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Abstract

Shape registration is fundamental in many applications. However, the shape registration

problem is usually ill posed unless further information is provided. In this dissertation,

we examine a scenario when one of the two shapes to be registered is assumed to have

evolved from the other shape according to a known model. The shape registration problem

is then formulated as a variational problem subject to the dynamics of the shape evolution

model. We provide sufficient conditions on models so that diffeomorphic shape evolution

and diffeomorphic shape registration are guaranteed theoretically. In addition, we illustrate

this model-based registration by applications of piecewise-rigid motion and biological atro-

phy. Numerical experiments of the two applications are presented with a GPU-accelerated

implementation.
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Chapter 1

Introduction

Shape registration aims to establish a sensible point-to-point correspondence between two

shapes. For example, let us denote a ball by B ⊂ R3 and denote a cube by C ⊂ R3. A

registration from B to C, loosely speaking, is a one-to-one function ξ : B → R3 such that

ξ(B) ≈ C, and ideally ξ(B) = C. Clearly, there are infinitely many registrations from a

ball to a cube, hence we may further restrict our selection criterion, e.g., requiring a higher

regularity on ξ. On the other hand, it will be in vain if we try to find a continuous function

that registers a sphere to a torus. In addition to the interplay between the class of shapes

and the class of registrations, what the meaning of a sensible registration is, what we can

say from mathematical and theoretical perspectives, and how to compute such a sensible

registration are all active research areas.

The applications of shape registration are vast. For example, image registration can be

used to track temporal changes of tissues and organs by registering longitudinal medical

images of the same patient [81, 32] and can also be used to compare and measure the

difference between an individual medical image and a population-based atlas [10, 97]; curve

registration occurs in the registration of vascular structures, e.g., coronary arteries, to assist

surgical procedures [13, 84]; surface registration appears in analyzing human facial data [91].

The list is by no means exhaustive. Here we restrict our attention of shape registration to

a function between two shapes of interest. However, we note that within the computer

graphics community shape registration refers to a much wider spectrum of problems (see

[98] and [61, Part III]). For example, it includes building a 3D computer model of a physical

object from multiple data point clouds scanned from different viewpoints around the object.

In other words, it encompasses partial shape registration, a more complicated and hard-

to-define problem. We will focus our discussion on the narrow meaning of whole shape
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registration.

Various approaches in the literature have been proposed to compute a shape registration.

One approach relies on manually labelled landmarks, or reproducible significances [18, 43,

56]. The labelled landmarks on two shapes to be registered provide a sparse point-to-point

correspondence based on which a smooth registration is then extrapolated to a whole-shape

point-to-point correspondence. Another approach is based on the idea of small distortion

of some attribute, e.g., as rigid as possible [53, 95] and volume preserving [85, 50, 39]. Still

another approach registers two shapes by gradually morphing one shape into the other

shape [30, 19, 28, 66, 11]. Specifically for surfaces homeomorphic to a sphere, conformal

spherical parametrizations also have been used in different methods for surface registration

[7, 48, 88]. We now pay full attention to the morphing approach in order to attain a more

physically sensible registration.

There is a trend in the morphing approach to incorporate a prior of the application of

interest into the class of feasible registrations. Some generic priors in the literature include

local affine deformations [6, 80], local radial and angular deformation functions [45], local

deformation modules [47, 46], and linear operator constraints [4]. There are also application-

targeted priors. For example, Hogea et al. [51] modeled the tumor growth dynamics and

the surrounding tissue deformation for image registration; Sundar et al. [94] estimated

myocardial displacements constrained by prior knowledge of cardiac mechanics; Werner et

al. [99] estimated respiratory lung motion based on physiology of breathing; Ratnanather

et al. [82] measured the thickness of cerebral cortex assuming that cortical columns are

orthogonal to cortical layers. From a theoretical viewpoint, theorems for generic priors

can be developed once and for all, while theorems for application-targeted priors need to

be customized. From a practical viewpoint, however, application-targeted priors usually

lead to more satisfying registration results. To achieve a balance between generic and

application-targeted priors, our goal is a form of priors that can be adapted to a wide range

of applications.

In this dissertation, we will examine the shape registration problem when we have prior

knowledge of possible registrations. To be more precise, we assume that one of the two

shapes to be registered has evolved from the other shape through a very general and abstract

model. We will provide sufficient conditions on the abstract model for diffeomorphic shape

evolution and diffeomorphic shape registration. The versatility of this approach will be

demonstrated by two seemingly unrelated shape registration problems, whose registration

results will be assured to be diffeomorphic by our theorems. In the following chapters,
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Chapter 1. Introduction

we will first introduce our proposed framework, interpretable deformation vector fields, in

Chapter 2, then we will go through examples, theorems, and computation in Chapters 3 to 6.

We documented our computation as detailed as possible to promote greater transferability.

Most of the meshes in this dissertation were generated with the help of distmesh [79].

3



Chapter 2

Prelude

In this chapter, we establish necessary terminology and our proposed framework. Some

notation conventions that suffice to facilitate our discussion are compiled in Section 2.1.

Further notation will be introduced when needed. After we review the Bochner integral

in Section 2.2, we then define the notions of shapes, deformations, and motions in Sec-

tion 2.3. Section 2.4 presents some basics of reproducing kernel Hilbert spaces, which are

essential in the framework of large deformation diffeomorphic metric mapping (LDDMM)

covered in Section 2.5. With all the background in place, we state our proposed framework,

interpretable deformation vector fields, motivated by LDDMM in Section 2.6.

2.1 Notation

We differentiate different types of equal sign. The asymmetric sign “:=” indicates equal by

definition. As its asymmetry suggests, a := b means that a is defined by b, while a =: b

defines b by a. The asymmetry offers an advantage over other symmetric alternatives, like

≜,
.
=, etc. We will use “:=” only for the first occurrence of a notion and use “=” in its

later appearances. The sign “≈” means approximately equal in a loose sense. Occasionally,

we will use “f ≡ g” to stress the equality of two functions when the context includes a

discussion of the equality f(x) = g(x) at some point x. In particular, f ≡ 0 means that f

is a constant zero function. We will simply write f = g if the context is clear.

The prime symbol will always be used to denote another object of the same “kind.” For

example, if f ∈ C1([a, b]), then f ′ denotes another function in C1([a, b]); we will use ḟ to

denote the derivative of a univariate function. By the same token, if B is a Banach space,

then B′ denotes another Banach space; we will use B∗ to denote the topological dual.

For a function f : [0, T ] × Rd → Rd which depends on time and space, the notation

4



Chapter 2. Prelude

f(t) means the function f(t) : Rd → Rd defined by f(t)(x) := f(t, x). We will also write

ḟ(t, x) := ∂tf(t, x) and Df(t, x) := ∂xf(t, x), hence ḟ(t) and Df(t) should be understood

by combining the two conventions. We will constantly switch between these two viewpoints

either regarding f as (t, x) ↦→ f(t, x) or t ↦→ f(t).

We will use C to denote a generic constant and Ca to show its dependency on a. The

value of such constants may change from equation to equation. It may happen that the

constant depends on a, while a depends on b, and b further depends on d. In this case,

we will choose to write Ca, Cb, or Cd according to which one is the most pertinent to the

context of discussion. For symbols other than C, we will sometimes use δ(ε) to indicate the

dependency at its first occurrence and write δ in the discussion for simplicity. We will always

use subscripts for the dependency of generic constants to avoid ambiguous expressions like

C(a+ b).

The notation L (X,X ′) will denote the vector space of continuous linear operators from

a topological vector space X to another topological vector space X ′. Weak convergence of

a sequence (xn)
∞
n=1 in a Banach space will be denoted by xn ⇀ x. We will use the notation

(µ | v) rather than ⟨µ, v⟩ or µ(v) to denote the natural pairing of µ ∈ B∗ and v ∈ B

between a Banach space B and its topological dual B∗. The notation ⟨·, ·⟩ will always refer
to an inner product. The notation | · | denotes a norm on a finite-dimensional vector space;

without further specification, it is the Euclidean norm if the underlying space is Rd. For a

metric space (X, dX), we will denote the open ball centered at c with radius r by B(c, r) :=

{x ∈ X : dX(x, c) < r} and denote the closed ball by B (c, r) := {x ∈ X : dX(x, c) ≤ r}.
The bar of B should be interpreted as a mnemonic notation, not the closure B(c, r). The

metric for the ball will be clear from the context.

Let Ω ⊂ Rd be a nonempty open set. We will denote by D(Ω) the topological space

of C∞ functions with compact support in Ω. The topology on D(Ω) is chosen so that the

dual D∗(Ω) is the space of distributions on Ω. We will denote the Lp spaces on an interval

by Lp([a, b]), even though there is no difference between Lp([a, b]) and Lp
(︁
(a, b)

)︁
. Given a

Banach space B, we will denote by Lp([a, b], B) the space of strongly measurable functions

such that
∫︁ b
a ∥f(t)∥

p
B dt <∞. Strongly measurable functions will be briefly reviewed in the

next section (Section 2.2).

For an integer p ≥ 1, we let Cp0 (Rd,Rd) denote the space of p-times continuously dif-

ferentiable vector fields v such that the j-th derivative Djv tends to 0 at infinity for ev-

ery j ≤ p. The space Cp0 (Rd,Rd) is a Banach space equipped with the norm ∥v∥p,∞ :=∑︁p
j=0 supx∈Rd |Djv(x)|, where | · | denotes the operator norm of a multilinear function

5
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on a product of finite-dimensional vector spaces equipped with the Euclidean norm. Let

id : Rd → Rd be the identity function, i.e., id(x) := x. We denote by Diff pid (R
d) the set of Cp-

diffeomorphisms on Rd that tend to identity at infinity. Thus every element ξ ∈ Diff pid (R
d)

can be written as ξ = id + v, where v ∈ Cp0 (Rd,Rd); that is, Diff pid (R
d) ⊂ id + Cp0 (Rd,Rd).

The affine Banach space id +Cp0 (Rd,Rd) and the subset Diff pid (R
d) are both equipped with

the induced metric dp,∞(ξ, η) := ∥ξ − η∥p,∞. We note that Diff pid (R
d) is an open subset of

id + Cp0 (Rd,Rd).

2.2 The Bochner integral

In this section, we cite properties of the Bochner integral without proofs. We adapt the

statements to functions defined on the interval [0, T ] so that we can apply the results more

smoothly; the results still hold for functions defined on a finite measure space. We refer

the reader to [103, Sections V.4 and V.5] for statements on general measure spaces and [34,

Sections II.1 and II.2] on finite measure spaces. Since the theorems in this section are for

reference, some assumptions will be repeated in the statements to make each theorem self-

contained. The reader only needs Definition 2.2.1, Definition 2.2.2(i), and Corollary 2.2.4

to understand the notation Lp([a, b], B) and read this chapter. Other properties of the

Bochner integral may be consulted before reading the proofs in Chapter 4.

We now consider functions defined on the interval [0, T ] with values in a Banach space.

For these Banach-space-valued functions, we will extend the definitions of measurability

and integrability. Recall that the characteristic function on a set S ⊂ X is defined by

1S(x) :=

⎧⎨⎩ 1, if x ∈ S ;

0, if x ∈ X \ S .

We start simple.

Definition 2.2.1. Let B be a Banach space. A function v : [0, T ] → B is simple if there

exist distinct vectors {bi}Ni=1 ⊂ B such that

v(t) =
N∑︂
i=1

bi 1Si(t),

where S1, . . . , SN are Lebesgue measurable subsets of [0, T ].

Definition 2.2.2. Let B be a Banach space.

(i) A function v : [0, T ] → B is strongly measurable if there exists a sequence of simple

functions (vn)
∞
n=1 such that ∥vn(t)− v(t)∥B → 0 for almost every t ∈ [0, T ].

6



Chapter 2. Prelude

(ii) A function v : [0, T ]→ B is weakly measurable if for all µ ∈ B∗, the real-valued function

t ↦→ (µ | v(t)) is Lebesgue measurable.

A strongly-measurable function is weakly measurable. Indeed, let (vn)
∞
n=1 be a sequence

of simple functions that tends to a strongly-measurable function v. Given µ ∈ B∗, the strong

measurability of v gives

(µ | v(t)) = lim
n→∞

(µ | vn(t)) for almost every t ∈ [0, T ].

Note that the real-valued function t ↦→ (µ | vn(t)) is simple in the classical sense. Thus the

real-valued function t ↦→ (µ | v(t)) is Lebesgue measurable since it is the almost everywhere

pointwise limit of simple, thus measurable, functions and our measure space is complete.

Conversely, a weakly-measurable function may not be strongly measurable; we refer the

reader to Example 5 of Section II.1 in [34]. A characterization of strongly-measurable

functions is given by Pettis’ theorem.

Theorem 2.2.3 (Pettis). Let B be a Banach space. A function v : [0, T ] → B is strongly

measurable if and only if v is weakly measurable and almost separably valued, i.e., there

exists S ⊂ [0, T ] of Lebesgue measure zero such that {v(t) : t ∈ [0, T ] \ S} is separable.

Hence if B is a separable Banach space, the strong measurability is equivalent to the

weak measurability. The proof of Pettis’ theorem also shows the following useful result.

Corollary 2.2.4. If a function v : [0, T ] → B is strongly measurable, then t ↦→ ∥v(t)∥B is

Lebesgue measurable.

Now we define the integrability and integrals of strongly-measurable functions. We will

not integrate a weakly-measurable function, whose integral is an element in B∗∗; we refer

the interested reader to [34, Section II.3]. The integral of a Banach-space-valued simple

function is defined in the same way as the integral of a real-valued simple function:∫︂ T

0

(︄
N∑︂
i=1

bi 1Si(t)

)︄
dt :=

N∑︂
i=1

bi λ(Si) ∈ B,

where λ is the Lebesgue measure.

Definition 2.2.5. Let B be a Banach space. A strongly-measurable function v : [0, T ]→ B

is called Bochner integrable if there exists a sequence of simple functions (vn)
∞
n=1 such that

lim
n→∞

∫︂ T

0
∥vn(t)− v(t)∥B dt = 0.

7
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If v : [0, T ] → B is Bochner integrable, the Bochner integral over a Lebesgue measurable

set S ⊂ [0, T ] is defined by∫︂
S
v(t) dt := lim

n→∞

∫︂ T

0
1S(t) vn(t) dt ∈ B.

Remark 2.2.6. To validate the notion of Bochner integral, we need to verify the following

two conditions: 1. The real-valued function t ↦→ ∥vn(t) − v(t)∥B is Lebesgue measurable;

2. The limit lim
n→∞

∫︁ T
0 1S(t) vn(t) dt exists and is independent of the sequence (vn)

∞
n=1. The

first condition is verified by Corollary 2.2.4, and the verification of the second condition can

be found in [103, Section V.5].

The following theorem is an indispensable characterization of strongly-measurable func-

tions to be Bochner integrable.

Theorem 2.2.7. Let B be a Banach space. A strongly-measurable function v : [0, T ]→ B is

Bochner integrable if and only if the real-valued function t ↦→ ∥v(t)∥B is Lebesgue integrable.

The Bochner integral is invariant under bounded linear transformations.

Theorem 2.2.8. Let B and B′ be two Banach spaces and L ∈ L (B,B′). If v : [0, T ]→ B

is Bochner integrable, then t ↦→ L(v(t)) is also Bochner integrable and∫︂
S
L(v(t)) dt = L

(︃∫︂
S
v(t) dt

)︃
∈ B′,

where S ⊂ [0, T ] is a Lebesgue measurable set.

In particular, if i : B ↪→ B′ is a continuous embedding, then the Bochner integrals of

v : [0, T ]→ B in B and B′ agree.

Many classical theorems without nonnegativeness have their analogues in Banach-space-

valued functions. For example, we have the modulus inequality, the dominated convergence

theorem, the Lebesgue differentiation theorem, and Fubini’s theorem. Note that Fatou’s

lemma and the monotone convergence theorem are not in the list. Below we record the

modulus inequality, which is the only theorem in the list we need.

Theorem 2.2.9. Let B be a Banach space and S ⊂ [0, T ] be a Lebesgue measurable set. If

v : [0, T ]→ B is Bochner integrable, then⃦⃦⃦⃦∫︂
S
v(t) dt

⃦⃦⃦⃦
B

≤
∫︂
S
∥v(t)∥B dt.

8



Chapter 2. Prelude

2.3 Shapes, Deformations, and Motions

Wemay define shapes as compact sets in the Euclidean affine space. Although this coordinate-

free definition of shapes is more satisfying, it will complicate the analysis of shape defor-

mation as we must cautiously distinguish points from vectors. Hence we technically define

shapes as compact sets in Rd, which is identified with a particular rectangular coordinate

system, and ensure that the results we obtain are independent of rectangular coordinate sys-

tems. The dimension d is 2 or 3 for practical applications, but it can in fact be any positive

integer. In this dissertation, we will focus on volumetric shapes, or shapes with nonempty

interior (see Figure 2.1(a)). We also rule out volumetric shapes with curves and surfaces

attached (see Figure 2.1(b)). Furthermore, in order to compare shapes in a differentiable

manner (see (3.5)), and also from a practical point of view, we thus restrict ourselves to the

class of building blocks

B := {Ω ⊂ Rd : Ω is homeomorphic to B (0, 1) and ∂Ω is rectifiable}

and define the class of shapes of interest by

S := {Ω ⊂ Rd : Ω =
N⋃︁
i=1

Ωi for some N ∈ N, where Ωi’s are disjoint and Ωi ∈ B}. (2.1)

When we mention a shape hereafter, we mean an element Ω ∈ S . We certainly can include

more complicated shapes in S , for example, like balls with holes. We choose the class

(2.1), which is rich enough to provide concrete examples; more importantly, we are free

from the burden of describing shape topology. With our shapes specified, we can direct our

full attention to shape deformation.

(a) Examples of Ω ∈ S . (b) Examples of Ω /∈ S .

Figure 2.1: Illustrations of shapes of interest in R2.

In the broadest sense, a deformation is a function ξ : Rd → Rd, which deforms a shape

Ω into a set ξ(Ω); this definition includes constant functions that annihilate the universe.

To be more physical meaningful, we require that a deformation ξ is one-to-one and onto

(nuclear reactions are not of our concern) and that ξ ∈ C1(Rd,Rd) with detDξ(x) ̸= 0 for
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2.3. Shapes, Deformations, and Motions

all x ∈ Rd so that volume elements will not be deformed into lower-dimensional objects.

The requirements on ξ are equivalent to saying that ξ is a diffeomorphism, i.e., ξ, ξ−1 ∈
C1(Rd,Rd). Moreover, since our shapes are bounded, there is no loss of generality to

only consider diffeomorphisms that tend to identity at infinity, or ξ ∈ Diff 1
id (Rd), which

turns out to be more convenient when developing our theorems. We will also consider

ξ ∈ Diff pid (R
d), p ≥ 1, for higher regularity. Hence we define a Diffp-deformation by a

function ξ ∈ Diff pid (R
d). For the class of shapes S we focus on, note that ξ(S ) ⊂ S for all

ξ ∈ Diff pid (R
d). Therefore, the class of shapes S and the class of deformations Diff pid (R

d)

provide an adequate context to discuss shape deformations, i.e., a deformed shape is still a

shape. Although diffeomorphisms are widely used to model deformations, we remark that

certain deformations such as fractures and punctures cannot be described by continuous

functions, let alone by diffeomorphisms (see Figure 2.2).

(a) A shape. (b) Deformed shapes: fracture and puncture.

Figure 2.2: Examples of deformed shapes that cannot be described by diffeomorphisms.

A motion is a one parameter family of deformations. Specifically, a motion is a function

φ : [0, T ]× Rd → Rd on a time interval [0, T ] and the space Rd. Note that for a fixed time

t, the function φ(t) : Rd → Rd is a deformation in the general sense. We view time 0 as

the beginning of shape changes and impose that φ(0) = id , the identity function. Given

a motion φ and a shape Ω, the function t ↦→ φ(t, Ω) thus plays a movie of shape changes

when t goes from 0 to T , while φ(t, Ω) is the snapshot of the deformed shape at time t

(see Figure 2.3). Since we do not expect shape teleportation, we require that φ and all its

spatial derivatives are continuous in time. Moreover, we would like to be able to talk about

velocities φ̇(t, x) of motions. We summarize our assumptions in the following definition.

Definition 2.3.1 (Diffp-motion). We say that a function φ : [0, T ] × Rd → Rd is a Diffp-

motion if φ satisfies:

• φ(0) = id .

• φ ∈ C([0, T ],Diff pid (R
d)).

• φ : [0, T ]→ Diff pid (R
d) is differentiable almost everywhere and φ̇ ∈ L1([0, T ], Cp0 (Rd,Rd)).

10
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φ(0, Ω) = Ω

!1:00 1:00

!1:00

1:00

φ(1, Ω)

!0:75 0:75

!0:75

0:75

φ(2, Ω)

!0:50 0:50

!0:50

0:50

φ(3, Ω)

!0:25 0:25

!0:25

0:25

Figure 2.3: Snapshots of the motion φ(t, x) = x− t
4 x deforming the unit disk. This motion

is not a Diffp-motion since φ(t) does not tend to identity at infinity.

We remind the reader that Diff pid (R
d) is equipped with the metric dp,∞(φ,ψ) = ∥φ −

ψ∥p,∞. For a Diffp-motion φ, we have detDφ(t, x) > 0 for all (t, x) ∈ [0, T ] × Rd since

detDφ(0, x) = 1, detDφ(t, x) ̸= 0, and t ↦→ detDφ(t, x) is continuous. Sometimes it

will be useful to restrict the spatial domain of a motion from Rd to Ω and consider φ :

[0, T ]×Ω → Rd. In this case, we say that φ is a motion of Ω.

Given a Diffp-motion φ, we can define its Eulerian velocity field v(t) := φ̇(t) ◦ φ−1(t)

for almost every t ∈ [0, T ] so that

φ(t, x) = x+

∫︂ t

0
φ̇(s, x) ds = x+

∫︂ t

0
v(s, φ(s, x)) ds.

As a partial converse, it can be shown ([104, Theorem 7.11] and Theorem A.2.3) that if

v ∈ L1([0, T ], Cp+1
0 (Rd,Rd)), then the initial value problem

φ(t, x) = x+

∫︂ t

0
v(s, φ(s, x)) ds

has a unique solution φ ∈ C([0, T ],Diff pid (R
d)). It follows that φ̇(t) = v(t) ◦ φ(t) for almost

every t ∈ [0, T ] and φ̇ ∈ L1([0, T ], Cp0 (Rd,Rd)). In other words, the flow of a Eulerian

velocity field v ∈ L1([0, T ], Cp+1
0 (Rd,Rd)) is a Diffp-motion. This observation suggests

that we can model Diffp-motions through certain Eulerian velocity fields. Since we do not

always relate the interval [0, T ] to a physical time interval, we term Eulerian velocity fields

as deformation vector fields in this dissertation. We are going to investigate under what

conditions the flow of a deformation vector field is a Diffp-motion when the deformation

vector field is not determined in advance but coupled with the motion.

2.4 Reproducing Kernel Hilbert Spaces

We will use reproducing kernel Hilbert spaces (RKHSs) continuously embedded in Cp0 (Rd,Rd)

as our technical and computational tool. We briefly introduce abstract RKHSs and their
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properties in Section 2.4.1, then we present tangible RKHSs continuously embedded in

Cp0 (Rd,Rd) in Section 2.4.2.

2.4.1 Abstract reproducing kernel Hilbert spaces

A reproducing kernel Hilbert space, in short, is a function space that is a Hilbert space and

has a reproducing kernel. The precise definition is the following [5].

Definition 2.4.1. Let X be an abstract set. Denote by F the function space of real-valued

functions defined on X. A vector subspace V ⊂ F is called a (real-valued) reproducing

kernel Hilbert space if V is a Hilbert space equipped with an inner product ⟨·, ·⟩V , and there

is a function kV : X ×X → R such that

kV (·, x) ∈ V for all x ∈ X

and

f(x) = ⟨f, kV (·, x)⟩V for all f ∈ V and x ∈ X. (2.2)

Equation (2.2) is called the reproducing property: the function kV reproduces all func-

tions in V in the sense that the function value of f ∈ V at x is reproduced by taking the

inner product of f and kV (·, x)a. In other words, function values are legit in an RKHS,

hence L2 spaces are not RKHSs. The function kV is referred to as the reproducing kernel

of V , which is justified by the following proposition [5].

Proposition 2.4.2.

(i) If a reproducing kernel kV of V exists, then it is unique.

(ii) Reproducing kernels are symmetric and positive semidefiniteb, that is, kV (x, y) =

kV (y, x) for all x, y ∈ X, and for any finite number of distinct points {x1, . . . , xn} ⊂ X
the matrix

[︂
kV (xi, xj)

]︂
n×n

is positive semidefinite.

(iii) The subspace span{kV (·, x) : x ∈ X} is dense in V .

(iv) A Hilbert space V is an RKHS on X if and only if all the evaluation functionals are

continuous, that is, δx ∈ V ∗ for all x ∈ X, where (δx | f) := f(x).

aSome authors refer to kV (x, y) = ⟨kV (·, x), kV (·, y)⟩V as the reproducing property, which is equivalent
to (2.2), in the sense that kV (x, y) reproduces the inner product of kV (·, x) and kV (·, y). We follow the
terminology in [5].

bOther terms used in the literature include positive definite functions (no typo on definite) and kernel
functions. The reader needs to be careful about this confusing terminology.
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Proof. All the proofs rely on the reproducing property (2.2).

(i) Suppose that k′V is another reproducing kernel, then for all x ∈ X we have

∥kV (·, x)− k′V (·, x)∥2V = ⟨kV (·, x), kV (·, x)⟩V − ⟨kV (·, x), k′V (·, x)⟩V
− ⟨k′V (·, x), kV (·, x)⟩V + ⟨k′V (·, x), k′V (·, x)⟩V

= kV (x, x)− kV (x, x)− k′V (x, x) + k′V (x, x) = 0,

which implies kV ≡ k′V .

(ii) The symmetry of kV follows from the symmetry of an inner product:

kV (x, y) = ⟨kV (·, y), kV (·, x)⟩V = ⟨kV (·, x), kV (·, y)⟩V = kV (y, x).

For positive semidefiniteness, let αi ∈ R and xi ∈ X, i = 1, . . . , n. We have

n∑︂
i,j=1

αi αj kV (xi, xj) =
⟨︂ n∑︂
i=1

αi kV (·, xi),
n∑︂
j=1

αj kV (·, xj)
⟩︂
V
=
⃦⃦⃦ n∑︂
i=1

αi kV (·, xi)
⃦⃦⃦2
V
≥ 0.

(iii) The claim follows from {kV (·, x) : x ∈ X}⊥ = {0}. Indeed, if f ∈ {kV (·, x) : x ∈ X}⊥,
then for all x ∈ X

f(x) = ⟨f, kV (·, x)⟩V = 0,

that is, f ≡ 0.

(iv) (⇒) The Cauchy–Schwarz inequality implies

|(δx | f)| = |f(x)| = |⟨f, kV (·, x)⟩V | ≤ ∥f∥V ∥kV (·, x)∥V ,

which shows that δx ∈ V ∗.

(⇐) Since δx ∈ V ∗, by the Riesz representation theorem, there exists a unique kx ∈ V
such that (δx | f) = ⟨f, kx⟩V . We then define kV (·, x) := kx(·). Since kV satisfies the

requirements of a reproducing kernel, the Hilbert space V is an RKHS.

Propositions 2.4.2(i) and 2.4.2(ii) show that we can map an RKHS to a symmetric and

positive-semidefnite function. The converse is given by Moore’s theorem [5, 78]. Therefore,

RKHSs are characterized by symmetric and positive-semidefinite functions.

Theorem 2.4.3 (Moore). Let k : X × X → R be a symmetric and positive-semidefinite

function. There exists a unique RKHS admitting k as the reproducing kernel.
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We refer the reader to [78, Proposition 2.3 and Theorem 2.14] for a complete proof.

Actually, Proposition 2.4.2(iii) hints the idea of the proof of existence, which we now present.

We first consider the vector space

W := span{k(·, x) : x ∈ X}

and a symmetric bilinear form B on W defined by

B
(︂ m∑︂
i=1

αi k(·, xi),
n∑︂
j=1

βj k(·, yj)
)︂
:=

m∑︂
i=1

n∑︂
j=1

αi βj k(xi, yj).

We then check that B is well defined (a function f ∈ W may be written as different linear

combinations), and a more tricky part, that B is an inner product. Since k is positive

semidefinite, we clearly have B(f, f) ≥ 0, which is what we need to prove the Cauchy–

Schwarz inequality. If f =
∑︁n

i=1 αi k(·, xi) and B(f, f) = 0, it follows that for all x ∈ X

|f(x)| =
⃓⃓⃓ n∑︂
i=1

αi k(x, xi)
⃓⃓⃓

=
⃓⃓
B(f, k(·, x))

⃓⃓
(by the definition of the bilinear form)

≤
√︁
B(f, f)

√︁
B(k(·, x), k(·, x))

= 0,

which implies f ≡ 0. Let V be the completed Hilbert space in which W is dense. The final

step is to identify elements in the abstract V with real-valued functions defined on X.

Proposition 2.4.2(iv) allows us to extend the definition of RKHSs from real-valued func-

tions to Hilbert-space-valued functions. Since we will use Hilbert-space-valued RKHSs,

Rd-valued RKHSs to be more precise, at the slightest level, we refer the reader to [78,

Chapter 6] for more details. Here we scratch the surface.

Definition 2.4.4. Let X be an abstract set and H be a Hilbert space. Denote by F the

function space of H-valued functions defined on X. A vector subspace V ⊂ F is called a

(H-valued) reproducing kernel Hilbert space if V is a Hilbert space and all the evaluation

operators are continuous, that is, δx ∈ L (V,H) for all x ∈ X, where δxf := f(x).

The reproducing kernel kV : X ×X → L (H,H) is defined by kV (x, y) := δx δ
∗
y , where

δ∗y ∈ L (H,V ) is the adjoint operator of δy. To motivate this definition, given h ∈ H, we

denote kV (·, x)h := δ∗x h ∈ V , then we have

⟨f(x), h⟩H = ⟨δxf, h⟩H = ⟨f, δ∗xh⟩V = ⟨f, kV (·, x)h⟩V ,
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which is the reproducing property of Hilbert-space-valued RKHSs. With some modifications

of the statements and proofs, Proposition 2.4.2 and Moore’s theorem (Theorem 2.4.3) can

be carried over to Hilbert-space-valued RKHSs.

Proposition 2.4.2(ii) shows that every reproducing kernel is positive semidefinite. We

will see that it is more convenient to work with positive definite reproducing kernels, which

are characterized by the following proposition [78, Theorem 3.6].

Proposition 2.4.5. Let V be a real-valued RKHS on X with the reproducing kernel kV .

Then the following are equivalent.

(i) The reproducing kernel kV is positive definite, that is, for any finite number of distinct

points {x1, . . . , xn} ⊂ X the matrix
[︂
kV (xi, xj)

]︂
n×n

is positive definite.

(ii) For any finite number of distinct points {x1, . . . , xn} ⊂ X, there exist f1, . . . , fn ∈ V
such that

fi(xj) =

⎧⎨⎩ 1, if i = j ;

0, if i ̸= j .

Proof. (⇒) Let ei be the n× 1 vector whose ith element is one and all other elements are

zero. Since the matrix
[︂
kV (xi, xj)

]︂
n×n

is symmetric and positive definite, hence invertible,

we can find αi,1, . . . , αi,n ∈ R satisfying the linear system⎡⎢⎢⎢⎣ kV (xi, xj)

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
αi,1
...

αi,n

⎤⎥⎥⎥⎦ = ei.

Define fi := αi,1 kV (·, x1) + · · ·+ αi,n kV (·, xn) ∈ V , then we have

fi(xj) = αi,1 kV (xj , x1) + · · ·+ αi,n kV (xj , xn) =

⎧⎨⎩ 1, if i = j ;

0, if i ̸= j .

(⇐) Observe that
∑︁n

i,j=1 αi αj kV (xi, xj) = ∥∑︁n
i=1 αi kV (·, xi)∥2V = 0 if and only if∑︁n

i=1 αi kV (·, xi) ≡ 0. With the fi’s corresponding to xi’s, we have

αj =
n∑︂
i=1

αi fj(xi) =
n∑︂
i=1

αi ⟨fj , kV (·, xi)⟩V =
⟨︂
fj ,

n∑︂
i=1

αi kV (·, xi)
⟩︂
V
= 0,

hence the matrix
[︂
kV (xi, xj)

]︂
n×n

is positive definite.

We close this section with a soft interpolation problem, which will be used in the next

section. Let V be a real-valued RKHS on X. Given distinct points {xi}ni=1 ⊂ X and values
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2.4. Reproducing Kernel Hilbert Spaces

{yi}ni=1 ⊂ R, we fix γ > 0 and consider the soft interpolation problem

min
f ∈V

γ

2
∥f∥2V +

1

2

n∑︂
i=1

|f(xi)− yi|2.

In words, a minimizer is the best f ∈ V , in the sense of the objective function, such that

f(xi) ≈ yi, i = 1, . . . , n. It can be shown (see [104, Lemma 8.1 and the discussion after

Theorem 8.2]) that the unique minimizer is of the form

f =
n∑︂
i=1

αi kV (·, xi)

for some αi ∈ R, i = 1, . . . , n, although the representation may not be unique. We denote

α :=
[︂
αi

]︂
n×1

, K :=
[︂
kV (xi, xj)

]︂
n×n

, and y :=
[︂
yi

]︂
n×1

, then the problem becomes

min
α∈Rn

γ

2
α⊤K α+

1

2

⃓⃓
Kα− y

⃓⃓2
.

Since K is symmetric (Proposition 2.4.2(ii)), a minimizer of this equivalent problem satisfies

γ Kα+K (Kα− y) = 0, (2.3)

which implies that the values of the unique minimizer at xi’s are given by[︂
f(xi)

]︂
n×1

= Kα = (γIn +K)−1Ky,

where In is the n-by-n identity matrix. Note that γIn+K is invertible since K is symmetric

and positive semidefinite (Proposition 2.4.2(ii)). If the reproducing kernel kV is positive

definite, which implies that K is invertible, then from (2.3) we further have

α = (γIn +K)−1y.

2.4.2 Reproducing kernel Hilbert spaces embedded in Cp
0 (Rd,Rd)

We first construct reproducing kernel Hilbert spaces continuously embedded in Cp0 (Rd,R),

then we proceed to Cp0 (Rd,Rd). Every Hilbert space H continuously embedded in Cp0 (Rd,R)

is an RKHS since

|(δx | f)| = |f(x)| ≤ ∥f∥p,∞ ≤ C ∥f∥H .

The claim now follows from Proposition 2.4.2(iv). Hence we turn to build a Hilbert space

continuously embedded in Cp0 (Rd,R). Moreover, we prefer a classical Hilbert space that we

are familiar with rather than an arbitrary Hilbert space.
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Chapter 2. Prelude

The Sobolev embedding theorem [2, Theorem 4.12 (part I, case A)] states that for every

integer m > p+ d
2 , the Sobolev space Hm(Rd) is continuously embedded in Cp0 (Rd,R). The

conventional norm on Hm(Rd) is given by

∥f∥Hm :=

(︄ ∑︂
|α|≤m

∥∂αf∥2L2

)︄1/2

,

where α is a multi-index. Plancherel’s theorem shows that

∥f∥2Hm =

∫︂
Rd

(︄ ∑︂
|α|≤m

|ξ|2α
)︄
|f̂ |2 dξ,

where f̂ ∈ L2(Rd) is the Fourier transform of f ∈ L2(Rd). Given σ > 0, since there are

constants C, C ′ > 0 such that

C (1 + σ2|ξ|2)m ≤
∑︂

|α|≤m

|ξ|2α ≤ C ′ (1 + σ2|ξ|2)m,

it follows that the Sobolev space Hm(Rd) is also characterized by

Hm(Rd) =
{︁
f ∈ L2(Rd) : (1 + σ2|ξ|2)m/2 f̂ ∈ L2(Rd)

}︁
with the equivalent norm

|||f |||Hm :=
⃦⃦
(1 + σ2|ξ|2)m/2 f̂

⃦⃦
L2 .

For the purpose of obtaining an explicit expression of the reproducing kernel of Hm(Rd),

we equip Hm(Rd) with the equivalent norm ||| · |||Hm and denote its inner product by

⟨f, g⟩Hm :=

∫︂
Rd

(1 + σ2|ξ|2)m f̂(ξ) ĝ(ξ) dξ.

We will discuss the role of σ in the following paragraphs.

Assumingm > p+ d
2 , we now compute the reproducing kernel kHm of the RKHSHm(Rd).

The reproducing property gives us

f(x) = ⟨f, kHm(·, x)⟩Hm =

∫︂
Rd

(1 + σ2|ξ|2)m f̂(ξ) k̂Hm(ξ, x) dξ. (2.4)

On the other hand, we have the Fourier inversion formula

f(x) =

∫︂
Rd

f̂(ξ) ei 2π ξ
⊤x dξ. (2.5)
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2.4. Reproducing Kernel Hilbert Spaces

Since equations (2.4) and (2.5) hold for all f ∈ Hm(Rd), we obtain

k̂Hm(ξ, x) =
e−i 2π ξ

⊤x

(1 + σ2|ξ|2)m ,

which, recall that kHm(·, x) ∈ Hm(Rd) ⊂ L2(Rd), implies

kHm(y, x) =

∫︂
Rd

ei 2π ξ
⊤(y−x)

(1 + σ2|ξ|2)m dξ.

Using the modified Bessel function of the second kind Kν , the above integral can be written

as (see [104, page 233]):

kHm(x, y) = Cm,d,σ

(︃ |x− y|
σ

)︃m−d/2
Km−d/2

(︃ |x− y|
σ

)︃
, (2.6)

where Cm,d,σ does not depend on x and y. After normalizing by a constant such that

kHm(x, x) = 1, if d = 2, using the same notation for the normalized kHm , we then have

kHm(x, y) =
1

2m−2 (m− 2)!

(︃ |x− y|
σ

)︃m−1

Km−1

(︃ |x− y|
σ

)︃
for m ≥ 2.

If d = 3, we further have explicit formulas

kH2(x, y) = exp

(︃
−|x− y|

σ

)︃
;

kH3(x, y) = exp

(︃
−|x− y|

σ

)︃(︃
1 +
|x− y|
σ

)︃
;

kH4(x, y) = exp

(︃
−|x− y|

σ

)︃(︄
1 +
|x− y|
σ

+
1

3

(︃ |x− y|
σ

)︃2
)︄
;

kH5(x, y) = exp

(︃
−|x− y|

σ

)︃(︄
1 +
|x− y|
σ

+
2

5

(︃ |x− y|
σ

)︃2

+
1

15

(︃ |x− y|
σ

)︃3
)︄
;

kH6(x, y) = exp

(︃
−|x− y|

σ

)︃(︄
1 +
|x− y|
σ

+
3

7

(︃ |x− y|
σ

)︃2

+
2

21

(︃ |x− y|
σ

)︃3

+
1

105

(︃ |x− y|
σ

)︃4
)︄
.

Up to a constant, the kernel kHm is also known as the Matérn kernel. For d = 2, there exist

numerical methods to approximate Kν(x), ν ∈ N. Unfortunately, limx→0+ Kν(x) = ∞,

even though limx→0+ x
νKν(x) < ∞. We provide a procedure in Appendix A.1 to directly

approximate xνKν(x), ν ∈ N, by modifying an existing method for Kν(x) [29, 87] and

bypassing the singularity of Kν at 0. In addition, we notice from the exponent in (2.6) that

m− d

2
=
(︂
m− 1

2

)︂
− d− 1

2
,

which combining with (2.6) says that the kernel kHm in Rd restricted to Rd−1 is the kernel
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Chapter 2. Prelude

kHm−1/2 in Rd−1. This is not surprising in view of the trace theorem. Thus we can actually

compute kHm for all m = 2+ n
2 , where n ∈ N∪{0}. Figure 2.4 plots the reproducing kernel

kHm with m = 2, 3, . . . , 6 and σ = 1.

Figure 2.4: Plots of the reproducing kernel kHm of Hm(Rd) with σ = 1.

The effect of σ can be observed through the soft interpolation problem. In the soft

interpolation problem, recall that we minimize

γ

2
|||f |||2Hm +

1

2

n∑︂
i=1

|f(xi)− yi|2 =
γ

2

⃦⃦
(1 + σ2|ξ|2)m/2 f̂

⃦⃦2
L2 +

1

2

n∑︂
i=1

|f(xi)− yi|2.

Thus, qualitatively, σ serves as the weight on the penalties of derivatives. If σ is small, we

tolerate functions with large derivatives; if σ is large, we are inclined to smoother functions.

Figure 2.5 illustrates this viewpoint on σ quantitatively. A heuristic rule of thumb is

to choose σ such that the union of balls centered at xi’s with radius σ is connected for

each cluster of xi’s, although the radius as a function of σ may be adjusted according to

Figure 2.4.

Figure 2.5: Soft interpolation of 3 data points by a function in H2(R) ↪→ C1
0 (R,R) with

γ = 10−6. The heuristic suggests using 0.5 < σ < 2 if we view the xi’s as 2 clusters ({1, 2}
and {6}) and using σ > 2 if all xi’s are lumped in 1 cluster.
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2.4. Reproducing Kernel Hilbert Spaces

We have derived the computable reproducing kernel of the RKHS Hm(Rd), which is

continuously embedded in Cp0 (Rd,R). Based on Hm(Rd), we can construct a Hilbert space

continuously embedded in Cp0 (Rd,Rd) by treating each coordinate as an individual Hm(Rd).

Since the construction is not specific to Hm(Rd), we let V be any real-valued RKHS on a

set X. We now consider the Hilbert space

V d :=
{︁
(f1, . . . , fd) : fi ∈ V, i = 1, . . . , d

}︁
equipped with the inner product

⟨f, g⟩V d :=

d∑︂
i=1

⟨fi, gi⟩V ,

where f = (f1, . . . , fd) and g = (g1, . . . , gd). We show that V d is an Rd-valued RKHS on X

and compute its reproducing kernel. Note that

|δxf |2 =
d∑︂
i=1

(︁
fi(x)

)︁2
=

d∑︂
i=1

⟨fi, kV (·, x)⟩2V ≤
d∑︂
i=1

(︂
∥fi∥2V ∥kV (·, x)∥2V

)︂
= kV (x, x) ∥f∥2V d ,

which shows that δx ∈ L (V d,Rd) for all x ∈ X and hence V d is an Rd-valued RKHS

by Definition 2.4.4. Recall that kV d(x, y) = δx δ
∗
y (page 14), so next we compute δ∗y . Let

f = (f1, . . . , fd) ∈ V d and h = (h1, . . . , hd) ∈ Rd, by the definition of an adjoint operator,

we have

⟨f, δ∗y h⟩V d = ⟨δy f, h⟩Rd =
d∑︂
i=1

fi(y)hi =
d∑︂
i=1

⟨fi, kV (·, y)⟩V hi = ⟨f, kV (·, y)h⟩V d .

It follows that kV d(x, y)h = δx δ
∗
y h = kV (x, y)h, or

kV d(x, y) = kV (x, y) id ∈ L (Rd,Rd) ∼= Rd×d, (2.7)

where id : Rd → Rd is the identity function.

We remark some properties of the real-valued RKHS Hm(Rd) and the Rd-valued RKHS

(Hm(Rd))d. Since there exists a C∞(Rd) function which is compactly supported in a neigh-

borhood around x ∈ Rd, it follows from Proposition 2.4.5 that the reproducing kernel of

Hm(Rd) is positive definite. Another property we now examine is that a change of rectan-

gular coordinates is an isometry in (Hm(Rd))d. Let y := Rx+ a be a change of rectangular

coordinates, where R ∈ Rd×d is a rotation and a ∈ Rd is a translation. Given v : Rd → Rd,

we define

w(y) := R v
(︁
R⊤(y − a)

)︁
,
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Chapter 2. Prelude

which is v after the change of rectangular coordinates. We say that a change of rectan-

gular coordinates is an isometry in (Hm(Rd))d in the sense that ∥v∥(Hm)d = ∥w∥(Hm)d .

