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Abstract

Small rodent cardiac magnetic resonance imaging (MRI) plays an important role in

preclinical models of cardiac disease, which is routinely used to probe the effect of

individual genes or groups of genes on the etiology of a large number of cardiovascular

diseases. Accurate myocardial boundaries delineation is crucial to most morphological

and functional analysis in rodent cardiac MRI. However, due to the small volume of

the mouse heart and its high heart rate, rodent cardiac MRIs are usually acquired

with sub-optimal resolution and low signal-to-noise ratio(SNR). The rodent cardiac

MRIs can also suffer from signal loss due to the intra-voxel dephasing. These factors

make automatic myocardial segmentation challenging. Manual delineation could be

applied to label myocardial boundaries but it is usually laborious and time-consuming.

An automatic myocardium segmentation algorithm specifically designed for these data

could enhance accuracy and reproducibility of cardiac structure and function analysis.

In this study, we present a deep learning approach based on 3D attention M-net

to perform automatic segmentation of the murine left ventricular myocardium. In the

architecture, we use dual spatial-channel attention gates between encoder and decoder

along with a multi-scale feature fusion path after decoder. Attention gates enable

networks to focus on relevant spatial information and channel features to improve

segmentation performance. A distance-derived loss term, besides general Dice score

loss and binary cross entropy loss, was also introduced to our hybrid loss functions to

refine our segmentation contour. The proposed model outperforms previous generic

models for segmentation, with similar number of parameters, in major segmenta-
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tion metrics including the Dice score (0.9072±0.0187), Jaccard index (0.8307) and

Hausdorff distance (3.1754 pixels), which are comparable to the results achieved by

state-of-the-art models on human cardiac datasets.
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Chapter 1

Introduction

1.1 Clinical Background

Cardiac magnetic resonance imaging (MRI) is the current gold standard for clinical

quantitative cardiac analysis, including the calculation of left ventricular (LV) end-

diastolic (ED) and end-systolic (ES) volumes, due to its accurate measurement of

both anatomy and function [1, 2], which is crucial to reliable cardiac analysis. Such

quantification typically requires the delineation of LV myocardial borders. Beside

extensive usage in the clinical scenarios, cardiac MRI is also indispensable in various

preclinical research. In the preclinical models of cardiac disease, small rodent cardiac

images play an extremely important role, which are routinely used to probe the effect of

individual genes or groups of genes on the etiology of a large number of cardiovascular

diseases. Accurate myocardial boundaries delineation is crucial to most morphological

and functional analysis in rodent cardiac MRI [3, 4].

Traditional segmentation approaches include manual contouring, image processing

and machine learning methods, such as active shape models [5] and atlas-based methods

[6]. Clinically, most physicians restrict delineation to only the ED and ES phases, which

requires approximately 20 minutes to complete manually [7]. Complete delineation

across the entire cardiac cycle would be more desirable, as it allows calculation of

ventricular filling or ejection rates, but the high cardiac frame-rates make this far too
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tedious and time-consuming to be performed manually. Although image processing

and machine learning methods are less laborious, they also usually require manual

intervention, extensive feature engineering, and prior-knowledge incorporation, which

are still not systematically efficient.

1.2 Related Work

1.2.1 Convolutional Neural Networks (CNN)

In the last decade, Deep learning algorithms, especially Convolutional Neural Networks

(CNN), have succeeded in various automatic medical image segmentation tasks [8, 9].

A standard CNN is typically made up by an input layer, an output layer and a stack

hidden layers to perform a series of nonlinear transformation from inputs to outputs.

These hidden layers often consist of convolutional layers, pooling layers (e.g. average-

pooling and max-pooling) and/or fully-connected layers. In general, The sequence of

convolutional layers effectively extract useful features. A convolutional layer achieves

convolution by many convolution kernels and is followed by a normalization layer

such as batch normalization, to facilitate model convergence during training and an

activation function like ReLU and Sigmoid, to provide a simple non-linear function

from which more complex feature maps can be obtained. These feature maps are

then downsampled by pooling layers to provide some local spatial invariance to each

layer. After that, fully connected layers take features that have been computed from

the inputs via convolutional layers and find the most task-relevant features to act

efficiently as non-linear classifiers. The output of the CNN model is a fix-sized vector

where each element would be a probabilistic score for each category for classification,

or a real value for a regression task like left ventricular volume estimation, or a set of

values for object detection and localization.

