI. 

EXPERIMENTAL VERIFICATION OF THE THEORY. 

§32. Two METHODS OF VERIFICATION. 

THERE are at least two ways in which it may be possible 
to demonstrate experimentally the accuracy of the theory of 
relativity. 

The first method is direct. I t consists in the proof by 
experiment of the postulates on which the theory is based. 
These proved, the whole theory then follows by logical proc­
esses alone. In Chapter I I we have given a sufficient discussion 
of this method. 

The second method is indirect; it may be described as 
follows: Among the consequences of the theory of relativity 
seek out one which has the property that if it is assumed the 
postulates of relativity may themselves then be deduced by 
logical processes alone. If then this assumption is proved 
experimentally this is sufficient to establish the postulates of 
relativity, and hence the whole theory. Or, one may find 
such experimental results as lead to aU the essential conclusions 
of relativity, whence one naturaUy concludes to the accuracy 
of the whole theory. A discussion of proofs of this kind will 
be given in this chapter. 

This indirect method of proof is in many cases open to an 
objection of a kind which does not obtain in the case of the 
direct method previously mentioned. In the indirect method 
some auxifiary law, as for instance the law of conservation of 
electricity, must- usually be employed in deducing the relativity 
postulates or essential conclusions from the new assumption 
which one seeks to justify by experiment. There is always 

63 
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the possibility that the auxiliary law itself is wrong; and con­
sequently one's confidence in the accuracy of the relativity 
postulates as thus deduced can be no stronger than that in 
the truth of the auxiliary law. The same objection can also 
be raised against many conclusions which we are accustomed 
to accept with confidence. 

To many persons it appears that the first method of proof 
mentioned above has been carried out successfully and satis­
factorily. But if one does not share this opinion it is still 
legitimate to accept the theory of relativity as a working 
h3^othesis, to be proved or disproved by future experiment. 
I t is an historical fact, patent to every student of scientific 
progress, that many of our fundamental laws have been accepted 
in just this way. Take, for instance, the law of conservation 
of energy. There is no experimental demonstration of this 
law; and in the very nature of things it is hard to see how there 
could be. On the other hand it is at variance with no known 
experimental fact. Moreover, it furnishes us a very valuable 
means of systematizing our known facts and representing them 
to our minds as an ordered whole. In other words, it is the 
most convenient hypothesis to make in the face of the phenom­
ena which we have observed. Similarly, even if one does not 
believe that the theory of relativity has been conclusively 
demonstrated, should he not accept that theory (tentatively 
at least) provided it furnishes him with the most convenient 
means of representing external phenomena to his mind? 

I t should further be said that every supposed proof of the 
theory of relativity is of such character that objections can be 
raised to it; Hkewise every supposed disproof of the theory 
is in the same state. In the meantime, though we cannot 
accept the theory with all confidence, we can at least use its 
conclusions to suggest experiments which otherwise would not 
have been conceived. Therefore, whether true or false, the 
theory will be useful in the advancement of science. 
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§33. LOGICAL EQUIVALENTS OF THE POSTULATES. 

In every body of doctrine which consists of a finite number 
of postulates and their logical consequences there are necessarily 
certain theorems which have the following fundamental relation 
to the whole body of doctrine: By means of one of these 
theorems and all the postulates but one that remaining pos­
tulate may be demonstrated. That is, one may assume such 
a theorem in place of one of the postulates and then demonstrate 
that postulate. When the postulate has thus been proved it 
may be used in argument as well as the theorem itself; hence 
it is clear that all of the consequences which were obtained 
from the first set of postulates may now be deduced again, 
though perhaps in a somewhat different manner. That is, 
if we consider the whole body of doctrine, composed of pos­
tulates and theorems, this totality is the same in the two cases. 
Two sets of postulates which thus give rise to the same body 
of doctrine (consisting of postulates and theorems together) 
are said to be logically equivalent. 

The problem of the logical equivalents of a given set of 
postulates is readily seen to be an important one. The prin­
cipal value of such a matter, from the point of view of physical 
science, consists in the fact that it affords alternative methods 
for the experimental proof or disproof of a theory and that 
it emphasizes in an effective way the essential difficulties and 
limitations of such experimental verification in general. 

When the indirect method of demonstration described in 
§32 is carried out by means of logical eqiuvalents of the pos­
tulates it is not open to the objection mentioned above. Unfor­
tunately, it seems to be difficult to carry it out in this way, 
and consequently we are forced to a method of procedure less 
satisfactory, at least from the point of view of logic. 

§34. ESSENTIAL EQUIVALENTS OF THE POSTULATES. 

If one is interested in the theory of relativity on account 
of its significance to physical science it is unnecessary to have 
complete logical equivalents of the postulates in order to justify 
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it. All that is essential is to find a set of postulates, experi­
mentally demonstrable, by means of which it is possible to 
demonstrate the characteristic conclusions of relativity con­
cerning the relations of units of time and units of length in 
two systems of reference.* Such a set of postulates we shall 
call essential equivalents of the postulates of relativity. The 
object of this section is to determine essential equivalents of 
postulate R, that is, such postulates as may be taken in con­
nection with postulates M, V, L, so that the new set shall 
be essentially equivalent to M, V, L, R. 

For this purpose let us first consider the relation between 
the transverse mass of a moving body and its mass at rest 
as given in theorem XL Let us suppose that this theorem 
is truef (whether proved experimentaUy or otherwise); and 
let us seek its consequences. Suppose that the experiment 
by means of which we proved theorem X I is now repeated. 
If we again assume the law of conservation of momentum 
and equate the two observed changes in momenta, it is clear 
that we shaU have a relation between measurements of time as 
carried out in the two systems of reference, and that this 
relation will be precisely the same as in the usual theory of 
relativity. Having this relation concerning time units we can 
then proceed as in the first paragraph in § 25 to derive the 
usual relations between units of lengths. Hence we have the 
foUowing result: 

THEOREM XVI. If mo and t{m„) have the same meaning 
as in theorem XI and if for any particular kind of matter whatever 
we have the relation 

mo 
t{mt] 

• V i - ^ 2 ' 

then this fact and postulates {MVLCi) form an essential equivalent 
of postulates {MVLRCi). 

* I t is obvious that we should then be able to demonstrate theorems XI 
and XII concerning the mass of a moving body. 

t All that is essential to the argument is the truth of theorem XI for a particle 
of matter of some one kind; it need not be assumed to be true universally. 
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Next, let us suppose that for some particular kind of matter 
we have the relation 

t{m,) = {i-l^^)l{m,), 

where t{me) and /(m^) denote the transverse mass and the 
longitudinal mass, respectively, as in § 24. Then repeat the 
experiments by means of which we proved theorem XII . As 
before the balls will appear to B to move on arcs of the circle 

a;' = cos 6, 3'' = sin0. 

Suppose that to A they appear to move along arcs of the 
ellipse* 

x = cos 0, v = p sin 6, 

where p is a constant to be determined. As before, without 
the use of postiilate R, it may be shown that to A the periods 
will be the same in the two cases. Then determine the periods 
as in the preceding discussion. The expression for the periods 
will contain p; in fact on equating them we shall find 

W 2 = g^mi. 

But mi=l{mv) amd m2 = t{m^; whence on account of the 
relation between /(•»?<,) and t{m,), we have at once 

p = V i - r , 2 

This, in connection with postulate L, leads readUy to the usual 
relations concerning the units of length in two systems of 
reference. Having these relations of length units, the dimen­
sional equation 

F = ^ 

taken in connection with postulate V leads at once to the 
usual relation of time units, provided we take the motion 
along the line of relative motion of the two systems. Hence 
we have the foUowing theorem: 

* Since we are assuming postulate L it is clear that the path must be of this 
form. 
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THEOREM XVII. If l{ms) and t{mv) have the same meaning 
as in theorems XI and XII and if for any particular kind of 
matter whatever we have the relation 

t{m,) = {i-^^)-l{m,), 

then this fact and postulates {MVLC1C2) are essential equivalents 
of postulates {MVLRC1C2). 

§35. T H E BUCHERER EXPERIMENT. 

Our postulates V, L, Ci have been universaUy accepted 
as part of the basis of the classical mechanics. Many persons 
have found no difficulty in accepting postulate M; certain it 
is at least that we have absolutely no evidence to contradict 
it. We have seen in theorem XVI that these four postulates, 
taken in connection with the formula for transverse mass, 
form an essential equivalent of {MVLRCi); in other words, 
the experimental demonstration of the formula for transverse 
mass carries with it the experimental proof of the theory of 
relativity, provided that postulates {MVLCi) are accepted as 
experimentally proved. 

Bucherer (Annalen der Physik, ser. 4, vol. 28, pp. 513-536) 
has carried out some investigations which have been supposed 
to furnish this experimental verification for the formula of 
transverse mass, and hence for the whole theory of relativity. 
In order to draw this conclusion from Bucherer's direct results 
it is necessary to make use of a law which we have not yet 
employed, namely, the law of conservation of electricity which 
we have stated as postulate Cs- Since this law has customarily 
been accepted, we shaU conclude that we have in Bucherer's 
results a partial experimental confirmation of the theory of 
relativity. 

Bucherer's investigations have to do with the mass of a 
moving electron. There seems to be no means at hand for a 
direct measurement of this mass, and Bucherer resorted to the 
expedient of determining the ratio of charge to mass. Let 
us denote the charge by e, which we suppose to be constant. 
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in accordance with postulate C3. As before let mo and t{mv) 
denote the mass at rest and the transverse mass when moving 
with velocity v, of the electron in consideration. Bucherer's 
experiments were carried out to determine the relation which 
exists between e/mo and e/t{mv). The measurements agreed 
in a remarkable way, not only as to general characteristics 
but also as to exact numerical results, with the formula* 

e e V i - p 2 

t{mv) mo 

Taking this formula as thus experimentally demonstrated we 
have at once our fundamental relation for transverse mass: 

Vi — ^^-t{mv) =mo. 

