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Abstract

Given multiple graphs, an important question is how to perform statistical in-

ference on them. This question becomes more significant in the recent era with the

explosion of graph data and the increasing complexity of data analysis. Successfully

addressing this question will have a large impact on various scientific fields including

neuroscience, social network analysis, and internet mapping. Graphs are naturally

complex objects with intrinsic topological structure which imposes significant chal-

lenges to traditional statistical inference. Therefore, graph pre-processing, feature

extraction, and dimension reduction are essential to obtain good subsequent infer-

ence performance.

In this dissertation, I develop pre-processing, feature extraction, and dimension

reduction methods for data taking the form of multiple graphs. The methods are

motivated by classical statistical approaches including analysis of variance, feature

screening, and principal component analysis. Some methods can be applied under

both supervised and unsupervised settings; others are designed only for problems

involving labels of interest. I analyze the theoretical properties of these methods
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ABSTRACT

jointly with subsequent inference performance under suitable random graph models.

Simulations, which include graph clustering, classification, and regression are provided

to demonstrate the properties of the proposed methods. I further apply the methods

developed here to real data sets such as human brain networks acquired through

neuroimaging techniques.

The main contribution of this dissertation is the presentation of a set of methods

in analyzing multiple graphs. These methods are supported with theory and numer-

ical experiments. I further demonstrate the utility of the methods by exploring real

data sets and discovering statistical patterns.

Primary Reader: Dr. Carey E. Priebe

Secondary Reader: Dr. Joshua T. Vogelstein

Tertiary Reader: Dr. Cencheng Shen
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Chapter 1

Introduction

In many fields of science, graphs naturally appear to model complex relationship

between objects. In neuroimaging, graphs are used to model connectivity between

neurons or regions of brain [1]. In chemical engineering, graphs are used to represent

structure of interactions between molecules [2]. In social networks, graphs are used

to capture interactions between users [3]. Graphs are often high-dimensional objects

with complicated topological structure, which makes many classical machine learning

algorithms not immediately applicable. This dissertation concerns graph embedding,

screening, and pre-processing when given multiple graphs, and investigates their ap-

plications in graph clustering, classification, and regression.

Classical graph embedding techniques such as Adjacency Spectral Embedding

(ASE) [4] and Laplacian Eigenmap (LE) [5] were proposed to embed a single graph

observation. Given a set of graphs {Gi}mi=1, ASE and LE need to embed individual
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CHAPTER 1. INTRODUCTION

adjacency matrix or Laplacian matrix of Gi separately, and there is no easy way to

combine multiple embeddings. We propose a joint embedding method which considers

the set of graphs simultaneously. The joint embedding takes a matrix factorization

approach to extract features for multiple graphs. The joint embedding manages to

simultaneously identify a set of rank one matrices and project adjacency matrices

into the linear subspace spanned by this set of matrices. We discuss this method in

detail in Chapter 2 which is based on our paper [6].

In the face of high-dimensional data, it is difficult to apply traditional machine

learning methods directly due to computational complexity and instability. To over-

come such challenges, Fan and Lv [7] propose the sure independence screening to

identify a subset of important predictors and showed that ranking variables using

Pearson correlation possesses a sure screening property in linear regression models.

We develop a vertex screening method to locate a small signal graph of interest

within a big graph. The vertex screening algorithm utilizes distance-based correla-

tion to screen the vertices and recovers the set of signal vertices with high probability.

We study the vertex screening jointly with graph classification in Chapter 3.

Chapter 4 considers the graph pre-processing problem. Collecting and processing

some data sets requires massive institutional efforts, and it is often the case that data

collectors do not have a single explicit inference task [8, 9]. In this case, optimally

addressing experimental design decisions can yield significant savings in both the

financial and human costs and also improve accuracy of analytical results [10–12]. To

2



CHAPTER 1. INTRODUCTION

this end, we propose and develope a formal framework of discriminability to guide data

collection and processing. The framework utilizes subject labels to compare different

experiment design and data pre-processing options. We extensively investigate the

utility of this framework in the brain imaging studies and successfully find the optimal

pipeline to convert the raw magnetic resonance imaging signal to a graph of neural

connections of the human brain.
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Chapter 2

Joint Embedding of Graphs

2.1 Introduction

The graphs are naturally high-dimensional objects with complicated topological

structure, which makes graph clustering and classification a challenge to traditional

machine learning algorithms. Therefore, feature extraction and dimension reduction

techniques are helpful in the applications of learning graph data. In this chapter, we

present an algorithm to jointly embed multiple graphs into low-dimensional space,

which is primarily based on paper [6]. We demonstrate through theory and experi-

ments that the joint embedding algorithm produces features which lead to state of

the art performance for subsequent inference tasks on graphs.

There exist a few unsupervised approaches to extract features from graphs. First,

classical Principal Component Analysis can be applied by treating each edge of a
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graph as a raw feature [13]. This approach produces features which are linear combi-

nations of edges, but it ignores the topological structure of graphs and the features

extracted are not easily interpretable. Second, features can be extracted by computing

summary topological and label statistics from graphs [14, 15]. These statistics com-

monly include number of edges, number of triangles, average clustering coefficient,

maximum effective eccentricity, etc. In general, it is hard to know what intrinsic

statistics to compute a priori and computing some statistics can be computation-

ally expensive. Third, many frequent subgraph mining algorithms are developed [16].

For example, the fast frequent subgraph mining algorithm can identify all connected

subgraphs that occur in a large fraction of graphs in a graph data set [17]. Finally,

spectral feature selection can also be applied to graphs. It treats each graph as a

node and constructs an object graph based on a similarity measure. Features are

computed through the spectral decomposition of this object graph [18].

Adjacency Spectral Embedding (ASE) and Laplacian Eigenmap (LE) are proposed

to embed a single graph observation [4, 5]. The inference task considered in these

papers is learning of the block structure of the graph or clustering vertices. Given a

set of graphs {Gi = (Vi, Ei)}mi=1, ASE and LE need to embed an adjacency matrix

or Laplacian matrix of Gi individually, and there is no easy way to combine multiple

embeddings. The joint embedding method considers the set of graphs together. It

takes a matrix factorization approach to extract features for multiple graphs. The

algorithm manages to simultaneously identify a set of rank one matrices and project

5
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adjacency matrices into the linear subspace spanned by this set of matrices. The

joint embedding can be understood as a generalization of ASE for multiple graphs.

We demonstrate through simulation experiments that the joint embedding algorithm

extracts features which lead to good performance for a variety of inference tasks.

In the next section, we review some random graph models and present a model for

generating multiple random graphs. In Section 2.3, we define the joint embedding

of graphs and present an algorithm to compute it. In Section 2.4, we perform some

theoretical analyses of our joint embedding algorithm. The theoretical results and

real data experiments are explored in Section 2.5. We conclude the chapter with a

brief discussion of implications and possible future work.

2.2 Random Graph Model

Before discussing the joint embedding algorithm, we first review a few classical

random graph models. These models are often used to model a single graph observa-

tion. Then, we introduce a random graph model which can be used to model multiple

graphs.

2.2.1 Stochastic Block Model

In this section, we present the Stochastic Block Model, which is first introduced

in [19]. It is a family of random graph models such that the set of n vertices are

6
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assigned randomly to K blocks and the edge probability between two vertices are

determined by their block membership. It is a very popular models on graphs which

is frequently used to capture community structure of networks [20,21].

Definition Stochastic Block Model (SBM). Let π be a prior probability vector for

block membership which lies in the unitK−1-simplex. Denote by τ = (τ1, τ2, ..., τn) ∈

[K]n the block membership vector, where τ is a multinomial sequence with probability

vector π. Denote byB ∈ [0, 1]K×K the block connectivity probability matrix. Suppose

A is a random adjacency matrix given by,

P(A|τ,B) =
∏
u<v

BAuv
τu,τv(1−Bτu,τv)

1−Auv

Then, A is an adjacency matrix of a K-block stochastic block model graph, and the

notation is A ∼ SBM(π,B). Sometimes, τ may also be treated as the parameter of

interest, in this case the notation becomes A ∼ SBM(τ,B).

2.2.2 Homogeneous and Inhomogeneous Erdos Renyi

model

In this section, we introduce the homogeneous and inhomogeneous Erdos-Renyi

random graph model [22].

Definition Inhomogeneous Erdos-Renyi model (IER). A random adjacency matrix

A is said to follow an inhomogeneous Erdos-Renyi random graph model with edge

7
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probability matrix P ∈ [0, 1]n×n, if the edge probability between vertex u and v is

P[u, v] and independent of other edges. The notation is A ∼ IER(P), and the

likelihood of A under this model is

L(A;P) =
∏
u<v

(P[u, v])A[u,v](1−P[u, v])1−A[u,v].

When P is a constant matrix with all its entries equal to p, then we say A follow a

homogeneus Erdos Renyi model with edge probability p. Homogeneus Erdos Renyi

model can be understood as a SBM with 1 block. Similarly, inhomogeneous Erdos

Renyi model can be understood as a SBM with n block.

2.2.3 Random Dot Product Graph

In this section, we present the Random Dot Product Graph (RDPG) which is

proposed in [23]. It is a special case of the Latent Position Model [24]. Specifically,

each vertex has a latent position and the edge probability between two vertices is

the inner product their latent positions. The RDPG is a convenient model which is

designed to capture more complex structures than SBM. The RDPG can be further

generalized to Latent Position Graph by replacing the inner product by a kernel [25].

The formal definition of RDPG is as following:

Definition Random Dot Product Graph (RDPG). Let F be a distribution on a set

X ∈ Rd satisfying xTy ∈ [0, 1] for all x, y ∈ X . Let X = [xT
1 , x

T
2 , ..., x

T
n ] ∈ X n. The

notation is (X,A) ∼ RDPG(F ), if the xi are independent and identically distributed

8
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according to F , and conditioned on X, the Auv are independent Bernoulli random

variables,

Auv ∼ Bernoulli(xT
uxv).