We will explain why this is a desired property in the next section. Here we check that

this property holds. We write v and w in coordinates as v(x) = (v1(x), . . . , vd(x)) and

w(y) = (w1(y), . . . , wd(y)) and define an intermediate vector field v′(y) :=
(︁
v1
(︁
R⊤(y −

a)
)︁
, . . . , vd

(︁
R⊤(y − a)

)︁)︁
, which will help the following derivation. Since

v̂′i(ξ) =

∫︂
Rd

v′i(y) e
−i 2π ξ⊤y dy =

∫︂
Rd

vi(x) e
−i 2π ξ⊤(Rx+ a) dx = e−i 2π ξ

⊤a v̂i(R
⊤ξ),

we have |v̂′i(ξ)| = |v̂i(R⊤ξ)|. We denote v̂ := (v̂1, . . . , v̂d), same for w and v′, and note that

w = Rv′ implies ŵ = R v̂′. It follows that

∥w∥2(Hm)d =

d∑︂
i=1

|||wi|||2Hm =

∫︂
Rd

(1 + σ2|ξ|2)m |ŵ(ξ)|2 dξ

=

∫︂
Rd

(1 + σ2|ξ|2)m |R v̂′(ξ)|2 dξ =
∫︂
Rd

(1 + σ2|ξ|2)m |v̂′(ξ)|2 dξ

=

∫︂
Rd

(1 + σ2|ξ|2)m |v̂(R⊤ξ)|2 dξ =
∫︂
Rd

(1 + σ2|Rξ|2)m |v̂(ξ)|2 dξ

=

∫︂
Rd

(1 + σ2|ξ|2)m |v̂(ξ)|2 dξ = ∥v∥2(Hm)d ,

which establishes the isometry.

2.5 Large Deformation Diffeomorphic Metric Mapping

Large deformation diffeomorphic metric mapping (LDDMM) [11] is a versatile framework

for diffeomorphic registration of shapes. Given two shapes Ω1 and Ω2, LDDMM provides a

Diffp-deformation ξ such that ξ(Ω1) ≈ Ω2. Figure 2.6 shows an example of LDDMM: Fig-

ure 2.6(a) shows input shapes Ω1 and Ω2, while Figure 2.6(b) shows the Diffp-deformation

ξ output by LDDMM. Since ξ is a diffeomorphism, we notice in Figure 2.6(b) that paral-

lel lines are mapped to smooth nonintersecting curves. We next introduce how LDDMM

generates a Diffp-deformation for diffeomorphic shape registration.

The idea of LDDMM is to generate ξ not in one step, but through a Diffp-motion

φ on a time interval [0, T ] and let ξ := φ(T ), the Diffp-deformation at the end of the

Diffp-motion. We recall from Section 2.3 that the flow of a deformation vector field v ∈
L1([0, T ], Cp+1

0 (Rd,Rd)) is a Diffp-motion. In addition, let V be a Hilbert space continuously

embedded in Cp+1
0 (Rd,Rd), for example, we can let V = (Hm(Rd))d with m > p + 1 + d

2
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Ω1 Ω2

!2 0 2

!2

0

2

!2 0 2

!2

0

2

(a) Input of LDDMM.

ξ : R2 → R2

(b) Output of LDDMM.

Figure 2.6: Input and output of LDDMM.

(see Section 2.4.2). LDDMM considers the minimization problem

min
v′ ∈L2([0, T ], V )

(︃
1

2

∫︂ T

0
∥v′(t)∥2V dt+ ρ(φ(T,Ω1), Ω2)

)︃
(2.8)

subject to

φ(t, x) = x+

∫︂ t

0
v′(s, φ(s, x)) ds for all (t, x) ∈ [0, T ]× Rd,

where ρ(·, ·) is a function measuring the discrepancy between two shapes. With additional

regularity assumptions on ρ, applying the direct method of calculus of variations shows the

existence of a minimizer for the LDDMM minimization problem (2.8) due to the Hilbert

space structure of V . We can now summarize the procedure of LDDMM for diffeomorphic

shape registration. Given two shapes Ω1 and Ω2, we denote a minimizer for (2.8) by v and

denote its corresponding Diffp-motion by φv. A Diffp-deformation which registers Ω1 to Ω2

is then given by ξ := φv(T ). For the two shapes in Figure 2.6(a), we set T = 1 and present

in Figure 2.7 a critical point v of the minimization problem (2.8) and its corresponding

Diffp-motion φv. The deformed grids should be interpreted as functions from the regular

grid to the deformed grids. The Diffp-deformation at t = 1.00 = T is the output we have

seen in Figure 2.6(b). Figure 2.8 verifies that the registered shape ξ(Ω1) is close to Ω2 in

the sense that they have similar boundaries.

When we register a shape Ω1 to another shape Ω2 using LDDMM, there is a Diffp-

motion of Ω1 behind the scenes so that Ω1 is the beginning of the motion while Ω2 is the

target that the motion tries to reach. Henceforth, we shall call Ω1 an initial shape and Ω2 a

target shape and denote them by Ω0 and Ωtarg respectively. Recall that in Section 2.4.2 we

observe a property of (Hm(Rd))d that a change of rectangular coordinates is an isometry in

(Hm(Rd))d. Now we can see why this is a desired property. This property implies that the

LDDMM minimization problem (2.8) is independent of the choice of rectangular coordinate
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t = 0.00 t = 0.25 t = 0.50 t = 0.75 t = 1.00

Figure 2.7: A critical point of the LDDMM minimization problem. Shown in the figures is
a critical deformation vector field v and the corresponding Diffp-motion φv.
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(a) Input of LDDMM.

ξ(Ω1) ∂ξ(Ω1) and Ω2

!2 0 2
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2

!2 0 2

!2

0

2

(b) Registration result.

Figure 2.8: LDDMM diffeomorphic registration.

system. In this sense, we recover shapes as compact sets in the Euclidean affine space.

Besides, it would be awkward to obtain a different registration result simply because we

did not place shapes in some standard orientation at the origin.

The applications of LDDMM go beyond shapes we consider here. Notice that the three

factors in the LDDMM framework are a class of objects, an action of the diffeomorphism

group on the class of objects, and a function measuring the discrepancy between two objects.

Given two objects O0 and Otarg, the LDDMM minimization problem then formally becomes

min
v′ ∈L2([0, T ], V )

(︃
1

2

∫︂ T

0
∥v′(t)∥2V dt+ ρ(φ(T ) · O0,Otarg)

)︃
subject to

φ(t, x) = x+

∫︂ t

0
v′(s, φ(s, x)) ds for all (t, x) ∈ [0, T ]× Rd.

The class of objects in the previous discussion is the class of shapes S with the action

ξ · Ω := ξ(Ω). A discrepancy function can be, for example, the volume of the symmetric

difference of two sets. We can also consider a class of images, or real-valued functions on

Rd, with the action ξ · I := I ◦ ξ−1. For a class of vector fields, possible actions include

ξ · v := (Dξ v) ◦ ξ−1 and ξ · v := (Dξ−⊤ v) ◦ ξ−1. We refer the reader to [104, Chapter 9] for
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2.6. Problem Description

a wide range of objects, actions, and discrepancy functions.

2.6 Problem Description

While LDDMM registers two shapes via a Diffp-motion, the Diffp-motion may not have a

physical interpretation. For example, when we register shapes extracted from brain images

of different individuals using LDDMM, there is no Diffp-motion linking the two individual

brains in reality. However, if we know that the target shape indeed comes from the ini-

tial shape through a Diffp-motion, we can expect that incorporating prior knowledge into

deformation vector fields would enhance registration results. Figure 2.9 demonstrates this

idea. Figures 2.9(a) and 2.9(b) show our initial and target shapes, which are two adjacent

squares. Although the most straightforward Diffp-motion is a simple translation, there are

in fact infinitely many Diffp-motions from the initial shape to the target shape; Figure 2.9(c)

shows one possible Diffp-motion. The distorted mesh may conflict with our understanding

that the internal structure should remain almost unchanged. If this is the case, it would

be better to model deformation vector fields as the form of velocity fields of rigid motions.

More importantly, our motivation is to reveal an approximately true motion simply from an

initial shape and an asymmetrical target shape. This possibility resides in a more faithful

description of deformation vector fields.

We propose to investigate when deformation vector fields can be modeled explicitly

through a parameter. Let V be a Hilbert space continuously embedded in Cp+1
0 (Rd,Rd).

In addition, let φ ∈ C([0, T ],Diff pid (R
d)) and θ : [0, T ]→ Y , where Y is a Banach space. We

assume that the deformation vector field at the current time takes the form

v(t) :=M(φ [0,t], θ(t)), (2.9)

whereM :
⋃︁
t∈ [0, T ]C([0, t],Diff pid (R

d))× Y → V is an abstract model which depends on a

motion on some time interval [0, t] ⊂ [0, T ] and a Y -valued parameter. When a deformation

vector field is of the form (2.9), we say that it is an interpretable deformation vector field,

i.e., v(t) can be interpreted through the model M and the parameter θ(t). In (2.9), the

model assumption and the dependency on a parameter are sensible, while the dependency

on an arbitrary motion should be understood in the context of its (coupled) flow. Note that

the “flow” of (2.9) is a solution to the initial value problem

φ(t, x) = x+

∫︂ t

0
M(φ [0,s], θ(s))(φ(s, x)) ds for all (t, x) ∈ [0, T ]× Rd,
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0 1 2

0

1

(a) Initial shape.

0 1 2

0

1

(b) Target shape.

t = 0:0 t = 0:2 t = 0:4

t = 0:6 t = 0:8 t = 1:0

(c) A feasible registration process.

Figure 2.9: Diffeomorphic registration with unmodeled deformation vector fields.

which reveals the dependency of the deformation vector field at the current time on the

history of its motion up to the current time. We will examine sufficient conditions on M
for the existence and uniqueness of solutions to this initial value problem and then consider

the minimization problem

min
θ∈Θ

(︃∫︂ T

0
Λ(φ(t), θ(t)) dt+ ρ(φ(T,Ω0), Ωtarg)

)︃
(2.10)

subject to

φ(t, x) = x+

∫︂ t

0
M(φ [0,s], θ(s))(φ(s, x)) ds for all (t, x) ∈ [0, T ]× Rd.

We will also give sufficient conditions such that a minimizer of the above minimization

problem exists. This abstract formulation will be realized by two examples in the next

chapter, where we present motions corresponding to critical points of the minimization

problem (2.10) through a series of numerical experiments.
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Two Examples

The purpose of this chapter is to illustrate our abstract framework of interpretable defor-

mation vector fields. We will focus on concepts and leave many loose ends to be tied up

in the following chapters. In other words, we provisionally assume everything works. In

Section 3.1, we consider the shape registration problem with shapes composed of multiple

connected components. Moreover, we assume that the motion of each connected component

is rigid while the motion of the whole space is Diffp. In Section 3.2, we consider a model

of quasi-elastic shapes atrophied by a chemical whose spread in the shape is governed by a

reaction-diffusion equation. We then abstract these two examples under the framework of

interpretable deformation vector fields in Section 3.3, which serves as an appetizer for the

next chapter.

3.1 Piecewise-rigid Motion

Our first example assumes that shapes go through piecewise-rigid motions. Let Ω =
⋃︁N
i=1Ωi

be our shape (see (2.1)). We say that a Diffp-motion is piecewise rigid if it is a rigid motion

of each shape component Ωi, i = 1, . . . , N . Figure 3.1 illustrates one piecewise-rigid motion

with three shape components. Since a piecewise-rigid motion is also a Diffp-motion, all

the shape components will not have contacts at any time during the motion. We will

formulate this problem in Section 3.1.1 and demonstrate a series of numerical experiments

in Section 3.1.2.

Piecewise-rigid motion is a natural model when registering physical shapes enclosing

bones. A wide range of literature in medical image registration has addressed this direction.

There are at least three approaches for registering images containing bones. The first

approach registers each bone, or rigid component, separately and then “fill the blanks”
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t = 0:0 t = 0:2 t = 0:4

t = 0:6 t = 0:8 t = 1:0

Figure 3.1: Illustration of piecewise-rigid motions. The color shading is to facilitate the
orientation tracing.

by a non-rigid deformation [63, 54, 69, 24]. Some problems may occur when blending

rigid deformations with a non-rigid deformation. In [63, 69, 24], a non-rigid deformation is

generated from a weighted average of rigid deformations, where the weights are functions

of the inverse distance to rigid components. This weighted average of rigid deformations

implies that the material is more rigid when it is closer to rigid components. However, this

continuity in stiffness may not be true in some applications. In [54], on the other hand, a

non-rigid deformation is given by a thin-plate spline based on landmarks extracted from the

boundaries of registered rigid components. Although the boundaries of rigid components

are rigidly registered using a thin-plate spline, the regions within the boundaries are not

rigid anymore. One needs to evaluate if this behavior meets the assumption of applications.

The second approach penalizes non-rigid deformations via the violation of rigidity on rigid

components [64, 86, 92], that is, via the amount of deviation of the right Cauchy–Green

deformation tensor from the identity on rigid components. The third approach utilizes the

articulated structure of bones [77, 8, 37, 58, 102]. This approach requires an articulated

atlas, which may not be conveniently accessible. Our method differs from all the three

approaches mentioned above. Following the idea of LDDMM, we aim to find a piecewise-

rigid motion φ such that φ(T,Ω0) ≈ Ωtarg. Our method guarantees that the piecewise-rigid

deformation φ(T ) is diffeomorphic, which is a desired property not always addressed in the
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literature at the continuous level. We will demonstrate our method using shapes, though

this method can also be applied to images with a suitable discrepancy function. We also

refer the reader to [52] for more numerical results.

3.1.1 Problem formulation

To formulate the problem, we first cite the following characterizations of rigid motions [49,

pages 49 and 69].

Proposition 3.1.1 (Characterizations of rigid motions). Let φ be a Diffp-motion and v be

the corresponding deformation vector field. Then the following are equivalent.

(i) The motion φ is rigid, i.e., |φ(t, x) − φ(t, x′)| = |x − x′| for all t ∈ [0, T ] and all

x, x′ ∈ Rd.

(ii) The motion φ admits the representation

φ(t, x′) = φ(t, x) +R(t) (x′ − x)

for all t ∈ [0, T ] and all x, x′ ∈ Rd, where R(t) ∈ Rd×d is a rotation, i.e., R(t) is

orthogonal and detR(t) = 1.

(iii) The deformation vector field v admits the representation

v(t, x′) = v(t, x) +W (t) (x′ − x) (3.1)

for almost every t ∈ [0, T ] and all x, x′ ∈ Rd, where W (t) ∈ Rd×d is skew-symmetric.

(iv) The derivative Dv(t, x) is skew-symmetric for almost every t ∈ [0, T ] and all x ∈ Rd.

Proposition 3.1.1(i) is the definition of rigid motions. We formulate the problem using

Proposition 3.1.1(iii) in this section and provide one alternative using Proposition 3.1.1(iv)

in Section 5.1.2 from a theoretical aspect and another alternative using Proposition 3.1.1(ii)

in Section 6.1 from a numerical aspect. We remark that Proposition 3.1.1(iv) does not

require Dv(t, x) to be skew-symmetric and constant in space, which makes it an easy equiv-

alent when formulating rigid motions. Rigid motions of Ω ⊂ Rd can also be characterized

by suitable restrictions in Proposition 3.1.1.

We proceed to formulate the problem using Proposition 3.1.1(iii). We first derive an

expression of deformation vector fields of rigid motions of Rd, then we return to our problem

of piecewise-rigid motions. We let x = 0 in (3.1) and define u(t) := v(t, 0), which leads to

v(t, x′) = u(t) +W (t)x′. (3.2)
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It is clear that (3.2) implies (3.1), and hence they are equivalent. Moreover, since W (t) is

skew-symmetric, there exists ω(t) ∈ R if d = 2 or ω(t) ∈ R3 if d = 3 such that

v(t, x′) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
u(t) + ω(t)

⎡⎣ 0 −1
1 0

⎤⎦x′, if d = 2 ;

u(t) + ω(t)× x′, if d = 3 ,

(3.3)

where × stands for the cross product. For all θ := (u, ω), where u ∈ Rd and ω ∈ R
d(d−1)

2 ,

the expression (3.3) then inspires the definition of a linear operator V : R
d(d+1)

2 → C(Rd,Rd)

given by

(V θ)(x) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
u+ ω

⎡⎣ 0 −1
1 0

⎤⎦x, if d = 2 ;

u+ ω × x, if d = 3 ,

which characterizes deformation vector fields of rigid motions. Now we are ready to for-

mulate our problem of piecewise-rigid motions. Given an initial shape Ω0 =
⋃︁N
i=1Ωi and

a target shape Ωtarg =
⋃︁N
i=1Ω

′
i, we let θi(t) := (ui(t), ωi(t)) ∈ R

d(d+1)
2 be the parame-

ter of a rigid deformation vector field for the i-th shape component at time t and define

θ(t) := (θ1(t), . . . , θN (t)) ∈ R
Nd(d+1)

2 . In addition, we let k := Nd(d+1)
2 be the total number

of parameters in the following for conciseness. The problem of piecewise-rigid motions is

stated as

min
θ∈L2([0, T ],Rk)

(︃
1

2

∫︂ T

0

(︂
∥v(t)∥2V + |θ(t)|2

)︂
dt+ ρ(φ(T,Ω0), Ωtarg)

)︃
subject to ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

φ(t, x) = x+

∫︂ t

0
v(s, φ(s, x)) ds for all (t, x) ∈ [0, T ]× Rd

v(t) = argmin
v′ ∈V

(︃
γ

2
∥v′∥2V +

1

2

N∑︂
i=1

∫︂
φ(t, Ωi)

|v′ − V θi(t)|2 dx
)︃ , (3.4)

where γ > 0 is a specified small value for technical reasons (see Lemma 4.1.13). The term

1
2

∫︁ T
0 ∥v(t)∥2V dt in the objective function quantifies the roughness of deformation vector

fields, while the term 1
2

∫︁ T
0 |θ(t)|2 dt resembles the kinetic energy of shapes. In words, we

try to find a piecewise-rigid motion which is as smooth as possible and costs as small kinetic

energy as possible such that φ(T,Ω0) ≈ Ωtarg. For any diagonal matrix D with positive

diagonal entries, a more general form 1
2

∫︁ T
0 θ(t)⊤Dθ(t) dt can be used for the kinetic energy.

We choose D to be the identity matrix for simplicity. We will have more discussions on
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this problem formulation, including technical and numerical difficulties, in later sections

(Sections 5.1 and 6.1). Here we strengthen that v(t) ∈ V ↪→ Cp+1
0 (Rd,Rd) is a smooth

vector field with the property v(t, x) ≈ (V θi(t))(x) for x ∈ φ(t, Ωi), i.e., the motion of each

shape component is almost rigid.

3.1.2 Numerical results

We present numerical results of a slightly different problem which will be stated in Sec-

tion 6.1. This slightly different problem can be thought of as the limiting case of (3.4)

when γ → 0, i.e., the motion of each shape component is exactly rigid. All the 2D experi-

ments used V = (H5(Rd))d ↪→ C3
0 (Rd,Rd), and the 3D experiment used V = (H6(Rd))d ↪→

C4
0 (Rd,Rd). The final time was set to T = 1. The kernel width σ for V , which will be

denoted by σV , and the time step size ∆t for the forward Euler method will be indicated in

each experiment. We used the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm to

find a critical point of the minimization problem with the starting point θ ≡ 0 corresponding

to φθ(t) = id for all t unless stated otherwise. We chose the simple forward Euler method

considering the steeply increased complexity in implementation. Nevertheless, whether the

optimization can benefit from higher order methods is an interesting topic, which will not

be addressed in this dissertation.

We first examine the registration problem without any correspondence between the

initial and the target shape. This can be achieved by the minimization problem (3.4) if we

adopt a discrepancy function ρ that does not require any correspondence. In particular, we

consider varifold pseudo-metrics [27]. Let

ν(∂Ω, ∂Ω′) :=

∫︂
∂Ω

∫︂
∂Ω′

1(︁
1 + |x− x′|2/σ2ρ

)︁2 (︂n(x)⊤n′(x))︂2dσ′ dσ,
where σρ > 0 is a parameter for precision, n and n′ are unit tangent vector fields for 2D

and unit normal vector fields for 3D on ∂Ω and ∂Ω′, and σ and σ′ are volume measures of

∂Ω and ∂Ω′ respectively. We then define

ρ(Ω,Ω′) := wρ

(︂
ν(∂Ω, ∂Ω)− 2ν(∂Ω, ∂Ω′) + ν(∂Ω′, ∂Ω′)

)︂
, (3.5)

where wρ > 0 is a weighting parameter. Notice that the discrepancy function ρ defined

above only measures the difference between the boundaries ∂Ω and ∂Ω′, which is necessary

and sufficient for the shapes we consider since ∂Ω = ∂Ω′ if and only if Ω = Ω′. Moreover,

this discrepancy function ρ is “continuous,” which will be made precise in Definition 4.1.4

and Remark 4.1.9. The reader may loosely interpret the continuity of ρ as ρ(Ω,Ω′) only

30



Chapter 3. Two Examples

changes a little when Ω “changes a little,” where the change is quantified by a deformation

applying to Ω. We also remark that ν(∂Ω, ∂Ω′), and hence ρ(∂Ω, ∂Ω′), is well defined for

our shapes whose boundaries are rectifiable (see (2.1)).

With all the ingredients in place, we now supply inputs Ω0 and Ωtarg to the minimization

problem (3.4) using the discrepancy function (3.5) and investigate the output θ, a critical

point. We present an example of a conceptual spine in Figure 3.2. Figures 3.2(a) and

3.2(b) are our Ω0 and ∂Ωtarg; Figure 3.2(c) shows the deformation φθ(T ) corresponding

to a critical point θ; Figure 3.2(d) shows φθ(t, Ω0) at various time t. Since the motion

is piecewise rigid, we expect that grid lines within shape components remain undeformed.

Figure 3.2(c) might not show this property clearly; we encourage the reader to check this

property in the following examples. We emphasize that the only input data are Ω0 and

Ωtarg, that is, we do not assume the knowledge of any correspondence between the initial

and the target shape. In this example, the positions of the initial and the target shape are

quite close, and we may say that the registration result meets our expectation. Next we

increase the difference between the initial and the target shape as shown in Figure 3.3. We

can see from Figure 3.3(c) that φ(T,Ω0) and Ωtarg are registered. However, Figure 3.3(d)

reveals that the corresponding piecewise-rigid motion may not be the most intuitive one.

Even if we change rectangles to other asymmetric shapes, as shown in Figure 3.4, which

provide the information of orientation, we still have a difficult minimization problem since

we do not have any correspondence to directly hint a minimization procedure that rotating

the top quadrangle 180 degrees will lead to a better minimizer. Figure 3.5 shows another

example indicating that we may need more information than the boundary of a target shape

when the difference between the initial and the target shape is large. Suppose that we have

a rough prior of expected motions, which may be provided either by users or previous data,

then one possible approach is to utilize the expected motion as the starting point for a

minimization procedure. We will see the effect of starting points in the next paragraph.
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(a) Initial shape.
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(b) Boundary of the target shape.
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(c) Registration result.

t = 0:00 t = 0:25 t = 0:50 t = 0:75 t = 1:00

(d) Registration process.

Figure 3.2: Registration using varifold pseudo-metrics without correspondence. In (c), the
blue regions represent the deformed shape at the final time t = 1, while the dashed lines
indicate the boundary of the target shape. The norm of the gradient is 4.05 e−05. (σV = 0.1,
∆t = 0.005, σρ = 0.15, wρ = 500)
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(a) Initial shape.

0 1 2
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(b) Boundary of the target shape. (c) Registration result.

Figure 3.3: Registration using varifold pseudo-metrics without correspondence. In (a), the
height of gaps between rectangles is 0.05. The color shading is to facilitate orientation
tracing. The norm of the gradient is 1.24 e− 05. (σV = 0.06, ∆t = 0.005, σρ = 0.2,
wρ = 500)
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t = 0:00 t = 0:25 t = 0:50 t = 0:75 t = 1:00

(d) Registration process.

Figure 3.3: (Continued.)
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(a) Initial shape.
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(b) Boundary of the target shape. (c) Registration result.

t = 0:00 t = 0:25 t = 0:50 t = 0:75 t = 1:00

(d) Registration process.

Figure 3.4: Registration using varifold pseudo-metrics without correspondence. The color
shading is to facilitate orientation tracing. The norm of the gradient is 3.29 e−05. (σV =
0.06, ∆t = 0.005, σρ = 0.4, wρ = 500)
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(a) Initial shape.
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(b) Boundary of the target shape. (c) Registration result.

t = 0:00 t = 0:25 t = 0:50 t = 0:75 t = 1:00

(d) Registration process.

Figure 3.5: Registration using varifold pseudo-metrics without correspondence. The color
shading is to facilitate orientation tracing. The norm of the gradient is 1.23 e−04. (σV =
0.06, ∆t = 0.005, σρ = 0.2, wρ = 500)
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Next we consider the situation when we are given a correspondence between the initial

shapeΩ0 =
⋃︁N
i=1Ωi and the target shapeΩtarg =

⋃︁N
i=1Ω

′
i, i.e., we know rotations Ri ∈ Rd×d

and translations ai ∈ Rd such that {Ri x+ ai : x ∈ Ωi} = Ω′
i, for i = 1, . . . , N . Provided we

have a sufficient number of corresponding points, for example, the positions of two diagonal

vertices of a rectangular shape component in the initial and the target shape, such rotations

and translations may be obtained from the orthogonal Procrustes analysis. The reader may

wonder what remains to be registered if we have a correspondence. We recall that our goal

is a deformation on Rd, so a correspondence on Ω0 is not sufficient for this purpose. In

addition, knowing a correspondence is equivalent to the setting in the literature when the

registration of individual rigid components is complete. The correspondence enables us to

adopt the weighted ℓ2-distance as the discrepancy function, that is,

ρ(Ω,Ω′) :=
wρ
2

M∑︂
i=1

|qi − q′i|2,

where (qi)
M
i=1 and (q′i)

M
i=1 are corresponding discretized nodes of Ω and Ω′ respectively.

Figures 3.6 and 3.7 show the comparisons with Figures 3.3 and 3.5 when we have a cor-

respondence. We observe that in Figures 3.6(a) and 3.6(b) although the positions of the

blue rectangles are the same, there is no guarantee that the blue rectangle would stay static

during the motion as shown in Figure 3.6(d). If we know that some components will re-

main at their initial positions, we should include this information by letting θi(t) = 0 for

all t. Another interesting point in Figure 3.6(d) is that we did not constrain the “joints”

of rectangles to keep them close to each other; this is a consequence of the smoothness

of deformation vector fields. However, the joints could still be broken as can be seen in

Figure 3.7(d). Also in Figure 3.7(d), we notice that the shape at time t = 1 does not match

the target precisely. This could be explained by Figure 3.7(c) which shows that those non-

intersecting curves prevent a better match. We now examine the effect of starting points

for minimization. The only difference between the two examples in Figures 3.7 and 3.8 is

the starting point for minimization: Figure 3.7 starts at θ(t) = 0 for all t which corresponds

to φθ(t) = id for all t, while φθ(t, Ω0) corresponding to the starting point θ for Figure 3.8 is

shown in Figure 3.8(d). We can see from Figure 3.8(e) that the motion of the found critical

point resembles the motion of the starting point. The results in Figures 3.7 and 3.8 exhibit

two numerical critical points, of which Figure 3.8 has a smaller objective function value.

Based on our observations in 2D, we finally present a 3D example shown in Figure 3.9.
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(a) Initial shape.

0 1 2

0

1

2

3

(b) Target shape. (c) Registration result.

t = 0:00 t = 0:25 t = 0:50 t = 0:75 t = 1:00

(d) Registration process.

Figure 3.6: Registration using the ℓ2-distance given a correspondence. In (a) and (b), the
color shows the point-to-point correspondence between the initial and the target shape. The
norm of the gradient is 3.08 e−05. (σV = 0.06, ∆t = 0.005, wρ = 100)

0 1 2 3

0

1

2

3

4

(a) Initial shape.
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(b) Target shape. (c) Registration result.

Figure 3.7: Registration using the ℓ2-distance given a correspondence shown by the color.
The norm of the gradient is 3.00 e−05. (σV = 0.06, ∆t = 0.0005, wρ = 100)
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t = 0:00 t = 0:25 t = 0:50 t = 0:75 t = 1:00

(d) Registration process.

Figure 3.7: (Continued.)
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(b) Target shape. (c) Registration result.

t = 0:00 t = 0:25 t = 0:50 t = 0:75 t = 1:00

(d) Starting position for optimization.

t = 0:00 t = 0:25 t = 0:50 t = 0:75 t = 1:00

(e) Registration process.

Figure 3.8: Registration using the ℓ2-distance given a correspondence shown by the color.
The norm of the gradient is 2.72 e−05. (σV = 0.06, ∆t = 0.0005, wρ = 100)
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(a) Initial shape. (b) Target shape.

(c) Registration process.

Figure 3.9: Registration using the ℓ2-distance given a correspondence shown by the color.
The norm of the gradient is 1.38 e−03. (σV = 0.35, ∆t = 0.005, wρ = 10)
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3.2 Biological Atrophy Modeling

Our second example is motivated by cerebral atrophy due to a brain disease. The goal is

to locate the origin of brain disease progression from shapes of cerebral cortex before and

after atrophy. Since we only assume initial and final shapes of cortex, it is necessary to

incorporate the information of disease progression and model the process of brain atrophy.

To model the process of brain atrophy caused by a disease, we model the cerebral cortex

as a layered elastic material in Section 3.2.1, then in Section 3.2.2 we model the disease

progression as a chemical propagation governed by a reaction-diffusion equation on a moving

shape, and finally we model how the chemical atrophies the brain cortex in Section 3.2.3.

Numerical experiments will be presented in Section 3.2.4.

The three ingredients in our atrophy modeling are the material of the cerebral cortex,

the progression of a brain disease, and the cortex deformation caused by a disease. In the

literature, it was common to model the cerebral cortex as a homogeneous isotropic elastic

material [83, 93, 21, 57, 96, 12]. The laminar organization of cortex, however, seemed to

be less discussed; in the modeling of brain folding, the structure of cortical layers was con-

sidered in [67], and different growth rates parallel and perpendicular to cortical layers were

adopted in [12]. As for the disease progression, many mathematical models were proposed

to describe the disease progression on a fixed domain based on the disease mechanism and

validation. For example, Achdou et al. [1] considered a Smoluchowski equation for the diffu-

sion and aggregation of a toxic chemical; Kulason et al. [60] modeled the disease activity by

a reaction-diffusion equation; Bertsch et al. [14] proposed a model including different mech-

anisms of two toxic chemicals and their interaction. We refer the reader to [22] for a more

thorough review. Finally, the shape evolution due to a time-dependent distribution of an

internal chemical has been examined in at least two directions: one direction only focused

on the evolution of the shape boundary [31, 40, 90], while the other direction aimed at the

evolution of the whole shape [23, 100, 33, 20]. In particular, we point out that in Bressan

and Lewicka [20] tissue growth was modeled by an evolving quasi-elastic body. The body

is assumed to be composed of chemical-producing cells which are passively transported by

the motion. The density of chemical-producing cells then affects the distribution of chem-

ical, which further determines local volume changes of the body and hence influences the

deformation vector field according to the elasticity. The model of Bressan and Lewicka [20]

has similar structure to ours but the main difference is that they assumed that the time

scale of the chemical diffusion is small, while we assume that the evolution of chemical is a

long time behavior. To the best of our knowledge, our work is the first attempt to include
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all the three ingredients for the modeling of cerebral atrophy. Although some aspects of

our model are oversimplified, we anticipate that our work will encourage the development

of more sophisticated models in this direction.

3.2.1 Layered elastic shapes

Since we are modeling the cerebral cortex (see Figure 3.10), we want to include the fol-

lowing three properties in our model of layered elastic shapes. First, we need to have a

mathematical description of layered shapes. Second, due to the structure of cortical layers

and cortical columns, we want to differentiate the elasticity along layers from the elasticity

transversal to layers. This property will make it possible to say how easy it is to stretch

the material along layers, or how hard it is to reduce the thickness of the material. Third,

we want the elasticity to be “isotropic along layers” because of the homogeneity of cortical

layers. We will give precise description of this property after we present the mathematical

formulation.

Figure 3.10: Illustration of cerebral cortical layers and cortical columns.

We now introduce our model of layered shapes. Suppose that a shape Ω has two surfaces

(or two curves in 2D) Lbottom, Ltop ⊂ ∂Ω as bottom and top layers (see Figure 3.11(b)).

Moreover, suppose that we are given a diffeomorphism Φ : [0, 1] × Lbottom → Ω such that

Φ(0, Lbottom) = Lbottom and Φ(1, Lbottom) = Ltop. Note that Φ(ν, Lbottom) =: Lν is a

surface for each ν ∈ [0, 1] (see Figure 3.11(c)). We refer to Φ as a layered structure of Ω.

We say that Ω is a layered shape if Ω has a layered structure. According to this definition

of layers, a layered shape is composed of uncountably many layers without thickness, i.e.,

Ω =
⋃︁
ν ∈ [0, 1] Lν , which might be contrary to the reader’s notion of finitely many layers with

thickness. A layered structure Φ then induces a transversal unit vector field S := ∂νΦ
|∂νΦ| ◦ Φ

−1

on the shape (see Figure 3.12). This transversal vector field, together with tangent planes
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of layers, will be useful to describe layered elasticity in the next paragraph.

(a) A shape with a layered
structure shown in (b)
and (c).

(b) Bottom and top layers of the
shape.

(c) Bottom, two intermediate,
and top layers of the shape.

Figure 3.11: Illustration of layered shapes.

Figure 3.12: Different layered structures of the same rectangular cuboid. Shown in the
figures are top layer, one middle layer, bottom layer, and the transversal vector field.

Before we proceed to layered elasticity, we briefly recall classical linear elasticity [49,

Chapter X]. We restrict our discussion in the following to R3 for clarity; the case in R2 is sim-

ilar and simpler. Denote by Σ2(Sym3(R),Sym3(R)) the space of symmetric bilinear forms

on the space of 3-by-3 symmetric matrices. We say that E : Ω → Σ2(Sym3(R),Sym3(R)) is

an elasticity tensor (field) on Ω if E is positive definite almost everywhere, i.e., for almost

every x ∈ Ω, we have E(x)(A,A) ≥ 0 and E(x)(A,A) = 0 if and only if A = 0. For example,

the elasticity tensor of a homogeneous isotropic linear elastic material is given by

Eiso(x)(A,B) := λ tr(A) tr(B) + 2µ tr(A⊤B), (3.6)

where λ and µ are the Lamé parameters such that µ > 0 and 2µ+3λ > 0, which ensure the

positive definiteness [49, page 196]. For an elastic shape Ω described by an elasticity tensor

E , suppose that the residual stress in Ω vanishes, then a small deformation, i.e., ξ = id + u

with ∥Du∥∞ ≪ 1, will induce an elastic energy

1

2

∫︂
Ω
E(εu, εu) dx :=

1

2

∫︂
Ω
E(x)(εu(x), εu(x)) dx,

where εu := 1
2

(︁
Du+Du⊤

)︁
is the infinitesimal strain tensor. Since ∥Du∥∞ ≪ 1, we observe
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that εu = 1
2

(︁
Du + Du⊤

)︁
≈ 1

2

(︁
Dξ⊤Dξ − I3

)︁
. Denoting the coordinate unit vectors by e1,

e2, e3, we can then write

εu = I⊤3

(︂ 1

2

(︁
Du+Du⊤

)︁ )︂
I3 ≈

[︃
e1, e2, e3

]︃⊤ 1

2

(︂
Dξ⊤Dξ− I3

)︂[︃
e1, e2, e3

]︃
, (3.7)

which says that the diagonal entries of εu describe the change of length of coordinate unit

vectors, while the off-diagonal entries of εu describe the change of angle between coordinate

unit vectors. For our layered elastic shapes, however, we want to describe changes with

respect to tangent planes and transversal directions rather than coordinate directions. To

this end, given a shape Ω with a layered structure Φ, we let T1 and T2 be orthogonal unit

vector fields on Ω such that T1 Lν and T2 Lν are tangent to layers Lν for all ν ∈ [0, 1].

Since Φ : [0, 1]×Lbottom → Ω is a diffeomorphism, it follows that the tangential unit vector

fields T1, T2, and the transversal unit vector field S = ∂νΦ
|∂νΦ| ◦ Φ

−1 are linearly independent

vector fields on Ω. We form a frame (field) F :=
[︂
T1, T2, S

]︂
and let ζu := F⊤εu F .

Comparing ζu with (3.7), we deduce that the entries of ζu describe the changes with respect

to the directions T1, T2, and S. For a layered elastic shape undergoing a small deformation

ξ = id + u, we define its layered elasticity tensor by

EΦ(εu, εu) := λtan
(︁
ζ11 + ζ22

)︁2
+ µtan

(︁
ζ211 + ζ222 + 2 ζ212

)︁
+ µtsv ζ

2
33 + 2µang

(︁
ζ213 + ζ223

)︁
,

where λtan, µtan, µtsv, µang are constants, and ζij is the ij-th element of ζu = F⊤εu F . A

sufficient condition for EΦ to be positive definite is that λtan ≥ 0 and µtan, µtsv, µang > 0.

We illustrate the behavior of a layered elastic shape in Figure 3.13. Recall that one property

of layered elastic shapes we want to have is “isotropic along layers.” Specifically, “isotropic

along layers” means that the layered elasticity tensor EΦ is independent of the choice of

orthogonal tangential unit vector fields T1 and T2. This property is indeed true. Let N be

a unit vector field on Ω that is normal to layers. We show in Proposition A.2.2 that the

layered elasticity tensor can also be written as

EΦ(εu, εu) = λtan

(︂
tr(εu)−N⊤εuN

)︂2
+ µtan

(︂
tr(ε2u)− 2 |εuN |2 + (N⊤εuN)2

)︂
+ µtsv (S

⊤εu S)
2 + 2µang

(︂
|εuS|2 − (N⊤εu S)

2
)︂
.

(3.8)

In other words, the layered elasticity tensor only depends on tangent planes of layers and

the transversal vector field, i.e., the layered structure, which also explains our notation

EΦ. We further remark that, for a layered shape Ω with a layered structure Φ, a deformed

shape ξ(Ω) by a Diffp-deformation ξ is also a layered shape whose layered structure becomes

ξ ∗ Φ : [0, 1] × ξ(Lbottom) → ξ(Ω) defined by (ν, x) ↦→ ξ
(︁
Φ(ν, ξ−1(x))

)︁
. In addition, if we
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assume that ξ(Ω) possesses the elasticity tensor Eξ ∗Φ and that the residual stress in ξ(Ω)

vanishes, then a small deformation id + w away from ξ(Ω) will generate an elastic energy

1

2

∫︂
ξ(Ω)
Eξ ∗Φ(εw, εw) dx. (3.9)

We will need this formulation and the change of references and zero-stress states when we

model the atrophy of layered elastic shapes in Section 3.2.3.

(a) A simulated layered shape. (b) Tangential deformation. (c) Transversal deformation.

Figure 3.13: Responses to the same shrinking force under different layered elasticity param-
eters. In (b), µtan = 0.02µtsv. In (c), µtsv = 0.02µtan.

3.2.2 Chemical propagation on a moving shape

We now model the dynamics of chemical propagation via a reaction-diffusion equation on

a moving shape. Given a shape Ω and a Diffp-motion φ ∈ C([0, t],Diff pid (R
d)), assume

that the concerned attribute of the chemical can be represented by a real-valued function

τE :
⋃︁
s∈ [0, t]{(s, x) : x ∈ φ(s,Ω)} → R, where the subscript E stands for the Eulerian

description. We derive a partial differential equation for τE in this section assuming τE

is sufficiently regular. Its weak formulation, which is more technically involved, will be

presented in Section 5.2.2. Let Uφ(s) : φ(s,Ω) → Rd×d be a matrix (field) such that

Uφ(s)(x) is symmetric and positive definite for all x ∈ φ(s,Ω). For every part Π ⊂ Ω, we

assume that the diffusion flux at time s ∈ [0, t] is given by∫︂
∂φ(s,Π)

(︁
− Uφ(s)∇τE(s)

)︁⊤
n(s) dσ,

where n(s) = n(φ(s), Π) is the unit outward normal on ∂φ(s,Π). Since the matrix Uφ(s)

describes the diffusion on φ(s,Ω), we will refer to it as the Eulerian diffusion matrix.

Suppose that the change of τE over the region φ(s,Π) is caused only by the diffusion flux

and the reaction within the region, then we can write

d

ds

∫︂
φ(s,Π)

τE(s) dx = −
(︃∫︂

∂φ(s,Π)

(︁
− Uφ(s)∇τE(s)

)︁⊤
n(s) dσ

)︃
+

∫︂
φ(s,Π)

R
(︁
τE(s)

)︁
dx,
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3.2. Biological Atrophy Modeling

where the given function R : R→ R describes the reaction. We make a change of variables

and obtain

d

ds

∫︂
Π
τE(s) ◦ φ(s) detDφ(s) dx

=

∫︂
∂Π

(︂(︁
Uφ(s)∇τE(s)

)︁
◦ φ(s)

)︂⊤
detDφ(s)

(︁
Dφ(s)−⊤n(0)

)︁
dσ

+

∫︂
Π
R
(︁
τE(s) ◦ φ(s)

)︁
detDφ(s) dx

=

∫︂
Π
div

(︃(︁
Dφ(s)

)︁−1
(︂(︁
Uφ(s)∇τE(s)

)︁
◦ φ(s)

)︂
detDφ(s)

)︃
dx

+

∫︂
Π
R
(︁
τE(s) ◦ φ(s)

)︁
detDφ(s) dx.

Since Π ⊂ Ω is arbitrary, the above equation leads to

∂

∂s

(︂
τE(s) ◦ φ(s) detDφ(s)

)︂
(3.10)

= div

(︃(︁
Dφ(s)

)︁−1
(︂(︁
Uφ(s)∇τE(s)

)︁
◦ φ(s)

)︂
detDφ(s)

)︃
+R

(︁
τE(s) ◦ φ(s)

)︁
detDφ(s).

Let τ(s) := τE(s) ◦ φ(s) be the Lagrangian description of the chemical. Note that

∇τ(s) = Dφ(s)⊤
(︁
∇τE(s) ◦ φ(s)

)︁
,

which implies

∇τE(s) ◦ φ(s) = Dφ(s)−⊤∇τ(s). (3.11)

Plugging (3.11) into (3.10) yields

∂

∂s

(︂
τ(s) detDφ(s)

)︂
= div

(︂
Wφ(s)∇τ(s) detDφ(s)

)︂
+R

(︁
τ(s)

)︁
detDφ(s), (3.12)

where

Wφ(s) =
(︁
Dφ(s)

)︁−1 (︁
Uφ(s) ◦ φ(s)

)︁
Dφ(s)−⊤. (3.13)

In addition to the partial differential equation (3.12), we assume for simplicity that the

chemical is fully contained in the moving shape, which is enforced by the Neumann boundary

condition, or the natural boundary condition in the language of weak formulation, given by(︁
Uφ(s)∇τE(s)

)︁⊤
n(s) = 0 on ∂φ(s,Ω)

and equivalently (︁
Wφ(s)∇τ(s)

)︁⊤
n(0) = 0 on ∂Ω.
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We adopt a simple bump function as our initial condition, where the bump function is a

compactly supported C1 radial function parametrized by its center c ∈ Rd, radius r > 0,

and height h > 0. Precisely, we let Q : Rd × R>0 × R>0 → L2(Ω) be defined by

Q(θ)(x) = Q(c, r, h)(x) := h

(︃ |x− c|2
r2

− 1

)︃2

1B(c, r)(x), (3.14)

whose graph is shown in Figure 3.14 when d = 2. To keep our discussion in a general

setting, we denote the number of parameters by k, i.e., k = d+ 2 for this particular choice,

and state the initial condition as τ(0) = Q(θ), where Q : Θ ⊂ Rk → L2(Ω) is any specified

mapping.

