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Abstract

Scene understanding, including object recognition, is perhaps the most challenging task

in computer vision. Deep convolutional neural networks (CNNs) have received a flurry of

interest in the past few years due to their superior performance. However, deep networks

are computationally expensive and without efficient implementation on high performance

computing systems not as practical as older methods. Furthermore, CNNs do not benefit

from the human’s visual selective attention and top-down contextual feedback connections.

The human visual system makes extensive use of contextual information to facilitate and

refine object detections; object detection and recognition based only on intrinsic features of

target objects is not usually sufficient for reliable inference. In this thesis, we use a model-

based approach to incorporate top-down contextual information, and analyze scenes in a

coarse-to-fine fashion inspired by the visual selective attention property.

In addition to disambiguating object detection, the space of objects and their poses can

be searched more efficiently by taking advantage of the contextual relations between differ-

ent scene entities. We present a new approach to efficiently search the space of objects and

their poses using a Bayesian method called “Entropy Pursuit”, where contextual relations
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between object instances and other scene entities are incorporated via a prior model. Using

the entropy pursuit approach we collect bits of information about the scene sequentially by

greedily selecting patches whose analysis provide the most informative in an information-

theoretic sense. As proof of concept we use the entropy pursuit method for multi-category

object recognition in table-setting scenes. We have investigated the possibility of generat-

ing a scene interpretation by processing only a fraction of patches from an input image. Our

results confirm the hypothesis that we can identify an accurate interpretation by processing

only a fraction of patches if the right patches are selected in the right order. We can save

computation time by processing only a fraction of patches.

Primary Reader: Donald Geman

Secondary Reader: Laurent Younes
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Chapter 1

Introduction

Scene understanding, including object recognition, is perhaps the grandest challenge

in computer vision. Many of the current works on scene interpretation attempt to recog-

nize objects from images of scenes by feeding local image features to classifiers trained for

different object categories. Richer systems use intermediate representations based on part-

based models to capture contextual relationships among those parts, e.g., see [22], while

other systems try to capture contextual relationships among objects, i.e., the spatial layout

of the scene. Object detection and recognition in scenes based only on intrinsic features of

target objects is not usually sufficient for reliable inference. Contextual relations can dis-

ambiguate among competing detections. In some cases such as poor viewing quality where

intrinsic features are degraded, contextual information can actually carry more information

compared to local image features. The human visual system (HVS) makes extensive use of

contextual information to facilitate and refine object detections which might, in fact, be one

1



CHAPTER 1. INTRODUCTION

of the reasons that humans can easily detect and recognize objects and actions even under

adverse conditions [65].

In the past few decades, several attempts have been made to exploit contextual infor-

mation to improve performance of object recognition systems. In early vision systems,

semantic context was expressed as pre-defined rules to facilitate object recognition task.

For example, the popular VISIONS system by Hanson and Riseman [34] used hand-coded

rules to incorporate semantic context, and in [23] Fischler used spatial context stored in the

form of rules and graph-like structures to define spatial interactions between segments. Use

of contextual information in these early works was based on common expert knowledge via

pre-defined rules which per se constrains the system to a limited domain. To overcome this

problem, recent work in object recognition uses a statistical approach that can generalize

and exploit semantic context [12, 20, 25, 46, 47, 64, 71, 72, 93, 98]. Most of the recent work

incorporates contextual information via pairwise terms between labeled regions of pixels

obtained from segmentation or image patches using a Conditional Random Field (CRF)

or Markov Random Field (MRF) model [20, 64, 72, 93]. While most of the work aimed

at discriminative learning and reasoning in 2D [12, 20, 22, 39, 71, 72, 93], several attempts

have been made recently at designing models that reason about surfaces of 3D scenes and

the interaction between objects and their supporting surfaces [4, 40, 54, 58, 84, 90]. It has

been shown that reasoning about the underlying 3D layout of the scene provides useful

information to not only list the objects in the scene but to infer their interactions with other

objects and surfaces [4, 41]. A 3D model can also help to detect partially occluded objects

2
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as it encourages occurrence of objects at their rightful place in the world independent of

camera’s vantage point. However, most of the current 3D models do not encode contextual

relations among objects on supporting surfaces beyond their coplanarity.

There are two different theories on the human visual perception of scenes and objects:

the first theory advocates for a view-specific representation that represents the shape of an

object or scene by a single or multiple canonical view-specific 2D templates, whereas the

second theory advocates for a 3D viewpoint-independent representation and processing of

scenes and objects [41]. There is evidence to support both. For example, the response la-

tency of humans in detecting objects at previously unseen viewpoints is usually considered

supportive of the view-specific 2D templates theory [13, 32, 97]. However, this requires

storing a extremely large number of 2D templates (representing inter and intra-class vari-

ability objects) to effectively capture viewpoint. Hence, while there are some justifications

for the view-specific 2D representation theory it cannot describe the whole story due to

some of its shortcomings. We seem to have an abstract representation of the 3D geometry

of objects and scenes that we use in addition to their visual appearance to recognize them.

Therefore, a combination of 3D representation of objects and scenes together with their

2D visual appearance seems to be a reasonable representation. In this dissertation, we use

a 3D prior model coupled with a data model to incorporate contextual relations. The 2D

projections of 3D scene samples drawn from a generative 3D model can be obtained using

perspective projection given the camera’s intrinsic and extrinsic parameters.

In addition to disambiguating object detection, contextual information can be used to

3
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search the space of objects and their poses more efficiently due to geometric and semantic

contextual constraints. For example, assume that instances of two object categories, c1

and c2, almost always co-occur in close proximity of each other; in this case, it may not

be very informative to apply a c1-detector at a location where we are almost sure that an

instance from the c1 category exists due to confident detection of an instance from the c2

category. In this dissertation, we study how to efficiently search the space of objects and

their poses using a Bayesian approach where contextual relations between object instances

and other scene entities are incorporated via a prior model. The goal is to show that we

can make confident detections by processing only a small fraction of patches from a given

test image if we appropriately define and investigate the “most informative” patches. We

collect bits of information about the scene sequentially using our efficient search strategy,

called “Entropy Pursuit”, that greedily selects patches whose analysis will provide the most

amount of informative in an information-theoretic sense [27]. In addition to the time saved

by processing only a small fraction of patches, it is interesting to study the sequential

analysis of scenes and the evolution of detection accuracy as more evidence is collected. As

a proof of concept we will evaluate this scene parsing approach for table-settings. Again,

the goal is to show that we do not need to process all patches to come up with the full

scene interpretation and by processing only a small fraction of patches, which are the most

informative ones, we can achieve decent performance. Our results have confirmed this

hypothesis.

4
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1.1 Thesis Outline and Main Contributions

In chapter 2, we introduce the entropy pursuit (EP) search strategy for scene interpreta-

tion. Entropy pursuit relies on a suitable prior model that incorporates contextual relations

between various scene entities. We design two prior models both based on the high level

representations of objects and their relations that acknowledge the underlying 3D physical

scene for an image. In chapter 3, we present the first model called a “generative attributed

graph” (GAG). We propose an algorithm to learn this model from annotated images. We

built an image dataset of about 3000 fully annotated images collected from internet and

annotated on the “LabelMe” online annotating website [82].

The second model (described in chapter 4), which is a Markov Random Field (MRF),

is learned from the statistics calculated from GAG model samples. We propose a stochastic

optimization algorithm with an accelerating step size and use it to learn the MRF model.

We also provide a convergence proof for the proposed optimization algorithm. The MRF

model is coupled with a data model (see chapter 5) to “regularize” the output of image

descriptors in a conventional Bayesian framework. At the semantic level, the descriptors

are discriminatively trained classifiers for detecting and localizing object instances. The

MRF model integrates the output of classifiers with expected combinatorial and geometric

patterns among objects.

The reason for designing two models was due to complementary advantages; each

offered something not offered by the other model. We could suitably learn the GAG

model from the limited number of annotated table-setting scenes due to the GAG model’s

5
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CHAPTER 1. INTRODUCTION

Figure 1.1: A block diagram showing the relation of different parts of the entropy pursuit
project and the chapters discussing them.

Bayesian modularity; this was not the case for the MRF model. On the other hand, con-

ditional inference can be performed much faster on the MRF model than the GAG model.

Fast inference is important as it has to be performed online in each step of the EP algorithm.

The generative attributed graph model is one of the main contributions of this the-

sis. Note that a core challenge in computer vision is to develop generative models of the

world that capture rich contextual relationships among scene entities. Generative models

have recently received quite some attention for concept learning and scene perception e.g.,

see [50, 51]. Such models are broadly applicable in scene understanding, including serv-

ing as prior models in a Bayesian framework as well as constructing model-based visual

Turing tests (see [26]). The “Turing Test” evaluates a machine’s ability to exhibit intel-

ligent behavior indistinguishable from a human. As the performance of computer vision

systems improve, the need for suitable evaluation of these systems becomes more evident.

According to Tomaso Poggio (2012): “We may need to understand visual cortex and per-

haps the brain to achieve scene understanding at human level, and thereby develop systems

that pass a full Turing test” [68]. A generative model can be used to generate sequences
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of unpredictable queries for testing computer vision systems; such a visual Turing test is

described in [26], where the likelihoods of answers were estimated empirically from la-

beled data. Having an appropriate model would allow one to identify longer streams and

more accurate estimates of unpredictability by sampling from the scene model conditional

on oracle answers (in effect perfect classifiers). The proposed GAG model is a genera-

tive model for the viewpoint-independent 3D arrangement of multiple objects lying on a

supporting plane. Many man-made scenes are composed of multiple parallel supporting

surfaces upon which instances from different object categories are placed [4], often with

considerable structure. The proposed model can be easily generalized to multiple support-

ing surfaces. The GAG model is a distribution over random attributed graphs that encodes

favored layouts while accounting for variations in the number and relative poses of objects.

Each graph node corresponds to an object instance that is labeled with a category and a

3D pose in the world coordinate system; the edges between nodes reflect the generative

process. The proposed 3D prior model is consistent with Biederman’s [8] description of

well-organized scenes characterized by five relational constraints including support, inter-

position, probability of appearance, position, and size. Such generative 3D models can

serve applications other than scene understanding, including: (1) robotics where building

a physically consistent 3D map of the environment can be critical for effective interaction

and prediction in physical space such as simultaneous localization and mapping, path plan-

ning, grasping and manipulating objects (see [33, 83]), and (2) computer graphics where

a generative 3D model can be used for synthetic content creation; synthetic data can be
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used to train or evaluate computer vision systems specially when access to annotated real

data is limited e.g., see [44] where synthetic data from a text generation engine is used to

train a deep neural network for natural scene text recognition. We illustrate how to learn

the GAG model parameters from annotated images for table settings scenes which contain

plates, bottles, glasses, utensils etc., placed on a table. We also proposed an algorithm to

conditionally sample the GAG model.

We used state-of-the-art convolutional neural networks (CNN) to collect bits of in-

formation about scenes during our entropy pursuit approach. The design, training, and

evaluation of CNN classifiers are discussed in chapter 5. The input image patches to the

CNN classifiers have constant dimensionality resulting in the same computational cost to

process each patch. This makes CNN classifiers theoretically ideal for the entropy pursuit

framework that relies on unit cost tests.

The CNNs were inspired by the mechanism of the visual system. Our understanding of

the visual system seems to be roughly consistent with convolutional networks [87], without

benefiting from the human’s visual selective attention and top-down contextual feedback

connections [5]. We analyze scenes in a coarse-to-fine fashion inspired by the visual selec-

tive attention property, and use a model-based approach to incorporate top-down contextual

information.

We learned a data model based on the Dirichlet distribution to integrate the collected

evidence from the CNN classifiers into our Bayesian EP framework by updating the likeli-

hoods. The data model is also described in chapter 5.

8
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Finally, we ran experiments to evaluate performance and reported the results in chap-

ter 6. Our results confirm that processing a small subset of patches from a given test image,

if selected appropriately, can be sufficient for reliable detection.

Figure 1.1 shows a block diagram of how different parts of the EP project and the

chapters discussing them are related. The main contributions of this thesis are summarized

below.
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1.1.1 Summary of Main Contributions

We propose a fundamentally new approach to multi-category object recognition called

“Entropy Pursuit”. This is a sequential search strategy, inspired by selective attention and

divide-and-conquer algorithm that attempts to process the minimum number of patches

from an input image necessary to acquire an accurate interpretation. This includes:

� A novel generative model, called “generative attributed graph” (GAG) model, on the

3D arrangement of multiple objects lying on a supporting plane basically a distri-

bution on attributed graphs with random structure that encode favored layouts while

accounting for variations in the number and relative poses of objects.

� A fully annotated dataset of about 3000 table-setting scenes called “JHU Table-

Setting Dataset”.

� An algorithm to learn the GAG model from annotated scenes.

� A method based on the Metropolis-Hastings algorithm for conditional sampling of

the GAG model.

� A new stochastic optimization algorithm, with a proof of convergence, that we used

to learn an MRF model from the GAG model statistics.

� A new data model based on the Dirichlet distribution for the output of CNN classifiers

conditional on ground truth.

10
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Entropy Pursuit

Computer vision field and in particular object detection has observed significant progress

in the past decade due to the development of better descriptors including SIFT [59,60] and

more discriminative deep features [49]. Figure 2.1 shows two perfect “plate” detection ex-

amples based on a convolutional neural network (CNN) classifier deploying the VGG-16

network [91] for both category and scale detection. The number in the brackets indicates

the detection’s confidence-rank and the number in the parentheses is the estimated ratio of

the detected object’s scale over the bounding box size. However, object detection based on

only local image features (i.e., classifiers only) is not always as clean as figure 2.1. Fig-

ure 2.2 shows two “plate” detection examples where almost all of the detections are false

positive. A closer look at detections in Figure 2.2 reveals the reason for the false plate

positives; all detections include an elliptical shape, e.g., the base or top of a glass object

instance, which based on only the local image features look like plate. It is interesting to
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note that the glasses whose base and top are detected as plate instances were recognized

correctly by the CNN-based glass detector that observes a not-too-closed-up window as

shown in Figure 2.3. Object detection based on only local image features can be hard even

for humans and in particular for machines, if not impossible. Usually, there exist multiple

object candidates with similar texture that are distinguishable only given the semantic or

geometric context information. Using contextual information can disambiguate detections

and make them more consistent. Consider the second, sixth, and seventh most confident

plate detections in Figure 2.4(top) where the scale ratio of second and sixth most confi-

dent detections with respect to their bounding box is 0.91 whereas the scale ratio of the

seventh most confident detection is 0.89 with respect to a bounding box whose size is half

the size of the second and sixth bounding boxes; this is contextually (geometric context)

inconsistent since plates have a typical size in real world and it is unlikely to vary too

much in size as suggested by the three detections. Also consider the seventh detection in

Figure 2.4(bottom) where an piece of cloth with elliptical shape is detected as plate; this

detection is contextually (spacial context) inconsistent since we expect the detected plates

to be on the table. Contextual information can play an even more important role in object

detection based on shallow (versus deep) image features or in the presence of degradation

(e.g., blur). We usually make assumptions about object identities based on its size and loca-

tion with respect to other objects present in the scene. Consider Figure 2.5, where the same

black blob with the same identical pixels can be interpreted as a plate, bottle, cell phone,

car, pedestrian or shoe, depending on the context (picture taken from [98]).
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Figure 2.1: Perfect “plate” detection examples based on the CNN classifier.
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Figure 2.2: Poor “plate” detection examples based on the CNN classifier.
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Figure 2.3: “Glass” detection examples based on the CNN classifier.
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Figure 2.4: Contextually inconsistent detection example.
16
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Figure 2.5: Object recognition by humans is strongly influenced by contextual information.
The same black blob can be interpreted as a plate, bottle, cell phone, car, pedestrian or shoe,
depending on the context (figure taken from [98]).
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We propose a fundamentally new approach to automated scene interpretation that ef-

ficiently explores the contextual relations among various scene entities. This approach

is inspired by attributes of natural vision which seem to be missing in most vision sys-

tems. The humans visual system selects potential targets in a scene and ignores other items

through the acts of selective attention [74,85]. We switch from a zoomed-out mode, where

we monitor the scene holistically, to a zoomed-in mode for local scrutiny and back again

depending on the currently collected evidence. We analyze scenes at different levels of

resolution which is often coarse-to-fine. Hence, in order to simulate this property of the

human visual system, we acquire evidence from multiple scales and locations at different

levels of resolution and integrate them coherently by updating likelihoods. Our strategy is

also motivated by the “divide-and-conquer” search strategy by humans. Using this strategy

we excel in parlor and board games, such as “Twenty Questions”, by making fast and accu-

rate decisions due to inquiring the right questions in the right order. The “object detection”

problem, as a part of more inclusive “scene interpretation” problem, can be formulated

as a search problem in the space of instances from different object categories and their

poses including location and scale. Motivated by the divide-and-conquer search strategy

we analyze scenes sequentially by greedily identifying and applying the most informative

classifier (in an information-theoretic sense) at each step given the accumulated history of

already applied classifiers. One can think of classifiers at different locations and resolutions

as inquiries in a “Twenty Questions” game.

Entropy Pursuit (EP) is what we call an adaptive stepwise strategy that we use to search

18



CHAPTER 2. ENTROPY PURSUIT

the space of objects and their poses in scene interpretation. The method operates over a

predefined collection of hidden partial interpretation units denoted by Y = {Yi}Ki=1, where

each interpretation unit Yi is an unobserved random variable of one of the following two

types:

� Annotation bit (Annobit in short): an annobit is a binary high-level question about the

scene that is basically the indicator of a certain event in the scene such as presence

of an object from a specific category inside a particular image patch e.g., presence

of a plate instance in the upper left quadrant of the image. Note that we consider an

object instance to be present in an image patch only if the instance is fully inside the

patch. We define an annobit for every object category of interest c ∈ C and every

patch from an “annocell hierarchy”. The annocell hierarchy, which will be discussed

later in this chapter, is basically a coarse-to-fine partitioning of the input image I into

square patches with varying size at different locations.

� Annotation integer (Annoint in short): an annoint is a composite interpretation unit

determined by grouping the set of annobits corresponding to the same image patch

but associated with different categories i.e., (Yi1 , Yi2 , ..., Yi|C|) for (i1, i2, ..., i|C|) being

those annobits’ indices. Note that an annoint can be equivalently represented by a

non-negative integer from 0 to (2|C| − 1) representing the subset of object categories

from C present in the patch; the value 0 indicates that there is no instance from the

object categories of interest present in the patch (all of the |C| corresponding annobits

being zero), and (2|C|−1) indicates that there is at least one instance from every object
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category of interest present in the patch (all of the |C| corresponding annobits being

one).

Our objective is to recover the ground-truth interpretation units (annobits or annoints).

To do so we design a set of predictors X = {Xi}Ki=1 that target interpretation units in one-

to-one correspondence. These predictors are basically classifiers based on image pixels or

low level features. The classifiers may target multiple object categories at once for a given

test patch which, for instance, is the case for classifier based on deep Convolutional Neural

Networks (CNN) with Multinomial Logistic Regression (SoftMax) output layer [49]. To

compute good deep discriminative features the input patch undergoes extensive computa-

tion by passing through multiple convolutional and fully connected layers to finally get fed

into a relatively cheap output layer for classification. Hence, it makes sense to classify all

categories together once the features are computed. In the case of classifiers targeting all

categories together we set up the EP framework based on the composite representation of

interpretation units i.e., annoints. For notational convenience, and since annoints are deter-

mined by annobits, we will represent interpretation units by Y in the rest of this dissertation

unless we want to emphasize on the composite representation where we denote annoints by

Yc = {Y c
i }K

′
i=1, where Y c

i = (Yi1 , Yi2 , ..., Yi|C|) and K ′ = K
|C| where K denotes the number

of annobits.

In the general case, we can also have “derived annobits” which are given as functions

of “basic annobits” introduced initially. Basic annobits are the primary or atomic interpre-

tation units defined as presence indicators of at least one instance of a particular category
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from C in the corresponding patch. The derived annobits can be introduced to account for

more complex and comprehensive events in the scene including (i) union of events such as

super-categories of similar object categories and (ii) compositions of different object cate-

gories that encode, for instance, specific contextual and spatial configurations of multiple

objects etc. For example we can consider a “utensil” super-category which combines the

basic categories of “fork”, “knife” and “spoon”. In the same context, a composition would

refer to co-existence of instances from more than one object category in the corresponding

patches e.g., “plate-fork” or “bowl-spoon” compositions.

The entropy pursuit approach relies on a suitable joint prior defined over all the inter-

pretation units p(Y), and it attempts to recover the overall interpretation of an unlabeled

test image by predicting its individual interpretation units step by step in a way that ef-

ficiently reduces their remaining uncertainty given the accumulated evidence. We define

the joint distribution of annobits (or annoints) via a model which captures relations among

multiple variables such as the number of different objects in the scene, their relative poses,

and the scene geometry.

The bottom-up image features, encoded by the predictors X, and top-down contextual

information, encoded using the prior model p(Y), can be combined in a Bayesian frame-

work as below:

p(Y|X) =
p(Y)× p(X|Y)

p(X)
∝ p(Y)× p(X|Y), (2.1)
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where, p(Y|X) is the posterior distribution on interpretation units Y given the result of our

image scrutiny based on X, and p(X|Y) is the data model term. The Bayesian approach

to object recognition has been advocated and used in quite a few works in the past (e.g.,

see [47, 55–57, 98, 104]). However, the critical question that has remained unaddressed

is how much image scrutiny suffice, namely how many patches from the image need to

be processed, to come up with scene interpretation and how should the image patches get

selected to maximize the information gain which is the question we attempted to address

in this dissertation. Estimating the ground truth interpretation units with minimum level

of image scrutiny is particularly beneficial as classifiers become more computationally de-

manding (in the case of CNNs as they become deeper).

Entropy Pursuit was first introduced by Geman and Jedynak in [27] for road tracking

in satellite images. This approach was later used in some other applications e.g., see [95]

where it was used for face detection and localization, and [96] where it was used for instru-

ment tracking during retinal microsurgery. However, it has never been used for problems

such as 3D scene interpretation with a much bigger search space and many more vari-

ables. In this dissertation we apply the EP strategy to sequential scene analysis. There

is a key advantage in using the EP approach in scene analysis algorithms that use deep

classifiers, namely attempting to recover the ground-truth interpretation units based on the

fewest number of classifiers applied to the test image. State-of-the-art classifiers based on

Convolutional Neural Networks (CNN) offer much better detection rate but yet they require

heavy computation e.g., on an end-of-the-line Intel i7-4790K CPU (with 8M Cache and up
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to 4.40 GHz clock rate) it takes about 12 seconds to process one single patch deploying the

VGG network [91] based on the caffe framework’s optimized C++ code [45]. Assume we

had to process 1000 patches from a given test image and processing each patch would take

12 seconds, this would lead to hours of processing time for one single image on CPU. This

is the reason for using GPUs for deep neural networks; the processing time of one single

patch on a Tesla K40 GPU is about 0.2 seconds deploying the VGG network. The reason

why GPUs are much faster than CPUs with deep neural networks is out of the scope of this

dissertation. In this dissertation we investigate if we really need to process all patches or

perhaps processing a relatively small fraction of all the patches would suffice to recover the

ground-truth interpretation units. In the next section, we review the mathematical founda-

tion of entropy pursuit.

2.1 Mathematical Foundation

In the entropy pursuit approach, we parse (interpret) an input scene image “I” by col-

lecting bits of evidence about the scene encoded by annobits in an optimal order guided by

the principle of uncertainty reduction.

For the prediction task, we consider a set of tests X = {Xi}Ki=1 (boolean tests for

annobits and integer tests for annoints) that target the interpretation units Y in one-to-one

correspondence. For example, if Yi encodes presence of at least one bottle in a given patch

then Xi is a bottle detector for that patch; or if Y c
i encodes presence of at least one bottle
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and one glass instance in a patch, thenXc
i serves as the predictor of this event. The tests are

assumed to have unit cost for our analysis to make sense. We will discuss entropy pursuit’s

question (i.e., classifier) selection criteria for both binary and composite representations in

the next two subsections.

2.1.1 Binary Representation

Assume we have a joint prior distribution on annobits P (Y = y). The temporal or-

dering of the tests is encoded via another set of random index variables {qk}Kk=1, where

qk ∈ {1, ..., K} is the index of the test applied to image I at step k of entropy pursuit

analysis. In other words, qk is the kth query and xqk = Xqk(I) is the corresponding

(imperfect) answer to this query. Determining which annobit qk to predict at step k de-

pends on the total evidence obtained from I up to step k − 1. To put the decision pro-

cess more formally let qk−1 = (q1, ..., qk−1) denote the list of queries up to step k and

ak−1 = (Xq1(I), ..., Xqk−1
(I)) denote the corresponding list of answers, which are the

classifiers’ responses evaluated on I . Finally, the history of accumulated evidence at step

k is denoted by ek−1 = (qk−1, ak−1). The query qk selected at the k-th step is a function of

accumulated history up to step k determined by:

qk(ek−1) = argmin
1≤i≤K

H(Y|ek−1, Xi), (2.2)
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where H(.) stands for entropy. The above selection criterion translates as follows: “Let

the kth query qk be the index i whose corresponding answer Xi minimizes the remaining

uncertainty on the overall interpretation Y given evidence ek−1”. Based on this intuitive

principle, it is clearly not efficient to search the space of annobits by asking questions

whose answers are highly predictable. For example, one would not ask “Is it an urban

scene?” after already having got a positive response to “Is there a skyscraper?” nor would

one ask if there is an object instance from category c in patch “A” if we already know it is

highly likely that there is an object instance from category c in patch “B” that is a subset of

“A” (B ⊆ A). We can interpret the question selection criterion of (2.2) slightly differently

as follows:

qk(ek−1) = argmin
1≤i≤K

H(Y|ek−1, Xi) = argmin
1≤i≤K

(
H(Y, Xi|ek−1)−H(Xi|ek−1)

)
= argmin

1≤i≤K

(
H(Y|ek−1) +H(Xi|Y, ek−1)−H(Xi|ek−1)︸ ︷︷ ︸

−I(Xi,Y|ek−1)

)

= argmax
1≤i≤K

I(Xi,Y|ek−1), (2.3)

where I(., .) denotes mutual information. According to (2.3), in each step of EP we basi-

cally select the most informative query about the partial interpretation units Y.