Alternatively,

P(A|X) =
∏
u<v

(xT
uxv)

Auv(1− xT
uxv)

1−Auv .

Also, define P := XXT to be edge probability matrix. When the latent positions X

is regarded as parameter, the notation becomes A ∼ RDPG(X).

2.2.4 Multiple Random Eigen Graphs

In this section, we present the Multiple Random Eigen Graphs (MREG) model

which is proposed in [6]. It can be used to model multiple networks and is defined as

following:

Definition Multiple Random Eigen Graphs (MREG). Let {hk}dk=1 be a set of norm-

1 vectors in Rn, and F be a distribution on a set X ∈ Rd, satisfying
d∑

k=1

λ[k]hkh
T
k ∈

[0, 1]n×n for all λ ∈ X , where λ[k] is the kth entry of vector λ. The m pairs

{(λi,Ai)}mi=1 follow a d-dimensional multiple random eigen graphs model, and the

notation is

{(λi,Ai)}mi=1 ∼ MREG(F, h1, ..., hd),

if {λi}mi=1 is independent and identically distributed according to distribution F , and

9
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conditioned on λi, the entries of Ai are independent Bernoulli random variables,

Ai[u, v] ∼ Bernoulli(
d∑

k=1

λi[k]hk[u]hk[v]).

Pi :=
∑d

k=1 λi[k]hkh
T
k is defined to be the edge probability matrix for graph i. In

cases that {λi}mi=1 are of primary interest, they are treated as parameters, and it is

said {Ai}mi=1 follows a m-graph d-dimensional multiple random eigen graphs model

with the notation:

{Ai}mi=1 ∼ MREG(λ1, ..., λm, h1, ..., hd).

Compared to the RDPG model, MREG is designed to model multiple graphs. The

vectors {hk}dk=1 are shared across graphs; a λi is sampled for each graph. On a single

graph, they are equivalent if the edge probability matrix is positive semidefinite. In

MREG, we allow self loops to happen. This is mainly for theoretical convenience.

The left panel of Figure 2.1 shows the relationships between three random graph

models defined above and the Erdos-Renyi (ER) model on 1 graph. The models

considered are those conditioned on latent positions, that is τ , X and λ in SBM,

RDPG and MREG respectively are treated as parameters; furthermore, loops are

ignored in MREG. If an adjacency matrixA ∼ SBM(τ,B) and the block connectivity

matrix B is positive semidefinite, A can also be written as an RDPG(X) with X

having at most K distinct rows. If an adjacency matrix A ∼ RDPG(X), then it is

also a 1-graph MREG(λ1, h1, ..., hd) with hk being the normalized kth column of X

and λ1 being the vector containing the squared norms of columns of X. However,

10
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a 1-graph MREG(λ1, h1, ..., hd) is not necessarily an RDPG graph since λ1 could

contain negative entries which may result in an indefinite edge probability matrix.

The right panel of Figure 2.1 shows the relationships between the models on

multiple graphs. For ER, SBM and RDPG, the graphs are sampled i.i.d. with the

same parameters. MREG has the flexibility to have λ differ across graphs, which

leads to a more generalized model for multiple graphs. Actually, it turns out that if

d is allowed to be as large as n(n+1)
2

, MREG can represent any distribution on binary

graphs, which includes distributions in which edges are not independent.

2.2.5 Adjacency Spectral Embedding

In this section, we present the Adjacency Spectral Embedding (ASE) algorithm [4].

ASE takes the adjacency matrix and computes a low rank embedding through matrix

factorization. It has been demonstrated to have good theoretical properties such

as consistency and asymptotic normality [4, 26] under SBM and RDPG. Given an

adjacency matrix A and a dimensionality parameter d, the ASE algorithm is as

described in Algorithm 1.

11
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Figure 2.1: Relationship between random graph models on 1 graph and multiple

graphs. The left panel shows the relationships between the random graph models

on 1 graph. The models considered are those conditioned on latent positions, that

is τ , X and λ in SBM, RDPG and MREG respectively are treated as parameters.

ER is a 1-block SBM. If a graph follows SBM with a positive semidefinite edge

probability matrix, it also follows the RDPG model. Any SBM and RDPG graph

can be represented by a d-dimensional MREG model with d being less than or equal

to the number of blocks or the dimension of RDPG. On one graph, inhomogeneous

ER (IER), n-dimensional MREG and n-block SBM are equivalent. The right panel

shows the relationships between the random graph models on multiple graphs. The

models considered are those conditioned on latent positions, and for ER, SBM and

RDPG graphs are sampled i.i.d. with the same parameters. In this case, MREG has

the flexibility to have λ differ across graphs, which leads to a more generalized model

for multiple graphs.
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Algorithm 1 Adjacency Spectral Embedding

1: procedure Estimate latent position X̂

2: Compute spectral decomposition: A = UDUT

3: Let Ud have the first d eigenvectors and the corresponding eigenvalues are

stored in Dd

4: Output X̂ = UdD
1
2
d .

5: end procedure

2.3 Joint Embedding

2.3.1 Joint Embedding of Graphs

The joint embedding method considers a collection of vertex-aligned graphs, and

estimates a common embedding space across all graphs and a loading for each graph.

Specifically, it simultaneously identifies a subspace spanned by a set of rank one

symmetric matrices and projects each adjacency matrix Ai into the subspace. The

coefficients obtained by projecting Ai are denoted by λ̂i ∈ Rd, which is called the

loading for graph i. To estimate rank one symmetric matrices and loadings for graphs,

the algorithm minimizes the sum of squared Frobenius distances between adjacency

matrices and their projections as described below.

Definition Joint Embedding of Graphs (JE). Given m graphs {Gi}mi=1 with Ai being

the corresponding adjacency matrix, the d-dimensional joint embedding of graphs

13
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{Gi}mi=1 is given by

(λ̂1, ..., λ̂m, ĥ1, ..., ĥd) = argmin
λi,∥hk∥=1

m∑
i=1

∥Ai −
d∑

k=1

λi[k]hkh
T
k ∥2. (2.1)

Here, ∥ · ∥ denotes the Frobenius norm and λi[k] is the kth entry of vector λi.

To make sure that the model is identifiable and avoid the problem scaling, hk is

required to have norm 1. In addition, {hkh
T
k }dk=1 must be linearly independent to

avoid identifiability issue in estimating λi; however, {hk}dk=1 needs not to be linearly

independent or orthogonal. To ease the notations, let us introduce two matrices

Λ ∈ Rm×d and H ∈ Rn×d, where λi is the ith row of Λ and hk is the kth row of H;

that is, Λ = [λT
1 , ..., λ

T
m] and H = [h1, ..., hd]. The equation (2.1) can be rewritten

using Λ and H as

(Λ̂, Ĥ) = argmin
Λ,∥hk∥=1

m∑
i=1

∥Ai −
d∑

k=1

Λikhkh
T
k ∥2.

Denote the function on the left hand side of the equation by f(Λ,H) which is explicitly

a function of λis and hks. There are several alternative ways to formulate the problem.

If vector λi is converted into a diagonal matrix Di ∈ Rd×d by putting entries of λi on

the diagonal of Di, then solving equation (2.1) is equivalent to solving

argmin
Di,∥hk∥=1

m∑
i=1

∥Ai −HDiH
T∥2

subject to Di being diagonal.

14
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Equation (2.1) can be also viewed as a tensor factorization problem. If {Ai}mi=1 are

stacked in a 3-D array A ∈ Rm×n×n, then solving equation (2.1) is also equivalent to

argmin
Λ,∥hk∥=1

∥A−
d∑

k=1

Λ∗k ⊗ hk ⊗ hk∥2,

where ⊗ denotes the tensor product and Λ∗k is the kth column of Λ. It is well

known in the tensor factorization community that the solution to Equation 2.1 may

not necessarily exist for d ≥ 2. This phenomenon is first found by Bini et al. [27],

and Silva and Lim gives a characterization all such tensors in the order-3 rank-2

case [28]. Although there may not exist a global minimum, finding the local solution in

a compact region still provide significant insights to the data. We design an algorithm

which is guaranteed to converge, and provide analysis under the d = 1 case.

The joint embedding algorithm assumes the graphs are vertex-aligned, unweighted,

and undirected. The vertex-aligned graphs are common in applications such as neu-

roimaging [29]. In case that the graphs are not aligned, graph matching should be

performed before the joint embedding [30, 31]. The mis-alignments of some vertices

will have adverse effects in estimating corresponding latent positions in H; however,

a small number of mis-aligned vertices should not have a big impact in estimating

Λ. If the graphs have weighted edges, the joint embedding can still be applied.

Also, the MREG model can be easily extended to weighted graphs by replacing the

Bernoulli distribution with other proper distributions. In fact, in the experiment of

section 5.3, the graphs are weighted, where the edge weights are the log of fiber counts

across regions of brains. In case of directed graph, to apply the joint embedding, one
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can symmetrize the graph by removing the direction of edges. Alternatively, hkh
T
k

in equation (2.1) can be replaced by hkg
T
k , with hk and gk representing the in and

out latent positions respectively. With this modification, equation (2.1) becomes the

tensor factorization problem [32].