From this it follows that the experimental demonstration 
of the theory of relativity is complete when we have proved 
M, V. L, Ci and C3, provided that one accepts Bucherer's 
proof of the above relation between e/mo and e/t{m,). That 
is, the essentials of the theory of relativity floiv from principles 
for each of which there is strong experimental confirmation. This 
important conclusion has often been pointed out. 

To the present writer, however, it seems that one point 
especially should be subjected to further examination. Is it 
in fact true that the charge of a moving electron is independent 
of the velocity with which it moves? Let eo be the charge 
of the electron when at rest and denote by t{e,) its apparent 
charge when in motion with velocity v, the charge being measured 
by means of tests in which the line of action is perpendicular 

*As a matter of fact Bucherer did not measure the ratio e/ma. Instead of 
this he considered the ratio e/l,{mi) for a considerable range of values for v and 
noticed that its value always agreed with the formula e/t{mt)=k^i — fi, where 
k is a constant. I t appears natural, then, to assume thatmo=e/^, whence one 
has the formula in the text. I t should be emphasized that this assumption is 
necessary in order that the Bucherer results may be associated with our theorem 
as in the text, and consequently the conclusions there reached can be accepted 
with no stronger coniidence than that which one has in the accuracy of the above 
assumption. See the next section where a possible means of experimental veri­
fication of the theory of relativity is suggested which does not depend on this 
assumption for its validity. 
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to the fine of motion of the charge. In the above discussion 
we have assumed, in accordance with the usual practice, that 
eo = t{ev). Suppose however that the true relation were different 
from this, that, in fact, we have 

t{e,)=eoVV^; 

then Bucherer's experiment would lead to the conclusion that 
t{mv)=mo, and thus the whole theory of relativity would be 
overturned. Furthermore, if any relation other than eo = t{e^ 
is the true one, some modification at least of the theory of 
relativity would have to be made or else one would have to 
give up postulate Ci which asserts the law of conservation of 
momentum. This result emphasizes the great importance of 
the question of the constancy of electric charge on the electron. 
We shall treat this matter further in the next section. 

§ 36. ANOTHER MEANS FOR THE EXPERIMENTAL VERIFICATION 

OF THE T H E O R Y OF RELATIVITY. 

Just as theorem XVI was used for the theoretical basis of 
Bucherer's (partial) experimental demonstration of the theory 
of relativity so theorem XVII may be employed as the theo­
retical basis of a new experimental investigation which has 
not yet been carried out, one wliich bears the same essential 
relation as that of Bucherer to the confirmation or disproof 
of the entire theory of relativity. The object of this section 
is to indicate the nature of this experiment. 

Let eo denote the charge of an electron when at rest with 
respect to a given system of reference. When it is in motion 
with a velocity v let t{e^ and l{e^ be the apparent charge when 
measured by means of tests whose lines of action are perpen­
dicular and paraUel, respectively, to the line of motion of the 
electron. 

If we employ postulate C3 we conclude that eo = t{e^=l{e^. 
We shaU first assume the truth of one of these relations, namely, 
t{e^=l{ev), and we shaU denote the common value of these two 
quantities by e. Now let us suppose that some means are 
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found for measuring both the quantities e/t{m^ and e/l{mv), 
where t{m,) and l{m^ denote as usual the transverse mass 
and the longitudinal mass respectively of the moving electron, 
whose velocity is v. Bucherer's methods furnish a means of 
measuring the first of these ratios; it wUl be necessary to devise 
a way to determine the value of the second ratio. 

Or, instead of finding a means of measuring the two quan­
tities ejtim^ and ell{m^ it will be sufficient if one determines 
only their ratio, as will be obvious from the discussion following. 

Suppose now that we find the relation predicted by the 
theory of relativity: 

t{m^ (i-^2j/(m„)' 
This equation leads to the relation t{m^ = (i — ^2). i{yyi^. Accord­
ing to theorem XVII this would give a new experimental 
confirmation of the theory of relativity. The importance of 
such a result is apparent. 

But we should also have more than this. Having now 
concluded that the theory of relativity is confirmed and this 
result having been reached without the use of a relation between 
eo and t{e^, we may now use the experiment of Bucherer to 
draw further conclusions concerning electric charges in motion. 
In particiUar, it is obvious that we should have a proof of the 
fimdamental relation 

eo=t{e^. 

That is to say, having assumed that t{ei) and l{e^ are equal 
we conclude further on direct experimental evidence that each 
of these is equal to eo. Now it is difficiflt to conceive how 
t{e^ and l{ei) could be different, for this would imply that 
the notion of electric charge is in need of essential modification. 
In fact, if the charged body is moving, the notion of charge 
would be indefinite in meaning untU we had assigned the 
direction along which such charge is to be measured. Thus, 
if the experiment should turn out as surmised above, we should 
not only have the strongest sort of experimental confirmation 
of the theory of relativity but we should also have a valuable 
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verification of the fact that an electric charge does not vary 
in amount with the velocity of the body which carries it. 

Suppose, on the other hand, that we make no assumption 
•concerning the relation of t{e^ and /(e,) or of t{m^ and l{m^. 
On carrying out the experiments a relation of the form. 

t{ev) l{ev) 
t{m„) l{m,)' 

TOU be obtained where ^ is a constant or a variable depending 
on D. If it is found that k is different from unity we shall 
be forced to the conclusion that either our conception of mass 
in the classical mechanics or our conception of charge in the 
classical electrical theory is in need of essential modification. 
Again, if ^ = i and if we assume, as is natural, that t{e^=l{e^. 
then we have an experimental disproof of the theory of rela­
tivity. In fact we have such a disproof unless ^ = 1/(1 — 2̂)̂  
provided of course that we assume t{e^ =l{e^. 

From these remarks it is obvious that, whatever may be 
the result of the experiments, they will certainly lead to important 
conclusions of a fundamental nature; that is, we have here 
a crucial experiment, one that cannot fail to lead somewhither. 
It is to be hoped that some laboratory worker wiU soon perform 
the requisite experiments; the writer, who is a mathematician, 
can only regret that he cannot conveniently carry out the 
work himself. 

A variation of the experiment of Bucherer would seem to 
be sufficient for the purpose here. Bucherer's results were 
obtained by subjecting the moving electron to a magnetic 
field and also to an electric field each at right angles to the 
line of motion. A variation of the direction of these fields 
relative to the line of motion of the electron would probably 
afford a means of making the necessary measurements for 
the experimental proof of the relations requisite for use iu 
the preceding discussion. 



CHAPTER VII. 

THE GENERALIZED THEORY OF RELATIVITY. 

§ 37. SUMMARY OF RESULTS FROM PREVIOUS CHAPTERS. 

W E have seen (in § 20) that the restricted theory of rela­
tivity, as developed in the preceding pages, calls for a trans­
formation of a remarkable kind between the coordinates of 
two systems moving with a uniform velocity v relatively to each 
other. If X, y, z, t are the space-time coordinates of a system 5 
and x', y', z', t' are the space-time coordinates of a system 5 ' , 
related to 5 as in § 20, then we have 

(i) t' = i{t-^x), x' = -/{x-vt), y'=y, z'=z, 

where 

and c is the velocity of Hght. If these equations are solved for 
X, y, z, t in terms of x', y', z', t'. the resulting equations are what 
those in (i) become on interchanging the primed with the 
unprimed coordinates and replacing z; by —v. The transforma­
tions thus have a remarkable symmetry. 

From the first two equations in (i) we have 

dx' dx — vdt 
dt' dt—vdx/c^^ 

or, 
u—v 

(2) u — -uv/c'^' 

if u'=dx'/dt' and u = dx/dt, these denoting the velocities of 
motion in the x-direction of the coordinate axes in each system 

73 
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with respect to that system. Formula (2) states the principle 
of addition of velocities, from it, as we have seen (in § 21), it 
follows that the usual law of addition of velocities is not main­
tained. 

But Robb has pointed out that if we introduce the notion 
of rapidity of motion and define the measure of rapidity of 
motion with a velocity v to be tanh"^ {?/c), then we do have 
for rapidities a simple law of addition, namely, that obtained 
readily from equation (2) and expressible in the form 

t a n h - ^ / ^ - W t a n h - V - V t a n h - ^ ^ " 

Again, we have found (in § 24) that the mass of a body is 
dependent upon its velocity relative to the observer's system, 
and in fact that the transverse mass t{m^ of a body in motion 
with a uniform velocity v relative to the system is expressed in 
terms of the mass mo of the body at rest by the formula 

t{m^ = - ° 
V1- /32 

The formula for longitudinal mass is also given in § 24; since 
we have no further need for the conception of longitudinal mass 
that formula will not be repeated here. Hereafter we shaU 
use the word "mass" to denote what we have heretofore caUed 
transverse mass. 

In § 26 we have seen that mass and energy are interchange­
able in the sense that the measure of each may be expressed 
directly in terms of the measure of the other. A consequence 
of this is that we may use in our equations energy and not 
mass or mass and not energy instead of both mass and energy, 
if it should turn out that such a thing shall serve our convenience. 

In the generalized theory of relativity it can hardly be said 
that the notion of force enters at aU; consequently we shaU 
not need to employ in this chapter the formula (of § 25) for 
the transformation of force in passing from one system of refer­
ence to another. 
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§ 38. TRANSFORMATIONS IN SPACE OF FOUR DIMENSIONS. 