The most significant component of a CNN model is the convolutional layer, which
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consists of many convolution kernels for feature extraction. The computational

complexity increases exponentially as the kernel size increases. Therefore, the size of

each kernel is typically limited, usually 2D 3 × 3 kernels, so that the model could run

more efficiently. While the individual kernels are small, the receptive field can still be

increased by increasing the number of convolutional layers, which is also called the

depth of a CNN model. For example, a convolutional layer with large 7 × 7 kernels can

be replaced by three layers with small 3 × 3 kernels. In general, increasing the depth

of convolution neural networks to enlarge the receptive field can lead to improved

model performance.

The original CNN classification models can also be applied to image segmentation

tasks without major adaptations to the network architecture. Ciresan et al. [9] applied

2D CNN to neuronal membranes segmentation in electron microscopic image stacks.

The segmentation task is performed by pixel-wise classification by extracting patch

around the pixel using a sliding window within each slice. One major drawback of this

patch-based approach is the time inefficiency caused by computational redundancy

due to multiple overlapping patches in the image and inability to learn global context.

For more efficient and end-to-end pixel-wise segmentation, a variant of CNN called

fully convolutional neural network is more commonly used.

1.2.2 Fully Convolutional Network (FCN)

Fully Convolutional Network (FCN) [10] and U-Net [11], have been utilized for cardiac

segmentation. FCNs are a special type of CNNs without any fully connected layers.

FCNs typically have an encoder-decoder structure so that they can take input of

arbitrary size and output the prediction of the same size. The input would first be

transformed into high-level features by the encoder and then interpreted and recovered

by the decoder with detailed spatial information by the decoder. Going through a

stack of upsampling and convolution operations within the decoder, The final output
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would be a pixel-wise prediction with the size of input. Upsampling can be achieved

by either upsampling layers or transposed convolutions such as 3 × 3 transposed

convolution with a stride of 2 to enlarge features by a factor of 2. FCN with the simple

encoder-decoder structure may be limited to capture detailed context information

for precise segmentation as features would be eliminated by the pooling layers in the

encoder. Several variants of FCNs have been proposed to efficiently propagate features

from the encoder to the decoder, in order to boost the segmentation accuracy. The

most well-known and most popular variant of FCNs for biomedical image segmentation

is the U-net. On the basis of the vanilla FCN, the U-net employs skip connections

between the encoder and decoder to recover spatial context in the down-sampling path,

yielding more precise segmentation. These works, however, mainly focused on 2D

slices rather than 3D ones due to the low out-of-plane resolution and motion artifacts

in clinical cardiac MR scans. As a consequence, they are not accounting for inter-slice

dependencies by performing slice-by-slice workflow. More recent works such as 3D

U-net [12], V-net [13], and M-net [14] have focused on network structure refinement

to enhance feature learning. Compared to original FCN, these models reuse encoded

features from inputs more effectively; therefore, they are widely applied in biomedical

image segmentation, especially in low signal-to-noise ratio (SNR) applications.

1.2.3 Loss Functions

Other state-of-the-art approaches to improve network performance include changing

supervision methods, modifying loss functions, and introducing attention gates into

networks. For example, deep supervision in [15–17] is utilized to regularize networks to

capture more meaningful high-level features, especially with a small training dataset.

Besides, many loss functions, such as weighted cross-entropy [18], weighted Dice

loss [19], focal loss [20] and distance loss function [21], were proposed to overcome

imbalanced data issue and to refine the boundaries of segmentation. More recently,
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Figure 1-1. Signal loss within myocardium: An example of left ventricular chamber
with dark band (Red arrow) due to magnetic field inhomogeneity-induced signal void in
myocardium.

attention gates [22] were highlighted in conditioning and regularizing deep learning

networks to focus and capture better local features in segmentation application.