In the ideal case where the tests X are good predictors of annobits Y, or more generally
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if Y determines Xi i.e., Xi = f(Y), equation (2.2) will be equivalent to:

qk(ek−1) = argmax
1≤i≤K

H(Xi|ek−1). (2.4)

The above is valid because in the ideal case where Xi = Yi, or Xi = f(Y), we have

H(Xi|Y, ek−1) = 0; hence, (2.3) leads to the question selection criterion in (2.4). Consid-

ering that tests tend to mimic their corresponding annobits, in the sense that Xi is a “good”

predictor of Yi, we may expect similar orderings among the entropies {H(Xi|ek−1)}Ki=1

and the entropies {H(Yi|ek−1)}Ki=1. In that case, we can approximate (2.4) for Xi = Yi

with:

qk(ek−1) = arg max
1≤i≤K

H(Yi|ek−1) = arg min
1≤i≤K

|P (Yi = 1|ek−1)− 1

2
|. (2.5)

The query selection criterion in (2.5) is basically what we use in practice. As in other

Bayesian settings, we also represent the conditional distribution of variables in X condi-

tional to Y i.e., p(X|Y). But no matter how “convenient” this data model, the interactions

among the variables in Y that encode a scene usually cannot be organized in a tree, thereby

making the computation of the marginal P (X) and in particular P (Xi|ek−1) hard. More-

over, we attempt to solve the entropy optimization of (2.4) online and many times; this is

the reason for using the approximate criterion in (2.5). Note that it may be more practical to

ask questions in batches because the posterior distribution most likely will not be affected

significantly by asking only one question.
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2.1.2 Composite Representation

The EP question selection criterion for composite representation is very similar to the

binary representation discussed in the previous subsection. Assuming that the designed

tests are good predictors of interpretation units leads to H(Xc
i |Yc, eck−1) = 0, and hence:

qck(e
c
k−1) = argmin

1≤i≤K′
H(Yc|eck−1, X

c
i ) = argmax

1≤i≤K′
H(Xc

i |eck−1), (2.6)

where qck ∈ {1, ..., K ′} and ack−1 = (Xc
q1

(I), ..., Xc
qk−1

(I)) in eck−1 = (qck−1, a
c
k−1). This

means that the most informative query is the one whose answer’s distribution over {0, 1, ..., 2|C|−

1} is closest to uniform. The approximate criterion for the composite representation is:

qck(e
c
k−1) = argmax

1≤i≤K′
H(Y c

i |eck−1). (2.7)

The composite representation is what we will use throughout this dissertation since the

classifiers we will use are based on state-of-the-art convolutional neural networks with

Multinomial Logistic Regression (softmax) output that target multiple object categories

at once i.e., annoints. The CNN classifier designed for |C| different number of object

categories has (|C|+ 1) outputs where each output value estimates the existence proportion

ratio (relative probability) of the corresponding category (presence of at least one instance

of this category) in the input patch except the first output that estimates the proportion ratio

of the complement category set i.e., relative probability of existing no object instance from
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the category set C.

A more extensive description of classifiers will be given later in chapter 5.

2.2 Annocell Hierarchy

We construct a coarse-to-fine hierarchy of “annotation cells”, or in short “annocells”,

where each annocell is a square patch. The size of patches get smaller from top to the

bottom of the annocell hierarchy. We first pad and center the input image I to a square

whose size is the maximum of the number of rows and columns of the input image denoted

byDmax leading to aDmax×Dmax pixels padded image. We then partition the padded image

using sliding windows at different sizes to build the annocell hierarchy (see Figure 2.6). We

build a 4-level hierarchy whose patch size at the l-th level is Dmax/2
l where l ∈ {0, 1, 2, 3}.

The row and column shift ratio for every level is 25% which leads to 75% overlap between

nearest windows at each level. This leads to 1, 25, 169, and 841 number of patches for,

respectively, level-0, level-1, level-2, and level-3 (a total of 1036 annocells). Figure 2.6

shows some annocells chosen from all of the four levels of the hierarchy. Associated with

each of these canonical annocells in the hierarchy there are |C| basic annobits. Hence,

the total number of basic annobits is K = 1036 ∗ |C| and the total number of annoints is

K ′ = 1036. Note that each annobit serves as the presence indicator of at least one instance

from the corresponding category; the instance should be fully inside the corresponding
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annocell to turn on the annobit. The formal definition of an annobit is as below:

Yi := 1{∃ at least one object instace from category ci in Ai}, (2.8)

where Ai denotes the corresponding annocell. The ordering of annobits obviously does

not matter and we can choose any ordering; we may choose an ordering where annobits

associated with the first category are indexed 1 ≤ i ≤ 1036 (each corresponding to a

different annocell out of the 1036 canonical annocells), annobits associated with the second

category are indexed 1037 ≤ i ≤ 2072, and so on.

In the next chapter, we will describe our prior model design which is a key component

in entropy pursuit scene analysis.
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Figure 2.6: Some selected cells from different levels of the annocell hierarchy. Rectangles with
dashed lines are the nearest neighbor patches to the rectangles with solid lines from the same color.
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Chapter 3

Prior Model

Entropy pursuit scene interpretation relies on a suitable prior model on the interpretation

units p(Y). According to the EP criterion ( (2.5) and (2.7)) we choose an interpretation unit

at step k whose marginal posterior p(Yi|ek−1) has maximal entropy. Using the Bayes rule

we have:

p(Y | ek−1) =
p(Y, ek−1)

p(ek−1)
∝ p(Y)× p(ek−1 | Y), (3.1)

where, p(ek−1 | Y) is determined by the data model p(X | Y ) and p(Y) is the prior model

on the interpretation units defined in the image coordinate system. However, it is hard to

directly construct and learn a prior model defined on the interpretation units to estimate the

marginal posterior distributions p(Yi|ek−1). This is mainly due to the fact that the interpre-

tation units are defined in the image’s coordinate system and can represent very different
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geometrical properties and relations in the world coordinate system for different camera

position, orientation, and calibration parameters. On the other hand, a proper model should

consider the 3D geometry of the scene otherwise the incorporated contextual relations will

not in essence go beyond simple 2D relations e.g., sky is expected to appear at the top of

the image and floor at the bottom. Hence, instead of designing the prior model directly in

the image coordinate system we design a generative viewpoint-independent prior model in

the world coordinate system. This also leads to interpretable model parameters since the

model parameters have physical meaning. Each sample from this model is basically a 3D

scene description. We project samples from the model to the image coordinate system via

perspective projection assuming a pinhole camera model and evaluate interpretation units.

The marginal posteriors {p(Yi|ek−1)}Ki=1 are then estimated by aggregating the Y samples.

Motivated by our application to table-settings scenes we assume that the scene contains

a dominant world plane (the table plane) where different objects lie (spoons, plates, cups,

etc.). Our 3D probabilistic model is at the level of objects rather than low-level image

features and allows for encoding expected properties and multi-object relationships among

a distinguished family of objects, the number of objects in the scene and their relative

poses. The underlying graph in the model is a forest of directed trees which captures a

natural generative process in which objects are placed down on the surface in stages; the

number of root nodes (e.g., a place setting instance) refers to the conditional placement of

an object instance relative to the size and geometry of the scene; an edge from a parent (e.g.,

a plate instance) to a child (e.g., a utensil instance) refers to the conditional placement of the
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child relative to the parent and so forth (see Figure 3.1). Moreover, edges are only allowed

between certain types of object categories and these restrictions are imposed by a “Master

Graph”. Designing 3D models which encode favored relationships but still accommodate

real-world variability is not straightforward. In particular, given purely object-annotated

image data, learning is complicated because the homography between the world and the

camera plane, and the graph structure encoding object relations are hidden.

Many human-created scenes are composed of parallel supporting surfaces where differ-

ent objects lie [4]. Hence, the proposed generative model can be extended to a much wider

range of scene types beyond the table-settings scenes. However, we present the model by

examples from table-setting scenes. In that case, we consider C = {plate, bottle, glass, utensil}

which are amongst the most annotated categories in our table-setting dataset. Instances

from C are placed on a table whose geometric properties are denoted by T . In the simpli-

fied case that the table is rectangular we have T = (TL, TW ) where TL and TW , respectively,

represent the length and width of the table. We model table-setting scenes in the world co-

ordinate system given table geometry using a generative attributed graph model described

later in the next section. We consider a world coordinate system whose origin is located

at the center of the table’s surface, whose z axis is orthogonal to the table’s surface, and

assuming a rectangular table, the x and y axes are parallel to the edges of the table as illus-

trated in Figure 3.2. We also define a coordinate systems attached to the camera as shown

in Figure 3.2. Note that we may sometimes refer to the world coordinate system as the table

coordinate system and to the camera coordinate system as the image coordinate system.
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Figure 3.1: A table-setting scene (top) and its corresponding category-labeled base graph
(bottom) where the categories (plate, bottle, glass, and utensil) are color-coded in the graph.
Root nodes V0 initialize the generative process; here there are six. The terminal nodes
for this instance are VT = {6, 8, 9, 10, 11, 14, 15, 16, 17, 18, 19, 20}. According to the base
graph n(0,plate) = 4, n(0,bottle) = 0, n(0,glass) = 0, and n(0,utensil) = 2. Removing the undirected
edges (dashed lines) leads to a Bayesian tree.
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Figure 3.2: Table and camera coordinate systems.

Projection of a 3D point in the world coordinate system onto the image plane can be

calculated using a perspective projection matrix (homography) that is a deterministic func-

tion of the camera’s extrinsic (camera’s pose in the world coordinate system) and intrinsic

(calibration matrix) parameters (see Appendix A). We denote the set of all extrinsic and

intrinsic parameters by W . Hence, given W (see Appendix B) we can calculate the pose

of an object instance in the image plane, denoted by ξ, from its corresponding pose in the

world coordinate system, denoted by θ. We can approximate the 3D shape of an object

by an enclosing ellipsoid, which encodes the 3D object pose (location and orientation of

the ellipsoid) and scale (lengths of the three major axes). Observe that the projection of an

ellipsoid is an ellipse, and that for nearly planar objects, the ellipsoid will degenerate to an

ellipse. Also, under the assumption that the height of objects is small relative to their dis-
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tance from the camera we can assume that objects are planar. Moreover, if we parameterize

an ellipse in the scene plane by a 3 × 3 matrix θ ∈ R3×3, then we can find the projection

of this ellipse in the image plane via ξ = H−>θH−1, where H is the homography from

the scene to the image plane (see Appendix B for details about ellipse representation and

projection).

The joint distribution over all variables is defined by:

p(g, T,W) = p(g|T )p(W)p(T ), (3.2)

here, p(g|T ) is the distribution of the number and 3D poses of different objects via the

attributed graph model conditioned on table geometry. In (3.2), we assumed that W (the

set of camera’s extrinsic and intrinsic parameters) is independent of the table geometry T ,

and since the attributed poses of the graph g are defined in the world coordinate system g

is independent ofW .

Let ξV denote the set of 2D poses in the image coordinate system whose corresponding

3D poses θV are attributes of g; the set of vertices of g are denoted by V . With this notation,

we may write:

p(ξV , g, T,W) = p(ξV |g,W)p(g|T )p(W)p(T ). (3.3)

However, since the set of object poses in the image coordinate system ξV can be calcu-

lated deterministically from the corresponding poses in the world coordinate system θV
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andW , the leftmost distribution p(ξV |g,W) will be singular, resulting in a degenerate joint

distribution (3.3).

The joint distribution (3.2) can model table-setting scenes, and is fully specified by

choosing appropriate distributions for the table geometry T , camera parametersW , and the

conditional model p(g|T ). We describe each of the specifying distributions in the following

sections of this chapter.

3.1 Generative Attributed Graph Model

A scene is described as a collection of object instances from different categories at

different poses. Each object instance is associated with a vertex v ∈ V of a base graph

g0 ∈ G0 which captures contextual relationships among object instances. An attributed

graph is a triple g = (g0, cV , θV ), where cV = {cv, v ∈ V } and θV = {θv, v ∈ V } denote

the set of category labels and 3D poses of objects, respectively. The categories are restricted

to a set C of size |C|. The root nodes are denoted by V0 ⊂ V , the terminal nodes by VT ⊂ V ,

the parent of node v by pa(v) and the set of its children by ch(v). Obviously, pa(v) = ∅

for a root node v ∈ V0, and ch(v) = ∅ for a terminal node v ∈ VT. Given g ∈ G (the space

of attributed graphs), v ∈ V , and c ∈ C we define:

n(0,c) = n(0,c)(g) =
∑
v∈V0

I{cv=c}, (3.4)
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which is the number of root nodes of type c;

n(v,c) = n(v,c)(g) =
∑
v′∈V

I{pa(v′)=v,cv′=c}, (3.5)

which is the number of children of v of type c; and

n(c) = n(0,c) +
∑
v∈V

n(v,c), (3.6)

indicates the total number of object instances of type c. Note that
∑

c n(c) = |V |.

The model is a probability distribution p(g|T ), g ∈ G, on the space of (equivalence

classes of) attributed graphs G conditioned on the environment’s geometric properties T .

An attributed graph sample specifies a 3D scene sample with existing objects’ category

labels and 3D poses together with the relations between them. The generative attributed

graph (GAG) model is specified by the following four sets of distributions:

1. p(0)(n(0,1), · · · , n(0,|C|)|T ): this is the conditional joint distribution of the number of

root nodes from various categories {n(0,c)}|C|c=1 ∈ N
|C|
0 where N0 = {0, 1, 2, . . . }.

2. {p(c)(n(v,1), · · · , n(v,|C|)), cv = c ∈ C}: for a parent node v from category c, p(c)(.) is

the joint distribution of the number of children {n(v,c)}|C|c=1 from each object category

c. These distributions can be thought of as the basis distributions in a multi-type

branching process [63]. To limit the complexity of the model, we will also restrict the

set G to graphs with bounded depth (distance to the closest root), denoting the upper
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limit by lmax. This is equivalent to setting p(cv)(0, 0, ..., 0) = 1 for node v located at

the maximum allowed depth lmax. We assume that this distribution is independent of

the environment’s geometry T .

3. p(θV0|cV0 , T ): this is the conditional joint pose distribution of the root nodes given

their corresponding category labels and T .

4. {p(θch(v)|cch(v), cv, θv, T ), v ∈ V \VT}: this is the joint distribution of the poses of the

children of v given their parent’s pose and the corresponding category labels and T .

The category-labeled base graph (g0, cV ) distribution can be specified based on the first

and second distributions above as follows:

p(g0, cV |T ) = p(0)(n(0,1), · · · , n(0,|C|)|T )×
∏

v∈V \VT

p(cv)(n(v,1), · · · , n(v,|C|)), (3.7)

where, again n(v,c) denotes the number of children of vertex v from the c-th category. The

above distribution can be sampled in a top-down fashion by first sampling the number and

category of root nodes, and then sampling the children and repeating this process until

reaching the maximum allowed depth lmax. A base graph with a flexible and random skele-

ton according to (3.7) allows for a number of plausible 3D arrangements in content. The
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full distribution on attributed graphs g ∈ G is:

p(g|T ) = p(g0, cV |T )× p(θV |g0, cV , T )

= p(0)(n(0,1), · · · , n(0,|C|)|T ) p(θV0|cV0 , T )×∏
v∈V \VT

p(cv)(n(v,1), · · · , n(v,|C|))× p(θch(v)|cch(v), cv, θv, T ). (3.8)

Note that the previous expressions define probabilities of sets of variables without defin-

ing a specific labeling order for objects within the same category; they should be understood

as probabilities over equivalence classes up to such relabeling.

Assuming the poses of children are conditionally independent given their correspond-

ing category labels, the pose of their parent, and the geometric properties of the supporting

surface, the graph reduces to the standard Bayesian forest i.e., Directed Acyclic Graph

(DAG). Otherwise, we will have a hybrid graph with both directed and undirected edges.

Figure 3.1 illustrates an example scene and its corresponding base graph. Removing the

dashed undirected edges in the hybrid graph (shown in the bottom figure) leads to the

Bayesian forest overlaid on top of the table-setting scene (shown at the top). The undi-

rected edges in the hybrid graph can be used to provide more global structure among the

poses of objects corresponding to a tree or subtree from the base graph forest, the minimal

use being to avoid impossible or downweight unlikely overlaps (e.g., two glasses on top of

each other). The proposed model can prevent such configurations to some extent by assign-

ing a zero or small probability to “forbidden” pose combinations among the children of a
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Figure 3.3: A branching process example. Mn indicates the total number of instances
generated in the nth generation.

given node (but cannot address possible object overlaps on the global level, which would

require connecting all of the relevant nodes resulting in a significant increase in complexity,

breaking the top-down nature of the model).

As was mentioned earlier, the probability distributions p(c)(.) can be thought of as the

basis distributions in a multi-type branching process. A branching process is a Markov

process that is usually used to model a population where each individual in the n-th gen-

eration generates some random number of individuals in the (n + 1)-th generation. In the

original Galton-Watson branching process individuals, which are also referred to as par-

ticles, are indistinguishable as shown in Figure 3.3 by the same color circles. But, in the

multi-type extension distinguishable type of particles are allowed where each type has a

different probabilistic behavior. In both cases, a particle generates offspring particles inde-

pendent of other particles within the same generation. However, there are two fundamental

differences between a typical branching process analysis and what we care about here.
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Figure 3.4: Two distinct category-labeled base graphs with exactly the same counts per
category at each level. In the graphs, different node colors represent different categories.

First, by allowing at most lmax number of levels we are not anymore concerned with the ex-

tinction probability calculation whereas asymptotic analysis and calculating the extinction

probability is of particular interest in the analysis of a branching process (see [1, 63] for

more details). Secondly, branching process analysis is agnostic to the graph structure and

is concerned with modeling the population size of each type at each generation whereas

the generative process for (cV , g0) is only partially determined by the count statistics. That

is, we can have two distinct category-labeled graphs (cV , g0) and (c′V , g
′
0) with exactly the

same counts per category at each level but different structure and probabilities (Figure 3.4

shows an example of this case).

Obviously, some category pairs have stronger expected contextual relationships than

others, and it is reasonable to assume p(ci)(n(v,1), . . . , n(v,|C|)) = 0 for configurations with

n(v,j) > 0 for certain pairs ci and cj . To capture these preferred relationships, we define

a directed “Master Graph”, GM = (VM , EM), over the set of object categories C, which
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Figure 3.5: An example master graph

constrains the branching probabilities p(c)(·). Every vertex inGM corresponds to one object

category in C and every edge (ci → cj) ∈ EM indicates existence of an allowed generative

relationship between categories ci and cj; that is, a vertex of category ci will not generate a

vertex of category cj if there is no directed edge from ci to cj inGM . An appropriate master

graph can be partially or fully user-determined by a combination of a priori contextual

domain knowledge together with some learning. For example, an undirected version might

be estimated from annotated data by assigning weights to the edges of a fully-connected

context graph over the set of object categories based on frequencies of sufficiently local

co-occurrence and then thresholding to prune edges with weak co-occurrences. Directions

could then be assigned by ordering the object categories in some fashion, e.g., larger to

smaller, or incorporating knowledge about how the scenes of interest are created. Figure 3.5

shows an example master graph for table-setting scenes with four object categories.

The distribution of the numbers of root nodes from each category in g obviously de-

pends on the size of the objects relative to the available surface space. We assume that

given T (and of course the scene type) the number of root nodes from different categories
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are independent:

p(0)(n(0,1), ..., n(0,|C|)|T ) =

|C|∏
i=1

p(0)
u (n(0,i)|T ), (3.9)

where each of the univariate conditional distributions can be modeled using a Poisson dis-

tribution with an average rate proportional to the environment area TA resulting in |C| pa-

rameters i.e., one parameter per object category (proportionality ratio). We also decouple

the offspring counts:

p(cv)(n(v,1), ..., n(v,|C|)) =

|C|∏
i=1

p(cv)
u (n(v,i)). (3.10)

In the case of nonparametric distributions, this can reduce the number of model param-

eters from combinatorial to linear in the number of categories |C|. Consider a nonpara-

metric probability mass function with a finite support size for the univariate distribution

p
(c1)
u (n(v,c2)) such that it is non-zero if 0 ≤ nc2 < l(c1→c2) and zero otherwise. Since the

probabilities over the support must sum up to one, the number of independent parame-

ters of this mass function is (l(c1→c2) − 1). Therefore, the total number of parameters to

model all of the offspring generating distributions is
∑

e∈EM (l(e) − 1). Note that if (c1, c2)

is an impossible parent-child pair according to the master graph then l(c1,c2) = 1, because

p
(c1)
u (n(v,c2) = 0) = 1, and therefore the corresponding distribution has zero number of

parameter.

In the attributed graph model for table-setting scenes we allow at most three genera-
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tions (levels) i.e., lmax = 3. The root instances are generated according to four independent

Poisson distributions (one per category). We choose the average rate of the Poisson dis-

tributions to be proportional to the area of table i.e., λc = αcTA, c ∈ C. Hence, we need

to learn four average rate factors αc, c ∈ C. The second and third generation instances,

denoted by V1 and V2, respectively, are generated according to independent non-parametric

probability mass functions with finite support size. For the permissible category pairs

“c1 → c2” consistent with the master graph including “plate → utensil”, “plate → glass”,

“bottle → glass”, and “utensil → utensil” we choose the support size of p(c1)
u (n(v,c2)),

namely l(c1,c2), to be 3, 3, 4, and 3, respectively. This means that for example we allow

at most three utensils to be adopted by a plate instance. We choose p(θv|cv, T ) for all

v ∈ V0 to be two-step-pyramid-shaped distributions that place objects at least dcv meters

away from the edge on the table with probability ρcv and on a strip of width dcv around

the table with probability (1 − ρcv). The distribution is assumed uniform within each of

the two areas except that vertical objects e.g., glasses are prevented from overlapping. We

assume that the orientation of a spontaneous utensil instance v ∈ V0 follows a von Mises

distribution whose mean is set to be 90 degrees from the orientation of the nearest table

edge. The dispersion parameter of the von Mises distribution is set to zero if this instance

is located farther than 40 centimeters from all sides of the table and greater than zero oth-

erwise. Note that a von Mises distribution with zero dispersion parameter is basically a

uniform distribution in (0, 2π]. Also, note that the 3D orientation of a bottle or glass in-

stance is assumed to always be normal to the table surface whereas the orientation of their
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base is uniform in (0, 2π]. We also consider a uniform orientation distribution for the plate

category because of its circular shape. In the general case, we can have a size distribution

such as an inverse gamma distribution but since the sizes of table-setting object categories

have small variations within categories we decided to keep the object sizes fixed and equal

to their typical world sizes for simplicity e.g., the diameter of a plate is typically 25 cen-

timeters. We specify the pairwise pose distributions, p(θv|cv, cpa(v), θpa(v), T ), by a radial

distribution and a conditional angular distribution in a polar system centered at the location

of the parent object. We model the relative pose of a parent-child object pair assuming that

their relative location is independent from their relative orientation. We chose a scaled beta

distribution for the radial distance between pairs of objects and either a Von mises (single

or mixture) or uniform distribution for the angular location of the child in the periphery of

the parent object. Normally, we expect a c1-category parent and a c2-category child to be

within some distance from each other in order to justify their local contextual relationship.

Let d(c1,c2) denote this user-defined distance. The scale of the beta distribution used for the

radial distance of a (c1, c2) object pair is set to d(c1,c2) and kept fixed throughout design and

learning. The set of pose distribution parameters therefore includes the set of beta and von

Mises distributions’ parameters for different categories. Obviously, different probabilistic

models may be adopted for different type of scenes and object categories thereof.

In the next section, we introduce a data set of table-setting scenes that we built and used

for learning the model.
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3.2 JHU Table-Setting Dataset

We collected and annotated about 3000 images of table setting scenes with more than

30 object categories. The images in this dataset were mostly collected using the “Extreme

Picture Finder” software which downloads images from multiple sources such as Google,

Flickr, Altavista, etc. The annotation task was carried out by three annotators over a period

of about ten months using the “LabelMe” online annotating website [82]. The consis-

tency of labeled images were then verified and synonymous labels were consolidated. The

annotation of this dataset was done with careful supervision resulting in high quality an-

notations, better than what we normally get from “Amazon Mechanical Turk”. Figure 3.6

shows a snapshot of the “JHU Table-Setting Dataset”.

Figure 3.7 (top) shows the annotation histogram of the 30 most annotated categories,

and the bottom figure shows the averaged histogram per image. The average number of

annotations per image is about 17. Additionally, the Homography matrix for every image

in the data set is manually estimated. To estimate the homography (up to scale) at least four

pairs of corresponding points are needed according to the Direct Linear Transformation

(DLT) algorithm [35, p. 88]. These four pairs of corresponding points were located by

annotators’ the best visual judgment about four corners of a square in real world whose

center coincides with the origin of the table (world) coordinate system. We are able to undo

the projective distortion due to the perspective effect by back-projecting the table surface

in the image coordinate system onto the world coordinate system [35]. The homography

matrices are scaled appropriately (using object’s typical sizes in real world) such that after
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Figure 3.6: A snapshot of the dataset.

back-projection the distance of object instances in the world coordinate system (measured

in meters) can be computed. Figure 3.8 shows two typical images from this dataset and

their rectified versions.

We also utilized a synthetic table-setting scene renderer developed by Erdem Yörük

for verification purposes. This synthetic image renderer inputs the camera’s calibration

parameters, six rotation and translation camera’s extrinsic parameters, table length and

width, and 3D object poses in the table’s coordinate system and outputs the corresponding

table setting scene. Figure 3.9 shows some synthetic images generated by this renderer.

Each object instance was annotated with an object category label plus an enclosing
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Figure 3.7: (top): The number of annotated instances of each object category in the whole
dataset for the 30 top most annotated object categories. (bottom): The average number of
annotated instances per object category per image.
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Figure 3.8: Rectification of table surfaces after back-projection.

polygon. Then, an ellipse was fit to the vertices of the polygon to estimate the object’s

shape and pose in the image plane. Figure 3.10 (left) shows an example annotated image;

Figure 3.10 (middle) shows the corresponding back-projection of vertices of annotation

polygons for plates (in red), glasses (in green), and utensils (in black). Note that non-

planar objects (e.g., glass) often get distorted after back projection (e.g., elongated green

ellipses) since the homography transformation is a perspective projection from points on

the table surface to the camera’s image plane. Hence, we estimated the base of vertical

objects (shown by black circles in the middle figure) to estimate their location in the table

(world) coordinate system since the center of fitting ellipse to the back-projection of such

objects’ annotation points is not a good estimate of their 3D location in the real world.
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Figure 3.9: Synthetic table-setting scene samples.