FoUowing a suggestion of Minkowski's, we may look 
upon the transformation (i) as in a certain sense the trans­
formation due to a rotation of axes in a space-time extension 
of four dimensions. For the purpose of viewing it in this Hght 
let us assume that the units are so chosen that the velocity c 
of light is unity and let us make the imaginary transformation 

t = iT, t' = ir', v = itand, i=V—i. 

Then we have 7 = cos 0 and equations (i) reduce readily to the 
form 

(3) r' = T cos ^—x sin 0, x'=x cos d-\-T sin 9, y' = y, z'=z. 

This represents a rotation of the axes of coordinates through an 
imaginary angle 6 in the a^r-plane. 

In the Newtonian mechanics the laws of nature are assumed 
to be invariant with respect to a change in the orientation of 
axes in the xyz-s'pa.ce. In the theory of relativity this prin­
ciple is extended to the four-dimensional space-time xyzr-
extension; and it is therefore assumed that this four-dimensional 
extension is completely isotropic. From this point of view the 
conspiracy of nature to prevent our measuring the velocity of 
our system through space disappears; there is nothing to 
conceal. Space-time extension being isotropic, there is no 
variation of properties in different directions and hence nothing 
for us to detect; no one orientation is more fundamental than 
another. 

One consequence of this is that we cannot pick out one 
direction as the absolute time any more than we can pick out 
one direction as the absolute vertical. As Minkowski has said: 
"Henceforth space and time in themselves vanish to shadows, 
and only a kind of union of the two preserves an independent 
existence." Unfortunately the simpHcity of the conception of a 
four-dimensional space-time extension and the interpretation 
of our transformation (i) as due to a rotation in it are marred 
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by the fact that nature makes a distinction of such sort that 
we have to employ the imaginary time variable T in order to 
exhibit our transformation as having the properties of a rotation 
in a space of four dimensions. 

If we use ids to represent the element of "length" in our 
space-time extension, that is, the interval between two point-
events, its value wiU be given by the relation 

(4) -ds^ = dx^+dy^+dz^-\-dT^. 

I t is easy to see that ds is invariant with respect to a rotation 
of axes and in particular with respect to the rotation defined 
by equations (3). If we choose axes moving with the particle 
we haxe, •dx = dy = dz = o, so that ds^=—dT^ or ds = dt; this 
explains the choice of sign in the first member of (4), the purpose 
being to secure in .? a sort of time variable. 

I t can be shown that the whole restricted theory of relativity, 
as developed in the preceding chapters, is summed up in the 
conclusion that ds is invariant; and from the hypothesis of the 
invariance of ds one can deduce the transformation equations (i), 
and hence the other fundamental results of the theory. 

We have used the xj'Zr-extension for convenience in deriving 
certain geometric properties of the transformation (i). I t is 
clear that we may Hkewise look upon x, y, z, t as coordinates 
of a point in the real space-time xyzt-extension of four dimen­
sions. Let us consider a Httle more closely this space-time 
extension. Each point P of this four-dimensional extension 
represents both a definite place A in the usual space of three 
dimensions and a definite moment of time t at which this place 
A is to be considered. If P refers to a material point it shows 
the time t at which this point is found at the place A. In the 
course of time the material point is represented every moment 
by a new point P of the space-time extension; aU these points 
P He on a world Hne which represents completely once for all 
the state of motion or of rest of the material point for all time. 
In the same way we may speak of the world-Hne of any event 
in nature. An intersection of two world-lines indicates that 
the two objects to which they belong meet at a certain moment, 
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that a "coincidence" takes place. Similarly, one may repre­
sent statically in a space of three dimensions the kinetics of a. 
body moving in a plane; a clear picture of this special case 
will assist one greatly in grasping the more general considera­
tions for motion in a space of three dimensions. 

Now Einstein has remarked that the only things which we-
can observe and measure among events in nature are these 
coincidences, the intersections of these world-lines, and that i t 
is with these alone that our theories are essentially concerned. 
From this it follows that the results of all observations may 
be represented by world-lines in a four-dimensional extension—let 
us say by means of a field-figure—and that the only things directly 
observed are the intersections of these lines one with another. 

In our statement of the laws of nature we shall have to attend 
only to the intersections of the world-lines; and hence we shaU 
have a great liberty in the construction of the field-figures. We-
may vary this construction in any way we please, provided, 
only that we do not disturb the order of the intersections of 
the world-Hnes. As the number of observed intersections 
increases we are more restricted in this freedom, but only in 
the way of a finite number of added restrictions to the infinitude 
of possible changes inherent in the nature of the process. 
Even if aU the intersections in nature were known there would 
still be great freedom in the construction of the field-figures. 
If two persons independently represent the same observations, 
by means of world-lines their field-figures will probably be quite 
different and in fact will probably agree only as to the order of 
the points of intersection, aU other properties of the two figures 
being different; and indeed these figures will quite as well 
represent the observed facts after being deformed in any way 
provided that there is no break in continuity during the process, 
of deformation. 

One consequence of these considerations, which is important 
for our purposes, is that there is a great freedom of choice of 
coordinate systems in reducing the observed laws to analytical 
form and that the essential laws may be represented qmte as 
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weU on the basis of one of these systems as on that of another. 
For a long time it has been customary to introduce various 
types of curvifinear coordinates or of moving axes for the study 
of particular problems in physics, but it has usually not been 
forgotten even for a moment that these coordinate systems 
were curvifinear or were in motion. But there is at least one 
important and instructive case in which a simple means has 
been found for ignoring the pecuHarity of the axes during the 
mathematical investigation. This is the case of rotating axes. 

In many dynamical systems, some part of the system is 
compelled to rotate with constant angular velocity oj round a 
given fixed axis. The motion of a bead on a rotating twisted 
wire furinshes a simple example. The system might be treated 
by a direct appHcation of Lagrange's equations; but it is often 
more convenient to use a principle which reduces the con­
sideration of systems of this kind to that of systems in which 
no rotation takes place. When one develops the general 
differential equations of motion of such a system (as in Whitta-
ker's Analytical Dynamics, second edition, pp. 40-41, for in­
stance) it is seen that the motion is the same as if the prescribed 
angular velocity were zero and the potential energy contained 
an additional term — fSmr^co^, where m denotes the mass and 
r the distance of a particle from the axis of rotation. Thus, by 
modifying the potential energy, we may replace the consideration 
of a system which is constrained to rotate uniformly about 
an axis by that of a system for which this rotation does not 
take place. The imaginary forces which are introduced in this 
way to represent the acceleration effect of the enforced rotation 
are often called centrifugal forces. 

Now let us suppose that an observer is stationed on such a 
rotating system and that he is shut off from the observation 
of things external to his system in such a way that he is quite 
unaware of the fact that it is rotating. The fictitious term 
which we have just supposed to be added to the potential energy 
to account mathematicaUy for the rotation would not be 
fictitious for him but would represent an existing part of the 
actual potential. He would not unnaturally take it to be due 
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to a part of his gravitational field. At any rate he would 
have no means to distinguish it from a potential due to a changing 
component of the gravitational field. To him then this cen­
trifugal force would seem to be a real thing; but to us, who 
look upon his system from the outside, this centrifugal force 
appears to be fictitious. 

Now suppose that a ray of Hght passes across this observer's 
rotating system. We who look upon his system from the out­
side wiU see that the ray passes in a straight Hne. But to him, 
on account of the unobserved rotation of his system, it will 
appear to move on a curved path. If he sets out to investigate 
the curvature of this path he will find that it depends upon that 
element of his gravitational field which we consider to be fictitious 
and he will conclude that the ray of Hght is bent in its course by 
the gravitational field, or at least by a certain part of it. 

We shall not pursue this further in the loose way of this 
section but shall leave it to be taken up again more rigorously 
when we have prepared siutable mathematical machinery for 
deaHng with it. 

§ 39. T H E PRINCIPLE OF EQUIVALENCE. 

There are no coordinate axes in nature; these are intro­
duced by us for convenience in the analytical representation 
of phenomena. When we enunciate the laws of mechanics 
and electrodynamics with respect to "unaccelerated rectangular 
axes," or "GaHlean axes" as they are sometimes caUed, the only 
definition which we can give of these axes is that they are the 
axes with respect to which the laws may be enunciated cor­
rectly in the form in which we state them. We cannot recognize 
such axes intuitively. One fundamental and central purpose of 
the generafized theory of relativity is to restate the laws of nature 
in such a form that the statement shaU be independent of the sys­
tem of coordinates and hence be equally appHcable to all systems. 

When we introduced the centrifugal force in the preceding 
section and then looked upon the rotating system of reference 
as stationary so that moving bodies were acted upon by a 
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fictitious force, we saw that the changed point of view gave us a 
space in which aU paths (even that of Hght) were deformed in a 
purely geometiic way. Everything was acted upon in the 
same way by this fictitious force. This property is also shared 
by the force of gravitation; the gravitational field produces an 
acceleration which is independent of the nature or the mass of 
the body acted upon. This has led to the hypothesis that the 
force of gravitation may be, so far as we can observe, of essen­
tially the same nature as the centrifugal or geometrical forces 
introduced by the choice of coordinates. 

This hypothesis has been framed by Einstein into his now 
celebrated Principle of Equivalence. I t may be enunciated as 
foUows: A gravitational field of force is exactly equivalent 
to a field of force introduced by a transformation of- the coor­
dinates of reference so that we cannot by any possible experiment 
distinguish between them. 