1.2.4 Challenges

The aforementioned models aim at human cardiac MR segmentation. Compared to

their works, we have focused on developing a deep learning technique that segments

left ventricular myocardium in mice cardiac MRI, which is valuable in preclinical

studies. In comparison to human cardiac anatomy, a mouse heart is much smaller,

resulting in a lower SNR and relatively low spatial resolution, contributing to the

partial volume averaging and blurry boundaries. One way to improve the SNR is to

use MR scanners with higher magnetic field. However, magnetic field inhomogeneity

that is typically observed at this higher field, introduces image artifacts such as signal

loss due to intra-voxel dephasing at the air-tissue boundaries in regions where the

cardiac wall is in the vicinity of lung parenchyma (Figure 1-1). Similar to human

cardiac MR studies, we could also observe slice-to-slice misplacement due to sequential

2D acquisition scheme. To address these challenges, we have proposed a novel pipeline

by applying modified M-net with dual attention gates to 3D volume segmentation

and introduced a distance-derived loss function for optimal boundary refinement of

segmentation.

5



1.2.5 Proposed Method

The major contribution of this research work is to use a unique in-house data set

of dynamic mice cardiac MRI data during a cardiac cycle (cine) that contains both

normal and diseased heart (myocardial infarction) to develop a new pipeline for 3D

myocardium segmentation based on 3D M-net architecture with attention to a new

distance-derived loss function. Our initial analysis indicates that the proposed approach

achieves better performance in Hausdorff distance than other current state-of-the-art

models with comparable Dice score.
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Chapter 2

Methodology

The model architecture detail is depicted in Figure 2-1. The proposed 3D Attention

M-net, which is inspired by the original M-net [14], consists of two major parts:

encoder and decoder with four levels each. In addition, a dual attention gate is applied

between the encoder and decoder at each level to refine the features from the encoder.

2.1 Encoder

Before the encoder, the MRI volumes of size 36 × 96 × 96 are first inputted into a

convolution layer to increase the feature channels to 16. Then, it is down-sampled by

max-pooling layers as parallel inputs to corresponding encoder levels. This additional

input path is inspired by the residual connection, that helps to preserve the original

image information in lower levels and prevent some common issues like gradient

vanishing as the model gets deeper. As illustrated in Figure 2-1, each encoder level

consists of a cascade of 4 convolution blocks following a max-pooling layer for next-

level encoders. Each convolution block includes a 3D convolution layer with a Batch

Normalization layer and a ‘ReLU’ activation layer.
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Figure 2-1. Attention M-net Architecture. The model consists of encoder, decoder,
and dual attention gates. Architecture of Dual Attention Gate. The dual attention gate,
taking both encoder outputs and upsampled decoder outputs as inputs, is made up by two
sub-blocks: (b) channel attention block, and (c) spatial attention block.

2.2 Dual Attention Gate

In the original skip connections of M-net, the outputs from encoder are directly

concatenated with up-sampled features from the lower decoder level. However, the

contextual information extracted from encoder would inevitably include redundant

information. To solve this problem, we have introduced the self-attention mechanism

to emphasize meaningful information along the spatial and channel dimensions, that

are most beneficial features for the final segmentation. Between encoders and decoders

at each level, we utilized the dual attention gate proposed by Khanh et al. [22] to

regularize our network to focus on extracting meaningful contextual features from

encoders and decoders along the spatial and channel dimensions. With the help of the

attention gates, the decoders can more efficiently utilize encoded features to generate

final segmentation. As illustrated in Figure 2-2, the dual attention gate is made up of a

spatial attention gate and a channel attention gate. These two gate are complementary,

where spatial attention gate focuses on spatial concepts and channel attention gate

concentrates on channel concepts. Therefore, in order to take full advantage of both

attention gates, we sequentially multiply the input feature with a spatial attention
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map and channel attention map to construct the final refined features, as illustrated

in Figure 2-2 (a). The weighted features are then flow into decoder and concatenated

with higher-level decoded features for further calculation.