Figure 3.14: Parametrized initial condition of chemical.

We summarize the strong formulation of chemical propagation on a moving shape as

follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂s
(︁
τ detDφ

)︁
(s) = div

(︂
Wφ(s)∇τ(s) detDφ(s)

)︂
+R(τ(s)) detDφ(s) in (0, t]×Ωo(︁

Wφ(s)∇τ(s)
)︁⊤
n(0) = 0 on [0, t]× ∂Ω

τ(0) = Q(θ) on Ωo

,

where Ωo denotes the interior of a compact set Ω. With additional regularity assumptions,

we will prove in Section 5.2.3 that the weak formulation of this problem has a unique

solution for every φ ∈ C([0, t],Diff pid (R
d)) and θ ∈ Θ.

3.2.3 Atrophy model

In this section, we model the evolution of layered elastic shapes atrophied by an internal

chemical propagation. We have described layered elastic shapes in Section 3.2.1 and chem-

ical propagation on a moving shape in Section 3.2.2. However, one thing is missing: the

cause of a moving shape. We fill this missing link by modeling how the chemical affects
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3.2. Biological Atrophy Modeling

a layered elastic shape and close the loop of chemical propagation, atrophy, and layered

elastic shapes. We illustrate the atrophy model we want to achieve in Figure 3.15. One way

to model the atrophy effect is via a force density induced by the chemical, while another

way is via the action of chemical on a displacement, which is the approach we take. We

remark that the first approach models the effect by a vector field, while the second approach

models the effect by a functional.

t = 0:00 t = 0:20 t = 0:40

t = 0:60 t = 0:80 t = 1:00

Figure 3.15: Illustration of the evolution model of a layered elastic shape atrophied by an
internal chemical propagation.

We now consider a layered elastic shape Ω with a layered structure Φ and an elasticity

tensor EΦ and quantify the effect, or the work done, by a chemical distribution τ within Ω

when a virtual displacement u′ occurs during a time interval ∆t. Assuming ∆t and Du′ are

small, we model the virtual work done upon the shape by(︃∫︂
Ω
α(τ) (−div u′) dx

)︃
∆t, (3.15)

where we have supposed that we are given a function α : R→ R≥0 describing the strength

of atrophy with respect to τ . Thus contributing factors to a greater positive work include

a severer atrophy α(τ), a greater loss of volume −div u′, and a longer time duration ∆t.

Since we assume ∆t is small, in (3.15) we only consider the initial shape Ω and the initial

chemical distribution τ and ignore the shape deformation and chemical propagation in this

small time duration. In addition, since Du′ is small, we use −div u′ to approximate the

volume loss. We provide another two interpretations of this model of work. Note that we

can write (3.15) as(︃∫︂
Ω
α(τ) (−div u′) dx

)︃
∆t =

(︃∫︂
Ω

⟨︁
−α(τ) Id, εu′

⟩︁
F
dx

)︃
∆t,

where εu′ =
1
2

(︁
Du′ + Du′⊤

)︁
is the infinitesimal strain tensor and ⟨A,B⟩F :=

∑︁
i,j aij bij
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is the Frobenius inner product. This form says that the atrophy behaves like a pressure

acting on the infinitesimal strain tensor and further suggests a possible generalization by

considering a more general atrophy tensor than −α(τ) Id. We can also write (3.15) by the

divergence theorem as(︃∫︂
Ω
α(τ) (−div u′) dx

)︃
∆t =

(︃∫︂
Ω
∇
(︁
α(τ)

)︁⊤
u′ dx+

∫︂
∂Ω

(︁
−α(τ)n

)︁⊤
u′ dσ

)︃
∆t, (3.16)

where n is the outward unit normal on ∂Ω. Thus, in terms of force density, the work model

(3.15) is actually equivalent to a force system which is composed of a body force ∇
(︁
α(τ)

)︁
∆t

on Ω and a surface force −α(τ)n ∆t on ∂Ω.

Next we discuss the response of a layered elastic shape to the work done modeled in the

previous paragraph. We assume that the stress is zero in Ω. According to the principle of

minimum potential energy, suppose that the equilibrium is reached after a time duration

∆t, then the true displacement u from the zero-stress state Ω to the equilibrium satisfies

u = argmin
u′ ∈ (H1(Ω))d

(︃
1

2

∫︂
Ω
EΦ(εu′ , εu′) dx−

(︃∫︂
Ω
α(τ) (−div u′) dx

)︃
∆t

)︃
. (3.17)

If ˜︁u is another minimizer, we have the relation ˜︁u = u + w, where Dw⊤ = −Dw [49, page

208]. We can see this problem in a more classical way. From (3.16), the right hand side of

(3.17) can be written as

u = argmin
u′ ∈ (H1(Ω))d

(︃
1

2

∫︂
Ω
EΦ(εu′ , εu′) dx−

(︃∫︂
Ω
∇
(︁
α(τ)

)︁⊤
u′ dx+

∫︂
∂Ω

(︁
−α(τ)n

)︁⊤
u′ dσ

)︃
∆t

)︃
,

which is a pure traction boundary value problem in linear elasticity. This problem has a

solution if and only if the sum of forces and the sum of torques are zero, that is,∫︂
Ω
∇
(︁
α(τ)

)︁
dx+

∫︂
∂Ω

(︁
−α(τ)n

)︁
= 0

and⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∫︂
Ω
∇
(︁
α(τ)

)︁⊤ ⎡⎣ 0 −1
1 0

⎤⎦x dx+

∫︂
∂Ω

(︁
−α(τ)n

)︁⊤ ⎡⎣ 0 −1
1 0

⎤⎦x dx = 0, if d = 2 ;

∫︂
Ω
∇
(︁
α(τ)

)︁
× x dx+

∫︂
∂Ω

(︁
−α(τ)n

)︁
× x dx = 0, if d = 3 .

These two requirements are indeed satisfied, which can be seen coordinate-wise from (3.16)

by taking, for example, u′(x) = (1, 0, 0) and u′(x) = u′(x1, x2, x3) = (0, x3,−x2) for the

first coordinate when d = 3. However, a solution of pure traction problems is not unique

and is up to a displacement w such that Dw⊤ = −Dw. In order to have a unique solution
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3.2. Biological Atrophy Modeling

and, more importantly, to eventually prove the existence of a Diffp-motion, we adopt an

approach similar to the one in [16] by introducing a regularity term and consider

u = argmin
u′ ∈ (Hm(Rd))d

(︃
γ

2
∥u′∥2(Hm(Rd))d +

1

2

∫︂
Ω
EΦ(εu′ , εu′) dx−

(︃∫︂
Ω
α(τ) (−div u′) dx

)︃
∆t

)︃
.

(3.18)

The objective function on the right hand side is strictly convex in u′ and has a unique

minimizer.

A decisive factor in (3.18) is the time duration ∆t to reach an equilibrium. Since the

time scale to reach an elastic equilibrium is much shorter than the time scale of progressive

atrophy over several years, we consider a quasi-steady-state assumption [89]: we assume

that an equilibrium is reached in any infinitesimal time interval. This assumption leads to

du = argmin
u′ ∈ (Hm(Rd))d

(︃
γ

2
∥u′∥2(Hm(Rd))d +

1

2

∫︂
Ω
EΦ(εu′ , εu′) dx−

(︃∫︂
Ω
α(τ) (−div u′) dx

)︃
dt

)︃
.

We also observe that the minimizer du is linear in dt, that is, we can write du = v dt and v

satisfies

v = argmin
u′ ∈ (Hm(Rd))d

(︃
γ

2
∥u′∥2(Hm(Rd))d +

1

2

∫︂
Ω
EΦ(εu′ , εu′) dx−

∫︂
Ω
α(τ) (−div u′) dx

)︃
, (3.19)

which gives the velocity v = du
dt . In deriving (3.19), we remind the reader that we assume

the stress is zero in Ω.

We are in a position to put all the elements in the context of a moving shape. For a

layered elastic shape Ω0 at time 0 with a layered structure Φ, an elasticity tensor EΦ, and
a chemical distribution τ(0) = τE(0), we assume that the stress in Ω0 is zero, then from

(3.19) the deformation at any infinitesimal time dt is given by ξ := id + v dt. At time dt,

our shape becomes ξ(Ω0) with a layered structure ξ ∗Φ (see page 42). We also assume that

the elasticity tensor is changed to Eξ ∗Φ with the same elasticity parameters λtan, µtan, µtsv,

and µang as EΦ. In addition, after the shape attains the equilibrium at time dt, we assume

that the stress is then fully relaxed and ξ(Ω0) becomes a new zero-stress state. Since ξ(Ω0)

has zero stress, its velocity is again determined by (3.19) but with the deformed shape

ξ(Ω0), the updated elasticity tensor Eξ ∗Φ, and the propagated chemical distribution τE(dt)

in Eulerian description. In other words, the velocity at time t should satisfy

v(t) = argmin
u′ ∈ (Hm(Rd))d

(︃
γ

2
∥u′∥2(Hm(Rd))d (3.20)

+
1

2

∫︂
φ(t, Ω0)

Eφ(t) ∗Φ(εu′ , εu′) dx−
∫︂
φ(t, Ω0)

α
(︁
τE(t)

)︁
(−div u′) dx

)︃
.
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We emphasize that the reference shape and the zero-stress state at time t has become

φ(t, Ω0) rather than the initial shape Ω0. We summarize the assumptions we have made

in obtaining (3.20): 1. We model the virtual work by (3.15); 2. We introduce a regularity

term to ensure a unique minimizer in (3.18) and a Diffp-motion; 3. We assume that the

time to reach an elastic equilibrium is arbitrarily small; 4. We assume that the stress in Ω0

is zero and that the equilibrium becomes a new zero-stress state; 5. We assume that the

layered elasticity tensor EΦ after a deformation ξ becomes Eξ ∗Φ. Although the existence

of residual stress in biological tissues is widely known [72, 101, 76, 44, 36], we adopt the

assumption 4 to demonstrate a simplified model as a proof of concept.

We can now give a full statement of the atrophy problem. Suppose that we are given a

layered elastic shape Ω0 with a layered structure Φ and an elasticity tensor EΦ, along with

a target shape Ωtarg. Our problem of atrophy is then stated as

min
θ∈Θ

ρ(φ(T,Ω0), Ωtarg) (3.21)

subject to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(t, x) = x+

∫︂ t

0
v(s, φ(s, x)) ds for all (t, x) ∈ [0, T ]× Rd

v(t) = argmin
v′ ∈V

(︃
γ

2
∥v′∥2V

+
1

2

∫︂
φ(t, Ω0)

Eφ(t) ∗Φ(εv′ , εv′) dx−
∫︂
φ(t, Ω0)

α
(︁
τ(t) ◦ φ(t)−1

)︁
(−div v′) dx

)︃
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂t
(︁
τ detDφ

)︁
(t) = div

(︂
Wφ(t)∇τ(t) detDφ(t)

)︂
+R(τ(t)) detDφ(t) in (0, T ]×Ωo(︁

Wφ(t)∇τ(t)
)︁⊤
n(0) = 0 on [0, T ]× ∂Ω

τ(0) = Q(θ) on Ωo

,

where

Wφ(t) =
(︁
Dφ(t)

)︁−1 (︁
Uφ(t) ◦ φ(t)

)︁
Dφ(t)−⊤

and Uφ(t)(x) is symmetric and positive definite for all x ∈ φ(t, Ω0). We consider a specific

form of the Eulerian diffusion matrix:

Uφ(t) := rtan
(︁
Id −Nφ(t)N

⊤
φ(t)

)︁
+ rtsv Sφ(t) S

⊤
φ(t), (3.22)

where rtan, rtsv > 0 are fixed constants and Nφ(t), Sφ(t) are unit normal and transversal

vector fields on φ(t, Ω0) respectively. Note that if Sφ(t) = Nφ(t), then this form of Uφ(t)

specifies the diffusion speed along the tangential and the normal directions. It is possible to

adopt a more sophisticated form of Uφ(t) that specifies diffusion speeds along the tangential
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and the transversal directions. We use the simple form (3.22) as an approximation.

3.2.4 Numerical results

We examine numerical results of a 2D simulation using synthetic data and a 3D simulation

using real data. Both experiments use V = (H5(Rd))d ↪→ C3
0 (Rd,Rd). The time step size

∆t for the forward Euler method is 0.01. The reaction and atrophy functions we used in the

experiments are shown in Figure 3.16 and defined in Section A.3. Both reaction and atrophy

functions are C2 and compactly supported on [τmin, τmax] = [0.01, 1]. Other parameters will

be mentioned in each experiment.

Figure 3.16: Reaction and atrophy functions.

In our 2D simulation, the initial layered shape is shown in Figure 3.17. We first look at

different chemical propagations and shape evolutions when we vary the parameters c and h

of the initial chemical distribution (see Figure 3.14)

Q(θ)(x) = Q(c, r, h)(x) := h

(︃ |x− c|2
r2

− 1

)︃2

1B(c, r)(x).

Then we let Ωtarg := φθtrue(Ttrue, Ω0) be the target shape with a known ground truth

(θtrue, Ttrue) and plot the objective function J(θ;T ) = J(cx, cy, r, h;T ) := ρ(φθ(T,Ω0), Ωtarg)

using a varifold pseudo-metric (3.5). The parameters for this simulation are as follows: the

kernel width is σV = 0.2, and the regularization weight is γ = 0.01; the elasticity parameters

are µtan = 3, µtsv = 3, and µang = 15; the diffusion speeds are rtan = 0.625 and rtsv = 0.125;

the maximum of reaction and diffusion functions equals to Rmax = αmax = 4; the parameters

of the varifold pseudo-metric are wρ = 1 and σρ = 0.1.

Figure 3.18 presents the chemical propagation and shape evolution when θ = (cx, cy, r, h) =

(0.5, 0, 0.3, 0.2). After t = 1, the shape will remain static since α(τ) = 0 for τ ≥ τmax,

that is, there will be no work done on the shape, hence no deformation. This behavior
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Figure 3.17: Mesh and layers of a simulated shape.

models that an extremely ill shape has no room to be further atrophied. We next see the

results when we vary h in Figure 3.19. Figure 3.19(a) repeats the results in Figure 3.18

when h = 0.2 for comparison. When we decrease h to 0.05 in Figure 3.19(b), the small

amount of initial chemical simply diffuses without causing a visible deformation. When we

increase h to 0.35 in Figure 3.19(c), we have a severer deformation as expected. The effect

of varying r is similar to the result of varying h. We then start the chemical propagation at

different c in Figure 3.20. It is interesting to notice, especially in Figure 3.20(b), that the

shape was neither “moved” nor “rotated,” which could be the consequence of the zero sum

of forces and torques in our model of work. Recall that we did not impose displacement

conditions on the boundary. We can thus imagine that a downward force would send the

shape to negative infinity, which did not happen in Figure 3.20(b).

Next we investigate the possibility to retrieve the ground truth parameter. Figure 3.21

shows the input data for the optimization problem (3.21). Figure 3.21(a) is the same as

Figure 3.17. We let θtrue = (0.5, 0, 0.3, 0.2) and Ttrue = 0.5, whose shape evolution was

presented in Figure 3.18. Figure 3.21(b) shows the extracted top and bottom layers from

φθtrue(Ttrue, Ω0) shown in Figure 3.18. We did not include the side boundary in the data

because the side boundary is usually noisy or even arbitrary in real data due to the shape

acquisition process; we would like to see if the information from top and bottom layers

is sufficient for this kind of thin shapes we are interested in. Within the parameter θtrue,

the center ctrue = (0.5, 0) is what we care about most. Figures 3.22 to 3.24 plot the

objective function J(cx, cy, r, h;T ) with respect to (cx, cy) under various r, h, and T . The

first row of Figures 3.22 and 3.23 shows a roughly constant value ρ(φθ(T,Ω0), Ωtarg) ≈
ρ(Ω0, Ωtarg) due to a small amount of initial chemical and diffusion, similar to the case in

Figure 3.19(b). Except the first row of Figures 3.22 and 3.23, we observe a unique global
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Figure 3.18: Chemical propagation and shape deformations. The color represents the Eule-
rian chemical distribution τE(t). The maximum of τE(0) is 0.2, and the support of reaction
and atrophy functions is [τmin, τmax] = [0.01, 1]. The tangential diffusion speed is five times
than the transversal diffusion speed.
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(a) h = 0.2
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(c) h = 0.35

Figure 3.19: Comparison when we vary the height h of the initial chemical distribution.
The color represents the Eulerian chemical distribution τE(t). The support of reaction and
atrophy functions is [τmin, τmax] = [0.01, 1]. The tangential diffusion speed is five times than
the transversal diffusion speed.
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(c) c = (−2.5,−0.25)
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(d) c = (2.5, 0.3)

Figure 3.20: Comparison when we vary the center c of the initial chemical distribution. The
color represents the Eulerian chemical distribution τE(t). The maximum of τE(0) is 0.2,
and the support of reaction and atrophy functions is [τmin, τmax] = [0.01, 1]. The tangential
diffusion speed is five times than the transversal diffusion speed.
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minimizer around ctrue. Thus we can expect argmin
c

J(c, r, h;T ) ≈ ctrue when r, h, and T

are close to true parameters. However, the optimization problem would be challenging if

we optimize (c, r, h, T ) altogether as we can see from the close objective function values of

those global minimizers.
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(a) Initial shape.
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(b) Top and bottom layers of the target shape.

Figure 3.21: Data for the optimization problem.

In our 3D simulation, we used 3D data derived from the BIOCARD dataset [70], which

is a longitudinal study of Alzheimer’s disease. More precisely, the initial shape shown in

Figure 3.25 was obtained by computing a shape average [65] of scans of the entorhinal cortex

of subjects who were cognitively normal when the MRI scans were acquired. The layered

structure of the initial shape was inferred using the algorithm in [82, 105]. The parameters

of this simulation are as follows: the kernel width is σV = 0.5, and the regularization weight

is γ = 0.01; the elasticity parameters are λtan = 5, µtan = 5, µtsv = 5, and µang = 25; the

diffusion speeds are rtan = 1 and rtsv = 0.2; the maximum of reaction and diffusion functions

equals to Rmax = αmax = 15; the parameters of the varifold pseudo-metric are wρ = 1 and

σρ = 0.1. Following the same process as in the 2D experiment, Figure 3.26 demonstrates

the shape evolution with θ = (cx, cy, cz, r, h) = (0, 4, 0.5, 0.6, 0.2). We then extracted top

and bottom layers from the shape at t = 0.4 in Figure 3.26; the extracted layers for the

optimization problem is shown in Figure 3.27(b). Figure 3.28 plots the objective function

J(cx, cy, cz, rtrue, htrue;Ttrue) evaluated at nodes. The plots of the objective function suggest

that we could have a unique global minimizer around ctrue, although the optimization would

be difficult since the coarse and nonuniform mesh shown in Figure 3.25 implies a rough or

even possibly discontinuous objective function. We also remark that whether propagation

or pure diffusion occurs depends on the fineness of mesh. For example, if the mesh is so

coarse that the support of the initial chemical distribution is totally contained within one

discretized tetrahedron, then we may conclude wrongly that propagation did not happen.

It is important that the mesh size is fine enough with respect to both the expected radius
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3.2. Biological Atrophy Modeling

Figure 3.22: Objective function J(cx, cy, r, h;T ) when h = htrue and T = Ttrue. The true
center is ctrue = (0.5, 0).
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Figure 3.23: Objective function J(cx, cy, r, h;T ) when r = rtrue and T = Ttrue. The true
center is ctrue = (0.5, 0).
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Figure 3.24: Objective function J(cx, cy, r, h;T ) when r = rtrue and h = htrue. The true
center is ctrue = (0.5, 0).
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of the support of the initial chemical distribution and the propagation speed.

Figure 3.25: Entorinal cortex averaged over multiple subjects from the BIOCARD dataset.

Figure 3.26: Simulated chemical propagation and deformations of entorhinal cortex. The
color represents the Eulerian chemical distribution τE(t). The maximum of τE(0) is 0.2,
and the support of reaction and atrophy functions is [τmin, τmax] = [0.01, 1]. The tangential
diffusion speed is five times than the transversal diffusion speed.

3.3 Abstraction of the Two Examples

In this section, we recast our model of deformation vector fields of the two examples into

the abstract formM :
⋃︁
t∈ [0, T ]C([0, t],Diff pid (R

d)) × Y → V . In the next chapter, we will

develop theorems via this abstract form. The existence of minimizers for the minimization

problems in our two examples will then follow as special cases of the theorems.
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3.3. Abstraction of the Two Examples

(a) Initial shape. (b) Top and bottom layers of the target shape.

Figure 3.27: Data for the optimization problem.

Figure 3.28: Objective function values evaluated at nodes. The ground truth ctrue =
(0, 4, 0.5) is between the third the the fourth layer.

3.3.1 Piecewise-rigid motion

We recall from (3.4) that the model of deformation vector fields in this example is given by

MR(φ [0, t], θ(t)) := argmin
v ∈V

(︃
γ

2
∥v∥2V +

1

2

N∑︂
i=1

∫︂
φ(t, Ωi)

|v − V θi(t)|2 dx
)︃
. (3.23)

Note that the model (3.23) can also be written as

MR(φ [0, t], θ(t)) = argmin
v ∈V

(︃
γ

2
∥v∥2V +

1

2

∫︂
φ(t, Ω0)

|v|2 dx−
N∑︂
i=1

∫︂
φ(t, Ωi)

(V θi(t))⊤v dx
)︃
.

For technical reasons (see page 114), let Ω∗ ⊂ Rd be a fixed ball centered at the origin with

a very large radius, and let χ : Rd → [0, 1] be a C∞ cutoff function of compact support

such that χ Ω∗ ≡ 1. With the integrand of the last term multiplied by χ, using the same
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notation, we instead consider

MR(φ [0, t], θ(t)) = argmin
v ∈V

(︃
γ

2
∥v∥2V +

1

2

∫︂
φ(t, Ω0)

|v|2 dx−
N∑︂
i=1

∫︂
φ(t, Ωi)

χ (V θi(t))⊤v dx
)︃

=: argmin
v ∈V

(︂ γ
2
∥v∥2V +

1

2
(A t

φ v | v)− (β tφ, θ(t) | v)
)︂
, (3.24)

where A t
φ ∈ L (V, V ∗) and β tφ, θ(t) ∈ V ∗. The peculiar notation A t

φ and β tφ, θ(t) will be

explained in Section 4.1. We notice that (A t
φ v | v) ≥ 0 for all v ∈ V . Let k = Nd(d+1)

2 be

the total number of parameters as before. The problem of this example can then be stated

as

min
θ∈L2([0, T ],Rk)

(︃
1

2

∫︂ T

0

(︂
∥v(t)∥2V + |θ(t)|2

)︂
dt+ ρ(φ(T,Ω0), Ωtarg)

)︃
(3.25)

subject to

φ(t, x) = x+

∫︂ t

0
MR(φ [0, s], θ(s))(φ(s, x)) ds for all (t, x) ∈ [0, T ]× Rd.

3.3.2 Biological atrophy modeling

We recall from (3.21) that our problem is stated as

min
θ∈Θ

ρ(φ(T,Ω0), Ωtarg)

subject to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(t, x) = x+

∫︂ t

0
v(s, φ(s, x)) ds for all (t, x) ∈ [0, T ]× Rd

v(t) = argmin
v′ ∈V

(︃
γ

2
∥v′∥2V

+
1

2

∫︂
φ(t, Ω0)

Eφ(t) ∗Φ(εv′ , εv′) dx−
∫︂
φ(t, Ω0)

α
(︁
τ(t) ◦ φ(t)−1

)︁
(−div v′) dx

)︃
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂t
(︁
τ detDφ

)︁
(t) = div

(︂
Wφ(t)∇τ(t) detDφ(t)

)︂
+R(τ(t)) detDφ(t) in (0, T ]×Ωo(︁

Wφ(t)∇τ(t)
)︁⊤
n(0) = 0 on [0, T ]× ∂Ω

τ(0) = Q(θ) on Ωo

,

where

Wφ(t) =
(︁
Dφ(t)

)︁−1 (︁
Uφ(t) ◦ φ(t)

)︁
Dφ(t)−⊤

and

Uφ(t) := rtan
(︁
Id −Nφ(t)N

⊤
φ(t)

)︁
+ rtsv Sφ(t) S

⊤
φ(t).
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For the same technical reasons (see page 114) as the problem of piecewise-rigid motions,

we let Ω∗ ⊂ Rd be a fixed ball centered at the origin with a very large radius, and let

χ : Rd → [0, 1] be a C∞ cutoff function of compact support such that χ Ω∗ ≡ 1. We then

define our model of deformation vector fields as

MA(φ [0, t], θ) := argmin
v ∈V

(︂ γ
2
∥v∥2V +

1

2
(A t

φ v | v)− (β tφ, θ | v)
)︂
, (3.26)

where

(A t
φ v | v) :=

∫︂
φ(t, Ω0)

Eφ(t) ∗Φ(εv, εv) dx

and

(β tφ, θ | v) :=
∫︂
φ(t, Ω0)

χ α
(︁
τ(t) ◦ φ(t)−1

)︁
(−div v) dx. (3.27)

Since an elasticity tensor is positive definite almost everywhere, we have (A t
φ v | v) ≥ 0 for

all v ∈ V . We recall our framework of interpretable deformation vector fields

v(t) =M(φ [0, t], θ(t)). (2.9)

In our atrophy model MA (3.26), we identify θ ∈ Rk with a constant function, thus this

framework (2.9) still applies. In summary, let Θ ⊂ Rk be a compact set. Our atrophy

problem is written as

min
θ∈Θ

ρ(φ(T,Ω0), Ωtarg)

subject to

φ(t, x) = x+

∫︂ t

0
MA(φ [0, s], θ)(φ(s, x)) ds for all (t, x) ∈ [0, T ]× Rd.
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Core Theorems

We develop sufficient conditions for the existence of minimizers of the problem

min
θ∈Θ

(︃∫︂ T

0
Λ(φ(t), θ(t)) dt+ ρ(φ(T,Ω0), Ωtarg)

)︃
subject to

φ(t, x) = x+

∫︂ t

0
M(φ [0, s], θ(s))(φ(s, x)) ds for all (t, x) ∈ [0, T ]× Rd.

We collect statements and remarks of our theorems in Section 4.1 to conduct our train of

thought. Then we prepare a necessary technicality, Faà di Bruno’s formula, in Section 4.2.

It would be a good time to recall properties of the Bochner integral in Section 2.2 before

reading Section 4.3. After those preparations, we will be ready to prove our theorems

in Section 4.3. We assume that V is a separable Hilbert space continuously embedded in

Cp+1
0 (Rd,Rd) throughout this chapter (see Section 2.4.2 for the existence of V ). In addition,

it would be helpful to keep in mind our notation of hierarchical time intervals: we will use

t ∈ [0, T ], s ∈ [0, t], and s′ ∈ [0, s].

4.1 Statements

Theorem 4.1.1. LetM :
⋃︁
t∈ [0, T ]C([0, t],Diff pid (R

d))×Y → V be a model of deformation

vector fields. Given θ : [0, T ]→ Y defined almost everywhere, denote the deformation vector

field associated to φ ∈ C([0, t],Diff pid (R
d)), t ≤ T , by

vφ(s) :=M(φ [0, s], θ(s)).
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We consider the initial value problem

φ(t, x) = x+

∫︂ t

0
vφ(s, φ(s, x)) ds for all x ∈ Rd. (4.1)

Suppose that vφ : [0, t]→ V is strongly measurable for all φ ∈ C([0, t],Diff pid (R
d)). Moreover,

suppose that φ ↦→ vφ is locally Lipschitz in the sense that given a fixed φ ∈ C([0, T ],Diff pid (R
d)),

there exist r(φ) > 0 and fφ ∈ L1([0, T ]) such that

∥vφ(s)− vψ(s)∥V ≤ fφ(s) sup
s′ ∈ [0, s]

∥φ(s′)− ψ(s′)∥p,∞

for all φ,ψ ∈ C([0, t],Diff pid (R
d)) with sup

s∈ [0, t]
∥φ(s) − φ(s)∥p,∞ ≤ r and sup

s∈ [0, t]
∥ψ(s) −

φ(s)∥p,∞ ≤ r and for almost every s ∈ [0, t].

(i) If there exists g ∈ L1([0, T ]) such that the deformation vector field satisfies

∥vφ(s)∥V ≤ g(s)
(︂
1 + sup

s′ ∈ [0, s]
∥φ(s′)− id∥p,∞

)︂
(4.2)

for all φ ∈ C([0, t],Diff pid (R
d)) and for almost every s ∈ [0, t], then the initial value

problem (4.1) has a unique maximal solution either in C([0, T ′),Diff pid (R
d)) for some

T ′ ≤ T or in C([0, T ],Diff pid (R
d)).

(ii) If there exists g ∈ L1([0, T ]) such that the deformation vector field satisfies

∥vφ(s)∥V ≤ g(s)
(︂
1 + sup

s′ ∈ [0, s]
∥φ(s′)− id∥∞

)︂
(4.3)

for all φ ∈ C([0, t],Diff pid (R
d)) and for almost every s ∈ [0, t], then the initial value

problem (4.1) has a unique solution in C([0, T ],Diff pid (R
d)).

(See the proof on page 75.)

Remark 4.1.2. Although there is no explicit restriction on θ : [0, T ] → Y , an implicit

restriction comes from the integrability of fφ and g, which may depend on θ. For example,

if g(s) = ∥θ(s)∥Y , then θ has to be (Bochner) integrable. We also remark that vφ only

needs to be defined almost everywhere, so a θ defined almost everywhere is valid.

Remark 4.1.3. It is clear that fφ and g are positive almost everywhere.

We require a regularity assumption, appearing in the next proposition, on the discrep-

ancy function ρ. To this end, we define a seminorm on a compact set Ω ⊂ Rd by

∥v∥Ωp,∞ :=

p∑︂
j=0

max
x∈Ω

|Djv(x)|.
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We remind the reader that a shape Ω ∈ S is a compact subset of Rd (see (2.1)). We also

recall that ξ(S ) ⊂ S for all ξ ∈ Diff pid (R
d).

Definition 4.1.4. We say that a discrepancy function ρ : S × S → R≥0 is continuous

with respect to ∥ ·∥p,∞ if for all Ω,Ω′ ∈ S and all sequences (ξn)
∞
n=1 ⊂ Diff pid (R

d) such that

∥ξn − ξ∥Ωp,∞ → 0 for some ξ ∈ Diff pid (R
d), one has

ρ(ξn(Ω), Ω′)→ ρ(ξ(Ω), Ω′).

In addition, we use the following terminology to simplify the statement in the next

proposition, and more importantly, to emphasize conditions that are solely affected by the

choice of Θ andM.

Definition 4.1.5. Let Θ be a weakly closed subset of a reflexive Banach space andM be

a model of deformation vector fields. We say that Θ andM are compatible if:

• For all θ ∈ Θ, the initial value problem (4.1) has a unique solution in C([0, T ],Diff pid (R
d)).

• For all Ω ∈ S and for all sequence (θn)
∞
n=1 ⊂ Θ such that θn ⇀ θ, we have

∥φθn(t)− φθ(t)∥Ωp,∞ → 0 for all t ∈ [0, T ],

where φθn and φθ are the unique solutions of θn and θ respectively.

We recall that a function f : X → R defined on a normed vector space X is called

coercive if f(x)→ +∞ when ∥x∥X →∞.

Proposition 4.1.6. Let Θ be a weakly closed subset of a reflexive Banach space and M
be a model of deformation vector fields. Suppose that Θ and M are compatible. Given

Ω0, Ωtarg ∈ S , we denote the unique solution to the initial value problem (4.1) corresponding

to θ ∈ Θ by φθ and consider the minimization problem

min
θ∈Θ

(︃∫︂ T

0
Λ(φθ(t), θ(t)) dt+ ρ(φθ(T,Ω0), Ωtarg)

)︃
. (4.4)

Assume that:

(1) Either the objective function is coercive or Θ is bounded.

(2) The function θ ↦→
∫︁ T
0 Λ(φθ(t), θ(t)) dt is weakly sequentially lower semicontinuous.

(3) The discrepancy function ρ is continuous with respect to ∥ · ∥p,∞.

Then the minimization problem (4.4) has a minimizer.
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(See the proof on page 82.)

Remark 4.1.7. The reader may recognize the program of the direct method of calculus of

variations in the above proposition.

Remark 4.1.8. The condition on Θ can be relaxed to a weakly sequentially closed subset

of a vector space which is the dual of a Banach space. In practice, Θ is usually a strongly

closed ball in a Hilbert space, even the whole Hilbert space, or a closed subset of a finite-

dimensional vector space.

Remark 4.1.9. It can be shown that varifold pseudo-metrics, the discrepancy functions we

used in Chapter 3, are continuous with respect to ∥·∥p,∞, p ≥ 1 [26, Proposition 6]. Another

example of discrepancy function is the volume of the symmetric difference between two sets,

i.e., ρ(Ω,Ω′) := wρ vol(Ω△Ω′), which is continuous with respect to ∥·∥p,∞, p ≥ 0. However,

the volume of a symmetric difference is less attractive from the computational viewpoint: it

is not trivial to compute the volume of a symmetric difference accurately, not to mention that

the volume of a symmetric difference is not differentiable with respect to discretized nodes,

whereas function values and gradients are driving forces in most minimization procedures.

The above-mentioned discrepancy functions do not require a point-to-point correspondence

between two shapes. If there is a point-to-point correspondence within a subclass of shapes,

for example, a class of parametrized shapes {Ωα = fα(Ψ) : fα is one-to-one and onto} ⊂ S

on a fixed Ψ ⊂ Rd, then, restricted to the subclass, we can consider ρ(Ωα, Ωβ) := wρ
∫︁
Ψ |fα−

fβ|2 dx, which is an analogue of the ℓ2-distance of discretized points. This discrepancy

function is continuous with respect to ∥ · ∥p,∞, p ≥ 0.

Now we focus on sufficient conditions on M such that Θ and M are compatible. To

state the theorem, we define

B(id , r) := {ξ ∈ Diff pid (R
d) : ∥ξ − id∥p,∞ ≤ r and ∥ξ−1 − id∥p,∞ ≤ r}.

Note that B(id , r) is a subset of Diff pid (R
d), which we equip with the metric dp,∞(ξ, η) =

∥ξ − η∥p,∞. On the other hand, if we equip Diff pid (R
d) with a different metric dp,∞(ξ, η) :=

max{∥ξ − η∥p,∞, ∥ξ−1 − η−1∥p,∞}, then B(id , r) can be interpreted as a closed ball of

Diff pid (R
d), as our notation suggests. This notation will not lead to confusion because

dp,∞ and dp,∞ generate the same topology on Diff pid (R
d). Indeed, it is clear that id :

(Diff pid (R
d), dp,∞) → (Diff pid (R

d), dp,∞) is continuous. It can also be shown that ξ ↦→
ξ−1 is continuous from (Diff pid (R

d), dp,∞) to (Diff pid (R
d), dp,∞), which implies that id :

(Diff pid (R
d), dp,∞) → (Diff pid (R

d), dp,∞) is continuous. Since dp,∞ and dp,∞ generate the
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same topology on Diff pid (R
d), the meaning of C([0, t],B(id , r)) in the following theorem is

unambiguous.

Theorem 4.1.10. Let Θ be a weakly closed subset of a reflexive Banach space B and M
be a model of deformation vector fields. For all Ω ∈ S , suppose that:

• The mapping s ↦→ M(φ [0, s], θ(s)) is strongly measurable for all φ ∈ C([0, t],Diff pid (R
d))

and θ ∈ Θ.

• The model is bounded:

For all θ ∈ Θ, there exists fθ ∈ L2([0, T ]) such that

∥M(φ [0, s], θ(s))∥V ≤ fθ(s)
(︂
1 + sup

s′ ∈ [0, s]
∥φ(s′)− id∥∞

)︂
for all φ ∈ C([0, t],Diff pid (R

d)) and for almost every s ∈ [0, t]. Moreover, for all m > 0,

there exists a constant Fm > 0 such that ∥θ∥B ≤ m implies ∥fθ∥L2 ≤ Fm.

• The model is Lipschitz in φ:

For all r > 0 and θ ∈ Θ, there exists gr,θ ∈ L2([0, T ]) such that

∥M(φ [0, s], θ(s))−M(ψ [0, s], θ(s))∥V ≤ gr,θ(s) sup
s′ ∈ [0, s]

∥φ(s′)− ψ(s′)∥Ωp,∞

for all φ,ψ ∈ C([0, t],B(id , r)) and for almost every s ∈ [0, t]. Moreover, for all m > 0,

there exists a constant Gr,m > 0 such that ∥θ∥B ≤ m implies ∥gr,θ∥L2 ≤ Gr,m.

• The model is continuous in θ:

If (θn)
∞
n=1 ⊂ Θ and θn ⇀ θ, then for 0 ≤ j ≤ p∫︂ t

0
Dj
(︂
M(φ [0, s], θn(s))(φ(s, x))

)︂
ds→

∫︂ t

0
Dj
(︂
M(φ [0, s], θ(s))(φ(s, x))

)︂
ds

for all φ ∈ C([0, T ],Diff pid (R
d)), t ∈ [0, T ], and x ∈ Ω.

Then Θ andM are compatible.

(See the proof on page 84.)

Remark 4.1.11. The last assumption, the continuity of the model in θ, appears really raw,

and it is; this is exactly one step in the proof. It is the weak condition θn ⇀ θ that prevents

us from modifying this form. There are two “simple” situations in which this assumption

may hold. The first one is that

θ′ ↦→
∫︂ t

0
Dj
(︂
M(φ [0, s], θ

′(s))(φ(s, x))
)︂
ds
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is bounded and linear, and the second one is that Θ is in a finite-dimensional vector space.

Our two examples represent these two cases. This assumption is a challenge that strictly

restricts models we can validate.

Denote by KV the inverse of the duality map of the Hilbert space V , i.e., (K−1
V v |

v) = ∥v∥2V and ∥K−1
V v∥V ∗ = ∥v∥V . We further consider models of deformation vector fields

taking the form

M(φ [0, t], θ(t)) = (γK−1
V +A t

φ)
−1 β tφ, θ(t). (4.5)

This form is in the following setting. The bounded linear operator A t
φ ∈ L (V, V ∗) depends

on φ “up to” time t (the notation Aφ [0,t]
is too cumbersome) and is nonnegative in the

sense that (A t
φ v | v) ≥ 0 for all v ∈ V . The linear functional β tφ, θ(t) ∈ V ∗ depends on both

φ [0, t] and θ(t). This form of model usually comes from a regularized energy since

M(φ [0, t], θ(t)) = (γK−1
V +A t

φ)
−1 β tφ, θ(t)

= argmin
v ∈V

(︃
γ

2
∥v∥2V +

1

2
(A t

φ v | v)− (β tφ, θ(t) | v)
)︃
.

Thus this form will be referred to as the energy form. Notice that the models of our two

examples in the previous chapter are of the energy form (see (3.24) and (3.26)). Theo-

rem 4.1.10 immediately gives sufficient conditions on the operators A t
φ and β tφ, θ(t).

Corollary 4.1.12. Let Θ be a weakly closed subset of a reflexive Banach space B. Suppose

that the model of deformation vector fields M is of the energy form (4.5). For all Ω ∈ S ,

we also suppose that:

• The mapping s ↦→ A s
φ is in C([0, t],L (V, V ∗)) for all φ ∈ C([0, t],Diff pid (R

d)). The

mapping s ↦→ (β sφ, θ(s) | v) is Lebesgue measurable for all φ ∈ C([0, t],Diff pid (R
d)), θ ∈ Θ,

and v ∈ V .

• For all θ ∈ Θ, there exists fθ ∈ L2([0, T ]) such that

∥β sφ, θ(s)∥V ∗ ≤ fθ(s)
(︂
1 + sup

s′ ∈ [0, s]
∥φ(s′)− id∥∞

)︂
for all φ ∈ C([0, t],Diff pid (R

d)) and for almost every s ∈ [0, t]. Moreover, for all m > 0,

there exists a constant Fm > 0 such that ∥θ∥B ≤ m implies ∥fθ∥L2 ≤ Fm.

• For all r > 0 and θ ∈ Θ, there exist ℓr > 0 and gr,θ ∈ L2([0, T ]) such that

∥A s
φ −A s

ψ∥L (V, V ∗) ≤ ℓr sup
s′ ∈ [0, s]

∥φ(s′)− ψ(s′)∥Ωp,∞
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and that

∥β sφ, θ(s) − β sψ, θ(s)∥V ∗ ≤ gr,θ(s) sup
s′ ∈ [0, s]

∥φ(s′)− ψ(s′)∥Ωp,∞

for all φ,ψ ∈ C([0, t],B(id , r)) and for almost every s ∈ [0, t]. Moreover, for all m > 0,

there exists a constant Gr,m > 0 such that ∥θ∥B ≤ m implies ∥gr,θ∥L2 ≤ Gr,m.

• If (θn)
∞
n=1 ⊂ Θ and θn ⇀ θ, then for 0 ≤ j ≤ p∫︂ t

0
Dj
(︂
M(φ [0, s], θn(s))(φ(s, x))

)︂
ds→

∫︂ t

0
Dj
(︂
M(φ [0, s], θ(s))(φ(s, x))

)︂
ds

for all φ ∈ C([0, T ],Diff pid (R
d)), t ∈ [0, T ], and x ∈ Ω.

Then Θ andM are compatible.

(See the proof on page 89.)

The lemma below will be especially useful when we work on the energy form (4.5). We

will also need it later in Chapter 5.

Lemma 4.1.13. For every nonnegative L ∈ L (V, V ∗), i.e., (Lv | v) ≥ 0 for all v ∈ V , we

have (γK−1
V + L)−1 ∈ L (V ∗, V ) and⃦⃦

(γK−1
V + L)−1

⃦⃦
L (V ∗,V )

≤ 1

γ
.

(See the proof on page 88.)

4.2 Faà di Bruno’s formula

We now derive a version of Faà di Bruno’s formula, an expression of Dp(v ◦ φ) (see also

[104, Section 7.1] and [55]), in order to estimate ∥v ◦ φ∥p,∞ and ∥v ◦ φ − v ◦ ψ∥p,∞. Only

Lemma 4.2.1 and Corollary 4.2.4 in this section will be used later. The reader may skip

this section if he or she is willing to accept Lemma 4.2.1 and Corollary 4.2.4.

We first brute-force expand Dp(v ◦ φ) for small p. In the following, h1, h2, and h3 are

arbitrary vectors in Rd. The first derivative is given by the chain rule:(︂
D(v ◦ φ)(x)

)︂
(h1) =

(︂
Dv
(︁
φ(x)

)︁)︂(︁
Dφ(x)h1

)︁
.

We use the product rule for the second derivative(︂
D2(v ◦ φ)(x)

)︂
(h1, h2) =

(︂
D2v

(︁
φ(x)

)︁)︂(︁
Dφ(x)h1, Dφ(x)h2

)︁
+
(︂
Dv
(︁
φ(x)

)︁)︂(︁
D2φ(x)(h1, h2)

)︁
,
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and the third derivative(︂
D3(v ◦ φ)(x)

)︂
(h1, h2, h3) =

(︂
D3v

(︁
φ(x)

)︁)︂(︁
Dφ(x)h1, Dφ(x)h2, Dφ(x)h3

)︁
+
(︂
D2v

(︁
φ(x)

)︁)︂(︁
D2φ(x)(h1, h3), Dφ(x)h2

)︁
+
(︂
D2v

(︁
φ(x)

)︁)︂(︁
Dφ(x)h1, D

2φ(x)(h2, h3)
)︁

+
(︂
D2v

(︁
φ(x)

)︁)︂(︁
D2φ(x)(h1, h2), Dφ(x)h3

)︁
+
(︂
Dv
(︁
φ(x)

)︁)︂(︁
D3φ(x)(h1, h2, h3)

)︁
.