Eddington in his report to the Physical Society of London 
on "The Relativity Theory of Gravitation" has insisted on 
a precise criterion for the cases in which the principle of equiva­
lence is assumed to apply. He formulates it as follows: The 
laws, relating to phenomena in a geometric field of force, which 
depend on the coefficients g of the next section and their first 
derivatives, will also hold in a permanent gravitational field, 
namely, one that cannot be entirely removed merely by a change 
of axes; but laws which depend on the second or higher deriv­
atives of the g's wiU not necessarily have this universaUty. 

I t will be observed that this contention rests upon an 
impHed limitation of the principle of equivalence. I t is argued 
that there is such a thing as a natural or permanent gravita­
tional field of force which cannot be altogether transformed 
away. There is a tacit agreement that a natural gravitational 
field of force exists even though it may be altogether impossible 
for us to distinguish between it and the fictitious geometrical 
or centrifugal forces due to the choice of coordinate axes. 

Transformations exist which remove the gravitational field 
a t a point; but we cannot find any transformation which wiU 
remove the gravitational field throughout a finite region. 
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Since we cannot distinguish between the fictitious and the 
permanent forces we shall have no means in general of selecting 
any particular system of coordinates as fundamental. We 
must therefore state the laws of nature in a form which is 
quite independent of the choice of axes. 

§ 40. GENERAL TRANSFORMATION OF AXES. 

If we seek a suitable analytical expression of the freedom 
which we have seen to exist in our construction of the field-
figures of natural phenomena we shall be led to certain con­
siderations which are of essential importance for our purposes. 
If we represent in terms of a given set x, y, z, t of space-time 
coordinates the configuration of a system of world-Hnes and in 
terms of a set x'^ y', z', t' the configuration of another system 
of world-Hnes, it is not difficult to see that the two systems 
of world-Hnes will have corresponding intersections and these 
arranged in the same relative order when and only when there 
exists a single-valued continuous transformation from the 
coordinates of each system to those of the other. 

Since events do not presuppose any particular system of 
coordinates and the space-time scaffolding is introduced by us 
merely for our convenience, it is desirable to have our laws of 
nature expressed so as to be quite independent of the system 
of coordinates employed. Let us see what this amounts to in 
the case of the element ds whose value in the absence of a 
gravitational field is given, as we have seen, by the equation, 

(5) ds^=-dx^-df-dz^^-df^ 

Let us introduce new coordinates Xi, X2, Xz, Xi by means of 
transformations of the kind just mentioned; they are given by 
equations of the form, 

X=fi{xi, X2, Xs, X4), y=f2{Xi, X2, X3, Xi), CtC. 

Then we have 

(6) dx=^dxi-\-^dx2+^' dx3-f ^dxi, etc. 
dxi dX2 Zxs gX4 
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Putting such values of dx, dy, dz, dt into equation (5), ,we 
have a relation which may be written in the form 

(7) ds^=giidxi^-\-g22dx2^+g33dxz^+giidx^ -\r 2gi2dxidx2 

-\- 2gizdXidXz -\- 2giidxidXi -\- 2g2zdX2dxz -\- 2g2idX2dXi -t- 2gzidXzdx4, 

where the g's are readUy computed functions of the coordinates 
Xi, X2, xz, Xi, depending on the functions / i , /2, fz, fi of the 
transformation. We shall henceforth assume that ds is defined 
by an equation of the form (7), without reference to whether 
that equation is derived from (5) or by other means. 

If we take the particular transformation of rotating axes 

a; = a;i cos ajX4—a:2sin 0)̂ 4, 3' = xi sin 053:4-fx2 cos coa;4, z = X3, t = Xi, 

we obtain readily the relation. 

(8) ds^ = — dxi^—dx2^—dxz^+[i — ^^(xi^ -\-X2^)]dxi^ 

-\- 2 oiX2dxidxi — 2 coXidx2dxi. 

By comparing this with (7) we obtain the values of the g's 
for this system of coordinates. In particular we have, 

g44=I—2O, Q = ̂ U^{xi^-\-X2^), 

where 0 is the potential of the centrifugal force. 

From this it follows that the coefficient ga may be regarded 
as a potential; and this conception is extended so that all the 
the coefficients g are regarded as components of a generalized 
potential of the field of force. I t is unnecessary and indeed 
experimentally impossible, according to the theory of relativity, 
to distingush between the portion of the g's arising from the 
choice of coordinates and that arising from the so-caUed natural 
or permanent gravitational field. We shall usually speak of 
the entire field as gravitational and shaU say that a gravitational 
field is specified by a set of values of the g's whatever their source. 

These coefficients g may be looked upon in two ways. In 
one aspect they may be thought of as expressing the metrical 
properties of the coordinates; and this is the orthodox stand­
point of the theory of relativity; it is attained by banishing 
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almost or quite entirely the notion of gravitational force, this 
exclusion being based on the fact that if there are such things 
as actual gravitational forces we cannot distinguish them from 
fictitious geometrical forces. 

The values of the g's given by equation (5), namely, gii = — i, 
g22=—I, g33 = —I, g44 = i, gu=o, whcu JVJ , are those which 
obtain in the absence of a gravitational field and for a suitable 
choice of reference system. We may caU them the Galilean 
values of the g's. When the coordinates can be chosen so that 
the g's have these values we may regard coordinates so chosen 
as fundamental; and the deviations of the g's for any other 
choice of coordinates may be looked upon as due to the dis­
tortion of the space-time extension or to the graAdtational 
field. 

There is a general limitation imposed on the g's not by 
mathematics but by nature; and this limitation is expressible 
by means of differential equations satisfied by the g's and thus 
exhibiting the law of gravitation; these differential equations 
we shall find later. 

Now the g's vary with the system of coordinates employed. 
But the essential law is independent of the system of coor­
dinates. If new coordinates are chosen we get new values 
of the g's through use of the transformed form of (7) and the 
hypothesis of the invariance of ds. The differential equations 
between the new g's and their coordinate system must be 
the same as those between the old g's and their coordinate 
system. In other words, the differential equations expressing 
the law of gravitation must be covariant under the general 
transformations of axes which we have defined. This fact will 
furnish us with a valuable guide in the development of the new 
laws. 

Moreover, if we have equations expressing some physical 
law in the usual coordinates and we are able to recognize these 
equations as the degenerate form of equations covariant under 
our general group of transformations we may hope to be able 
to rewrite the known equations in a more far-reaching form. 
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SO that they shall then afford the extended law on the basis of 
the theory of relativity. It is by this method of approach 
indeed that we shall obtain the differential equations which 
characterize the gravitational field. 

§ 41. THE THEORY OF TENSORS. 

In order to proceed with our problem of finding the differen­
tial equations of the general gravitational field we shall need 
the properties of certain fundamental mathematical symbols; 
these we treat in this and the two following sections in so far 
as they are needed for our present purposes. 

We shall be concerned particularly with differential equa­
tions which are covariant under the group of continuous trans­
formations, 

(9) x!=f,{xi, X2, Xz, X^, i=l, 2, 3, 4. 

This is due to the fact that in the general theory of relativity 
the laws of nature are to be expressed in a form which is co-
variant under the transformations (9). Here we assume that 
the functions/j are of such sort that the Jacobian 

/ = 
dXi 

dxj 

of the transformation is different from zero throughout the entire 
range of values in consideration. That these transformations 
form a group foUows from the existence of a unique inverse of 
the transformation (due to the non-vanishing of the Jacobian) 
and the fact that the product of two transformations of the 
set also belongs to the set. 

Now in view of (9) we have 

dx.=^^-^dx^, ^ , = 2 . - , - , ^=1,2,3,4, 

•where <̂  is a function of Xi, X2, xz, Xi and 2; denotes the sum 
as toy for7 = I, 2, 3, 4. (We shaU employ similarly the symbols 
2^„ Ŝ .̂̂ , etc., to denote the sum of the elements formed 
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from the term following the symbol by giving independently to 
the suffixes ix, v or a, /3, 7, etc., the values i, 2, 3, 4.) We maj'' 
look upon these equations as transforming the vectors {dxi, 
dx2, dxz, dxi) and {d4>/dxi, , d<f>/dXi) into the vectors 
{dxi,dx2 ,dxz ,dxi) and (9<^/9a;i', , d<l>/dXi'), respectively. 

If two vectors A" and A^ aire transformed through (9) by 
the first and second of these laws, respectively, so that we have 

(10) ^ ' " = 2 , ^ ' ^ . , ^ ; = 2 „ | ^ 4 . , 
. _ dx^ cxj. 

we shall say that ^ ' ' is a contravariant vector and that .4^ is a 
covariant vector. Moreover, we shall uniformly mean by the 
symbols ^*', S*", contravariant vectors; and by the symbols 
A^, B^, covariant vectors. 

If IX and V each ranges over the set i, 2, 3, 4, the symbol ^^„ 
wiU denote a quantity having sixteen components. Similarly 
the symbols A^y„ and Al„ will each denote a quantity having 
sixty-four components. We may look upon such quantities as 
a sort of generalized vectors. Since the present theory is con­
cerned especiaUy with those for whose components the trans­
formation equations are linear and homogeneous it is found 
convenient to apply a particular name to such vectors; and 
they are called tensors. If then a law of nature is so formulated 
as to be expressed through the vanishing of all the components 
of a tensor, it wUl be covariant under the transformations (9). 
Tensors are therefore of central inportance for the theory of 
relativity. 

By an extension of the terminology employed in connection 
with (10) we may speak of covariant, contravariant and mixed 
tensors; those for two indices (or those of rank two) obey by 
definition the transformation laws: 

(11) yl'^„ = 2„r—7 —-,-A T̂ (covariant tensor), 
OXfi CjXy 

?)x ' 7)x ' 
(12) ^'"" = 2 ,̂-5::̂ -̂  ^^-^^"(contravariant tensor). 
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(13) A';==2„^,^ A J (mixed tensor). 
QXu, dXr 

I t wiU be observed that the notation for each type of tensor 
is so chosen as to indicate the character of the tensor. Tensors 
of. the third and higher rank are so defined that analogous laws 
of transformation obtain; thus for covariant tensors of the 
third rank we have the law 

A/ y. cXp CXff QXT . 