Figure 3.10 (right) shows top-view visualization of the annotated scene in the left using

top-view icons of the corresponding object instances for plates, glasses, and utensils (note

that all utensil instances are shown by top-view knife icons).

In the next section, we propose a method to learn model parameters from annotated

scenes.
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Figure 3.10: Left: an annotated image from the table-setting dataset. Middle: back-projection
of table (in blue), plates (in red), glasses (in green), and utensils (in black). The unit of axes is
centimeter. Right: top-view visualization of the table-setting (all utensil instances including fork,
knife, and spoon are shown by knife icon).

3.3 Model Learning

We learn p(g|T ) from a subset of annotated images in the dataset whose table geometry

roughly matches T in size. Note that since the circumference of the table surface is also

annotated for every image we can compute the table geometry after back-projection. In

an annotated image we do not directly observe the pose of objects in the world coordinate

system but instead we observe (cV , ξV ). However, since we have manually estimated the

homography matrix for each image in the dataset we can approximate (cV , θV ) per image.

Assume we have a dataset of J annotated scenes from which we obtain object at-

tributes, namely we can get the category and 3D pose of each object instance i.e., D =

{cV [j], θV [j]}Jj=1. However,D is not a sufficient statistic for learning the model parameters

since the set of corresponding base graphsM = {g0[j]}Jj=1 is not observable. Therefore,

we are facing a learning-from-incomplete-data problem where D is given andM is miss-

ing. The combination of missing and incomplete data constitutes the complete data com-

posed of attributed graphs for each sceneD+ = 〈D,M〉 = {g[j] = (g0[j], cV [j], θV [j])}Jj=1.
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We propose a parameter learning method based on the Monte-Carlo version of the Stochas-

tic Expectation-Maximization (SEM) algorithm [11, 17], usually referred to by MCEM in

the literature [100]. According to the proposed learning strategy, we sample the condi-

tional base graph distribution given the object attributes using Gibbs sampling to complete

D (data imputation) and estimate the parameters by iteratively maximizing the complete

data likelihood over the parameters. Let Φ denote the set of all the parameters in the model

including the parameters of the four sets of distributions summarized in section 3.1 and

l(Φ : 〈D,M〉) denote the log-likelihood of complete data with respect to Φ namely:

l(Φ : 〈D,M〉) =
J∑
j=1

log p(g[j] | Φ). (3.11)

Assuming that the base graphs for different images are independent given their correspond-

ing object attributes we have:

p(M | D,Φt) =
J∏
j=1

p(g0[j] | cV [j], θV [j],Φt). (3.12)

We iteratively estimate the parameters until convergence according to:

Φt+1 = argmax
Φ

Ep(M|D,Φt)[l(Φ : 〈D,M〉)]

= argmax
Φ

J∑
j=1

∑
g0[j]

p(g0[j] | cV [j], θV [j],Φt)× log p(g[j] | Φ), (3.13)

where, the joint distribution p(g[j] | Φ) is based on (3.8) for parameters Φ. Note that
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we have dropped T in this section for notational convenience. Let g(l)
0 [j] denote a base

graph sample for the j-th annotated scene taken from p(g0[j] | cV [j], θV [j],Φt). If N is a

sufficiently large number of such samples, then using Monte-Carlo integration we have:

Φt+1 ≈ argmax
Φ

J∑
j=1

N∑
l=1

log p(g(l)[j] = (g
(l)
0 [j], cV [j], θV [j]) | Φ). (3.14)

We now describe how to sample from the conditional base graph distribution. Since, for an

annotated scene, (cV , θV ) is given:

p(g0[j] | cV [j], θV [j],Φt) =
1

Z(cV [j], θV [j],Φt)
× p(g0[j], cV [j], θV [j] | Φt), (3.15)

where Z is a normalizing factor. The unnormalized probability in the right-hand-side term

in (3.15) is the attributed graph model distribution and is easy to evaluate. We avoid com-

puting the normalizing factor in every iteration by Gibbs sampling [29] the conditional

base graph distribution as follows. We drop image index j for notational convenience here-

after. For a scene with |V | annotated objects we consider a |V |-dimensional variable vector

z =
(
z1 = pa(v1), z2 = pa(v2), ..., z|V | = pa(v|V |)

)
that encodes any possible base graph

g0 for the scene in a one-to-one correspondence. Let f(.) denote this one-to-one transfor-

mation i.e., g0 = f(z). Gibbs sampling the conditional base graph distribution is performed

according to the following steps:

Step-1. Begin with initial configuration z(0) = (z
(0)
1 = ∅, ..., z(0)

|V | = ∅), i← 1, and l← 1.
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Step-2. Sweep the |V |-dimensional variable vector z by sampling one element at the time

conditioned on all the other most recent variables of z given the annotated scene

attributes (cV , θV ). The i-th element (corresponding to the i-th vertex) is sampled in

the l-th sample drawing according to the following probabilities

p(zi) =
p(g

(l)
0 (zi), cV , θV )∑

zi∈Spa(vi)
p(g

(l)
0 (zi), cV , θV )

, zi ∈ Spa(vi),

where g(l)
0 (zi) = f(z

(l)
1 , ..., z

(l)
i−1, zi, z

(l−1)
i+1 , ..., z

(l−1)
|V | ) and Spa(vi) denotes the set of

permissible parents for vi. Let z(l)
i denote the sampled i-th element.

Step-3. Generate the corresponding base graph sample g(l)
0 = f(z(l)), where:

z(l) = (z
(l)
1 , ..., z

(l)
i−1, z

(l)
i , z

(l−1)
i+1 , ..., z

(l−1)
|V | ).

Set l← l + 1 and i← (l mod |V |) and go to Step-2 to draw the next sample.

The parent set Spa(vi) is:

Spa(vi) = ∅ ∪ {vk ∈ V, k s.t. d(θvk , θvi) ≤ d(cvk ,cvi )
and (cvk → cvi) ∈ EM},

which is the union of the empty set and a set of objects from permissible categories (accord-

ing to the master graph) that are located within the threshold radius d(cvk ,cvi )
. In the case

that there is no permissible parent for an instance i.e., Spa(vi) = ∅, we will skip sampling

the corresponding element in z i.e., zi, since we always have zi = ∅.

55



CHAPTER 3. PRIOR MODEL

Let zs denote a vector including elements of z whose parent space is not empty i.e.,

zs = {zi, s.t. Spa(vi) 6= ∅}. Figure 3.11 shows a full sweep Gibbs sampling of zs for

an example annotated scene. In Figure 3.11 the blue ellipses represent the pose of objects

and the colored circles located at the centers of these ellipses indicate the corresponding

vertices in the attributed graph where different colors indicate different object categories.

Let’s assume that the sets of permissible parents for vertices in the graph are as below:

Spa(v1) = Spa(v2) = Spa(v3) = Spa(v4) = ∅,

Spa(v5) = Spa(v6) = {∅, v1},

Spa(v7) = {∅, v2, v8},

Spa(v8) = {∅, v2, v7},

Spa(v9) = {∅, v2, v3}.

Hence, zs = (z5, z6, z7, z8, z9). The Gibbs sampling starts with an initial configuration

in “Sample 0” where all object instances are orphan (top left figure). In the next sample,

the fifth instance is adopted by the first instance. In “Sample 2” the sixth instance is also

adopted by the first instance. The seventh instance in “Sample 3” could be adopted by

either one of v2 or v8, or remain orphan, however it got randomly adopted by the second

instance; the dashed narrower line between v8 and v7 indicates that this relationship could

be selected but was not selected. The next samples are taken accordingly as shown in

Figure 3.11. Note that the solid thicker lines represent the selected parent-child relations
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whereas the dashed narrower lines represent the possible parent-child relations that were

not selected during Gibbs sampling.

Using the above Gibbs sampling approach we are able to sample the conditional base

graph distribution for every annotated scene. Assuming N base graph samples per im-

age in each iteration we will have N × J complete samples from which we estimate the

model parameters for the next iteration. We continue the iterations until convergence of pa-

rameters. The parameters of various distributions are learned from annotated table-setting

images whose area is within 0.5 square meters difference. For example, the learned average

rate of plate Poisson distribution is 3.8 which means on average we expect to observe 3.8

plates per square meter of table area. Figure 3.12 shows the SEM learning trajectory of two

concentration parameters κ from the von Mises distributions on utensil orientation, where

the blue line is for a utensil orientation whose parent is a plate instance and the black like

is for a utensil orientation whose parent is another utensil instance. The SEM algorithm

converged in about 10 iterations.

Figure 3.13 shows top-view visualization of some annotated images in the dataset that

roughly match in size to a 1.5 × 1.5m2 table that are generated similar to Figure 3.10

(from left to right) and some samples drawn from the generative attributed graph model

for a square table of size 1.5 × 1.5m2 learned from matching annotated images. Visual

similarity of the samples taken from the generative attributed graph model to natural scene

samples confirm suitability of this model for table setting scenes although the proposed

model is quite general and can be used to model different types of scenes. A projected 2D
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Figure 3.11: Example base graph samples for a synthetic annotated scene.
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Figure 3.12: The trajectory of two concentration parameters from the von Mises distributions
on utensil orientation learned iteratively using the SEM algorithm. The blue line is for a utensil
orientation whose parent is a plate instance and the black like is for a utensil orientation whose
parent is another utensil; the mean of these two von Mises distributions are, respectively, along a
line perpendicular to the line connecting center of the parent plate instance to the center of the child
utensil, and the line along the orientation of the parent utensil instance.
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Figure 3.13: Top-view icon visualization of table-settings considering only plate, bottle, glass, utensil
categories. Top box: visualization of some annotated images in the dataset that roughly match in size to
a 1.5 × 1.5m2 table (generated similar to figure 3.10 from left to right). Bottom box: samples from the
generative attributed graph model for a square table of size 1.5× 1.5m2.
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model in the image coordinate system similar to (3.2) is also applicable to different scene

types.

This completes our proposed parameter learning method. We propose methods for

unconditional and conditional sampling of the prior model in the next section.

3.4 Sampling the Generative Attributed Model

We discuss both unconditional and conditional sampling of the prior distribution. We

start with the unconditional sampling of the attributed graph distribution p(g|T ) in a top-

down fashion and then conditional sampling of p(g|T,X) where X denotes an event based

on g. The top-down unconditional samples taken from p(g|T ) will be used to generate

statistics required to learn the Markov Random Field (MRF) Model in the next chapter.

Even though direct conditional sampling from p(g|T,X) is not a necessary building block

in the process of our application to scene understanding it is still presented in this chapter

since conditional sampling from a distribution on graphs with random structure is an inter-

esting yet difficult problem and it could be applied to other problems e.g., a model-based

Visual Turing Test [26]. We drop table geometry T in the rest of this chapter for notational

convenience.
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3.4.1 Unconditional Sampling

To sample p(g) we first sample the category-labeled base graph (g0, cV ). There is an

underlying hierarchical process to generate category-labeled base graphs for both Bayesian

and hybrid graphs that can be summarized as below:

1. First sample the number and types of vertices in V0 by generating a sample from p(0).

The size of V0 is |V0| =
∑

c n(0,c). Note that Vi denotes the set of vertices in the i-th

level of g0.

2. For i = 1 to lmax:

(a) Visit each vertex v ∈ Vi−1 in any order and independently generate a sample

from p(cv). This generates a set of category-labeled vertices in the next level Vi.

The size of the next set is |Vi| =
∑

c

∑
v∈Vi−1

n(v,c).

(b) Draw a directed edge from node v ∈ Vi−1 to each of its children v′ ∈ ch(v).

In addition, connect all of the children via undirected edges to build a hybrid

model as illustrated in figure 3.1(bottom). In the special case of the Bayesian

forest model we skip connecting children by undirected edges.

Given a category-labeled base graph (g0, cV ) we sample the pose of roots and children

instances according to the corresponding pose distributions in a top-down fashion leading

to a complete prior sample (g0, cV , θV ).
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3.4.2 Conditional Sampling

One way of conditional sampling is to first sample the model in a top-down fashion (as

was explained in the previous subsection) and accept the sample if it satisfies the condition

X and reject it otherwise. However, this approach will result in too many rejections if

the condition X is strong (not easily satisfied) and consequently causing long periods of

freeze-ups. We propose an alternative sampling method. Obviously, conditional sampling

will not be as straightforward as the top-down unconditional sampling. According to the

Bayes’ rule we can write:

p(g|X) =
p(g)p(X|g)

p(X)
∝ p(g)p(X|g). (3.16)

Based on (3.16), given X the posterior distribution is proportional to the prior distribu-

tion times the probability of X given the attributed graph g. The inverse conditional term

p(X|g) takes binary values if X is a deterministic function of g. In this case, p(X|g) = 1 if

X = fX(g) and p(X|g) = 0 if X 6= fX(g); in another words, the inverse conditional term

is equal to one if g and X are consistent and zero otherwise. The inverse conditional term

can take any value between zero and one if there is a stochastic relationship between g and

X e.g., if X denoted the output of some classifier then p(X|g) can be estimated from the

error statistics of the classifier. In the rest of this subsection we will assume that the value

of p(X|g) is known for all g ∈ G.

We propose a generic method based on the Metropolis-Hastings algorithm [36, 61] to
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sample the posterior distribution p(g|X) which works as follows. Let g(t) denote the current

configuration of the attributed graph at step t of the sampling algorithm. The next config-

uration is generated in two steps: first propose a change g(t)
try , according to some transition

probability Q(g(t), g
(t)
try) and accept it (setting g(t+1) = g

(t)
try ) with probability:

π(t) = min

(
1,
p(g

(t)
try |X)Q(g

(t)
try , g

(t))

p(g(t)|X)Q(g(t), g
(t)
try)

)
, (3.17)

and set g(t+1) = g(t) otherwise. Note that we choose the initial configuration g(0) to be

consistent with X . Using (3.16) we get:

π(t) = min

(
1,
p(g

(t)
try)p(X|g(t)

try)Q(g
(t)
try , g

(t))

p(g(t))p(X|g(t))Q(g(t), g
(t)
try)

)
, (3.18)

where the term p(X) is cancelled out from the numerator by the same term in the denomi-

nator. Note that, for the transition to be well defined, we need to ensure that Q satisfies the

weak symmetry condition:

Q(g, g′) > 0⇔ Q(g′, g) > 0.

Because large changes g(t) → g
(t)
try typically result in very small values for the accep-

tance probability π(t) leading to long periods of freeze time, one typically designs Q so that

it makes small variations on the current configuration. An efficient proposalQ(., .) depends

on X such that the suggested configurations are completely or at least partially consistent
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with X in order to avoid a high number of proposal rejections. Hence, we cannot offer a

generic recipe to design a proposal distribution that is efficient for every X .

We review a series of possible elementary changes and their associated transition prob-

abilities for conditional sampling. These moves may be chosen at random or based on

another proposal distribution.

Birth and Death: Removing a node is only allowed if this node has no child v ∈ VT.

Let g denote the current configuration. A transition can be formulated as below:

Death-1. Pick a node v at random among the childless ones v ∈ VT.

Death-2. Form the new configuration g′ by deleting node v from g and also the directed

edges issued from its parent and any undirected edges connected to v if applicable.

This defines the following transition probability:

Qdeath(g, g
′) =

1

|VT(g)|
,

where |VT(g)| is the number of terminal nodes in g.

To compute the acceptance probability for this move, we first need to define an inverse

move which allows a transition from g′ to g. The corresponding birth move can work as

follows, letting g̃ denote the current configuration.

Birth-1. Randomly select a category c̃ ∈ C.
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Birth-2. Add node ṽ from category c̃. We may add ṽ as either a root node or the child of

another node that can accept one more child from category c̃. In the later case, let

pa(ṽ) denote the parent node that is chosen to adopt ṽ.

Birth-3. Sample a pose θ̃ṽ for the new object according to the relevant pose distribution

(conditioned on parent or not).

Birth-4. Add this object, required edges and pose to g̃, yielding a new configuration g̃′.

The corresponding transition probability therefore is:

Qbirth(g̃, g̃
′) =

1

|C|
(
1 + nc̃−open(g̃)

)p(θ̃ṽ|c̃, cpa(ṽ), θ̃pa(ṽ))

where θ̃pa(ṽ) is the pose of the selected parent (if ṽ is not a root node) and nc−open(g̃) is the

number of nodes than can adopt a child from category c at step Birth-2.

We can now define the transition ratio (for the transition g → g′) as below:

ρdeath(g, g
′) =

p(g′)p(X|g′)Qbirth(g
′, g)

p(g)p(X|g)Qdeath(g, g′)

=
|VT(g)|

|C|
(
1 + nc(v)−open(g′)

) × p(g′0, cV ′)p(X|g′)
p(g0, cV )p(X|g)

,

where v is the deleted object. Note that p(θV ′|g′0, cV ′)/p(θV |g0, cV ) is equal to 1/p(θv|c, cpa(v), θpa(v))

and cancels with the corresponding term in Qbirth(g
′, g). The ratio p(g′0, cV ′)/p(g0, cV ) is
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given by:

p(g′0, cV ′)

p(g0, cV )
=
p(cpa(v))(n(pa(v),1), ..., n(pa(v),cv) − 1, ..., n(pa(v),K))

p(cpa(v))(n(pa(v),1), ..., n(pa(v),cv), ..., n(pa(v),K))
,

if v is not a root node, and:

p(g′0, cV ′)

p(g0, cV )
=
p(0)(n(0,1), ..., n(0,cv) − 1, ..., n(0,K))

p(0)(n(0,1), ..., n(0,cv), ..., n(0,K))
,

if v is a root node. If we assume (3.9) and (3.10) are true then we have:

p(g′0, cV ′)

p(g0, cV )
=
p

(cpa(v))
u (n(pa(v),cv) − 1)

p
(cpa(v))
u (n(pa(v),cv))

,

and

p(g′0, cV ′)

p(g0, cV )
=
p

(0)
u (n(0,cv) − 1)

p
(0)
u (n(0,cv))

,

for v being a non-root and a root node, respectively. The ratio for the birth transition g̃ → g̃′

is given by:

ρbirth(g̃, g̃
′) =

p(g̃′)p(X|g̃′)Qdeath(g̃
′, g̃)

p(g̃)p(X|g̃)Qbirth(g̃, g̃′)

=
|C|
(
1 + nc̃−open(g̃)

)
|VT(g̃′)|

× p(g̃′0, cṼ ′)p(X|g̃′)
p(g̃0, cṼ )p(X|g̃)

.

For example, an efficient proposal distribution will not try the birth and death move

from a particular category if the condition X deterministically enforces that a certain num-
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ber of objects from that category have to exist in the scene and we already started with an

initial attributed graph which had that many category instances.

Edge Deletion/Addition: These transitions remove a parent-child link or create one.

The deletion can be implemented with the following sequence of operations:

Del-1. Select a directed edge (pa(v), v) from the current configuration g and delete it.

Del-2. Let g′ denote the new configuration.

The transition probability is Qdel(g, g
′) = 1/nedge(g). The reverse operation can be done

according to the following steps, starting with a configuration g̃.

Add-1. Select a parentless node ṽ ∈ Ṽ0 such that there exist nodes from permissible cate-

gories (according to the master graph) that can adopt ṽ as child. Let Spa(ṽ) denote the

set of possible parents for ṽ, and nadd(g̃) denote the number of parentless nodes like ṽ

that may be adopted by another node.

Add-2. Select a node ṽ′ ∈ Spa(ṽ) and add the edge ṽ′ → ṽ to g̃.

Add-3. Let g̃′ be the new configuration.

The transition probability is:

Qadd(g̃, g̃
′) =

1

|Spa(ṽ)|nadd(g̃)

.
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The corresponding acceptance ratio for edge deletion is:

ρdel(g, g
′) =

p(g′)p(X|g′)Qadd(g
′, g)

p(g)p(X|g)Qdel(g, g′)

=
p

(0)
u (n(0,cv)(g

′)|T )

p
(0)
u (n(0,cv)(g)|T )

p
(cpa(v))
u

(
n(pa(v),cv)(g

′)
)

p
(cpa(v))
u

(
n(pa(v),cv)(g)

)
× p(θv|cv)

p(θv|cv, cpa(v), θpa(v))

p(X|g′)
p(X|g)

nedge(g)

|Spa(v)(g′)|nadd(g′)
,

for deletion of edge pa(v) → v. Note that n(0,cv)(g
′) = n(0,cv)(g) + 1 and n(pa(v),cv)(g

′) =

n(pa(v),cv)(g)− 1. The corresponding factor for edge addition is:

ρadd(g̃, g̃
′) =

p(g̃′)p(X|g̃′)Qdel(g̃
′, g̃)

p(g̃)p(X|g̃)Qadd(g̃, g̃′)

=
p

(0)
u (n(0,cṽ)(g̃

′)|U)

p
(0)
u (n(0,cṽ)(g̃)|U)

p
(cpa(ṽ))
u

(
n(pa(ṽ),cṽ)(g̃

′)
)

p
(cpa(ṽ))
u

(
n(pa(ṽ),cṽ)(g̃)

)
×

p(θṽ|cṽ, cpa(ṽ), θpa(ṽ))

p(θṽ|cṽ)
p(X|g̃′)
p(X|g̃)

|Spa(ṽ)(g̃)|nadd(g̃)

nedge(g̃′)
,

for addition of edge pa(ṽ) → ṽ. Note that in above n(0,cṽ)(g̃
′) = n(0,cṽ)(g̃) − 1 and

n(pa(ṽ),cṽ)(g̃
′) = n(pa(ṽ),cṽ)(g̃) + 1.

Pose Change: We make use of normal and von Mises distributions as proposal distri-

butions for location and orientation of a randomly selected object instance in the following

steps:

Pose-1. Select a node v ∈ V at random and either change its location by sampling a bivari-

69



CHAPTER 3. PRIOR MODEL

ate normal distribution centered at the current location of the corresponding instance

or change its orientation by sampling a von Mises distribution centered at the current

orientation of the instance.

Pose-2. Update the attributed graph with the new pose and denote the new configuration by

g′.

Since both normal and von Mises distributions are symmetric they will cancelled out

from the numerator and denominator of the acceptance ratio to leave only the ratio of

posteriors as in below:

ρpose(g, g
′) =

p(g′)p(X|g′)
p(g)p(X|g)

(3.19)

(3.20)

The ratio p(g′)/p(g) may be further simplified since changing the pose of an instance only

affects the pose distribution of itself and its neighbors (connected via an edge).
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3.5 Camera Parameters Prior

Assuming that the camera’s extrinsic and intrinsic variables are independent, we have:

p(W) = p(ψx, ψy, ψz, tx, ty, tz, f, sx, sy, ẋ0, ẏ0)

= p(ψx, ψy, ψz, tx, ty, tz)× p(f, sx, sy, ẋ0, ẏ0)

= p(ψx, ψy, ψz | tx, ty, tz)× p(tx, ty, tz)× p(f, sx, sy, ẋ0, ẏ0), (3.21)

where, extrinsic parameters include: t = (tx, ty, tz) denoting camera’s location in the world

coordinate system, and ψx, ψy, and ψz denoting, respectively, counter-clockwise rotation

of camera’s coordinate system about the x-axis, y-axis, and z-axis of the table coordinate

system1; and intrinsic parameters include: camera’s focal length f , the size of pixels in the

x and y directions denoted respectively by sx and sy, and (ẋ0, ẏ0) denoting the point on

the image plane (in pixels) where the camera’s principal axis meets the image plane [35].

It makes sense to assume that the height of camera, tz, is independent of its horizontal

location, (tx, ty):

p(tx, ty, tz) = p(tx, ty)× p(tz). (3.22)

We choose p(tz) to be a shifted and scaled Beta distribution with camera height ranging

from 0.3 to 3 meters (respect to the table surface) i.e., tz ∈ [−3,−0.3] (see Figure 3.2). The

1The counter-clockwise rotation about an axis means the counter-clockwise rotation occurs when the axis
points toward the observer.
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horizontal location of the camera, (tx, ty), is represented in a polar coordinate system cen-

tered at the center of the world coordinate system (center of the table): tx = r×cos(α) and

ty = r×sin(α). We assume the variables r and α are independent i.e., p(r, α) = p(α) p(r),

where p(α) = 1
2π

, α ∈ [0, 2π), and p(r) is a scaled Beta distribution in the range r ∈ [0, 4]

meters. The distributions p(tx, ty) and p(r, α) are related via the absolute determinant value

of the Jacobian of the new variables, (r, α), with respect to the old variables, (tx, ty), as be-

low:

p(tx, ty) = p(r, α)|det
( ∂(r, α)

∂(tx, ty)

)
| = p(r, α)

1

r
. (3.23)

The conditional distribution of the rotation variables given camera’s location is constructed

assuming that on average the camera’s z-axis, ~uz, points toward the table’s center, namely

E{~uz} = − t
‖t‖ , where E{.} stands for expectation, and the camera’s x-axis, ~ux, is parallel

to the table plane, hence, we choose its average to be the cross product of the average

normal to the camera’s image plane, E{~uz}, and the table’s normal, ~uZ , namely E{~ux} =

E{~uz}×~uZ , and finally, we set E{~uy} = E{~uz}×E{~ux}. We also assume that the rotation

angles are conditionally independent given the camera’s location:

p(ψx, ψy, ψz | tx, ty, tz) = p(ψx | tx, ty, tz)× p(ψy | tx, ty, tz)× p(ψz | tx, ty, tz), (3.24)
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where, each of the conditional distributions on the right-hand side of (3.24) is chosen to be

a von Mises distribution:

p(ψ | µ, κ) =
exp(κ cos(ψ − µ))

2πI0(κ)
, (3.25)

where, µ represents the mean of distribution, κ0 is a measure of dispersion, and I0(.)

is the modified Bessel function of order 0. We calculate the mean values of the von

Mises distributions, µx, µy, and µz, from the mean axes of the camera’s coordinate sys-

tem (E{~ux},E{~uy},E{~uz}) and the axes of the world coordinate system (~uX , ~uY , ~uZ).

Comparing (A.4) and (A.5), we obtain

µy = sin−1(−E{~ux}.~uZ),

µx = ]

(
E{~uz}.~uZ
cos(µy)

,
E{~uy}.~uZ
cos(µy)

)
,

µz = ]

(
E{~ux}.~uX

cos(µy)
,
E{~ux}.~uY
cos(µy)

)
,

which specifies the conditional rotation distribution in (3.24).