The optimization problem in equation (2.1) is similar to Principal Component

Analysis (PCA) in the sense of minimizing squared reconstruction error to recover

loadings and components [13]. However, there are extra symmetries and rank con-

straints on the components. Specifically, if hkh
T
k is replaced by a matrix Sk in equation

(2.1)

(λ̂1, ..., λ̂m, Ŝ1, ..., Ŝd) = argmin
λi,S

m∑
i=1

∥Ai −
d∑

k=1

λi[k]Sk∥2,

the problem can be solved by applying PCA on vectorized adjacency matrices. In this

case, there is a Sk to estimate for each latent dimension which has n(n+1)
2

parameters.

Compared to PCA, the joint embedding estimates a rank one matrix hkh
T
k for each

latent dimension which has n parameters, and hk can be treated as latent positions

for vertices, but the joint embedding yields a larger approximation error due to the

extra constraints. Similar optimization problems have also been considered in the

simultaneous diagonalization literature [33, 34]. The difference is that the joint em-

bedding is estimating an n-by-d matrix H by minimizing reconstruction error instead

of finding a n-by-n non-singular matrix by trying to simultaneously diagonalize all

matrices. The problem in equation (2.1) has considerably fewer parameters to opti-

mize, which makes it more stable and applicable with n being moderately large. In
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case of embedding only one graph, the joint embedding is equivalent to the Adjacency

Spectral Embedding solved by singular value decomposition [4]. Next, we describe

an algorithm to optimize the objective function f(Λ,H).

2.3.2 Alternating Descent Algorithm

The joint embedding of {Gi}mi=1 is estimated by solving the optimization problem

in equation (2.1). There are a few methods proposed to solve similar problems. Carroll

and Chang [35] propose to use an alternating minimization method that ignores

symmetry. The hope is that the algorithm will converge to a symmetric solution

itself due to symmetry in data. Gradient approaches have also been considered for

similar problems [36, 37]. We develop an alternating descent algorithm to minimize

f(Λ,H) that combines ideas from both approaches [38]. The algorithm can also

be understood as a block coordinate descent method with Λ and H being the two

blocks [39,40]. The algorithm iteratively updates one of Λ and H while treating the

other parameter as fixed. Optimizing Λ when fixing H is straight forward, since it

is essentially a least squares problem. However, optimizing H when fixing Λ is hard

due to the fact that the problem is non-convex and there is no closed form solution

available. In this case, the joint embedding algorithm utilizes gradient information

and take an Armijo backtracking line search strategy to update H [41].

Instead of optimizing all columns Λ and H simultaneously, we consider a greedy

algorithm which solves the optimization problem by only considering one column of
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Λ and H at a time. Specifically, the algorithm fixes all estimates for the first k0 − 1

columns of Λ and H at iteration k0, and then the objective function is minimized by

searching through only the k0th column of Λ and H. That is,

(Λ̂∗k0 , ĥk0) = argmin
Λ∗k0 ,∥hk0

∥=1

m∑
i=1

∥Ai −
k0−1∑
k=1

Λ̂ikĥkĥ
T
k −Λik0hk0h

T
k0
∥2. (2.2)

Let f(Λ∗k0 , hk0) denote the sum on the left hand side of the equation. To compute

a d-dimensional joint embedding (Λ̂, Ĥ), the algorithm iteratively solves the one

dimensional optimization problem above by letting k0 vary from 1 to d.

There are a few advantages in iteratively solving one dimensional problems. First,

there are fewer parameters to fit at each iteration, since the algorithm are only allowed

to vary Λ∗k0 and hk0 at iteration k0. This makes initialization and optimization steps

much easier compared to optimizing all columns of H simultaneously. Second, it

implicitly enforces an ordering on the columns of H. This ordering allows us to select

the top few columns of Λ and H in cases where model selection is needed after the

joint embedding. Third, it allows incremental computation. If d and d′ dimensional

joint embeddings are both computed, the first min(d, d′) columns of Λ̂ and Ĥ will

be the same. Fourth, the solution is guaranteed to exist when solving iteratively

[28]. Finally, based on numerical experiments, the difference between optimizing

iteratively and optimizing all the parameters when d is small is negligible; however,

the iterative algorithm yields a slightly smaller objective function when d is large.
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The disadvantage of optimizing each column separately is that the algorithm is more

likely to end up at a local minimum when the objective function is structured not in

favor of embedding iteratively. In practice, this problem can be mitigated by running

the joint embedding algorithm several times with random initializations.

To find Λ∗k0 and hk0 in equation (2.2), the algorithm needs to evaluate two deriva-

tives: ∂f
∂hk0

and ∂f
∂Λik0

. Denote by Rik0 the residual matrix after iteration k0− 1 which

is Ai −
k0−1∑
k=1

Λ̂ikĥkĥ
T
k . The gradient of the objective function with respect to hk0 is

given by

∂f

∂hk0

= −4
m∑
i=1

Λik0(Rik −Λik0hk0h
T
k0
)hk0 . (2.3)

The derivative of the objective function with respect to Λik0 is given by

∂f

∂Λik0

= −2⟨Rik −Λik0hk0h
T
k0
, hk0h

T
k0
⟩.

Setting the derivative to 0 yields

Λ̂ik0 = ⟨Rik, hk0h
T
k0
⟩, (2.4)

where ⟨·, ·⟩ denotes the inner product.

The joint embedding algorithm alternates between updating Λ̂ik0 and ĥk0 accord-

ing to equation (2.3) and (2.4). Algorithm 2 describes the general procedure to

compute the d-dimensional joint embedding of graphs {Gi}mi=1. The algorithm out-

puts two matrices: Λ̂ and Ĥ. The rows of Λ̂ denoted by {λ̂i}mi=1 can be treated as

estimates of {λi}mi=1 in MREG and features for graphs. Columns of Ĥ denoted by
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{ĥk}dk=1 are estimates of {hk}dk=1. If a new graph G is observed with adjacency matrix

A, A can be projected into the linear space spanned by {ĥkĥ
T
k }dk=1 to obtain features

for the graph.

In case of Ai being large, the updating equations (2.3) and (2.4) are not practical

due to hkh
T
k and Rik being large and dense. However, they can be rearranged to

avoid explicit computation of hkh
T
k and Rik. The equation (2.3) becomes

∂f

∂hk0

= −4
m∑
i=1

Λik0(Rik −Λik0hk0h
T
k0
)hk0

= −4
m∑
i=1

Λik0Rikhk0 + 4
m∑
i=1

Λ2
ik0
hk0

= −4
m∑
i=1

Λik0(Ai −
k0−1∑
k=1

Λikhkh
T
k )hk0 + 4

m∑
i=1

Λ2
ik0
hk0

= −4
m∑
i=1

Λik0Aihk0 + 4
m∑
i=1

Λik0

k0−1∑
k=1

Λik(h
T
k hk0)hk + 4

m∑
i=1

Λ2
ik0
hk0 .

Similarly, the equation (2.3) can be rewritten as

Λ̂ik0 = ⟨Rik, hk0h
T
k0
⟩

= hT
k0
Rikhk0

= hT
k0
(Ai −

k0−1∑
k=1

Λikhkh
T
k )hk0

= hT
k0
Aihk0 −

k0−1∑
k=1

Λik(h
T
k0
hk)

2.

Based on the rearranged equations, efficiently evaluating matrix vector product Aihk0

is needed to calculate the derivatives. This can be completed for a variety of matrices,

in particular, sparse matrices [42].
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The Algorithm 2 is guaranteed to converge to a stationary point. Specifically, at

the termination of iteration k0,
∂f

∂hk0
≈ 0 and ∂f

∂Λik0
≈ 0. First, ∂f

∂Λik0
≈ 0 is ensured

due to exact updating by equation (2.4). Second notice that updating according to

equation (2.3) and (2.4) always decreases the objective function. Due to the fact that

hk0 lies on the unit sphere and the objective is twice continuous differentiable, ∂f
∂hk0

is Lipschitz continuous. This along with Armijo backtracking line search guarantees

a ”sufficient” decrease c∥ ∂f
∂hk0

∥2 in objective function each time when the algorithm

updates hk0 [41], where c is a constant independent of hk0 . Since the objective function

is bounded below by 0, this implies convergence of gradient, that is ∂f
∂hk0

→ 0.

In general, the objective function may have multiple stationary points due to

non-convexity. Therefore, the joint embedding algorithm is sensitive to initializa-

tions. Actually, like many of the problems in tensor factorization, finding the global

minimum in joint embedding is NP-Hard [43]. When time permits, we recommend

running the joint embedding several times with random initializations. In Section 5.1,

we study the effects of different initialization approaches through a numerical simula-

tion experiment. For other simulation and real experiments, we initialize Λ̂ik0 and ĥk0

through SVD of the average residual matrix
∑

Rik0/m. The optimization algorithm

described above may not be the fastest approach to solving the problem; however,

numerical optimization is not the focus of this thesis. Based on results from numer-

ical applications, our approach works well in estimating parameters and extracting

features for subsequent statistical inference. Next, we discuss some variations of the
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joint embedding algorithm.

Algorithm 2 Joint Embedding

1: procedure Find joint embedding Λ̂, Ĥ of {Ai}mi=1

2: Set residuals: Ri1 = Ai

3: for k = 1 : d do

4: Initialize hk and Λ∗k

5: while not convergent do

6: Fixing Λ∗k, update hk by gradient descent (2.3)

7: Project hk back to the unit sphere

8: Fixing hk, update Λ∗k by (2.4)

9: Compute objective
m∑
i=1

∥Rik −Λikhkh
T
k ∥2

10: end while

11: Update residuals: Ri(k+1) = Rik −Λikhkh
T
k

12: end for

13: Output Λ̂ = [Λ∗1, ...,Λ∗d] and Ĥ = [h1, ..., hd]

14: end procedure

2.3.3 Variations

The joint embedding algorithm described in the previous section can be modified

to accommodate several different settings.