^"''•^'-'dx^'dx/dx/ "'--

Vectors such as those involved in (10) may be called tensors 
of rank unity. A scalar (invariant) may be called a tensor 
of rank zero and classed as either covariant or contravariant. 

If we now introduce a third set Xx" of coordinates as functions 
of the set Xx and if A^" is the transformed vector of Ax when 
transformed by this substitution, we have 

But 

2 . ? ? . 1 5 4 = 1 ! ^ ; hence Ax" = i:/£^4.. 
CXy. cXx dXx dXx 

From this it follows that the final result obtained by apply­
ing the two transformations successively to A^ is the same as 
that obtained by applying at once the product of the two 
transformations. I t is not difficult to see that this transitive 
property is possessed by the tensors of each of the several classes. 

I t is evident that the sum of any two tensors of the same 
given character is also a tensor of that character. 

I t may also be proved that the product of two tensors is 
a tensor and that its character is the sum of the characters 
of the two component tensors. Let us prove this for the single 
case of a product of the form Ai^.Bx". From the relations of 
transformation 

jr _ v 9^a 9 % J -D'P—^ 9^-)' 9^p p s 
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we have 

(A' n'/'^ — y 9^a dXff dXy dXp (^ „ jx 
{A ,.Bx ) - 2 „ , , , ^ 3 ^ ^ ' ^ ^^"^^- )• 

Hence the law of transformation is that of a tensor of the 
fourth rank having the character denoted by the symbol Cl„x. 

In particular, the product of two vectors is a tensor of the 
second rank; there are also tensors of the second rank which 
are not products of two vectors. 

In the two preceding paragraphs we used the term product 
of two tensors to denote the tensor whose component elements 
are aU the elements formed by multiplying an element of one 
tensor by an element of another tensor. This may be called 
their outer product. We need also the notion of inner product 
of two vectors, say of ^ ^ and 5" ; and this is defined to be the 
quantity 'L^A^B''; that is, the sum of products of correspond­
ing elements. 

From a mixed tensor such as A'l,„„we can form a contracted 
tensor S^^^„<, which we denote by B^„. Let us prove tha t 
the last quantity is indeed a tensor. We have 

T>l _ y A'" 
XJ ^„ ^fj^n.p_y^ 

QXa C^X^ CXy CXg J J 

OXy, OXy C/X(y OXs 
-v 

But 

Hence, 

Therefore, 

2 
cXy gx / _ dXy _ f o if 7 7̂  5 

" dXc dxs dxs [ I if 7 = 5 

CXy CX„ Ah _ -^ A~< _ T > 

dxJ Zxs '•afiy — ^y'^aSy — -Dap. 

T>f _y 9a;„ dXff „ 

showing that 5^„ is a tensor of the second rank of the character 
aheady anticipated in the notation. This process of con­
traction is appHed to remove from the symbol any two indices, 
of different character but never two of the same character. 
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To prove that a given quantity is a tensor of given character 
we may merely verify, as in the preceding paragraph, that its 
equations of transformation are those by which the tensor 
character is defined. But the result may often be more readily 
obtained by the use of the foUowing theorem: / / the inner product 
of a given quantity by every covariant {or by every contravariant) 
vector is a tensor then the given quantity is itself a tensor. 

The general method of argument wiU be seen from the 
following special case: Suppose that 2„^^„J5'' is a covariant 
vector for every choice of the contravariant vector B" Then 
we have 

ZiyA i^„ii „ = ^0T~ '/A„Ji^, 3^ = 2„ - — 3 ", 
dx^ dx, 

the last relation coming from the inverse transformation. 
Therefore, 

Since B'" is arbitrary it foUows that the parentheses quantity 
must have the value zero for every value of /x and v, showing 
that Ai,„ is a covariant tensor of rank two. A similar proof 
can evidently be made for tensors of any given character. 

Now in accordance with the theory of relativity the general 
expression for ds^, 

ds =Zii^„gi^ydXifi,x„, giiv—gvii, 

is to be invariant under our transformations. Here dx^, plays 
the role of an arbitrary contravariant vector, whence it follows 
by use of the preceding theorem that 2„g „̂Ji(;̂  is a covariant 
tensor of the first rank. Repeating the argument with respect 
to this tensor we see that ĝ ^ is a covariant tensor of the second 
rank. We caU it the fundamental covariant tensor on account 
of its central position in the theory of gravitation. 

If in the determinant g = \g^,\ we take the cofactor of the 
element ĝ „ and divide this by the determinant g we obtain 
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certain quantities g'"'(g'"'=g''''); these define a contravariant 
tensor, as we shall now show. We call it the fundamental 
contravariant tensor. From the theory of determinants we have 
^cg,icg'"' — gi!'^ where g/ is i or o according as jx and v are equal or 
imequal. Since 1i^gjA''=A'' for every contravariant vector A", 
it follows that g / is a mixed tensor of the character anticipated 
by the notation. We call it the fundamental mixed tensor. 
We now have readily 

ds^ = ^^,^g^„g/dxp,dx, = ^^.^gf^ag^rg'^dx^dx,. 

Introducing the notation d^^ = Xpg^^x^, we have 

Since d^^ is an arbitrary covariant vector it foUows from the 
last relation and the fact that g'"' = g''°' that g""" is a contravariant 
tensor of the character indicated. 

With any covariant tensor A,^, we may have the following 
two associated tensors and scalar of character indicated by the 
notation: 

(14) ^ / = 2„g-'M^„, ^"-' = 2 ^ ' - ^ / , ^ = 2 ^ 4 / . 

If g'^y are the quantities into which the gj,„ transform 
through (9) and if g and g' denote the determinants | ĝ „ | and 
I gV I while / is the Jacobian of the transformation we have 
readily from the theory of determinants that 

JY=g 

If dr and dr' are the elements of four-dimensional volume in 
our space-time extension we have dr'^Jdr, so that from the 
foregoing relation it follows that 

V-gdT = V-g' dr'. 

Now if we employ our hj^othesis that in infinitely smaU 
regions the special relativity theory is vafid we see that coor­
dinates may be chosen so that ds^ has the form given in (5), the 
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corresponding determinant g having the value — i. If dro^ 
denotes the volume element in this system, the "natural" volume 
element, we have dTo = V—gdT. We see that g cannot vanish 
since then we should have for a finite volume element dr an 
infinitesimal volume element dro. We shall assume that g has 
always a finite negative value, this assumption being in agree­
ment with the special theory of relativity. 

Since — g is always positive and finite there must exist a 
set of axes for which it has the value i. Expressed in terms of 
such a set of axes the laws of nature will have a particularly 
simple form. One should first derive them in their general 
covariant form and afterwards simpHfy them by the special 
choice of axes indicated, the simplification being effected merely 
as a matter of convenience. 

§ 42. COVARIANT DIFFERENTIATION. 

The writing of certain important covariant differential 
expressions is greatly facilitated by the use of Christoffel's 
3-index symbols, namely, 

' \9x. dx, dxxj 

{M.,X!=|2„g-(^"+|^«-f^). 
\ dx„ dx, dXa/ 

These symbols satisfy the relations 

(15) {ixv,\}=Xag'^''[ixv,a], [pv,\] = l,agxAfiv,a]. 

By [pv, X]' and {/xv, X}' we denote the quantities obtained 
from [fxv, X] and \tj.v, X} respectively on replacing a;̂  by x/ 
and g,, by g',,. 

If in the relation 
„' —y 9^a dXp „ 
^'"'^"'d^d^'^"' 

one differentiates with respect to Xx, x/, xf, and subtracts 
member by member the first resulting relation from the sum 
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m e m b e r b y member of the last two, one has a result which is 

readily p u t in the form 

r \^' V .T d'Xa dXff . 9x„ dx^ Bx.̂  r , 
0JC, 0JCu 0Xx (jX, 0X„ (jXx 

Multiplying by g'^'dxjdxf, summing as to X and p, and 
simpHfying by use of relations (12), (15), and properties of the 
g's given in the paragraph ending with (14), we have 

(16) 2 > . , P!'|^. = ^ ^ + 2 . ^ , | ^ M , A. 
0Xp 0X, QX, 0X, 0Xy 

On differentiating a scalar quantity one obtains a covariant 
tensor of rank unity; but on differentiating a tensor of rank 
greater than zero one obtains a quantity which is not necessarily 
a tensor. I t is therefore desirable to define a process generalizing 
that of differentiation and of such sort as to lead always from a 
given tensor to a new tensor. Such a process we now define. 

If we differentiate with respect to xf both members of the 
second equation in (10) and in the result replace the second 
derivatives by their values taken from (16) we have 

/ ^\ dAfi ^ ( -./A dx^ _ dXa dXrdA^ 

.ci dXa dXfi I r. \ A 

0X, 0X„ 

SimpUfying the second term of the first member by means 
of the second relation in (10) and introducing the symbol A,^ 
with the meaning 

(18) ^ , , = | ^ - 2 , ! , a . , P M „ 
dXp 

we see from (17) that A,„ is transformed in accordance with 
relations (11) so that 4̂̂ ^ is a tensor of the character indicated 
by its symbol. This tensor A,, is called the covariant derivative 

of A,. 
In a somewhat similar manner one can obtain formulee for 
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defining the covariant derivatives of contravariant and mixed 
tensors, namely, 

(19) ^ / = | ^ + S.{.e,MU', 
ox„ 

(20) ^ > = f ^ -h2 , i . e , XU--f 2,1.6, M U ^ 

(21) Axr = ̂ - U ^ \ 6M/ + 2,i.e, MMX'. 