We assume that the pixels are square (symmetric horizontally and vertically) and there-

fore sy = sx and the rest of the intrinsic parameters are mutually independent:

p(f, sx, sy, ẋ0, ẏ0) = p(f)× p(sx, sy)× p(ẋ0)× p(ẏ0). (3.26)
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We choose a uniform density for the focal length ranging from 10 to 40 millimeters:

p(f) =
1

0.03
, f ∈ [0.01, 0.04].

For a given test image I with width of Wp pixels and camera image plane width of Wm

meters, we have sx = Wm

Wp
. Since for a given test image the size Wp is known, the only free

parameter would be camera’s image plane width Wm. We choose a uniform distribution

for Wm ranging from 1 cm to 1.2 cm, hence:

p(sx, sy) = p(sy|sx)× p(sx), (3.27)

where:

p(sx) =
Wp

0.002
, sx ∈ [

0.010

Wp

,
0.012

Wp

], (3.28)

and since we assumed sy = sx, therefore p(sy|sx) would simply be a deterministic function.

If the given test image I is not cropped, the point where the camera’s principal axis ~uz

meets the image plane would be (ẋ0 = Wp

2
, ẏ0 = Hp

2
), for Wp and Hp respectively denoting

the image’s width and height in pixels. However, in order to not limit ourselves to non-

cropped images we choose a uniform distribution for ẋ0 and ẏ0 centered at Wp

2
and Hp

2
,
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respectively, as below:

p(ẋ0) =
2

Wp

, ẋ0 ∈ [
Wp

4
,
3Wp

4
], (3.29)

and:

p(ẏ0) =
2

Hp

, ẏ0 ∈ [
Hp

4
,
3Hp

4
]. (3.30)

We set all of the parameters of p(W) manually and calibrate them such that the synthetic

scene samples generated by the synthetic image renderer look reasonable.

3.6 Table Geometry Prior

We make the simplifying assumption that the table is rectangular with length TL and

width TW meters i.e., T = (TL, TW ), and the length and width of table are independently

distributed:

p(T ) = p(TL, TW ) = p(TL)× p(TW ), (3.31)

The length and width of table are identically distributed according to a shifted and scaled

Beta distribution ranging from 0.5 to 3 meters.
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3.7 Summary

In this chapter, we proposed a generative stochastic model for 3D scenes consisting

of configurations of objects from a fixed library on a planar surface. Modeling is at the

level of objects in that the variables account for the numbers and poses of object instances,

and encodes preferred combinatorial and geometric configurations. These configurations

are represented as attributed graphs with a flexible random skeleton that still allows for

considerable variation in patterns among scene entities. A generative 3D scene model in

the world coordinate system whose samples mimic natural 3D scenes can be applied to

scene understanding, robotics and synthetic content creation. The model is easily extended

to 3D layouts with multiple support planes, which covers a wide range of human-created

scenes, e.g., consider the aerial image in Figure 3.14 where each building has a random

number of associated parking lots, from 0 to 4 lots, and each lot has a random number

of cars. The high-level attributed graph together with its design in the world coordinate

system render the model parameters interpretable and consequently easy to verify and set

by the user. We also proposed Monte-Carlo methods to sample from the model on attributed

graphs with random structure in both unconditional and conditional settings.
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Figure 3.14: Google satellite view from the White Marsh mall in Baltimore county, Maryland.
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Markov Random Field Model

In chapter 3 we proposed a prior model based on the “Generative Attributed Graph”

(GAG). We also proposed a posterior sampling algorithm based on Metropolis-Hastings [36,

61]. However, the Metropolis-Hastings algorithm has low acceptance rate (normally <

25%) [3, 76] and depends heavily on the starting graph configuration and its consistency

with the sampling condition. To increase the acceptance rate, smaller and more conser-

vative changes need to be proposed by the proposal distribution which leads to sluggish

convergence behavior. Starting with a graph configuration that does not comply with the

sampling condition can further increase the burn-in period by generating a long sequence

of inconsistent samples at the beginning. Hence, the previously proposed conditional sam-

pling can result in a lengthy and computationally expensive inference. This issue is even

more pronounced because the inference has to be done online at each step of the entropy

pursuit algorithm. To circumvent this lengthy inference we model table-settings using a set
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of Gibbs distributions for various table geometries T to replace the GAG model (replac-

ing p(g|T ) in (3.2) with a Gibbs distribution). However, the GAG model is a necessary

component and cannot be removed from the story since we will learn the Gibbs distribu-

tion parameters from empirical statistics of the GAG model samples. The Gibbs model

parameters could be learned directly from the dataset’s annotated samples if we had suffi-

ciently larger number of samples for each given T , but this is not the case. On the other

hand, we can efficiently learn the GAG model from limited dataset’s annotated samples

roughly matching in table geometry T . Hence, since we can generate as many samples as

desired from the GAG model for any given T , we first learn the GAG model (with orders of

magnitude fewer number of parameters compared to the Gibbs model) from the dataset’s

annotated images and then learn the Gibbs model from the GAG model samples. According

to the “Bias-Variance Tradeoff (Dilemma)” [28] complicated models with many parame-

ters require more training samples if they are to avoid high variance. The GAG model has

relatively few parameters because it is a Bayesian network and hence more modular. We

learn the Gibbs distribution for every T from statistics of the GAG model samples drawn

given the same T .

The random variables of the Gibbs distribution are binary and serve as presence indi-

cators of the center of object instances from different categories in relatively small cells

(5cm × 5cm) on the table and in the world coordinate system. The conditional inference

is carried out using Gibbs sampling [29]. This leads to considerably faster inference firstly

because Gibbs sampling has 100% acceptance rate and secondly because of the table area
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discretization result in faster exploration of the support space. For convenience we here-

after drop the table geometry T from notation. A Gibbs distribution is from the exponential

family and is of the following form:

pλ(ω) =
1

Z(λ)
exp
(
λT .f(ω)

)
, (4.1)

where ω denotes the model variables, f(ω) = [f1(ω), f2(ω), · · · , fM(ω)]> denotes the col-

lection of features or sufficient statistics, λ = [λ1, λ2, · · · , λM ]> are the corresponding

feature weights or model parameters, and Z(λ) =
∑

ω exp
(
λ>.f(ω)

)
is the normalizing

factor (partition function) ensuring that the probabilities sum up to one. Figure 4.1 shows

a table and its fitted mesh where each of the cells is a 5cm × 5cm square called “table

cell”. There are |C| binary variables in ω associated with each table cell which are presence

indicators of at least one instance from the corresponding category centered anywhere in

the 5cm× 5cm table cell. Hence, the number of model variables depends on the table size,

the number of object categories of interest, and the size of table cells. We choose binary

feature functions {fi(ω) ∈ {0, 1}, 1 ≤ i ≤ M} that can be of either singleton or conjunc-

tion type. Singleton features depend only on one object category whereas the conjunction

features depend on two different object categories. The singleton feature functions are in-

corporated to preserve the overall empirical statistics on the existence of an object category

at a particular location on the table whereas the conjunction feature functions are aimed to

incorporate the contextual relations between different object categories.
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Figure 4.1: Table fitting mesh.

We include singleton feature functions at three different granularity levels. Figure 4.2

shows the domain of these singleton feature functions at the fine-level (5cm×5cm), middle-

level (15cm × 15cm), and coarse-level (45cm × 45cm) by patches of respectively gray,

green, and blue color on a fitting mesh. If the fine-level features were indexed 1 to M

then fi(ω) = ωi, 1 ≤ i ≤ M . The middle-level and coarse-level features are equal to the

maximum of their domain variables; obviously, an object instance centered in a given cell

is also centered in any coarser cell enclosing it. Again, the corresponding singleton feature

functions are basically presence indicators of an object instance from the corresponding cat-

egory centered anywhere in their domain. The table cells at all levels are non-overlapping

and they collectively cover the area of the table completely.

In addition to the singleton features at three resolution levels we also include singleton
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d

Fine-level singleton

Middle-level singleton Singleton OR Conjunction

Coarse-level singleton

Figure 4.2: Domain of various types of feature functions.

feature functions whose domain is shown by the two purple boxes in Figure 4.2. Such

feature functions are ON (= 1) if there are instances of the corresponding category in

both boxes and OFF (= 0) otherwise. These singleton feature functions are intended to

encode co-occurrence of instances from the same category. For example, these type of

features prevent two plate instances to be very close to each other but they encourage local

co-occurrence of two utensil instances. The conjunction feature functions have similar

domain and definition as this type of singleton feature functions except that each of the

purple patches shown in Figure 4.2 has to include an instance from a different category

for the conjunction feature to be ON. Note that these type of features are defined on the

middle-level patches (15cm×15cm). Since the number of conjunction features is of O(n2)

in terms of the number of cells n, defining them on the fine-level cells would result in a high
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number of features which would require orders of magnitude higher numbers of samples to

learn the model parameters. Two patches at middle-level constitute a conjunction feature

function for c1 and c2 categories if the distance between centers of the two patches, denoted

by d, is less than a threshold distance d(c1,c2); the threshold distance value depends on the

involved categories and is larger for bigger object categories but for table-setting categories

it is chosen to be always smaller than 45 cm. We have a set of conjunction feature functions

for the pair of object categories c1 and c2 if there is an edge, no matter in what direction,

between these two categories in the master graph.

4.1 Invariance Property

The number of parameters M can become very large depending on the table geometry

and the number of considered categories. However, many of these parameters are expected

to be equal due to the existing symmetry in table-settings, for instance, a plate is usually

placed around the table at any side where someone is expected to sit with the same likeli-

hood. The Gibbs model in (4.1) with M parameters corresponding to the feature functions

described in the previous section is over-parameterized. Parameter estimation for an over-

parameterized model can lead to poor parameter estimation as compared to a model with

fewer number of parameters using the same number of training samples and computational

resources. To incorporate invariance and improve estimation, we group features whose

weights are expected to be the same and factor out these unique weights in the exponent
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of the Gibbs distribution in (4.1); we assume that the singleton feature functions whose

domain is of the same size and located at the same distance from the closest table edge

have the same weights and fall in the same group. In practice, we cluster singleton feature

functions whose domain centers are at roughly the same distance from the closest table

edge to the same group i.e., quantization. We quantize coarser level feature functions to

fewer numbers of groups. Our grouping strategy for the conjunction feature functions is

quantizing the first patch based on its distance from the edge of table and quantizing the

second patch based on its distance and angular location with respect to the first patch i.e.,

sides (left, right, front, or back), and then clustering the similarly quantized feature func-

tions to the same group. We assign the same weight to the feature functions from the same

group and factor out these weights. This will result in a new set of feature functions which

are the sum of the original feature functions from the same groups:

pλ(ω) =
1

Z(λ)
exp
(
λT .f(ω)

)
=

1

Z(λR)
exp
(
λTR .fR(ω)

)
, (4.2)

where, λR and fR are the reduced set of parameters and feature functions of sizeMR (MR �

M ), respectively:

λR =
[
λ′1, λ

′
2, · · · , λ′MR

]>
, fR(ω) =

[
f ′1(ω), f ′2(ω), · · · , f ′MR

(ω)
]>
.
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Denoting the j-th index group by Bj we have:

λ′j = λi, i ∈ Bj , and f ′j(ω) =
∑
i∈Bj

fi(ω).

It can now be seen clearly that applying the invariance property basically reduces to group-

ing the symmetric feature functions and defining a new set of features which are the sums

of the original feature functions. We will discuss conditional sampling from the Gibbs

distribution in the next section.

4.2 Conditional Sampling

We propose a way to conditionally sample the Markov Random Field (MRF) model of

table-settings (Gibbs distribution). The proposed sampler has three nested loops; the outer

loop samples table geometry T , the loop in the middle samples camera parameters given

table geometry from the outer loop, and the inner loop samples the Gibbs distribution given

table geometry and camera parameters. The two outer loops use a Metropolis-Hastings

sampling strategy and the inner loop sampling is based on Gibbs sampling. We start with

the inner loop in the next subsection.
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4.2.1 Conditional Sampling of the Gibbs Distribution

Assume T andW are given and let’s drop T andW from our notations for convenience.

We will use T andW explicitly whenever it makes our statements more clear. The posterior

distribution can be written as below according to the Bayes’ rule:

pλ(ω|ek−1) =
pλ(ω) p(ek−1|ω)

p(ek−1)
∝ pλ(ω) p(ek−1|ω), (4.3)

where, ek−1 = (qk−1, ak−1) denotes the accumulated evidence up to step k of EP in ei-

ther binary or composite representation, qk−1 = (q1, · · · , qk−1) is the list of queries, and

ak−1 = (Xq1 , · · · , Xqk−1
) is the corresponding list of answers, namely classifiers’ output.

Assuming that classifiers’ outputs are independent given the category and 2D pose of ob-

jects in the image coordinate system (cV , ξV ), we have:

p(ek−1|cV , ξV ) =
k−1∏
i=1

p(Xqi|cV , ξV ), (4.4)

where each of the terms in the right hand side of (4.4) is determined by our data model.

We choose an appropriate representative for every binary random variable in ω that is ON

(= 1). An appropriate representative is from the right category and at its typical size

(in meters), centered anywhere in the corresponding table cell (placed randomly). These

appropriate representatives specify the category and pose of objects in the world coordinate

system (cV , θV ), and thereby (cV , ξV ) given the homography projection matrix H which is
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a deterministic function of W . Figure 4.3 shows the functional relations between these

variables. Hence, we have:

p(ek−1|ω) =
k−1∏
i=1

p(Xqi|cV (ω), ξV (ω)). (4.5)

where, the category labels are calculated based on the index of active (ON) variables in ω.

Assuming N table cells, the first N elements of ω are associated with the first category,

the second N elements of ω are associated with the second category, and so on. Note that

in (4.5) we ignored the role of the uniform distributions we used to go from θV to ω; but

this wont cause any inaccuracy during sampling since the uniform distributions will cancel

out from the numerator and denominator of the acceptance ratios.

The set of interpretation units Y are determined given the 2D pose of objects in the

image coordinate system and their categories i.e., Y can be calculated given (cV , ξV ). If

the interpretation units are sufficient statistic from (cV , ξV ), we will have:

p(ek−1|ω) =
k−1∏
i=1

p(Xqi|Y(ω)). (4.6)

In the case that the classifiers’ output are binary, Xi ∈ {0, 1}, the data model is in its

simplest form and basically determined by the classifiers’ error statistics i.e., their speci-

ficity p(Xi = 0|Yi(ω) = 0) and sensitivity p(Xi = 1|Yi(ω) = 1). In the case of CNN

classifiers with SoftMax output (Multinomial Logistic Regression) that target annoints the

data distribution p(X|Y ) can be modeled using a Dirichlet distribution.
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ω (cV , θV )

H

(cV , ξV ) Y

W

Figure 4.3: The functional relation between variables.

Finally, we sample the i-th element of ω according to the following probabilities:

pλ(ωj = 0|ek−1, {ωl , ∀l\j}) =
p0

p0 + p1

, (4.7)

pλ(ωj = 1|ek−1, {ωl , ∀l\j}) =
p1

p0 + p1

, (4.8)

where:

p0 = pλ
(
ω = (ω1, · · · , ωj = 0, · · · , ωL)

) k−1∏
i=1

p
(
Xqi|(cV , θV )(ω1, · · · , ωj = 0, · · · , ωL)

)
,

p1 = pλ
(
ω = (ω1, · · · , ωj = 1, · · · , ωL)

) k−1∏
i=1

p
(
Xqi|(cV , θV )(ω1, · · · , ωj = 1, · · · , ωL)

)
.

(4.9)

4.2.2 Conditional Sampling of the T andW

Replacing the GAG model with the Gibbs distribution in (3.2) results in:

p(ω, T,W) = pλ(ω|T )p(W)p(T ), (4.10)
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where, as a reminder,W is the set of camera’s extrinsic and intrinsic parameters that specify

the homography projection matrix H deterministically (see Appendix A). Note that the

category label and 2D pose of objects i.e., (cV , ξV ), can be computed based on (ω,W) by

projecting the 3D poses to the image coordinate system using homography H . As was

discussed before we learn pλ(ω|T ) for a number of different table geometries T (say 10

to 20) from the GAG model sample statistics whose corresponding table geometry match

with T . Each of these table geometries has a probability p(T ) which is estimated based

on the occurrence frequency of T in the dataset. We also have a proposal distribution

QT (Tcurrent, Ttry) that proposes a change from the current table geometry Tcurrent to Ttry. Note

that, for the transition to be well defined, we need to ensure that Q satisfies the weak

symmetry condition:

QT (Tcurrent, Ttry) > 0⇔ QT (Ttry, Tcurrent) > 0. (4.11)

We choose the table geometry proposal distribution to be a uniform distribution over the

set of learned table geometries excluding the current table geometry. The proposed table

geometry Ttry gets accepted with probability:

πT = min

(
1,

QT (Ttry, Tcur)× pλ(ωtry | Ttry)× p(Ttry)×
∏k−1

i=1 p(Xqi|c
try
V , ξ

try
V )

QT (Tcur, Ttry)× pλ(ωcur | Tcur)× p(Tcur)×
∏k−1

i=1 p(Xqi|ccur
V , ξ

cur
V )

)
,

(4.12)

89



CHAPTER 4. MARKOV RANDOM FIELD MODEL

and rejected with probability (1− πT ). The variables in (4.12) are related according to:

ωcur −−→ θcur
V

Hcur−−−−−⇀↽−−−−−
H−1

cur

ξcur
V

H−1
cur−−−−−⇀↽−−−−−
Hcur

θcur
V −−−→ ωtry −−→ θtry

V

Hcur−−−−−⇀↽−−−−−
H−1

cur

ξtry
V

Note that we used the current homography Hcur for both “current” and “try” projections in

above (Hcur is based onWcur). Also, we again skipped showing the uniformly distributed

variables used to go from ω to ξV . Accepting the proposed table geometry sets Tcurrent = Ttry

and rejecting it sets Tcurrent = Tcurrent.

As was mentioned earlier, homography is a deterministic function ofW . We introduced

a prior model onW in section 3.5 which will be used to calculate the proposal acceptance

probability on camera parameters as follows. We define a camera parameters proposal

distribution QW(Wcurrent,Wtry) that chooses one of the camera parameters at random and

proposes a change to it according to a normal distribution centered at its current value.

However, as we will see in the next chapter the proposed changes to the camera param-

eters are constrained to result in a 2D table projection overlapping well-enough with the

detected table area in the image. The proposed camera parametersWtry get accepted with

probability:

πW = min

(
1,
QW(Wtry,Wcur)× p(Wtry)×

∏k−1
i=1 p(Xqi|c

try
V , ξ

try
V )

QW(Wcur,Wtry)× p(Wcur)×
∏k−1

i=1 p(Xqi|ccur
V , ξ

cur
V )

)
, (4.13)
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and rejected with probability (1− πW). The variables in (4.13) are related according to:

ξcur
V

H−1
cur−−−−−⇀↽−−−−−
Hcur

θcur
V

Htry−−−−−⇀↽−−−−−
H−1

try

ξtry
V

Note that there is a difference in the way that ξtry
V is compute in (4.13) and (4.12). The

“try” 2D object poses ξtry
V in (4.12) are calculated using the homography projection based

on the “current” camera parameters Wcur, whereas in (4.13) they are calculated using the

homography projection based on the “try” camera parameters Wtry. Again, accepting the

proposed camera parameters setsWcurrent =Wtry and rejecting it setsWcurrent =Wcurrent.

Algorithm 1 summarizes the previous two subsections in three nested loops. We pro-

posed a way to sample p(ξV , ω, T,W | ek−1). We can simply evaluate annobits for each

drawn sample to estimate the marginal annobit posteriors {p(Yi | ek−1)}Ki=1 required by EP.
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Algorithm 1: Posterior Sampling

Initialize Tcur,Wcur, and ωcur.
for i← 1 to NT do

Propose a table geometry Ttry and compute the acceptance ratio:

πT = min

(
1,

QT (Ttry, Tcur)× pλ(ωtry | Ttry)× p(Ttry)×
∏k−1
i=1 p(Xqi |c

try
V , ξ

try
V )

QT (Tcur, Ttry)× pλ(ωcur | Tcur)× p(Tcur)×
∏k−1
i=1 p(Xqi |ccur

V , ξ
cur
V )

)
.

Accept the proposed table geometry Tcur = Ttry with probability πT and reject Tcur = Tcur with
probability (1− πT ).
for n← 1 to NW do

Propose new camera parametersWtry, and compute the acceptance probability:

πW = min

(
1,
QW(Wtry,Wcur)× p(Wtry)×

∏k−1
i=1 p(Xqi |c

try
V , ξ

try
V )

QW(Wcur,Wtry)× p(Wcur)×
∏k−1
i=1 p(Xqi |ccur

V , ξ
cur
V )

)
Accept the proposed homographyWcur =Wtry with probability πW and rejectWcur =Wcur
with probability (1− πW).

for t← 1 to Nω do
Sample the conditional Gibbs model for the current camera parameters and table
geometry according to the following probabilities:

pλ(ωj = 0|ek−1, {ωl ,∀l \j}) =
p0

p0 + p1
, pλ(ωj = 1|ek−1, {ωl ,∀l \j}) =

p1
p0 + p1

,

where p0 and p1 are calculated based on (4.9). Update ωcurrent, project the sample to the
image coordinate system, compute the corresponding annobits, and update the
estimated annobit posteriors p̂(Y | ek−1) accordingly.

end
end

end

4.3 Parameter Estimation

Assume we haveN iid1 samples from the Gibbs distribution in (4.2): ω(1), ..., ω(N). Let

p̃(ω) denote the empirical distribution based on these N samples. The likelihood function

1Independent and Identically Distributed
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of these samples is:

L(λR|ω(1), · · · , ω(N)) =
N∏
j=1

pλ(ω
(j)). (4.14)

We will remove the “R” subscript hereafter for notational convenience from all feature

functions, parameters, and the number of feature functions even though we use the reduced

Gibbs distribution according to the invariance property. The maximum-likelihood estimator

of the Gibbs model parameters is:

λMLE = argmax
λ
L(λ|ω(1), · · · , ω(N)). (4.15)

On the other hand, the log-likelihood function is proportional to the Kullback-Leibler (KL)

divergence between the empirical distribution p̃ and the Gibbs model pλ [16], as below:

L(λ|ω(1), · · · , ω(N)) ∝ e−N×DKL(p̃‖pλ), (4.16)

where DKL(. ‖ .) denotes KL divergence. Hence:

λMLE = argmin
λ

DKL(p̃ ‖ pλ) = argmin
λ

∑
ω

p̃(ω) log
p̃(ω)

pλ(ω)
. (4.17)

The loss function of the above optimization problem for pλ being from the exponential

family is always convex with respect to the model parameters λ [7]. However, this loss
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function is not necessarily strongly convex as the Hessian is only positive-semidefinite and

not necessarily positive definite for every set of feature functions [7]. In another words, for

the hessian matrix:

H(l) =



∂2l(λ)

∂λ21

∂2l(λ)
∂λ1∂λ2

· · · ∂2l(λ)
∂λ1∂λM

∂2l(λ)
∂λ2∂λ1

∂2l(λ)

∂λ22
· · · ∂2l(λ)

∂λ2∂λM

...
... . . . ...

∂2l(λ)
∂λM∂λ1

∂2l(λ)
∂λM∂λ2

· · · ∂2l(λ)

∂λ2M


= Epλ

{(
f − Epλ{f}

)(
f − Epλ{f}

)>}
= cov(f),

where l(λ) = DKL(p̃ ‖ pλ), there is no α > 0 such that for every set of feature functions

(cov(f)−αIM) is positive-definite where Epλ{.} and IM , respectively, denote expectation

with respect to probability distribution pλ and an M ×M identity matrix. We normally

solve (4.17) for differentiable loss functions by taking the partial derivatives and equating

them to zero

∇l(λ) = (
∂l

∂λ1

, · · · , ∂l

∂λM
) = 0. (4.18)

If there exists a solution to (4.18) then this solution will in fact be the unique minimizer

of (4.17) due to the convexity assumption of l(.). Therefore, there is a close relationship

between the optimization problem in (4.17) and the root-finding problem in (4.18). To solve

the root-finding problem in (4.18), or equivalently the optimization problem in (4.17), we
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may iteratively take gradient descent steps as below:

λt+1 = λt − Γt ∇l(λt), (4.19)

where Γt represents a diagonal matrix whose diagonal elements are step-sizes taken along

different dimensions i.e., Γt = diag(γt1, · · · , γtM). We denote the i-th gradient element by

gi(λ) which for the objective function l(λ) = DKL(p̃ ‖ pλ) is given by:

gi(λ) =
∂l

∂λi
= Epλ{fi} − Ep̃{fi}. (4.20)

Computing the expectation Epλ{fi} in (4.20) at every iteration according to (4.19) can

become computationally challenging when the dimension of the random variable ω is large.

To mitigate this issue we instead use an unbiased measurement of the gradient computed

by Monte-Carlo integration:

Gi(λ, ζ) =
1

|ζ|
∑
ω∈ζ

fi(ω)− Ep̃{fi}, (4.21)

where ζ denotes a set of samples from pλ used to estimate the expectation (mini-batch).

The stochastic subgradient Gi(λ, ζ) is a noisy but unbiased estimator of gi(λ) i.e., g(λ) :=

Eζ{G(λ, ζ)}.