Variation 1. When all graphs come from the same distribution, we can force
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estimated loadings λ̂i to be equal across all graphs. This is useful when the primary

inference task is to extract features for vertices. Since all graphs share the same

loadings, with slightly abusing notations, let Λ be a vector in Rd and the optimization

problem becomes

(Λ̂, Ĥ) = argmin
Λ,∥hk∥=1

m∑
i=1

∥Ai −
d∑

k=1

Λkhkh
T
k ∥2,

which is equivalent to

(Λ̂, Ĥ) = argmin
Λ,∥hk∥=1

∥ 1

m

m∑
i=1

Ai −
d∑

k=1

Λkhkh
T
k ∥2.

Therefore, the optimization problem can be solved exactly by finding the singular

value decomposition of the average adjacency matrix 1
m

m∑
i=1

Ai.

Variation 2. When there is a discrete label yi ∈ Y associated with the graph Gi

available, we may require all loadings λ̂i to be equal within class. Let Λ ∈ R|Y|×d, the

optimization problem becomes

(Λ̂, Ĥ) = argmin
Λ,∥hk∥=1

m∑
i=1

∥Ai −
d∑

k=1

Λyikhkh
T
k ∥2.

In this case, when updating Λ as in equation (2.4), the algorithm should average Λyk

within the same class, that is

Λ̂yk =

m∑
i=1

I{yi = y}⟨Rik, hk0h
T
k0
⟩

m∑
i=1

I{yi = y}
.

Variation 3. In some applications, we may require all Λik to be greater than 0, as
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in non-negative matrix factorization. One advantage of this constraint is that graph

Gi may be automatically clustered based on the largest entry of λ̂i. In this case, the

optimization problem is

(Λ̂, Ĥ) = argmin
Λ≥0,∥hk∥=1

m∑
i=1

∥Ai −
d∑

k=1

Λikhkh
T
k ∥2.

To guarantee nonnegativity, the algorithm should use nonnegative least squares in

updating Λ [44]. Furthermore, a constraint on the number of non-zero elements in

ith row of Λ can be added as in K-SVD [45], and a basis pursuit algorithm could be

used to update Λ [46,47]. Next, we discuss some theoretical properties of the MREG

model and joint embedding when treated as a parameter estimation procedure for

the model.

2.4 Theoretical Results

2.4.1 Multiple Random Eigen Graphs

We first show that MREG is a very general model on graphs. In fact, it can

represent any distribution on graphs as Theorem 2.4.1 implies.

Theorem 2.4.1 Given any distribution F on graphs and a random adjacency matrix

A ∼ F , there exists a dimension d, a distribution F on Rd, and a set of vectors

{hk}dk=1, such that A ∼ MREG(F, h1, ..., hd).
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Theorem 2.4.1 suggests that MREG is really a semi-parametric model, which can

capture any distribution on graphs. One can model any set of graphs by MREG with

the guarantee that the true distribution is in the model with d being large enough.

However, in practice, a smaller d may lead to better inference performance due to

reduction in the dimensionality. In the next section, we consider the joint embedding

algorithm which can be understood as a parameter estimation procedure for MREG.

2.4.2 Joint Embedding Estimator

In this section, we consider a simple setting where graphs follow a 1-dimensional

MREG model, that is {(λi,Ai)}mi=1 ∼ MREG(F, h1). The 1-dimensional joint em-

bedding is well defined in this case, that is λ̂i and ĥ1 defined in Equation 2.1 is

guaranteed to exist. Under this MREG model, the joint embedding of graphs can

be understood as estimators for parameters of the model. Specifically, λ̂i and ĥ1 are

estimates of λi and h. We prove two theorems concerning the asymptotic behavior of

estimator ĥ1 produced by joint embedding.

Let ĥm
1 denote the estimates based on m graphs and define functions ρ, Dm and

D as below:

ρ(Ai, h) = ∥Ai − ⟨Ai, hh
T ⟩hhT∥2,

Dm(h, h1) =
1

m

m∑
i=1

ρ(Ai, h),

D(h, h1) = E(ρ(Ai, h)).
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One can understand Dm and D as sample and population approximation errors re-

spectively. By equation (2.1),

ĥm
1 = argmin

∥h∥=1

argmin
λi

m∑
i=1

∥Ai − λihh
T∥.

By equation (2.4),

⟨Ai, hh
T ⟩ = argmin

λi

m∑
i=1

∥Ai − λihh
T∥.

Therefore,

ĥm
1 = argmin

∥h∥=1

Dm(h, h1).

The first theorem states that ĥm
1 converges almost surely to the global minimum of

D(h, h1), given that the global minimum is unique. Alternatively, the theorem implies

the sample minimizer converges to the population minimizer.

Theorem 2.4.2 If D(h, h1) has a unique global minimum at h′, then ĥm
1 converges

almost surely to h′ as m goes to infinity. That is,

ĥm
1

a.s.→ h′.

Theorem 2.4.2 requires h′ to be the unique global minimizer of D(h, h1). However,

the global minimizer is definitely not unique due to the symmetry up to sign flip of h,

that is D(h, h1) = D(−h, h1) for any h. This problem can be addressed by forcing an

orientation of ĥm
1 or stating that the convergence is up to a sign flip. It is also possible

that there are multiple global minimizers of D(h, h1) which are not sign flips of each

other. In this case, Theorem 2.4.2 does not apply. We are currently only certain that
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when all graphs are from the Erdos-Renyi random graph model, the global minimizer

is unique up to a sign flip. The next theorem concerns the asymptotic bias of h′. It

gives a bound on the difference between the population minimizer h′ and the truth

h1.

Theorem 2.4.3 If h′ is a minimizer of D(h, h1), then

∥h′ − h1∥ ≤ 2E(λi)

E(λ2
i )(h

T
1 h

′)2
.

To see an application of Theorem 2.4.3, let us consider the case in which all

graphs are Erdos-Renyi graphs with 100 vertices and edge probability of 0.5. Under

this setting, Theorem 2.4.3 implies ∥h′ − h1∥ ∈ [0, 0.04] ∪ [1.28, 1.52]. The second

interval is disturbing. It is due to the fact that when hT
1 h

′ is small, the bound is

useless. We provide some insights as to why the second interval is there and how we

can get rid of it with additional assumptions. In the proof of Theorem 2.4.3, we show

that the global optimizer h′ satisfies

h′ = argmax
∥h∥=1

E(⟨Ai, hh
T ⟩2).

Taking a closer look at E(⟨Ai, hh
T ⟩2),

E(⟨Ai, hh
T ⟩2) = E(⟨Pi, hh

T ⟩2) + E(⟨Ai −Pi, hh
T ⟩2)

= E(λ2
i )(h

T
1 h)

4 + E((hT (Ai −Pi)h)
2).

Therefore,

h′ = argmax
∥h∥=1

E(λ2
i )(h

T
1 h)

4 + E((hT (Ai −Pi)h)
2).
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We can see that E(λ2
i )(h

T
1 h)

4 is maximized when h = h1; however, the noise term

E((hT (Ai − Pi)h)
2) is generally not maximized at h = h1. If n is large, we can

apply a concentration inequality to (hT (Ai − Pi)h)
2 and have an upper bound on

E((hT (Ai − Pi)h)
2). If we further assume Ai is not too sparse, that is E(λ2

i ) grows

with n fast enough, then the sum of these two terms is dominated by the first term.

This provides a way to have a lower bound on hT
1 h

′. We may then replace the

denominator of the bound in Theorem 2.4.3 by the lower bound. In general, if n is

small, the noise term may cause h′ to differ from h1 by a significant amount. In this

chapter, we focus on the case that n is fixed. The case that n goes to infinity for

Random Dot Product Graph is considered in [26].

The two theorems above concern only the estimation of h1, but not λi. Based on

equation (2.4), the joint embedding estimates λi by

λ̂m
i = ⟨Ai, ĥ

m
1 ĥ

mT
1 ⟩.

When m goes to infinity, we can apply Theorem 2.4.2,

λ̂m
i = ⟨Ai, ĥ

m
1 ĥ

mT
1 ⟩ a.s.→ ⟨Ai, h

′h′T ⟩ = h′TAih
′.

Then, applying the bound on ∥h′−h1∥ derived in Theorem 2.4.3 and utilizing the fact

that hTAih is continuous in h, we can obtain an upper bound on |λ̂m
i −hT

1Aih1|. When

Ai is large, h
T
1Aih1 is concentrated around λi with high probability. As a consequence,

with high probability |λ̂m
i −λ1| is small. In the next section, we demonstrate properties

and utilities of the joint embedding algorithm through experiments.
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2.5 Numerical Results

Before going into details of experiments, we want to discuss how to select the di-

mensionality d of the joint embedding. Estimating d is an important model selection

question that has been studied for years under various settings [48]. Model selection

is not the focus of this thesis, but we still face this problem in numerical experiments.

In the simulation experiments of this section, we assume d is known to us and simply

set the dimensionality estimate d̂ equal to d. In the real data experiment, we rec-

ommend two approaches to determine d̂. Both approaches require first running the

d′-dimensional joint embedding algorithm, where d′ is sufficiently large. We then plot

the objective function versus dimension, and determine d̂ to be where the objective

starts to flatten out. Alternatively, we can plot {Λ̂ik}mi=1 for k = 1, ..., d′, and select d̂

when the loadings start to look like noise with 0 mean. These two approaches should

yield a similar dimensionality estimate of d̂.

2.5.1 Simulation: Joint Embedding Under a Sim-

ple Model

In the first experiment, we present a simple numerical example to demonstrate

some properties of the joint embedding procedure as the number of graphs grows.