2.2.1 Channel Attention Gate

Although the low-level encoded features are rich in detailed spatial information, they

lack semantic information. Due to this large semantic gap, a direct connection between

low-level encoder and high-level decoder features adversely affects the prediction out-

comes. The channel attention gate is helpful to emphasize the contextual information

in the low-level encoded feature, thus narrowing the semantic gap between the encoder

and decoder features. The channel attention map combines channel information from

both the encoder and decoder, as illustrated in Figure 2-2 (b). And it is constructed

based on the channel interdependencies of the convolutional features, which highlighted

the most meaningfully discriminative features.

More effective feature fusion between the encoder and decoder is ensured by

improving the contextual information of the low-level encoder. First, the spatial

features from both encoder and decoder is squeezed by utilizing average pooling and

max pooling simultaneously. Second, 1 × 1 × 1 convolution layers are applied on the

squeezed feature to capture the dependencies of the channels to generate the squeezed

channel attention map. Finally, the squeezed channel attention map are summed up

and an additional 1 × 1 × 1 convolution along with the ’Sigmoid’ activation function

is used to construct the final attention map.

2.2.2 Spatial Attention Gate

Since the encoded features are rich in location information, a more selective focus on

salient region is beneficial to target the object and refine the segmentation. A spatial

attention gate is used to guide the model to focus more on the detailed structure of
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an important region, which is the boundary area in our case. The spatial attention

map is constructed based on the interrelation between the spatial information that

focuses on the regions in interest.

As illustrated in Figure 2-2 (c), the spatial attention map is also a combination of

encoder and decoder features. To compute the spatial attention map at each level, we

first apply average pooling, max pooling, and 1×1×1 convolution through the channel

dimension and then concatenate them to construct a capable feature representation.

Then, two convolution layers are applied on the concatenated features to produce a

self-learned spatial attention map that highlights the region of interest throughout

the training process. Finally, the spatial attention map from the encoder feature and

decoder feature are summarized to generate the final spatial attention map.

2.3 Decoder

Decoding levels take the concatenation of up-sampled feature from lower level and

refined skip connections from corresponding encoder levels as inputs. In each level,

the first half part of a decoder mirrors the encoder part, followed by an up-sampling

layer to double the size and recover the output to the input volume size.

Moreover, there is an additional up-sampling path for multi-scale fusion to directly

introduce lower-level decoded features into the final prediction and generate a smoother

segmentation boundary. Moreover, this multi-scale fusion also provides entry for the

following deep supervision. The output from a certain level is up-sampled and then

directly concatenated with the output from upper level. This additional path allows to

introduce deep supervision to lower-level decoder outputs, thus preventing vanishing

gradient. Finally, the output from the decoder goes through two more 3 × 3 × 3

convolution layers to reduce the feature size and then are outputted from a 1 × 1 × 1

convolution layer with the ’Sigmoid’ activation function.
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Figure 2-2. Architecture of Dual Attention Gate. The dual attention gate, taking
both encoder outputs and upsampled decoder outputs as inputs, is made up by two
sub-blocks: (b) channel attention block, and (c) spatial attention block.

2.4 Loss Functions

For our dataset, most errors occur around the segmentation boundaries due to the

low SNR and the artifact from signal loss within myocardium. Therefore, in addition

to a common loss function such as Generalized Dice Loss (GDL) and Balanced Cross-

Entropy (BCE), we propose an additional distance-derived loss (DDL) for contour

refinement of the final segmentation.

2.4.1 Generalized Dice Loss (GDL)

Sudre et al. [16] proposed an extension of Dice loss with different weighting for each

pixel class, which proved to be effective in unbalanced classes segmentation task.It

takes the form:

GDL = 1 − 2
∑︁1

l=0 wl
∑︁

x

∑︁
y (Pl(x, y) × Gl(x, y))∑︁1

l=0 wl
∑︁

x

∑︁
y (Pl(x, y) + Gl(x, y))

(1)

where Pl(x, y) and Gl(x, y), respectively, denote the prediction and ground truth of

the input slices for class l at position (x, y). In our case, P0(x, y) = 1 − P1(x, y) and

G0(x, y) = 1 − G1(x, y). Additionally, wl = 1/(∑︁
x

∑︁
y Gl(x, y))2 is used to correct the
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imbalanced correlation between region size of different labels and Dice score.

