
8   IN  FORMATION TECHNOLOGY AND LIBRARIES   |   june 20088   IN  FORMATION TECHNOLOGY AND LIBRARIES   |  Se ptember 2008

From Our Readers: 
Virtues and Values in  
Digital Library Architecture Mark Cyzyk

Editor’s Note: “From Our Readers” will be an occasional 
feature, highlighting ITAL readers’ letters and commen-
taries on timely issues.

At the Fall 2007 Coalition for Networked Information 
(CNI) conference in Washington, D.C., I pre-
sented “A Survey and Evaluation of Open-Source 

Electronic Publishing Systems.” Toward the end of my pre-
sentation was a slide enumerating some of the things I had 
personally learned as a Web application architect during 
my review of the systems under consideration:

	 n	 Platform independence should not be neglected.
	 n	 One inherits the flaws of external libraries and 

frameworks. Choose with care.
	 n	 Installation procedures must be simple and  

flawless.
	 n	 Don’t wake the SysAdmin with “Slap a GUI on that 

XML!”—and push application administration out, 
as much as possible, to select users.

	 n	 Documentation must be concise, complete, 
and comprehensive. “I can’t guess what you’re  
thinking.”

Initially, these were just notes I thought might be 
useful to others, figuring it’s typically helpful to share 
experiences, especially at international conferences. But 
as I now look at those maxims, it occurs to me that when 
abstracted further they point in the direction of more 
general concepts and traits—concepts and traits that 
accurately describe us and the products of our labor if 
we are successful, and prescribe to us the concepts and 
traits we need to understand and adopt if we are not. In 
short, peering into each maxim, I can begin to make out 
some of the virtues and values that underlie, or should 
underlie, the design and architecture of our digital 
library systems.

n	 Freedom and equality
Platform independence should not be neglected.

“Even though this application is written in platform-
independent PHP, the documentation says it must be run 
on either Red Hat or SuSE, or maybe it will run on Solaris 
too, but we don’t have any of these here.”

While I no doubt will be heartily flamed for suggest-
ing that Microsoft has done more to democratize comput-
ing than any other single company, I nevertheless feel the 
need to point out that, for many of us, Windows server 
operating systems and our responsibility for adminis-
tering them Way Back When provided the impetus for 
adding our swipe-card barcodes to the ACL of the Data 
Center—surely a badge of membership in the Club of 
Enterprise IT if ever there was one. You may not like the 
way Windows does things. You may not like the way 
Microsoft plays with the other boys. But to act like they 
don’t exist is nothing more than foolish burying one’s 
head in the *NIX sand. 

Windows servers have proven themselves time and 
again as being affordable, easily managed, dependable, 
and, yes, secure workhorses. Windows is the Ford pickup 
truck of the server world, and while that pickup will some 
day inevitably suffer a blowout of its twenty-year-old 
head gasket (and will therefore be respectfully relegated 
to that place where all dearly departed trucks go), it’s 
been a long and good run. We should recognize and 
appreciate this. Windows clearly has a place in the data 
center, sitting quietly humming alongside its Unix and 
Linux brothers. 

I imagine that it actually takes some effort to produce 
platform-dependent applications using platform-inde-
pendent languages and frameworks. Such effort should 
be put toward other things.

Keep it pure. And by that I mean, keep it platform 
independent. Freedom to choose and presumed equality 
among the server-side OSes should reign.

n	 Responsibility and good sense
One inherits the flaws of external libraries and frame-
works. Choose with care.

So you’ve installed the OS, you’ve installed and configured 
the specified Web server, you’ve installed and configured 
the application platform, you’ve downloaded and com-
piled the source, yet there remains a long list of external 
libraries to install and configure. One by one you install 
them. Suddenly, when you get to Library Number 16 you 
hit a snag. It won’t install. It requires a previous version 
of Library Number 7, and multiple versions of Library 
Number 7 can’t be installed at the same time on the same 
box. Worse yet, as you take a break to read some more 
of the documentation, it sure looks like required Library 
Number 19 is dependent on the current version of Library 
Number 7 and won’t work with any previous version. And 
could it be that Library Number 21 is dependent on Library 
Number 20, which is dependent on Library Number 23, 
which is dependent on—yikes—Library Number 21?

Mark Cyzyk (mcyzyk@jhu.edu) is the Scholarly Communication 
Architect, Library Digital Programs Group, Sheridan Libraries, 
Johns Hopkins University in Baltimore.



From Our readers: Virtues and Values in Digital Library Architecture   |  Cy zyk     9

All things come full circle.
But let’s suppose you’ve worked out all of these 

dependencies, you’ve figured out the single, secret Order 
in which they must install, you’ve done it, and it looks 
like it’s working!

Yet, when you go to boot up the Web service, sud-
denly there are errors all over the place, a fearsome crash-
ing and burning that makes you want to go home and 
take a nap. Something in your configuration is wrong? 
Something in the way your configuration is interacting 
with an external library is wrong? You search the logs. 
You gather the relevant messages. They don’t make a lot 
of sense. Now what to do?