For higher order derivatives, we shall use the multi-index notation and a little combinatorics.

Let α := (α1, . . . , αq) be a q-tuple. We define |α| := |α1|+ · · ·+ |αq| and

D|α|φ(x)hα := D|α|φ(x)(hα1 , . . . , hαq).

Furthermore, we denote by P(p, k) the collection of partitions of {1, . . . , p} into k nonempty

unlabeled groups. Using the multi-index notation, we can write, for example,

P(4, 2) =
{︂(︁

(1), (2, 3, 4)
)︁
,
(︁
(2), (1, 3, 4)

)︁
,
(︁
(3), (1, 2, 4)

)︁
,
(︁
(4), (1, 2, 3)

)︁
,(︁

(1, 2), (3, 4)
)︁
,
(︁
(1, 3), (2, 4)

)︁
,
(︁
(1, 4), (2, 3)

)︁}︂
,

where each partition is a 2-tuple formed by 2 multi-indices. We form partitions by ordered

tuples rather than unordered sets to avoid ambiguity in the following formula. Note that the

number of partitions is given by the Stirling number of the second kind, i.e., |P(p, k)| =
{︁
p
k

}︁
.

These notations enable us to derive higher order derivatives.

Lemma 4.2.1 (Faà di Bruno’s formula). Let v ∈ Cp(Rd,Rd) and φ ∈ Cp(Rd,Rd), then(︂
Dp(v ◦ φ)(x)

)︂
(h1, . . . , hp)

=

p∑︂
k=1

∑︂
(I1,...,Ik)∈P(p, k)

(︂
Dkv

(︁
φ(x)

)︁)︂(︁
D|I1|φ(x)hI1 , . . . , D

|Ik|φ(x)hIk
)︁
.

Proof. We have proved the cases when p = 1, 2, 3. We prove the general case p ∈ N by

induction. Observe that a partition in P(p+1, k) can be formed in two ways depending on

if p+ 1 is a singleton in the partition. If p+ 1 is a singleton, the partition is of the form(︁
I1, . . . , Ik−1, (p+ 1)

)︁
, (I1, . . . , Ik−1) ∈ P(p, k − 1);

if p+ 1 is not a singleton, the partition is of the form(︁
I1, . . . , Ii−1, (Ii, p+ 1), Ii+1, . . . , Ik

)︁
, (I1, . . . , Ik) ∈ P(p, k).
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We let P(p, 0) = ∅ so that the observation also holds for k = 1. This observation and the

induction hypothesis then yield(︂
Dp+1(v ◦ φ)(x)

)︂
(h1, . . . , hp, hp+1)

=

p∑︂
k=1

∑︂
(I1,...,Ik)∈P(p, k)

(︄(︂
Dk+1v

(︁
φ(x)

)︁)︂(︁
D|I1|φ(x)hI1 , . . . , D

|Ik|φ(x)hIk , Dφ(x)hp+1

)︁
+
(︂
Dkv

(︁
φ(x)

)︁)︂(︁
D|I1|+1φ(x)(hI1 , hp+1), . . . , D

|Ik|φ(x)hIk
)︁

+ · · ·

+
(︂
Dkv

(︁
φ(x)

)︁)︂(︁
D|I1|φ(x)hI1 , . . . , D

|Ik|+1φ(x)(hIk , hp+1)
)︁)︄

=
(︂
Dp+1v

(︁
φ(x)

)︁)︂(︁
Dφ(x)h1, . . . , Dφ(x)hp+1

)︁
+

p∑︂
k=1

(︄ ∑︂
(I1,...,Ik−1)∈P(p, k−1)

(︂
Dkv

(︁
φ(x)

)︁)︂(︁
D|I1|φ(x)hI1 , . . . , D

|Ik−1|φ(x)hIk−1
, Dφ(x)hp+1

)︁
+

∑︂
(I1,...,Ik)∈P(p, k)

(︄(︂
Dkv

(︁
φ(x)

)︁)︂(︁
D|I1|+1φ(x)(hI1 , hp+1), . . . , D

|Ik|φ(x)hIk
)︁

+ · · ·

+
(︂
Dkv

(︁
φ(x)

)︁)︂(︁
D|I1|φ(x)hI1 , . . . , D

|Ik|+1φ(x)(hIk , hp+1)
)︁)︄)︄

=
(︂
Dp+1v

(︁
φ(x)

)︁)︂(︁
Dφ(x)h1, . . . , Dφ(x)hp+1

)︁
+

p∑︂
k=1

∑︂
(I1,...,Ik)∈P(p+1, k)

(︂
Dkv

(︁
φ(x)

)︁)︂(︁
D|I1|φ(x)hI1 , . . . , D

|Ik|φ(x)hIk
)︁

=

p+1∑︂
k=1

∑︂
(I1,...,Ik)∈P(p+1, k)

(︂
Dkv

(︁
φ(x)

)︁)︂(︁
D|I1|φ(x)hI1 , . . . , D

|Ik|φ(x)hIk
)︁
,

which completes the proof.

Since |φ(x)| → ∞ as |x| → ∞ for φ ∈ id + Cp0 (Rd,Rd), the above lemma immediately

gives us v ◦ φ ∈ Cp0 (Rd,Rd) and the following estimate of ∥v ◦ φ∥p,∞.

Corollary 4.2.2. Let v ∈ Cp0 (Rd,Rd) and φ ∈ id + Cp0 (Rd,Rd), then v ◦ φ ∈ Cp0 (Rd,Rd)
and

∥v ◦ φ∥p,∞ ≤
(︄
1 +

p∑︂
n=1

n∑︂
k=1

{︃
n

k

}︃
(1 + ∥φ− id∥p,∞)k

)︄
∥v∥p,∞,
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where
{︁
n
k

}︁
= |P(n, k)| is the Stirling number of the second kind.

To estimate ∥v ◦ φ− v ◦ ψ∥p,∞, we first observe the case when p = 1:

∥v ◦ φ− v ◦ ψ∥1,∞ = ∥v ◦ φ− v ◦ ψ∥∞ + ∥(Dv ◦ φ)Dφ− (Dv ◦ ψ)Dψ∥∞
≤ ∥v ◦ φ− v ◦ ψ∥∞ + ∥(Dv ◦ φ)Dφ− (Dv ◦ ψ)Dφ∥∞

+ ∥(Dv ◦ ψ)Dφ− (Dv ◦ ψ)Dψ∥∞
≤ ∥Dv∥∞ ∥φ− ψ∥∞ + ∥D2v∥∞ ∥φ− ψ∥∞ ∥Dφ∥∞

+ ∥Dv∥∞ ∥Dφ−Dψ∥∞
≤ ∥v∥2,∞ ∥φ− ψ∥1,∞ (3 + ∥φ− id∥1,∞).

With the expression of Dp(v ◦ φ)(x) given by Lemma 4.2.1, we can generalize the above

procedure to higher orders.

Corollary 4.2.3. Let v ∈ Cp+1
0 (Rd,Rd) and φ,ψ ∈ id + Cp0 (Rd,Rd), then

∥v ◦ φ− v ◦ ψ∥p,∞

≤
(︄
1 +

p∑︂
n=1

n∑︂
k=1

{︃
n

k

}︃(︄
(1 + ∥φ− id∥p,∞)k

+

k−1∑︂
i=0

(1 + ∥φ− id∥p,∞)k−1−i (1 + ∥ψ − id∥p,∞)i

)︄)︄
∥v∥p+1,∞ ∥φ− ψ∥p,∞,

where
{︁
n
k

}︁
= |P(n, k)| is the Stirling number of the second kind.

The takeaway of Corollaries 4.2.2 and 4.2.3 is that

∥v ◦ φ∥p,∞ ≤ q(∥φ− id∥p,∞) ∥v∥p,∞

and

∥v ◦ φ− v ◦ ψ∥p,∞ ≤ q′(∥φ− id∥p,∞, ∥ψ − id∥p,∞) ∥v∥p+1,∞ ∥φ− ψ∥p,∞,

where q and q′ are polynomials of degree p. We will only use the following form of Corol-

laries 4.2.2 and 4.2.3.

Corollary 4.2.4. Let v ∈ Cp+1
0 (Rd,Rd) and φ,ψ ∈ id + Cp0 (Rd,Rd). If ∥φ − id∥p,∞ ≤ r

and ∥ψ − id∥p,∞ ≤ r, then
∥v ◦ φ∥p,∞ ≤ Cr ∥v∥p,∞

and

∥v ◦ φ− v ◦ ψ∥p,∞ ≤ C ′
r ∥v∥p+1,∞ ∥φ− ψ∥p,∞,
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where Cr and C ′
r only depend on r for a fixed p.

4.3 Proofs

We first prove the following technical lemmas related to the strong measurability.

Lemma 4.3.1. Suppose that v : [0, T ] → Cp+1
0 (Rd,Rd) is strongly measurable. If φ ∈

C([0, T ], id+Cp0 (Rd,Rd)), then t ↦→ v(t)◦φ(t) is strongly measurable from [0, T ] to Cp0 (Rd,Rd).

Proof. Since v is strongly measurable, there is a sequence of simple functions vn : [0, T ]→
Cp+1
0 (Rd,Rd) that converges to v at almost every t ∈ [0, T ]. On the other hand, since

φ is uniformly continuous on [0, T ], we can construct a sequence of simple functions φn :

[0, T ] → id + Cp0 (Rd,Rd) that converges to φ uniformly, for example, define the value of a

simple function on an interval [kδ, (k + 1) δ] by the value φ(kδ) at the left endpoint. Note

that t ↦→ vn(t) ◦ φn(t) is a simple function from [0, T ] to Cp0 (Rd,Rd). Now we show that

vn(t) ◦ φn(t) converges to v(t) ◦ φ(t) for almost every t ∈ [0, T ]. The uniform convergence

of φn to φ implies for every t ∈ [0, T ] and n large enough

∥φn(t)− id∥p,∞ ≤ ∥φ(t)− id∥p,∞ + 1 ≤ sup
t∈ [0, T ]

∥φ(t)− id∥p,∞ + 1 =: r.

It follows from Corollary 4.2.4 that

∥vn(t) ◦ φn(t)− v(t) ◦ φ(t)∥p,∞
≤ ∥vn(t) ◦ φn(t)− v(t) ◦ φn(t)∥p,∞ + ∥v(t) ◦ φn(t)− v(t) ◦ φ(t)∥p,∞
≤ Cr ∥vn(t)− v(t)∥p,∞ + C ′

r ∥v(t)∥p+1,∞ ∥φn(t)− φ(t)∥p,∞ → 0

for almost every t ∈ [0, T ].

Lemma 4.3.2. Let B and B′ be Banach spaces, and let F ∈ C([0, T ],L (B,B′)). If v :

[0, T ] → B is strongly measurable, then t ↦→ F (t) v(t) is strongly measurable from [0, T ] to

B′.

The proof is exactly the same as the proof in the previous lemma by replacing (φn)
∞
n=1

with a sequence of simple functions (Fn)
∞
n=1 that converges to F uniformly. We leave details

to the reader. Finally, Pettis’ theorem (Theorem 2.2.3) immediately gives the following

lemma.

Lemma 4.3.3. Let B be a separable and reflexive Banach space. Given µ : [0, T ]→ B∗, if

t ↦→ (µ(t) | b) is Lebesgue measurable for all b ∈ B, then µ is strongly measurable.
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The estimates in Corollary 4.2.4 will be used frequently in the proofs without further

reference to. We also recall that V ↪→ Cp+1
0 (Rd,Rd), thus there exists cV > 0 such that

∥v∥p+1,∞ ≤ cV ∥v∥V . We remind the reader that the value of generic constants Ca may

change from equation to equation.

Some of our proofs are modularized by multiple claims. In this case, the end of the

proof of a claim will be marked by , while the end of the whole proof will be indicated

by the symbol □ as usual.

Now we start the proof of the existence and uniqueness of solutions.

Theorem 4.1.1. LetM :
⋃︁
t∈ [0, T ]C([0, t],Diff pid (R

d))×Y → V be a model of deformation

vector fields. Given θ : [0, T ]→ Y defined almost everywhere, denote the deformation vector

field associated to φ ∈ C([0, t],Diff pid (R
d)), t ≤ T , by

vφ(s) :=M(φ [0, s], θ(s)).

We consider the initial value problem

φ(t, x) = x+

∫︂ t

0
vφ(s, φ(s, x)) ds for all x ∈ Rd. (4.1)

Suppose that vφ : [0, t]→ V is strongly measurable for all φ ∈ C([0, t],Diff pid (R
d)). Moreover,

suppose that φ ↦→ vφ is locally Lipschitz in the sense that given a fixed φ ∈ C([0, T ],Diff pid (R
d)),

there exist r(φ) > 0 and fφ ∈ L1([0, T ]) such that

∥vφ(s)− vψ(s)∥V ≤ fφ(s) sup
s′ ∈ [0, s]

∥φ(s′)− ψ(s′)∥p,∞

for all φ,ψ ∈ C([0, t],Diff pid (R
d)) with sup

s∈ [0, t]
∥φ(s) − φ(s)∥p,∞ ≤ r and sup

s∈ [0, t]
∥ψ(s) −

φ(s)∥p,∞ ≤ r and for almost every s ∈ [0, t].

(i) If there exists g ∈ L1([0, T ]) such that the deformation vector field satisfies

∥vφ(s)∥V ≤ g(s)
(︂
1 + sup

s′ ∈ [0, s]
∥φ(s′)− id∥p,∞

)︂
(4.2)

for all φ ∈ C([0, t],Diff pid (R
d)) and for almost every s ∈ [0, t], then the initial value

problem (4.1) has a unique maximal solution either in C([0, T ′),Diff pid (R
d)) for some

T ′ ≤ T or in C([0, T ],Diff pid (R
d)).

(ii) If there exists g ∈ L1([0, T ]) such that the deformation vector field satisfies

∥vφ(s)∥V ≤ g(s)
(︂
1 + sup

s′ ∈ [0, s]
∥φ(s′)− id∥∞

)︂
(4.3)
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for all φ ∈ C([0, t],Diff pid (R
d)) and for almost every s ∈ [0, t], then the initial value

problem (4.1) has a unique solution in C([0, T ],Diff pid (R
d)).

Proof. (i) We are going to prove that there exists a unique φ ∈ C([0, T ′),Diff pid (R
d)) satis-

fying

φ(t) = id +

∫︂ t

0
vφ(s) ◦ φ(s) ds, (4.6)

where the integral is the Bochner integral. We first check that the Bochner integral in

(4.6) is well defined under the assumption (4.2). Given any φ ∈ C([0, t],Diff pid (R
d)), since

vφ : [0, t]→ V is strongly measurable, the assumption V ↪→ Cp+1
0 (Rd,Rd) and Lemma 4.3.1

imply that s ↦→ vφ(s) ◦ φ(s) is strongly measurable from [0, t] to Cp0 (Rd,Rd). From The-

orem 2.2.7, the Bochner integral is well defined if and only if s ↦→ ∥vφ(s) ◦ φ(s)∥p,∞ is

Lebesgue integrable on [0, t]. Indeed, we have∫︂ t

0
∥vφ(s) ◦ φ(s)∥p,∞ ds ≤

∫︂ t

0
Cφ(s) cV ∥vφ(s)∥V ds

≤
∫︂ t

0
Cφ(s) cV g(s)

(︂
1 + sup

s′ ∈ [0, s]
∥φ(s′)− id∥p,∞

)︂
ds (by (4.2))

≤ Cφ cV
(︂
1 + sup

s∈ [0, t]
∥φ(s)− id∥p,∞

)︂
∥g∥L1 < ∞,

where Cφ is a polynomial in sup
s∈ [0, t]

∥φ(s)− id∥p,∞ <∞.

The following claim shows that a unique solution to the formulation using the Bochner

integral is equivalent to a unique solution to the original initial value problem. Hence we

can focus on (4.6) afterwards.

Claim 4.3.4. Under the assumption (4.2), a function φ ∈ C([0, T ′),Diff pid (R
d)) is a solution

to the initial value problem

φ(t) = id +

∫︂ t

0
vφ(s) ◦ φ(s) ds, (4.6)

where the integral is the Bochner integral, if and only if φ is a solution to the initial value

problem

φ(t, x) = x+

∫︂ t

0
vφ(s, φ(s, x)) ds for all (t, x) ∈ [0, T ′)× Rd, (4.1)

where the integral is the Lebesgue integral.

Proof. (⇒) Suppose that φ ∈ C([0, T ′),Diff pid (R
d)) satisfies (4.6). Since for all x ∈ Rd the

evaluation operator δx : Cp0 (Rd,Rd) → Rd is bounded and linear, Theorem 2.2.8 implies
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that for all t ∈ [0, T ′) and x ∈ Rd

φ(t, x) = δx
(︁
φ(t)

)︁
= δx

(︃
id +

∫︂ t

0
vφ(s) ◦ φ(s) ds

)︃
= δx

(︁
id
)︁
+

∫︂ t

0
δx

(︂
vφ(s) ◦ φ(s)

)︂
ds

= x+

∫︂ t

0
vφ(s, φ(s, x)) ds,

which is (4.1).

(⇐) Now suppose that φ ∈ C([0, T ′),Diff pid (R
d)) satisfies (4.1). The assumption (4.2)

and the paragraph before the claim together show that the Bochner integral in

˜︁φ(t) := id +

∫︂ t

0
vφ(s) ◦ φ(s) ds

is well defined. It follows, as in the forward direction, that for all x ∈ Rd

˜︁φ(t, x) = x+

∫︂ t

0
vφ(s, φ(s, x)) ds = φ(t, x),

that is, ˜︁φ(t) ≡ φ(t). Thus we have

φ(t) = id +

∫︂ t

0
vφ(s) ◦ φ(s) ds,

which shows that φ is a solution of (4.6).

To prove (4.6), we set the scheme to apply the Banach fixed point theorem. For any

φ ∈ C([0, t0],Diff pid (R
d)) with φ(0) = id and ψ ∈ C([t0, t0 + η],Diff pid (R

d)) with ψ(t0) = id ,

we define the extension φ⊕ ψ ∈ C([0, t0 + η],Diff pid (R
d)) by

(φ⊕ ψ)(t) :=

⎧⎨⎩ φ(t), if t ∈ [0, t0] ;

ψ(t) ◦ φ(t0), if t ∈ (t0, t0 + η] .

Suppose that we have obtained a unique φt0 ∈ C([0, t0],Diff pid (R
d)) satisfying (4.6) up to

time t0, which is true right at the beginning with φ0(0) = id . If we can show that there

exist η(φt0) > 0 and a unique φ ∈ C([t0, t0 + η],Diff pid (R
d)) satisfying

φ(t) = id +

∫︂ t

t0

vφt0⊕φ(s) ◦ φ(s) ds, (4.7)

then since w ↦→ w◦φt0(t0) is in L (Cp0 (Rd,Rd), C
p
0 (Rd,Rd)), the extension φt0⊕φ will satisfy

(4.6) by Theorem 2.2.8, that is, φt0⊕φ is the unique solution on [0, t0+η]. Our proof for part

(i) will be complete by extending the unique solution repeatedly to the maximal interval of

existence.
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We now apply the Banach fixed point theorem to prove the existence of η(φt0) > 0 and

the existence of a unique φ ∈ C([t0, t0+η],Diff pid (R
d)) satisfying (4.7). Denote ξt0 := φt0(t0).

Since Diff pid (R
d) is open in id + Cp0 (Rd,Rd) and φ ↦→ vφ is locally Lipschitz, by defining

φ ∈ C([0, T ],Diff pid (R
d)) as

φ(t) :=

⎧⎨⎩ φt0(t), if t ∈ [0, t0] ;

ξt0 , if t ∈ (t0, T ] ,

we deduce that there exist r(φ) > 0 and fφ ∈ L1([0, T ]) such that B (id , r) = {ξ′ ∈
id + Cp0 (Rd,Rd) : ∥ξ′ − id∥p,∞ ≤ r} is contained in Diff pid (R

d) and such that

∥vφt0⊕φ(t)− vφt0⊕ψ(t)∥V ≤ fφ(t) sup
s∈ [0, t]

∥(φt0⊕ φ)(s)− (φt0⊕ ψ)(s)∥p,∞

= fφ(t) sup
s∈ [t0, t]

∥φ(s) ◦ ξt0 − ψ(s) ◦ ξt0∥p,∞
(4.8)

for all φ,ψ ∈ C([t0, t0 + η], B (id , r)) with φ(t0) = ψ(t0) = id and for almost every t ∈
[0, t0+ η]. Note that the dependency of r(φ) and fφ on φ is through φt0 , so r(φ) and fφ in

fact only depend on φt0 . Hence we will write r(φt0) and fφt0
instead. With φt0 and r fixed,

we define the iterate mapping Γ : C([t0, t0 + η], B (id , r))→ C([t0, t0 + η], id + Cp0 (Rd,Rd))

by

Γ (φ)(t) := id +

∫︂ t

t0

vφt0⊕φ(s) ◦ φ(s) ds. (4.9)

The Bochner integral is well defined as shown in the beginning of the proof. The domain

C([t0, t0 + η], B (id , r)) and the codomain C([t0, t0 + η], id + Cp0 (Rd,Rd)) of Γ are both

equipped with the metric

d(φ,ψ) := sup
t∈ [t0, t0 + η]

∥φ(t)− ψ(t)∥p,∞,

which renders the domain a complete metric space. We are going to choose an η(φt0) > 0

such that Γ is a well-defined contraction, then the Banach fixed point theorem will imply

the existence of a unique fixed point φ ∈ C([t0, t0 + η], B (id , r)) ⊂ C([t0, t0 + η],Diff pid (R
d))

that satisfies (4.7).

We first find a sufficient condition on η such that the range of the iterate mapping Γ is

still in its domain. Theorem 2.2.9 and the assumption (4.2) yield

∥Γ (φ)(t)− id∥p,∞

≤
∫︂ t0+η

t0

∥vφt0⊕φ(t) ◦ φ(t)∥p,∞ dt
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≤
∫︂ t0+η

t0

Cr cV ∥vφt0⊕φ(t)∥V dt

≤
∫︂ t0+η

t0

Cr cV g(t)
(︂
1 + sup

s∈ [0, t0]
∥φt0(s)− id∥p,∞ + sup

s∈ [t0, t]
∥φ(s) ◦ ξt0 − id∥p,∞

)︂
dt

≤
∫︂ t0+η

t0

Cr cV g(t)
(︂
1 + sup

s∈ [0, t0]
∥φt0(s)− id∥p,∞

+ sup
s∈ [t0, t]

∥(φ(s)− id) ◦ ξt0∥p,∞ + ∥ξt0 − id∥p,∞
)︂
dt

≤ Cr cV
(︁
1 + sup

s∈ [0, t0]
∥φt0(s)− id∥p,∞ + Cξt0 r + ∥ξt0 − id∥p,∞

)︁ ∫︂ t0+η

t0

g(t) dt

≤ Cφt0

∫︂ t0+η

t0

g(t) dt,

where we have used the dependency of r on φt0 in the last step. Thus a sufficient condition

such that Γ (φ) ∈ C([t0, t0 + η], B (id , r)) is∫︂ t0+η

t0

g(t) dt ≤ r(φt0)

Cφt0

. (4.10)

Our next step is to find a sufficient condition on η such that the iterate mapping Γ is a

contraction. For all φ,ψ ∈ C([t0, t0 + η], B (id , r)), we have

d(Γ (φ), Γ (ψ)) = sup
t∈ [t0, t0 + η]

∥Γ (φ)(t)− Γ (ψ)(t)∥p,∞

≤
∫︂ t0+η

t0

∥vφt0⊕φ(t) ◦ φ(t)− vφt0⊕ψ(t) ◦ ψ(t)∥p,∞ dt

≤
∫︂ t0+η

t0

(︂
∥vφt0⊕φ(t) ◦ φ(t)− vφt0⊕ψ(t) ◦ φ(t)∥p,∞

+ ∥vφt0⊕ψ(t) ◦ φ(t)− vφt0⊕ψ(t) ◦ ψ(t)∥p,∞
)︂
dt

≤
∫︂ t0+η

t0

(︂
Cr ∥vφt0⊕φ(t)− vφt0⊕ψ(t)∥p,∞

+ C ′
r ∥vφt0⊕ψ(t)∥p+1,∞ ∥φ(t)− ψ(t)∥p,∞

)︂
dt.

We use (4.8) for the first term and (4.2) for the second term and continue the above in-

equality:

d(Γ (φ), Γ (ψ))

≤ Cr
∫︂ t0+η

t0

(︂
cV fφt0

(t) sup
s∈ [t0, t]

∥φ(s) ◦ ξt0 − ψ(s) ◦ ξt0∥p,∞

+ cV g(t)
(︂
1 + sup

s∈ [0, t0]
∥φt0(s)− id∥p,∞
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+ sup
s∈ [t0, t]

∥φ(s) ◦ ξt0 − id∥p,∞
)︂
∥φ(t)− ψ(t)∥p,∞

)︂
dt

≤
(︃
C ′
φt0

∫︂ t0+η

t0

(︁
fφt0

(t) + g(t)
)︁
dt

)︃
d(φ,ψ).

It follows that a sufficient condition ensuring Γ is a contraction is

C ′
φt0

∫︂ t0+η

t0

(︁
fφt0

(t) + g(t)
)︁
dt < 1. (4.11)

We conclude from the sufficient conditions (4.10) and (4.11) that for any η > 0 satisfies∫︂ t0+η

t0

(︁
fφt0

(t) + g(t)
)︁
dt < min

{︄
r(φt0)

Cφt0

,
1

C ′
φt0

}︄
,

there exists a unique φ ∈ C([t0, t0 + η],Diff pid (R
d)) which solves

φ(t) = id +

∫︂ t

t0

vφt0⊕φ(s) ◦ φ(s) ds. (4.7)

Our proof of part (i) is complete.

(ii) Since the condition (4.3) of part (ii) implies the condition (4.2) of part (i), there

exists a solution either on [0, T ′) for some T ′ ≤ T or on [0, T ]. Suppose on the contrary that

we only have a solution φ ∈ C([0, T ′),Diff pid (R
d)). We are going to reach a contradiction by

showing that lim
t ↑T ′

φ(t) ∈ Diff pid (R
d), thus [0, T ′) is not the maximal interval of existence. To

this end, we first show that the deformation vector field of the solution φ is integrable given

the condition (4.3). One technical detail is that t ↦→ ∥vφ(t)∥p+1,∞ is Lebesgue measurable

due to the assumption of the strong measurability of vφ and Corollary 2.2.4.

Claim 4.3.5. The deformation vector field vφ : [0, T ′)→ Cp+1
0 (Rd,Rd) of the solution φ is

integrable, i.e.,
∫︁ T ′

0 ∥vφ(t)∥p+1,∞ dt <∞.

Proof. The solution φ satisfies

φ(t, x) = x+

∫︂ t

0
vφ(s, φ(s, x)) ds for all (t, x) ∈ [0, T ′)× Rd. (4.1)

For every t′ ∈ [0, t], the equation (4.1) and the condition (4.3) then give

∥φ(t′)− id∥∞ ≤
∫︂ t

0
∥vφ(s)∥∞ ds ≤

∫︂ t

0
cV g(s)

(︂
1 + sup

s′ ∈ [0, s]
∥φ(s′)− id∥∞

)︂
ds,

which, by taking the supremum over [0, t] and Grönwall’s lemma, implies

sup
t′ ∈ [0, t]

∥φ(t′)− id∥∞ ≤ cV ∥g∥L1 exp
(︂
cV ∥g∥L1

)︂
for all t ∈ [0, T ′). (4.12)

79



4.3. Proofs

Combining the condition (4.3) and the inequality (4.12), the deformation vector field of the

solution is bounded by∫︂ T ′

0
∥vφ(s)∥p+1,∞ ds ≤

∫︂ T ′

0
cV g(s)

(︂
1 + cV ∥g∥L1 exp

(︂
cV ∥g∥L1

)︂)︂
ds

≤ C ∥g∥L1 <∞.

Now we fix vφ and consider the initial value problem

ψ(t) = id +

∫︂ t

0
vφ(s) ◦ ψ(s) ds. (4.13)

Since
∫︁ T ′

0 ∥vφ(t)∥p+1,∞ dt < ∞ by Claim 4.3.5, it follows from Theorem A.2.3 that (4.13)

has a unique solution ψ ∈ C([0, T ′],Diff pid (R
d)). We observe that φ ∈ C([0, T ′),Diff pid (R

d))

is also a solution of (4.13). By the uniqueness and continuity, we know that lim
t ↑T ′

φ(t) =

lim
t ↑T ′

ψ(t) = ψ(T ′) ∈ Diff pid (R
d). In other words, the interval [0, T ′) is not the maximal

interval of existence, a contradiction.

Under the conditions of Theorem 4.1.1(ii), we can extend Claim 4.3.5 and further show

that the unique solution and its inverse is uniformly bounded in time and that Dpφ(t) is

Lipschitz continuous. These properties will be used in the proof of Theorem 4.1.10.

Proposition 4.3.6. Suppose that all assumptions of Theorem 4.1.1(ii) hold. Given θ :

[0, T ]→ Y , there exist r(θ) and ℓ(θ) such that the unique solution φ ∈ C([0, T ],Diff pid (R
d))

satisfies

∥φ(t)− id∥p,∞ ≤ r and |Dpφ(t, x)−Dpφ(t, y)| ≤ ℓ |x− y|

for all t ∈ [0, T ] and all x, y ∈ Rd. Moreover, we also have

∥φ(t)−1 − id∥p,∞ ≤ r for all t ∈ [0, T ].

Proof. We have proved in Claim 4.3.5 that

max
{︂
∥φ(t)− id∥∞,

∫︂ T

0
∥vφ(s)∥p+1,∞ ds

}︂
≤ C.

Now we bound ∥Dφ(t)− Id∥∞ and ∥Dnφ(t)∥∞, 2 ≤ n ≤ p, successively. Since φ is p-times

differentiable in space, the solution φ satisfies

Dφ(t, x) = Id +

∫︂ t

0
D
(︁
vφ(s, φ(s, x))

)︁
ds for all (t, x) ∈ [0, T ]× Rd, (4.14)
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where Id is the d-by-d identity matrix, and for 2 ≤ n ≤ p

|Dnφ(t, x)| ≤
∫︂ t

0

⃓⃓
Dn
(︁
vφ(s, φ(s, x))

)︁⃓⃓
ds for all (t, x) ∈ [0, T ]× Rd. (4.15)

From (4.14) we have

|Dφ(t, x)− Id| ≤
∫︂ t

0
∥Dvφ(s)∥∞

(︂
∥Dφ(s)− Id∥∞ + 1

)︂
ds.

Grönwall’s lemma and
∫︁ T
0 ∥vφ(s)∥p+1,∞ ds ≤ C then gives ∥Dφ(t)− Id∥∞ ≤ C ′. It follows

that ∥Dφ(t)∥∞ ≤ C ′ + 1. For ∥Dnφ(t)∥∞, 2 ≤ n ≤ p, we proceed by induction. Suppose

that

max
{︂
∥Dφ(t)∥∞, . . . , ∥Dn−1φ(t)∥∞

}︂
≤ C ′′,

then the inequality (4.15), Faà di Bruno’s formula (Lemma 4.2.1), the bound for the integral

of vector field, and the induction hypothesis yield

|Dnφ(t, x)| ≤ ˜︁C +

∫︂ t

0
∥Dvφ(s)∥∞ ∥Dnφ(s)∥∞ ds.

Hence we obtain ∥Dnφ(t)∥∞ ≤ ˜︁C ′ again by Grönwall’s lemma. This completes the proof of

the first part that there exists r(θ) > 0 such that ∥φ(t)− id∥p,∞ ≤ r.
For the second part on the Lipschitz continuity, since

max
{︂
∥Dφ(t)∥∞, . . . , ∥Dpφ(t)∥∞,

∫︂ T

0
∥vφ(s)∥p+1,∞ ds

}︂
≤ C,

Faà di Bruno’s formula (Lemma 4.2.1) then implies

|Dpφ(t, x)−Dpφ(t, y)| ≤
∫︂ t

0

⃓⃓
Dp
(︁
vφ(s, φ(s, x))−Dp

(︁
vφ(s, φ(s, y))

)︁⃓⃓
ds

≤ C ′ |x− y|+
∫︂ t

0
∥Dvφ(s)∥∞ |Dpφ(t, x)−Dpφ(t, y)| ds.

Thus, by Grönwall’s lemma, we have |Dpφ(t, x)−Dpφ(t, y)| ≤ ℓ |x− y| for some ℓ(θ) > 0.

To bound the inverse, we fix a time t ∈ [0, T ] and consider the initial value problem

ψ(s, y) = y +

∫︂ s

0

(︂
−vφ

(︁
t− s′, ψ(s′, y)

)︁)︂
ds′

on the time interval [0, t]. Since
∫︁ t
0 ∥−vφ(t− s′)∥p+1,∞ ds′ =

∫︁ t
0 ∥vφ(s)∥p+1,∞ ds <∞, The-

orem A.2.3 shows that there exists a unique solution ψt ∈ C([0, t],Diff pid (R
d)). Following

the same analysis as in Claim 4.3.5 and above, we then deduce that ∥ψt(s)− id∥p,∞ ≤ r for
all s ∈ [0, t]. Observe from Figure 4.1 that ψt(t) = φ(t)−1. By varying t ∈ [0, T ], we acquire

a family of solutions ψt ∈ C([0, t],Diff pid (R
d)) to the corresponding initial value problems
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and conclude that ∥φ(t)−1 − id∥p,∞ = ∥ψt(t)− id∥p,∞ ≤ r for all t ∈ [0, T ].

'(T, x)

v'(0, x)

v'(t� s,'(t� s, x))

v'(t,'(t, x))

x

'(t� s, x) '(t, x)

(a) Trajectory of vφ from time 0 to t.

'(T, x)

y

�v'(t, y)

 t(s, y)

 t(t, y)

= '(t)�1(y)

�v'(t� s, t(s, y))

�v'(0, t(t, y))

(b) Trajectory of −vφ from time t to 0.

Figure 4.1: Illustration of ψt(t) = φ(t)−1.

For completeness, we present the standard direct method of calculus of variations to

prove the existence of minimizers.

Proposition 4.1.6. Let Θ be a weakly closed subset of a reflexive Banach space and M
be a model of deformation vector fields. Suppose that Θ and M are compatible. Given

Ω0, Ωtarg ∈ S , we denote the unique solution to the initial value problem (4.1) corresponding

to θ ∈ Θ by φθ and consider the minimization problem

min
θ∈Θ

(︃∫︂ T

0
Λ(φθ(t), θ(t)) dt+ ρ(φθ(T,Ω0), Ωtarg)

)︃
. (4.4)

Assume that:

(1) Either the objective function is coercive or Θ is bounded.

(2) The function θ ↦→
∫︁ T
0 Λ(φθ(t), θ(t)) dt is weakly sequentially lower semicontinuous.

(3) The discrepancy function ρ is continuous with respect to ∥ · ∥p,∞.

Then the minimization problem (4.4) has a minimizer.

Proof. Denote the objective function by

J(θ) :=

∫︂ T

0
Λ(φθ(t), θ(t)) dt+ ρ(φθ(T,Ω0), Ωtarg).

Let (θn)
∞
n=1 ⊂ Θ be a minimizing sequence, i.e., J(θn) → inf

θ′ ∈Θ
J(θ′). The assumption (1)

implies that the minimizing sequence (θn)
∞
n=1 is bounded. Since Θ is a weakly closed subset

of a reflexive Banach space, we can extract a subsequence, still denoted by (θn)
∞
n=1, such

that θn ⇀ θ ∈ Θ. The assumption (2) leads to∫︂ T

0
Λ(φθ(t), θ(t)) dt ≤ lim inf

n→∞

∫︂ T

0
Λ(φθn(t), θn(t)) dt,
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while the assumption (3) and ∥φθn(t) − φθ(t)∥Ωp,∞ → 0 from the compatibility assumption

together give

ρ(φθ(T,Ω0), Ωtarg) = lim
n→∞

ρ(φθn(T,Ω0), Ωtarg).

It follows that

J(θ) =

∫︂ T

0
Λ(φθ(t), θ(t)) dt+ ρ(φθ(T,Ω0), Ωtarg)

≤ lim inf
n→∞

∫︂ T

0
Λ(φθn(t), θn(t)) dt+ lim

n→∞
ρ(φθn(T,Ω0), Ωtarg)

= lim
n→∞

J(θn) = inf
θ′ ∈Θ

J(θ′),

which shows that J(θ) = inf
θ′ ∈Θ

J(θ′), that is, θ ∈ Θ is a minimizer.

Now we prove the sufficient conditions onM such thatM and Θ are compatible. We

recall

B(id , r) = {ξ ∈ Diff pid (R
d) : ∥ξ − id∥p,∞ ≤ r and ∥ξ−1 − id∥p,∞ ≤ r}

and the definition of the seminorm

∥v∥Ωp,∞ =

p∑︂
j=0

max
x∈Ω

|Djv(x)|.

Theorem 4.1.10. Let Θ be a weakly closed subset of a reflexive Banach space B and M
be a model of deformation vector fields. For all Ω ∈ S , suppose that:

• The mapping s ↦→ M(φ [0, s], θ(s)) is strongly measurable for all φ ∈ C([0, t],Diff pid (R
d))

and θ ∈ Θ.

• The model is bounded:

For all θ ∈ Θ, there exists fθ ∈ L2([0, T ]) such that

∥M(φ [0, s], θ(s))∥V ≤ fθ(s)
(︂
1 + sup

s′ ∈ [0, s]
∥φ(s′)− id∥∞

)︂
for all φ ∈ C([0, t],Diff pid (R

d)) and for almost every s ∈ [0, t]. Moreover, for all m > 0,

there exists a constant Fm > 0 such that ∥θ∥B ≤ m implies ∥fθ∥L2 ≤ Fm.

• The model is Lipschitz in φ:

For all r > 0 and θ ∈ Θ, there exists gr,θ ∈ L2([0, T ]) such that

∥M(φ [0, s], θ(s))−M(ψ [0, s], θ(s))∥V ≤ gr,θ(s) sup
s′ ∈ [0, s]

∥φ(s′)− ψ(s′)∥Ωp,∞

for all φ,ψ ∈ C([0, t],B(id , r)) and for almost every s ∈ [0, t]. Moreover, for all m > 0,
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there exists a constant Gr,m > 0 such that ∥θ∥B ≤ m implies ∥gr,θ∥L2 ≤ Gr,m.

• The model is continuous in θ:

If (θn)
∞
n=1 ⊂ Θ and θn ⇀ θ, then for 0 ≤ j ≤ p∫︂ t

0
Dj
(︂
M(φ [0, s], θn(s))(φ(s, x))

)︂
ds→

∫︂ t

0
Dj
(︂
M(φ [0, s], θ(s))(φ(s, x))

)︂
ds

for all φ ∈ C([0, T ],Diff pid (R
d)), t ∈ [0, T ], and x ∈ Ω.

Then Θ andM are compatible.

Proof. It is clear that the assumptions are sufficient to invoke Theorem 4.1.1(ii) for each

θ ∈ Θ, thus the initial value problem (4.1) has a unique solution in C([0, T ],Diff pid (R
d)) for

all θ ∈ Θ. Let (θn)
∞
n=1 ⊂ Θ and θn ⇀ θ. Now we prove that

∥φθn(t)− φθ(t)∥Ωp,∞ → 0 for all t ∈ [0, T ].

Since θn ⇀ θ, there exists m > 0 such that ∥θn∥B ≤ m for all n and ∥θ∥B ≤ m. Proposi-

tion 4.3.6 then implies that there exists r(m) > 0 such that φθn , φθ ∈ C([0, T ],B(id , r)) for

all n and that there exists ℓ(θ) > 0 such that

|Dpφθ(t, x)−Dpφθ(t, y)| ≤ ℓ(θ) |x− y| (4.16)

for all t ∈ [0, T ] and all x, y ∈ Rd. Let fθ and gr,θ be L2 functions that satisfy the assump-

tions. For a fixed t ∈ [0, T ], note that

φθn(t, x)− φθ(t, x)

=

∫︂ t

0

(︂
M(φθn [0, s], θn(s))(φθn(s, x))−M(φθ [0, s], θ(s))(φθ(s, x))

)︂
ds

=

∫︂ t

0

(︂
M(φθn [0, s], θn(s))(φθn(s, x))−M(φθ [0, s], θn(s))(φθn(s, x))

)︂
ds

+

∫︂ t

0

(︂
M(φθ [0, s], θn(s))(φθn(s, x))−M(φθ [0, s], θn(s))(φθ(s, x))

)︂
ds

+

∫︂ t

0

(︂
M(φθ [0, s], θn(s))(φθ(s, x))−M(φθ [0, s], θ(s))(φθ(s, x))

)︂
ds

=: I1,n(t, x) + I2,n(t, x) + I3,n(t, x).

Taking ∥ · ∥Ωp,∞ on both sides, we are going to show that

∥I1,n(t)∥Ωp,∞ + ∥I2,n(t)∥Ωp,∞ ≤ Cm
(︄∫︂ t

0

(︂
sup

s′ ∈ [0, s]
∥φθn(s′)− φθ(s′)∥Ωp,∞

)︂2
ds

)︄ 1
2

, (4.17)
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and that

lim
n→∞

∥I3,n(t)∥Ωp,∞ = 0 for all t ∈ [0, T ]. (4.18)

Identities (4.17) and (4.18) will then lead to ∥φθn(t)− φθ(t)∥Ωp,∞ → 0 for all t ∈ [0, T ].

We estimate ∥I1,n(t)∥Ωp,∞ as follows.

∥I1,n(t)∥Ωp,∞

=

⃦⃦⃦⃦∫︂ t

0

(︂
M(φθn [0, s], θn(s))(φθn(s, x))−M(φθ [0, s], θn(s))(φθn(s, x))

)︂
ds

⃦⃦⃦⃦Ω
p,∞

≤
∫︂ t

0

⃦⃦⃦
M(φθn [0, s], θn(s)) ◦ φθn(s)−M(φθ [0, s], θn(s)) ◦ φθn(s)

⃦⃦⃦
p,∞

ds

≤
∫︂ t

0
Cr cV gr,θn(s) sup

s′ ∈ [0, s]
∥φθn(s′)− φθ(s′)∥Ωp,∞ ds

≤ Cr cV ∥gr,θn∥L2

(︄∫︂ t

0

(︂
sup

s′ ∈ [0, s]
∥φθn(s′)− φθ(s′)∥Ωp,∞

)︂2
ds

)︄ 1
2

≤ Cm
(︄∫︂ t

0

(︂
sup

s′ ∈ [0, s]
∥φθn(s′)− φθ(s′)∥Ωp,∞

)︂2
ds

)︄ 1
2

,

where we have used the assumption that ∥θn∥B ≤ m implies ∥gr,θn∥L2 ≤ Gr,m and the

dependency of r on m in the last step.

For ∥I2,n(t)∥Ωp,∞, a straightforward adaptation of Corollay 4.2.4 with the seminorm ∥ ·
∥Ωp,∞ gives

∥v ◦ φ− v ◦ ψ∥Ωp,∞ ≤ Cr ∥v∥p+1,∞ ∥φ− ψ∥Ωp,∞.