Stochastic Approximation (SA), sometimes referred to as the Stochastic Gradient (SG),

was first proposed by Robbins and Monro [75] for solving nonlinear root-finding problems
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in the presence of noisy gradient measurements. The Stochastic Gradient method is the

stochastic counterpart of the deterministic gradient descent method with the following iter-

ation:

λt+1 = λt − Γt G(λt, ζ). (4.22)

Since the first stochastic optimization algorithm by Robbins and Monro, numerous vari-

ations have been proposed [2,10,21,37,48,66,67,88,89,102]. This area, especially recently

with the dawn of Big Data, has received a flurry of interest. These algorithms are variations

of the original Robins-Monro algorithm. An important variant is the averaged stochas-

tic gradient descent (ASGD), also referred to as iterate averaging (IA) [69, 80], where the

converging sequence is:

λt =
t∑

t′=0

λt
′
/(t+ 1). (4.23)

We used this method to estimate the Gibbs model parameters. The convergence rate of the

ASGD algorithm is asymptotically optimal [69, 80] and smoothness of the ASGD makes

it attractive in cases where the measurements have large variance. However, ASGD is

successful only if a proportionally large number of the iterates hover, in a balanced way,

around the solution λ? [92, p. 119]. Hence, to ensure convergence, the bulk of iterates

should fall uniformly within a relatively tight proximity of the solution such that the average

of them is close to λ? with high confidence. Convergence of the averaged sequence, λt, can

96



CHAPTER 4. MARKOV RANDOM FIELD MODEL

be sluggish if the iterates do not reach this point relatively quickly. Furthermore, note

that the issue of convergence with iterate averaging is even more pronounced in robust

stochastic approximation (RSA) [66] where the converging sequence is a weighted average

of the SGD iterates with decreasing weights. The ARSA’s converging sequence (as Q →

∞) of the i-th dimension is computed as below:

(λ̃i)
Q
K :=

Q∑
t=K

γ̃tiλ
t
i , (4.24)

where γ̃ti = γti/
∑Q

t′=K γ
t′
i and γti = θ0/t

p for p ∈ [1/2, 1] andK being the number of initial

iterates excluded in computing the weighted average. The initial K iterates are excluded

since these iterates are likely to produce the poorest estimates. The decreasing weights

lower the significance of later iterates which are more likely to fall within a close proxim-

ity of the solution compared to the initial iterates. Hence, having poor initial iterates can

negatively affect the performance of RSA even more severely compared to ASGD. There-

fore, an acceleration of convergence, even in the early iterates, can substantially benefit

RSA.

We propose an accelerating step-size based on the evidence collected from the most

recent iterates via an oscillation measure. This accelerating step-size adds only negligible

computational burden which makes is particularly attractive for large-scale problems. The

proposed step-size gave substantial convergence speed-up in the parameter estimation of

our Gibbs model. In addition, we learned singleton feature functions for each category
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separately and then put them together as a starting point to learn them jointly in the final

learning step.

Consider an optimization problem where the loss function l(λ) is univariate and convex

as shown in Figure 4.4. Assume two scenarios where, in the first, the iterates at times

t − 2, t − 1, and t (shown by red circles) lie on one side of the solution λ?, whereas in

the second, these iterates (shown by blue circles) oscillate around the solution. In the first

scenario, the iterates λt−2 and λt−1 are both incremented in the same direction to λt−1 and

λt, respectively. In this case, the step-size is perhaps too small and it should be increased.

On the other hand, if consecutive iterates are oscillating back and forth (as in the second

scenario) the step-size is perhaps too large and should be decreased. Consider the following

recursive step-size strategy:

γt = γt−1 exp

(
µ× sgn

(
(λt − λt−1)(λt−1 − λt−2)

))
, (4.25)

where µ > 0 and sgn(.) denotes the sign function serving as an oscillation measure. This

step-size strategy scales down the previous step-size by e−µ in the case of observing os-

cillation and scales it up by eµ in the case that the iterates are incremented in the same

direction. The step-size in (4.25), if computed recursively, is:

γt = γ0γ1

t∏
t′=2

exp

(
µ× sgn

(
(λt
′ − λt′−1)(λt

′−1 − λt′−2)
))

= γ0γ1 exp

(
µ×

t∑
t′=2

sgn
(
(λt
′ − λt′−1)(λt

′−1 − λt′−2)
))
, t ≥ 2. (4.26)
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However, noisy measurements of the gradient can result in an unbounded growth of step-

sizes if computed based on (4.26) which leads to divergence of the algorithm in practice. A

reasonable strategy to prevent divergence due to unbounded growth of step-sizes in (4.26) is

to consider only the most recent pieces of evidence obtained from the oscillation measure:

γt = θ0 exp

(
µ×

t∑
t′=Ť (t−h)

sgn
(
(λt
′ − λt′−1)(λt

′−1 − λt′−2)
))
, t ≥ 2, (4.27)

where h is the length of history, θ0 is a positive scaling parameter, and Ť (t−h) = max(t−

h+ 1, 2). In order to guarantee convergence, a decaying factor e.g., 1
tp

, is required to damp

down the noise effect. Therefore:

γt =
θ0

tp
exp

(
µ×

t∑
t′=Ť (t−h)

sgn
(
(λt
′ − λt′−1)(λt

′−1 − λt′−2)
))
, t ≥ 2. (4.28)

The free parameters of the proposed accelerating step-size are (θ0, µ, h, p) which should be

chosen appropriately for the given problem. We chose (θ0 = 1, µ = 0.1, h = 10, p = 0.5)

for the Gibbs parameter estimation.

The proposed accelerating step-size can adapt itself in case of too small or too large

steps by appropriate scaling leading to improved finite-iterate convergence behavior of

stochastic approximation algorithms. Storing the last h oscillation history requires very

small memory since the history values are binary.
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Figure 4.4: Univariate convex loss function.

The (4.22) update formula in the ith dimension is:

λt+1
i = λti − γtiGi(λ

t, ζ), (4.29)

where γti is the step-size along the i-th dimension calculated according to the accelerat-

ing step-size in (4.28). The sequence (λ̃i)
Q
K computed according to (4.24) based on the

proposed accelerating step-sizes converges to the solution denoted by λ?i as Q → ∞.

This is stated more formally in the following theorem. The assumptions that we make

are very mild. We do not assume smoothness or strong convexity for the loss function

that is common in the convergence proof of stochastic optimization algorithms. The given

non-asymptotic upper bound is valid for a wide range of convex loss functions.

Theorem 4.3.1. The loss function l(·) evaluated at λ̃QK = [(λ̃1)QK , ..., (λ̃M)QK ] converges (in
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L1-norm) to l(λ?) whenQ→∞ if the loss function is convex and the iterates are computed

based on unbiased subgradient estimators Gt
i with finite energy i.e., E{[Gt

i]
2} < ∞ and

accelerating step-sizes in (4.28) along each dimension with a bounded memory length h <

∞ and p ∈ (1/2, 1]. The suboptimality of the loss function at λ̃QK is upper bounded as

0 ≤ E
{
l
(
(λ̃i)

Q
K

)
− l(λ?i )

}
≤ eµ.h

(
dKi + 1

2
(θ0e

hµMi)
2
(
K1−2p−Q1−2p

2p−1
+ 1

K2p

)
θ0

(Q+1)1−p−K1−p

1−p

)
,

which suggests a non-asymptotic convergence rate of O( 1√
t
) if p→ 1/2.

The proof of above theorem is given in below for an interested reader. However, there

is one caveat; the reader should note that we have made assumptions that could be violated

if the samples drawn from the model are dependent. This is the case for MCMC sam-

pling where consecutive samples are strongly dependent. To mitigate this issue one can

subsample the sequences of dependent samples generated by MCMC.

Proof. The update formula in (4.22) implies that λt is a deterministic function of the initial

point λ0 and all the ζ-samples used in the calculations up to t−1, denoted by ζbt−1c. Hence,

assuming that λ0 is constant we have:

λt = λt(λ0, ζbt−1c) = λt(ζbt−1c). (4.30)

101



CHAPTER 4. MARKOV RANDOM FIELD MODEL

Consequently the subgradient g(λt) could be written as:

g(λt) = Eζt{G(λt, ζt)} = Eζt{G(λt(ζbt−1c), ζ
t)|ζbt−1c}, (4.31)

where Eζt{.} denotes expectation with respect to ζt. In the following, we prove conver-

gence along each individual dimension. Let:

Dt
i =

1

2
(λti − λ?i )2, (4.32)

and:

dti = E{Dt
i} =

1

2
E
{

(λti − λ?i )2
}
. (4.33)

Note that E{.} (with no subscript) denotes expectation with respect to all of the random

variables. Hence, in (4.33) the expectation is with respect to ζbt−1c. Using (4.29) we can

write:

Dt+1
i =

1

2
(λt+1

i − λ?i )2 =
1

2

(
λti − γtiGi(λ

t, ζt)− λ?i
)2

= Dt
i +

1

2
(γti)

2G2
i (λ

t, ζt)− γti(λti − λ?i )Gi(λ
t, ζt).

Since (4.28) implies γti ≤ θ0ehµ

tp
and the subgradient measurements are bounded we
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have:

E
{

(γti)
2G2

i (λ
t, ζt)

}
≤ E

{
(
θ0e

hµ

tp
)2G2

i (λ
t, ζt)

}
≤
(θ0e

hµ

tp
Mi

)2
. (4.34)

Hence:

E
{
γti(λ

t
i − λ?i )Gi(λ

t, ζt)
}
≤ dti − dt+1

i +
1

2

(θ0e
hµ

tp
Mi

)2
. (4.35)

On the other hand, by convexity of the loss function we have:

l(λti) + (λi − λti)gi(λt) ≤ l(λi), (4.36)

where in (4.36), l(λi) denotes the loss function l(·) as a function of λi while fixing the rest

of parameters {λ(j), j ∈ {1, 2, · · · , n}\i}. By letting λi = λ?i and using (4.31):

l(λti)− l(λ?i ) ≤ (λti − λ?i )Eζt
{
Gi(λ

t, ζt)|ζbt−1c
}
. (4.37)

The solution λ?i is not a random variable for a given problem and λti depends only on ζbt−1c,

therefore we can push the (λti − λ?i ) term inside the expectation in (4.37); we then multiply

both sides by γti and since γti > 0 we get:

γti
(
l(λti)− l(λ?i )

)
≤ γti Eζt

{
(λti − λ?i )Gi(λ

t, ζt)|ζbt−1c
}
. (4.38)
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The step-size γti does not depend on the random variable ζt and is fully determined by

ζbt−1c. This is because γti depends on λti, λ
t−1
i , ..., λt−h−1

i and they are all determined by

ζbt−1c. Hence, the step-size γti could also be pushed inside the conditional expectation to

get:

γti
(
l(λti)− l(λ?i )

)
≤ Eζt

{
γti(λ

t
i − λ?i )Gi(λ

t, ζt)|ζbt−1c
}
. (4.39)

Finally by taking expectation with respect to ζbt−1c we get:

E
{
γti
(
l(λti)− l(λ?i )

)}
≤ E

{
γti(λ

t
i − λ?i )Gi(λ

t, ζt)
}
. (4.40)

Hence, from (4.40) and (4.35) and since λ?i is the minimum solution i.e., l(λ?i ) ≤ l(λti), we

have:

0 ≤ E
{
γti
(
l(λti)− l(λ?i )

)}
≤ dti − dt+1

i +
1

2

(θ0e
hµ

tp
Mi

)2
. (4.41)

Applying
∑Q

t=K [.] to all sides of (4.41):

0 ≤
Q∑
t=K

E
{
γti
(
l(λti)− l(λ?i )

)}
≤

Q∑
t=K

[dti − dt+1
i ]︸ ︷︷ ︸

=dKi −d
Q+1
i

+
1

2
(θ0e

hµMi)
2

Q∑
t=K

1

t2p
. (4.42)

By swapping the order by which the expectation and summation are applied in (4.42) and
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using dQ+1
i ≥ 0 we get:

0 ≤ E
{ Q∑
t=K

γti l(λ
t
i)

}
− E

{ Q∑
t=K

γti l(λ
?
i )

}
≤ dKi +

1

2
(θ0e

hµMi)
2

Q∑
t=K

1

t2p
. (4.43)

Recall that:

γ̃ti :=
γti∑Q

t′=K γ
t′
i

, and (λ̃i)
Q
K :=

Q∑
t=K

γ̃tiλ
t
i. (4.44)

According to the Jensen’s inequality for the convex loss function l(·) we have:

Q∑
t=K

γti l(λ
t
i) ≥

( Q∑
t′=K

γt
′

i

)
l
(
(λ̃i)

Q
K

)
. (4.45)

By taking expectation from both sides of (4.45):

E
{ Q∑
t=K

γti l(λ
t
i)

}
≥ E

{( Q∑
t′=K

γt
′

i

)
l
(
(λ̃i)

Q
K

)}
. (4.46)
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Therefore:

0 ≤ E
{( Q∑

t′=K

γt
′

i

)
l
(
(λ̃i)

Q
K

)}
− E

{ Q∑
t=K

γti l(λ
?
i )

}

= E
{( Q∑

t′=K

γt
′

i

)(
l
(
(λ̃i)

Q
K

)
− l(λ?i )

)}

≤ E
{ Q∑
t=K

γti l(λ
t
i)

}
− E

{ Q∑
t=K

γti l(λ
?
i )

}

≤ dKi +
1

2
(θ0e

hµMi)
2

Q∑
t=K

1

t2p
.

Succinctly:

0 ≤ E
{( Q∑

t′=K

γt
′

i

)(
l
(
(λ̃i)

Q
K

)
− l(λ?i )

)}
≤ dKi +

1

2
(θ0e

hµMi)
2

Q∑
t=K

1

t2p
. (4.47)

Finally, we get an upper bound on the expected inaccuracy (in L1-norm sense) as below:

0 ≤ E
{
l
(
(λ̃i)

Q
K

)
− l(λ?i )

}
≤ eµ.h

(
dKi + 1

2
(θ0e

hµMi)
2
∑Q

t=K
1
t2p

θ0

∑Q
t=K

1
tp

)
. (4.48)

The upper bound on the expected inaccuracy when Q → ∞ could be written as a

function of the Riemann Zeta function:

ζ(s) =
∞∑
t=1

1

ts
, s = σ + ic, (4.49)

where in the general case s is a complex variable with σ and c being the real and imaginary
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parts, respectively. The value of this function is finite for σ > 1. For 1
2
< p ≤ 1, a

finite constant K, and dKi < ∞, the upper bound in (4.48) converges to zero as Q → ∞.

Therefore:

lim
Q→∞

E
{
l
(
(λ̃i)

Q
K

)
− l(λ?i )

}
= 0. (4.50)

which proves convergence in L1-norm when 1
2
< p ≤ 1. It will be seen that the upper

bound still converges to zero when p → 1/2 which completes the proof. We know from

probability theory that convergence in norm guarantees convergence in probability.

The terms in the upper bound of the L1-norm expected inaccuracy in (4.48) that depend

on the iterate number Q are:

A(p,K,Q) =

Q∑
t=K

1

t2p
and B(p,K,Q) =

Q∑
t=K

1

tp
. (4.51)

Let A+ and B− respectively denote an upper bound on A i.e., A ≤ A+, and a lower bound

on B i.e., B− ≤ B. Hence:

0 ≤ E
{
l
(
(λ̃i)

Q
K

)
− l(λ?i )

}
≤ eµ.h

(
dKi + 1

2
(θ0e

hµMi)
2A+

θ0B−

)
. (4.52)

We can calculate the following bounds (see Appendix C):

A+ =
K1−2p −Q1−2p

2p− 1
+

1

K2p
, B− =

(Q+ 1)1−p −K1−p

1− p
. (4.53)
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Finally, by plugging A+ and B− into (4.52) we get the following bound:

0 ≤ E
{
l
(
(λ̃i)

Q
K

)
− l(λ?i )

}
≤ eµ.h

(
dKi + 1

2
(θ0e

hµMi)
2
(
K1−2p−Q1−2p

2p−1
+ 1

K2p

)
θ0

(Q+1)1−p−K1−p

1−p

)
. (4.54)

An interesting case is when p → 1/2. In this case, both the numerator and denominator

of the fraction (K1−2p − Q1−2p)/(2p − 1) in (4.54) go to zero. After disambiguation of

the upper bound by L’Hopital’s rule we get an asymptotic convergence rate of O( 1√
t
) as

p→ 1/2. This proves the theorem. �

Note that in the case of a constrained optimization problem where λi ∈ Λi, a projection

onto Λi i.e., ΠΛ(λi) = argminλ′i∈Λi(λi − λ′i)2, is often used to update the iterates:

λt+1
i = ΠΛ

(
λti − γtiGi(λ

t, ζt)
)
.

If the projection ΠΛ(.) is non-expanding, namely:

(
ΠΛ(λi)− ΠΛ(λ′i)

)2 ≤ (λi − λ′i)2 ∀λi, λ′i ∈ R,

108



CHAPTER 4. MARKOV RANDOM FIELD MODEL

then, considering that ΠΛ(λ?i ) = λ?i (because λ?i ∈ Λi) we have:

Dt+1
i =

1

2
(λt+1

i − λ?i )2 =
1

2

(
ΠΛ

(
λti − γtiGi(λ

t, ζt)
)
− λ?i

)2

=
1

2

(
ΠΛ

(
λti − γtiGi(λ

t, ζt)
)
− ΠΛ(λ?i )

)2

≤ 1

2

(
λti − γtiGi(λ

t, ζt)− λ?i
)2

= Dt
i +

1

2
(γti)

2G2
i (λ

t, ζt)− γti(λti − λ?i )Gi(λ
t, ζt).

Hence, in both constrained and unconstrained cases the following is true:

E{Dt+1
i } ≤ E{Dt

i}+
1

2
E
{

(γti)
2G2

i (λ
t, ζt)

}
− E

{
γti(λ

t
i − λ?i )Gi(λ

t, ζt)
}
. (4.55)

The above leads to (4.35) and the rest of proof remains unchanged.
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Classifiers and Data Model

We used classifiers based on state-of-the-art deep Convolutional Neural Networks (CNN).

Since a thorough description of deep neural networks is out of the scope of this dissertation,

and because we use CNNs from “off-the-shelf”, we only describe them briefly and just to

the extent necessary to understand their role in the EP framework.

Deep neural networks are loosely inspired by how the brain works. Deep learning meth-

ods aim at learning feature hierarchies where features from higher levels are compositions

of lower level features. Th expression of higher level abstractions in terms of raw sensory

input has always been a challenge for many machine learning applications. As the amount

of data continues to grow, an automatic and end-to-end learning framework that does not

depend on human-crafted features becomes increasingly attractive. The depth of a neural

network architecture refers to the number of levels of composition of non-linear operations

in the function learned. Inspired by the multistage information processing in the primate
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visual system (detection of edges, primitive shapes, and moving up to more complex vi-

sual shapes) and also the multilayer structure of the mammalian brain [5, 87], researchers

had always wanted to train neural networks with multiple hidden layers; however, their

attempts were largely unsuccessful until Hinton et al. introduced Deep Belief Networks

(DBNs) with a learning algorithm using an unsupervised pre-training that greedily targeted

one layer at a time [38]. Although deep neural networks were found too difficult to train

before Hinton’s unsupervised pre-training, the CNN was an exception. The CNNs were in-

spired by the mechanism of the visual system and in particular were designed based on the

models proposed in 1962 by Hubel and Wiesel for the visual system of cats [43]. The first

computational model, called the Neocognitron, was proposed by Fukushima [24]. Later,

following up on this idea, LeCun et al. designed and trained CNNs using the error gradi-

ents [52, 53]. Our understanding of the visual system seems to be roughly consistent with

convolutional networks [87], at least for quick object recognition without benefiting from

visual selective attention and top-down contextual feedback connections [5]. In this disser-

tation, we use a model-based approach in an attempt to incorporate top-down contextual

information, and analyze scenes in a coarse-to-fine fashion inspired by the visual selective

attention property of the human visual system.

The proper training of a fully connected neural network when initialized randomly is

much harder than a CNN with the same number of layers. One hypothesis for this according

to [5] is that the small fan-in of the convolutional neurons i.e., few inputs per neuron,

helps gradients propagate through so many layers without diffusing so much as to become
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useless. Note that gradient diffusion can occur as the result of propagation through many

paths so that the credit or blame for the output error is distributed too widely and thinly to

be effective during optimization [5].

The current CNNs are designed based on the same principles introduced years ago in the

early works [42, 53]. The famous LeNet-5 network [53] was a successful implementation

of CNNs for digit classification. However, the LeNet approach did not perform well in

training larger networks (in both breadth and depth) required for more complex problems

such as object classification. This led to abandonment of neural networks by the majority

of machine learning community. However, more efficient ways to train neural networks

with more layers [6, 38, 73] together with far larger (annotated) training sets and efficient

implementations on high-performance computing systems, such as GPUs and large-scale

distributed clusters [14, 15], resulted in impressive performance of CNNs on a number

of benchmarks. The sucess of deep networks was largely due to the large public image

repositories such as ImageNet [19].

Deep CNN classifiers received a lot of attention following the good performance of

AlexNet [49] reported for the 2010 and 2012 ImageNet Large Scale Visual Recognition

Challenge (ILSVRC) [81]. The ILSVRC-2010 competition provided 1.2 million high-

resolution training images from 1000 different classes with roughly 1000 images per class;

the validation and test data for this competition consisted of 200,000 images (50,000 vali-

dation and 150,000 test). The AlexNet achieved top-1 and top-5 error rates of 37.5% and

17.0% on the test data which was considerably better than the previous state-of-the-art. A
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Figure 5.1: Block diagram of AlexNet architecture. The numbers following each block’s label
indicates the number of output for that block.

variant of the AlexNet was also entered in the ILSVRC-2012 competition and achieved a

winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best en-

try. The AlexNet’s architecture, shown in Figure 5.1, consists of five convolutional layers

(some of which are followed by max-pooling layers), three fully-connected layers and a fi-

nal 1000-way softmax; this architecture resulted in 650,000 nodes (neurons) and 60 million

parameters. The network’s size is mainly limited by the amount of memory available on the

GPU in addition to the amount of training time that one is willing to tolerate. The AlexNet

was too large to fit in the memory of GPUs that were available at the time; therefore, the

net was spread across two GTX 580 3GB GPUs by putting half of the kernels (or neurons)

on each GPU.

AlexNet inputs a 256 × 256 pixels patch whereas the ImageNet dataset consists of

variable-resolution images; therefore, they first rescaled the image such that the shorter

side was of length 256, and then cropped out the central 256×256 patch from the resulting

image.

The classifiers based on CNNs in general require a constant input dimensionality. After

rescaling, processing any patch requires the same amount of computations; hence, the clas-
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sifiers based on CNNs deploying the same network architecture will have unit cost making

them theoretically ideal for the entropy pursuit framework that relies on unit cost tests.

The size of networks has grown constantly in the past few years taking advantage of the

newer generations of GPUs with larger memory and higher computing capability (higher

FLOPS 1). The performance has gotten better with the use of faster GPUs and larger train-

ing datasets. The network architecture that we used to design our classifiers is based on the

VGG-16 [91] with 16 layers that won first and second places in the ILSVRC-2014 com-

petition for localisation and classification tasks, respectively. Figure 5.2 shows the block

diagram of the VGG-16 network. The input to this network is a fixed size 224× 224 RGB

image patch. The image is passed through a stack of convolutional layers with fixed 1 pixel

stride 2. Spatial pooling is carried out by five max-pooling layers (over 2×2 pixel windows

with stride 2) which follow only some of the convolutional layers. The convolutional layers

are followed by three Fully Connected (FC) layers, where the first two have 4096 channels

each and the third has 1000 channels (one for each of the 1000 ILSVRC-2014 classes). The

1000 outputs of the last fully connected layers are finally passed to a softmax layer. This

network architecture has 138 million parameters. The VGG network uses very small 3× 3

filters in convolutional layers which was reported to show significant improvement when

used with 16-19 weight layers. The top-performing entries of the ILSVRC-2012 [49] and

ILSVRC-2013 [86, 103] competitions used larger filters of size 11 × 11 with stride 4, and

7×7 with stride 2, respectively. Note that a stack of two 3×3 convolutional layers (without

1floating-point operations per second
2The shifting step for convolutional filters is usually refered to as “stride”.

114



CHAPTER 5. CLASSIFIERS AND DATA MODEL

Figure 5.2: Block diagram of VGG-16 network architecture. The numbers following each block’s
label indicates the number of output for that block.

spatial pooling in between) has an effective receptive field of 5 × 5, and three such layers

have a 7× 7 effective receptive field. However, since each convolutional layer is followed

by a non-linear rectification layer, the decision function of three cascaded convolutional

layers will be more discriminative than a single convolutional layer with 7× 7 filter.

The final layer i.e., the softmax layer, simply performs multinomial logistic regression

and is used for making prediction. Letting the 4096-dimensional column vector x denote

the last FC-4096 layer’s output, and the 4096-dimensional column vector wj denote the

weights associated with the j-th output of the FC-1000 layer offsetted by bj , the softmax

layer’s j-th output is:

pj =
ex
>wj+bj∑

k e
x>wk+bk

, (5.1)

where pj is an estimator of class j proportion given the input patch I , i.e., p(J = j|I).

Obviously, the estimated proportions for every class are non-negative and sum to one:∑
j pj = 1. See Appendix D for a brief description about how the network weights are

learned.
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5.1 CNN Classifiers for EP

We trained three deep CNNs, the first one called “CatNet” which we used for object

category classification, the second one called “ScaleNet” to estimate the scale of detected

object instances, and the third we call “TableNet” which was used to detect the table surface

area in a given image. All of these CNNs borrow their network architecture, up to the last

weight layer, i.e., layer 15, from the VGG-16 network. The last fully-connected layer

(16-th weight layer) and the following softmax layer of these three CNNs are modified to

accommodate our design needs. All CNNs rely on “transfer learning” by initializing the

first 15 weight-layers to the corresponding weights from the VGG-16 network 3 trained

on 1.2 million images from the ImageNet dataset [18]. However, since the last layer’s

architecture for each of the three CNNs is different from VGG-16, they were randomly

initialized during training. Because the loss function of deep neural networks is highly

non-convex, appropriate weight initialization is important to achieve faster convergence to

a good local or perhaps global optima. The input to the VGG-16 network is a fixed size

224 × 224 RGB image patch. By design, an input patch of any size is first resized to

256× 256 before being processed; then, 5 patches of size 224× 224 are cropped from the

resized patch, one for each of the four corners and the center of the 256 × 256 patch (see

Figure 5.3). Finally, the horizontal mirror of these five patches are added resulting in 10

total 224 × 224 patches from the input patch. The final output is the average output for

these 10 patches. All of the CNNs were trained and tested using the Cafe Deep Learning

3Available at: http://www.robots.ox.ac.uk/˜vgg/research/very_deep/
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Figure 5.3: Ten 224× 224 patches extracted from a 256× 256 patch. The red boxes illustrate the
cropped patches. The first row shows the original patch and its crops and the second row shows the
horizontal mirror and its crops.

framework [45] using a Nvidia Tesla K40 GPU on a desktop computer with Intel i7-4790K

Quad-Core processor (8M Cache and up to 4.40 GHz clock rate) and 32-GB RAM running

Kubuntu 15.04 operating system. The processing time for one 256 × 256 patch (resulting

in 10 patches of size 224× 224) is about 12 seconds on our end-of-the-line Intel i7-4790K

CPU and 0.2 seconds on the Tesla K40 GPU. Again, since the input patches are of the same

size and pass through the same network the classifiers all have the same computational cost

during test time. We describe the design, training, and performance evaluation of these

CNNs in the following subsections.