In a similar way one introduces also the covariant derivative 
Ax,v of Ax, by means of the definition 

(22) Ax,, = 1 ^ - 2 j x . , M.,-^AtJ-v, M^.. 
dXp 

In each case it may be shown that the covariant derivative 
has the character indicated by the notation adopted for it. 

Whenever the Christoffel symbols vanish the covariant 
derivatives reduce to ordinary derivatives; they so reduce, in 
particular, when the g's have Gafilean or any other constant 
values. 

§ 43. T H E RLEMANN-CHRISTOFFEL TENSOR. 

Let .4^ be any covariant tensor of rank unity. Form its 
covariant derivative A,, in accordance with equation (18). 
Form the covariant derivative A„, of A„ in accordance with 
equation (22), employing the form of A,„ given in (18). Thus 
we have 

A d A, , -.dAp. I ,9^6 „ ) ) dA, 

gaĴ gâ ^ dx, dx, dx, 

+ 2,p{j'o-, t\{ix€, p\A,-{-!:,p{n(T, €J{ev, p}Ap—i:^p— [ixv, p\. 
dx„ 

In view of the definitions of the Christoffel symbols it is 
seen that the first five terms in the second member are unaltered 
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by an interchange of v and <r. Hence the tensor A„„—A,,„ has 
the value 2pi5^„„^p where 

(23) Bl,,= i:J\p.(j, e\{tv, p] — 'LJ^^xv, eHecr, p\ 

^fxy^'^^-iy'''^-
Since A, is arbitrary and 1,pB%,Ap has the tensor character 
B,,y it foUows that B",,, has the tensor character anticipated 
by the notation employed. I t is caUed the Riemann-Christoffel 
tensor. I t will be observed that this tensor depends upon 
nothing but the fundamental tensor g,^. 

Now if we have a physical situation in which it is possible 
to choose the coordinate system so that the coefficients g,, shaU 
be constants, then for this system the B",,, must vanish. From 
this and its tensor character it follows that it must also vanish 
however the coordinate system is transformed in accordance 
with equations (9). The vanishing of this tensor is then a neces­
sary condition that it shall be possible to choose the system of 
reference in such wise that the g„ shall have their constant 
GaHlean values. I t may be shown (though we do not here give 
the proof) that the condition is also sufficient. 

From this it follows that in our problem the vanishing 
of the Riemann-Christoffel symbol corresponds to the possibility 
of choice of coordinates such that the special theory of relativity 
shall be valid in a finite region. 

If we employ the notation 

9Xa 

_ 9 ^ 1 o g V ^ 9 l o g V - g 
^P^v — —— ^ai/ i j - , a i , 

9x^9x„ 9x„ 
we have without difficulty the relation 

( 2 4 ) B,,-^'2,rB'',,r=Rlxv + S,,. 

In order to effect the simpHfication in the result stated here 
one needs the following value of 2p{^p, pi: 
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2 P ! M P , p } = 5 S p . g 
. / 9 | i i . I 9 | p . _ 9gMp\ 
\9Xp 9^^ 9^e / 

"^"^ dx, 

= i ^ = | _ l o g V 3 ^ 
2g 9x^ 9x,i 

the second last member being obtained by use of the fact that 
g'^g is the cofactor of gp, in the determinant g. 

I t may readily be shown that R,, and S,, have the tensor 
character indicated by the notation. 

Now we have seen that the coordinate axes may be chosen 
so that V—g has the value i. Under such choice several of 
the preceding formulae become simpler. This is particularly 
true of the expression for B,, since S,, then has the value zero. 
This simplification is of considerable importance in the theory 
of gravitation on account of the fundamental role in this theory 
of the tensor B,,. 

§ 44. EINSTEIN'S LAW OF GRAVITATION. 

We have seen (in § 40) that the values of the g's which 
obtain in the absence of a gravitational field and for a suitable 
choice of reference system are the constant GaHlean values. 
In § 43 we saw that the vanishing of the Riemann-Christoffel 
tensor B",,, is a necessary and sufficient condition that it shall 
be possible to choose the system of reference in such wise that 
the g,, shall have the constant GaHlean values. Hence a neces­
sary and sufficient condition for the absence of a permanent 
gravitational field is the following: 

(25) 2j/i'^, i]\tv, p} —SJI/^V, e]{tff, p\ 

+|j"'^''''-|">^'=°-
Of the 96 relations obtained from the six effectively distinct 

combinations of o- and v and the 16 combinations of p. and p, 
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only 20 are independent. If we write {fjirav) for l^pg^fi^, so 
that B'',,„ = 'Zxg^''{tx\(jv), it is seen that equation (25) is equiv­
alent to the equation {p.Tcrv)=o. The reduction to 20 inde­
pendent relations is then effected through use of the identities 

{ixrav) ^ — {Tp,av) ^ {varp.) = {(TVIXT), 

{p.T(jv) -{- {P.CFVT) -\- {p.vTcr) =0. 

Now the general law of gravitation must contain as a 
special case that expressed by the vanishing of the Riemann-
Christoffel symbol and must itself be expressed in the form 
of differential equations satisfied by the g's. One of the simplest 
conditions meeting these requirements is that expressed by the 
vanishing of the tensor B,^ defined in equations (24). This 
yields the equation 

(26) B,,^-Xp^{pv, p]-{--2pAfip, e\{ve, p] 
OXp 

+ 9 ^ ''^ ^ ~ ^ - 2 J M . , e lA log V - , = o . 

Since B„=B„ there are in (26) only ten different equations; 
and among these there are four identical relations, so that 
only six of the equations are independent. These equations 
are taken by Einstein in the general theory of relativity as the 
mathematical expression of the law of gravitation in the absence 
of matter and the electromagnetic field. [The reader should, 
observe the marked simpHfication of the equations when the; 
reference system is so chosen that V—g = i.] 

Einstein insists that there is a minimum of arbitrariness-
connected with this choice of equations. For B,, is the only-
tensor of second rank which is formed from the g,, and their 
first and second derivatives and is Hnear in the second deriva­
tives. Moreover, no tensor of lower rank can be built up out 
of the components of B^,, by aUowable processes. One who 
counts up aU the terms represented by the various symbols 
in (26) wiU probably admit that we should first find out whether 
the suggested law of gravitation is vafid before trying a more 
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compHcated one. But it must be remembered that the general 
theory, apart from facts of observation, does not lead necessarily 
to this particular law. 

In the Newtonian theory of attraction it is the Laplace 
equation A^0=o which corresponds to our equation (26). The 
covariant equation corresponding to Poisson's equation I^<)) = 
—47rp has also been treated by several writers (including 
Einstein); but we shall not develop it here. 

§ 45. THE MOTION OF A PARTICLE. 

Denote hy A" the contravariant vector dxjds. Multiplying 
.4" by the covariant derivative A^' of A", 

^"•=lit)«'W-it. dXc\dsl ds 

and summing as to a, we have 

ds^ ds ds 

From this equation it follows that the expression in the 
second member is a contravariant vector. Let us consider the 
equation obtained by setting it equal to zero, namely, 

(27) j^-^^oL&\<^&, <y\~ ^ = 0 ' «•= I ' 2, 3 ,4 . 

On account of the covariant character of this equation it is 
satisfied or not independently of the choice of coordinates. 
In the case of the special theory of relativity the Christoffel 
symbols have the value zero and the equations reduce to 
d^xJds^=o; and these are equations of a straight line. In 
this special case, then, equations (27) give the path of a moving 
particle in the absence of a permanent gravitational field. 
Accordingly, in view of our principle of equivalence, we assume 
that equations (27) are the equations of motion of a particle 
referred to any axes, even though there is a permanent gravita­
tional field. We are justified in this in view of the fact that 
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the equations contain no derivative of the g„ of order higher 
than the first. 

Let us now see in what sense the Newtonian theory of the 
motion of a particle is a sort of first approxunation to the theory 
based on equations (27). In the case of the special theory of 
relativity the components dxi/ds, dx2/ds, dxz/ds of the velocity 
V can have arbitrary values. If the velocity of light is taken 
to be vmity and j; is a very smaU quantity then its components 
are smaU whUe dXi/ds is equal to unity except for quantities 
of the second order. Moreover, in the fimiting case of the 
special theory of relativity the quantities g,, have the value 
zero when p^v, while gii = - i , g 2 2 = - i , g33 = - i , g44 = i . 
From this point of view the quantities {a/3, a} are of order at 
least as high as the first. From these results Einstein con­
cludes that in equation (27) the desured approximation is to be 
attained by considering only that ĝ „ for which p=4 = v and is 
then led to the approximate equations 

ct Xi , ) a Xff , , 
-^=-\AA,A\, - ^ = 144, ffi, o- = i, 2, 3, 

by taking the approximate relation ds = dt. 

If we assume further that the gravitational field is quasi-
static in the sense that the acceleration due to the gravitational 
field is very smaU compared with the velocity of fight so that 
derivatives with respect to the time may be neglected in com­
parison with those with respect to the space-coordinates, we 
have approximately 

d'^X, 19g44 

These are the equations of motion of a material particle in 
the Newtonian theory in which g44/2 plays the role of the 
gravitational potential. I t is noteworthy that these approxi­
mate equations depend on the single component g44 of the 
fundamental tensor. 