2.4.2 Balanced Cross-Entropy (BCE)

Xie et al. [19] also proposed the BCE loss by adding a modulating factor βxy =

1 − G1(x,y)
H×W

, where H and W denote height and width of the 2D slice, in the original

binary cross entropy loss to tackle class imbalance:

BCE =
− ∑︁

x

∑︁
y(βxyG1(x, y) log P1(x, y) + (1 − βxy)G0(x, y) log P0(x, y))

H × W
(2)

Both of these loss functions were utilized to mitigate the imbalanced voxel classes in

our segmentation task due to the relatively small myocardium area in mice compared

to the background.

2.4.3 Distance Derived Loss (DDL)

A distance map is defined as the distance between the ground truth and the predicted

map. There are two common ways to incorporate distance maps in deep learning

models, either create a specific reconstruction head in the architecture along with

segmentation to predict the distance map, or induce it into loss function. Caliva et al.

[21] created a custom penalty based loss function, using distance maps derived from

ground truth to weigh the cross entropy loss. Inspired by their work, we propose a new

term of loss function focusing on segmentation contour refinement. We first generate a

distance weight map W based on the ground truth mask. For each pixel in the weight

map, the weight equals the reciprocal of the closest Euclidean distance to the ground

truth mask. Let Gpos = {g1, g2, . . . , gn} be the set of valid positions from ground truth

mask, where gi = (gix, giy). The difference between prediction and ground truth is

then multiplied by the weight map W (x, y) = 1/(min
i

√︂
(x − gix)2 + (y − giy)2 + 1).

The voxels closer to the ground truth are assigned larger weights so that this loss term
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enables the model to focus more on contours. It is defined as:

DDL =
∑︁

x

∑︁
y (W (x, y)× | P1(x, y) − G1(x, y) |)∑︁

x

∑︁
y G1(x, y) (1)

where P1(x, y) and G1(x, y) represent the prediction and ground truth pixels.

2.4.4 Combined Loss

In our model, we have used a combination of three aforementioned losses to address

class imbalance (GDL, BCE) and to perform contour refinement (DDL). The combined

loss is defined as follows:

Lcomb = λ1 × GDL + λ2 × BCE + λ3 × DDL (2)

Moreover, we introduced deep supervision on the decoders at each level in our model.

The final loss function is a weighted sum of the losses from the decoders from all 4

levels:

Ldeep =
4∑︂

n=1
wn × Lcombn (3)
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Chapter 3

Experiments

3.1 Dataset

As a part of an ongoing project, in-vivo heart MR images of adult male wild type mice

and Galectin-3 knockout mice were acquired at different stages of disease following

sham surgery or induction of myocardial infarction (pre-op, and days 1, 7, and 56)

using MRI spectrometer equipped with a 11.7T magnet and a gradient set capable

of developing gradient strengths of 740 mT/m (Bruker Biospin, Germany). The

mice were positioned on the MRI 4-channel surface coil and an MRI gating trigger

was established via ECG leads and a respirator pillow. Cine MRI was collected (15

frames, echo time = 1.9708 ms, repetition time varied according to the heart rate,

slice thickness of 0.8 mm, in plane resolution of 0.1307 × 0.1307 mm2, flip angle = 12

degrees, number of excitations = 6) at 8 short axis slices through the LV. The animal

protocol was approved by the Institutional Animal Care and Use Committee of the

Johns Hopkins University (protocol number: MO19E374).