5.1.1 CatNet

We are interested in detecting if at least one instance from each of the four object

categories “Plate”, “Bottle”, “Glass”, and “Utensil” exists in a given patch. CatNet will
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be used to predict the annoint associated with the patch that basically takes values on the

set {0, 1, ..., 15}, where 0 represents no instance from any of the four object categories

being fully contained in the patch, and 15 indicates the presence of at least one instance

from every object category contained in the patch. The CatNet is a CNN with a 5-way

softmax output layer where the first output corresponds to the class of “No Object” instance

from any of the four categories and the second, third, fourth, and fifth outputs correspond

to “Plate”, “Bottle”, “Glass”, and “Utensil” classes, respectively. Note that reducing the

24 = 16 possible states of a patch to only 5, whereas crude, does scale linearly with the

number of categories (rather than exponential 2|C|).

We trained CatNet such that the softmax outputs predict the relative existence proba-

bilities of the corresponding categories in the input patch. Note that the outputs of CatNet

do not predict the probability of each category having at least one instance. Assume A1,

A2, A3, A4, and A5 denote, respectively, the events that “No Object”, “Plate”, “Bottle”,

“Glass”, and “Utensil” categories exist in the input patch (in the sense of at least one in-

stance for the object classes). Since A1 is the complement of union event ∪5
i=2Ai, we

have p(∪5
i=2Ai) = 1 − p(A1). On the other hand, the softmax layer’s outputs sum to one:

p(A1)+
∑5

i=2 p(Ai) = 1. Hence, p(∪5
i=2Ai) =

∑5
i=2 p(Ai). Therefore, every pair of events

must be disjoint and cannot co-occur (p(Ai ∩ Aj) = 0, ∀i 6= j). Obviously, this is not the

case since the input patch may contain multiple categories. Hence, the softmax outputs

are interpreted to predict relative probabilities (proportions) for the existence of different

categories. For instance, the outputs corresponding to plate and utensil categories, namely
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OUTPUT 2 and OUTPUT 5, will take higher values if instances of both of these categories

co-exist in the input patch.

We trained CatNet using a set of 344,149 patches, and evaluated the performance on a

test set of 62,157 patches. The training set contained 170,830 patches from the “No Ob-

ject” category, 36,429 patches from the “Plate” category, 2,074 patches from the “Bottle”

category, 49,401 patches from the “Glass” category, and 85,415 patches from the “Utensil”

category. Figure 5.4 illustrates a snapshot of the training set where each patch is framed

with one or multiple colored frames where each colored frame indicates existence of one

object category in the patch; black for “No Object”, red for “Plate”, yellow for “Bottle”,

blue for “Glass”, and green for “Utensil”. Each train and test patch Ii is labeled with a

category li, where 1 ≤ li ≤ 5. A patch with label “1” contains no object instance from

the four considered categories. A patch with label “2” contains at least one plate instance

completely inside the patch. A patch with label “3” contains at least one bottle instance

completely inside the patch, and so on. Note that since training patches are from different

levels of resolution, each patch may contain multiple object categories depending on its res-

olution level and the pose of objects. A patch including multiple object instances appears

multiple times in the training set, each time with the category label of one of the existing

instances. For instance, assume that there are one plate and two glasses in a given patch;

then, this patch will be repeated three times in the training set, one time with label “2” and

two times with label “4”. Repeating the same patch with label say “4” as the result of mul-

tiple glass instances being present in the patch gives a higher weight to the “Glassiness” of
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this patch in the loss function (D.1).

The train and test patches were extracted from the “JHU Table-Setting Dataset” using

the annocell hierarchy image partitioning explained in section 2.2. The “No Object” cate-

gory patches were selected from the set of annocell patches whose overlap with the table

area is less than 10% of the patch. The number of background (No Object) training patches

was chosen to be twice the number of patches from the most frequent category (the uten-

sil category) as this seemed to result in better performance by minimizing the number of

false positives in the off-table areas and still detect other categories decently. If we include

too many background patches in the training dataset, say 99 times patches from all other

categories, then, even if we classified all training patches to class “1” (namely background

or “No Object”) we would still get a very high 99% training accuracy, as the loss function

minimization in (D.1) would be biased toward class “1”. On the other hand, if we lower

the number of background patches then we will start to see more false positives in off-table

areas.

The CatNet was trained by minimizing the cross-entropy loss function using the SGD

with momentum with min-batch size of 50 patches (see Appendix D). Training took about

24 hours when the first 15 weight layers were initializing by the first 15 weight layers from

the VGG-16 network.

To obtain binary classification for the existence of at least one instance from each cat-

egory in a given patch we process the softmax layer output relative probabilities as fol-

lows. Assuming that the net is trained well, we expect that the output proportional scores
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corresponding to the existing categories in the input patch to be close and amongst the

top scores. That is, we consider the probabilities outputted by the CatNet as scores for

the corresponding categories. We define two parameters (k, Sg) for considering the top-

k scores with less than Sg consecutive score gap (distance). For instance, assume we

are considering the top-3 scores with score gap Sg = 0.2, and the CatNet outputs are

(s1 = 0.05, s2 = 0.45, s3 = 0.05, s4 = 0.1, s5 = 0.35); since (s2 − s5) < Sg but

(s5 − s4) ≮ Sg, the binary classification per category will only recognize “2” and “5”

categories, i.e., plate and utensil are classified to be the only existing categories in the input

patch. Figure 5.5 and Figure 5.6 show, respectively, the confusion matrices for the train

and test set with patches from different levels of resolution from the annocell hierarchy

for different score gap values. As a reminder, the 1, 2, 3, 4, and 5 classes correspond to

the No Object, Plate, Bottle, Glass, and Utensil categories, respectively. In the confusion

matrices, the rows show the predicted class statistics, and the columns show the true class

statistics. The diagonal cells show where the true class and predicted class match and the

off diagonal cells show the number of points where the CatNet classifier has made a mis-

take. The column on the right hand side of the plot shows the accuracy for each predicted

class, whereas the row at the bottom shows the accuracy for each true class. The overall

accuracy is shown in the cell in the bottom right of the plots (yellow box) in green text.

Note that the score gap Sg = 0 is equivalent to choosing only the max score. One can see

that the accuracy increases as the score gaps grows. We compare elements of the target and

prediction vectors to calculate a confusion matrix; an element in the prediction vector is set
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Table 5.1: Average score at different levels of resolution observed at each output when CatNet is
applied to an input patch from the corresponding class.

Category Level-0 Level-1 Level-2 Level-3

“No Object” 0.31 0.72 0.96 0.99

“Plate” 0.32 0.34 0.39 0.44

“Bottle” 0.08 0.19 0.31 0.36

“Glass” 0.33 0.44 0.56 0.68

“Utensil” 0.48 0.54 0.71 0.81

to its target class if the target class is among the top-k scores with score gap not exceeding

Sg (i.e., match), and set to the top scoring class otherwise (i.e., mistake). It is important to

note that the accuracies reported by the confusion matrices indicate the classifiers’ “sensi-

tivity” also called true positive rate. The classifier’s sensitivity always grows by increasing

the score gap; but, their “specificity” (also called the true negative rate) drops by increasing

the score gap. Usually, there is a trade-off between sensitivity and specificity of classifiers.

We struck a balance between sensitivity and specificity by choosing Sg = 0.3 considering

the top-3 scores.

We expect to achieve higher classification accuracy for patches from finer levels of the

annocell hierarchy since finer resolutions usually include fewer object categories and in

relatively larger scale compared to the patch size. Hence, we expect to observe a higher

average score on the CatNet’s i-th output if it is fed with a finer patch from the i-th class.

This is confirmed by Table 5.1 which shows the average score on the CatNet’s outputs

when it is fed by patches from the corresponding class at different resolution levels from

122



CHAPTER 5. CLASSIFIERS AND DATA MODEL

the annocell hierarchy. Figure 5.7 shows the distribution of scores whose means are listed in

Table 5.1. One can see that as the input patch gets finer (from left columns to the right) the

distributions moves more toward higher values. Figures 5.8, 5.9, 5.10, 5.11 show confusion

matrices on the test set broken down for different levels of resolution and score gaps; see

Appendix E for the corresponding confusion matrices on training set. As we could expect,

the overall accuracy (sensitivity) is: (1) higher at finer levels compared to coarse levels, (3)

higher for larger score gaps, and (3) higher on the training dataset compared to the test set.
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Figure 5.4: A snapshot of the CatNet datset set. Each colored frame indicates existence of one
object category in the patch: black indicates “No Object”, red indicates “Plate”, yellow indicates
“Bottle”, blue indicates “Glass”, and green indicates “Utensil” category.
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Figure 5.5: CatNet confusion matrix on the “training” set for all levels of resolution.
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Figure 5.6: CatNet confusion matrix on the “test” set for all levels of resolution.
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Figure 5.7: The distribution of CatNet output for different levels of resolution that gets finer from
left to right. The i row distributions correspond to the i-th output when the net is fed with a patch
from class i.
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Figure 5.8: CatNet confusion matrix on the “test” set broken down for different levels of resolution
when classification is only based on the top score.
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Figure 5.9: CatNet confusion matrix on the “test” set broken down for different levels of resolution
when classification is based on the top-3 scores and score gap 0.1.
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Figure 5.10: CatNet confusion matrix on the “test” set broken down for different levels of resolu-
tion when classification is based on the top-3 scores and score gap 0.2.
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Figure 5.11: CatNet confusion matrix on the “test” set broken down for different levels of resolu-
tion when classification is based on the top-3 scores and score gap 0.3.
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Figure 5.12: Scale ratio intervals.

5.1.2 ScaleNet

We designed the ScaleNet to estimate the scale of detected object instances independent

of their category. Since every patch has to be resized to a fixed 224× 224 size before being

processed by ScaleNet, the estimated scale of an object based on the fixed size input patch

has to be scaled appropriately to estimate the scale of the object in the original patch before

resizing. Obviously, the ratio of an object’s scale (in pixels) to the size of the patch will stay

unchanged after resizing. For an object that is fully inside a patch the scale ratio is within

the range (0, 1]. Note that we assume that the scale of an object instance is the longest

side of its enclosing rectangle whose sides are horizontal/vertical. Hence, the scale ratio is

always smaller than 1 for an object completely inside a patch.

We changed the number of outputs of the last fully-connected layer as well as the

softmax layer of the VGG-16 network to 4, where each output class represents a scale-

to-patch-size ratio. The four outputs of ScaleNet correspond to ratios 0.1, 0.35, 0.65,
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Figure 5.13: Two example scale score functions calculated based on the top-2 ScaleNet scores.
The scale scores for the two score function are shown by stars.

and 1. This is basically a quantization of the scale ratio range (0, 1] to four centroids

and Voronoi intervals (see Figure 5.12 where Voronoi intervals are separated by the ver-

tical red lines). The centroids were selected with increasing scale gaps from 0.1 to 1:

(0.35−0.1 = 0.25) < (0.65−0.35 = 0.3) < (1.0−0.65 = 0.35). Choosing an increasing

score gap is because we can tolerate larger errors in larger scales.

We trained ScaleNet on a training set of 171,395 patches. Each patch was labeled by

one label l ∈ {1, 2, 3, 4}, with 42,567 patches whose scale ratio was quantized to the first

class (0.1 scale ratio), 82,509 patches whose scale ratio was quantized to the second class

(0.35 scale ratio), 37,443 patches whose scale ratio was quantized to the third class (0.65

scale ratio), and 8,876 patches whose scale ratio was quantized to the fourth class (1 scale

ratio). We evaluated ScaleNet on a test set of 30,742 patches. The training took about 24

hours on GPU using SGD with momentum and a mini-batch size of 50 images.

Figure 5.14 shows confusion matrices for training and test sets in two cases of classifi-

cation based on the maximum score class and top-2 score classes. A match is declared in
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the case of top-2 score classification if the true class is among the top two scores. It can be

seen that the most common mistakes are made in the classification of consecutive classes

which makes sense since consecutive classes are associated with consecutive scale ratios

which have closer output distributions. Figure 5.15 shows the distribution of ScaleNet’s

4 outputs on both the training and test set, where the j-th column corresponds to the j-

th output of ScaleNet and the i-th row corresponds to the i-th scale ratio case shown in

Figure 5.12 and summarized below:

Case 1: The input is a patch whose true scale ratio is from interval (0, 0.1].

Case 2: The input is a patch whose true scale ratio is from interval (0.1, 0.225].

Case 3: The input is a patch whose true scale ratio is from interval (0.225, 0.35].

Case 4: The input is a patch whose true scale ratio is from interval (0.35, 0.5].

Case 5: The input is a patch whose true scale ratio is from interval (0.5, 0.65].

Case 6: The input is a patch whose true scale ratio is from interval (0.65, 0.825].

Case 7: The input is a patch whose true scale ratio is from interval (0.825, 1].

It can be seen that the distribution of the ScaleNet outputs are close for the training

and test sets; and the distribution at higher values is denser on the j-th output if the input to

ScaleNet is from corresponding class j. The output distribution gradually changes from the

first to the seventh case listed above. Note that two consecutive distributions look closer

compared to two non-consecutive distributions. It can be seen that the distributions of

cases associated with the same class but scale ratio of smaller and larger than centroid look

slightly different in the sense that the later is closer to the distribution of the next class.

Since the top-2 classification has high accuracy (overall 98.1% accuracy on the training

set and 95.3% on the test set) we were convinced to use only the top two scores for esti-
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mating the scale ratio of detections. The estimated scale ratio is a weighted average based

on the top two scores:

ŜR =
sD [0.1, 0.35, 0.65, 1]>

sD [1, 1, 1, 1]>
, (5.2)

where “s” is a 4-dimensional row vector denoting the ScaleNet’s output and D is a 4 ×

4 diagonal matrix whose diagonal elements are 1 at locations corresponding to the top

two scores and zero elsewhere. We define normal-shaped score function centered at the

estimated scale ratio ŜR:

f(t) = exp
(
−(t− ŜR)2

2σ2

)
, (5.3)

where: σ2 = (ADA>)/(sD[1, 1, 1, 1]>), for A = [0.1, 0.35, 0.65, 1] − ŜR. The σ value

gets smaller as the score gap between the top two scores widens. The score function will be

densely concentrated around the estimated scale ratio for a more confident scale estimation,

namely when the top score is much larger that the rest of scores. This becomes more clear

after defining the scale score in the following paragraph.

An object instance can be located completely inside multiple annocells from different

levels of resolution due to the coarse-to-fine structure of the annocell hierarchy. However,

we would like to declare the annocell with smallest size that contains the object (the fittest

annocell) as the bounding box for every detection. Hence, we should give a higher score to

a detection whose estimated scale ratio is larger than 0.5, i.e., the detected object occupies
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more than half of the patch size. We define the scale score by Sscale = max0.5≤t≤1 f(t).

Figure 5.13 illustrates two example score functions in “blue” and “dashed–red” based on

the top-2 scores shown by the same color bins; the blue score function rolls off faster from

its maximum due to the larger discrepancy between the top-2 scores. The scale scores for

the two score functions are shown by stars. The estimated scale ratio corresponding to the

blue curve is farther away from the [0.5, 1] interval with higher confidence compared to

the dashed–red curve; therefore, the blue curve leads to a smaller scale score. The smaller

dispersion parameter σ for the blue curve resulted in a considerable gap between the two

scores; the larger gap is desirable since the ScaleNet scores shown by the red bins are more

likely to correspond to a fitter annocell.

Finally, each patch from the annocell hierarchy is given a mixed “Category–Scale”

score per category. The mixed score for a given patch with scale score Sscale and the c-th

category score sc is Scmixed = sc×Sscale, where sc is the corresponding output from the Cat-

Net. We declare an annocell patch as positive detection (bounding box) for the c-th category

if both Sscale ≥ 0.5 and sc is among the CatNet’s top-3 scores with score gap Sg = 0.3.

We perform “non-maximum suppression” on the mixed scores of the positive detections

per category to obtain a sparse set of boxes. Non-maximum suppression is performed by

picking the most confident (maximum score) detection and removing its neighboring de-

tections; then, picking the second most confident detection left and removing its neighbors,

and continuing this process until there are no positive detections left. We consider two

patches to be neighbors if at least 50% of the smaller patch is covered by (overlaps with)
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the bigger patch. This neighborhood definition results in the removal of positive detections

across different resolution levels of the annocell hierarchy during non-maximum suppres-

sion. Figures 6.16, 6.19, 6.22, 6.25, 6.28 show detections per category after non-maximum

suppression for some table-setting scenes.

State-of-the-art object detection systems (e.g., see [30]) use the “selective search” al-

gorithm [99] to propose boxes which are likely to contain object instances; these boxes

are then processed by a convolutional neural networks for classification, and regressed to

obtain the bounding boxes for the positive detections. The selective search algorithm gen-

erates candidates by various ways of grouping the output of an initial image segmentation.

Note that we did not run any initial segmentation on the input image to obtain the bounding

box estimates. The fast region-based CNN (fast R-CNN) [31] does not use the selective

search algorithm to generate the candidate boxes; their network generates the bounding

boxes internally in the forward path. These approaches do not use any contextual relations

between different object instances.

5.1.3 TableNet

The TableNet servers a binary classifier for predicting whether or not an input patch

belongs to the table surface. Detecting the table surface limits the range of homography free

parameters by constraining them to result in a table projection consistent (tightly fitted) with

the detected table area. An accurate detection of the table surface as a pre-processing step

results in significant speed-up during inference by avoiding inconsistent homographies.
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We trained TableNet on 270,410 training patches (153,812 background and 116,598 table),

and tested it on 38,651 test patches (18,888 background and 19,763 table). The background

and table patches are defined by having, respectively, at most 10% and at least 50% (of the

patch) overlap with the table surface area. All of the training and test patches were selected

from level-2 and level-3 of the annocell hierarchy. Figure 5.21 shows some training and

test patches where the background patches are framed in black and table patches are framed

in green. Figure 5.22 shows the confusion matrices for training and test sets for three cases

(levels 2+3, 2, and 3). The overall accuracy on the training set is always higher than on

the test set as we expect. The patches from the coarser level-2 of the annocell hierarchy

are classified with higher accuracy compared with patches from the finer level-3, perhaps

because TableNet has access to more texture information at level-2 compared to level-3,

which results in more discriminative features and hence higher classification accuracy.

Given a test image we first run TableNet on patches from level-2 with zero overlap

(16 patches) and for those classified as “table” we run TableNet on the contained non-

overlapping patches from level-3 in order to get a finer localization of the table area. This

results in running TableNet on at most 80 ( = 16× 4 + 16) patches. We finally fit a convex

shape, such as a polygon, rectangle, or ellipse, to the corner points of patches at level-3

which were classified as table. We use polygons in our experiments. In order to suppress

the effect of mistakenly classified patches we fit the convex shape only to the connected

region with the maximum number of patches classified as table. Figures 5.23, 5.24 show the

estimated table area for some example images. Figure 5.25(top row) shows two examples
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where some off-table patches were classified as table, but due to the constraint on fitting,

the mistakenly classified patches did not affect table detection. Figure 5.25(bottom row)

shows two poor table detection examples which seem to happen due to the lack of enough

texture on the tables. We ran our table detector on 284 images and observed fewer than 5

poor table detections.

We also estimated the table size by appropriately scaling the length of the longest di-

ameter of the fitting polygon. That appropriate scale was calculated by running ScaleNet

on patches from level–2 classified as table, and assuming that the table-setting objects have

a 20 cm size on the average. Knowing the size of an object in the real world (in meters) and

its scale in the image coordinate system (in pixels) provides a simple way to convert pixels

to meters. Figure 5.26 shows the histogram of the absolute and relative errors made by our

table size estimator. The histogram is centered roughly around 0 meaning that our table

size estimator is relatively unbiased. We calculated the true table size by back-projecting

the annotated table surface using the visually estimated homography for every image.

To generate homography samples that conform with the detected table area, assume

a rectangular table of size T = (L,W ) whose four corner points are (−L/2,−W/2),

(−L/2,W/2), (L/2,−W/2), and (L/2,W/2);. We draw samples from the distribution on

camera parameters p(W) proposed in section 3.5 and calculate the corresponding homog-

raphy matrix according to Appendix A. Then, we project the four corners of the table to the

image coordinate system using this homography matrix and check if the resulting polygon

(quadrilateral) fits well to the detected table area using a similarity measure for 2D–shapes.
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We declare a “good fit” between two shapes A1 and A2 if:

d(A1, A2) = |(A1 ∪ A2)− (A1 ∩ A2)| < 0.25 min(|A1|, |A2|). (5.4)

In an attempt to efficiently sample the homography (camera parameter) distribution

that is consistent with the detected table area, we first try to find a set of camera param-

eters that result in a table projection meeting a relaxation of (5.4), namely d(A1, A2) <

0.4 min(|A1|, |A2|), and as soon as we find such a sample we start to greedily fine–tune

the camera parameters to finally satisfy (5.4). During fine-tuning we randomly choose one

camera parameter and change it slightly by sampling a normal distribution with small vari-

ance centered at the previous value; we accept this change if it resulted in a smaller distance

d(A1, A2). We try a total of 10, 000 homographies obtained by sampling the camera model

p(W) (to satisfy the relaxed condition) or fine-tuning of parameters W (to satisfy (5.4))

and exit the loop as soon as (5.4) is met; otherwise, if the condition (5.4) was not met dur-

ing 10, 000 trials, we output the camera parameters resulting in the minimum d(A1, A2).

Figures 5.27, 5.28, 5.29 show some consistent homography samples for three images.

140



CHAPTER 5. CLASSIFIERS AND DATA MODEL

1 2 3 4
Target Class

1

2

3

4

O
ut

pu
t C

la
ss

ScaleNet CM: Train Set (max score)

29383
17.1%

12827
7.5%

354
0.2%

3
0.0%

69.0%
31.0%

8252
4.8%

68086
39.7%

6059
3.5%

112
0.1%

82.5%
17.5%

359
0.2%

8849
5.2%

26858
15.7%

1377
0.8%

71.7%
28.3%

18
0.0%

300
0.2%

2872
1.7%

5686
3.3%

64.1%
35.9%

77.3%
22.7%

75.6%
24.4%

74.3%
25.7%

79.2%
20.8%

75.9%
24.1%

1 2 3 4
Target Class

1

2

3

4

O
ut

pu
t C

la
ss

ScaleNet CM: Train Set ("2" top scores)

41697
24.3%

654
0.4%

213
0.1%

3
0.0%

98.0%
2.0%

69
0.0%

82054
47.9%

319
0.2%

67
0.0%

99.4%
0.6%

215
0.1%

939
0.5%

36270
21.2%

19
0.0%

96.9%
3.1%

15
0.0%

229
0.1%

469
0.3%

8163
4.8%

92.0%
8.0%

99.3%
0.7%

97.8%
2.2%

97.3%
2.7%

98.9%
1.1%

98.1%
1.9%

1 2 3 4
Target Class

1

2

3

4

O
ut

pu
t C

la
ss

ScaleNet CM: Test Set (max score)

4283
13.9%

3027
9.8%

130
0.4%

14
0.0%

57.5%
42.5%

1257
4.1%

11563
37.6%

1543
5.0%

81
0.3%

80.1%
19.9%

29
0.1%

2016
6.6%

4842
15.8%

363
1.2%

66.8%
33.2%

2
0.0%

83
0.3%

635
2.1%

874
2.8%

54.8%
45.2%

76.9%
23.1%

69.3%
30.7%

67.7%
32.3%

65.6%
34.4%

70.1%
29.9%

1 2 3 4
Target Class

1

2

3

4

O
ut

pu
t C

la
ss

ScaleNet CM: Test Set ("2" top scores)

6746
21.9%

572
1.9%

122
0.4%

14
0.0%

90.5%
9.5%

5
0.0%

14182
46.1%

194
0.6%

63
0.2%

98.2%
1.8%

21
0.1%

217
0.7%

7003
22.8%

9
0.0%

96.6%
3.4%

2
0.0%

71
0.2%

149
0.5%

1372
4.5%

86.1%
13.9%

99.6%
0.4%

94.3%
5.7%

93.8%
6.2%

94.1%
5.9%

95.3%
4.7%

Figure 5.14: ScaleNet confusion matrix on “training” and “test” set considering both max score
classification and top-2 classification.
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Figure 5.15: The distribution of ScaleNet’s 4 outputs on both the training and test set, where the
j-th column corresponds to the j-th output of ScaleNet and each row corresponds to a different case
(see text for various cases). 142
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Figure 5.16: CNN classifier detections for “plate” (top left), “bottle” (top right), and “glass” (bot-
tom left), and “utensil” (bottom right) categories. The ordinal numbers in brackets represent the
confidence rank of detections per category and the fractional values in parentheses indicate the
scale ratio of detections.
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Figure 5.17: CNN classifier detections for “plate” (top left), “bottle” (top right), and “glass” (bot-
tom left), and “utensil” (bottom right) categories. The ordinal numbers in brackets represent the
confidence rank of detections per category and the fractional values in parentheses indicate the
scale ratio of detections.
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Figure 5.18: CNN classifier detections for “plate” (top left), “bottle” (top right), and “glass” (bot-
tom left), and “utensil” (bottom right) categories. The ordinal numbers in brackets represent the
confidence rank of detections per category and the fractional values in parentheses indicate the
scale ratio of detections.
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Figure 5.19: CNN classifier detections for “plate” (top left), “bottle” (top right), and “glass” (bot-
tom left), and “utensil” (bottom right) categories. The ordinal numbers in brackets represent the
confidence rank of detections per category and the fractional values in parentheses indicate the
scale ratio of detections.
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Figure 5.20: CNN classifier detections for “plate” (top left), “bottle” (top right), and “glass” (bot-
tom left), and “utensil” (bottom right) categories. The ordinal numbers in brackets represent the
confidence rank of detections per category and the fractional values in parentheses indicate the
scale ratio of detections.
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Figure 5.21: A snapshot of TableNet training/test patches including background (with black
frames) and table (with green frames) patches.
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Figure 5.22: TableNet confusion matrices. The left and right columns correspond to, respectively,
the training and test sets. The top, middle, and bottom rows correspond to the cases where patches
are from both levels (2 and 3), level–2, and level–3, respectively.
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Figure 5.23: Table detection examples using TableNet: The fitting polygon, rectangle, and ellipse
to the corner the points of patches at level–3 which were classified as table are shown in yellow, red,
and magenta, respectively. The blue and green boxes show patches from, respectively, level-2 and
level-3 classified as table. The estimated table size (in meters) based on each shape is shown on the
green text boxes. 150
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Figure 5.24: Table detection examples using TableNet: The fitting polygon, rectangle, and ellipse
to the corner the points of patches at level–3 which were classified as table are shown in yellow, red,
and magenta, respectively. The blue and green boxes show patches from, respectively, level-2 and
level-3 classified as table. The estimated table size (in meters) based on each shape is shown on the
green text boxes. 151
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Figure 5.25: Noisy table detection examples using TableNet: The top row shows two examples
with off-table false positives which were suppressed by considering the region with the maximum
number of connected positive detections. The bottom row shows two poor table detection examples,
perhaps due to the insufficient texture on the tables.
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Figure 5.26: Histogram of the relative (left) and absolute (right) error made by the table–size
estimator.
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Figure 5.27: Consistent homography samples satisfy condition (5.4)(set 1).
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Figure 5.28: Consistent homography samples satisfy condition (5.4)(set 2).
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Figure 5.29: Consistent homography samples satisfy condition (5.4)(set 3).
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5.2 Data Model

Let X t denote the output of running the TableNet on patches from the input image

I , namely X t = {X t
m,m ∈ AT (I) ⊂ A}. Let S = S(X t) denote the detected table

area in the image coordinate system. Let M be the subset of annocells at level-2 with

X t
m = 1; then, Xs

M is the set of ScaleNet outputs that are involved in estimating T i.e.,

T̂ = T̂ (Xs
M). Let X =

{
(Xc

m, X
s
m), m ∈ {1, ..., 1036}

}
denote the output of running

CatNet and ScaleNet on some annocell patches from the input image. Finally, let Et be

the expanded evidence after t steps, i.e., adjoining (X t, Xs
M) to et composed of (Xc

m, X
s
m)

pairs obtained from processing patches selected by EP so far.