We repeatedly generate graphs with 20 vertices from 3-dimensional MREG, where
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λi[1] ∼ Uniform(8, 16), λi[2] ∼ Uniform(0, 2) and λi[3] ∼ Uniform(0, 1), with

h1 = [1, 1, 1, ..., 1]/
√
20

h2 = [1,−1, 1,−1, 1,−1, ...,−1]/
√
20

h3 = [1, 1,−1,−1, 1, 1,−1,−1, ...,−1]/
√
20.

We keep doubling the number of graphs m from 24 to 212. At each value of m, we

compute the 3-dimensional joint embedding of graphs. Let the estimated parameters

based on m graphs be denoted by λ̂m
i and ĥm

k . Two quantities based on ĥm
k are

calculated. The first is the norm difference between the current hk estimates and the

previous estimates, namely ∥ĥm
k − ĥ

m/2
k ∥. This provides numerical evidence for the

convergence of our principled estimation procedure. The second quantity is ∥ĥm
k −hk∥.

This investigates whether ĥk is an unbiased estimator for hk. The procedure described

above is repeated 20 times. Figure 2.2 presents the result. Based on the plot, the

norm of differences ∥ĥm
k − ĥ

m/2
k ∥ seem to converge to 0 as m increases. This suggests

the convergence of ĥm
1 . Second, we notice that the bias ∥ĥm

2 − h2∥ and ∥ĥm
3 − h3∥

do not converge to 0; instead, it stops decreasing at around 0.1 and 0.2 respectively.

This suggests that ĥk is an asymptotically biased estimator for hk. Actually, this is as

to be expected: when there are infinitely many nuisance parameters present, Neyman

and Scott demonstrate that maximum likelihood estimator is inconsistent [49]. In our

case, there are infinitely many λi as m grows; therefore, we do not expect the joint

embedding to provide an asymptotic consistent estimate of hk.
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Figure 2.2: Mean bias (∥ĥm
k − hk∥) and mean difference between estimates (∥ĥm

k −

ĥ
m/2
k ∥) across 20 simulations are shown. The standard errors are also given by error

bars. The graphs are generated from a 3-dimensional MREG model as described

in section 5.1. ĥm
k has small asymptotic bias; however, it seems to converge as m

increases.

In applications such as clustering or classifying multiple graphs, we may be not

interested in ĥk. λ̂i is of primary interest, which provides information specifically

about the graphs Gi. Here, we consider two approaches to estimate λi[1]. The first

approach is estimating λi[1] through joint embedding, that is

λ̂i[1] = ⟨Ai, ĥ
m
1 ĥ

mT
1 ⟩.

The second approach estimates λi by assuming h1 is known. In this case, equation

(2.4) gives

λ̂i[1] = ⟨Ai, h1h
T
1 ⟩.
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Initialization Objective Running time (sec)

SVD 375.22(1.21) 8.3(1.0)

1 Random 383.29(1.60) 96.5(5.3)

Best of 10 Random 379.63(1.39) 9.2(1.4)

Truth 374.69(1.22) 7.8(1.0)

Table 2.1: Objective function and running time of four initialization approaches. SVD

and truth initializations are significantly better than random initializations.

λ̂i[1] calculated this way can be thought as the ”oracle” estimate. Figure 2.3 shows the

differences in estimates provided by two approaches. Not surprisingly, the differences

are small due to the fact that ĥm
1 and h1 are close.

Next, we investigate the effects of four different initialization approaches. The

first approach utilizes SVD on average residual matrix to initialize hk at each iter-

ation. The second approach randomly samples independent Gaussian variable for

each entry of hk. The third approach takes the best initialization among 10 random

initializations. The fourth approach initializes hk using the truth. To compare these

approaches, we generate 16 graphs from the MREG model and jointly embed them

with four different initializations. Then, another 16 graphs are generated and the ob-

jective function on these graphs are evaluated using Ĥ estimated by joint embedding.

This procedure is repeated 100 times. Mean objective function and total running

time with standard error of these four approaches are shown in Table 2.1. Based on
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Wilcoxon signed-rank test, SVD and truth initializations are significantly better than

random initializations. For the rest experiments, the initialization is completed by

SVD.

Figure 2.3: Distribution of differences between λ̂i[1] estimated using ĥm
1 and h1. The

graphs are generated from the 3-dimensional MREG model as described in section

5.1. The differences are small due to the fact that ĥm
1 and h1 are close.

2.5.2 Simulation: Classify Graphs

In this experiment, we consider the inference task of classifying graphs. We have

m pairs {(Ai, yi)}mi=1 of observations. Each pair consists of an adjacency matrix

Ai ∈ {0, 1}n×n and a label yi ∈ [K]. Furthermore, all pairs are assumed to be

independent and identically distributed according to an unknown distribution FA,y,

that is

(A1, y1), (A2, y2), ..., (Am, ym)
i.i.d.∼ FA,y.
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The goal is to find a classifier g which is a function g : {0, 1}n×n → [K] that has a

small classification error Lg = P(g(A) ̸= y).

We consider a binary classification problem where y takes value 1 or 2. 200

graphs with 100 vertices are independently generated. The graphs are sampled from

a 2-dimensional MREG model. Let h1 and h2 be two vectors in R100, and

h1 = [0.1, ..., 0.1]T , and h2 = [−0.1, ...,−0.1, 0.1, ..., 0.1]T .

Here, h2 has −0.1 as its first 50 entries and 0.1 as its last 50 entries. Graphs are

generated according to the MREG model,

{(λi,Ai)}200i=1 ∼ MREG(F, h1, h2), (2.5)

where F is a mixture of two point masses with equal probability,

F =
1

2
I{λ = [25, 5]}+ 1

2
I{λ = [22.5, 2.5]}.

We let the class label yi indicate which point mass λi is sampled from, that is yi = 1

if λi = [25, 5] and yi = 2 if λi = [22.5, 2.5]. In terms of SBM, this graph generation

scheme is equivalent to

Ai|yi = 1 ∼ SBM((1, ..., 1, 2, ..., 2),

⎡⎢⎢⎣0.3 0.2

0.2 0.3

⎤⎥⎥⎦)

Ai|yi = 2 ∼ SBM((1, ..., 1, 2, ..., 2),

⎡⎢⎢⎣0.25 0.2

0.2 0.25

⎤⎥⎥⎦).
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To classify graphs, we first jointly embed 200 graphs into 2 dimensions. The

loadings are shown in Figure 2.4. We can see two classes are separated after being

jointly embedded. Then, a 1-nearest neighbor classifier (1-NN) [50] is constructed

based on loadings {λ̂i}mi=1.

Figure 2.4: Scatter plot of loadings computed by jointly embedding 200 graphs. The

graphs are generated from the 2-dimensional MREG model as described in equation

(2.5). The loadings of two classes are separated after being jointly embedded.

We compare classification performances of using the joint embedding to extract

features to five other feature extraction approaches discussed at the beginning of

this chapter: Adjacency Spectral Embedding, Laplacian Eigenmap, Graph Statistics,

Graph Spectral Statistics, and PCA. For Adjacency Spectral Embedding (ASE), each

adjacency matrix is augmented with mean edge probability on the diagonal and em-

bed into 2 dimensions. Then, pairwise procrustes distance between are computed

based on embeddings. For Laplacian Eigenmap (LE), we first embed each normalized
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Laplacian matrix and then compute the procrustes distance. For Graph Statistics

(GS), we compute topological statistics of graphs considered in [15], which include

size, maximum degree, maximum average degree, scan statistic, number of triangles,

clustering coefficient and average path length. These features are then normalized

to have mean 0 variance 1. For Graph Spectral Statistics (GSS), we compute the

eigenvalues of adjacency matrices and treat them as features [51]. For PCA, we vec-

torize the adjacency matrices and compute the first two principal components through

SVD. After the feature extraction step, we apply a 1-Nearest Neighbor rule to classify

graphs. We let the number of graphs m increase from 4 to 200. For each value of

m, we repeat the simulation 100 times. Figure 2.5 shows the result. ASE, LE, GS

and GSS do not take advantage of increasing sample size in the feature extraction

step. PCA has poor performance when the sample sizes is small. Joint embedding

could take advantage of increasing sample size and outperforms other approaches

when given more than 10 graphs.

2.5.3 Real Data: Predict Composite Creativity In-

dex

In this experiment, we study predicting individual composite creativity index

(CCI) through brain connectomes obtained by Multimodal Magnetic Resonance Imag-

ing [52]. Neuroimaging and creativity have been jointly investigated previously. Most
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Figure 2.5: Mean classification accuracy of joint embedding, Adjacency Spectral

Embedding, Laplacian Eigenmap, Graph Statistics, Graph Spectral Statistics, and

PCA with their standard errors are shown. The graphs are generated from a 2-

dimensional MREG model as described in the equation (2.5). The features are first

extracted using methods described above; subsequently, we apply a 1-NN to classify

graphs. For each value of m, the simulation is repeated 100 times. ASE, LE, GS and

GSS do not take advantage of increasing sample size in the feature extraction step.

PCA has poor performance when the sample sizes is small. Joint embedding takes

advantage of increasing sample size and outperforms other approaches when given

more than 10 graphs.

studies utilize a statistical testing method and find CCI significantly related or in-

versely related to the activity of some regions of the brain. For a review, please see

Arden et al. [53]. We embrace a different approach by directly building a prediction

model for CCI. First, we jointly embed brain graphs of all subjects. Then, we con-
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struct a linear regression model by treating the estimated loadings as explanatory

variables and CCI as the response variable.

In total, 113 healthy, young adult subjects were scanned using a Siemens TrioTim

scanner. 3D-MPRAGE and DTI in 35 directions of the subjects were acquired [54].

The images were then registered by Desikan-Killiany Atlas [55], and a graph of 70

vertices is constructed. The process of transforming MRI to graphs was completed

by NeuroData’s MRI Graphs pipeline [56]. The graphs derived have weighted edges.