The myocardium was manually segmented in each short-axis image by two re-

search assistants(inter-rater agreement of 89% based on Dice score) using a free

semi-automatic software package in MATLAB called Segment [23]. In principle,

manual segmentation of the left ventricle was performed following recommendations

by Schulz-Menger et. al [24]. Endocardial and epicardial contours were traced on
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short-axis cine images at several time points during the cardiac cycle, with simultane-

ous viewing of short and long-axis images of the same region, if applicable. Papillary

muscles and trabecular tissue were excluded. Most apical region was identified as

a section where left ventricular blood cavity pool was visible. Most basilar section

was selected at the level of outflow tract. Delineation excluded the aortic valve cusps

resulting in myocardial segmentation that resembled crescent shape. The contours were

then interpolated across all time points of the cardiac cycle, and manually examined

to correct any interpolation errors. Segmentations were then reviewed by an expert

with more than 14 years of experience in cardiac MR research. We used 1114 fully

annotated volumes of 99 mice that were collected from the repeated acquisitions (each

contained multiple time frames per cardiac cycle) of several animals who underwent

surgery and followed over the course of disease. All the scanned mice can be divided

into 4 subgroup based on the disease stage: (1) 335 volumes are acquired before the

infarction surgery; (2) 345 volumes are acquired at day 1 after the surgery; (3) 279

volumes are acquired at day 7 after the surgery; (4) 115 volumes are acquired at

day 56 after the surgery. The data were randomly split based on the subgroups into

three subsets: 700 for training, 200 for validation, and 214 for testing, to maintain

the same disease stage distribution in all three sub-datasets. Selection criterion was

based on myocardial volume to ensure similar distribution across all groups. For each

volume, since the gap between slices (0.8 mm) is significantly larger than in-plane

pixel size (0.1307 mm), one of simplest methods, linear interpolation, was performed

to upsample the inter-slice gap to 0.16 mm while maintaining reasonable preprocessing

efficiency. Thus, the data size was augmented to 36 × 96 × 96 × 1.

To improve robustness and generalization to unseen data, we performed data

augmentation by applying random shift (up to 15 pixels), uniformly varying rotation

(within 15 degrees), and horizontal/vertical flips, with a probability of 0.5.
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3.2 Evaluation Metrics

We compare the proposed model with 4 state-of-the-art segmentation models: 2D

U-net [11], 3D U-net [12], DeepMedic [25] and 3D FCN [10]. For fair comparison,

all models are adjusted to contain similar numbers of trainable variables by tuning

the feature numbers of each layer, which is the best strategy to maintain the best

prediction performance compared to other adjustments like changing architecture

depth. And the models are trained with the loss functions proposed in their original

publications. The segmentation performance is quantitatively evaluated by metrics

including mean soft Dice Score [26], Jaccard Index [27], Hausdorff Distance [28],

Sensitivity and Specificity, Positive predictive value (PPV) and Negative predictive

value (NPV). Let P and G represent prediction and ground truth respectively:

• Soft Dice Score are Jaccard Index are both measures of overlap or similarity

between prediction and ground truth masks, and sre defined as:

Dice Score =
2 ∑︁

x

∑︁
y(P1(x, y) × G1(x, y))∑︁

x

∑︁
y(P1(x, y) + G1(x, y)) (7)

Jaccard Index = TP

TP + FP + FN
(8)

• Hausdorff Distance is a symmetric measure of alignment between ground truth

and prediction contours by calculating the maximum distance, and is defined as:

HD(pc, gc) = max
i

min
j

d(pci, gcj) (9)

where d(pci, gcj) =
√︂

(pcix − gcjx)2 + (pciy − gcjy)2 denotes the Euclidean dis-

tance between the pixels on prediction contour pc and ground truth contour gc.

It should be noted that the unit of Hausdorff distance in our case is pixel.

• Sensitivity (SEN), specificity (SPE), PPV, and NPV are defined as:

SEN = TP

TP + FN
SPE = TN

TN + FP
(10, 11)
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PPV = TP

TP + FP
NPV = TN

TN + FN
(12, 13)

where TP , TN , FP , FN denote true positive, true negative, false positive and

false negative.

3.3 Implementation Details

The model is built by tensorflow and Keras in python on an Intel Xeon E5-2620 v4

CPU model with 2 Titan V GPUs. After hyperparameter tuning, the deep supervision

loss Ldeep, as described in the previous section, was set with weights wi of the first level

being 1 and others being 0.5. For the combined loss Lcomb at each level, we conducted

hyperparameter searching to find to best set of weights by setting to searching range

within 1.0 − 5.0. According to our experiments, λ1, λ2, λ3 were set to 1.0, 1.0 and 3.0

to achieve the best prediction accuracy on validation set during the training process.