You search the lists, you search the wikis to no avail, 
and finally, in desperation, you e-mail the developers.

“But that’s a problem with Library X, not with  
our application.”

Au contraire.
I would like to strongly suggest a Copernican revolu-

tion in how we think about such situations. While it’s 
obvious that the developers of the libraries themselves are 
responsible for developing and maintaining them, I’d like 
to suggest that this does not relieve you, the developer 
of a system that relies on their software, from responsi-
bility for its bugs and peculiar configuration problems. 
I’d like to suggest that, far from pushing responsibility 
in the case mentioned above out to the developers of 
the malfunctioning external library, that you, in choos-
ing that library in the first place, have now inherited  
responsibility for it.

Even if you don’t believe in this notion of inheritance, 
if you would please at least act as if it were true, we’d all 
be in a better place. Part of accepting this kind of respon-
sibility is you then acting as a conduit through which we 
poor implementers learn the true nature of the problem 
and any solutions or temporary workarounds we may 
apply so that we can get your system up and running 
pronto. In the end, it’s all about your system. Your system 
as a whole is only as strong as the weakest link in its chain 
of dependencies.

n	 Simplicity and Perfection
Installation procedures must be simple and flawless.

It goes without saying that if we can’t install your system 
we a fortiori can’t adopt it for use in our organization.

I remember once having such a difficult time trying to 
get a system up and running that I almost gave up. I tried 
first to get it running against Apache 1.4, then against 
Apache 2.0. I had multiple interactions with the develop-
ers. I banged my head against the wall of that system for 
days in frustration. The documentation was of little help. 

It seemed to be more part of an internal documentation 
project, a way for the developers to communicate among 
themselves, than to inform outsiders like me about their 
system. And related to this I remember driving to work 
during this time listening to a report on NPR about the 
famous Hopkins pediatric neurosurgeon, Dr. Ben Carson. 
Apparently, earlier in the week he had separated the 
brains of Siamese twins and the twins were now doing 
fine, recuperating. The NPR commentator marveled at 
the intricacy of the operation and at the fact that the 
whole thing took, I believe, five hours.

“Five hours? FIVE HOURS?!” I exclaimed while bar-
reling down the highway in my vintage 1988 Ford Ranger 
pickup (head gasket mostly sealed tight, no compression 
leakage). “I can’t get this system at work installed in  
FIVE DAYS!”

Our goal as system architects needs to be that we 
provide to our users simple and flawless installation pro-
cedures so that our systems can, on average, be installed 
and configured in equal or less time than it takes to per-
form major brain surgery.1

“All in an Afternoon” should become our motto.
I am happy to find that there are useful and easy to 

use package managers, e.g., Yum and Synaptic, for doing 
such things on various Linux distributions. Windows 
has long had solid and sophisticated installation utilities. 
Tomcat supports drop-in-place WAR files. When possible 
and appropriate, we need to use them.

n	 Justice and E-Z Livin
Don’t wake the SysAdmin with “Slap a GUI on that 
XML!”—and push application administration out, as 
much as possible, to select users.

I remember reading Plato’s Republic as an undergraduate 
and the feeling of being let down when the climax of the 
whole thing was a definition in which “justice” simply 
is each man serving his proper place in society and not 
transgressing the boundaries of his role. 

“That’s it?” I thought. “So you have this rigidly hier-
archical society and each person in it knows his role and 
knows in which slot his role fits—and keeping to this  
is ‘justice’?”

This may not be such a great way to structure a soci-
ety, but now that I think about it, it’s a great way to struc-
ture a computer application. Sit down and carefully look 
at the functions your program will provide. Then create 
a small set of user roles to which these functions will be 
carefully mapped. In the end you will have a hierarchical 
structure of roles and functions that should look perfectly 
simple and rational when drawn on a piece of paper.

And while the Superuser role should have power over 



10   IN  FORMATION TECHNOLOGY AND LIBRARIES   |   september 2008

all and access to all functions in the application, the list of 
functions that he alone has access to should be small, i.e., 
the actual work of the Superuser should be minimized as 
much as possible by making sure that most functions are 
delegated to the members of other, appropriate, proper 
user roles.

Doing this happily results in what I call the State of 
E-Z Livin: The last thing you want is for users to con-
stantly be calling you with data issues to fix. You there-
fore will model management of the data—all of it—and 
the configuration of the application itself—most of it—
directly into the architecture of the application, provide 
users the GUIs they need to configure and manage things 
themselves, and push as much functionality as you can 
out to them where it belongs. Let them click their respec-
tive ways to happiness and computing goodness. You 
build the tool, they use it, and you retire back to the land 
of E-Z Livin.