One example of a graph is shown in Figure 2.6. For each subject, a divergent thinking

measure was scored by independent judges using the Consensual Assessment Tech-

nique [57], from which the CCI is derived.

Figure 2.6: The plot shows the adjacency matrix of brain graph derived from a

typical subject. There is much more neural connectivity within each hemisphere.

To predict the CCI, we first jointly embed 113 graphs with d = 10, and then fit a
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linear model by regressing CCI on λ̂i, that is

CCIi ∼ β0 + λ̂T
i β + ϵi.

We consider two linear regression models. One using only λ̂i[1] as the explanatory

variable, and another one using λ̂i as the explanatory variables. If only the first

dimensional loadings are used, the top panel of Figure 2.8 shows the result. There

is a significant positive linear relationship between CCI and the first dimensional

loadings. The first dimensional loadings generally capture the overall connectivity of

graphs. In this case, the correlation between the first dimensional loadings and the

sum of edge weights is around 0.98. This model implies that the individual tends to

be more creative when there is more brain connectivity. The R-square of this model

is 0.07248, and the model is statistically significantly better when compared to the

null model with a p-value 0.0039, according to the F-test. This model suggests that

individual is more creative if the brain is more connected.

If CCI is regressed on the 10 dimensional loadings, a summary of the linear model

is provided below and a scatter plot of fitted CCI versus true CCI is provided in the

bottom panel of Figure 2.8.

> model<−lm( c c i ˜Lambda+1)

> summary(model )

C o e f f i c i e n t s : Estimate Pr(>| t | )

( I n t e r c ep t ) 1 .275 e+02 0.000275 ∗∗∗
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Lambda1 2 .421 e−04 0.997981

Lambda2 −2.326e−01 0.070110 .

Lambda3 −3.716e−02 0.822592

Lambda4 8 .049 e−02 0.687628

Lambda5 −2.925e−01 0.421858

Lambda6 −4.285e−01 0.009088 ∗∗

Lambda7 −1.745e−01 0.590533

Lambda8 −3.465e−01 0.240093

Lambda9 −8.970e−01 0.007999 ∗∗

Lambda10 −8.955e−01 0.052839 .

Res idua l standard e r r o r : 9 .437

on 102 degree s o f f r e e d o m

Mult ip l e R−squared : 0 .2325 ,

Adjusted R−squared : 0 .1572

F−s t a t i s t i c : 3 .09 on 10 and 102 DF,

p−value : 0 .001795

The R-square is 0.2325 and the model is statistically significantly better than the null

model with a p-value 0.0018 according to the F-test. It is also significantly better than

the model with only λ̂i[1]. Although there is still a positive relationship between CCI

and the first dimensional loadings, it is no longer significant due to the inclusion of

more explanatory variables. In this model, there is a significant negative relationship
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between CCI and λ̂i[6] based on the t-test. The scatter plot of CCI against λ̂i[6] is

given in the middle panel of Figure 2.8. We look into the rank one matrix ĥT
6 ĥ6, which

is shown in Figure 2.7. It has positive connectivity within each hemisphere of the

brain, but negative connectivity across hemispheres. This suggests that compared to

within-hemisphere connectivity, across-hemisphere connectivity tends to have a more

positive impact on human creativity.

Figure 2.7: The plot shows the rank one matrix ĥT
6 ĥ6, which has positive connec-

tivity within each hemisphere, but negative connectivity across hemispheres.

We also applied PCA to the vectorized adjacency matrices as described in (2.3.1),

and then we regress CCI on PCA loadings. The log P-value of regression models are

shown in Figure 2.9, with log(0.05) represented by the dash line. When the number of

dimensions is small, our joint embedding and PCA yield similar results; however, the

performance of PCA degrades quickly as the number of dimensions increase. When

regressed on 10 dimensional loadings, the p − value of joint embedding and PCA is
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Figure 2.8: The top panel shows the scatter plot of CCI against λ̂i[1] with the

regression line. There is a positive relationship between CCI and first dimensional

loadings. The middle panel shows the scatter plot of CCI against λ̂i[6] with regression

line. There is a negative relationship between CCI and sixth dimensional loadings.

The bottom panel shows the predicted CCI versus true CCI with the identity line.

0.0018 and 0.16 respectively. The reason that joint embedding outperforms PCA in

this setup is as explained before: the joint embedding only need to estimate a rank

one graph for each dimension, which has 70 parameters in this application; however,

the PCA needs has 2415 = 70(70−1)
2

parameters to fit for each dimension.
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Figure 2.9: The log p-value of linear regression models using joint embedding and

PCA are shown. The dash line is drawn at log(0.05). When the number of dimensions

is small, the joint embedding and PCA yield similar results; however, the performance

of PCA degrades quickly as the number of dimensions increase.

2.5.4 Real Data: Cluster Wikipedia Webpages

In the previous experiments, we focus on feature extraction for graphs through

the joint embedding. Here, we consider a different task, that is spectral clustering

through the joint embedding. In general, spectral clustering first computes (gener-

alized) eigenvalues and eigenvectors of adjacency matrix or Laplacian matrix, then

clustering the latent positions of vertices into groups [4, 5]. The cluster identities

of latent positions become the cluster identities of vertices of the original graph.

When applied to one graph, the joint embedding is equivalent to Adjacency Spectral

Embedding (ASE), which is one of the spectral clustering algorithms. When given

multiple graphs, the joint embedding can estimate latent positions for graph i as
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[λ̂i[1]
1
2 ĥ1, λ̂i[2]

1
2 ĥ2, ..., λ̂i[d]

1
2 ĥd] or equivalently ĤD̂

1
2
i . Then, clustering algorithm can

be applied to the latent positions.

We apply the spectral clustering approach to Wikipedia graphs [58]. The vertices

of these graphs represent Wikipedia article pages. The two vertices are connected

by an edge if either of the associated pages hyperlinks to the other. Two graphs are

constructed based on English webpages and French webpages. The full graph has 1382

vertices which represents articles within 2-neighborhood of ”Algebraic Geometry”.

Based on the content of the associated articles, they are grouped by hand into 6

categories: People, Places, Dates, Things, Math Terms, and Categories.

We consider a subset vertices from 3 categories: People, Things, Math Terms.

After taking the induced subgraph of these vertices and removing isolated vertices,

there are n = 704 vertices left. Specifically, 326, 181, and 197 vertices are from

People, Things and Math Terms respectively. We consider 4 approaches to embed

the graphs to obtain latent positions: ASE on the English graph (ASE+EN), ASE on

the French Graph (ASE+FR), joint embedding on the English graph (JE+EN), and

joint embedding on the French Graph (JE+FR). The dimension d is set to 3 for all

approaches, and the latent positions are scaled to have norm 1 for degree correction.

Then, we apply 3-means to the latent positions [59].

The latent positions of English graph estimated based on the joint embedding is

provided in Figure 2.10. The latent positions of Math Terms are separated from the

other two clusters. However, the latent positions of People and Things are mixed.
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Table 2.2 shows the clustering results measured by adjusted rand index and the asso-

ciated standard error [60,61]. The standard error of adjusted rand index is estimated

through repeatedly clustering bootstrapped latent positions. All methods yield clus-

tering results which are significantly better than random. The English graph demon-

strates clearer community structure than the French graph. The joint embedding

produces latent positions which leads to better clustering performance compared to

ASE. However, the difference between the joint embedding and ASE on English graph

is not statistically significant based on the standard error estimated by bootstrap.

Nevertheless, compared to ASE, joint embedding is able to improve clustering per-

formance on French graph significantly, and produces at least comparable result on

English graph, given the fact French graph is considerably worse than English graph.

We expect joint embedding to be even better when given more graphs.

2.6 Discussion

In summary, we developed a joint embedding method that can simultaneously

embed multiple graphs into low dimensional space. The joint embedding can be

utilized to estimate features for inference problems on multiple vertex matched graphs.

Learning on multiple graphs has significant applications in diverse fields and our

results have both theoretical and practical implications for the problem. As the

real data experiment illustrates, the joint embedding is a practically viable inference

45



CHAPTER 2. JOINT EMBEDDING OF GRAPHS

Method ASE+EN ASE+FR JE+EN JE+FR

ARI 0.1456 0.1169 0.1586 0.1562

S.E. 0.0129 0.0139 0.0146 0.0136

Table 2.2: Clustering Performance on Wikipedia Graphs. The adjusted rand index

(ARI) and the associated standard error (S.E.) of 4 spectral clustering approaches

are shown. The best result is bolded. The standard error of adjusted rand index

is estimated through repeatedly clustering bootstrapped latent positions. The joint

embedding estimates latent positions which lead to better clustering performance

than ASE.

procedure. We also proposed a Multiple Random Eigen Graphs model. It can be

understood as a generalization of the Random Dot Product Graph model or the

Stochastic Block Model for multiple random graphs. We analyzed the performance

of joint embedding on this model under simple settings. We demonstrated that the

joint embedding method provides estimates with bounded error. Our approach is

intimately related to other matrix and tensor factorization approaches such as singular

value decomposition and CP decomposition. Indeed, the joint embedding and these

algorithms all try to estimate a low dimensional representation of high dimensional

objects through minimizing a reconstruction error. We are currently investigating

the utility of joint embedding with more or less regularizations on parameters and

under different set ups. We are optimistic that our method provides a viable tool for
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Figure 2.10: Latent positions of English Graph estimated by the joint embedding

are shown. The first three plots on the diagonal are density estimates of latent

positions for each dimension and category, and the last plot shows the number of

points from each category. The first three plots of the last row show the histogram of

latent positions for each dimension and category, and the first three plots of the last

column are the corresponding box plot. The pairs plots of latent positions are given

in the first three plots below the diagonal, the corresponding correlations are given

above the diagonal. The latent positions of Math Terms are separated from the other

two clusters. However, the latent positions of People and Things are mixed.
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analyzing multiple graphs and can contribute to a deeper understanding of the joint

structure of networks.