It follows that

∥I2,n(t)∥Ωp,∞

=

⃦⃦⃦⃦∫︂ t

0

(︂
M(φθ [0, s], θn(s))(φθn(s, x))−M(φθ [0, s], θn(s))(φθ(s, x))

)︂
ds

⃦⃦⃦⃦Ω
p,∞

≤
∫︂ t

0

⃦⃦⃦
M(φθ [0, s], θn(s)) ◦ φθn(s)−M(φθ [0, s], θn(s)) ◦ φθ(s)

⃦⃦⃦Ω
p,∞

ds

≤
∫︂ t

0
Cr cV fθn(s)

(︂
1 + sup

s′ ∈ [0, s]
∥φθ(s′)− id∥∞

)︂
sup

s′ ∈ [0, s]
∥φθn(s′)− φθ(s′)∥Ωp,∞ ds

≤ Cr cV (1 + r) ∥fθn∥L2

(︄∫︂ t

0

(︂
sup

s′ ∈ [0, s]
∥φθn(s′)− φθ(s′)∥Ωp,∞

)︂2
ds

)︄ 1
2

≤ Cm
(︄∫︂ t

0

(︂
sup

s′ ∈ [0, s]
∥φθn(s′)− φθ(s′)∥Ωp,∞

)︂2
ds

)︄ 1
2

.
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We proceed to show that lim
n→∞

∥I3,n(t)∥Ωp,∞ = 0 for all t ∈ [0, T ], that is,

p∑︂
j=0

max
x∈Ω

⃓⃓⃓⃓∫︂ t

0
Dj
(︂
M(φθ [0, s], θn(s))(φθ(s, x))−M(φθ [0, s], θ(s))(φθ(s, x))

)︂
ds

⃓⃓⃓⃓
→ 0.

Denote the first term by

u(j)n (x) :=

∫︂ t

0
Dj
(︂
M(φθ [0, s], θn(s))(φθ(s, x))

)︂
ds

and the second term by

u(j)(x) :=

∫︂ t

0
Dj
(︂
M(φθ [0, s], θ(s))(φθ(s, x))

)︂
ds,

then it is equivalent to show that u
(j)
n (x) → u(j)(x) uniformly on the compact set Ω for

each 0 ≤ j ≤ p. The pointwise convergence is given by the assumption. We aim to prove

the uniform boundedness and equicontinuity of those sequences, so as to invoke the Arzelà–

Ascoli theorem. The sequences (u
(j)
n )∞n=1, 0 ≤ j ≤ p, are uniformly bounded since

p∑︂
j=0

|u(j)n (x)| ≤
∫︂ t

0
Cr cV

⃦⃦
M(φθ [0, s], θn(s))

⃦⃦
V
ds ≤ Cr cV (1 + r) (

√
TFm).

Recall from (4.16) that ℓ(θ) is a Lipschitz constant for Dpφθ. It follows that

˜︁ℓ(θ) := max{∥Dφθ∥∞, . . . , ∥Dpφθ∥∞, ℓ(θ)}

is a Lipschitz constant for all φθ, Dφθ, . . . , D
pφθ. The equicontinuity of the sequences

(u
(j)
n )∞n=1, 0 ≤ j ≤ p, now follows from

|u(j)n (x)− u(j)n (y)| ≤
∫︂ t

0

(︄ ⃓⃓⃓(︂
Dj
(︁
M(φθ [0, s], θn(s))

)︁
(φθ(s, x))

)︂(︂
Djφθ(s, x)

)︂
−
(︂
Dj
(︁
M(φθ [0, s], θn(s))

)︁
(φθ(s, y))

)︂(︂
Djφθ(s, x)

)︂⃓⃓⃓
+
⃓⃓⃓(︂
Dj
(︁
M(φθ [0, s], θn(s))

)︁
(φθ(s, y))

)︂(︂
Djφθ(s, x)

)︂
−
(︂
Dj
(︁
M(φθ [0, s], θn(s))

)︁
(φθ(s, y))

)︂(︂
Djφθ(s, y)

)︂⃓⃓⃓)︄
ds

≤
∫︂ t

0

(︂
cV fθn(s) (1 + r) ˜︁ℓ |x− y| (1 + r)

+ cV fθn(s) (1 + r) ˜︁ℓ |x− y|)︂ ds
≤ Cm ˜︁ℓ |x− y|.

From the Arzelà–Ascoli theorem, we know that every subsequence of u
(j)
n (x) has a further
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subsequence that converges uniformly to u(j)(x) on the compact set Ω for each 0 ≤ j ≤ p,

which shows that ∥u(j)n − u(j)∥Ω∞ → 0 for each 0 ≤ j ≤ p. In other words, we have proved

lim
n→∞

∥I3,n(t)∥Ωp,∞ = 0 for all t ∈ [0, T ].

In summary, the proved identity (4.17) leads to

∥φθn(t)− φθ(t)∥Ωp,∞ ≤ ∥I1,n(t)∥Ωp,∞ + ∥I2,n(t)∥Ωp,∞ + ∥I3,n(t)∥Ωp,∞

≤ ∥I3,n(t)∥Ωp,∞ + Cm

(︃∫︂ t

0

(︁
∥φθn(s)− φθ(s)∥Ωp,∞

)︁2
ds

)︃ 1
2

.

(4.19)

Squaring (4.19) and using the inequality (a+ b)2 ≤ 2 (a2 + b2), we get

(︁
∥φθn(t)− φθ(t)∥Ωp,∞

)︁2 ≤ 2
(︁
∥I3,n(t)∥Ωp,∞

)︁2
+

∫︂ t

0
2C2

m

(︁
∥φθn(s)− φθ(s)∥Ωp,∞

)︁2
ds.

By Grönwall’s lemma, we finally obtain(︁
∥φθn(t)− φθ(t)∥Ωp,∞

)︁2
≤ 2

(︁
∥I3,n(t)∥Ωp,∞

)︁2
+

∫︂ t

0
4
(︁
∥I3,n(s)∥Ωp,∞

)︁2
C2
m exp

(︁
2C2

m(t− s)
)︁
ds.

(4.20)

Note that

∥I3,n(t)∥Ωp,∞

=

⃦⃦⃦⃦∫︂ t

0

(︂
M(φθ [0, s], θn(s))(φθ(s, x))−M(φθ [0, s], θ(s))(φθ(s, x))

)︂
ds

⃦⃦⃦⃦Ω
p,∞

≤
∫︂ T

0

(︃⃦⃦⃦
M(φθ [0, s], θn(s))(φθ(s, x))

⃦⃦⃦
p,∞

+
⃦⃦⃦
M(φθ [0, s], θ(s))(φθ(s, x))

⃦⃦⃦
p,∞

)︃
ds

≤
∫︂ T

0
Cr cV

(︁
fθn(s) + fθ(s)

)︁
(1 + r) ds ≤ Cm,

so ∥I3,n(t)∥Ωp,∞ is uniformly bounded in n and t. The proved identity (4.18) and the domi-

nated convergence theorem then show that the right-hand side of (4.20) goes to 0 as n→∞
and thus

∥φθn(t)− φθ(t)∥Ωp,∞ → 0 for all t ∈ [0, T ],

which completes the proof.

We proceed to prove that Θ andM are compatible whenM is of the energy form (4.5).

First we prove a key lemma.

Lemma 4.1.13. For every nonnegative L ∈ L (V, V ∗), i.e., (Lv | v) ≥ 0 for all v ∈ V , we
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have (γK−1
V + L)−1 ∈ L (V ∗, V ) and⃦⃦

(γK−1
V + L)−1

⃦⃦
L (V ∗,V )

≤ 1

γ
.

Proof. The linear operator γK−1
V + L is invertible since the solution of (γK−1

V + L) v = µ

for all µ ∈ V ∗ is characterized by the unique minimizer of a strictly convex function, that

is,

v = argmin
v′ ∈V

(︂ γ
2
∥v′∥2V +

1

2
(Lv′ | v′)− (µ | v′)

)︂
.

Next we show that ⃦⃦
(γK−1

V + L)−1 µ
⃦⃦
V
≤ 1

γ
∥µ∥V ∗ for all µ ∈ V ∗,

which is equivalent to

∥v∥V ≤
1

γ

⃦⃦
(γK−1

V + L) v
⃦⃦
V ∗ for all v ∈ V.

Denote the identity mapping on V by idV : V → V . We have(︃
1

γ

⃦⃦
(γK−1

V + L) v
⃦⃦
V ∗

)︃2

=

(︃
1

γ

⃦⃦
KV

(︁
γK−1

V + L
)︁
v
⃦⃦
V

)︃2

=
1

γ2
∥(γ idV +KV L) v∥2V

= ∥v∥2V +
1

γ2
∥KV Lv∥2V +

2

γ
⟨v,KV Lv⟩V

= ∥v∥2V +
1

γ2
∥KV Lv∥2V +

2

γ
(Lv | v) ≥ ∥v∥2V ,

where the last inequality follows from (Lv | v) ≥ 0.

Corollary 4.1.12. Let Θ be a weakly closed subset of a reflexive Banach space B. Suppose

that the model of deformation vector fields M is of the energy form (4.5). For all Ω ∈ S ,

we also suppose that:

• The mapping s ↦→ A s
φ is in C([0, t],L (V, V ∗)) for all φ ∈ C([0, t],Diff pid (R

d)). The

mapping s ↦→ (β sφ, θ(s) | v) is Lebesgue measurable for all φ ∈ C([0, t],Diff pid (R
d)), θ ∈ Θ,

and v ∈ V .

• For all θ ∈ Θ, there exists fθ ∈ L2([0, T ]) such that

∥β sφ, θ(s)∥V ∗ ≤ fθ(s)
(︂
1 + sup

s′ ∈ [0, s]
∥φ(s′)− id∥∞

)︂
for all φ ∈ C([0, t],Diff pid (R

d)) and for almost every s ∈ [0, t]. Moreover, for all m > 0,
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there exists a constant Fm > 0 such that ∥θ∥B ≤ m implies ∥fθ∥L2 ≤ Fm.

• For all r > 0 and θ ∈ Θ, there exist ℓr > 0 and gr,θ ∈ L2([0, T ]) such that

∥A s
φ −A s

ψ∥L (V, V ∗) ≤ ℓr sup
s′ ∈ [0, s]

∥φ(s′)− ψ(s′)∥Ωp,∞

and that

∥β sφ, θ(s) − β sψ, θ(s)∥V ∗ ≤ gr,θ(s) sup
s′ ∈ [0, s]

∥φ(s′)− ψ(s′)∥Ωp,∞

for all φ,ψ ∈ C([0, t],B(id , r)) and for almost every s ∈ [0, t]. Moreover, for all m > 0,

there exists a constant Gr,m > 0 such that ∥θ∥B ≤ m implies ∥gr,θ∥L2 ≤ Gr,m.

• If (θn)
∞
n=1 ⊂ Θ and θn ⇀ θ, then for 0 ≤ j ≤ p∫︂ t

0
Dj
(︂
M(φ [0, s], θn(s))(φ(s, x))

)︂
ds→

∫︂ t

0
Dj
(︂
M(φ [0, s], θ(s))(φ(s, x))

)︂
ds

for all φ ∈ C([0, T ],Diff pid (R
d)), t ∈ [0, T ], and x ∈ Ω.

Then Θ andM are compatible.

Proof. We check that the assumptions of Theorem 4.1.10 are satisfied.

First we verify that s ↦→ M(φ [0, s], θ(s)) = (γK−1
V +A s

φ)
−1 β sφ, θ(s) is strongly measurable.

Since s ↦→ (β sφ, θ(s) | v) is Lebesgue measurable by assumption, the fact that V is a separable

Hilbert space and Lemma 4.3.3 imply that s ↦→ β sφ, θ(s) is strongly measurable. Moreover,

the assumption that s ↦→ A s
φ is in C([0, t],L (V, V ∗)) and

⃦⃦
(γK−1

V +A s
φ)

−1
⃦⃦

L (V ∗,V )
≤ 1

γ

from Lemma 4.1.13 give us that s ↦→ (γK−1
V + A s

φ)
−1 is in C([0, t],L (V ∗, V )). It follows

from Lemma 4.3.2 that s ↦→ (γK−1
V +A s

φ)
−1 β sφ, θ(s) is strongly measurable.

Next, the model (γK−1
V +A s

φ)
−1 β sφ, θ(s) is bounded because

⃦⃦
(γK−1

V +A s
φ)

−1
⃦⃦

L (V ∗,V )
≤ 1

γ

from Lemma 4.1.13 and the assumption

∥β sφ, θ(s)∥V ∗ ≤ fθ(s)
(︂
1 + sup

s′ ∈ [0, s]
∥φ(s′)− id∥∞

)︂
.

Finally, the model (γK−1
V +A s

φ)
−1 β sφ, θ(s) is Lipschitz in φ since (i) the operator (γK−1

V +

A s
φ)

−1 is Lipschitz in φ and we have ∥β sφ, θ(s)∥V ∗ ≤ fθ(s) (1 + r); (ii) the operator β sφ, θ(s) is

Lipschitz in φ and (γK−1
V +A s

φ)
−1 is uniformly bounded by 1

γ ; (iii) a multiplying function˜︁gr,θ such that

∥(γK−1
V +A s

φ)
−1 β sφ, θ(s) − (γK−1

V +A s
ψ)

−1 β sψ, θ(s)∥ ≤ ˜︁gr,θ(s) sup
s′ ∈ [0, s]

∥φ(s′)− ψ(s′)∥Ωp,∞
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is given by ˜︁gr,θ(s) := 1

γ2
ℓr fθ(s) (1 + r) +

1

γ
gr,θ(s).

Note that ˜︁gr,θ ∈ L2([0, T ]) and

∥˜︁gr,θ∥L2 ≤ 1

γ2
ℓr Fm (1 + r) +

1

γ
Gr,m

for all ∥θ∥B ≤ m.
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Chapter 5

Applications of Core Theorems

In this chapter, we apply our core theorems from Chapter 4 to the problem of piecewise-

rigid motions in Section 5.1 and to the problem of atrophy modeling in Section 5.2. We

will show that both problems have a minimizer. As in Chapter 4, we assume that V is a

separable Hilbert space continuously embedded in Cp+1
0 (Rd,Rd) throughout this chapter.

We also remind the reader that we write t ∈ [0, T ], s ∈ [0, t], and s′ ∈ [0, s] for hierarchical

time intervals.

5.1 Application to Piecewise-rigid Motion

We first prove the existence of minimizers in Section 5.1.1 under our formulation in Sec-

tion 3.3.1. Since the formulation in Section 3.3.1 only guarantees an almost piecewise-rigid

motion, we provide another formulation, purely of theoretical interest, in Section 5.1.2 for

an exact piecewise-rigid motion. We will discuss computational aspects later in Section 6.1.

5.1.1 Formulation using the energy form

We recall the problem from Section 3.3.1:

min
θ∈L2([0, T ],Rk)

(︃
1

2

∫︂ T

0

(︂
∥v(t)∥2V + |θ(t)|2

)︂
dt+ ρ(φ(T,Ω0), Ωtarg)

)︃
(3.25)

subject to

φ(t, x) = x+

∫︂ t

0
v(s, φ(s, x)) ds = x+

∫︂ t

0
MR(φ [0, s], θ(s))(φ(s, x)) ds.
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The model of deformation vector fields is given by

MR(φ [0, t], θ(t)) = argmin
v ∈V

(︃
γ

2
∥v∥2V +

1

2

∫︂
φ(t, Ω0)

|v|2 dx−
N∑︂
i=1

∫︂
φ(t, Ωi)

χ (V θi(t))⊤v dx
)︃

=: argmin
v ∈V

(︂ γ
2
∥v∥2V +

1

2
(A t

φ v | v)− (β tφ, θ(t) | v)
)︂

= (γK−1
V +A t

φ)
−1 β tφ, θ(t),

and V : R
d(d+1)

2 → C(Rd,Rd) is defined by

(V θ′)(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
u+ ω

⎡⎣ 0 −1
1 0

⎤⎦x, if d = 2 ;

u+ ω × x, if d = 3 ,

where θ′ = (u, ω). We observe that the operators A t
φ and β tφ, θ(t) only depend on φ(t), which

is certainly covered by the assumption of the dependency on φ [0, t]. Since β tφ, θ(t) is linear

in θ(t) in this case, we change the notation and write β tφ θ(t) := β tφ, θ(t). We are ready to

show that this problem has a minimizer.

Theorem 5.1.1. If p ≥ 1 and the discrepancy function ρ is continuous with respect to

∥ · ∥p,∞, then the minimization problem (3.25) has a minimizer.

Proof. We aim to invoke Proposition 4.1.6. It is clear that the function θ ↦→ 1
2

∫︁ T
0 |θ(t)|2 dt =

1
2 ∥θ∥2L2([0, T ],Rk)

is coercive. Moreover, it is strongly continuous and convex, which implies

that it is weakly lower semicontinuous, and hence weakly sequentially lower semicontinuous.

It remains to show that θ ↦→ 1
2

∫︁ T
0 ∥v(t)∥2V dt is weakly sequentially lower semicontinuous and

that L2([0, T ],Rk) andMR are compatible. We check that the conditions of Corollay 4.1.12

are achieved to show the compatibility, then we prove that θ ↦→ 1
2

∫︁ T
0 ∥v(t)∥2V dt is weakly

sequentially lower semicontinuous by showing that θn ⇀ θ in L2([0, T ], Rk) implies vn ⇀ v

in L2([0, T ], V ), where vn and v correspond to θn and θ respectively.

We first examine the mappings s ↦→ A s
φ and s ↦→ (β sφ θ(s) | v). Since p ≥ 1, we can

make a change of variables and write

(A s
φ u | v) =

∫︂
φ(s,Ω0)

u⊤v dx =

∫︂
Ω0

(u⊤v) ◦ φ(s) detDφ(s) dx

and

(β sφ θ(s) | v) =
N∑︂
i=1

∫︂
φ(s,Ωi)

χ (V θi(s))⊤v dx =

N∑︂
i=1

∫︂
Ωi

(︂
χ (V θi(s))⊤v

)︂
◦φ(s) detDφ(s) dx.
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If follows from p ≥ 1, φ ∈ C([0, T ],Diff pid (R
d)), and the measurability of θ that the mapping

s ↦→ A s
φ is in C([0, t],L (V, V ∗)) and that the mapping s ↦→ (β sφ θ(s) | v) is Lebesgue

measurable.

Now we estimate ∥β sφ θ(s)∥V ∗ . Note that

∥V θi(s)∥φ(s,Ωi)
∞ ≤ C (1 + ∥φ(s)− id∥Ωi

∞ ) |θi(s)| ≤ C (1 + ∥φ(s)− id∥∞) |θ(s)|.

It follows that

|(β sφ θ(s) | v)| =
⃓⃓⃓⃓
⃓
N∑︂
i=1

∫︂
φ(s,Ωi)

χ (V θi(s))⊤v dx
⃓⃓⃓⃓
⃓

≤ C (1 + ∥φ(s)− id∥∞) |θ(s)| ∥v∥∞ ∥χ∥L1 .

(5.1)

Thus we let fθ(s) := C cV |θ(s)| ∥χ∥L1 with Fm := C cV ∥χ∥L1 m.

Next we check the Lipschitz conditions. For A s
φ, we obtain after a change of variables

that⃓⃓
(A s

φ u | v)− (A s
ψ u | v)

⃓⃓
≤
∫︂
Ω0

⃓⃓⃓
(u⊤v) ◦ φ(s) detDφ(s)− (u⊤v) ◦ ψ(s) detDψ(s)

⃓⃓⃓
dx.

Note that A ↦→ detA is a polynomial of degree d in elements of A ∈ Rd×d. By the mean

value theorem, there exists a constant Cd > 0 such that

|detA− detB| ≤ Cd (|A|+ |B|)d−1 |A−B|

for all A,B ∈ Rd×d. Using standard arguments, we deduce that for all r > 0 there exists

ℓr > 0 such that

∥A s
φ −A s

ψ∥L (V, V ∗) ≤ ℓr ∥φ(s)− ψ(s)∥Ω0
1,∞ ≤ ℓr sup

s′ ∈ [0, s]
∥φ(s′)− ψ(s′)∥Ω0

p,∞

for all φ,ψ ∈ C([0, t],B(id , r)). As for β sφ θ(s), similarly we have⃓⃓
(β sφ θ(s) | v)− (β sψ θ(s) | v)

⃓⃓
≤

N∑︂
i=1

∫︂
Ωi

⃓⃓⃓(︂
χ (V θi(s))⊤v

)︂
◦ φ(s) detDφ(s)−

(︂
χ (V θi(s))⊤v

)︂
◦ ψ(s) detDψ(s)

⃓⃓⃓
dx

≤ Cr ∥φ(s)− ψ(s)∥Ω0
1,∞ |θ(s)| ∥v∥V

≤ Cr sup
s′ ∈ [0,s]

∥φ(s′)− ψ(s′)∥Ω0
p,∞ |θ(s)| ∥v∥V (5.2)

for all φ,ψ ∈ C([0, t],B(id , r)). We let gr,θ(s) := Cr |θ(s)| with Gr,m := Crm.

We show that MR is continuous in θ. We fix 0 ≤ j ≤ p and define a linear operator
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Fj : L2([0, T ],Rk)→ Rdj +1
by

Fj θ′ =
∫︂ t

0
Dj
(︂
MR(φ [0, s], θ

′(s))(φ(s, x))
)︂
ds

=

∫︂ t

0
Dj
(︁(︁
(γK−1

V +A s
φ)

−1 β sφ θ
′(s)
)︁
(φ(s, x))

)︁
ds.

In addition, the uniform bound ∥(γK−1
V +A s

φ)
−1∥L (V ∗, V ) ≤ 1

γ and the estimate of ∥β sφ θ′(s)∥V ∗

from (5.1) give us

|Fj θ′| ≤
∫︂ t

0
Cφ(s)

⃦⃦
(γK−1

V +A s
φ)

−1 β sφ θ
′(s)
⃦⃦
p,∞ ds

≤ Cφ
∫︂ t

0
cV

1

γ
C (1 + ∥φ(s)− id∥∞) |θ′(s)| ∥χ∥L1 ds ≤ Cφ ∥θ′∥L2([0, T ],Rk),

where Cφ is a polynomial in sup
s∈ [0, T ]

∥φ(s)− id∥p,∞. Since the linear operator Fj is bounded

and its codomain is of finite dimension, it follows at once that θn ⇀ θ implies Fj θn → Fj θ,
that is,∫︂ t

0
Dj
(︂
MR(φ [0, s], θn(s))(φ(s, x))

)︂
ds→

∫︂ t

0
Dj
(︂
MR(φ [0, s], θ(s))(φ(s, x))

)︂
ds.

We have shown that the conditions of Corollay 4.1.12 are all satisfied, hence L2([0, T ],Rk)

andMR are compatible.

Our last step is to show that θn ⇀ θ in L2([0, T ],Rk) implies vn ⇀ v in L2([0, T ], V ),

where

vn(t) := (γK−1
V +A t

φθn
)−1 β tφθn

θn(t) and v(t) := (γK−1
V +A t

φθ
)−1 β tφθ

θ(t),

and φθn and φθ are the unique solutions of θn and θ respectively, whose existence is due to

the compatibility we just proved. To this end, we let µ ∈
(︁
L2([0, T ], V )

)︁∗ ∼= L2([0, T ], V ) ∼=
L2([0, T ], V ∗) and estimate |(µ | vn)− (µ | v)|. We have

|(µ | vn)− (µ | v)|

≤
∫︂ T

0
∥µ(t)∥V ∗ ∥(γK−1

V +A t
φθn

)−1 − (γK−1
V +A t

φθ
)−1∥L (V ∗, V ) ∥β tφθn

θn(t)∥V ∗ dt

+

∫︂ T

0
∥µ(t)∥V ∗ ∥(γK−1

V +A t
φθ
)−1∥L (V ∗, V ) ∥β tφθn

− β tφθ
∥L (Rk, V ∗) |θn(t)| dt

+

⃓⃓⃓⃓∫︂ T

0

(︂
µ(t) (γK−1

V +A t
φθ
)−1β tφθ

(θn(t)− θ(t))
)︂
dt

⃓⃓⃓⃓
.

Since θn ⇀ θ, there exist m and r(m) such that ∥θn∥L2([0, T ],Rk) ≤ m and ∥φθn(t)−id∥p,∞ ≤
r (see Proposition 4.3.6). The conditions of Corollay 4.1.12 we have checked and the in-
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equality (5.2) then lead to

|(µ | vn)− (µ | v)|

≤
∫︂ T

0
∥µ(t)∥V ∗

1

γ2
ℓr sup
s∈ [0, t]

∥φθn(s)− φθ(s)∥Ω0
p,∞ fθn(t) (1 + r) dt

+

∫︂ T

0
∥µ(t)∥V ∗

1

γ
Cr sup

s∈ [0, t]
∥φθn(s)− φθ(s)∥Ω0

p,∞ |θn(t)| dt

+

⃓⃓⃓⃓∫︂ T

0

(︂
µ(t) (γK−1

V +A t
φθ
)−1β tφθ

(θn(t)− θ(t))
)︂
dt

⃓⃓⃓⃓

≤ Cr ∥µ∥L2([0, T ], V ) (Fm+m) sup
t∈ [0, T ]

∥φθn(t)− φθ(t)∥Ω0
p,∞

+

⃓⃓⃓⃓∫︂ T

0

(︂
µ(t) (γK−1

V +A t
φθ
)−1β tφθ

(θn(t)− θ(t))
)︂
dt

⃓⃓⃓⃓
.

The compatibility gives sup
t∈ [0, T ]

∥φθn(t) − φθ(t)∥Ω0
p,∞ → 0. On the other hand, from (5.1) we

know that

θ′ ↦→
∫︂ T

0

(︂
µ(t) (γK−1

V +A t
φθ
)−1β tφθ

θ′(t)
)︂
dt

is a bounded linear functional. Hence the second term in the above inequality also goes to

zero. We conclude that (µ | vn)→ (µ | v), which completes the proof.

Let h : L2([0, T ],Rk) → R be an arbitrary weakly sequentially lower semicontinuous

function. If we change the objective function in the minimization problem of piecewise-

rigid motion from (3.25) to

min
θ∈L2([0, T ],Rk)

(︃
h(θ) +

1

2

∫︂ T

0
|θ(t)|2 dt+ ρ(φθ(T,Ω0), Ωtarg)

)︃
,

the above proof still works. In particular, if h ≡ 0, the corresponding problem has a

minimizer. More generally, for any weakly sequentially lower semicontinuous function ˜︁h :

L2([0, T ],Rk)→ R such that
∫︁ T
0 |θ(t)|2 dt ≤ C ˜︁h(θ), the minimization problem

min
θ∈L2([0, T ],Rk)

(︂˜︁h(θ) + ρ(φθ(T,Ω0), Ωtarg)
)︂
,

has a minimizer. This formulation enables the flexibility of the choice of h or ˜︁h, at the

expense of deviating from piecewise-rigid motions by the regularization γ
2 ∥v∥2V in

MR(φ [0, t], θ(t)) = argmin
v ∈V

(︃
γ

2
∥v∥2V +

1

2

∫︂
φ(t, Ω0)

|v|2 dx−
N∑︂
i=1

∫︂
φ(t, Ωi)

χ (V θi(t))⊤v dx
)︃
.

(3.24)
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If one is open to always include the term 1
2

∫︁ T
0 ∥v(t)∥2V dt in the objective function, exact

piecewise-rigid motions can indeed be achieved theoretically, as shown in the next section.

5.1.2 Formulation using constraints

To attain exact piecewise-rigid motions, we now use another characterization of rigid mo-

tions, Proposition 3.1.1(iv). For every ξ ∈ Diff pid (R
d), we define a linear operator Lξ : V →

L1(Rd,Rd×d) by

(Lξ w)(x) := 1ξ(Ω0)(x)
(︁
Dw(x)⊤ +Dw(x)

)︁
and reformulate the problem as

min
v ∈L2([0, T ], V )

(︃
1

2

∫︂ T

0
∥v(t)∥2V dt+ ρ(φ(T,Ω0), Ωtarg)

)︃
(5.3)

subject to ⎧⎪⎪⎨⎪⎪⎩
φ(t, x) = x+

∫︂ t

0
v(s, φ(s, x)) ds for all (t, x) ∈ [0, T ]× Rd

Lφ(t) v(t) = 0 for almost every t ∈ [0, T ]

.

The constraint Lφ(t) v(t) = 0 characterizes rigid motions of each connected components of

Ω0, namely, piecewise-rigid motions. If p ≥ 1, then ξ ↦→ Lξ is continuous. In addition,

suppose that the discrepancy function ρ is continuous with respect to ∥ · ∥p,∞, then the

minimization problem (5.3) has a minimizer according to Theorem 1 in [4].

Similarly, we can add a weakly sequentially lower semicontinuous function v ↦→ h(v) to

the objective function, or replace 1
2

∫︁ T
0 ∥v(t)∥2V dt by a weakly sequentially lower semicon-

tinuous function v ↦→ ˜︁h(v) such that
∫︁ T
0 ∥v(t)∥2V dt ≤ C ˜︁h(v), and still have the existence

of minimizers. However, the formulation in this section requires constrained optimization,

which is more difficult to solve numerically. For both formulations in Sections 5.1.1 and

5.1.2, there is another undesired numerical issue, which we will visit in Section 6.1.

5.2 Application to the Atrophy Model

Let Θ ⊂ Rk be a compact set. We recall from Section 3.3.2 that the problem is

min
θ∈Θ

ρ(φ(T,Ω0), Ωtarg)
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subject to

φ(t, x) = x+

∫︂ t

0
v(s, φ(s, x)) ds = x+

∫︂ t

0
MA(φ [0, s], θ)(φ(s, x)) ds.

The model of deformation vector fields is given by

MA(φ [0, t], θ)

= argmin
v ∈V

(︃
γ

2
∥v∥2V +

1

2

∫︂
φ(t, Ω0)

Eφ(t)(εv, εv) dx−
∫︂
φ(t, Ω0)

χ α
(︁
τ(t) ◦ φ(t)−1

)︁
(−div v) dx

)︃
=: argmin

v ∈V

(︂ γ
2
∥v∥2V +

1

2
(A t

φ v | v)− (β tφ, θ | v)
)︂

= (γK−1
V +A t

φ)
−1 β tφ, θ,

with τ = T (φ [0, t], θ) the unique solution to the system⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂s
(︁
τ detDφ

)︁
(s) = div

(︂
Wφ(s)∇τ(s) detDφ(s)

)︂
+R(τ(s)) detDφ(s) in (0, t]×Ωo

0(︁
Wφ(s)∇τ(s) detDφ(s)

)︁⊤
n0 = 0 on [0, t]× ∂Ω0

τ(0) = Q(θ) on Ωo
0

,

where Wφ(s) =
(︁
Dφ(s)

)︁−1 (︁
Uφ(s) ◦ φ(s)

)︁
Dφ(s)−⊤ and Uφ(s) : φ(s,Ω) → Rd×d is the

Eulerian diffusion matrix (field). In this case, the operator A t
φ still only depends on φ(t),

but the operator β tφ, θ now depends on φ [0, t] because of τ(t).

Before we prove the existence of minimizers, we need to show that τ = T (φ, θ), a

solution to the PDE model, exists and is unique for all φ ∈ C([0, t],Diff pid (R
d)) and all

θ ∈ Θ. In particular, we need to specify what we mean by a solution to the PDE model

and the codomain of T . We collect necessary tools from [62, Chapter 1 and Chapter 3]

in Section 5.2.1 and state the weak formulation of the PDE problem in Section 5.2.2. We

prove the existence and uniqueness of weak solutions to the PDE problem in Section 5.2.3,

and thus the solution mapping T is well defined. The existence of minimizers will then be

proved in Section 5.2.4.

5.2.1 Abstract parabolic initial value problems

We first generalize the space of real-valued distributions D∗(︁(0, t))︁ to the space of Hilbert-

space-valued distributions D∗(︁(0, t), H)︁. We define as in [62, Chapter 1, Section 1.3] that

D∗(︁(0, t), H)︁ := L
(︁
D
(︁
(0, t)

)︁
, H
)︁
.
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For a locally integrable function u ∈ L1
loc([0, t], H), i.e., u is strongly measurable with∫︁ b

a ∥u(s)∥H ds <∞ for all [a, b] ⊂ (0, t), we can define the corresponding

˜︁u(φ) := ∫︂ t

0
u(s)φ(s) ds ∈ H for all φ ∈ D

(︁
(0, t)

)︁
and show that ˜︁u ∈ D∗(︁(0, t), H)︁ by replacing the Lebesgue integral with the Bochner

integral in the usual argument of real-valued distributions. We thus identify u with ˜︁u and

obtain L1
loc([0, t], H) ⊂ D∗(︁(0, t), H)︁. We can also generalize distributional derivatives to

Hilbert-space-valued distributions. The derivative du
ds of u ∈ D∗(︁(0, t), H)︁ in the sense of

distribution is defined by

du

ds
(φ) := −u(φ̇) ∈ H for all φ ∈ D

(︁
(0, t)

)︁
,

which can be shown is still in D∗(︁(0, t), H)︁. Since L1
loc([0, t], H) ⊂ D∗(︁(0, t), H)︁, we can

take distributional derivatives for every u ∈ L1
loc([0, t], H).

Given a bounded and open set Ω ⊂ Rd, we now consider spaces L2
(︁
[0, t], H1(Ω)

)︁
,

L2
(︁
[0, t], L2(Ω)

)︁
, and L2

(︁
[0, t], H1(Ω)∗

)︁
; we do not identify H1(Ω) with H1(Ω)∗. We will

write L2
(︁
[0, t], H1

)︁
, L2

(︁
[0, t], L2

)︁
, and L2

(︁
[0, t], (H1)∗

)︁
if there is no confusion of the set Ω.

Identifying L2
(︁
[0, t], L2

)︁
with its dual leads to the Hilbert triple

L2
(︁
[0, t], H1

)︁
⊂ L2

(︁
[0, t], L2

)︁
⊂ L2

(︁
[0, t], (H1)∗

)︁
,

each space being dense in the following one. Note that for every u ∈ L2
(︁
[0, t], H1), we have

u ∈ L2
(︁
[0, t], H1) ⊂ L2

(︁
[0, t], (H1)∗

)︁
⊂ D∗(︁(0, t), (H1)∗

)︁
,

thus we can take its time derivative in the sense of distribution, which will be denoted by

∂su ∈ D∗(︁(0, t), (H1)∗
)︁
to differentiate with the strong and pointwise derivative u̇. If ∂su

is more regular, we then have the following “intermediate regular” result [62, Chapter 1,

Proposition 2.1 and Theorem 3.1].

Theorem 5.2.1. If u ∈ L2
(︁
[0, t], H1

)︁
and ∂su ∈ L2

(︁
[0, t], (H1)∗

)︁
, then u ∈ C

(︁
[0, t], L2

)︁
.

With the generalized notion of time derivatives, we introduce the following abstract

parabolic initial value problem. Let L ∈ L
(︁
L2
(︁
[0, t], H1

)︁
, L2

(︁
[0, t], (H1)∗

)︁)︁
be coercive,

i.e., there exists a > 0 such that (Lu | u) ≥ a ∥u∥2L2([0, t], H1) for all u ∈ L2
(︁
[0, t], H1

)︁
. Given

f ∈ L2
(︁
[0, t], (H1)∗

)︁
and u0 ∈ L2(Ω), we want to solve the parabolic initial value problem⎧⎨⎩ ∂su+ Lu = f

u(0) = u0
, (5.4)
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where the first equation is an operational equation in L2
(︁
[0, t], (H1)∗

)︁
. The following theo-

rem states that the initial value problem has a unique solution in L2
(︁
[0, t], H1

)︁
[62, Chapter

3, Theorem 1.1 with Λu = ∂su and M = L, Section 4.3, and Remark 4.3].

Theorem 5.2.2. Let L ∈ L
(︁
L2
(︁
[0, t], H1

)︁
, L2

(︁
[0, t], (H1)∗

)︁)︁
be coercive. For all f ∈

L2
(︁
[0, t], (H1)∗

)︁
and u0 ∈ L2(Ω), the initial value problem (5.4) has a unique solution in

L2
(︁
[0, t], H1

)︁
.

Remark 5.2.3. If u ∈ L2
(︁
[0, t], H1

)︁
is a solution to (5.4), then we have ∂su = f − Lu ∈

L2
(︁
[0, t], (H1)∗

)︁
. Since u ∈ L2

(︁
[0, t], H1

)︁
and ∂su ∈ L2

(︁
[0, t], (H1)∗

)︁
, Theorem 5.2.1 shows

that u ∈ C
(︁
[0, t], L2

)︁
. Thus u(0) = u0 ∈ L2(Ω) makes sense. In fact, it is possible

to make sense of the initial condition without invoking Theorem 5.2.1. The fact that a

solution u ∈ L2
(︁
[0, t], H1

)︁
⊂ L2

(︁
[0, t], (H1)∗

)︁
and ∂su ∈ L2

(︁
[0, t], (H1)∗

)︁
implies that u

has a continuous representative in C
(︁
[0, t], (H1)∗

)︁
. Hence, as long as u0 ∈ H1(Ω)∗, the

initial condition is well defined. We mention Theorem 5.2.1 to emphasize that a solution is

actually in L2
(︁
[0, t], H1

)︁
∩ C

(︁
[0, t], L2

)︁
, which will be needed later.

We close this section with a useful lemma.

Lemma 5.2.4. Suppose that u ∈ L2
(︁
[0, t], H1

)︁
and ∂su ∈ L2

(︁
[0, t], (H1)∗

)︁
. Then ∂s∥u(·)∥2L2

in the sense of distribution is in L1([0, t]) and equals to s ↦→ 2
(︁
(∂su)(s) | u(s)

)︁
(H1)∗, H1 for

almost every s ∈ [0, t]. It follows that s ↦→ ∥u(s)∥2L2 is in W 1,1([0, t]) and

∥u(s)∥2L2 = ∥u(0)∥2L2 +

∫︂ s

0

(︁
∂s∥u(·)∥2L2

)︁
(s′) ds′

= ∥u(0)∥2L2 +

∫︂ s

0
2
(︁
(∂su)(s

′) | u(s′)
)︁
(H1)∗, H1 ds

′.

Proof. It can be shown [62, Chapter 1, Theorem 2.1] that there exists a sequence (un)
∞
n=1 ⊂

C∞([0, t], H1) such that

∥un − u∥L2([0, t], H1) → 0 and ∥∂sun − ∂su∥L2([0, t], (H1)∗) → 0.

For all ψ ∈ D
(︁
(0, t)

)︁
, since ∥un(·)∥2L2 is differentiable, we obtain∫︂ t

0
∥u(s)∥2L2 ∂sψ(s) ds = lim

n→∞

∫︂ t

0
∥un(s)∥2L2 ∂sψ(s) ds

= − lim
n→∞

∫︂ t

0
2
⟨︁
(∂sun)(s), un(s)

⟩︁
L2 ψ(s) ds

= − lim
n→∞

∫︂ t

0
2
(︁
(∂sun)(s) | un(s)

)︁
(H1)∗, H1 ψ(s) ds
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= −
∫︂ t

0
2
(︁
(∂su)(s) | u(s)

)︁
(H1)∗, H1 ψ(s) ds,

which shows that
(︁
∂s∥u(·)∥2L2

)︁
(s) = 2

(︁
(∂su)(s) | u(s)

)︁
(H1)∗, H1 for almost every s ∈ [0, t].

Remark 5.2.5. For a function u ∈ L2
(︁
[0, t], H1

)︁
with ∂su ∈ L2

(︁
[0, t], (H1)∗

)︁
, Theorem 5.2.1

says that s ↦→ ∥u(s)∥2L2 is continuous. Lemma 5.2.4 says that s ↦→ ∥u(s)∥2L2 is in fact

absolutely continuous.

5.2.2 Weak solutions to the PDE model

Assuming τ is sufficiently regular, we have derived in Section 3.2.2 the reaction-diffusion

equation on a moving shape s ↦→ φ(s,Ω) driven by the motion φ ∈ C([0, t],Diff pid (R
d)) as

follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂s
(︁
τ detDφ

)︁
(s) = div

(︂
Wφ(s)∇τ(s) detDφ(s)

)︂
+R(τ(s)) detDφ(s) in (0, t]×Ωo(︁

Wφ(s)∇τ(s)
)︁⊤
n(0) = 0 on [0, t]× ∂Ω

τ(0) = Q(θ) on Ωo

,

where Wφ(s) =
(︁
Dφ(s)

)︁−1 (︁
Uφ(s) ◦φ(s)

)︁
Dφ(s)−⊤ with the Eulerian diffusion matrix (field)

Uφ(s) : φ(s,Ω)→ Rd×d, while R : R→ R is the reaction function, and Q : Θ ⊂ Rk → L2(Ω)

is the parametrized initial condition. Suppose that the reaction function R is bounded.

For all τ , τ ′ ∈ L2
(︁
[0, t], H1

)︁
, we define L : L2

(︁
[0, t], H1

)︁
→ L2

(︁
[0, t], (H1)∗

)︁
and g(τ) ∈

L2
(︁
[0, t], L2

)︁
⊂ L2

(︁
[0, t], (H1)∗

)︁
by

((Lτ | τ ′)) :=
∫︂ t

0

⟨︁
Wφ(s)∇τ(s) detDφ(s), ∇τ ′(s)

⟩︁
L2 ds

and

g(τ)(s) := R(τ(s)) detDφ(s) for almost every s ∈ [0, t],

where (( · | · )) denotes the pairing of L2
(︁
[0, t], (H1)∗

)︁
and L2

(︁
[0, t], H1

)︁
. Multiplying the

PDE by an arbitrary ψ ∈ L2
(︁
[0, t], H1

)︁
and integrating by parts, we obtain

(( ∂s
(︁
τ detDφ

)︁
| ψ ))

=

∫︂ t

0

(︁
∂s
(︁
τ detDφ

)︁
(s) | ψ(s)

)︁
(H1)∗, H1 ds

= −
∫︂ t

0

⟨︁
Wφ(s)∇τ(s) detDφ(s), ∇ψ(s)

⟩︁
L2 ds+

∫︂ t

0

(︁
R(τ(s)) detDφ(s) | ψ(s)

)︁
(H1)∗, H1 ds

= −((Lτ | ψ)) + ((g(τ) | ψ)).
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Thus the weak formulation of the problem is given by⎧⎨⎩ ∂s
(︁
τ detDφ

)︁
+ Lτ = g(τ)

τ(0) = Q(θ)
, (5.5)

where the time derivative is in the sense of distribution, and the first equation is an op-

erational equation in L2
(︁
[0, t], (H1)∗

)︁
. For technical reasons (see Lemma 5.2.6), we make

a change of function u(s) := e−λs τ(s) detDφ(s) and, assuming φ ∈ C([0, t],Diff 2
id (Rd)),

obtain an equivalent problem ⎧⎨⎩ ∂su+ Lλu = gλ(u)

u(0) = Q(θ)
, (5.6)

where Lλ : L2
(︁
[0, t], H1

)︁
→ L2

(︁
[0, t], (H1)∗

)︁
and gλ(u) ∈ L2

(︁
[0, t], L2

)︁
⊂ L2

(︁
[0, t], (H1)∗

)︁
are defined by

((Lλu | u′)) :=
∫︂ t

0

(︃
λ
⟨︁
u(s), u′(s)

⟩︁
L2 +

⟨︁
Wφ(s)∇u(s), ∇u′(s)

⟩︁
L2

−
⟨︃
u(s)Wφ(s)

∇(detDφ(s))
detDφ(s)

, ∇u′(s)
⟩︃
L2

)︃
ds

(5.7)

and

gλ(u)(s) := e−λsR

(︃
eλs u(s)

detDφ(s)

)︃
detDφ(s) for almost every s ∈ [0, t]. (5.8)

In the next section, we will give sufficient conditions on Uφ(s) (thus Wφ(s)), R, and Q so

that the initial value problem (5.6) has a unique solution u ∈ L2
(︁
[0, t], H1

)︁
for some λ > 0,

and hence the equivalent problem (5.5) has a unique solution τ ∈ L2
(︁
[0, t], H1

)︁
.