Going back to the general point of view of equations (27) 
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and accepting the guidance of our current ideas (just seen to 
be approximately vafid), let us consider the case of a particle 
at rest at the origin of coordinates in our space-time extension. 
We depart somewhat from the strict standpoint of the general 
theory of relativity and choose 

(28) Xi=r, X2 = d, xz = (t>, Xi = t 

as our coordinates, treating them as the usual polar coordinates. 
Then ds^ may be assumed to have the form 

ds^ =-e^dr^ - e"{r^de^+r^ sin^ dd(t>^)-\-e''dt^, 

where X, p., v are functions of r only. 

One may justify the omission of the product terms drdO 
and drd<l) and ddd<i> by the symmetry of the polar cooiffinates, 
and the omission of drdt and dddt and d4>dt by the symmetry of 
a static field with respect to past and future time. 

If we write r^e^ = r'^ and absorb into the X the resulting 
change in dr^ and then write r for the new r' we have for ds^ the 
expression 

(29) ds'^= -eHr^-rHe^-r^ sin^ ed(j>^-\-e-dt^. 

From this we have g;,„ = o when p^^v and 

(30) gii = e ~ \ g22=-r^, gzz==-r^sm^ e, gii=e'. 

Here X and v are functions of r. 

The determinant g reduces to its main diagonal and we have 

_ g = ê  + "̂ 4 sin2 e, . g"" = i / g„ . 

The three-index symbol [ar, a] has the value 

2g„a l9^r 9X, 9X„ 

If tr, T, p are three distinct numbers we have {or, p}=o 
while 
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trorj (31) k . , . } = i | - l o g g . . , S - . ^ H - ^ | - ^ 

{<̂ ,̂ T}=ir—logg, , . 
9x^ 

By a straightforward computation one may now evaluate 
the Christoffel S3rmbols involved in (26) and so obtain the 
expficit form of those equations for the special case now in 
consideration. I t turns out that B„ = o is identically satisfied 
when p^v. From the four equations in which p = v we have 
by the indicated direct computation the relations 

| . " - i X ' / + i / 2 _ x ' / ^ = o, 

(32) e-^[i+^r{v'-\')]-i=o, 

sin2 0 • e-^[ i - t - | r ( / -X ' ) ] - sin2 0 = o, 

e-\-h"+i^'^'-h"-^7r)=o, 

where the primes denote differentiation with respect to r. 

Combining the first and last equations we see that X' = — v'. 
Then, since X and v must tend to zero as r tends to infinity so 
that gii and g44 shall have at infinity the GaHlean values — i 
and - |- i , respectively, it foUows that \= —v. Then the second 
and third equations in (32) both reduce to the equation 

e-{z+r/) = i. 

Solving this we have e'' = i — 2m/r, where 2m is a constant, 
of integration. This solution also satisfies the first and fourth, 
equations in (32). Substituting in (29) the derived values for 
e'" and e" we have 

(33) ds^^-(i-—] ^dr^-rUe-'-r^sm^edcl)^ 

+(-f)*' 
Substituting into (27) the values of the Christoffel symbols in 

the same special forms as we have just employed in (26) we 
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may obtain the expUcit forms of equations (27) for our present 
problem. Equation (27) for o- = 2 thus becomes 

, s d^e „ . Jd4>Y , 2drde 

If we choose coordinates so that the particle moves initiaUy in 
the plane 6 —IT/2 we have initially dd/ds = o and cos d = o, so 
that d^d/ds^ = o; whence it follows that the particle continues 
to move in this plane. With such a choice of coordinates 
equations (27) for (r = i, 3, 4 take the forms 

^35^ ds^^'dr[ds) '' [dlj + ^ ' dr\Js) -°' 

( f.\ d?^ .2drd^_ dH dv dt 
^3^^ d^2+r^^-°' I^^^ Jsds^"-

From equations (36) we have 

I >.^ 2̂ "̂  7 dt _, I 2m 
(37) r-^-j-h, ~ = ye ^ = 7 1 - -

-1 

) 

where h and 7 are constants of integration and where in the last 
member we have replaced e~' by its value obtained in the 
paragraph ending with equation (33). Again, if we replace X 
and V in (35) by their values previously derived we have 

, QS dh ml 2m\~'^/dr\^ ( 2m\/d(bV 

(3̂ ) dT^-A'-T) [is)-V~TAis) 
H \ r l\ds/ 

Since dd = o and 6=17/2 we now have from {2,^) the relation 

« (-7)"'(f+Kt-(-v)(ir--
From this relation and (37) we have 

/ N (drY , 2fd4>Y 2 , 2m . h^ 

4̂°) [ds) +'' y ='v^-^+-7+^^7-
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If in equation (40) we replace d(i>/ds by its value from (37) 
and then differentiate with respect to s we have for dP-r/ds^ 
the same value as that obtained from (38) on eliminating the 
first derivatives in (38) by aid of (37) and (39). Hence, if we 
retain equations (37) and (40) we may omit equation (38). 
Then equations (37) and (40) are the sole equations of motion. 

In the corresponding coordinates the Newtonian equations 
of elliptic motion are 

^^'^ [jt)-^'\dt)^-a+T' '^-dt=^'-
To make the first of these correspond with (40) we must 
regard ds as replacing dt and take for 72 the value y^^i—m/a, 
a being the semimajor axis of the orbit. The term 2mW/r^ 
in (40) represents a small additional effect not in evidence in 
the Newtonian theory. The quantity m, previously intro­
duced as a constant of integration, is now to be identified as the 
mass of the attracting particle measured in gravitational units. 

§ 46. THREE CRUCIAL PHENOMENA. 

If we take one kilometre as the unit of length and choose 
the unit of time so that the velocity of light is unity, we obtain 
from (41) the approximate value m = 1.47 for the mass of the sun 
on supposing that the path of motion of the earth is circular so 
t h a t r = a = i -49.10^ and on employing the value oj = 6 •64.10"^^ 
of the angular velocity d4>/dt. Hence m/r is of the order 
io~^. Moreover, it foUows from the second equation in (41) 
that h'^/r^ is approximately equal to co2a2 and is hence of order 

I O ~ ^ -

From (40) and the first equation in (37) we have 

h drY ]'? _ 2 2m W 

r'^ d4>/ f^ r r^ 

If we transform this equation by use of the relation r=i/u 
and differentiate both members of the resulting equation with 
respect to (j), we have 
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(42) 0 + ^ = 1+3^^2. 

Now H^u^ is a quantity of the order of io~^; hence, we may 
get a roughly approximate solution of (42) by neglecting the 
term 2>tnu^. This gives 

(43) M = - [ i + e cos {<t>-w)], 

where e and w are constants of integration. In order to get a 
second approximation to the solution we substitute the value 
of u in the last term of (42) and obtain the equation 

d U Tit 6f}t "Zfft "ZfH & 

^2 + ^ = J^2+J^^<^°'(^-^) + J^ + '-^i^+^OS2{<^-w)]. 

Through use of the approximate value of u in (43) and the 
fact that h^u^ is of order lo"^, it may be seen that the third 
and fourth terms in the second member of the last equation 
cannot produce appreciable effects. But the second term is of 
a suitable period to produce an increasing effect by resonance. 
Retaining from the second member only the first and second 
terms and solving the equation so curtailed we have 

M = —li-hecos, (0-TO)- | -^^esin {<t>-w)]. 

Writing hw for 2,''n'^<i>/h^ -̂nd neglecting the second and higher 
powers of bw, we may put the approximate value of u in the 
form 

u=-rAT--\-e cos {4> — w— Sw)]. 

Applying this to the case of a planet moving around the sun 
we find that while the planet moves through one revolution 
the periheHon advances by a fraction of a revolution equal to 

dw_2m^_ 3w _ i2T^a^ 
0 P a{i-e^) c2r2(i_g?)' 
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T being the period of the planet and c being the velocity of 
Hght in customary units introduced into the last member for 
convenience. 

This formula gives 42.9, 8.6, 3.8, 1.35 seconds for the 
respective advances of the perihelion (per century) of the four 
inner planets. Mercury, Venus, Earth, Mars. This is in close 
agreement with observation. Thus the theory of Einstein 
yields a very satisfactory explanation of the celebrated large 
discordance in the motion of the periheHon of Mercury which 
has occupied the attention of astronomers since the time of 
Leverrier. There is no trace of forced agreement in connection 
with this remarkable success of the theory. 

A second crucial phenomenon for the theory is that of the 
defiection of a ray of light. In the absence of a gravitational 
field and with the choice of coordinates which we have been 
employing the velocity of light has the constant value unity. 
Hence 

W^m<ih-
so that 

ds^= — dx^ — dy^—dz^+dt^ = 0. 

Therefore, for the motion of light in the absence of a gravita­
tional field we have ds = o; then by the principle of equivalence 
we must also have ds = o even in a gravitational field. Employ­
ing this value of ds and assuming that the path of light is in the 
plane d=ir/2 we have from (33) the relation 

, , / 2m\ ^/drY , / d(j>Y ^m 
(44) I - - ( T J + I ' - V V ) = I dt \ dt r 

If V is the velocity of fight in a direction making an angle a 
with the radius vector we have 

2m\ ' „ , . 2 
I I cos2 a-1-sm-^ a 

r I 
whence 

/ 2m\ { 2m . 5, 
v=\i H I sin^a 

\ r [ r 

• i -
2m 

r ' 
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Since this gives a velocity for Hght varying with the direction 
we alter our coordinates slightly by replacing r by r-\-m, whence 
we have that r^ is to be replaced by a quantity approximately 
equal to 

With such a value of r equation (44) oecomes approximately 
the equation 

Kdt)-^Klt) A'~) ' 

whence we obtain for v the approximate value 

2m 
v = i , 

r 
the same in all directions. 