2.7 Proofs

Proof of Theorem 2.4.1 Denote the probability of observing a particular adja-

cency matrix Ai under distribution F by pi. It suffices to show that there is a

set of parameters for MREG such that observing Ai under MREG is also pi.

For undirected graphs with loops on n vertices, there are
(
n+1
2

)
possible edges. Let

A1,A2, ...,A
2(

n+1
2 ) be all the possible adjacency matrices. Since real symmetric matrix

of size n has
(
n+1
2

)
free entries which lies in a linear space, if there exists

(
n+1
2

)
linearly

independent rank one symmetric matrices, they form a basis for this space. It turns

out that the rank one symmetric matrices generated by vectors {ei}ni=1∪{ei+ej}i<j are

linearly independent, where {ei}ni=1 is the standard basis for n-dimensional Euclidean

space.

Next, we construct parameters for the MREG. Let d be
(
n+1
2

)
and

{hk}dk=1 = {ei}ni=1 ∪ {ei + ej√
2

}i<j.

Since {hkh
T
k }dk=1 forms a basis for real symmetric matrices, for each adjacency matrix

Ai, there exists a vector λi, such that

Ai =
∑
k

λi[k]hkh
T
k .
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Let F be a finite mixture distribution on points {λi}2
(n+1

2 )
i=1 , that is

F =
∑

piI{λ = λi}.

Under this MREG model, for any adjacency matrix Ai

P(A = Ai) = P (λ = λi) = pi.

This concludes that the distribution F and MREG(F, h1, ..., hd) are equal.

Proof of Theorem 2.4.2 First, we show that |Dn(h, h1)−D(h, h1)| converges uni-

formly to 0. To begin with, notice three facts:

(1) the set {h : ∥h∥ = 1} is compact;

(2) for all h, the function ρ(·, h) is continuous

(3) for all h, the function ρ(·, h) is bounded by n2.

Therefore, by the uniform law of large numbers [62], we have

sup
h
|Dm(h, h1)−D(h, h1)|

a.s.→ 0.

To prove the claim of the theorem, we use a technique similar to that employed by

Bickel and Doksum [63]. By definition, we must have Dm(ĥ
m
1 , h) ≤ Dm(h

′, h) and

D(h′, h) ≤ D(ĥm
1 , h). From these two inequalities,

Dm(h
′, h)−D(h′, h) ≥ Dm(ĥ

m
1 , h)−D(h′, h) ≥ Dm(ĥ

m
1 , h)−D(ĥm

1 , h).

49



CHAPTER 2. JOINT EMBEDDING OF GRAPHS

Therefore,

|Dm(ĥ
m
1 , h)−D(h′, h)| ≤ max(|Dm(h

′, h)−D(h′, h)|, |Dm(ĥ
m
1 , h)−D(ĥm

1 , h)|).

This implies

|Dm(ĥ
m
1 , h)−D(h′, h)| ≤ sup

h
|Dm(h, h1)−D(h, h1)|.

Hence, |Dm(ĥ
m
1 , h)−D(h′, h)| must converge almost surely to 0, that is

|Dm(ĥ
m
1 , h)−D(h′, h)| a.s.→ 0.

If ĥm
1 does not converge almost surely to h′, then ∥ĥm

1 −h′∥ ≥ ϵ for some ϵ and infinitely

many values of m. Since h′ is the unique global minimum, |D(ĥm
1 , h)−D(h′, h)| > ϵ′

for infinitely many values of m and some ϵ′. This contradicts with the previous

equation. Therefore, ĥm
1 must converge almost surely to h′.

Proof of Theorem 2.4.3 The proof of theorem relies on two lemmas. The first

lemma shows that h′ is the eigenvector corresponding to the largest eigenvalue of

E(⟨Ai, h
′h′T ⟩Ai). The second lemma bounds the Frobenius norm difference between

E(⟨Ai, h
′h′T ⟩Ai) and E(λ2

i )(h
T
1 h

′)2h1h
T
1 . Then, we apply Davis-Kahan theorem [64]

to establish the claim of theorem.

Lemma 2.7.1 The vector h′ is the eigenvector corresponding to the largest eigenvalue

of E(⟨Ai, h
′h′T ⟩Ai).
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We notice that

min
∥h∥=1

D(h, h1) = min
∥h∥=1

E(∥Ai − ⟨Ai, hh
T ⟩hhT∥2)

= min
∥h∥=1

E(⟨Ai,Ai⟩ − ⟨Ai, hh
T ⟩2)

= E(⟨Ai,Ai⟩)− max
∥h∥=1

E(⟨Ai, hh
T ⟩2).

Therefore,

h′ = argmin
∥h∥=1

D(h, h1) = argmax
∥h∥=1

E(⟨Ai, hh
T ⟩2). (2.6)

Taking the derivative of E(⟨Ai, hh
T ⟩2) + c(hTh− 1) with respect to h,

∂E(⟨Ai, hh
T ⟩2) + c(hTh− 1)

∂h
= E(

∂⟨Ai, hh
T ⟩2

∂h
) + 2ch

= 4E(⟨Ai, hh
T ⟩Ai)h+ 2ch.

Setting this expression to 0 yields,

E(⟨Ai, h
′h′T ⟩Ai)h

′ = −1

2
ch′.

Using the fact that ∥h′∥ = 1, we can solve for c:

c = −2h′TE(⟨Ai, h
′h′T ⟩Ai)h

′ = −2E(⟨Ai, h
′h′T ⟩2).

Then, substituting for c,

E(⟨Ai, h
′h′T ⟩Ai)h

′ = E(⟨Ai, h
′h′T ⟩2)h′. (2.7)

Therefore, we see that h′ is an eigenvector of E(⟨Ai, h
′h′T ⟩Ai) and the corresponding

eigenvalue is E(⟨Ai, h
′h′T ⟩2). Furthermore, E(⟨Ai, h

′h′T ⟩2) must be the eigenvalue
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with the largest magnitude. For if not, then there exists an h′′ with norm 1 such that

|h′′TE(⟨Ai, h
′h′T ⟩Ai)h

′′| = |E(⟨Ai, h
′h′T ⟩⟨Ai, h

′′h′′T ⟩)| > E(⟨Ai, h
′h′T ⟩2);

however, by Cauchy-Schwarz inequality we must have

E(⟨Ai, h
′′h′′T ⟩2)E(⟨Ai, h

′h′T ⟩2) > |E(⟨Ai, h
′h′T ⟩⟨Ai, h

′′h′′T ⟩)|2.

This implies E(⟨Ai, h
′′h′′T ⟩2) > E(⟨Ai, h

′h′T ⟩2), which contradicts equation (2.6).

Thus, we conclude that h′ is the eigenvector corresponding to the largest eigenvalue

of E(⟨Ai, h
′h′T ⟩Ai).

Next, we consider the norm difference between E(⟨Ai, h
′h′T ⟩Ai) and E(λ2

i )(h
T
1 h

′)2h1h
T
1 .

Lemma 2.7.2

∥E(⟨Ai, h
′h′T ⟩Ai)− E(λ2

i )(h
T
1 h

′)2h1h
T
1 ∥ ≤ 2E(λi).

We compute E(⟨Ai, h
′h′T ⟩Ai) by conditioning on Pi.

E(⟨Ai, h
′h′T ⟩Ai|Pi)

= E(⟨Ai −Pi, h
′h′T ⟩(Ai −Pi)|Pi) + E(⟨Ai −Pi, h

′h′T ⟩Pi)|Pi)

+ E(⟨Pi, h
′h′T ⟩(Ai −Pi)|Pi) + E(⟨Pi, h

′h′T ⟩Pi|Pi)

= E(⟨Ai −Pi, h
′h′T ⟩(Ai −Pi)|Pi) + λi(h

T
1 h

′)2Pi

= 2h′h′T ∗Pi ∗ (J−Pi)−DIAG(h1h
T
1 ∗Pi ∗ (J−Pi)) + λi(h

T
1 h

′)2Pi.

Here, DIAG() means only keep the diagonal of the matrix; ∗ means the Hadamard
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product, and J is a matrix of all ones. Using the fact that Pi = λih1h
T
1 , we have

E(⟨Ai, h
′h′T ⟩Ai)− E(λ2

i )(h
T
1 h

′)2h1h
T
1

= E(E(⟨Ai, h
′h′T ⟩Ai|Pi)− λi(h

T
1 h

′)2Pi)

= E(2h′h′T ∗Pi ∗ (J−Pi)−DIAG(h′h′T ∗Pi ∗ (J−Pi))).

If we consider the norm difference between E(⟨Ai, h
′h′T ⟩Ai) and E(λ2

i )(h
T
1 h

′)2h1h
T
1 ,

we have

∥E(⟨Ai, h
′h′T ⟩Ai)− E(λ2

i )(h
T
1 h

′)2h1h
T
1 ∥

= ∥E(2h′h′T ∗Pi ∗ (J−Pi)−DIAG(h′h′T ∗Pi ∗ (J−Pi)))∥

≤ E(∥2h′h′T ∗Pi ∗ (J−Pi)−DIAG(h′h′T ∗Pi ∗ (J−Pi))∥)

≤ E(∥2h′h′T ∗Pi ∗ (J−Pi)∥)

≤ E(∥2h′h′T ∗Pi∥)

≤ 2E(λi)∥h′h′T ∗ h1h
T
1 ∥

= 2E(λi).

This finishes the proof of the lemma.