5.2.3 Existence and uniqueness of weak solutions to the PDE model

In this section, we fix a Diffp-motion φ ∈ C([0, t],Diff pid (R
d)) and prove that for some λ > 0

the initial value problem ⎧⎨⎩ ∂su+ Lλu = gλ(u)

u(0) = Q(θ)
(5.6)

has a unique solution u ∈ L2
(︁
[0, t], H1

)︁
, where Lλ and gλ(u) are defined in (5.7) and (5.8).

We proceed in two steps. In the first step, we apply Theorem 5.2.2 to show that there exists

λ > 0 such that the initial value problem⎧⎨⎩ ∂su+ Lλu = f

u(0) = Q(θ)
(5.9)
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has a unique solution for all f ∈ L2
(︁
[0, t], (H1)∗

)︁
and θ ∈ Θ. We then fix such λ and enter

the second step. In the second step, we consider the initial value problem⎧⎨⎩ ∂su+ Lλu = gλ(w)

u(0) = Q(θ)
. (5.10)

From the first step, for each given w there exists a unique solution uw to (5.10). We then

show that w ↦→ uw is a contraction and apply the Banach fixed point theorem. Since φ is

assumed to be fixed in this section, we view Cφ as a constant C in this section.

We begin our first step. We are going to choose λ > 0 so that Lλ is bounded and

coercive in order to apply Theorem 5.2.2. The almost pointwise coercivity of Lλ is shown

in the following lemma, which is the key in most of our later proofs of the PDE model.

Lemma 5.2.6. Let p ≥ 2. Suppose that the Eulerian diffusion matrix is symmetric and

positive definite and satisfies

max
{︂

sup
s∈ [0, t]

∥Uφ(s)∥∞, sup
s∈ [0, t]

∥U−1
φ(s)∥∞

}︂
<∞,

then there exist λ(φ) > 0 and a(φ) > 0 such that for all u ∈ L2
(︁
[0, t], H1

)︁
and almost every

s ∈ [0, t] (︁
(Lλu)(s) | u(s)

)︁
(H1)∗, H1 ≥ a ∥u(s)∥2H1 ,

where Lλ : L2
(︁
[0, t], H1

)︁
→ L2

(︁
[0, t], (H1)∗

)︁
is given by

((Lλu | u′)) =
∫︂ t

0

(︃
λ
⟨︁
u(s), u′(s)

⟩︁
L2 +

⟨︁
Wφ(s)∇u(s), ∇u′(s)

⟩︁
L2

−
⟨︃
u(s)Wφ(s)

∇(detDφ(s))
detDφ(s)

, ∇u′(s)
⟩︃
L2

)︃
ds.

(5.7)

and Wφ(s) =
(︁
Dφ(s)

)︁−1 (︁
Uφ(s) ◦ φ(s)

)︁
Dφ(s)−⊤.

Proof. The fact that φ ∈ C([0, t],Diff pid (R
d)), p ≥ 2, and the assumption on Uφ(s) give us

max
{︂

sup
s∈ [0, t]

∥φ(s)− id∥2,∞, sup
s∈ [0, t]

∥φ(s)−1 − id∥1,∞,

sup
s∈ [0, t]

∥Wφ(s)∥∞, sup
s∈ [0, t]

∥W−1
φ(s)∥∞,

}︂
<∞.

Moreover, we know that there are constants C, C ′ > 0 such that for almost every s ∈ [0, t]⟨︁
Wφ(s)∇u(s),∇u(s)

⟩︁
L2 ≥ C ∥∇u(s)∥2L2
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and ⟨︃
u(s)Wφ(s)

∇(detDφ(s))
detDφ(s)

, ∇u(s)
⟩︃
L2

≤ C ′ ∥u(s)∥L2 ∥∇u(s)∥L2 .

Using Lemma A.2.1, it follows that for all ε > 0(︁
(Lλu)(s) | u(s)

)︁
(H1)∗, H1 ≥ λ ∥u(s)∥2L2 + C ∥∇u(s)∥2L2 − C ′ ∥u(s)∥L2 ∥∇u(s)∥L2

≥ λ ∥u(s)∥2L2 + C ∥∇u(s)∥2L2 − C ′
(︃

1

2ε
∥u(s)∥2L2 +

ε

2
∥∇u(s)∥2L2

)︃
=

(︃
λ− C ′

2ε

)︃
∥u(s)∥2L2 +

(︃
C − C ′ε

2

)︃
∥∇u(s)∥2L2 .

Since C > 0, we can choose a small ε > 0 and a large λ > 0 such that

C − C ′ε

2
> 0 and λ− C ′

2ε
> 0.

Let a := min
{︁
C − C′ε

2 , λ− C′

2ε

}︁
> 0, then we continue the above inequality and obtain(︁

(Lλu)(s) | u(s)
)︁
(H1)∗, H1 ≥ a ∥u(s)∥2H1 ,

which completes the proof.

With the key Lemma 5.2.6, we complete our first step at once by applying Theorem 5.2.2

as the following theorem shows.

Theorem 5.2.7. Let p ≥ 2. Suppose that the parametrized initial function Q has values in

L2(Ω). If the Eulerian diffusion matrix is symmetric and positive definite and satisfies

max
{︂

sup
s∈ [0, t]

∥Uφ(s)∥∞, sup
s∈ [0, t]

∥U−1
φ(s)∥∞

}︂
<∞,

then there exists λ(φ) > 0 such that for all f ∈ L2
(︁
[0, t], (H1)∗

)︁
and θ ∈ Θ the initial value

problem ⎧⎨⎩ ∂su+ Lλu = f

u(0) = Q(θ)
(5.9)

has a unique solution in L2
(︁
[0, t], H1

)︁
, where Lλ : L2

(︁
[0, t], H1

)︁
→ L2

(︁
[0, t], (H1)∗

)︁
is given

by

((Lλu | u′)) =
∫︂ t

0

(︃
λ
⟨︁
u(s), u′(s)

⟩︁
L2 +

⟨︁
Wφ(s)∇u(s), ∇u′(s)

⟩︁
L2

−
⟨︃
u(s)Wφ(s)

∇(detDφ(s))
detDφ(s)

, ∇u′(s)
⟩︃
L2

)︃
ds.

(5.7)

and Wφ(s) =
(︁
Dφ(s)

)︁−1 (︁
Uφ(s) ◦ φ(s)

)︁
Dφ(s)−⊤.
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Proof. As in the proof of Lemma 5.2.6, we have

max
{︂

sup
s∈ [0, t]

∥φ(s)− id∥2,∞, sup
s∈ [0, t]

∥φ(s)−1 − id∥1,∞, sup
s∈ [0, t]

∥Wφ(s)∥∞
}︂
<∞,

which immediately implies Lλ ∈ L
(︁
L2
(︁
[0, t], H1

)︁
, L2

(︁
[0, t], (H1)∗

)︁)︁
for all λ ∈ R since⃓⃓

((Lλu | u′))
⃓⃓

≤ C
∫︂ t

0

(︂
∥u(s)∥L2 ∥u′(s)∥L2 + ∥∇u(s)∥L2 ∥∇u′(s)∥L2 + ∥u(s)∥L2 ∥∇u′(s)∥L2

)︂
ds

≤ C
∫︂ t

0
3 ∥u(s)∥H1 ∥u′(s)∥H1 ds

≤ 3C ∥u∥L2([0, t], H1) ∥u′∥L2([0, t], H1).

With λ(φ) > 0 and a(φ) > 0 chosen by Lemma 5.2.6, it follows that

((Lλu | u)) ≥
∫︂ t

0
a ∥u(s)∥2H1 ds = a ∥u∥2L2([0, t], H1),

which shows that Lλ is coercive. We conclude that the initial value problem (5.9) has a

unique solution in L2
(︁
[0, t], H1

)︁
by invoking Theorem 5.2.2.

We prepare to enter the second step. With a fixed λ chosen by Lemma 5.2.6, we

consider the initial value problem on a subinterval [a, b] ⊂ [0, t] given f ∈ L2
(︁
[a, b], (H1)∗

)︁
and ua ∈ L2(Ω) as follows:

on [a, b] :

⎧⎨⎩ ∂su+ Lλu = f

u(a) = ua
. (5.11)

In the proof of Lemma 5.2.6, we observe that λ is chosen according to the uniform bound

of φ(s), φ(s)−1, Uφ(s), and U
−1
φ(s) on the entire interval [0, t], so we can still go through the

same proof and obtain the same λ when we replace the interval [0, t] by any subinterval in

the proof. We summarize this observation into the following corollary.

Corollary 5.2.8. Let λ be chosen as in Lemma 5.2.6. For all f ∈ L2
(︁
[a, b], (H1)∗

)︁
and

ua ∈ L2(Ω), the initial value problem (5.11) has a unique solution in L2
(︁
[a, b], H1

)︁
.

We present our second step in the following theorem, whose proof is inspired by [41,

Section 9.2.1, Theorem 2].

Theorem 5.2.9. Suppose that the conditions in Theorem 5.2.7 are satisfied, and let λ be

chosen accordingly. If the reaction function R is bounded and Lipschitz, then for all θ ∈ Θ
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the initial value problem ⎧⎨⎩ ∂su+ Lλu = gλ(u)

u(0) = Q(θ)
(5.6)

has a unique solution u ∈ L2
(︁
[0, t], H1

)︁
, where gλ(u) ∈ L2

(︁
[0, t], L2

)︁
⊂ L2

(︁
[0, t], (H1)∗

)︁
is

given by

gλ(u)(s) = e−λsR

(︃
eλs u(s)

detDφ(s)

)︃
detDφ(s) for almost every s ∈ [0, t]. (5.8)

Proof. We first fix an s0 ∈ [0, t], and let η > 0 be arbitrary. Define

X := L2
(︁
[s0, s0 + η], H1

)︁
∩ C

(︁
[s0, s0 + η], L2

)︁
.

Given w ∈ X and us0 ∈ L2(Ω), we consider the initial value problem

on [s0, s0 + η] :

⎧⎨⎩ ∂su+ Lλu = gλ(w)

u(s0) = us0
. (5.12)

Corollary 5.2.8 and Remark 5.2.3 yield a unique solution uw ∈ X to the problem (5.12).

We can thus define a mapping F : X → X by F(w) = uw. We equip the set X with the

complete metric

d(u, u′) := sup
s∈ [s0, s0 + η]

∥u(s)− u′(s)∥L2 .

We are going to show that F is a contraction when η is small and apply the Banach fixed

point theorem.

Let w, w′ ∈ X. We want to show that there exists c < 1 such that d(F(w),F(w′)) ≤
c d(w,w′). Denote by u := F(w) and u′ := F(w′) the solutions to (5.12) given w and w′

respectively, that is, u and u′ satisfy⎧⎨⎩ ∂su+ Lλu = gλ(w)

u(s0) = us0
and

⎧⎨⎩ ∂su
′ + Lλu′ = gλ(w

′)

u′(s0) = us0
.

Subtracting the two operational equations in L2
(︁
[s0, s0+η], (H

1)∗
)︁
and evaluating at u−u′,

we obtain that for almost every s ∈ [s0, s0 + η](︂(︁
∂s (u− u′)

)︁
(s) (u− u′)(s)

)︂
(H1)∗, H1

+
(︂(︁
Lλ (u− u′)

)︁
(s) (u− u′)(s)

)︂
(H1)∗, H1

=
(︂(︁
gλ(w)− gλ(w′)

)︁
(s) (u− u′)(s)

)︂
(H1)∗, H1

. (5.13)

We recall the almost pointwise coercivity of Lλ from Lemma 5.2.6:(︂(︁
Lλ (u− u′)

)︁
(s) (u− u′)(s)

)︂
(H1)∗, H1

≥ a ∥(u− u′)(s)∥2H1 . (5.14)
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With Lemma 5.2.4, the inequality (5.14), the equation (5.13), and Lemma A.2.1 we have

1

2

(︁
∂s∥(u− u′)(·)∥2L2

)︁
(s) + a ∥(u− u′)(s)∥2H1

≤
(︂(︁
∂s (u− u′)

)︁
(s) (u− u′)(s)

)︂
(H1)∗, H1

+
(︂(︁
Lλ (u− u′)

)︁
(s) (u− u′)(s)

)︂
(H1)∗, H1

≤
⃦⃦(︁
gλ(w)− gλ(w′)

)︁
(s)
⃦⃦
(H1)∗

⃦⃦
(u− u′)(s)

⃦⃦
H1

≤ 1

2 (2a)

⃦⃦(︁
gλ(w)− gλ(w′)

)︁
(s)
⃦⃦2
(H1)∗

+
2a

2

⃦⃦
(u− u′)(s)

⃦⃦2
H1 . (5.15)

Note that the Lipschitz assumption on the reaction function R implies⃦⃦(︁
gλ(w)− gλ(w′)

)︁
(s)
⃦⃦2
(H1)∗

≤ C
⃦⃦(︁
gλ(w)− gλ(w′)

)︁
(s)
⃦⃦2
L2 ≤ C ∥(w − w′)(s)∥2L2 . (5.16)

Combining estimates (5.15) and (5.16) gives us(︁
∂s∥(u− u′)(·)∥2L2

)︁
(s) ≤ C ∥(w − w′)(s)∥2L2 .

Consequently,

∥(u− u′)(s)∥2L2 = ∥(u− u′)(s0)∥2L2 +

∫︂ s

s0

(∂s∥(u− u′)(·)∥2L2)(s
′) ds′

≤ 0 +

∫︂ s

s0

C ∥(w − w′)(s′)∥2L2 ds
′

≤ C η d2(w,w′),

which, by taking the supremum over [s0, s0 + η], further gives

d(F(w),F(w′)) = d(u, u′) ≤
√︁
C η d(w,w′).

Therefore, F is a contraction when
√︁
C η < 1. With such chosen η > 0, the problem (5.12)

has a unique solution in L2
(︁
[s0, s0 + η], H1

)︁
∩ C([s0, s0 + η], L2).

Since η is independent of s ∈ [0, t], there exists a unique solution on any subinterval

with length less than or equal to η. In particular, we consider N subintervals I1 := [0, η],

I2 := [η/2, 3η/2], I3 := [η, 2η], . . . , IN := [N−1
2 η, t], whose union equals to [0, t] and |Ii| ≤ η.

Denote the unique solution on [0, η] with the initial condition Q(θ) ∈ L2(Ω) by u1, denote

the unique solution on [η/2, 3η/2] with the initial condition u1(η/2) ∈ L2(Ω) by u2, and so

on. After constructing solutions u1, . . . , uN on subintervals, we let

u(s) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
u1(s), if t ∈ I1 ;
...

uN (s), if t ∈ IN ,
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which, by uniqueness of solutions, is well defined on overlapping intervals. We show that u

is a solution to the problem

on [0, t] :

⎧⎨⎩ ∂su+ Lλu = gλ(u)

u(0) = Q(θ)
. (5.6)

By construction, we have u ∈ L2
(︁
[0, t], H1

)︁
∩ C

(︁
[0, t], L2

)︁
and u(0) = Q(θ), so it remains

to verify that u satisfies the operational equation in L2
(︁
[0, t], (H1)∗

)︁
. Let {ρi}Ni=1 be a C∞

partition of unity subordinate to the closed intervals {Ii}Ni=1 with suitable adjustments at

endpoints of intervals. For any ψ ∈ L2
(︁
[0, t], H1

)︁
, since ρi ψ ∈ L2

(︁
Ii, H

1
)︁
, we obtain from

the construction of u that

(∂su+ Lλu | ψ) =
(︂
∂su+ Lλu

N∑︂
i=1

ρi ψ
)︂
=

N∑︂
i=1

(∂sui + Lλui | ρi ψ)

=

N∑︂
i=1

(gλ(ui) | ρi ψ) =
(︂
gλ(u)

N∑︂
i=1

ρi ψ
)︂
= (gλ(u) | ψ),

and we conclude that u is a solution to (5.6). From the uniqueness of solutions on subin-

tervals, it is clear that the solution u is unique, and the proof is complete.

We summarize the results of this section into the following theorem.

Theorem 5.2.10. Let p ≥ 2. Suppose that:

• The parametrized initial function Q has values in L2(Ω).

• For all φ ∈ C([0, t],Diff pid (R
d)), the Eulerian diffusion matrix is symmetric and positive

definite and satisfies

max
{︂

sup
s∈ [0, t]

∥Uφ(s)∥∞, sup
s∈ [0, t]

∥U−1
φ(s)∥∞

}︂
<∞.

• The reaction function R is bounded and Lipschitz.

Then the solution mapping

T :
⋃︂

t∈ [0, T ]

C([0, t],Diff pid (R
d))×Θ→

⋃︂
t∈ [0, T ]

(︂
L2
(︁
[0, t], H1

)︁
∩ C

(︁
[0, t], L2

)︁)︂
is well defined.

5.2.4 Existence of minimizers

We aim to apply Corollay 4.1.12 as in the problem of piecewise-rigid motion, although veri-

fying the conditions related to β tφ, θ becomes much more involved. We first tackle difficulties
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arising from the PDE model in Theorem 5.2.11, then we prove the compatibility of Θ and

MA in Proposition 5.2.14 by checking that the conditions in Corollay 4.1.12 are satisfied.

The existence of minimizers will then follow. According to Theorem 5.2.10, we denote the

unique solution to the PDE model by τφ, θ := T (φ, θ)

Theorem 5.2.11. Let p ≥ 2. Suppose that the parametrized initial function Q : Θ→ L2(Ω)

and the reaction function R are both bounded and Lipschitz. Given r > 0, suppose that there

are constants b(r), ℓ(r) > 0 such that for all ξ, ζ ∈ B(id , r) the Eulerian diffusion matrix is

symmetric and positive definite and satisfies

max
{︂
∥Uξ∥∞, ∥U−1

ξ ∥∞
}︂
≤ b and ∥Uξ ◦ ξ − Uζ ◦ ζ∥∞ ≤ ℓ ∥ξ − ζ∥Ωp,∞.

Then there exists a constant c(r) > 0 such that

∥τφ, θ(t)− τψ, ω(t)∥L2 ≤ c
(︂

sup
s∈ [0, t]

∥φ(s)− ψ(s)∥Ωp,∞ + |θ − ω|
)︂

for all φ,ψ ∈ C([0, t],B(id , r)) and all θ, ω ∈ Θ.

Proof. We prepare some preliminary estimates in the following two claims. From the as-

sumption of the Eulerian diffusion matrix, Lemma 5.2.6, and Theorem 5.2.9, there exist

λ(r) > 0 and a(r) > 0 such that for all φ ∈ C([0, t],B(id , r)) and all u ∈ L2
(︁
[0, t], H1

)︁
(︁
(Lφ, λu)(s) | u(s)

)︁
(H1)∗, H1 ≥ a ∥u(s)∥2H1 for almost every s ∈ [0, t],

and such that for all φ ∈ C([0, t],B(id , r)) and θ ∈ Θ there exists a unique solution uφ, θ to

the initial value problem ⎧⎨⎩ ∂su+ Lφ, λu = gφ, λ(u)

u(0) = Q(θ)
. (5.6)

We recall

((Lφ, λu | u′)) =
∫︂ t

0

(︃
λ
⟨︁
u(s), u′(s)

⟩︁
L2 +

⟨︁
Wφ(s)∇u(s), ∇u′(s)

⟩︁
L2

−
⟨︃
u(s)Wφ(s)

∇(detDφ(s))
detDφ(s)

, ∇u′(s)
⟩︃
L2

)︃
ds

(5.7)

and Wφ(s) =
(︁
Dφ(s)

)︁−1 (︁
Uφ(s) ◦φ(s)

)︁
Dφ(s)−⊤, where we have changed the notation from

Lλ to Lφ, λ to accommodate our current discussion on various φ ∈ C([0, t],B(id , r)).

Claim 5.2.12. For all φ ∈ C([0, t],B(id , r)), all u ∈ L2
(︁
[0, t], H1

)︁
, and almost every
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s ∈ [0, t], we have

∥(Lφ, λu)(s)− (Lψ, λu)(s)∥(H1)∗ ≤ Cr ∥φ(s)− ψ(s)∥Ωp,∞ ∥u(s)∥H1 .

Proof. For an arbitrary v ∈ H1(Ω), direct computation gives⃓⃓⃓⃓(︂
(Lφ, λu)(s)− (Lψ, λu)(s) v

)︂
(H1)∗, H1

⃓⃓⃓⃓

≤
⃓⃓⃓⟨︁
(Wφ(s) −Wψ(s))∇u(s), ∇v

⟩︁
L2(Ω)

⃓⃓⃓
+

⃓⃓⃓⃓
⃓
⟨︃
u(s)

(︃
Wφ(s)

∇(detDφ(s))
detDφ(s)

−Wψ(s)
∇(detDψ(s))
detDψ(s)

)︃
, ∇v

⟩︃
L2(Ω)

⃓⃓⃓⃓
⃓ .

Since φ,ψ ∈ C([0, t],B(id , r)), p ≥ 2, and sup
s∈ [0, t]

∥Uφ(s)∥∞ ≤ b, for all s ∈ [0, t] we have

max

{︃
∥Wφ(s)∥∞, ∥Wψ(s)∥∞,

⃦⃦⃦⃦∇(detDφ(s))
detDφ(s)

⃦⃦⃦⃦
∞
,

⃦⃦⃦⃦∇(detDψ(s))
detDψ(s)

⃦⃦⃦⃦
∞

}︃
≤ Cr

and ⃦⃦⃦⃦∇(detDφ(s))
detDφ(s)

− ∇(detDψ(s))
detDψ(s)

⃦⃦⃦⃦Ω
∞
≤ Cr ∥φ(s)− ψ(s)∥Ωp,∞.

The Lipschitz assumption of the Eulerian diffusion matrix implies

∥Wφ(s) −Wψ(s)∥Ω∞ ≤ Cr ∥φ(s)− ψ(s)∥Ωp,∞.

We conclude that⃓⃓⃓⃓(︂
(Lφ, λu)(s)− (Lψ, λu)(s) v

)︂
(H1)∗, H1

⃓⃓⃓⃓
≤ Cr ∥φ(s)− ψ(s)∥Ωp,∞ ∥u(s)∥H1 ∥v∥H1 .

We also recall

gφ, λ(u)(s) = e−λsR

(︃
eλs u(s)

detDφ(s)

)︃
detDφ(s) for almost every s ∈ [0, t], (5.8)

where we have changed the notation from gλ to gφ, λ.

Claim 5.2.13. For all φ ∈ C([0, t],B(id , r)) and all θ ∈ Θ, we have

∥uφ, θ(s)∥L2 ≤ Cr for all s ∈ [0, t] and

∫︂ t

0
∥uφ, θ(s)∥2H1 ds ≤ C ′

r.

Proof. Since uφ, θ satisfies⎧⎨⎩ (∂suφ, θ)(s) + (Lφ, λ uφ, θ)(s) = gφ, λ(uφ, θ)(s) for almost every s ∈ [0, t]

uφ, θ(0) = Q(θ)
,
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we have from Lemma 5.2.4 and the almost pointwise coercivity of Lφ, λ that

1

2

(︁
∂s∥uφ, θ(·)∥2L2

)︁
(s)

≤
(︂
(∂suφ, θ)(s) uφ, θ(s)

)︂
(H1)∗, H1

+
(︂
(Lφ, λ uφ, θ)(s) uφ, θ(s)

)︂
(H1)∗, H1

=
⟨︂
gφ, λ(uφ, θ)(s), uφ, θ(s)

⟩︂
L2(Ω)

≤ Cr
2
∥R∥2∞ vol(Ω) +

1

2
∥uφ, θ(s)∥2L2 . (5.17)

It follows that

∥uφ, θ(s)∥2L2 = ∥uφ, θ(0)∥2L2 +

∫︂ s

0

(︁
∂s∥uφ, θ(·)∥2L2

)︁
(s′) ds′

≤ sup
θ∈Θ
∥Q(θ)∥2L2 + Cr ∥R∥2∞ vol(Ω) T +

∫︂ s

0
∥uφ, θ(s′)∥2L2 ds

′,

so Gronwall’s lemma gives

∥uφ, θ(s)∥L2 ≤
(︂

sup
θ∈Θ
∥Q(θ)∥2L2 + Cr ∥R∥2∞ vol(Ω) T

)︂
exp(T ) = C ′

r, (5.18)

which proves the first part of the claim.

The almost pointwise coercivity of Lφ, λ and the inequality (5.17) also shows that

1

2

(︁
∂s∥uφ, θ(·)∥2L2

)︁
(s) + a ∥uφ, θ(s)∥2H1

≤
(︂
(∂suφ, θ)(s) uφ, θ(s)

)︂
(H1)∗, H1

+
(︂
(Lφ, λ uφ, θ)(s) uφ, θ(s)

)︂
(H1)∗, H1

≤ Cr
2
∥R∥2∞ vol(Ω) +

1

2
∥uφ, θ(s)∥2L2 ,

which implies

a ∥uφ, θ(s)∥2H1 ≤
Cr
2
∥R∥2∞ vol(Ω) +

1

2
∥uφ, θ(s)∥2L2 −

1

2

(︁
∂s∥uφ, θ(·)∥2L2

)︁
(s).

Integrating over [0, t], Lemma 5.2.4 and the estimate (5.18) then yield

a

∫︂ t

0
∥uφ, θ(s)∥2H1 ds

≤ Cr
2
∥R∥2∞ vol(Ω) T +

1

2

∫︂ t

0
∥uφ, θ(s)∥2L2 ds−

1

2

(︂
∥uφ, θ(t)∥2L2 − ∥uφ, θ(0)∥2L2

)︂
≤ Cr

2
∥R∥2∞ vol(Ω) T +

(︃
T

2
+ 1

)︃
C ′
r,

that is,
∫︁ t
0 ∥uφ, θ(s)∥2H1 ds ≤ C ′′

r , which proves the second part of the claim.
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We are now ready to estimate ∥τφ, θ(t) − τψ, ω(t)∥L2 . Recall the change of function

u(t) = e−λt τ(t) detDφ(t), thus it suffices to show that

∥uφ, θ(t)− uψ, ω(t)∥L2 ≤ Cr
(︂

sup
s∈ [0, t]

∥φ(s)− ψ(s)∥Ωp,∞ + |θ − ω|
)︂

since φ,ψ ∈ C([0, t],B(id , r)), p ≥ 2, and ∥uφ, θ(t)∥L2 , ∥uψ, ω(t)∥L2 ≤ Cr by Claim 5.2.13.

The unique solutions uφ, θ and uψ, ω satisfy⎧⎨⎩ (∂suφ, θ)(s) + (Lφ, λ uφ, θ)(s) = gφ, λ(uφ, θ)(s) for almost every s ∈ [0, t]

uφ, θ(0) = Q(θ)

and ⎧⎨⎩ (∂suψ, ω)(s) + (Lψ, λ uψ, ω)(s) = gψ, λ(uψ, ω)(s) for almost every s ∈ [0, t]

uψ, ω(0) = Q(ω)
.

Lemma 5.2.4 and the almost pointwise coercivity of Lφ, λ again give

1

2

(︁
∂s∥(uφ, θ − uψ, ω)(·)∥2L2

)︁
(s) + a ∥(uφ, θ − uψ, ω)(s)∥2H1

≤
(︂(︁
∂s (uφ, θ − uψ, ω)

)︁
(s) (uφ, θ − uψ, ω)(s)

)︂
(H1)∗, H1

+
(︂(︁
Lφ, λ (uφ, θ − uψ, ω)

)︁
(s) (uφ, θ − uψ, ω)(s)

)︂
(H1)∗, H1

= −
(︂(︁

(Lφ, λ − Lψ, λ)uψ, ω
)︁
(s) (uφ, θ − uψ, ω)(s)

)︂
(H1)∗, H1

+
⟨︂
gφ, λ(uφ, θ)(s)− gψ, λ(uψ, ω)(s), (uφ, θ − uψ, ω)(s)

⟩︂
L2(Ω)

.

From

gφ, λ(u)(s) = e−λsR

(︃
eλs u(s)

detDφ(s)

)︃
detDφ(s) for almost every s ∈ [0, t] (5.8)

and the assumption that R is bounded and Lipschitz, we obtain

∥gφ, λ(uφ, θ)(s)− gψ, λ(uψ, ω)(s)∥L2(Ω) ≤ Cr
(︂
∥(uφ, θ − uψ, ω)(s)∥L2 + ∥φ(s)− ψ(s)∥Ωp,∞

)︂
.

Together with Claim 5.2.12, we continue the above inequality and write

1

2

(︁
∂s∥(uφ, θ − uψ, ω)(·)∥2L2

)︁
(s) + a ∥(uφ, θ − uψ, ω)(s)∥2H1

≤ Cr
(︂
∥φ(s)− ψ(s)∥Ωp,∞ ∥uψ, ω(s)∥H1 ∥(uφ, θ − uψ, ω)(s)∥H1

+
(︁
∥(uφ, θ − uψ, ω)(s)∥L2 + ∥φ(s)− ψ(s)∥Ωp,∞

)︁
∥(uφ, θ − uψ, ω)(s)∥L2

)︂
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≤ Cr
(︃

1

2ε

(︂
∥φ(s)− ψ(s)∥Ωp,∞

)︂2
∥uψ, ω(s)∥2H1 +

ε

2
∥(uφ, θ − uψ, ω)(s)∥2H1

+ ∥(uφ, θ − uψ, ω)(s)∥2L2 +
1

2

(︂
∥φ(s)− ψ(s)∥Ωp,∞

)︂2
+

1

2
∥(uφ, θ − uψ, ω)(s)∥2L2

)︃
.

By choosing ε > 0 such that Cr
ε
2 < a, we have(︁

∂s∥(uφ, θ − uψ, ω)(·)∥2L2

)︁
(s)

≤ Cr
(︃(︂
∥φ(s)− ψ(s)∥Ωp,∞

)︂2 (︁
∥uψ, ω(s)∥2H1 + 1

)︁
+ ∥(uφ, θ − uψ, ω)(s)∥2L2

)︃
.

Thus

∥(uφ, θ − uψ, ω)(s)∥2L2

= ∥(uφ, θ − uψ, ω)(0)∥2L2 +

∫︂ s

0

(︁
∂s∥(uφ, θ − uψ, ω)(·)∥2L2

)︁
(s′) ds′

≤ ∥Q(θ)−Q(ω)∥2L2 + Cr

(︂
sup

s∈ [0, t]
∥φ(s)− ψ(s)∥Ωp,∞

)︂2(︃∫︂ t

0
∥uψ, ω(s)∥2H1 ds+ T

)︃
+ Cr

∫︂ s

0
∥(uφ, θ − uψ, ω)(s′)∥2L2 ds

′.

Applying Claim 5.2.13 and Gronwall’s lemma leads to

∥(uφ, θ − uψ, ω)(s)∥2L2 ≤ Cr
(︃
∥Q(θ)−Q(ω)∥2L2 +

(︂
sup

s∈ [0, t]
∥φ(s)− ψ(s)∥Ωp,∞

)︂2)︃
.

With the Lipschitz assumption of Q and the identity
√
a+ b ≤ √a +

√
b, we conclude by

letting s = t that

∥(uφ, θ − uψ, ω)(t)∥L2 ≤ Cr
(︂
|θ − ω|+ sup

s∈ [0, t]
∥φ(s)− ψ(s)∥Ωp,∞

)︂
.

We now prove the existence of minimizers by applying Corollay 4.1.12. We keep the

elasticity tensor and the Eulerian diffusion matrix in their abstract forms in the following

proposition. The specific forms in our minimization problem will follow as a corollary.

Proposition 5.2.14. Let p ≥ 2. Suppose that the parametrized initial function Q : Θ →
L2(Ω), the reaction function R , and the atrophy function α are bounded and Lipschitz.

Given Ω ∈ S , suppose in addition that:

• The function

s ↦→
∫︂
φ(s,Ω)

Eφ(s)(εv, εv′) dx

is continuous for all φ ∈ C([0, t],Diff pid (R
d)) and all v, v′ ∈ V .
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• For each r > 0 there is a constant ℓE(r) > 0 such that⃓⃓⃓⃓
⃓
∫︂
ξ(Ω)
Eξ(εv, εv′) dx−

∫︂
ζ(Ω)
Eζ(εv, εv′) dx

⃓⃓⃓⃓
⃓ ≤ ℓE ∥ξ − ζ∥Ωp,∞

for all ξ, ζ ∈ B(id , r) and all v, v′ ∈ V .

• For each r > 0, there are constants b(r), ℓU (r) > 0 such that the Eulerian diffusion

matrix is symmetric and positive definite and satisfies

max
{︂
∥Uξ∥∞, ∥U−1

ξ ∥∞
}︂
≤ b and ∥Uξ ◦ ξ − Uζ ◦ ζ∥∞ ≤ ℓU ∥ξ − ζ∥Ωp,∞

for all ξ, ζ ∈ B(id , r).

Then Θ andMA are compatible.

Proof. We recall that

(A s
φ v | v′) =

∫︂
φ(s,Ω)

Eφ(s)(εv, εv′) dx

and

(β sφ, θ | v) =
∫︂
φ(s,Ω)

χ α
(︁
τφ, θ(s) ◦ φ(s)−1

)︁
(−div v) dx.

The conditions in Corollay 4.1.12 related to A s
φ are satisfied by the given assumptions. In

addition, the function s ↦→ (β sφ, θ | v) is clearly Lebesgue measurable. It remains to show

that β sφ, θ is bounded and Lipschitz in φ and that the modelMA is continuous in θ.

Note that ∥β sφ, θ∥V ∗ is uniformly bounded by ∥α∥∞ ∥χ∥L1 . To show that φ ↦→ β sφ, θ is

Lipschitz in C([0, t],B(id , r)), we make a change of variables, use the Lipschitz continuity

of α, Theorem 5.2.11, and the boundedness of α, then arrive at the desired result

∥β sφ, θ − β sψ, θ∥V ∗ ≤ Cr sup
s′ ∈ [0, s]

∥φ(s′)− ψ(s′)∥Ωp,∞.

Finally, assume that θn → θ in Θ ⊂ Rk, then for 0 ≤ j ≤ p⃓⃓⃓⃓∫︂ t

0
Dj
(︂
MA(φ [0, s], θn(s))(φ(s, x))

)︂
ds−

∫︂ t

0
Dj
(︂
MA(φ [0, s], θ(s))(φ(s, x))

)︂
ds

⃓⃓⃓⃓

≤
∫︂ t

0
Cφ cV

⃦⃦⃦
(γK−1

V +A s
φ)

−1 (β sφ, θn − β sφ, θ)
⃦⃦⃦
V
ds

≤ Cφ |θn − θ| → 0,

where the last inequality follows from
⃦⃦
(γK−1

V +A s
φ)

−1
⃦⃦

L (V ∗,V )
≤ 1

γ and Theorem 5.2.11.

Therefore, by Corollay 4.1.12, Θ andMA are compatible.

Since our layered elasticity Eξ ∗Φ (page 43) and the specific form of the Eulerian diffusion
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matrix (3.22) satisfy the conditions in Proposition 5.2.14, we have established the existence

of minimizers for the problem of atrophy.

Corollary 5.2.15. Let p ≥ 2 and let Θ ⊂ Rk be a compact set. Suppose that the

parametrized initial function Q : Θ → L2(Ω), the reaction function R, and the atrophy

function α are bounded and Lipschitz. If the discrepancy function ρ is continuous with

respect to ∥ · ∥p,∞, then the minimization problem

min
θ∈Θ

ρ(φ(T,Ω0), Ωtarg)

subject to

φ(t, x) = x+

∫︂ t

0
MA(φ [0, s], θ)(φ(s, x)) ds for all (t, x) ∈ [0, T ]× Rd

has a minimizer.

We remark that the conditions of Proposition 5.2.14 are satisfied in particular when the

elasticity tensor and the Eulerian diffusion matrix are unaffected by deformations. Exam-

ples include the isotropic elasticity tensor Eξ := Eiso (see (3.6)) and the isotropic diffusion

matrix Uξ := r Id. More generally, the conditions of Proposition 5.2.14 can be adjusted

to encompass history-dependent elasticity tensor Eφ [0,t]
and diffusion matrix Uφ [0,t]

, e.g.,

when elasticity and diffusion are altered by chemical propagation.

We recall from (3.24) and (3.27) that in our two examples we adjust our formulation by

a cutoff function χ. The reason is that in order to apply Theorem 4.1.1(ii), the deformation

vector fields must satisfy

∥vφ(s)∥V ≤ g(s)
(︂
1 + sup

s′ ∈ [0, s]
∥φ(s′)− id∥∞

)︂
. (4.3)

If we can prove the long-time existence and uniqueness of solutions under the relaxed con-

dition

∥vφ(s)∥V ≤ g(s)
(︂
1 + sup

s′ ∈ [0, s]
∥φ(s′)− id∥1,∞

)︂
, (5.19)

then we can get rid of this artificial modification. The difficulty of this relaxation in our

current proof arises in Claim 4.3.5 when we try to prove
∫︁ T ′

0 ∥vφ(t)∥p+1,∞ dt < ∞. If we

only have (5.19), then

φ(t, x) = x+

∫︂ t

0
vφ(s, φ(s, x)) ds for all x ∈ Rd (4.1)
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will imply, for every t′ ∈ [0, t],

∥φ(t′)− id∥1,∞ ≤
∫︂ t

0
∥vφ(s) ◦ φ(s)∥1,∞ ds

≤
∫︂ t

0
Cφ(s) cV g(s)

(︂
1 + sup

s′ ∈ [0, s]
∥φ(s′)− id∥1,∞

)︂
ds.

Because of the additional term Cφ(s), we cannot invoke Grönwall’s lemma and follow the

same approach as the one in Claim 4.3.5 to first bound sup
s′ ∈ [0, s]

∥φ(s′) − id∥1,∞ and then

obtain
∫︁ T ′

0 ∥vφ(t)∥p+1,∞ dt < ∞. We will need a different technique to carry out the proof

under the relaxed condition (5.19).
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Computation

This chapter is devoted to the objective function evaluation of our two examples. We

discuss numerical issues and the objective function evaluation of piecewise-rigid motion in

Secion 6.1. In Section 6.2, we present in detail the objective function evaluation of the

atrophy model. Finally, we cover our GPU implementation to accelerate computation in

Section 6.3.

6.1 Numerical Formulation of Piecewise-rigid Motion

We have discussed the formulation of piecewise-rigid motion using the energy form in Sec-

tion 5.1.1 and using constraints Section 5.1.2. However, both formulations suffer from an

unwelcome numerical error illustrated in Figure 6.1. With a fixed time-dependent deforma-

tion vector field v corresponding to a piecewise-rigid motion, we recall that the motion is

the solution to the initial value problem

φ(t, x) = x+

∫︂ t

0
v(s, φ(s, x)) ds.

Hence, although φ is a piecewise-rigid motion theoretically, any numerical error introduced

in the time quadrature will damage the rigidity. Imagine that a ball turns into an egg shape

after it goes through a “rigid motion.” In this section, we consider a numerical formulation

which guarantees the rigidity of shape components and empirically leads to a piecewise-rigid

motion.

We first discretize our initial shape Ω0 =
⋃︁N
i=1Ωi into m nodes

⋃︁N
i=1{q

(i)
j,0}mi

j=1, where

m = m1 + · · · + mN and q
(i)
j,0 ∈ Rd. We recall from Section 3.1.1 that for a parameter

θ = (u, ω) composed of an Eulerian linear velocity of the origin and an angular velocity, the
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!1 0 1

!1

0

1

(a) A rectangle rotating coun-
terclockwise rigidly.

!1 0 1

!1

0

1

(b) Numerical trajectory of a
landmark on the rectangle.

Figure 6.1: Rigidity is deteriorated by numerical error.

rigid velocity field is given by a linear operator

(V θ)(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
u+ ω

⎡⎣ 0 −1
1 0

⎤⎦x, if d = 2 ;

u+ ω × x, if d = 3 .

Let (θ(1)(t), . . . , θ(N)(t)) be the parameter for each shape component at time t. We have

seen that we may lose rigidity numerically if we compute the position of nodes at time t by

q
(i)
j (t) = q

(i)
j,0 +

∫︂ t

0

(︁
V θ(i)(s)

)︁(︁
q
(i)
j (s)

)︁
ds.

To obtain a piecewise-rigid motion numerically, now we use our last characterization of rigid

motions, Proposition 3.1.1(ii), which says that φ is a rigid motion if and only if

φ(t, x′) = φ(t, x) +R(t) (x′ − x)

for all t ∈ [0, T ] and all x, x′ ∈ Rd, where R(t) ∈ Rd×d is a rotation. We fix x to be a chosen

center of rotation c0 and define c(t) := φ(t, c0), then the above equation is equivalent to

φ(t, x′) = c(t) +R(t) (x′ − c0), (6.1)

which motivates the definition of the following Lagrange position mapping

P(c, α, x, c0) := c+R(α) (x− c0),

where, if d = 2, then α ∈ R and

R(α) :=
[︄

cosα − sinα

sinα cosα

]︄
;
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6.1. Numerical Formulation of Piecewise-rigid Motion

if d = 3, then α = (α1, α2, α3) ∈ R3 and

R(α) :=

⎡⎢⎢⎣ cosα3 − sinα3 0

sinα3 cosα3 0

0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣ cosα2 0 − sinα2

0 1 0

sinα2 0 cosα2

⎤⎥⎥⎦
⎡⎢⎢⎣ 1 0 0

0 cosα1 − sinα1

0 sinα1 cosα1

⎤⎥⎥⎦ .
With our discretized initial shape

⋃︁N
i=1{q

(i)
j,0}mi

j=1 and the chosen rotation centers {c(i)0 }Ni=1,

given θ(t) =
(︁
u(1)(t), ω(1)(t), . . . , u(N)(t), ω(N)(t)

)︁
composed of Lagrange linear velocities of

rotation centers and angular velocities for each shape component, we compute the positions

of nodes by ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

c(i)(t) = c
(i)
0 +

∫︂ t

0
u(i)(s) ds

α(i)(t) =

∫︂ t

0
ω(i)(s) ds

q
(i)
j (t) = P

(︁
c(i)(t), α(i)(t), q

(i)
j,0, c

(i)
0

)︁
.

The initial angle is set to be 0 so that the deformation is identity at time 0, that is,

P
(︁
c(i)(0), α(i)(0), x, c

(i)
0

)︁
= P

(︁
c
(i)
0 , 0, x, c

(i)
0

)︁
= x.

We notice that in this approach the positions of nodes at time t are computed directly by

rotation and translation of the initial nodes through the position mapping P, thus we are

assured that the rigidity is preserved.

Next we consider the objective function evaluation. Recall that our minimization prob-

lem is

min
θ∈L2([0, T ],Rk)

(︃
1

2

∫︂ T

0

(︂
∥v(t)∥2V + |θ(t)|2

)︂
dt+ ρ

(︁
φθ(T,Ω0), Ωtarg

)︁)︃
with v(t, x) ≈ (V θi(t))(x) for x ∈ φθ(t, Ωi). Here we focus on the computation of ∥v(t)∥2V .
Before we discuss this computation, we first show how to compute velocities at nodes using

our new formulation. We have from (6.1) that

φ̇(t, x′) = ċ(t) + Ṙ(t) (x′ − c0),

which gives rise to the definition of the Lagrange velocity mapping

Ṗ(u, ω, α, x, c0) := u+ Ṙ(ω, α) (x− c0),

where, if d = 2, then ω, α ∈ R and

Ṙ(ω, α) := ω

[︄
− sinα − cosα

cosα − sinα

]︄
;
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if d = 3, then ω = (ω1, ω2, ω3) ∈ R3, α = (α1, α2, α3) ∈ R3, and

Ṙ(ω, α) := ω1

⎡⎢⎢⎣ cosα3 − sinα3 0

sinα3 cosα3 0

0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣ cosα2 0 − sinα2

0 1 0

sinα2 0 cosα2

⎤⎥⎥⎦
⎡⎢⎢⎣ 0 0 0

0 − sinα1 − cosα1

0 cosα1 − sinα1

⎤⎥⎥⎦

+ ω2

⎡⎢⎢⎣ cosα3 − sinα3 0

sinα3 cosα3 0

0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣ − sinα2 0 − cosα2

0 0 0

cosα2 0 − sinα2

⎤⎥⎥⎦
⎡⎢⎢⎣ 1 0 0

0 cosα1 − sinα1

0 sinα1 cosα1

⎤⎥⎥⎦

+ ω3

⎡⎢⎢⎣ − sinα3 − cosα3 0

cosα3 − sinα3 0

0 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣ cosα2 0 − sinα2

0 1 0

sinα2 0 cosα2

⎤⎥⎥⎦
⎡⎢⎢⎣ 1 0 0

0 cosα1 − sinα1

0 sinα1 cosα1

⎤⎥⎥⎦ .
We hence compute velocities at nodes by⎧⎪⎨⎪⎩

α(i)(t) =

∫︂ t

0
ω(i)(s) ds

v
(i)
j (t) = Ṗ

(︁
u(i)(t), ω(i)(t), α(i)(t), q

(i)
j,0, c

(i)
0

)︁ .