Users are assigned to their roles, and all roles are 
in their proper places. Application architecture justice  
is achieved.

n	 Clarity and wholeness
Documentation must be concise, complete, and compre-
hensive. “I can’t guess what you’re thinking.”

As system developers we’ve probably all had the magical 
experience of a Mind Meld with a fellow developer when 
working intensively on a project. I have had this experi-
ence with two other developers, separately, at different 
stages of my career. (One of them, in fact, used to point 
out to everyone that, “between the two of us, we make 
one good developer!”) This is a wonderful and magical 
and productive working relationship in which to be, 
and it needs to be recognized, supported, and exploited 
whenever it happens. You are lucky if you find yourself 
designing and developing a system and your counterpart 
is reading your mind and finishing your sentences.

However, just as it’s best to leave that nice young 
couple cuddling in the corner booth alone, so too it really 
doesn’t make a lot of sense to expect the Mind-Melded 
developers to turn out anything that remotely resem-
bles coherent and understandable documentation. Those 
undergoing a Mind Meld by definition know perfectly 
well what they mean. To the rest of us it just feels like we 
missed a memo.

If you have the luxury, make sure that the one writ-
ing the documentation is not currently undergoing a 
Mind Meld with anyone else on the development team. 
Scotty typically stayed behind while he beamed the oth-
ers down. 

Beam them down. Be that Scotty. You do the world a 
great service by staying behind on the ship and dutifully 
reporting, clearly and comprehensively, what’s happen-
ing down on the Red Planet.

To these five maxims, and their corresponding vir-
tues, I would add one more set, one upon which the 
others rely:

n	 Empathy and graciousness
You are not your audience.

At least in applied computing fields like ours, we 
need to break with the long-held “Guru in the Basement” 
mentality. The actions of various managerial strata have 
now ostensibly acknowledged for us that technical exper-
tise, especially in applied fields, is a commodity, i.e., it can 
be bought. A dearth of such expertise is remedied by sim-
ply applying money to the situation—admittedly difficult 
to do at the majority of institutions of higher education, 
but a common occurrence at the wealthiest. Nevertheless, 
the dogmatic hold of the Guru has been broken and the 
magical aura that once draped her is not now so resplen-
dent—her relative rarity, and the clubby superiority that 
depended upon it, has been diluted significantly by the 
sheer number of counterparts who can and will gleefully 
fill her function. We respect, value, and admire her; it’s 
just that her stranglehold on things has (rightfully) been 
broken. And while nobody is truly indispensable, what 
is more difficult and rare to find is someone who has 
the Guru’s same level of technical chops coupled with a 
genuine empathic ability to relate to those who are the 
intended users of her systems and services. 

Unless your systems and services are geared primarily 
toward other developers, programmers, and architects—
and presumably they are not, nor, in the library world, 
should they be—your users will typically be significantly 
unlike you. 

Let me repeat that: Your users are not like you.
Rephrased: You are not your audience.
When looking back over the other maxims, values, 

and virtues mentioned in this essay then, the moral-
psychological glue that binds them all is composed of 
empathy for our users—faculty, students, librarians, 
non-technical staff—and the graciousness to design and 
carry out a project plan in a spirit of openness, caring, 
flexibility, humility, respect, and collaboration. When 
empathy for the users of our systems is absent—and there 
are cases where you can actually see this in the design 
and documentation of the system itself—our systems will 
ultimately not be used. When the spirit of graciousness 
is broken, men become robots, mere rule followers, and 
users will boycott using their systems and will look else-



From Our readers: Virtues and Values in Digital Library Architecture   |  Cy zyk     11

where, naturally preferring to avoid playing the Simon-
Says games so often demanded by Tech Folk in their 
workaday worlds; there is a reason the comic strip Dilbert 
is so funny and rings so true. When confronted with a 
lack of empathy and graciousness on our part, the users 
who can boycott using our systems and services will boy-
cott using our systems and services. And we’ll be left out 
in the rain, feeling like, as Bonnie Raitt once sadly sang, 
“I can’t make you love me if you don’t / I can’t make your 
heart feel something it won’t.” Empathy and gracious-
ness, while not guaranteeing enthusiastic adoption of our 
systems and services, are a necessary precondition for 
users even countenancing participation.

There are undoubtedly other virtues and values that 
can usefully be expounded in the context of digital library 
architecture—consistency, coherence, and elegance imme-
diately come to mind—and I could go on and on analyz-

ing the various maxims surrounding these that bubble up 
through the stack of consciousness during the course of 
the day. Yet doing so would conflict with another virtue 
I think is key to the success and enjoyment of opinion-
piece essays like this and maybe even of other sorts of 
publications and presentations:

Brevity. 

Note

	 1.	 A colleague of mine has since informed me that Car-
son’s operation took twenty-five hours, not five. Nevertheless, 
my admonition here still holds. When installation and con-
figuration of our systems are taking longer, significantly longer,  
than it takes to perform major brain surgery, surely there is 
something amiss?