We need to generate samples from p(Yc|Et) for the EP query engine. To do so it is

sufficient to draw (ω,W) samples conditional on Et. Having (ω,W) conditional samples

one can project them to the image coordinate system and get the corresponding (cV , ξV )

and Yc conditional samples. We have:

p(ω,W , T |Et) = p(T |Et)p(W|T,Et)p(ω|T,W ,Et)

≈ p(T |T̂ , et)p(W|T, S, et)p(ω|T,W , et). (5.5)

The estimated table size T̂ can limit the range of T to be close to the estimated size. We
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also have:

p(ω|T,W , et) ∝ p(ω, T,W , et)

= p(ω, T,W)× p(et|ω, T,W)

= p(ω, T,W)×
∏
m

p(Xc
m|ω,W)

∏
m

p(Xs
m|ω,W) (5.6)

where the prior distribution p(ω, T,W) is given by (4.10). In (5.6), we have assumed that

et depends only on the category and 2D pose of objects and that the outputs of CatNet

and ScaleNet are conditionally independent given (cV , ξV ) calculated based on (ω,W).

We have also assumed that the classifiers are conditionally independent of each other, a

key assumption. Note that we trained CatNet and ScaleNet independent of the objects’

scale and category, respectively. The CatNet was trained to respond to the existence of

object instances from different categories in the input patch. Hence, we assume that the

corresponding annoint is a sufficient statistic for the CatNet data model, namely:

p(Xc
i |cV , ξV ) = p(Xc

i |Y c
i ). (5.7)

We quantized the scale ratios to the 7 intervals listed in section 5.1.2 (see Figure 5.12). We

denote the scale index of the i-th patch by Y s
i ∈ {1, ..., 7}, that is equal to its case number

computed based on the average scale of contained object instances. We assume that the

scale index Y s
i computed from (cV , ξV ) is a sufficient statistic for the ScaleNet data model,
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namely:

p(Xs
i |cV , ξV ) = p(Xs

i |Y s
i ). (5.8)

We model both of the CatNet and ScaleNet data models using Dirichlet distributions,

which are probability densities on probabilities or normalized proportions. Let x denote a

random vector whose k–th element is denoted by xk. The probability density of a Dirichlet

model with parameter vector α at x is:

p(x) ∼ Dir(α1, ..., αK) =
Γ(
∑

k αk)∏
k Γ(αk)

∏
k

xαk−1
k , (5.9)

where xk > 0,
∑

k xk = 1, and Γ(.) indicates the Gamma function.

We learned 16 CatNet data models for different annoint configurations indicating pres-

ence/absence of 4 object categories: “Plate”, “Bottle”, “Glass”, and “Utensil” in the input

patch. We also learned 7 ScaleNet data models, one per scale index. These models are

learned from data collected by running the CNNs on patches with matching configuration.

Since there is no closed–form solution for the maximum–likelihood estimates (MLE) of the

Dirichlet distribution we used a fixed-point (without projection) iterative schemes to per-

form MLE parameter estimation according to [62] as follows. The maximum-likelihood

estimate of α given a training set of proportions D = {x1, ...,xN} maximizes the log-
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likelihood:

log p(D|α) = N log Γ(
∑
k

αk)−N
∑
k

log Γ(αk) +N
∑
k

(αk − 1) log x̃k, (5.10)

where log x̃k =
∑

i xik/N . Since the Dirichlet distribution is from the exponential family

the log-likelihood in (5.10) is convex in α [77] leading to straightforward optimization.

The gradient of the log-likelihood with respect to αk is:

gk =
d log p(D|α)

dαk
= NΨ(αk) +N log x̃k, (5.11)

where Ψ(z) = d log Γ(z)/dz is known as the Digamma function. We used a fixed-point

iteration for maximizing the likelihood according to [62] as follows. We start from a guess

for parameters α and iteratively maximize a simple lower bound on the likelihood which

is tight at α. The maximum of this bound can be computed in closed–form and it becomes

the currect guess for the next iteration. Such an iteration is guaranteed to converge to a

stationary point of the likelihood, and for the Dirichlet distribution, the maximum is the

only stationary point. Using the bound:

Γ(z) ≥ Γ(ẑ) exp
(
(z − ẑ)Ψ(ẑ)

)
, (5.12)
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on Γ(
∑

k αk) in (5.10) we get:

1

N
log p(D|α) ≥

(∑
k

αk
)
Ψ
(∑

k

αoldk
)
−
∑
k

log Γ(αk) +
∑
k

(αk − 1) log x̃k + (const.)

(5.13)

Differentiating the lower bound in (5.13) with respect to αk and equating it to zero leads to

the following fixed-point iteration:

Ψ(αnewk ) = Ψ(
∑
k

αoldk ) + log x̃k. (5.14)

For the exponential family distributions, when the gradient of log-likelihood is zero, the

expected sufficient statistics and the observed sufficient statistics are equal [62]. In this

case, the expected sufficient statistics are:

E[log xk] = Ψ(αk)−Ψ(
∑
k

αk), (5.15)

and the observed sufficient statistics are log x̃k. Note the similarity of updates according

to (5.14) and equating the expected sufficient statistics in (5.15) to the observed sufficient

statistics log x̃k.

Computing the new set of parameters according to (5.14) requires inversion of the Ψ

function. An efficient and highly accurate (fourteen digits of precision after five Newton

iterations) way of inverting the Ψ function is as follows. The Ψ function inversion involves
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solving Ψ(z) = y for z given y. Given a starting guess for z, we use the Newtons method

to find the root of Ψ(z)− y = 0. The Newton update is:

znew = zold − Ψ(z)− y
Ψ′(z)

. (5.16)

To start the iteration, we use the following asymptotic formulas for Ψ(z):

Ψ(z) ≈


log(z − 1/2) if z ≥ 0.6

−1
z
− γ if z < 0.6

(5.17)

where γ = −Ψ(1) to get:

Ψ−1(y) ≈


exp(y) + 1/2 if y ≥ −2.22

− 1
y+γ

if y < −2.22

(5.18)

With the above initialization, five Newton iterations are sufficient to reach fourteen digits

of precision [62].

A useful initialization for the model parameters before starting the iterates in (5.14) can

be found by matching the moments based on the model versus the empirical data. The first

two moments of the Dirichlet density are:

E[xk] =
αk∑
k αk

, (5.19)
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and:

E[x2
k] = E[xk]

1 + αk
1 +

∑
k αk

. (5.20)

On the other hand we have:

∑
k

αk =
E[x1]− E[x2

1]

E[x2
1]− E[x1]2

. (5.21)

Multiplying (5.19) and (5.21) gives a formula for αk in terms of moments. Equation (5.21)

uses x1, but any other xk could also be used to estimate
∑

k αk. Ronning [77] suggests

instead using all of the xk’s via:

var(xk) =
E[xk](1− E[xk])

1 +
∑

k αk
, (5.22)

and:

log
∑
k

αk =
1

K − 1

K−1∑
k=1

log

(
E[xk](1− E[xk])

var(xk)
− 1

)
. (5.23)

Figures 5.30, 5.31, 5.32, 5.33 show stacked bar visualization of 25 samples (per config-

uration) drawn randomly from data collected by running CatNet on patches (left column)

and samples taken from the Dirichlet model learned from CatNet output data (right col-

umn) where each row corresponds to one of the 16 annoint configurations. The length of
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each colored bar represent the proportion of each category; therefore, the total length of

each stacked bar is equal to 1. Two interesting observations are: (1) the length of bars cor-

responding to the present categories are comparable and usually considerably larger than

the length of absent categories; (2) the color distribution of CatNet outputs and Dirichlet

model samples are very similar for the same configuration. This supports the argument for

using a the Dirichlet distribution in modeling the the data distribution p(Xc|Y c). Stacked

bars are good means to visually inspect and compare the true empirical distribution versus

the Dirichlet model.

Figures 5.34, 5.35, 5.36, 5.37 show bean plots illustrating the distribution of CatNet

outputs versus the learned Dirichlet model, where each row corresponds to one of the 16

annoint configurations; the Dirichlet model closely mimics the distribution of the CatNe

outputs which is used to train the Dirichlet data model. Figures 5.38, 5.39, 5.40, 5.41

illustrate the corresponding ScaleNet plots for the 7 scale configurations.

As a different perspective, Figures F.1, F.2, F.3, F.4 in in Appendix F show the nor-

malized histogram of the CatNet outputs (framed in black boxes) versus 100,000 samples

(framed in red boxes) from the Dirichlet data model for every annoint configuration. Fig-

ures F.5, F.6, F.7 show the corresponding normalized histograms for ScaleNet.
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Figure 5.30: Stacked bar visualization of samples from CatNet output (left) and Dirichlet model
(right). 165
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Figure 5.31: Stacked bar visualization of samples from CatNet output (left) and Dirichlet model
(right). 166
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Figure 5.32: Stacked bar visualization of samples from CatNet output (left) and Dirichlet model
(right). 167
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Figure 5.33: Stacked bar visualization of samples from CatNet output (left) and Dirichlet model
(right). 168
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Figure 5.34: CatNet output and Dirichlet dist. bean plot.
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Figure 5.35: CatNet output and Dirichlet dist. bean plot.
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Figure 5.36: CatNet output and Dirichlet dist. bean plot.

171



CHAPTER 5. CLASSIFIERS AND DATA MODEL

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Categories Present = {Plate,Bottle}

Mean = 0.02 Mean = 0.38 Mean = 0.29 Mean = 0.14 Mean = 0.17

No Object Plate Bottle Glass Utensil

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Categories Present = {Plate,Bottle}

Mean = 0.04 Mean = 0.37 Mean = 0.26 Mean = 0.15 Mean = 0.19

No Object Plate Bottle Glass Utensil

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Categories Present = {Plate,Bottle,Utensil}

Mean = 0.01 Mean = 0.35 Mean = 0.1 Mean = 0.07 Mean = 0.47

No Object Plate Bottle Glass Utensil

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Categories Present = {Plate,Bottle,Utensil}

Mean = 0.02 Mean = 0.35 Mean = 0.09 Mean = 0.08 Mean = 0.46

No Object Plate Bottle Glass Utensil

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Categories Present = {Plate,Bottle,Glass}

Mean = 0.01 Mean = 0.27 Mean = 0.17 Mean = 0.41 Mean = 0.14

No Object Plate Bottle Glass Utensil

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Categories Present = {Plate,Bottle,Glass}

Mean = 0.03 Mean = 0.26 Mean = 0.15 Mean = 0.41 Mean = 0.16

No Object Plate Bottle Glass Utensil

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Categories Present = {Plate,Bottle,Glass,Utensil}

Mean = 0.01 Mean = 0.25 Mean = 0.07 Mean = 0.32 Mean = 0.35

No Object Plate Bottle Glass Utensil

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Categories Present = {Plate,Bottle,Glass,Utensil}

Mean = 0.02 Mean = 0.25 Mean = 0.06 Mean = 0.33 Mean = 0.34

No Object Plate Bottle Glass Utensil

Figure 5.37: CatNet output and Dirichlet dist. bean plot.
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Figure 5.38: Stacked bar visualization of samples from ScaleNet output (left) and Dirichlet model
(right). 173
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Figure 5.39: Stacked bar visualization of samples from ScaleNet output (left) and Dirichlet model
(right).
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Figure 5.40: ScaleNet output and Dirichlet dist. bean plot.
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Figure 5.41: ScaleNet output and Dirichlet dist. bean plot.
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Chapter 6

Entropy Pursuit Experiments

Entropy pursuit is an adaptive and sequential search strategy in the Bayesian framework

that is inspired by the “Divide-and-Conquer” and “Coarse-to-Fine” search. We use the

entropy pursuit (EP) approach for multi-category object recognition by collecting bits of

evidence about the scene (encoded using some interpretation units) in an optimal order

guided by the principle of uncertainty reduction. The idea is to sequentially select and run

tests whose answer deliver the most amount of information (in an information-theoretic

sense) given the history of collected evidence at each step. The EP search relies on a

suitable prior model on the interpretation units sequentially fed with the collected evidence

at each step to update the posteriors. Each question (test) is associated with one patch

from the input image and is “What object categories exist in the patch?”. The answer to

this question is encoded by an “annoint” interpretation unit and predicted using the CNN

classifiers.
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We perform conditional inference (on the posterior distribution) given the accumulated

evidence to select the most informative questions. To do this, we used an approach sim-

ilar to the MCMC (Markov Chain Monte Carlo) sampling discussed in section 4.2 for

inference, yet slightly modified for faster inference, and to address a problem in the cal-

culation of acceptance ratios for a newly proposed table geometry. According to (4.12)

the acceptance ratio requires computing the partition function (normalizing factor) for

the MRF model since the factor pλ(ω | T ) appears in both the numerator and denom-

inator of the ratio for different T and therefore does not cancel out. Hence, instead of

using the Metropolis-Hastings table geometry sampler in the outer loop, we take advan-

tage of the estimated table size T̂ described in section 5.1.3 as follows. We learned 10

MRF models, for square tables whose sizes are 20cm apart; the sizes in meters are TS =

{0.9, 1.1, 1.3, 1.5, 1.7, 1.9, 2.1, 2.3, 2.5, 2.7}. We find the closest size from TS to the es-

timated table size T̂ and loop over this size and, if existed, one size smaller and one size

larger from TS during the outer loop integration of samples; note that for table sizes 0.9 and

2.7 there is no smaller and no larger table size, respectively. Given the relatively unbiased

and Gaussian–shaped histogram of errors made by the table estimator shown in Figure 5.26,

this procedure seemed promising. Then, given each table size, we sampled 10 homogra-

phies which are consistent with the detected table surface area (described in section 5.1.3);

finally, we sampled from the MRF model whose 3D samples are then projected to the im-

age coordinate system using the homography samples. Conditional inference for each step

of EP took approximately 30 seconds
(
3 table sizes (outer loop)× 10 homography samples
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(middle loop) × 1 (time took for MRF sampling in the inner loop)
)
. Note that we used the

data model described in section 5.2 during the above inference based on MCMC sampling.

We ran EP on a dataset of 284 images. In each step of EP, two questions were asked,

i.e., two patches were processed by CNNs. The choice of two for the “batch” size was

arbitrary. The questions selected at the early steps of EP are usually from the coarser

levels of the annocell hierarchy since the larger annocells are more likely to include multi-

ple instances from different object categories that can lead to a more uniform distribution

across the 16 possible annoint configurations, i.e., higher entropy. Figure 6.2 shows the

annocells selected in the first four steps of EP for a given test image. As a reminder, the

annocell hierarchy has 4 resolution levels whose patch size at the level-l is Dmax/2
l where

l ∈ {0, 1, 2, 3}, and Dmax is the longest side of the input image (see Figure 2.6). Note

that the coarsest level annocells, basically the whole image, is not usually selected since

its annoint distribution is expected to be concentrated on the few annoint configurations for

which most of the categories are present. The general trend is that as EP proceeds finer an-

nocells will be increasingly selected; but it is completely plausible, and actually happened

during our experiments, to go back again to a coarser question after asking a sequence of

finer questions; this is also observed in the human visual system (HVS) through the act

of visual attention, where we usually start with investigating the scene coarsely to get a

general idea, and then focus on finer details; but we may switch to a coarser (more general)

investigation of the scene after collecting some finer details during the process. Coarse-

to-fine search is one of the most interesting byproducts that comes naturally from the EP
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scene analysis; This results in a framework mimicking the visual attention property of the

HVS. Figure 6.3, 6.4 show the selected annocells at later EP steps. We can see that the

patches selected later are from the finer levels.

We never ask a question twice. Since the conditional entropy of a already asked test

is zero, repeating a question would never occur if we used the original selection criterion

qk(ek−1) = argmax1≤i≤K H(Xi|ek−1). However, we are using the the “oracle” approxima-

tion, which replaces H(Xi|ek−1) by H(Yi|ek−1) in the EP criterion, consequently repeti-

tion of questions is not automatically avoided, and hence, should be imposed. Nonetheless,

since we know the posterior will not change by repeating a question, we impose this con-

straint. Figure 6.5(top) shows the average conditional entropy of selected questions (aver-

aged across the 284 processed images) during 100 EP steps; the ripples with period two in

this figure are due to the EP batch size. Figure 6.5(bottom) shows the average conditional

entropy of selected questions subsampled at rate two.

Turning to performance evaluation, an object instance may not necessarily fall com-

pletely inside any cell from our annocell hierarchy at a certain level even if there might

exist a patch of the same size outside the hierarchy that completely includes that object

instance. This is because the annocell hierarchy is constructed with 25% overlap between

neighboring cells at the same level of resolution, and can therefore “miss” some object

instances at a given level even if the cell size is large enough to include the object (e.g.,

see Figure 6.1). The only way to avoid this is to make the hierarchy exhaustive at each

resolution, i.e., shifting patches by only one pixel at the time.
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We define the “best-fitting annocells” for an object instance to be an annocell that meets

the following three conditions: (1) it includes the object completely, (2) the ratio of the

object’s scale to the annocell size is maximum among all of the annocells satisfying the first

condition, and (3) the distance between the center of the object instance and the center of the

annocell is minimum among all of the annocells satisfying the second condition. Figure 6.6

shows example best-fitting annocells for instances from the three existing object categories

plate (in red), glass (in blue), and utensil (in green). During performance evaluation we

declare a detected annocell to be a true positive for an object instance if the instance’s

best-fitting annocell of the instance and the detected annocell are “close neighbors”. Two

annocells are defined as “close neighbors” if they are within one resolution level apart in

the annocell hierarchy and also at least 50% of the smaller annocell is covered by the larger

annocell.

Since the size of cells from level-i of the hierarchy is twice the size of cells from level-

(i + 1), the best-fitting annocell for an object instance with scale S (in pixels) is normally

expected to be from the level with cell size W (in pixels) that satisfies 0.5 < S/W ≤ 1.

However, as noted before, due to the sparsity of the hierarchy, the condition 0.5 < S/W ≤

1 might not be satisfied by any annocell in the hierarchy: the cells that satisfy 0.5 < S/W

may not include the object instance and the coarser level cells may not satisfy 0.5 < S/W .

Therefore, if we cannot find an annocell satisfying 0.5 < S/W ≤ 1, we will check for

annocells that satisfy a relaxation of the original condition: 0.375 < S/W ≤ 1. Figure 6.1

shows an example where a plate instance is not captured by annocells from a resolution
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Figure 6.1: An example showing a plate instance not captured by annocells from the possibly
best-fitting level (in green).

level whose cells 0.5 < S/W ≤ 1; two adjacent cells are shown by green cells. An

object instance may not be captured by cells from the potentially best-fitting level if its

scale is larger than 75% of the cells’ size; it is more likely to be missed by the potentially

best-fitting cells if the object is centered closer to the lines in the middle of adjacent cells

(e.g., the dashed red line in Figure 6.1). Note that the reason for choosing 0.375 in the

relaxed condition is that if the scale of an object is larger than 75% of the cells from the

potentially best-fitting level, its scale must be larger than 37.5% of one-level coarser cells

(0.75× 0.5 = 0.375). If the object instance is missed at the potentially best fitting level of

the annocell hierarchy it will certainly be captured by a cell from a one-step coarser level.

To make the best fitting model-based-detections given an accumulated evidence we first

sample the posterior distribution using MCMC sampling described earlier in this chapter;

each posterior sample gives the category label and 2D pose of object instances i.e., a 2D

scene. Then, for each posterior sample, we evaluate a new set of binary variables defined

similar (in domain and range) to the annobits whose only difference with annobits is that
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they must also satisfy 0.375 < S/W ≤ 1 (if no annocell satisfying 0.5 < S/W ≤ 1 was

found) to be turned on; then, these samples are aggregated to obtain a posterior distribution

on the new set of variables; we finally run non–maximum suppression on this posterior

distribution for each object category to obtain the detections. Note that the above process

is just a trick to obtain the best-fitting cells considered as bounding boxes.

Figure 6.7 shows Precision–Recall curves for 13 different methods that we ran on the

data set of 284 images for all object categories. As a reminder, the precision and recall are:

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
, (6.1)

where TP , FP , and FN denote, respectively, the number of true positives, false positives,

and false negatives (see Figure 6.8). Note that we would like to detect as many true in-

stances as possible (high recall) for as few mistakes as possible (high precision or false

detection rate) which invariably necessitates a trade-off. Here, we focus on achieving high

recall in the following analysis of the results. According to Figure 6.7 the EP model-based

detection performance improve as more classifiers are run and incorporated into the model

until step 30 (= 60 questions), but after step 30 the performance starts to worsen e.g., see

the P-R curve for step 70 (= 140 questions). Figure 6.9 shows only three P-R curves,

selected out of the 13 curves in Figure 6.7 for higher clarity, associated with detections

based on the full posterior (including all questions/answers), entropy pursuit after step 30

(including 60 questions/answers), and prior model. The full posterior seems to have the
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worst performance which seems counterintuitive because we expect to achieve better per-

formance by incorporating more evidence. However, achieving better performance should

be expected only if we received accurate information. Assume that you are participating

in a 20 questions game and after asking a certain number of questions you are almost sure

about the final answer but you keep asking more questions and the host starts to give you

wrong answers; this leads to doubts about your initial belief, which was perhaps correct,

and to finally making a mistake. Consider Figure 6.12 where the 1st, 3rd, and 4th most

confident plate detections are actually not a plate but the top or bottom of glasses; all of

the annocells corresponding to these detections are from the finest level of the annocell

hierarchy that are expected to be chosen later during the EP selection criterion and poten-

tially degrade detection performance. Note that the model integrates the ScaleNet outputs

in an attempt to suppress configurations with scale inconsistency (e.g., the incorrect plate

detections in Figure 6.12). However, since a multiplication of the outputs of CatNet and

ScaleNet are incorporated into the model, the model may not be able to completely sup-

press such configuration if the output of one of the CatNet or ScaleNet networks is large

enough to compensate for a smaller score from the other network.

Figure 6.13(top) shows the maximum conditional entropy of the marginal annoint dis-

tributions (averaged across the dataset of 284 processed images for each data point) versus

EP step; as one can see, the maximum conditional entropy constantly decreases by inte-

grating more evidence until step 20 (= 40 questions) which implies an increasing level of

confidence in our detections. However, the maximum conditional entropy starts to increase

184



CHAPTER 6. ENTROPY PURSUIT EXPERIMENTS

at step 40 (= 80 questions) which implies a decreased level of certainty in our detections.

Note that the difference between the entropy of selected questions in Figure 6.5 and the

maximum conditional entropy in Figure 6.13(top) is the result of not repeating questions

during EP and implies confusion in estimating the annoints that we have already investi-

gated; the two figures start to differ considerably at EP step 20. Figure 6.13(bottom) shows

the mean conditional entropy of the marginal annoint distributions (averaged across both

the dataset of 284 processed images as well as across all of the annoints) versus EP step.

Figure 6.10 shows three curves selected out of the 13 P-R curves in Figure 6.7 which il-

lustrates the result of model-based detection for two variations “Rand. 140 Q.” and “Rand.

30 Q.” with the same number of questions as in the two EP tests except that the questions

are chosen at random; we have also included the result of CNN classifiers (no model) when

140 and 30 patches are randomly chosen and processed. One can see that the result with

140 randomly selected questions (the cyan curve in Figure 6.7) is almost the same as EP

with only 10 questions asked (the yellow curve in Figure 6.7) which emphasizes the im-

portance of efficient question selection in the Bayesian approach. The Bayesian approach

provides a natural framework unifying the evidence collected from running tests and our

prior knowledge encoding the contextual relations between different scene entities. This

underlines the importance of the Bayesian approach. Our Bayesian approach to multi-

category object recognition using the entropy pursuit search strategy selects the right set

of patches which if processed provide the most information gain and uncertainty reduction

on the interpretation units. Our tests shows that it makes significant difference to choose
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patches appropriately using our EP strategy versus randomly choosing them. In addition

to saving the time it takes to process patches that do not provide much information, we

can monitor the confidence of our detections (measured by conditional entropy) and stop

processing more patches once the uncertainty starts to increase to achieve the best perfor-

mance. The model-based approach with enough questions asked outperforms the CNN

classifiers (higher precision at high recall area in the right); Figure 6.11 shows the P-R

curves for detections based on the CNN classifiers, full posterior, and EP after 30 steps (60

questions); the results support the EP-based Bayesian approach. The result of running the

CNN classifier on a small fraction of randomly selected annocells does not achieve high

recall (see Figure 6.7).