With velocities at nodes at hand, we now examine the discretized minimization problem

min
θ∈L2([0, T ],Rk)

(︃
1

2

∫︂ T

0

(︂
∥v(t)∥2V + |θ(t)|2

)︂
dt+ ρ

(︂
{q(i)j (T )}i,j , {q(i)j,targ}i,j

)︂)︃
.

After discretization, note that ρ becomes a function of {q(i)j (T )}i,j , instead of a function

of φθ(T,Ω0). Thus only the end points of trajectories of nodes will affect the discretized

discrepancy function. It follows that only velocities at nodes, which affect the trajectories

of nodes, will affect the discretized discrepancy function. Thus the discretized minimization

problem is equivalent to

min
θ∈L2([0, T ],Rk)

(︃
1

2

∫︂ T

0

(︂
∥v∗(t)∥2V + |θ(t)|2

)︂
dt+ ρ

(︂
{q(i)j (T )}i,j , {q(i)j,targ}i,j

)︂)︃
,

where

v∗(t) = argmin
v′ ∈V

{︂
∥v′∥2V : v′

(︁
q
(i)
j (t)

)︁
= v

(i)
j (t) for all i, j

}︂
.

Suppose that the reproducing kernel kV of V is positive definite. Similar to the soft inter-

polation problem at the end of Section 2.4.1, it can be shown (see [104, Lemma 8.6, Lemma

8.7, Theorem 8.8]) that

v∗(t)(·) =
N∑︂
i=1

mi∑︂
j=1

kV
(︁
·, q(i)j (t)

)︁
β
(i)
j (t),
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6.1. Numerical Formulation of Piecewise-rigid Motion

where⎡⎢⎢⎢⎢⎢⎢⎣
β
(1)
1 (t)

β
(1)
2 (t)

...

β
(N)
mN (t)

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
kV

(︁
q
(1)
1 (t), q

(1)
1 (t)

)︁
kV

(︁
q
(1)
1 (t), q

(1)
2 (t)

)︁
· · · kV

(︁
q
(1)
1 (t), q

(N)
mN (t)

)︁
kV

(︁
q
(1)
2 (t), q

(1)
1 (t)

)︁
kV

(︁
q
(1)
2 (t), q

(1)
2 (t)

)︁
· · · kV

(︁
q
(1)
2 (t), q

(N)
mN (t)

)︁
...

...
...

kV
(︁
q
(N)
mN (t), q

(1)
1 (t)

)︁
kV

(︁
q
(N)
mN (t), q

(1)
2 (t)

)︁
· · · kV

(︁
q
(N)
mN (t), q

(N)
mN (t)

)︁

⎤⎥⎥⎥⎥⎥⎥⎦

−1 ⎡⎢⎢⎢⎢⎢⎢⎣
v
(1)
1 (t)

v
(1)
2 (t)

...

v
(N)
mN (t)

⎤⎥⎥⎥⎥⎥⎥⎦ ,

which will be denoted by β(t) = KV (q(t))
−1 v(t). It follows that

∥v∗(t)∥2V = β(t)⊤KV (q(t))β(t) = v(t)⊤KV (q(t))
−1 v(t). (6.2)

In summary, given a discretized initial shape
⋃︁N
i=1{q

(i)
j,0}mi

j=1, rotation centers {c(i)0 }Ni=1,

and a discretized target shape
⋃︁N
i=1{q

(i)
j,targ}

m′
i

j=1, the numerical formulation of the problem

of piecewise-rigid motion discretized in space is written as

min
θ∈L2([0, T ],Rk)

(︃
1

2

∫︂ T

0

(︂
v(t)⊤KV (q(t))

−1 v(t) + |θ(t)|2
)︂
dt+ ρ

(︂
{q(i)j (T )}i,j , {q(i)j,targ}i,j

)︂)︃
subject to ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c(i)(t) = c
(i)
0 +

∫︂ t

0
u(i)(s) ds

α(i)(t) =

∫︂ t

0
ω(i)(s) ds

q
(i)
j (t) = P

(︁
c(i)(t), α(i)(t), q

(i)
j,0, c

(i)
0

)︁
v
(i)
j (t) = Ṗ

(︁
u(i)(t), ω(i)(t), α(i)(t), q

(i)
j,0, c

(i)
0

)︁
,

where θ(t) =
(︁
u(1)(t), ω(1)(t), . . . , u(N)(t), ω(N)(t)

)︁
. We include the computation of gradients

in Section A.4 for the interested reader.

We must be careful that not all θ gives a Diffp-motion in our discretized minimization

problem. For example, there exists θ that makes two nodes move closer and hit each other.

It is the term
∫︁ T
0 v(t)⊤KV (q(t))

−1 v(t) dt in the objective function that numerically rules out

θ causing collisions of nodes and yields an empirical Diffp-motion. In other words, we cannot

drop the term
∫︁ T
0 v(t)⊤KV (q(t))

−1 v(t) dt in our discretized formulation; this is in sharp

contrast with the energy form formulation (see the discussion at the end of Section 5.1.1).

There is always a tension between rigidity and flexibility. We also remark on the choice of

rotation centers. Theoretically, we can conveniently set all rotation centers to the origin;

practically, the choice of rotation centers affect critical points found by a minimization

procedure. First, if we set all rotation centers to the origin, we may encounter a badly

scaled minimization problem: under the same rotation angle, the angular traveling arc

length of a shape component away from the origin is longer than the one that is close to the
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origin. That is, the same angular velocity would affect shape components disproportionately.

Second, centroids of shape components may not always be a good choice for rotation centers.

In Figure 6.2, we revisit one of our experiments with different rotation centers. From

Figures 6.2(c) and 6.2(d), we can see that rotation centers affect critical points found. Thus

a sensible choice of rotation centers could facilitate the minimization process. Rotation

centers of numerical experiments in Section 3.1.2 were all placed at joints.

We add one more remark. An inconvenient fact is that kernel matrices are ill conditioned

in general. Table 6.1 shows the condition number of KHm(R2)(q) when q is composed of

21×21 equally spaced nodes on [0, 1]×[0, 1]. For example, if we useKH5(R2)(q) with σ = 0.1,

which is not an uncommon choice, we can only expect the computation KH5(R2)(q)
−1 v to

be approximately in single precision since cond(KH5(R2)(q)) = 4.87 e+08. We can avoid

matrix inversion in LDDMM by considering an equivalent formulation

min
v ∈L2([0, T ],Rnd)

(︃
1

2

∫︂ T

0
v(t)⊤KV (q(t))

−1 v(t) dt+ ρ
(︁
q(T ), qtarg

)︁)︃

= min
α∈L2([0, T ],Rnd)

(︃
1

2

∫︂ T

0
α(t)⊤KV (q(t))α(t) dt+ ρ

(︁
q(T ), qtarg

)︁)︃
,

where n is the number of discretized nodes and v(t) = KV (q(t))α(t). At the continu-

ous level, the equivalent formulation means that we shift the attention from v(t) ∈ V to

α(t) ∈ V ∗. However, since a model of deformation vector fields usually describes vector

fields in V , it is inevitable that we need to solve the linear system KV (q(t))
−1 v(t) if the ob-

jective function contains ∥v(t)∥2V or if we use ∥v(t)∥2V as a regularization term in the model

(see (6.2) and (6.7)). Moreover, ill-conditioned kernel matrices also affect the accuracy of

computed gradients if the evaluation of the objective function involves kernel matrix inver-

sion. Although one might consider modifying KV (q(t)), for example, adding a weighted

identity matrix and using KV (q(t))+ c Ind instead, the value c will not be small in order to

improve the condition number. In other words, the numerical results using modified kernel

matrices will deviate from its theoretical statement and lead to wrong conclusions. As the

equivalent formulation of LDDMM suggests, it would be interesting to see if there is a way

to directly model deformation vector fields in V ∗.
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0 1 2

0

1

2

3

(a) Initial shape.

0 1 2

0

1

2

3

(b) Boundary of the target shape.

t = 0:00 t = 0:25 t = 0:50 t = 0:75 t = 1:00

(c) Registration process when rotation centers are placed at centroids, shown in orange at t = 0.

t = 0:00 t = 0:25 t = 0:50 t = 0:75 t = 1:00

(d) Registration process when rotation centers are placed at joints, shown in orange at t = 0.

Figure 6.2: Effect of the choice of rotation centers.
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Table 6.1: The condition number of KHm(R2)(q) with q composed of 21×21 equally spaced
nodes on [0, 1]× [0, 1].

σ

cond(KHm(R2)(q))

m = 3 m = 4 m = 5 m = 6

0.05 1.94 e+03 3.93 e+04 7.80 e+05 1.54 e+07
0.10 9.03 e+04 6.67 e+06 4.87 e+08 3.55 e+10
0.15 7.91 e+05 1.24 e+08 1.94 e+10 3.05 e+12
0.20 3.45 e+06 9.20 e+08 2.47 e+11 6.68 e+13

6.2 Objective Function Evaluation of the Atrophy Model

Our problem of the atrophy model is

min
θ∈Θ

ρ(φ(T,Ω0), Ωtarg)

subject to ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
φ(t, x) = x+

∫︂ t

0
v(s, φ(s, x)) ds

v(t) = (γK−1
V +A t

φ)
−1 β tφ, θ

τ(t) = T (φ [0, t], θ)

,

where

(A t
φ u | w) =

∫︂
φ(t, Ω0)

Eφ(t) ∗Φ(εu, εw) dx

and

(β tφ, θ | w) =
∫︂
φ(t, Ω0)

χ α
(︁
τ(t) ◦ φ(t)−1

)︁
(−divw) dx.

To evaluate the objective function ρ(φ(T,Ω0), Ωtarg), we elaborate on how to compute v(t).

We first describe the discretization of layered shapes in Section 6.2.1. We then present

computations of the elastic energy (A t
φ u | w) in Section 6.2.2 and the work (β tφ, θ | w)

in Section 6.2.3; computations of A t
φ u and β tφ, θ are also derived in respective sections.

We formulate mass and stiffness matrices in Section 6.2.4 so that we can compute τ by

the finite element method. Moreover, we present a specialized preconditioned conjugate

gradient method in Section 6.2.5 which reduces the computation in (γK−1
V + A t

φ)
−1 β tφ, θ,

the last step to obtain v(t). Finally, we summarize our discretization scheme in time and

space in Section 6.2.6. We present computations for d = 3 and mention necessary changes

for d = 2.
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6.2.1 Discretization of layered shapes

Given a layered shape Ω with a layered structure Φ (see Section 3.2.1), we discretize Ω into

a set of nodes
⋃︁L
ℓ=1{qℓi}Ni=1 according to its layered structure as described as follows. Based

on the layered structure, we sample and identify discretized layers {Φ(νℓ, Lbottom)}Lℓ=1 (see

Figures 6.3(a)). To be consistent with the layered structure, all discretized layers are fur-

ther discretized into the same number of nodes {qℓi}Ni=1. Moreover, the vectors qℓ+1
i − qℓi

are parallel to the transversal vector ∂νΦ(νℓ, q
1
i ) at qℓi for all i and ℓ (see Figures 6.3(a)

and 6.3(b)). Note that nodes {q1i }Ni=1 are on the bottom layer, and nodes {qLi }Ni=1 are on

the top layer. Since Φ is a diffeomorphism, the same triangulation structure can be ap-

plied to each layer if distances between layers are small (see Figure 6.3(c)). It follows that

{qℓi1 , qℓi2 , qℓi3 , q
ℓ+1
i1

, qℓ+1
i2

, qℓ+1
i3
} forms a triangular prism for any triangular face (i1, i2, i3) of

one layer. Those prisms between the first and second layers are further split into tetra-

hedra (see Figure 6.4(a)) without adding vertices using the procedure introduced in [35],

which guarantees consistent triangular faces across adjacent prisms. To ensure the same

tetrahedralization structure between consecutive layers, the tetrahedralization between the

first and second layers is then replicated to prisms between consecutive upper layers (see

Figure 6.3(d)).

layer ⌫1

layer ⌫3

S

layer ⌫2

(a) Layers and the transversal vector field given
by the layered structure.

{q1
i }6

i=1

{q2
i }6

i=1

{q3
i }6

i=1

(b) Discretized nodes according to the layers
and the transversal vector field.

(c) The same triangulation structure applied to
each layer.

(d) The same tetrahedralization structure ap-
plied to volumes between consecutive layers.

Figure 6.3: Tetrahedralization of layered shapes.
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6.2.2 Computation of elastic energy

We recall the layered elastic energy defined by the layered elasticity tensor (3.8):

(A t
φ u | w)

=

∫︂
φ(t, Ω0)

Eφ(t) ∗Φ(εu, εw) dx

=

∫︂
φ(t, Ω0)

(︃
λtan

(︂
tr(εu)−N⊤

φ(t) εuNφ(t)

)︂(︂
tr(εw)−N⊤

φ(t) εwNφ(t)

)︂
+ µtan

(︂
tr(εu εw)− 2N⊤

φ(t) εu εwNφ(t) + (N⊤
φ(t) εuNφ(t))(N

⊤
φ(t) εwNφ(t))

)︂
+ µtsv (S

⊤
φ(t) εu Sφ(t))(S

⊤
φ(t) εw Sφ(t))

+ 2µang

(︂
S⊤
φ(t) εu εw Sφ(t) − (N⊤

φ(t) εu Sφ(t))(N
⊤
φ(t) εw Sφ(t))

)︂)︃
dx, (6.3)

where εu = 1
2

(︁
Du+Du⊤

)︁
and εw = 1

2

(︁
Dw +Dw⊤)︁ are infinitesimal strain tensors, Nφ(t)

is a unit vector field normal to layers of φ(t, Ω0), and Sφ(t) =
(Dφ(t)S)
|(Dφ(t)S)| ◦ φ(t)−1 is the unit

transversal vector field according to the layered structure φ(t) ∗ Φ. After discretizing the

layered shape φ(t, Ω0) into a union of tetrahedra (see Section 6.2.1), which could be tetrahe-

dra evolved from time 0, we compute the integral (6.3) by summing over those tetrahedra.

Thus we now focus the computation on one single tetrahedron. Notice that we need Nφ(t),

Sφ(t), Du, and Dw to evaluate (6.3). Recall that the tetrahedralization procedure in Sec-

tion 6.2.1 splits triangular prisms into tetrahedra (see Figure 6.4(a)). Given a tetrahedron,

we approximate Nφ(t) as the average of normals of the two bases of the corresponding prism,

and Sφ(t) is approximated as the average of three sides of the corresponding prism. To be

more precise, let the “upward-pointing” unit normals of two bases of the prism be N1 and

N2 (see Figure 6.4(b)), and let the unit transversals from three sides of the prism be S1, S2,

and S3 (see Figure 6.4(c)). The vectors Nφ(t) and Sφ(t) of the three tetrahedra split from

this prism are approximated by

Nφ(t) ≈
N1 +N2

|N1 +N2|
and Sφ(t) ≈

S1 + S2 + S3
|S1 + S2 + S3|

.

For the approximation of Du, denote the positions of the four nodes at the vertices of a

tetrahedron by q0, q1, q2, q3, and denote u(q0), u(q1), u(q2), u(q3) by u0, u1, u2, u3. Within

a tetrahedron T , we approximate Du by the derivative of the unique affine transformation

that maps qi to ui, i = 0, . . . , 3. Precisely, we write the unique affine transformation as

u(x) := a+Ax,
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where a ∈ Rd and A ∈ Rd×d are determined by u(qi) = ui, i = 0, . . . , 3. Thus, for all x ∈ T ,
we approximate Du by

Du(x) ≈ Du(x) = A

=
[︂
u1 − u0, u2 − u0, u3 − u0

]︂ [︂
q1 − q0, q2 − q0, q3 − q0

]︂−1

=: (Du)T .

The approximation of Dw is computed in exactly the same way. With the approximations

of Nφ(t), Sφ(t), Du, and Dw, we are now able to compute the discretized elastic energy

(A t
φ u | w) using (6.3). We denote the discretized elastic energy by u⊤A t

q w, where u and

w should be interpreted as a column vector containing all u(qi)’s and w(qi)’s evaluated at

nodes. Although a more correct notation for A t
q should be Aq(t), we chose this notation due

to its resemblance in appearance with the continuous counterpart A t
φ.

(a) Three tetrahedra split
from one prism.

(b) Normal vectors of the
two bases.

(c) Transversal vectors from
the three sides.

Figure 6.4: Illustration of the approximated normal and transversal vectors of tetrahedra
split from the same prism.

Next we show how to compute A t
q w = ∂u

(︁
u⊤A t

q w
)︁
. We denote the discretized εu by

εu := 1
2

(︁
(Du)T + (Du)⊤T

)︁
. Define

U :=
[︂
u1 − u0, u2 − u0, u3 − u0

]︂
and Q :=

[︂
q1 − q0, q2 − q0, q3 − q0

]︂
,

so (Du)T = UQ−1. Since tr(εu) =
∑︁3

i=1 e
⊤
i εu ei, where ei is the canonical basis of R3, we

only need to have an expression of ∂ui(a
⊤εu b) for arbitrary a, b ∈ R3 in order to compute

∂u(u
⊤A t

q w) (see (6.3)). Note that

a⊤εu b = a⊤
(︃
1

2
(UQ−1 +Q−⊤U⊤)

)︃
b =

1

2
tr
(︂
Q−1(ba⊤ + ab⊤)U

)︂
,
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which gives

∂u0

(︂
a⊤εu b

)︂
=

(︃
−1

2
1
⊤
3 Q

−1(ba⊤ + ab⊤)

)︃⊤

and

∂ui

(︂
a⊤εu b

)︂
=

(︃
1

2

(︂
Q−1(ba⊤ + ab⊤)

)︂
i∗

)︃⊤
for i = 1, 2, 3,

where 13 denotes the 3-by-1 all-one vector, and (A)i∗ denotes the ith row of a matrix A.

Note that the index i = 0, 1, 2, 3 is local in one tetrahedron and differs from the global index

running through discretized nodes.

Let k be the global index running through discretized nodes. When we compute

∂uk(u
⊤A t

q w) by summing contributions from tetrahedra, we only need to take into ac-

count those tetrahedra having qk as a vertex. Other tetrahedra do not have uk involved in

our computation of u⊤A t
q w. This information can be precomputed right after we generate

the tetrahedralization.

6.2.3 Computation of work

In this section, we show the computation of the work

(β tφ, θ | w) =
∫︂
φ(t, Ω0)

χ α
(︁
τ(t) ◦ φ(t)−1

)︁
(−divw) dx

= −
∫︂
φ(t, Ω0)

χ α
(︁
τ(t) ◦ φ(t)−1

)︁
tr(Dw) dx.

Similar to the previous section, we discretize φ(t, Ω0) into a union of tetrahedra and focus

our computation on one single tetrahedron. In a single tetrahedron T , we evaluate χ α
(︁
τ(t)◦

φ(t)−1
)︁
at the nodes of T and denote the average of those values by αT . The derivative

Dw is approximated in the same way as in Section 6.2.2, that is, (Dw)T =WQ−1, where

W =
[︂
w1 − w0, w2 − w0, w3 − w0

]︂
and Q =

[︂
q1 − q0, q2 − q0, q3 − q0

]︂
.

The contribution of a single tetrahedron T in the full integral is then given by

αT tr
(︁
(Dw)T

)︁
vol(T ) = αT tr

(︁
WQ−1

)︁ 1
6
|detQ| . (6.4)

We denote the discretized version of the work by
(︁
b tq, θ

)︁⊤
w.

To obtain b tq, θ = ∂w
(︁(︁
b tq, θ

)︁⊤
w
)︁
, we have from (6.4) that

∂w0

(︁
αT tr

(︁
WQ−1

)︁
vol(T )

)︁
= −αT vol(T )

(︂
1
⊤
3 Q

−1
)︂⊤
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and

∂wi

(︁
αT tr

(︁
WQ−1

)︁
vol(T )

)︁
= αT vol(T )

(︁
(Q−1)i∗

)︁⊤
for i = 1, 2, 3,

where 13 denotes the 3-by-1 all-one vector, and (A)i∗ denotes the ith row of a matrix A.

6.2.4 Mass and stiffness matrices

Our goal in this section is to compute τ(t) = T (φ [0, t], θ) using the finite element method.

To this end, the effort will be devoted to obtain expressions of mass and stiffness matrices.

Given φ ∈ C([0, T ],Diff pid (R
d)), we recall the weak formulation:⎧⎨⎩ ∂t

(︁
τ detDφ

)︁
+ Lτ = g(τ)

τ(0) = Q(θ)
, (5.5)

where

((Lτ | τ ′)) =
∫︂ T

0

⟨︁
Wφ(t)∇τ(t) detDφ(t), ∇τ ′(t)

⟩︁
L2 dt

and

g(τ)(t) = R(τ(t)) detDφ(t) for almost every t ∈ [0, T ].

According to Proposition A.2.5, the weak formulation (5.5) is equivalent to

d

dt

∫︂
Ω0

τ(t) detDφ(t) ψ dx

= −
∫︂
Ω0

(︂
Wφ(t)∇τ(t) detDφ(t)

)︂⊤
∇ψ dx+

∫︂
Ω0

R(τ(t)) detDφ(t) ψ dx

(6.5)

for almost every t ∈ [0, T ] and all ψ ∈ H1(Ωo
0). After we discretize Ω0 into elements with

nodes {qi,0}ni=1, we introduce piecewise linear basis functions {ψi,0}ni=1 and approximate the

solution by τ(t, x) =
∑︁n

i=1 τi(t)ψi,0(x). Plugging this approximation into (6.5) and letting

ψ = ψi,0 for i = 1, . . . , n, we arrive at

d

dt

⎛⎜⎝
⎡⎢⎣ ∫︂

Ω0

ψi,0 ψj,0 detDφ(t) dx

⎤⎥⎦
n×n

⎡⎢⎣ τi(t)

⎤⎥⎦
n×1

⎞⎟⎠
= −

⎡⎢⎣ ∫︂
Ω0

∇ψ⊤
i,0 Wφ(t)∇ψj,0 detDφ(t) dx

⎤⎥⎦
n×n

⎡⎢⎣ τi(t)

⎤⎥⎦
n×1

+

⎡⎢⎣ ∫︂
Ω0

R

(︃ n∑︂
k=1

τk(t)ψk,0

)︃
ψi,0 detDφ(t) dx

⎤⎥⎦
n×1

,
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which we denote by
d

dt

(︁
Ψ(t) τ (t)

)︁
= −Γ (t) τ (t) + r(t). (6.6)

We can then use any time stepping scheme to compute τ (t) once we have node positions

q(t) to approximate detDφ(t). We postpone our full algorithm stepping τ (t) and q(t)

together to Section 6.2.6. Below we provide approximations of entries of the mass matrix

Ψ(t), the stiffness matrix Γ (t), and the vector r(t) assuming we have node positions q(t).

The derivations of these approximations are placed in Secion A.5 for the interested reader.

Since φ ∈ C([0, T ],Diff pid (R
d)), a fixed triangulation or tetrahedralization structure can

be applied to nodes {qi(t)}ni=1 for each t ∈ [0, T ]. We denote a triangle or tetrahedron of

the discretized shape Ω0 by T0 and denote its evolution by t ↦→ T (t). In addition, we write

i ∈ T0 if the element T0 has the i-th node as a vertex. We also denote the piecewise linear

basis functions with respect to nodes {qi(t)}ni=1 at time t by {ψi(t)}ni=1, whose gradient is

constant on an element T (t) and is denoted by
(︁
∇ψi(t)

)︁
T (t)

. Suppose that we approximate

the Eulerian diffusion matrix Uφ(t) by Uq(t), for example, using the approximated Nφ(t) and

Sφ(t) in Section 6.2.2 for the Eulerian diffusion matrix (3.22) we consider. If d = 2, we have

∫︂
T0
ψi,0 ψj,0 detDφ(t) dx ≈

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1

6
vol
(︁
T (t)

)︁
, if i, j ∈ T0 and i = j ;

1

12
vol
(︁
T (t)

)︁
, if i, j ∈ T0 and i ̸= j ;

0, otherwise ,

∫︂
T0
∇ψ⊤

i,0 Wφ(t)∇ψj,0 detDφ(t) dx

≈

⎧⎨⎩
(︁
∇ψi(t)

)︁⊤
T (t)

Uq(t)

(︁
∇ψj(t)

)︁
T (t)

vol
(︁
T (t)

)︁
, if i, j ∈ T0 ;

0, otherwise ,

and ∫︂
T0
R

(︃ n∑︂
k=1

τk(t)ψk,0

)︃
ψi,0 detDφ(t) dx

≈ 1

12

(︂
2R(τi(t)) +R(τj(t)) +R(τk(t))

)︂
vol
(︁
T (t)

)︁
,
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where i, j, k are the indices of the three nodes at vertices of T0. If d = 3, we have

∫︂
T0
ψi,0 ψj,0 detDφ(t) dx ≈

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1

10
vol
(︁
T (t)

)︁
, if i, j ∈ T0 and i = j ;

1

20
vol
(︁
T (t)

)︁
, if i, j ∈ T0 and i ̸= j ;

0, otherwise ,

∫︂
T0
∇ψ⊤

i,0 Wφ(t)∇ψj,0 detDφ(t) dx

≈

⎧⎨⎩
(︁
∇ψi(t)

)︁⊤
T (t)

Uq(t)

(︁
∇ψj(t)

)︁
T (t)

vol
(︁
T (t)

)︁
, if i, j ∈ T0 ;

0, otherwise ,

and ∫︂
T0
R

(︃ n∑︂
k=1

τk(t)ψk,0

)︃
ψi,0 detDφ(t) dx

≈ 1

20

(︂
2R(τi(t)) +R(τj(t)) +R(τk(t)) +R(τℓ(t))

)︂
vol
(︁
T (t)

)︁
,

where i, j, k, ℓ are the indices of the four nodes at vertices of T0. We observe that the data

we need to approximate the three integrals are {qi(t)}i and {τi(t)}i; we do not need {qi,0}i
even though the integrals are taken on a domain at time 0.

6.2.5 Specialized preconditioned conjugate gradient

We present a preconditioned conjugate gradient (PCG) method specialized to symmetric

positive-definite linear systems of the form (B−1 + A)x = b with B−1 symmetric positive

definite and A symmetric positive semidefinite. Recall that our deformation vector field is

given by

v(t) = (γK−1
V +A t

φ)
−1 β tφ, θ = argmin

v′ ∈V

(︃
γ

2
∥v′∥2V +

1

2
(A t

φ v
′ | v′)− (β tφ, θ | v′)

)︃
.

It follows that the discretized deformation vector field is

v(t) = argmin
v′ ∈Rnd

(︃
γ

2
v′⊤KV (q(t))

−1 v′ +
1

2
v′⊤A t

q v′ −
(︁
b tq, θ

)︁⊤
v′
)︃

=
(︂
γ KV (q(t))

−1 +A t
q

)︂−1
b tq, θ, (6.7)

to which this specialized PCG applies. This specialized PCG reduces computation compared

to the standard PCG and hence reduces running time solving linear systems of this form.
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We recall the classical PCG solvingMx = b with a preconditioner P in Algorithm 1. We

use Pr ← Pr to denote that the result of Pr is assigned to the variable Pr, so underlines

in Algorithm 1 mean that the computation has already been performed. If we apply this

classical PCG with some preconditioner directly to the problem (B−1+A)x = b, note that

we will be computing Md = (B−1 + A) d on line 6 in every iteration, which means that

we have the burden of solving By = d in every iteration. Although we can decompose

B by the Cholesky factorization before entering PCG, performing forward and backward

substitutions for each iteration is still expensive. Surprisingly, we can reduce the number

of times solving By = d to just once when we use B as the preconditioner, as shown in

Algorithm 2. In Algorithm 2, we introduce the additional variable ˜︁d on line 2. Comparing

line 2 and 4, we have ˜︁d = B−1 d at the beginning of the while loop. Moreover, this relation

is kept by line 14 and 15. Since this loop invariant ˜︁d = B−1 d is maintained, we know

that the computation on line 7 is correct. It follows that Algorithm 2 is equivalent to

Algorithm 1 under this special setting. We observe that the expensive B−1x only appears

on line 1 in Algorithm 2 at the expense of the additional storage of ˜︁d and additional scalar

multiplication and vector addition on line 14.

6.2.6 Equations of motion discretized in time and space

We have all the tools to compute the discretized objective function

J(θ) := ρ(φ(T,Ω0), Ωtarg)

subject to ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
φ(t, x) = x+

∫︂ t

0
v(s, φ(s, x)) ds

v(t) = (γK−1
V +A t

φ)
−1 β tφ, θ

τ(t) = T (φ [0, t], θ)

.

We summarize the objective function evaluation in Algorithm 3. On line 5 in Algorithm 3,

we use a semi-implicit scheme to approximate

d

dt

(︁
Ψ(t) τ (t)

)︁
= −Γ (t) τ (t) + r(t) (6.6)

as
Ψti+1τti+1 − Ψtiτti

∆t
= −Γti+1 τti+1 + rti ,

which gives the expression of τti+1 on line 5. We remind the reader that we only need q(t)

to compute Ψ(t) and Γ (t), but we need q(t) and τ (t) to compute r(t) (see Section 6.2.4).
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Algorithm 1: PCG

Input : M , b, P , x

Output: x

1: r ← b−Mx

2: Pr ← Pr

3: d← Pr

4: r⊤Pr ← r⊤Pr

5: while not converge do

6: Md←Md

7: α← r⊤Pr / d⊤Md

8: x← x+ αd

9: r′ ← r − αMd

10: Pr′ ← Pr′

11: r′⊤Pr′ ← r′⊤Pr′

12: β ← r′⊤Pr′ / r⊤Pr

13: d← Pr′ + β d

14: r ← r′

15: r⊤Pr ← r′⊤Pr′

16: end while

Algorithm 2: Specialized PCG

Input : B, A, b, x

Output: x

1: r ← b− (B−1 +A)x

2: ˜︁d← r //B−1d

3: Br ← Br

4: d← Br

5: r⊤Br ← r⊤Br

6: while not converge do

7: Md← ˜︁d+Ad // (B−1 +A) d

8: α← r⊤Br / d⊤Md

9: x← x+ αd

10: r′ ← r − αMd

11: Br′ ← Br′

12: r′⊤Br′ ← r′⊤Br′

13: β ← r′⊤Br′ / r⊤Br

14: ˜︁d← r′ + β ˜︁d //B−1 d

15: d← Br′ + β d

16: r ← r′

17: r⊤Br ← r′⊤Br′

18: end while

Algorithm 3: Objective function evaluation of the atrophy model

Input : θ, q0, qtarg

Output: ρ
(︁
qT , qtarg

)︁
1: τ0 ← Q(θ)

2: for each time ti do

3: vti ←
(︂
γ KV (qti)

−1 +Atiq

)︂−1
btiq, θ

4: qti+1 ← qti +∆tvti

5: τti+1 ←
(︁
Ψti+1 +∆t Γti+1

)︁−1(︁
Ψti τti +∆t rti

)︁
6: end for

7: Compute ρ
(︁
qT , qtarg

)︁
.
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6.3 GPU Implementation

We now describe our GPU implementation in NVIDIA CUDA (Compute Unified Device

Architecture). CUDA is a parallel computing platform which extends standard program-

ming languages like C, C++, and Fortran so that programmers can enjoy both the familiar

environment of standard languages and the speedup by parallel computing. According to

Flynn’s taxonomy, the architecture of CUDA is in the class of single instruction, multiple

data (SIMD), or more accurately, single instruction, multiple threads (SIMT). We refer

the reader to [74, 73] for a more detailed introduction to the CUDA programming model.

Although programmers who are familiar with standard programming languages can easily

learn how to write CUDA code, in early generations of GPUs, great effort must be made

in order to fit the application into the CUDA memory hierarchy; there is a chance that the

CUDA code would be slower than its sequential version if every memory transaction is a

non-coalesced global load. Fortunately, this burden has been lifted thanks to the improve-

ment of global memory bandwidth and cache performance in recent generations of GPUs

[9], which also means that we need to adjust the optimization strategy of CUDA code ac-

cordingly. In Section 6.3.1, we confirm the observation in [9]: fetching data through shared

memory may negatively influence the performance in recent GPUs. We then compare sev-

eral approaches of objective function evaluation in Section 6.3.2. Section 6.3.3 summarizes

the overall speedup in objective function evaluation from OpenMP to CUDA. In the fol-

lowing discussions, matrices are stored in column-major order, hence we shall avoid matrix

transpose in this section for clarity, except for the first paragraph of Section 6.3.1. All

computations were performed in double precision.

6.3.1 Computation of kernel matrices

We recall the definition of kernel matrices from Section 6.1. For q⊤ =
[︂
q⊤1 · · · q⊤n

]︂
1×nd

,

the corresponding kernel matrix KV (q) is an nd-by-nd block matrix whose ij-th block is

kV (qi, qj) ∈ L (Rd,Rd) ∼= Rd×d. Since our numerical experiments use V = (Hm(Rd))d

exclusively, here we consider the special structure of kernel matrices when the Rd-valued

RKHS is V d with a real-valued RKHS V . We remind the reader that kV d(x, y) = kV (x, y) id

(see (2.7)). It follows that

KV d(q) = KV (q)⊗ Id,

where ⊗ is the Kronecker product. Therefore, when the RKHS is V d, all we need is KV (q);

we do not even need to form the big matrix KV d(q). For example, if we want to compute
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a⊤KV d(q) b, where a⊤ =
[︂
a⊤1 · · · a⊤n

]︂
1×nd

and b⊤ =
[︂
b⊤1 · · · b⊤n

]︂
1×nd

, we can

rearrange the column vectors a and b into data matrices

A =

⎡⎢⎢⎢⎣
a⊤1
...

a⊤n

⎤⎥⎥⎥⎦
n×d

and B =

⎡⎢⎢⎢⎣
b⊤1
...

b⊤n

⎤⎥⎥⎥⎦
n×d

and notice that

a⊤KV d(q) b = ⟨A,KV (q)B⟩F ,

where ⟨·, ·, ⟩F is the Frobenius inner product. We thus focus on the computation of kernel

matrices when V is a real-valued RKHS. In addition, we will suppress the dependency of

kernel matrices on q and simply write KV .

We now discuss the computation of KV when V is a real-valued RKHS. In our CUDA

implementation, we use a usual tiling method [74, Section 3.2.4] to compute the kernel

matrix KV ∈ Rn×n corresponding to a matrix Q ∈ Rn×d which stores the positions of n

nodes q1, . . . , qn. To be more specific, we partition the computation of the kernel matrix

KV into 2D thread blocks and use one thread to compute an element of KV . Assume

that a thread block of size m-by-m is responsible to compute the submatrix formed by

rows i = i0 + 1, . . . , i0 + m and columns j = j0 + 1, . . . , j0 + m. In this situation, a

common guideline is to utilize the fast shared memory: we read the positions of nodes qi,

i = i0+1, . . . , i0+m and qj , j = j0+1, . . . , j0+m from global memory into shared memory,

then all m2 threads perform computation on shared memory instead of fetching positions

from global memory directly. Note that this global memory read is coalesced because of

the column-major format of Q ∈ Rn×d. To test if the guideline is still valid on recent

GPUs, we compare the implementation using shared memory with the one using purely

global memory on Tesla K40m (Kepler architecture), TITAN Xp (Pascal architecture), and

TITAN V (Volta architecture). We generated a fixed Q whose elements are in the interval

[0, 1] and computed KV with V = H5(Rd) and σ = 0.1. Only the function computing

KV was timed by cudaEventRecord. We used the median from 50 runs to represent the

running time since the variation is comparatively small. Each of the 50 runs was called from

a shell script afresh to avoid biased running times due to cache hit. The results using various

sizes of thread blocks are presented in Tables 6.2 to 6.4. From Table 6.2 (8-by-8 threads) and

Table 6.3 (16-by-16 threads), we see that the running times using shared memory divided by

the running times using global memory are all above one. The running times using shared

memory are roughly the same as or ever 1.3 to 1.4 times more than the running times using
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global memory. In other words, we do not have the expected speedup, usually more than 2

fold in early generations of GPUs, when we use shared memory. Although Table 6.4 (32-by-

32 threads) shows some decrease of running times when using shared memory, we need to

assess this small performance gain against the additional programming and tuning efforts.

These simple experiments show that we must re-evaluate the usage of shared memory rather

than counting on it as a guaranteed performance boost.

Table 6.2: The ratio of running times (shared memory divided by global memory) using
8-by-8 thread blocks.

Number
of Nodes

2D 3D

K40m TITAN Xp TITAN V K40m TITAN Xp TITAN V

2,000 1.391 1.056 1.000 1.297 1.037 1.011
4,000 1.425 1.055 1.002 1.316 1.040 1.002
6,000 1.432 1.037 1.001 1.318 1.040 1.001
8,000 1.435 1.037 1.001 1.321 1.041 1.001

10,000 1.436 1.037 1.001 1.321 1.041 1.001

Table 6.3: The ratio of running times (shared memory divided by global memory) using
16-by-16 thread blocks.

Number
of Nodes

2D 3D

K40m TITAN Xp TITAN V K40m TITAN Xp TITAN V

2,000 1.035 1.044 1.016 1.061 1.032 1.042
4,000 1.044 1.044 1.016 1.066 1.031 1.021
6,000 1.044 1.044 1.016 1.063 1.031 1.022
8,000 1.047 1.026 1.015 1.068 1.031 1.019

10,000 1.050 1.026 1.015 1.067 1.031 1.021

6.3.2 Computation of objective functions

We first identify potential parallelism in our two objective functions. In our objective

function of piecewise-rigid motion

JR(θ) :=
1

2

∫︂ T

0

(︂
v(t)⊤KV (q(t))

−1 v(t) + |θ(t)|2
)︂
dt+ ρ

(︂
{q(i)j (T )}i,j , {q(i)j,targ}i,j

)︂
,

we examine the integral term which is independent of the choice of ρ. The computation

of v(t) and q(t) can be embarrassingly parallelized, i.e., one parallel thread is responsible

for one node and computes its velocity and position. The computation of KV (q(t)) can be
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Table 6.4: The ratio of running times (shared memory divided by global memory) using
32-by-32 thread blocks.

Number
of Nodes

2D 3D

K40m TITAN Xp TITAN V K40m TITAN Xp TITAN V

2,000 0.984 1.036 0.979 0.928 1.026 1.000
4,000 0.981 1.023 1.000 0.928 1.027 0.989
6,000 0.998 1.022 1.000 0.924 1.027 0.991
8,000 0.994 1.022 0.997 0.920 1.027 0.989

10,000 0.996 1.022 0.998 0.916 1.027 0.989

parallelized by the tiling method introduced in Section 6.3.1. To obtain KV (q(t))
−1 v(t),

the Cholesky decomposition and forward and backward substitutions can be parallelized. Fi-

nally, the inner product v(t)⊤
(︁
KV (q(t))

−1v(t)
)︁
and the integral

∫︁ T
0 |θ(t)|2 dt ≈

∑︁
i |θ(ti)|2∆t

can be computed by parallel reduction. As for the atrophy model, our (näıve-looking) ob-

jective function is

JA(θ) := ρ
(︁
qT , qtarg

)︁
,

which involves heavy works

vti =
(︂
γ KV (qti)

−1 +Atiq

)︂−1
btiq, θ and τti+1 =

(︁
Ψti+1 +∆t Γti+1

)︁−1(︁
Ψti τti +∆t rti

)︁
.

Besides exploiting the aforementioned parallelism, we are going to examine the parallelism

in the computation of Atiq v, btiq, θ, and matrices assembly for Ψti+1 and Γti+1 in the remaining

of this section. To focus on computation, we will suppress the dependency subscripts and

superscripts.

Before we proceed to GPU implementation, we illustrate the unexpected similarity be-

tween the computation of Av, b, and matrices assembly Ψij and Γij . We recall the (loose)

definitions of Av, β, the mass matrix Ψ , and the stiffness matrix Γ . We have

Av = ∂w (Av | w) =: ∂w

(︃∫︂
Ω
f(x, v(x), w(x)) dx

)︃
,

β = ∂w (β | w) =: ∂w

(︃∫︂
Ω
g(x,w(x)) dx

)︃
,

Ψij =:

∫︂
Ω
hij(x) dx, and Γij =:

∫︂
Ω

˜︁hij(x) dx.
The functions f , g, hij , ˜︁hij are introduced as place holders to facilitate the following presen-

tation; their exact definitions are not important here. After discretization, the domain of

integration is represented by a union of elements, e.g., triangles or tetrahedra. We denote

136



Chapter 6. Computation

the elements by {ek}Kk=1 and denote the nodes by {qi}ni=1. In addition, we have derived

approximations on one single element from Sections 6.2.2 to 6.2.4 which can be written

symbolically as∫︂
Ω
f(x, v(x), w(x)) dx ≈

K∑︂
k=1

F ek ,

∫︂
Ω
g(x,w(x)) dx ≈

K∑︂
k=1

Gek ,

∫︂
Ω
hij(x) dx ≈

K∑︂
k=1

Hek
ij , and

∫︂
Ω

˜︁hij(x) dx ≈ K∑︂
k=1

˜︁Hek
ij .

Let us further denote the collection of elements adjacent to the node i by Ni and denote

the collection of elements adjacent to the edge ij by Nij . We define Nii := Ni and Nij := ∅
if i ̸= j and there is no edge ij. It follows that the discretized Av, β, and the ij-th entry of

mass and stiffness matrices (using the same notation) on triangular or tetrahedral elements

are given by

(Av)i =
∑︂
e∈Ni

∂wiF
e, bi =

∑︂
e∈Ni

∂wiG
e, Ψij =

∑︂
e∈Nij

He
ij , Γij =

∑︂
e∈Nij

˜︁He
ij . (6.8)

We have assumed that the sum over the empty set equals zero. The similarity between the

computation of Av, b, Ψ , and Γ is manifested in (6.8). We remark that, for quadrilaterals,

prisms, and bricks, the form of the above expressions of Ψij and Γij is still correct, but we

need to modify the definition of Nij to accommodate non-edge diagonals within elements.

We have seen the computation on one element, that is, ∂wiF
e, ∂wiG

e, He
ij , and

˜︁He
ij , from

Sections 6.2.2 to 6.2.4. We now focus on how to compute the expressions in (6.8) in parallel.

Several approaches for finite element matrices assembly on NVIDIA GPUs have been

proposed in the literature. The most straightforward approach is to let one thread com-

pute one nonzero entry of the matrix [17, 25]; we will refer to it as the intuitive method.