If we employ the principle that the course of a ray of Hght 
depends only on the variation of velocity, we find that it will 
be the same as in a EucUdean space filled with material of 
a refractive index p given by the relation p=i/v, and hence 
approximately by the relation 

, 2m 
p = i-\ . 

r 

The gravitational field round a particle thus acts as a con­
verging lens. 

From the foregoing value of p it may be shown without 
difficulty that a ray of light from — 00 to -|- 00, which passes 
at a distance R from a particle of mass m, will experience a 
total deflection of amount \m/R. For the sun we have 
OT = i.47 and i? = sun's radius = 697,000 km. Hence for a star 
seen close to the limb of the sun we shall have a deflection of 
1.74 seconds of angular measure. 

This prediction was tested by observations made inde­
pendently at two stations during the eclipse of the sun of May 29, 
1919; the values for the deflection obtained at the two stations 



THE GENERALIZED THEORY OF RELATIVITY. 1 0 5 

are 1.61 and 1.98 seconds of angular measure, results in sub­
stantial agreement with the predicted value. 

Thus the Einstein law of gravitation, as expressed in equa­
tion (33), has been checked for high velocities by the deflection 
of a ray of light and for comparatively low velocities by the 
motion of the periheHon of Mercury—two very remarkable 
conquests to be made simultaneously by a single theory. 

A third crucial phenomenon is afforded by the vibration 
of an atom in a gravitational field. Such an atom is a natural 
clock and should therefore give an invariant measure of an 
interval of time. If the atom is at rest in the system of coor­
dinates (which themselves may be in motion) we have dx = dy = 
dz = o, so that ds'^^gadt^ If we have two similar atoms at 
different parts of the field where the potentials are g44 and g'a, 
respectively, we have from the invariance of ds that 

Vgiidt=Vg'iidt'. 

If t refers to the photosphere of the sun where g44= i — 2m/R, 
R being the sun's radius, and t' refers to a point on the earth 
where g'44 is sensibly equal to unity, we have approximately, 

dt , m 
— r = i + — = 1.00000212. 

dt' R 
From this it follows that the atom vibrates more slowly on 

the sun than on the earth, and hence that the fines of the 
spectrum should be displaced toward the red. For the part 
of the spectrum usually observed this displacement amounts 
to about .008 tenth-meters (a tenth-meter = io~ 1° meters). 

There is not yet, agreement as to whether the phenomenon 
thus predicted is actually existent; in fact, some doubt has 
been felt as to whether the argument is valid by which this 
prediction is supported. C. E. St. John {Astrophysical lournal, 
vol. 46, p. 249) has given negative evidence and L. Grebe and 
A. Bachem {Deut. Phys. Gesell., Verh., vol. 21, p. 454) have 
given positive evidence for the existence of the effect. Einstein 
(quoted in Science for March 12, 1920, p. 270) seems to believe 
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that the existence of the phenomenon has been estabHshed. 
But, if it should turn out that the test fails, the most appro­
priate conclusion would seem to be that we have insufficient, 
knowledge of the conditions of atomic vibrations rather than 
that the theory of relativity is thus discredited. 

§ 47. T H E ELECTROMAGNETIC EQUATIONS. 

That Maxwell's equations may be reduced to a covariant 
form and hence that all electromagnetic phenomena described 
hy them are in agreement with the principle of relativity may 
readily be shown in the following way (the exposition being 
based on that of Eddington, I.e., pp. 76-77): 

The electromagnetic field is described by a covariant vector 
K^ which in Galilean coordinates has the components 

(45) K, = {-F.-G,-n,^), 

where F, G, H is the vector potential and <l> is the scalar potential 
of the ordinary theory. If K,, is the covariant derivative of 
K, we have by (18) 

(46) — —-=K,,-K,„ 
dx, dx, 

a covariant tensor which we denote by F„. 

The electric and magnetic forces of the usual theory are 
expressed in our present notation by formulas Hke 

/ N. Y = .9KI _9^4 _ 9 K 2 9K3 

9x4 9x1' " 9x3 9x2' 

Hence in Galilean coordinates the value of Fpv is given by the 
array 

0 - 7 /3 -X 
7 O —a — F 

- /3 a O -Z 
X Y Z o 

where p varies through a row and v varies through a column. 



THE GENERALIZED THEORY OF RELATIVITY- 1 0 7 

The associated contravariant tensor F''" — '2affg'"'g''^F^^ is given 
similarly by the array 

0 - 7 /3 Z 
7 O —a Y 

- / 3 a o Z 
-X -Y -Z o 

In the ordinary theory the MaxweU equations may be 
written in the form 

(48) 
9Z_9F^_9a dX_dZ^_dP^ _9F_9X^_97 
dy dz dt' 9z 9x dt' dx dy dt ' 

. N 97 9/3 dX da 97 9 F , ^ 9^ da dz , 
dy dz dt dz dx dt dx dy dt 

/ ^ dX,dY,dZ 
9x dy dz 

/ , X 9a , 9^ , 97 „ 
^̂  ^ 9x dy dz 

where the velocity of light is taken to be unity and the Heaviside-
Lorentz unit of charge is chosen so that the factor 477 is absent. 

The electric current u, v, w and density p form a contra­
variant vector /" , since 

,„ . N ^ /dx dv dz dt 
J^^{u,v,w,p) = ^e[-^,^,j,~ 

per unit volume. Equations (49) and (50) yield the relations 

while equations (48) and (51) may be written 

dF,, dF,, dF„, _ 
dx, dx, dx. 

From the definition of F,, it is seen that the last equation 
is satisfied identically, so that (46) and (52) represent the funda-
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mental electromagnetic equations. The former is covariant 
and the latter is rendered so on replacing the ordinary deriva­
tive by. the covariant derivative. Hence the required co-
variant equations take the form 

0X, O.^, 

These hold in the gravitational field because the conditions 
for the appHcation of the principle of equivalence are satisfied. 

Here we have shown that the electromagnetic equations 
are consistent with the theory of relativity, but we have not 
derived them by means of that theory. A more far-reaching 
treatment of the electromagnetic problem has been made by 
Weyl by means of a generafized form of the theory of relativity 
{Annalen der Physik, vol. 59 (1919), p. lo i ) . 

§ 48. SOME GENERAL CONSIDERATIONS RELATING TO THE 

THEORY. 

Silberstein {Philosophical Magazine, vol. 36 (1918), pp. 
94-128) has undertaken to develop the general theory of 
relativity without the equivalence hypothesis. He concedes 
that the Einstein theory has one very strong point, namely, 
the requirement of general covariance of all physical laws, that 
actual phenomenal contents should be expressed (or at least 
be expressible) in a way showing their independence of the 
particular language or scaffolding adopted; but he insists that 
it has also a weak point, namely, the equivalence hypothesis 
which places gravitation, he befieves, on an entirely exceptional 
and privileged footing, bringing it into intimate connection 
with the fundamental tensor which appears in the fine-element 
of the world. 

He proposes to retain the strong point and to reject the 
weak one and thus to develop the impHcations of the general 
principle of relativity without the equivalence hypothesis, in 
fact, without priyileging gravitation at all. He considers the 
equivalence hypothesis to be a vulnerable point, independently 
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of agreement or disagreement with experimental facts, because 
of its special nature and of the great number of assumptions 
which it tacitly impHes. 

I t is a matter of importance to separate these two elements 
and to ascertain to what extent the results obtained in the 
theory are based on the one or the other of the two parts of 
the general theory. In our treatment in the foregoing pages 
we have followed the method of Einstein and have not under­
taken to separate the two elements or to distinguish between 
their consequences. 

One matter not mentioned in our preceding treatment 
should have at least a word of attention. I t wiU be observed 
that in the theory as developed the notion of gravitational 
force has hardly been present at all and that in fact the proper­
ties of the gravitational field are essentiaUy geometrical rather 
than dynamical in character. Weyl, in the paper referred to 
at the end of § 47, has succeeded in extending the theory so as 
to include electromagnetic and gravitational forces in one 
geometrical scheme, thus extending the range in which the 
explanations may be stated in purely geometric terms. 

When one undertakes to pursue to their extreme reach 
the geometric conceptions which thus arise one is soon brought 
to consider the fundamental character of the four-dimensional 
space-time extension by means of which the phenomena are 
thus interpreted geometrically. From this point of view one 
seems forced to conclude that our space-time extension is not 
a flat space Hke a plane or a Euclidean space of three dimensions, 
but has an essential curvature involved in its four-dimensional 
continuum analogous to that of a two-dimensional continuum 
represented by a warped surface in our usual space of three dimen­
sions. 

Some of those who have followed up this idea have come 
to the conclusion that our actual space-time manifold is finite 
in extent. 

Several writers have considered the possibUity of founding 
the entire theory of relativity on a certain different basis from 
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that employed in this chapter, namely, on the principle of least 
action. This and the topic just mentioned previously are treated 
in the last two chapters of the monograph of Eddington already 
referred to. For our purpose it suffices to say that it is possible 
to formulate the principle of least action naturaUy in such a 
way that our basic equations are eqmvalent to the principle. 
From a theoretical point of view there is much to be said in 
favor of developing the theory in this way; but the purposes 
of an elementary exposition are better served by the plan of 
treatment which we have adopted. 

Whatever may be the final verdict as to the vaHdity of the 
theory of relativity as a whole, it seems practically certain 
that it has already made a fundamental and permanent con­
tribution to astronomy in developing the modification of 
Newton's law of gravitation associated with equation (33), the 
new form of the law now having been checked experimentaUy 
in two very different ways and thus estabfished on a particularly 
secure experimental basis. Two such conquests as those 
recorded in § 46 have seldom been made so nearly simulta­
neously by a single theory developed from one point of view 
consistently maintained throughout. 
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