Figures 6.14, 6.15, 6.16 show the detection results for full posterior, EP after 40 steps

(80 questions), CNN classifiers, respectively. Figures 6.17, 6.18, 6.19, Figures 6.20, 6.21, 6.22,

Figures 6.23, 6.24, 6.25, and Figures 6.26, 6.27, 6.28 show more examples. The thresh-

old for positive detections using the model-based approaches was set to 0.4. One can find

unlikely configurations that have been suppressed and likely configurations that have been

encouraged using the model-based approach. For example, the top and bottom of glass

instances in Figure 6.28 that were incorrectly classified as plate are not declared as plate as

shown in Figures 6.26 and 6.27; or the salt/pepper shakers in Figure 6.19 that were incor-

rectly classified as bottle and glass using the CNN classifiers are not declared as bottle and

glass using the model-based approaches as shown in Figures 6.17 and 6.18.
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Figure 6.2: Questions at “early” EP steps. The annocells whose sizes are 1/2 and 1/4 the image’s
size are from level-1 and level-2, respectively.
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Figure 6.3: Questions at “middle” EP steps. The annocells whose sizes are 1/4 and 1/8 the image’s
size are from level-2 and level-3, respectively.
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Figure 6.4: Questions at “later” EP steps. All of the annocells are from level-3 of the annocell
hierarchy.
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Figure 6.5: Entropy of EP Questions.
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Figure 6.6: Some example fittest annocells shows by rectangles with solid lines.
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Figure 6.7: Precision-Recall Curves.

TP = 5

FN = 3

FP = 2

Recall = TP/(TP+FN)
Precision = TP/(TP+FP)

Figure 6.8: Precision-Recall Visualization. The net is supposed to catch all the red fishes (true
class) but it catches some blue fishes (wrong class) and misses some red fishes (in the black circle).
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Figure 6.9: Precision-Recall Curves.
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Figure 6.10: Precision-Recall Curves.
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Figure 6.11: Precision-Recall Curves.
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Figure 6.12: Confusing CNN detections example.
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Figure 6.13: Maximum and mean entropy of the posterior distribution on annoints.
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Figure 6.14: Model-based detections (all questions) for “plate” (top left), “bottle” (top right), and
“glass” (bottom left), and “utensil” (bottom right) categories. The ordinal numbers in brackets
represent the confidence rank of detections per category.

197



CHAPTER 6. ENTROPY PURSUIT EXPERIMENTS

Figure 6.15: Model-based detections (EP 80-Questions) for “plate” (top left), “bottle” (top right),
and “glass” (bottom left), and “utensil” (bottom right) categories. The ordinal numbers in brackets
represent the confidence rank of detections per category.
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Figure 6.16: CNN detections for “plate” (top left), “bottle” (top right), and “glass” (bottom left),
and “utensil” (bottom right) categories. The ordinal numbers in brackets represent the confidence
rank of detections per category.
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Figure 6.17: Model-based detections (all questions) for “plate” (top left), “bottle” (top right), and
“glass” (bottom left), and “utensil” (bottom right) categories. The ordinal numbers in brackets
represent the confidence rank of detections per category.
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Figure 6.18: Model-based detections (EP 80-Questions) for “plate” (top left), “bottle” (top right),
and “glass” (bottom left), and “utensil” (bottom right) categories. The ordinal numbers in brackets
represent the confidence rank of detections per category.
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Figure 6.19: CNN detections for “plate” (top left), “bottle” (top right), and “glass” (bottom left),
and “utensil” (bottom right) categories. The ordinal numbers in brackets represent the confidence
rank of detections per category.
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Figure 6.20: Model-based detections (all questions) for “plate” (top left), “bottle” (top right), and
“glass” (bottom left), and “utensil” (bottom right) categories. The ordinal numbers in brackets
represent the confidence rank of detections per category.
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Figure 6.21: Model-based detections (EP 80-Questions) for “plate” (top left), “bottle” (top right),
and “glass” (bottom left), and “utensil” (bottom right) categories. The ordinal numbers in brackets
represent the confidence rank of detections per category.

204



CHAPTER 6. ENTROPY PURSUIT EXPERIMENTS

Figure 6.22: CNN detections for “plate” (top left), “bottle” (top right), and “glass” (bottom left),
and “utensil” (bottom right) categories. The ordinal numbers in brackets represent the confidence
rank of detections per category.
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Figure 6.23: Model-based detections (all questions) for “plate” (top left), “bottle” (top right), and
“glass” (bottom left), and “utensil” (bottom right) categories. The ordinal numbers in brackets
represent the confidence rank of detections per category.
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Figure 6.24: Model-based detections (EP 80-Questions) for “plate” (top left), “bottle” (top right),
and “glass” (bottom left), and “utensil” (bottom right) categories. The ordinal numbers in brackets
represent the confidence rank of detections per category.
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Figure 6.25: CNN detections for “plate” (top left), “bottle” (top right), and “glass” (bottom left),
and “utensil” (bottom right) categories. The ordinal numbers in brackets represent the confidence
rank of detections per category.
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Figure 6.26: Model-based detections (all questions) for “plate” (top left), “bottle” (top right), and
“glass” (bottom left), and “utensil” (bottom right) categories. The ordinal numbers in brackets
represent the confidence rank of detections per category.
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Figure 6.27: Model-based detections (EP 80-Questions) for “plate” (top left), “bottle” (top right),
and “glass” (bottom left), and “utensil” (bottom right) categories. The ordinal numbers in brackets
represent the confidence rank of detections per category.

210



CHAPTER 6. ENTROPY PURSUIT EXPERIMENTS

Figure 6.28: CNN detections for “plate” (top left), “bottle” (top right), and “glass” (bottom left),
and “utensil” (bottom right) categories. The ordinal numbers in brackets represent the confidence
rank of detections per category.
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Chapter 7

Conclusion

In the past few years, deep learning has received a flurry of interest in the machine learn-

ing community due to its superior performance relative to rival methods. However, deep

networks are computationally expensive and, without efficient implementation on high per-

formance computing systems such as GPUs, not as practical as older methods. Therefore,

achieving the same or better performance by processing only a small fraction of all patches

is desirable, even necessary depending on available resources. This becomes even more

notable as networks get deeper requiring systems with higher computational capability.

On the other hand, there is a lot of contextual information that, if properly exploited, can

distinguish among competing detections by ruling out unlikely scene configurations and

encouraging likely ones.

We proposed a new approach for multi-category object recognition, called “Entropy

Pursuit” (EP), that sequentially investigates patches from an input test image in order to

come up with an accurate description by processing as few patches as possible. Our ap-
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proach follows the Bayesian framework with a prior model that incorporates the contextual

relations between different scene entities such as the spatial and semantic relations among

object instances, consistency of scales, constraints imposed by coplanarity of objects, etc.

As proof of concept we applied the EP approach to table-setting scenes. We designed a

novel generative model on attributed graphs with flexible structure where each node in the

graph corresponds to an object instance attributed by its category label and 3D pose. The

GAG model was not directly used in our EP framework, but the statistics calculated from

its samples were used to learn a Markov Random Field (MRF) model employed directly

by EP. Whereas, the GAG model could be learned efficiently from the limited number of

annotated images, the MRF model offered faster conditional inference. The entropy pur-

suit search strategy selects patches from the input image sequentially and investigates them

to collect evidence about the scene. To investigate each patch we utilized state-of-the-art

convolutional neural networks (CNNs). We used a new dataset of about 3000 fully anno-

tated table-setting scenes to learn the Generative Attributed Graph (GAG) model, to train a

battery of CNN classifiers, and to test the performance of the EP algorithm.

In summary, we studied the possibility of generating a scene interpretation by investi-

gating only a fraction of all patches from an input image using the entropy pursuit Bayesian

approach. The Bayesian framework is the natural approach for integrating contextual re-

lations and the evidence collected using tests. We were able to show that by choosing the

right patches in the right order we can identify an accurate interpretation by processing

only a fraction of all patches from an input image.
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Appendix A

Homography and Camera Parameters

Assuming a pinhole camera model, where the center of projection is the origin of cam-

era coordinate system, we can relate a 3D point (X, Y, Z) in the world coordinate system

to its projection point on the image plane in the camera coordinate system (x, y) as below:

η



x

y

1


=



f/sx 0 ẋ0

0 f/sy ẏ0

0 0 1


︸ ︷︷ ︸

K

[
R> −R>t

]



X

Y

Z

1


, (A.1)

where, η > 0 is the distance between the 3D point and the camera plane, (R, t) ∈ SE(3) 1 is

the pose of camera (rotation and translation) in the world coordinate system, and K ∈ R3×3

1SE(3) denotes the special Euclidean group representing all rigid motions.
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is the camera calibration matrix depending on the focal length f , the size of pixels in the x

and y directions denoted respectively by sx and sy, and (ẋ0, ẏ0) is the point on the image

plane (in pixels) where the camera’s principal axis meets the image plane [35]. In case that

the image is not cropped we have ẋ0 = #of image columns
2

and ẏ0 = #of image rows
2

. Note that we

assumed a simplified calibration matrix with zero skew i.e., K12 = K21 = 0.

Let R =

[
c1 c2 c3

]
and R> =

[
r1 r2 r3

]
denote, respectively, the columns and

rows of R. Then, the projection of a point on the table, for which Z = 0, simplifies to:

ηx = K

[
r1 r2 −R>t

]


X

Y

1


= HX, (A.2)

where, H is the homography matrix for projection from the world plane to the image plane,

x = (x, y, 1)>, and X = (X, Y, 1)>.

Assuming that the camera coordinate system is a counter-clockwise rotation of the table

coordinate system by ψx degrees about the x-axis2, ψy degrees about the y-axis, and ψz

degrees about the z-axis, the rotation matrix R can be written as below:

R(ψx, ψy, ψz) = Rz(ψz)Ry(ψy)Rx(ψx), (A.3)

2The counter-clockwise rotation about an axis means the counter-clockwise rotation occurs when the axis
points toward the observer.
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where, Rx(ψx), Ry(ψy), and Rz(ψz) denote, respectively, the rotation matrices about the

x-axis, y-axis, and z-axis defined as below:

Rx(ψx) =



1 0 0

0 cos(ψx) − sin(ψx)

0 sin(ψx) cos(ψx)


,

Ry(ψy) =



cos(ψy) 0 sin(ψy)

0 1 0

− sin(ψy) 0 cos(ψy)


,

Rz(ψz) =



cos(ψz) − sin(ψz) 0

sin(ψz) cos(ψz) 0

0 0 1


,

leading to:

R(ψx, ψy, ψz) =

[
c1 c2 c3

]
, (A.4)

where,
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c1 =



cos(ψy) cos(ψz)

cos(ψy) sin(ψz)

− sin(ψy)


,

c2 =



− cos(ψx) sin(ψz) + sin(ψx) sin(ψy) cos(ψz)

cos(ψx) cos(ψz) + sin(ψx) sin(ψy) sin(ψz)

+ sin(ψx) cos(ψy)


,

c3 =



sin(ψx) sin(ψz) + cos(ψx) sin(ψy) cos(ψz)

− sin(ψx) cos(ψz) + cos(ψx) sin(ψy) sin(ψz)

cos(ψx) cos(ψy)


.

Alternatively, if ~ux, ~uy, and ~uz are the unit vectors of the camera coordinate system, and

~uX , ~uY , and ~uZ are the unit vectors of the table coordinate system, we have:

R =



~ux.~uX ~uy.~uX ~uz.~uX

~ux.~uY ~uy.~uY ~uz.~uY

~ux.~uZ ~uy.~uZ ~uz.~uZ


. (A.5)
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Perspective Projection of an Ellipse

Under a simplifying assumption that the height of objects is small relative to their dis-

tance from camera, we can assume that the objects are planar. Assuming that objects are

planar, we can represent an object instance’s pose θ by its enclosing 2D ellipse (as illus-

trated in Figure B.1) whose center, axes length, and orientation of the the main axis specify

the location, size and orientation of the object, respectively. An ellipse can be formulated

as:

AX2 +BXY + CY 2 +DX + EY + F = 0, B2 < 4AC.

Matrix representation of the above ellipse in the homogeneous coordinate system is:

X>θX = 0,
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Figure B.1: Knife fitting ellipse.

where:

θ =



A B/2 D/2

B/2 C E/2

D/2 E/2 F


, X =



X

Y

1


, X> =

[
X Y 1

]
.

For an ellipse centered at x0 = (X0, Y0)>, main axis orientation of φ radians with
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respect to the x-axis, major and minor radius of respectively a and b, we have:

A = cos2(φ)/a2 + sin2(φ)/b2,

B = 2× cos(φ)× sin(φ)× (1/a2 − 1/b2),

C = sin2(φ)/a2 + cos2(φ)/b2,

D = −2×X0 × A − Y0 ×B,

E = −2× Y0 × C − X0 ×B,

F = X2
0 × A + Y 2

0 × C + X0 × Y0 ×B − 1.

Using the homography projection equation in (A.2), ηx = HX , we can write:

x>ξx = 0,

where, H is the homography projection matrix from the world plane to the image plane,

and ξ = H−>η(X)θH
−1
η(X) for Hη(X) = 1

η(X)
H . The scale factor η(X) depends on X because

it is the distance of this point from the camera plane. For simplicity by assuming that the

object’s size is small relative to its distance from the camera we may fix the scale factor

for all X to be the distance of the object’s center from the camera plane η = η(x0). To be
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more precise, we have:

η(x0) =

[
H(3, 1) H(3, 2) H(3, 3)

]


X0

Y0

1


,

where,

[
H(3, 1) H(3, 2) H(3, 3)

]
represents the third row of the homography matrix

H . In this case, the matrix ξ0 = H−>η(x0)θH
−1
η(x0) encodes a 2D ellipse in the image coordinate

system representing the projected pose. The center, major axis orientation, and the axes

length of the projected ellipse which respectively represent the location, orientation and

scale of the object’s projected pose in the image coordinate system can be extracted from

ξ0 as below:


x0

y0

 = −S−1
p


ξ0(3, 1)

ξ0(3, 2)

 ,

where:

Sp =


ξ0(1, 1) ξ0(1, 2)

ξ0(2, 1) ξ0(2, 2)

 ,
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and ξ0(i, j) represents the element located at the ith row and j th column of the matrix ξ0.

The axes of the projected ellipse are basically the eigenvectors, ( ~u1, ~u2), of Sp. The major,

ap, and minor, bp, radii of the projected ellipse can be computed from the eigenvalues,

(λ1, λ2), of Sp as below:

ap = max(
1√
λ1

,
1√
λ2

), bp = min(
1√
λ1

,
1√
λ2

)

Note that an alternative approach was to project all of the perimeter points from the

enclosing ellipse in the world coordinate system to the image coordinate system using

the homography projection H and then find an enclosing ellipse for the projected points.

However, the projection of an ellipse calculated in the above way is computationally more

efficient if we already have computed an ellipse in the world coordinate system. This

is because in addition to not computing the projection of every point we avoid solving an

optimization problem that is involved in finding an enclosing ellipse in the image coordinate

system.
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A+ and B− bounds

For a partitioning of the interval [a, b] intoN partitions via partition points {u1, u2, ..., uN+1}

such that a = u1 < u2 < ... < uN+1 = b, we have:

∫ b

a

f(x)dx =
N∑
n=1

∫ un+1

un

f(x)dx. (C.1)

Hence:

N∑
n=1

min
x∈Un
{f(x)}∆n ≤

N∑
n=1

∫ un+1

un

f(x)dx ≤
N∑
n=1

max
x∈Un
{f(x)}∆n, (C.2)

where Un = [un, un+1] and ∆n = un+1 − un. For a monotonically decreasing function

f(x) we have:

min
x∈Un

f(x) = f(un+1), and max
x∈Un

f(x) = f(un).
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Figure C.1: The total area of rectangles in the left-hand side figure (blue rectangles) is an
upper bound on the integral

∫ b
a
f(x)dxwhereas the total area of rectangles in the right-hand

side figure (red rectangles) is a lower bound on this integral. These upper and lower bounds
converge to

∫ b
a
f(x)dx when the number of rectangles goes to infinity.

Therefore, for uniform partitioning with ∆n = ∆x = b−a
N

we get:

∆x
N∑
n=1

f(a+ n∆x) ≤
∫ b

a

f(x)dx ≤ ∆x
N−1∑
n=0

f(a+ n∆x). (C.3)

For example in Fig. C.1, the lower and upper bounds on the integral
∫ b
a
f(x)dx amounts

respectively to the total area of the red and blue rectangles.

Let a = K∆x and f(x) = 1
x2p

which is a decreasing function for 1/2 ≤ p ≤ 1. Then,

we have ∆x = b
N+K

and according to the left-hand side inequality in (C.3):

N∑
n=1

1

(K + n)2p
≤ (∆x)2p−1

∫ b

K∆x

1

x2p
dx =

1

2p− 1

(
K1−2p − (

b

∆x
)1−2p

)
=
K1−2p − (N +K)1−2p

2p− 1
.
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Hence:

N+K∑
n=K

1

n2p
≤ K1−2p − (N +K)1−2p

2p− 1
+

1

K2p
,

and consequently:

A+ =
K1−2p −Q1−2p

2p− 1
+

1

K2p
. (C.4)

On the other hand, the right-hand side inequality in (C.3) for a = K∆x (again leading

to ∆x = b
N+K

) and f(x) = 1
xp

(1/2 < p ≤ 1) implies:

N−1∑
n=0

1

(K + n)p
=

N+K−1∑
n=K

1

np
≥ (∆x)p−1

∫ b

K∆x

1

xp
dx =

(N +K)1−p −K1−p

1− p
.

Consequently:

B− =
(Q+ 1)1−p −K1−p

1− p
. (C.5)

Note that as Q grows these lower and upper bounds become tighter and eventually

limQ→∞A+ = A and limQ→∞ B− = B.
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CNN Training

To estimate the model parameters during supervised training a loss functionL(W,D) is

minimized over the set of model parameters W given |D| training samples from the labeled

dataset D = {(Ii, li)}Ni=1 where (Ii, li) denotes the i-th training patch and its label. The la-

bel li is the category of an object instance completely inside patch Ii. In the case that there

are multiple object instances inside a patch, the same patch can appeared multiple times in

D, each time with the category label of one of the existing object instances. Neural net-

works with softmax output are often trained under the negative conditional log-likelihood

(log loss or cross-entropy) regime where the loss is:

L(W,D) = Ep̃
{
− log

(
p(J = j|I)

)}
+ λR(W)

= − 1

|D|

|D|∑
i=1

log
(
p(J = li|Ii)

)
+ λR(W), (D.1)
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where R(W) is a regularization term with weight λ, Ep̃{.} denotes the expected value over

the training dataset D with empirical distribution p̃, and p(J = j|I) is estimated according

to (5.1) where parameters are either seen directly in the equation as weight vectors wj or

hidden in the last layer’s feature vector x computed based on the previous layers’ weights.

The number of training samples |D| is usually very large; therefore, in practice, the loss

function in (D.1) is minimized iteratively using a stochastic approximation of the loss by

drawing a mini-batch of instances Dmini with |Dmini| � |D| in each iteration to compute

an unbiased estimate of the gradients. The mini-batch typically contains 30–200 training

images. The mini-batch loss is:

Lmini(W,Dmini) = − 1

|Dmini|
∑

(Ii,li)∈Dmini

log
(
p(J = li|Ii)

)
+ λR(W). (D.2)

The model computes the loss function in the forward pass and the gradients in the

backward pass. The gradients are calculated using the backpropagation algorithm [78, 79,

101] that uses the chain-rule to compute partial derivatives of the loss function with respect

to the parameters starting from the last layer moving to the first layer. After calculating

gradients∇Lmini(W,Dmini) the wights are updated according to the SGD with momentum

method [70, 94] where the weights are updated by a linear combination of the negative
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gradient and the previous weight update value Vt according to:

Vt+1 = µ Vt − α∇Lmini(Wt,Dtmini),

Wt+1 = Wt+1 + Vt+1, (D.3)

where, V0 = 0, and α and µ are two hyperparameters denoting, respectively, the learning

rate (weight of the most recent gradient) and momentum (weight of the previous gradients

in an exponential discounting function with discount factor µ). The hyperparameters might

require some tuning for best results depending on the problem at hand. A “rule of thumb”

is to set α = 0.01 initially and dropping it by a constant factor (e.g., 10) throughout training

when the loss begins to reach a “plateau”, and µ = 0.9 (see [9] for more information).
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Appendix E

CatNet Confusion Matrices (Training

Set)

Figures E.1, E.2, E.3, E.4 show the confusion matrices of CatNet for different resolution

levels of the annocell hierarchy and different score gap values on the training set.

229



APPENDIX E. CATNET CONFUSION MATRICES (TRAINING SET)

1 2 3 4 5
Target Class

1

2

3

4

5

O
ut

pu
t C

la
ss

Level-0, considering only the max score

16
0.2%

4
0.0%

1
0.0%

8
0.1%

11
0.1%

40.0%
60.0%

11
0.1%

685
6.5%

3
0.0%

299
2.8%

1744
16.5%

25.0%
75.0%

7
0.1%

24
0.2%

10
0.1%

22
0.2%

87
0.8%

6.7%
93.3%

30
0.3%

291
2.8%

11
0.1%

619
5.9%

1892
17.9%

21.8%
78.2%

44
0.4%

446
4.2%

8
0.1%

459
4.3%

3844
36.3%

80.1%
19.9%

14.8%
85.2%

47.2%
52.8%

30.3%
69.7%

44.0%
56.0%

50.7%
49.3%

48.9%
51.1%

1 2 3 4 5
Target Class

1

2

3

4

5

O
ut

pu
t C

la
ss

Level-1, considering only the max score

805
1.0%

37
0.0%

6
0.0%

47
0.1%

55
0.1%

84.7%
15.3%

211
0.3%

5718
7.3%

49
0.1%

3985
5.1%

8552
10.9%

30.9%
69.1%

30
0.0%

168
0.2%

190
0.2%

421
0.5%

311
0.4%

17.0%
83.0%

156
0.2%

2188
2.8%

84
0.1%

11999
15.3%

8690
11.1%

51.9%
48.1%

248
0.3%

2849
3.6%

37
0.0%

5361
6.8%

26211
33.4%

75.5%
24.5%

55.5%
44.5%

52.2%
47.8%

51.9%
48.1%

55.0%
45.0%

59.8%
40.2%

57.3%
42.7%

1 2 3 4 5
Target Class

1

2

3

4

5

O
ut

pu
t C

la
ss

Level-2, considering only the max score

23072
26.2%

43
0.0%

9
0.0%

74
0.1%

92
0.1%

99.1%
0.9%

185
0.2%

5029
5.7%

38
0.0%

2393
2.7%

5039
5.7%

39.6%
60.4%

19
0.0%

57
0.1%

239
0.3%

246
0.3%

103
0.1%

36.0%
64.0%

152
0.2%

1366
1.5%

64
0.1%

12451
14.1%

4053
4.6%

68.8%
31.2%

267
0.3%

1628
1.8%

34
0.0%

2949
3.3%

28582
32.4%

85.4%
14.6%

97.4%
2.6%

61.9%
38.1%

62.2%
37.8%

68.7%
31.3%

75.5%
24.5%

78.7%
21.3%

1 2 3 4 5
Target Class

1

2

3

4

5

O
ut

pu
t C

la
ss

Level-3, considering only the max score

146226
87.6%

66
0.0%

0
0.0%

112
0.1%

146
0.1%

99.8%
0.2%

83
0.0%

1250
0.7%

2
0.0%

318
0.2%

835
0.5%

50.2%
49.8%

22
0.0%

6
0.0%

59
0.0%

34
0.0%

19
0.0%

42.1%
57.9%

133
0.1%

209
0.1%

8
0.0%

4285
2.6%

720
0.4%

80.0%
20.0%

219
0.1%

341
0.2%

2
0.0%

562
0.3%

11324
6.8%

91.0%
9.0%

99.7%
0.3%

66.8%
33.2%

83.1%
16.9%

80.7%
19.3%

86.8%
13.2%

97.7%
2.3%

Figure E.1: CatNet confusion matrix on the “training” set broken down for different levels of
resolution when classification is only based on the top score.
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Figure E.2: CatNet confusion matrix on the “training” set broken down for different levels of
resolution when classification is based on the top-3 scores and score gap 0.1.
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Figure E.3: CatNet confusion matrix on the “training” set broken down for different levels of
resolution when classification is based on the top-3 scores and score gap 0.2.
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Figure E.4: CatNet confusion matrix on the “training” set broken down for different levels of
resolution when classification is based on the top-3 scores and score gap 0.3.
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Appendix F

Dirichlet Data Model Histograms

Figures F.1, F.2, F.3, F.4 show the normalized histogram of the CatNet outputs (framed

in black boxes) versus 100,000 samples (framed in red boxes) from the Dirichlet data model

for every annoint configuration. Figures F.5, F.6, F.7 show the corresponding normalized

histograms for ScaleNet.
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Configuration 0 including Categories = { }
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Configuration 1 including Categories = {Utensil}
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Configuration 2 including Categories = {Glass}
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Configuration 3 including Categories = {Glass,Utensil}
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Figure F.1: Normalized histograms of CatNet outputs (framed in black boxes) and Dirichlet Dist.
(framed in red boxes).
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Configuration 4 including Categories = {Bottle}
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Configuration 5 including Categories = {Bottle,Utensil}
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Configuration 6 including Categories = {Bottle,Glass}
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Configuration 7 including Categories = {Bottle,Glass,Utensil}
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Figure F.2: Normalized histograms of CatNet outputs (framed in black boxes) and Dirichlet Dist.
(framed in red boxes).
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Configuration 8 including Categories = {Plate}
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Configuration 9 including Categories = {Plate,Utensil}
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Configuration 10 including Categories = {Plate,Glass}
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Configuration 11 including Categories = {Plate,Glass,Utensil}
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Figure F.3: Normalized histograms of CatNet outputs (framed in black boxes) and Dirichlet Dist.
(framed in red boxes).
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Configuration 12 including Categories = {Plate,Bottle}
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Configuration 13 including Categories = {Plate,Bottle,Utensil}
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Configuration 14 including Categories = {Plate,Bottle,Glass}
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Configuration 15 including Categories = {Plate,Bottle,Glass,Utensil}
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Figure F.4: Normalized histograms of CatNet outputs (framed in black boxes) and Dirichlet Dist.
(framed in red boxes).
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Figure F.5: Normalized histograms of ScaleNet outputs (framed in black boxes) and Dirichlet Dist.
(framed in red boxes).
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Figure F.6: Normalized histograms of ScaleNet outputs (framed in black boxes) and Dirichlet Dist.
(framed in red boxes).
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Figure F.7: Normalized histograms of ScaleNet outputs (framed in black boxes) and Dirichlet Dist.
(framed in red boxes).
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