Although this intuitive approach leads to independent threads, the workload of each thread

is unbalanced (the size of Nij varies), not to mention the thread divergence within a single

warp (the instruction depends on indices i and j). The second approach maps one thread to

one element: we use one thread to compute all the element data {He
ij : i, j are nodes of e}

related to the element e then accumulate the computed data to the corresponding memory

locations. However, race conditions occur during the stage of accumulation. Threads which

are responsible for the elements in Nij compete accumulating to the same memory location

of Ψij . To remedy race conditions, we may utilize atomic operations, which perform read-

modify-write operations without interference from other threads [71, 68]. Note that atomic

operations basically serialize the accumulation and may degrade the performance. Another

137



6.3. GPU Implementation

strategy is coloring the elements so that elements of the same color do not share nodes

[42, 71, 25, 106, 68, 59]. With precomputed colors from mesh, each color is then processed

in sequence without race conditions, hence there is no need to invoke atomic operations.

One problem of the coloring scheme is that elements of the same color usually do not possess

data locality, which yields read/write on memory locations that are far apart for threads in

one warp. The third way to avoid race conditions is to separate the accumulation from the

computation of element data; we will refer to this as the splitting method. We launch one

CUDA kernel which maps one thread to one element for the computation of element data,

and then launch a second CUDA kernel which maps one thread to one nonzero entry to

accumulate computed element data [25, 38]. Since the element data have been computed,

the overhead of the second CUDA kernel is smaller than the intuitive method mentioned

previously even though they have exactly the same structure. However, there is an ad-

ditional overhead of writing and reading element data to and from global memory in the

splitting method.

Inspired by the intuitive method and the splitting method, we compare four approaches

for (6.8) in the objective function evaluation of the atrophy model. We use the intuitive

method as the baseline to be compared with the splitting method. To enhance data coalesc-

ing, we also adopt auxiliary data proposed in [106, 68]. The idea is to accompany the matrix

of node positions (see Figure 6.5(b)) with an additional data matrix where each row stores

positions of all nodes of one element (see Figure 6.5(c)) so that in the first CUDA kernel of

the splitting method the global memory read from the auxiliary data is coalesced. More-

over, we notice that it is the difference of positions of nodes in one triangular or tetrahedral

element that are relevant to the computation not the positions themselves; this observa-

tion suggests a different auxiliary data (see Figure 6.5(d)) which reduces the amount of

global memory load. However, the memory read of the second CUDA kernel in the splitting

method is not coalesced. We summarize the four methods we examined as follows:

• Method 1: The intuitive method without auxiliary data.

• Method 2: The splitting method without auxiliary data.

• Method 3: The splitting method with auxiliary data shown in Figure 6.5(c).

• Method 4: The splitting method with auxiliary data shown in Figure 6.5(d).

We remark that we need to keep the position matrix (Figure 6.5(b)) for Methods 3 and 4

since the computation related to elements is only a part of the objective function evaluation.

For example, the position matrix best fits the computation of kernel matrices.
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q1 q2

e1

e2

q3 q4

(a) A trivial mesh.

⎡⎢⎢⎢⎢⎣
q⊤1

q⊤2

q⊤3

q⊤4

⎤⎥⎥⎥⎥⎦
n×d

(b) Common data for Methods 1 to 4.

[︄
q⊤1 q⊤2 q⊤3

q⊤2 q⊤4 q⊤3

]︄
K×
(︁
(d+1)×d

)︁
(c) Auxiliary data for Method 3.

[︄
(q2 − q1)⊤ (q3 − q1)⊤

(q4 − q2)⊤ (q3 − q2)⊤

]︄
K×d2

(d) Auxiliary data for Method 4.

Figure 6.5: Illustration of data for each method. K is the number of elements.

The 2D and 3D testing data we used as initial shapes are shown in Figure 6.6, and

the sizes of testing problems are shown in Table 6.5. Note that the number of nodes of

2D and 3D testing problems are comparable while the number of elements of 3D testing

problems are about 2 to 3 times more than the ones of 2D testing problems. To test the

effect of auxiliary data in Methods 3 and 4, we consider two arrangements of nodes and

elements. Figure 6.7 illustrates the data arrangement for the 2D case; the 3D case is a

direct analogy. We observe two localization properties in Figure 6.7(a): for the consecutive

elements {e1, e2, e3} (the reader may extend the concept to {e1, . . . , e32}), the collective data
of node positions for the three elements are {q1, q2, q3, qi, qi+1}, which are clustered in two

groups in the memory; for the consecutive nodes {qi, qi+1}, the collective adjacent elements

for the two nodes are {e1, e2, e3, e4, ek, ek+1, ek+2}, which are clustered in two groups in

the memory. The first localization property, which we refer to as node localization (with

respect to consecutive elements), benefits the first CUDA kernel in the splitting method,

whereas the second localization property, which we refer to as element localization (with

respect to consecutive nodes), benefits the second CUDA kernel in the splitting method.

Note that localization is different from coalescing. As for the other arrangement of nodes

and elements, we destroy both localization properties by permuting indices of elements as

illustrated in Figure 6.7(b).

We first investigate the effect of the four methods on the running time of Av. Only

the function computing Av was timed by cudaEventRecord, that is, we excluded the

time of generating the auxiliary data in Methods 3 and 4, which is reasonable because
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(a) Testing 2D mesh. (b) Testing 3D mesh.

Figure 6.6: Testing data.

Table 6.5: The sizes of testing problems.

2D 3D

Number
of Nodes

Number
of Elements

Number
of Nodes

Number
of Elements

412 = 1,681 3,200 113 = 1,331 6,000
612 = 3,721 7,200 153 = 3,375 16,464
812 = 6,561 12,800 193 = 6,859 34,992

q1 q2 q3

qi qi+1 qi+2

e1

ek+1

ek

e2

e3

e4

(a) Localized arrangement.

q1 q2 q3

qi qi+1 qi+2

e3

e13

e101

e72

e35

e162

(b) Non-localized arrangement
(illustration).

Figure 6.7: Nodes and elements arrangement.
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in the context of function evaluation we only update the auxiliary data once when we

update positions of nodes, not every time when we compute Av. Every experiment was

repeated on TITAN V 50 times, and each of the 50 runs was called from a shell script.

The results are shown in Figures 6.8 and 6.9. From Figure 6.8 for 2D problems, we only

see that the running times of Method 1 are slightly more than other methods; we have

a clearer picture in Figure 6.9 for 3D problems since the computation of element data is

more expensive and there are more elements adjacent to one node in 3D than in 2D. It is

surprising that in the case of 193 nodes in Figure 6.9(a) Method 2 performs better than

Method 3 and Method 4. Since we excluded the time of generating the auxiliary data,

the better performance of Method 2 suggests that caching performs better than coalescing.

The caching performance is reinforced by comparing Method 4 in the case of 193 nodes

between Figure 6.9(a) and Figure 6.9(b). We summarize the running time of Av from the

four methods and experiments of 193 nodes as follows.

• Node localization and element localization: 0.060 msec (Fig 6.9(a), Method 2)

• Node coalescing and element localization: 0.065 msec (Fig 6.9(a), Method 4)

• Node coalescing and element non-localization: 0.076 msec (Fig 6.9(b), Method 4)

• Node non-localization and element non-localization: 0.093 msec (Fig 6.9(b), Method 2)

The running times of objective function evaluation are shown in Figures 6.10 and 6.11. We

can see a similar pattern as the running time of Av. When we examine the speedup from

Method 1 to Method 4 in Figure 6.11(b), however, the speedup is only slightly above 1 as

compared to the over 2.5 times speedup in Figure 6.9(b). This is because matrix-matrix

multiplications dominate the computation time of objective function evaluation especially

when the number of nodes is large. In other words, to gain a further speedup requires a

better implementation of matrix-matrix multiplication than the cuBLAS library. Although

the speedup of objective function evaluation looks marginal, we remind the reader that this

is the speedup from CUDA to CUDA. We report the overall, and more satisfying, speedup

from OpenMP to CUDA in the next section.

6.3.3 Speedup of objective function evaluation

We summarize the speedup of objective function evaluation in Tables 6.6 and 6.7, in which

we present the median of running times in 50 runs called from a shell script. In both

objective functions, we used the testing data in Figure 6.6 and non-localized arrangement

Figure 6.7(b) as our initial shapes with 51 discretized time points. The PCG∗ in Table 6.7
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(a) Localized arrangement.

(b) Non-localized arrangement.

Figure 6.8: Comparison of running time of Av for 2D problems.

(a) Localized arrangement.

(b) Non-localized arrangement.

Figure 6.9: Comparison of running time of Av for 3D problems.
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(a) Localized arrangement.

(b) Non-localized arrangement.

Figure 6.10: Comparison of running time of objective function evaluation for 2D problems.

(a) Localized arrangement.

(b) Non-localized arrangement.

Figure 6.11: Comparison of running time of objective function evaluation for 3D problems.
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stands for the specialized PCG introduced in Section 6.2.5. The CPU version was run on a

2-socket system with Intel Xeon E5-2670 v3 (12 cores, 2.30GHz) with 48 OpenMP threads.

In addition, we used multithreaded BLAS and LAPACK libraries mwblas and mwlapack

provided by MATLAB. On the other hand, we ran our GPU version using cuBLAS and

cuSOLVER on NVIDIA TITAN V. The data were stored in the row major format for

the CPU version and in the column major format for the GPU version, and we simply

replaced a CUDA kernel by omp parallel for for comparison; our OpenMP code was

not NUMA aware. All operations were performed in double precision. We acknowledge

that the speedup is problem dependent. The speedup in Tables 6.6 and 6.7 is meant to

provide the reader an idea of potential acceleration.

Table 6.6: Speedup of objective function evaluation of piecewise-rigid motion.

Number
of Nodes

Running Time (sec)

SpeedupOpenMP CUDA

412 3.068 0.364 8.4
612 14.915 0.990 15.1
812 45.350 2.430 18.7
912 70.687 3.769 18.8
1012 109.173 5.809 18.8
1112 163.613 9.051 18.1

Number
of Nodes

Running Time (sec)

SpeedupOpenMP CUDA

113 1.162 0.219 5.3
153 6.109 0.712 8.6
193 33.545 2.285 14.7
203 45.067 3.059 14.7
223 81.409 5.846 13.9
233 110.443 8.070 13.7

Table 6.7: Speedup of objective function evaluation of the atrophy model.

Number
of Nodes

Running Time (sec)

Speedup

OpenMP

+ PCG

OpenMP

+ PCG∗
CUDA

+ PCG∗

412 44.792 6.889 2.730 16.4
612 366.210 41.945 6.018 60.9
812 1227.783 131.735 15.734 78.0
912 1997.998 209.534 26.024 76.8

1012 3102.931 330.595 39.289 79.0
1112 4603.193 504.160 59.822 76.9

113 19.958 5.353 1.584 12.6
153 186.558 26.289 3.806 49.0
193 860.830 105.921 12.289 70.0
203 1157.632 148.062 16.493 70.2
223 2104.303 262.582 28.792 73.1
233 2804.688 359.998 39.647 70.7
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Conclusion

In the previous chapters, we have covered examples, theorems, and computation of the

framework

min
θ∈Θ

(︃∫︂ T

0
Λ(φ(t), θ(t)) dt+ ρ(φ(T,Ω0), Ωtarg)

)︃
(2.10)

subject to

φ(t, x) = x+

∫︂ t

0
M(φ [0, s], θ(s))(φ(s, x)) ds for all (t, x) ∈ [0, T ]× Rd.

Our two examples demonstrate that this framework enables us to concentrate on the mod-

eling of deformation vector fields. If the developed model satisfies the sufficient conditions

of our theorems, diffeomorphic shape evolutions and diffeomorphic shape registrations will

follow automatically. However, more sophisticated models could be far more complicated

than the two examples we presented, especially when we take into account the interaction

between the dynamics of shapes and their surrounding environment. For example, cell mi-

gration in fluid involves the interaction between deformable cell membranes and the fluid

flow; the motion of heart valves is intertwined with the heart muscle and the blood flow.

These topics reside in the regime of PDE-constrained optimization problems [15], which

are more technically demanding. To tackle these problems numerically, more advanced

methods like parallel algorithms for PDE-constrained optimization problems [3] and the

immersed finite element method [107] are certainly required. Despite all the challenges,

we envision the model-based direction as an attempt to partially answer the meaning of a

sensible registration.
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Bagatelles

A.1 Approximation of xνKν(x), ν ∈ N

The modified Bessel function of the second kind Kν has the recurrence relation [75, 51:5:2]

xν Kν(x) = 2(ν − 1)
(︁
xν−1Kν−1(x)

)︁
+ x2

(︁
xν−2Kν−2(x)

)︁
,

so we only need to approximate x2K0(x) and xK1(x) to obtain xνKν(x), ν ∈ N. The

following approximations of x2K0(x) and xK1(x) are modified from [29], whose Fortran

code for K0 and K1 can be downloaded from http://www.netlib.org/specfun/k0

and http://www.netlib.org/specfun/k1. The approximations of K0 and K1 from

[29] have at least 18 significant decimal digits theoretically. The coefficients of polynomials

P
(i)
0 , Q

(i)
0 , P

(i)
1 , Q

(i)
1 are listed in Tables A.1–A.6, and εmach stands for the machine epsilon.

Note that the upper bound of the numerical support of K0 and K1 (705.342 and 705.343)

could be machine dependent; we simply used 700 in our implementation. In addition, we

can use the formula [75, 51:10:4]

d

dx
(xν Kν(x)) = −xν Kν−1(x)

to further obtain approximate derivatives.

x2K0(x) ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if 0 ≤ x < εmach;

P
(1)
0 (x2)

Q
(1)
0 (x2)

x2 − P
(2)
0 (x2)

Q
(2)
0 (x2)

x4 log x− x2 log x, if εmach ≤ x ≤ 1;

P
(3)
0 (1/x)

Q
(3)
0 (1/x)

x3/2 e−x, if 1 < x ≤ 705.342;

0, if x > 705.342.
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xK1(x) ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if 0 ≤ x < εmach;

P
(1)
1 (x2)

Q
(1)
1 (x2)

+
P

(2)
1 (x2)

Q
(2)
1 (x2)

x2 log x, if εmach ≤ x ≤ 1;

P
(3)
1 (1/x)

Q
(3)
1 (1/x)

x1/2 e−x, if 1 < x ≤ 705.343;

0, if x > 705.343.

Table A.1: Coefficients of polynomials P
(1)
0 and Q

(1)
0 .

P
(1)
0 Q

(1)
0

1 2.4708152720399552679 e+03 2.1312714303849120380 e+04
x 5.9169059852270512312 e+03 −2.4994418972832303646 e+02
x2 4.6850901201934832188 e+02 1
x3 1.1999463724910714109 e+01 0
x4 1.3166052564989571850 e−01 0
x5 5.8599221412826100000 e−04 0

Table A.2: Coefficients of polynomials P
(2)
0 and Q

(2)
0 .

P
(2)
0 Q

(2)
0

1 −4.0320340761145482298 e+05 −1.6128136304458193998 e+06
x −1.7733784684952985886 e+04 2.9865713163054025489 e+04
x2 −2.9601657892958843866 e+02 −2.5064972445877992730 e+02
x3 −1.6414452837299064100 e+00 1

A.2 Supplementary Proofs

Lemma A.2.1. For all a, b ∈ R and ε > 0, we have

ab ≤ 1

2ε
a2 +

ε

2
b2.

Proof. Note that (︃
1√
2ε
a−

√︃
ε

2
b

)︃2

≥ 0.

Rearranging the terms gives the result.
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Table A.3: Coefficients of polynomials P
(3)
0 and Q

(3)
0 .

P
(3)
0 Q

(3)
0

1 1.1600249425076035558 e+02 9.2556599177304839811 e+01
x 2.3444738764199315021 e+03 1.8821890840982713696 e+03
x2 1.8321525870183537725 e+04 1.4847228371802360957 e+04
x3 7.1557062783764037541 e+04 5.8824616785857027752 e+04
x4 1.5097646353289914539 e+05 1.2689839587977598727 e+05
x5 1.7398867902565686251 e+05 1.5144644673520157801 e+05
x6 1.0577068948034021957 e+05 9.7418829762268075784 e+04
x7 3.1075408980684392399 e+04 3.1474655750295278825 e+04
x8 3.6832589957340267940 e+03 4.4329628889746408858 e+03
x9 1.1394980557384778174 e+02 2.0013443064949242491 e+02
x10 0 1

Table A.4: Coefficients of polynomials P
(1)
1 and Q

(1)
1 .

P
(1)
1 Q

(1)
1

1 −2.2149374878243304548 e+06 −2.2149374878243304548 e+06
x 7.1938920065420586101 e+05 3.7264298672067697862 e+04
x2 1.7733324035147015630 e+05 −2.8143915754538725829 e+02
x3 7.1885382604084798576 e+03 1
x4 9.9991373567429309922 e+01 0
x5 4.8127070456878442310 e−01 0

Table A.5: Coefficients of polynomials P
(2)
1 and Q

(2)
1 .

P
(2)
1 Q

(2)
1

1 −1.3531161492785421328 e+06 −2.7062322985570842656 e+06
x −1.4758069205414222471 e+05 4.3117653211351080007 e+04
x2 −4.5051623763436087023 e+03 −3.0507151578787595807 e+02
x3 −5.3103913335180275253 e+01 1
x4 −2.2795590826955002390 e−01 0
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Table A.6: Coefficients of polynomials P
(3)
1 and Q

(3)
1 .

P
(3)
1 Q

(3)
1

1 2.2196792496874548962 e+00 1.7710478032601086579 e+00
x 4.4137176114230414036 e+01 3.4552228452758912848 e+01
x2 3.4122953486801312910 e+02 2.5951223655579051357 e+02
x3 1.3319486433183221990 e+03 9.6929165726802648634 e+02
x4 2.8590657697910288226 e+03 1.9448440788918006154 e+03
x5 3.4540675585544584407 e+03 2.1181000487171943810 e+03
x6 2.3123742209168871550 e+03 1.2082692316002348638 e+03
x7 8.1094256146537402173 e+02 3.3031020088765390854 e+02
x8 1.3182609918569941308 e+02 3.6001069306861518855 e+01
x9 7.5584584631176030810 e+00 1
x10 6.4257745859173138767 e−02 0

Proposition A.2.2. The layered elasticity tensor can be expressed as

EΦ(εu, εu) = λtan
(︁
ζ11 + ζ22

)︁2
+ µtan

(︁
ζ211 + ζ222 + 2 ζ212

)︁
+ µtsv ζ

2
33 + 2µang

(︁
ζ213 + ζ223

)︁
= λtan

(︂
tr(εu)−N⊤εuN

)︂2
+ µtan

(︂
tr(ε2u)− 2 |εuN |2 + (N⊤εuN)2

)︂
+ µtsv (S

⊤εu S)
2 + 2µang

(︂
|εuS|2 − (N⊤εu S)

2
)︂
,

where ζij is the ij-th element of ζu = F⊤εu F and F =
[︂
T1, T2, S

]︂
.

Proof. We examine the four terms separately. First we notice that ζ33 = S⊤εu S, which

gives the third term. Since {T1, T2, N} is an orthonormal basis, we have

|εuS|2 = (T⊤
1 εu S)

2 + (T⊤
2 εu S)

2 + (N⊤εu S)
2 = ζ213 + ζ223 + (N⊤εu S)

2,

which implies the fourth term

ζ213 + ζ223 = |εuS|2 − (N⊤εu S)
2.

To derive the first and second terms, we define a projection matrix by

P :=

⎡⎢⎣ 1 0 0

0 1 0

0 0 0

⎤⎥⎦ .
For the first term, we observe that

ζ11 + ζ22 = tr(P ζu P ) = tr
(︁
P (F⊤εu F )P

)︁
= tr

(︁
εu (F P F

⊤)
)︁
,
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and we can write the second term as

ζ211 + ζ222 + 2 ζ212 = tr
(︂
(P ζu P )

2
)︂
= tr

(︂(︁
P (F⊤εu F )P

)︁(︁
P (F⊤εu F )P

)︁)︂
= tr

(︂(︁
εu (F P F

⊤)
)︁2)︂

.

Since F P F⊤ = I3 −NN⊤, we obtain the first term

(ζ11 + ζ22)
2 =

(︂
tr
(︁
εu (I3 −NN⊤)

)︁)︂2
=
(︂
tr(εu)−N⊤εuN

)︂2
and the second term

ζ211 + ζ222 + 2 ζ212 = tr
(︂(︁
εu (I3 −NN⊤)

)︁2)︂
= tr(ε2u)− 2N⊤ε2uN + (N⊤εuN)2,

which completes the proof.

Theorem A.2.3. Let v ∈ L1([0, T ], Cp+1
0 (Rd,Rd)). Then the initial value problem

φ(t) = id +

∫︂ t

0
v(s) ◦ φ(s) ds

has a unique solution in C([0, T ],Diff pid (R
d)).

Proof. Suppose that we have obtained a unique solution φt0 ∈ C([0, t0],Diff pid (R
d)) up to

time t0, which is true right at the beginning with φ0(0) = id . Denote ξt0 := φt0(t0). If we

can show that there exist a fixed η > 0 and a unique φ ∈ C([t0, t0+η],Diff pid (R
d)) satisfying

φ(t) = id +

∫︂ t

t0

v(s) ◦ φ(s) ds, (A.1)

then since w ↦→ w ◦ ξt0 is in L (Cp0 (Rd,Rd), C
p
0 (Rd,Rd)), the extension φt0 ⊕ φ ∈ C([0, t0 +

η],Diff pid (R
d)) defined by

(φt0 ⊕ φ)(t) =

⎧⎨⎩ φt0(t) if t ∈ [0, t0]

φ(t) ◦ ξt0 if t ∈ (t0, t0 + η]

will be the unique solution on [0, t0+η]. Our proof will be complete by extending the unique

solution repeatedly to [0, T ].

Since Diff pid (R
d) is open in id+Cp0 (Rd,Rd), there exists a fixed r > 0 such thatB (id , r) :=

{ξ′ ∈ id +Cp0 (Rd,Rd) : ∥ξ′− id∥p,∞ ≤ r} is contained in Diff pid (R
d). With t0 and r fixed, we

define the iterate mapping Γ : C([t0, t0 + η], B (id , r))→ C([t0, t0 + η], id + Cp0 (Rd,Rd)) by

Γ (φ)(t) = id +

∫︂ t

t0

v(s) ◦ φ(s) ds.
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The domain C([t0, t0 + η], B (id , r)) and the codomain C([t0, t0 + η], id + Cp0 (Rd,Rd)) are

both equipped with the metric

d(φ,ψ) := sup
t∈ [t0, t0 + η]

∥φ(t)− ψ(t)∥p,∞,

which makes the domain a complete metric space. We are going to choose a fixed η > 0 such

that Γ is a well-defined contraction. The Banach fixed point theorem will then imply the

existence of a unique φ ∈ C([t0, t0 + η], B (id , r)) ⊂ C([t0, t0 + η],Diff pid (R
d)) that satisfies

(A.1). Since s ↦→ v(s) ◦ φ(s) is strongly measurable and∫︂ t

t0

∥v(s) ◦ φ(s)∥p,∞ ds ≤
∫︂ t

t0

Cr ∥v(s)∥p,∞ ds ≤ Cr
∫︂ t0+η

t0

∥v(s)∥p,∞ ds <∞,

we know that the Bochner integral is well defined. Moreover, the same inequality also gives

∥Γ (φ)(t)− id∥p,∞ ≤ Cr
∫︂ t0+η

t0

∥v(s)∥p,∞ ds.

On the other hand, we have

d(Γ (φ), Γ (ψ)) ≤
(︃
C ′
r

∫︂ t0+η

t0

∥v(s)∥p+1,∞ ds

)︃
d(φ,ψ).

We conclude that a unique fixed point φ ∈ C([t0, t0 + η], B (id , r)) of Γ exists as long as

η > 0 satisfies ∫︂ t0+η

t0

∥v(s)∥p+1,∞ ds < min

{︃
r

Cr
,

1

C ′
r

}︃
.

Since the right-hand side is a fixed quantity, a fixed η can be chosen.

Theorem A.2.4 (Grönwall’s lemma). Let α, β, and u be measurable functions on [a, b].

(i) Suppose that α is nonnegative, β is nonnegative and integrable, and u is essentially

bounded on [a, b]. If

u(t) ≤ α(t) +
∫︂ t

a
β(s)u(s) ds for all t ∈ [a, b],

then

u(t) ≤ α(t) +
∫︂ t

a
α(s)β(s) exp

(︃∫︂ t

s
β(s′) ds′

)︃
ds for all t ∈ [a, b].

The bound could be infinity.

(ii) Suppose that β is nonnegative and integrable and u is essentially bounded on [a, b]. If

u(t) ≤ C +

∫︂ t

a
β(s)u(s) ds for all t ∈ [a, b],
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where C ∈ R, then

u(t) ≤ C exp

(︃∫︂ t

a
β(s) ds

)︃
for all t ∈ [a, b].

Proof. (i) The assumption is

u(t) ≤ α(t) +
∫︂ t

a
β(s)u(s) ds.

Since β is nonnegative, we plug the above inequality into its right-hand side and obtain

u(t) ≤ α(t) +
∫︂ t

a
β(s0)

(︃
α(s0) +

∫︂ s0

a
β(s1)u(s1) ds1

)︃
ds0

= α(t) +

∫︂ t

a
β(s0)α(s0) ds0 +

∫︂ t

a

∫︂ s0

a
β(s0)β(s1)u(s1) ds1 ds0.

We then plug the first inequality into the right-hand side of the second inequality:

u(t) ≤ α(t) +
∫︂ t

a
β(s0)α(s0) ds0

+

∫︂ t

a

∫︂ s0

a
β(s0)β(s1)

(︃
α(s1) +

∫︂ s1

a
β(s2)u(s2) ds2

)︃
ds1 ds0

= α(t) +

∫︂ t

a
β(s0)α(s0) ds0 +

∫︂ t

a

∫︂ s0

a
β(s0)β(s1)α(s1) ds1 ds0

+

∫︂ t

a

∫︂ s0

a

∫︂ s1

a
β(s0)β(s1)β(s2)u(s2) ds2 ds1 ds0.

Thus, at the n-th iterate, we have

u(t) ≤ α(t) +
∫︂ t

a
β(s0)α(s0) ds0 +

∫︂ t

a

∫︂ s0

a
β(s0)β(s1)α(s1) ds1 ds0 + · · ·

+

∫︂ t

a

∫︂ s0

a
· · ·
∫︂ sn−1

a
β(s0) · · ·β(sn−1)α(sn−1) dsn−1 · · · ds0

+

∫︂ t

a

∫︂ s0

a
· · ·
∫︂ sn

a
β(s0) · · ·β(sn)u(sn) dsn · · · ds0.

(A.2)

Since α, β are nonnegative and u is essentially bounded on [a, b], Tonelli’s theorem yields

u(t) ≤ α(t) +
∫︂ t

a
β(s0)α(s0) ds0 +

∫︂ t

a
β(s1)α(s1)

(︃∫︂ t

s1

β(s0)ds0

)︃
ds1 + · · ·

+

∫︂ t

a
β(sn−1)α(sn−1)

(︄∫︂ t

sn−1

· · ·
∫︂ t

s1

β(s0) · · ·β(sn−2) ds0 · · · dsn−2

)︄
dsn−1

+
(︂
ess sup
sn ∈ [a, b]

|u(sn)|
)︂ ∫︂ t

a

∫︂ t

sn

· · ·
∫︂ t

s1

β(s0) · · ·β(sn) ds0 · · · dsn.

Denote by µ the measure with density β with respect to the Lebesgue measure. Note that
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∫︁ t
x

∫︁ t
sk
· · ·
∫︁ t
s1
β(s0) · · ·β(sk) ds0 · · · dsk is the µ-measure of one of the (k + 1)! simplexes that

equally split the µ-measure of the cube [x, t]k+1, thus∫︂ t

x

∫︂ t

sk

· · ·
∫︂ t

s1

β(s0) · · ·β(sk) ds0 · · · dsk =
1

(k + 1)!

∫︂
[x, t]k+1

β(s0) · · ·β(sk) ds0 · · · dsk

=
1

(k + 1)!

(︃∫︂ t

x
β(s′) ds′

)︃k+1

.

We continue the above inequality and write

u(t) ≤ α(t) +
∫︂ t

a
β(s0)α(s0) ds0 +

∫︂ t

a
β(s1)α(s1)

1

1!

(︃∫︂ t

s1

β(s′) ds′
)︃
ds1 + · · ·

+

∫︂ t

a
β(sn−1)α(sn−1)

1

(n− 1)!

(︄∫︂ t

sn−1

β(s′) ds′

)︄n−1

dsn−1

+
(︂
ess sup
s∈ [a, b]

|u(s)|
)︂ 1

(n+ 1)!

(︃∫︂ t

a
β(s′) ds′

)︃n+1

= α(t) +

∫︂ t

a
β(s)α(s)

(︄
n−1∑︂
k=0

1

k!

(︃∫︂ t

s
β(s′) ds′

)︃k)︄
ds

+
ess sup |u(s)|

(n+ 1)!

(︃∫︂ t

a
β(s′) ds′

)︃n+1

.

When n→∞, the last term goes to zero since β is integrable. Hence we conclude that

u(t) ≤ α(t) +
∫︂ t

a
α(s)β(s) exp

(︃∫︂ t

s
β(s′) ds′

)︃
ds.

(ii) Observe that we only use the nonnegativeness of α to invoke Tonelli’s theorem. Thus

we can replace α by a constant C ∈ R in (A.2), apply the Tonelli’s theorem thanks to the

nonnegativeness of β, and then arrive at

u(t) ≤ C
n∑︂
k=0

1

k!

(︃∫︂ t

a
β(s′) ds′

)︃k
+

ess sup |u(s)|
(n+ 1)!

(︃∫︂ t

a
β(s′) ds′

)︃n+1

.

Letting n→∞ leads to

u(t) ≤ C exp

(︃∫︂ t

a
β(s) ds

)︃
.

Proposition A.2.5. Let f ∈ L2([0, T ], H1(Ω)). Then ∂tf = g ∈ L2([0, T ], (H1(Ω))∗),

where the time derivative is in the sense of distribution, if and only if

d

dt
⟨f(·), ψ⟩L2 = (g(·) | ψ)(H1)∗, H1

153



A.3. Reaction and Atrophy Functions

for almost every t ∈ [0, T ] and all ψ ∈ H1(Ω).

Proof. (⇒) By definition, the distributional time derivative ∂tf = g means that

−
∫︂ T

0
f(t) φ̇(t) dt =

∫︂ T

0
g(t)φ(t) dt ∈ (H1(Ω))∗ for all φ ∈ D

(︁
(0, T )

)︁
.

Evaluating the above equation at an arbitrary ψ ∈ H1(Ω) gives(︃
−
∫︂ T

0
f(t) φ̇(t) dt ψ

)︃
(H1)∗, H1

=

(︃∫︂ T

0
g(t)φ(t) dt ψ

)︃
(H1)∗, H1

for all φ ∈ D
(︁
(0, T )

)︁
,

which, from Theorem 2.2.8, implies that

−
∫︂ T

0
⟨f(t), ψ⟩L2 φ̇(t) dt =

∫︂ T

0
(g(t) | ψ)(H1)∗, H1 φ(t) dt for all φ ∈ D

(︁
(0, T )

)︁
.

In other words, the weak derivative of the real-valued function ⟨f(·), ψ⟩L2 is
(︁
g(·) | ψ

)︁
(H1)∗, H1 ,

that is, d
dt⟨f(·), ψ⟩L2 = (g(·) | ψ)(H1)∗, H1 for almost every t ∈ [0, T ].

(⇐) Note that we can reverse the arguments in the above proof.

A.3 Reaction and Atrophy Functions

In our numerical experiments of the atrophy model, we have used the reaction and atrophy

functions shown in Figure 3.16. Both reaction and atrophy functions are shifted and scaled

from C2 functions compactly supported on [−1, 1] with maximum 1, that is,

R(τ) := Rmax
˜︁R(︂− 1 + 2

τ − τmin

τmax − τmin

)︂
and

α(τ) := αmax ˜︁α(︂− 1 + 2
τ − τmin

τmax − τmin

)︂
.

The C2 function ˜︁R : R→ R is defined by

˜︁R(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b1 (x+ 1)3 (x− b2), if x ∈ [−1,−1 + d
2);

c1 x
3 + c2 x

2 + c3 x+ c4, if x ∈ [−1 + d
2 ,−1 + d);

−a x2 + 1, if x ∈ [−1 + d, 1− d);
−c1 x3 + c2 x

2 − c3 x+ c4, if x ∈ [1− d, 1− d
2);

b1 (−x+ 1)3 (−x− b2), if x ∈ [1− d
2 , 1];

0, otherwise,
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where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b1 =
8 ad2 − 48 ad+ 48 (a− 1)

3 d4

b2 =
29 ad3 − 156 ad2 + (264 a− 120) d− 144 (a− 1)

24 ad2 − 144 ad+ 144 (a− 1)

c1 =
−ad2 + 12 ad− 24 (a− 1)

9 d3

c2 =
−2 ad3 − 13 ad2 + (36 a− 24) d− 24 (a− 1)

3 d3

c3 = −
(1− d)2 (ad2 − 12 ad+ 24 (a− 1))

3 d3

c4 =
ad5 − 15 ad4 + (63 a− 15) d3 − (109 a− 72) d2 + (84 a− 72) d− 24 (a− 1)

9 d3

.

We used a = 0.3 and d = 0.5 in our numerical experiments. The C2 function ˜︁α : R→ R is

defined by

˜︁α(x) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

b1 (x+ 1)3 (x− b2), if x ∈ [−1,−1 + d);

−a x2 + 1, if x ∈ [−1 + d, 1− d);
b1 (−x+ 1)3 (−x− b2), if x ∈ [1− d, 1];
0, otherwise,

where ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

a =
6

d2 − 6 d+ 6

b1 =
3 (d− 2)

d3 (d2 − 6 d+ 6)

b2 =
8 d2 − 15 d+ 6

3 (d− 2)

.

We used d = 0.5 in our numerical experiments.

A.4 Gradient Computation of Piecewise Rigid Motion

To simplify our presentation, we consider the case when the shape has only one connected

component. Given a discretized initial shape {qj,0}mj=1, a rotation center c0, and a discretized

target shape {qj,targ}m′
j=1, the objective function is given by

J(θ) :=
1

2

∫︂ T

0

(︂
v(t)⊤KV (q(t))

−1 v(t) + |θ(t)|2
)︂
dt+ ρ

(︂
{qj(T )}j , {qj,targ}j

)︂
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subject to ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c(t) = c0 +

∫︂ t

0
u(s) ds

α(t) =

∫︂ t

0
ω(s) ds

qj(t) = P
(︁
c(t), α(t), qj,0, c0

)︁
vj(t) = Ṗ

(︁
u(t), ω(t), α(t), qj,0, c0

)︁
,

where θ(t) =
(︁
u(t), ω(t)

)︁
. We let y := (c, α) be our state variable. We then introduce the

costate p : [0, T ]→ R
d(d+1)

2 and form the Lagrangian

L(y, p, θ) :=
1

2

∫︂ T

0

(︂
v(t)⊤KV (q(t))

−1 v(t) + |θ(t)|2
)︂
dt+ ρ

(︂
{qj(T )}j , {qj,targ}j

)︂
+

∫︂ T

0
p(t)⊤

(︁
ẏ(t)− θ(t)

)︁
dt

subject to ⎧⎨⎩ qj(t) = P
(︁
c(t), α(t), qj,0, c0

)︁
vj(t) = Ṗ

(︁
u(t), ω(t), α(t), qj,0, c0

)︁ .

For each θ, we let

yθ(t) = y0 +

∫︂ t

0
θ(s) ds

and look for pθ such that ⎧⎨⎩ ∂yL(yθ, pθ, θ) = 0

∂pL(yθ, pθ, θ) = 0
.

With such chosen yθ and pθ, we deduce that

dJ(θ) = ∂θL(yθ, pθ, θ) = ∂θ′L(yθ, pθ, θ
′)
⃓⃓
θ′=θ

,

thus ∂θ′L(yθ, pθ, θ
′)|θ′=θ is the gradient of the objective function J . We now show how to

obtain pθ. Derivatives of L with respect to y and p are given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∂yL(y, p, θ) | δy) =
1

2

∫︂ T

0
∂y(t)

(︂
v(t)⊤KV (q(t))

−1 v(t)
)︂⊤
δy(t) dt

+
(︂
∂y(T ) ρ

(︂
{qj(T )}j , {qj,targ}j

)︂)︂⊤
δy(T )

+ p(T )⊤δy(T )−
∫︂ T

0
ṗ(t)⊤δy(t) dt

(∂pL(q, p, θ) | δp) =
∫︂ T

0
δp(t)⊤(ẏ(t)− θ(t)) dt

.
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Note that ∂yL(y, p, θ) = 0 is equivalent to⎧⎪⎨⎪⎩
ṗ(t) =

1

2
∂y(t)

(︂
v(t)⊤KV (q(t))

−1 v(t)
)︂

for almost every t ∈ [0, T ]

p(T ) = −∂y(T ) ρ
(︂
{qj(T )}j , {qj,targ}j

)︂ .

In addition, ∂pL(y, p, θ) = 0 is equivalent to ẏ(t) = θ(t) for almost every t ∈ [0, T ]. Hence

we can compute the gradient at θ as follows. First we compute

yθ(t) = y0 +

∫︂ t

0
θ(s) ds,

which satisfies ∂pL(yθ, p, θ) = 0 for all p. Plugging yθ = (cθ, αθ) into the dynamics of p,

recall that θ = (u, ω), next we compute⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
pθ(t) = −∂y(T ) ρ

(︂
{qj(T )}j , {qj,targ}j

)︂
+

∫︂ t

T

1

2
∂y(t)

(︂
v(t)⊤KV (q(t))

−1 v(t)
)︂
dt

qj(t) = P
(︁
cθ(t), αθ(t), qj,0, c0

)︁
vj(t) = Ṗ

(︁
u(t), ω(t), αθ(t), qj,0, c0

)︁ ,

where we have

1

2
∂y(t)

(︂
v(t)⊤KV (q(t))

−1 v(t)
)︂

=
(︂
∂y(t)v(t)

)︂
KV (q(t))

−1 v(t)− 1

2

(︂
∂y(t)q(t)

)︂
∂q(t)

(︂
w⊤KV (q(t))w

)︂⃓⃓⃓
w=KV (q(t))−1 v(t)

.

Since yθ and pθ satisfy the requirements, we can obtain the gradient of J as(︂
∂θ′L(yθ, pθ, θ

′)
⃓⃓
θ′=θ

)︂
(t) =

(︂
∂θ(t)v(t)

)︂
KV (q(t))

−1 v(t) + θ(t)− pθ(t).

A.5 Derivation of Mass and Stiffness Matrices

We aim to approximate ∫︂
T0
ψi,0 ψj,0 detDφ(t) dx, (A.3)

∫︂
T0
∇ψ⊤

i,0 Wφ(t)∇ψj,0 detDφ(t) dx, (A.4)

and ∫︂
T0
R

(︃ n∑︂
k=1

τk(t)ψk,0

)︃
ψi,0 detDφ(t) dx. (A.5)

Since the only difference in the derivation between d = 2 and d = 3 is the piecewise linear

basis functions, which lead to different coefficients, our discussion will be based on d = 2
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for simplicity. We prepare some notations. Denote the positions of three nodes at vertices

of T0 by q0,0, q1,0, and q2,0, and denote their evolution by t ↦→ qi(t). We also define

Q0 :=

[︃
q1,0 − q0,0, q2,0 − q0,0

]︃
and Q(t) :=

[︃
q1(t)− q0(t), q2(t)− q0(t)

]︃
.

In addition, we denote by T P the triangular parent element formed by vertices e0 := (0, 0),

e1 := (1, 0), and e2 := (0, 1). The linear basis functions on the parent domain are given by⎧⎪⎪⎨⎪⎪⎩
ψP0 (x, y) = −x− y + 1

ψP1 (x, y) = x

ψP2 (x, y) = y

.

By relabeling if necessary, we assume that the global indices of the three nodes, q0(t),

q1(t), q2(t), are also equal to the local indices, 0, 1, 2, to avoid an additional index mapping

between the parent and the physical domain.

To approximate (A.3), first we note that

detDφ(t, x) ≈ | detQ(t)|
| detQ0|

for x ∈ T0.

We make a change of variables x ↦→ q0,0 +Q0 x which maps T P to T0 and obtain∫︂
T0
ψi,0 ψj,0 detDφ(t) dx ≈

∫︂
T P

ψPi (x)ψ
P
j (x)

| detQ(t)|
|detQ0|

| detQ0| dx

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1

12
| detQ(t)|, if i, j ∈ T0 and i = j ;

1

24
| detQ(t)|, if i, j ∈ T0 and i ̸= j ;

0, otherwise .

For the second integral (A.4), we recall from (3.13) that

Wφ(t) =
(︁
Dφ(t)

)︁−1 (︁
Uφ(t) ◦ φ(t)

)︁
Dφ(t)−⊤.

It follows that∫︂
T0
∇ψ⊤

i,0 Wφ(t)∇ψj,0 detDφ(t) dx

=

∫︂
T0

(︂
Dφ(t)−⊤∇ψi,0

)︂⊤ (︁
Uφ(t) ◦ φ(t)

)︁ (︂
Dφ(t)−⊤∇ψj,0

)︂
detDφ(t) dx.

We approximate Uφ(t) ◦ φ(t) on T0 by a constant matrix Uq(t) and approximate Dφ(t) by

Q(t)Q−1
0 . Moreover, since ψPi (x) = ψi,0(q0,0 + Q0 x), we have ∇ψPi (x) = Q⊤

0 ∇ψi,0(q0,0 +
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Q0 x). Thus a change of variables x ↦→ q0,0 +Q0 x will change

Dφ(t)−⊤∇ψi,0 ≈
(︁
Q(t)Q−1

0

)︁−⊤∇ψi,0

to (︁
Q(t)Q−1

0

)︁−⊤ (︁
Q−⊤

0 ∇ψPi
)︁
= Q(t)−⊤∇ψPi . (A.6)

Using the identity (A.6), we make a change of variables and approximate the integral by∫︂
T0
∇ψ⊤

i,0 Wφ(t)∇ψj,0 detDφ(t) dx

≈
∫︂
T P

(︁
Q(t)−⊤∇ψPi

)︁⊤
Uq(t)

(︁
Q(t)−⊤∇ψPj

)︁ |detQ(t)|
|detQ0|

|detQ0| dx

=

⎧⎪⎨⎪⎩
1

2

(︁
∇ψi(t)

)︁⊤
T (t)

Uq(t)

(︁
∇ψj(t)

)︁
T (t)
|detQ(t)|, if i, j ∈ T0 ;

0, otherwise .

In the third integral (A.5), we approximate the nonlinear function R

(︃∑︁n
k=1 τk(t)ψk,0

)︃
by linear interpolation:

R

(︃ n∑︂
k=1

τk(t)ψk,0

)︃
≈ R(τi(t))ψi,0 +R(τj(t))ψj,0 +R(τk(t))ψk,0,

which leads to∫︂
T0
R

(︃ n∑︂
k=1

τk(t)ψk,0

)︃
ψi,0 detDφ(t) dx

≈
∫︂
T0

(︂
R(τi(t))ψi,0(x) +R(τj(t))ψj,0(x) +R(τk(t))ψk,0(x)

)︂
ψi,0(x)

| detQ(t)|
| detQ0|

dx

=

∫︂
T P

(︂
R(τi(t))ψ

P
i (x) +R(τj(t))ψ

P
j (x) +R(τk(t))ψ

P
k (x)

)︂
ψPi (x)

| detQ(t)|
|detQ0|

| detQ0| dx

=
1

24

(︂
2R(τi(t)) +R(τj(t)) +R(τk(t))

)︂
| detQ(t)|.
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rigid multimodal spine registration. In Bildverarbeitung für die Medizin (01 2006),
pp. 211–215.

[25] Cecka, C., Lew, A. J., and Darve, E. Assembly of finite element methods on
graphics processors. International Journal for Numerical Methods in Engineering 85,
5 (2011), 640–669.

[26] Charlier, B., Charon, N., and Trouvé, A. The fshape framework for the
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