The model was optimized by Adam method with a learning rate of 10−4 and batch size

of 8. For all experiments, we trained the networks from scratch for 150 epochs. The

learning rate was automatically adjusted by monitoring callback on plateau, allowing

the optimizer to more efficiently reach to a local minimum. The monitored callback is

the generalized Dice loss of the final level output with setting parameters patience to

8, factor to 0.5 and min_delta to 0.0001.

To test the robustness of our 3D attention M-net model architecture on other

dataset, we also trained and tested the proposed model on the ACDC 17 dataset,

which is composed of 150 human subjects equally distributed in 5 subgroups: (1) 30

healthy subjects; (2) 30 subjects with previous myocardial infarction; (3) 30 subjects

with dilated cardiomyopathy; (4) 30 subjects with hypertrophic cardiomyopathy; (5)

30 subjects with abnormal right ventricle. The dataset is further divided into 100

patients for training and the remaining 50 patients for testing, while maintaining the
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same disease type distribution in both sub-datasets [29]. During training, a total of

200 volume scans from 100 patients in the training set were further split into 160

for training and 40 for validation. In addition, we used the same data augmentation

strategies, optimizer and loss functions as those in the previous experiments.
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Chapter 4

Results

Figure 4-1. Comparison of segmentation results on a selected volume. This
figure shows an example of the segmentation ground truth and predictions from all the
comparative models discussed in this thesis. Slices 1-8 are the short-axis scans from basal
to apical area of the same typical volume selected from the test dataset. Column 1: input
MR images; Column 2: manually labeled ground truths; Column 3-8: yellow, green and
red masks represent true positive, false negative and false positive, respectively. Mnet: 3D
attention M-net; DDL: distance derived loss.
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4.1 Comparative Models

Results are summarized in Table 4-I and visualized on Figure 4-1.According to Table 4-

I, our proposed models outperform all the state-of-the-art models in dice score, Jaccard

index, and Hausdorff distance, with comparable performance in all other metrics. The

mean dice score of our 3D attention M-net is 0.9072 ± 0.0187, which is better than

other methods: 3D U-net (0.8732 ± 0.0284), DeepMedic (0.8883 ± 0.0262) and 3D

FCN (0.8894 ± 0.0206) with similar Sensitivity and Specificity. This indicates that our

model has better general myocardium segmentation performance than other models

in the mice MR cardiac images. Furthermore, the dice score agreement between our

two experienced annotators is 0.89 over 150 samples. Compared to annotators, our

proposed 3D attention M-net achieved very comparable results as human being. The

proposed model has also demonstrated a potentially equally competent performance

on the mice dataset as compared to the state-of-the-art myocardium segmentation

models on the human cardiac dataset ACDC17 [29], whose dice scores are around 0.9

on ACDC17 dataset.

In Table 1, there is a noticeable improvement from 2D U-net to 3D U-net in

Hausdorff distances (-0.2142). We also ran a two-sided Wilcoxon rank sum test

that tests the null hypothesis that two independent samples are from continuous

distributions with equal medians [30]. The p-value we got from the Hausdorff distances

of 2D U-net and 3D U-net on the same test dataset are 0.0068, which indicates the

rejection of the null hypothesis of equal medians at 0.05 significance level. This

implies that the 3D model is able to incorporate additional inter-slice contextual

information to achieve better 3D segmentation compared to the 2D model. The

contextual information from adjacent slices and whole volume were shared in 3D

models to help better segmentation in each slice, especially for the apical slice (the

8th slice in Figure 4-1), which typically contains smaller myocardium and suffers from
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larger signal loss due to its adjacency to the lung parenchyma. In the selected case

shown in Figure 4-1, the segmentation of the 2D Unet, compared to all other 3D

whole-volume networks, has noticeably worse performance and boundary refinement.

DeepMedic also has the same problem at the last slice, because DeepMedic is a local

batch-wise 3D network, which does not fully utilize the whole volume contextual

information.

4.2 Ablation Study: Distance-derived Loss

Among all 3D models, our proposed model stands out with a noticeably smaller

Hausdorff distance. The Att-Mnet without the proposed distance loss has already

successfully refined the final segmentation boundary to achieve 4.0026px in Hausdorff

distance, which is at least 0.3px less than all other competitive models in Table 4-I.

This shows that our proposed M-net with dual attention gates (Att-Mnet) has better

segmentation accuracy than others with a similar number of the trainable parameters.

Moreover, our Att-Mnet with the proposed distance loss further reduces the Hausdorff

distance to 3.1754px. This is a major improvement −0.8272px from our Att-Mnet

without the proposed distance loss function. This demonstrates that the proposed

distance loss has enabled our model to effectively refine segmentation contours. This

will improve the accuracy of global left ventricular volumetric measurements such as

end-diastole and ends-stole volumes, ejection fraction, and myocardial mass, as well

as the accuracy of computational analysis of ventricular shape and motion.

4.3 Performance Across Slices

In addition to 3D volume segmentation results, we also evaluate the model’s perfor-

mance on each 2D slice. The dice scores and Hausdorff distances across slices are

shown in Figure 4-2. Across the whole test dataset, Att-Mnet achieves lower dices
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Figure 4-2. Average dice scores and Hausdorff distances across slices on the test
dataset. The black bold lines and bars are the average values and standard deviations of
different slices. The fading lines are original results from all the 214 test volumes.

scores with larger standard deviations at the top and bottom slices. According to

our observation, there are two main reasons that cause lower dice scores at these

slices. On the one hand, the myocardium area is significantly smaller at marginal

slices than middle slices, which would result in a worse result even with the same

absolute segmentation error according to the calculation of dice score. On the other

hand, the segmentation accuracy is also affected by some physiological factors. For

example, the artifacts or signal loss from air around the apical section, as well as the

complexity of outflow tract such as inclusion of valves at the basilar section, can also

be incorporated into low accuracy. And this is also demonstrated by the increase of

Hausdorff distance in the Figure 4-2 (b).

4.4 Performance on Human Dataset (ACDC 17)

To evaluate the generalization of the proposed model architecture on human cardiac

MR images, we have trained a new model, using the exactly same architecture without

further fine-tuning, on one of the most popular human benchmark dataset named

ACDC 17. And the results on the test dataset is shown in the last row of Table 4-I.

According to the leaderboard of segmentation challenge, the range of dice scores and
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Hausdorff distances of the top 15 models are 0.791 − 0.914 and 7.171mm − 13.434mm,

respectively [29]. Therefore, our model, with a dice score at 0.855 and Hausdorff

distance at 9.520mm, has demonstrated the potential to generalize to more kinds of

cardiac datasets.
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Conclusion

In this thesis, a 3D M-net model with dual attention gates and a distance derived loss

term was proposed for myocardium segmentation, tackling the challenges of low image

quality and signal loss in mice MR cardiac images. The experiment results indicate

that our proposed model not only outperforms other benchmark models, including

U-Net and FCN, in dice score and contour agreement (Hausdorff distance), but also has

very comparable performance as experienced human annotators. The proposed model

enables a fast, objective, and accurate myocardial boundaries delineation of rodent

cardiac MRIs, and has strong potential application in morphological and functional

analysis for preclinical cardiac models.

Additionally, we have observed that 3D models had better performance than 2D

models by taking inter-slice dependencies into consideration via 3D convolution. The

current performance of the proposed model is still partially limited by the sparsity of

axial information, since we only have 8 short-axis scans for each volume. In our future

work, we plan to further boost segmentation accuracy by utilizing better out-of-plane

information. For example, the current out-of-plane information is complemented by

the simple linear interpolation due to the efficiency limit, which could be improved

to cubic or spline interpolation in the future for a more accurate and meaningful

volume reconstruction. Moreover, we also plan to exploit more useful information

from potential additional long-axis MR scans to assist with improving myocardium

volume segmentation.
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