Notice that the only non-zero eigenvector of E(λ2
i )(h

T
1 h

′)2h1h
T
1 is h1 and the cor-

responding eigenvalue is E(λ2
i )(h

T
1 h

′)2. We apply the Davis-Kahan theorem [64] to

the eigenvector corresponding to the largest eigenvalue of matrices E(⟨Ai, h
′h′T ⟩Ai)

and E(λ2
i )(h

T
1 h

′)2h1h
T
1 , yielding

∥h′ − h1∥ ≤ 2E(λi)

E(λ2
i )(h

T
1 h

′)2
.
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Chapter 3

Signal Subgraph Estimation via

Vertex Screening

3.1 Introduction

Graph classification and regression are crucial to analyze data sets in various fields

such as neuroscience, internet mapping, and social networks [1, 3, 65]. Given a set of

graphs {Gi}mi=1 along with a set of corresponding covariates {Yi}mi=1, we would like

to predict the covariate Yi based on the graph Gi. However, G can be extremely

large in practice, e.g., the social networks and raw neuroimages can have millions of

vertices [66], which is a great challenge computationally without first reducing the

size of the graph. Therefore, it is imperative to come up with an accurate and efficient

method for signal subgraph estimation. Signal subgraph extraction tries to locate a
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subgraph of G that contains all the useful information about Y , which can be helpful

to improve the subsequent inference performance. However, estimating the signal

subgraph is very challenging for large graphs, because a graph with n vertices could

have 2n different induced subgraphs.

When the number of features is large, dimension reduction and feature selection

is generally difficult and expensive, which is a challenge to many modern real data

sets. To overcome this challenge, Fan and Lv [7] proposed the feature screening

algorithm and showed that ranking variables via the Pearson’s correlation possesses a

sure screening property under linear regression models. Screening through marginal

likelihood are later considered for generalized linear models [67, 68]. Motivated by

their approaches, we develop a vertex screening procedure to estimate the signal

subgraph.

To screen the vertices effectively requires a sufficient measure of ”correlation”.

Although Pearson’s product moment correlation has been a popular choice, it only

captures linear association and thus is not a good candidate for identifying general

dependencies. The recently proposed distance correlation (Dcorr) [69–71] is able to

detect all types of dependencies between two random variables consistently. The

later proposed multiscale generalize correlation (MGC) [72–74] is a localized version

of Dcorr, which shares the consistency property with improved finite-sample test-

ing power against nonlinear dependencies. Consistent screening under a model-free

setting via distance correlation was proposed and investigated in [75,76].
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We therefore combine distance-based correlation and screening to yield an effective

vertex screening method to estimate the signal subgraph, which works efficiently and

tackles all inherent challenges. The methodology consists of three steps: (i) feature

computation, (ii) calculating the distance-based correlation, and (iii) thresholding.

The first step computes a feature for each vertex based the graph. The second step

calculates a distance-based correlation measure between the feature of each vertex

and the label of interest Y over all graphs. The last step thresholds the correlations

and only keeps the vertices with large correlations. We further developed an itera-

tive vertex screening algorithm, in which the three steps are applied recursively to

improve the performance without sacrificing the running time. In the next section,

we introduce the signal graph estimation problem and presend the vertex screening

algorithm. Finally, we conclude the chapter with a discussion about possible future

extensions.

3.2 Preliminaries

3.2.1 Signal Subgraph Estimation Problem

Givenm graphs {Gi, i = 1, . . . ,m} with a shared vertex set V = [n], let Ai ∈ Rn×n

be the adjacency matrix of Gi for each i, which can be weighted or un-weighted,

directed or un-directed. Additionally, there is a covariate of interest {Yi ∈ R, i =

1, . . . ,m} associated to each graph. A common example is a neuroimaging study,
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where the human brain image of a subject is used to produce a graph Gi, and for

each subject there is an associated variable Yi representing a group label, covariate

or additional phenotype (e.g. behavior, genotype or sex). Information on the brain

graph and phenotype pair is collected for m subjects. In this paper, we focus on the

case that Yi is a scalar label, but the screening algorithm is readily applicable to any

multivariate Yi. The classical statistical pattern recognition set up is that {(Gi, Yi)}mi=1

are independent and identically distributed pairs according to some distribution FG,Y

[77], that is

(G1, Y1), (G2, Y2), (G3, Y3), ..., (Gm, Ym)
i.i.d.∼ FG,Y

for some true but unknown joint distribution.

It is often the case that the covariate Y only depends on a small part of G. In

addition, merely predicting Y is insufficient in some applications. It is desirable to

know which vertices or subgraph is associated to Y . Therefore, it is natural to search

for a signal subgraph such that Y is independent of other parts of the graph. This

motivates our definition of signal vertices and signal subgraph.

Definition For any subset of vertices U ⊂ V = [n], denote the induced subgraph of

U by G[U ], and denote the subgraph removing all edges in G[U ] as G\G[U ].

The set of signal vertices S is defined to be the minimal subset of vertices U ,

such that G\G[U ] is independent of Y , that is

S = argmin
U

|U | , subject to G\G[U ] ⊥ Y,
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where the notation ⊥ means independence, or FG\G[U ],Y = FG\G[U ]FY . The induced

graph G[S] on the signal vertices is called the signal subgraph .

If the graph G is independent of Y , there is no signal in the graph and the signal

subgraph is empty in this case. If all vertices in G are incident on at least one edge

which is dependent on Y , the signal subgraph is the whole graph G. Moreover, there

can be multiple subsets attaining the minimum, so for ease of presentation we assume

there exists a unique signal subgraph G[S].

In practice, m graph-covariate pairs {(Ai, Yi)}mi=1 are observed, we want to esti-

mate the signal subgraph G[S]. The subsequent statistical inference can benefit from

the bias-variance trade-off or statistical parsimony, if vertices with weak or no signal

can be screened out effectively.

3.2.2 Bayes Plug-in Classifier

We introduce a binary classification problem that is predicting the label Y ∈ {0, 1}

using graph G, which serves as the foundation for Section 3.4 and later simulations.

The network model under consideration is the inhomogeneous Erdos-Renyi (IER)

random graph model [22], which is defined in the last chapter. The class label is built

into this model as follows: suppose the graph follow IER model conditioned on Y ,

that is

A|Y = y ∼ IER(P y) for y ∈ {0, 1}
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Under this setting, it is clear that vertex u is a signal vertex if and only if P 0[u, v] ̸=

P 1[u, v] for some vertex v, that is

S = {u ∈ V |∃v ∈ V, P 0[u, v] ̸= P 1[u, v]}.

Given this model, it is known that the optimal classification performance is achieved

by the Bayes classifier g∗ [77], which is defined

g∗(A) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if π0L(A;P 0) < π1L(A;P 1),

0 if π0L(A;P 0) ≥ π1L(A;P 1),

where π0 and π1 are prior probabilities for each class. In practice, it is natural to

consider the Bayes plug-in classifier which estimates the πy and P y and plug them

into the likelihood. In this case, the maximum likelihood estimates of parameters are

π̂y =

∑
i I{Yi = y}

m
,

P̂ y =

∑
i I{Yi = y}Ai∑
i I{Yi = y}

.

Using these estimates, we can construct the Bayes plug-in classifier gV based on the

whole graph, that is

gV (A) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if π̂0L(A; P̂ 0) < π̂1L(A; P̂ 1),

0 if π̂0L(A; P̂ 0) ≥ π̂1L(A; P̂ 1).
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When we have an estimate of the signal subgraph G[Ŝ], we could also consider Bayes

plug-in classifier gŜ based on the estimated signal subgraph, that is

gŜ(A) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if π̂0L(A[Ŝ]; P̂ 0[Ŝ]) < π̂1L(A[Ŝ]; P̂ 1[Ŝ]),

0 if π̂0L(A[Ŝ]; P̂ 0[Ŝ]) ≥ π̂1L(A[Ŝ]; P̂ 1[Ŝ]),

where

L(A[Ŝ]; P̂ y[Ŝ]) =
∏
u,v∈Ŝ

A[u, v]P̂
y [u,v](1− A[u, v])(1−P̂ y [u,v]).

Similarly, we use gS to denote the Bayes plug-in classifier based on the true signal

subgraph.

To evaluate the classification performance, we consider the 0 − 1 loss or classifi-

cation error L. For a classifier g, the loss L(g) is defined by

L(g) = P(g(A) ̸= Y ).

In Section 3.4, we investigate how L(gV ) and L(gŜ) behave, i.e., the classification error

for the full graph versus the classification error for the estimated signal subgraph.

3.2.3 Distance Correlation and Multiscale Gener-

alized Correlation

The distance correlation (Dcorr) [69, 70] and multiscale generalize correlation

(MGC) [72, 73] measure dependency between two random variables X ∈ Rp and

Y ∈ Rq. Here, we review their definitions. First, the distance covariance Dcov(X, Y )
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is given by

Dcov(X, Y ) =
1

cpcq

∫ ∫
|ϕX,Y (s, t)− ϕX(s)ϕY (t)|2

∥s∥1+p∥t∥1+q
dtds, (3.1)

where ϕX,Y , ϕX and ϕY are characteristic functions of (X, Y ), X and Y respectively,

and cp, cq are constants. When X and Y have finite second moment, it can be shown

that the distance correlation can be alternatively defined by

Dcov(X, Y ) = E(∥X −X ′∥∥Y − Y ′∥) + E(∥X −X ′∥)E(∥Y − Y ′∥)

− 2E(∥X −X ′∥∥Y − Y ′′∥),

where (X, Y ), (X ′, Y ′), (X ′′, Y ′′) are independent and identically distributed as FXY .

Distance covariance between two random variables X and Y is always non-negative,

and it equals 0 if and only if X and Y are independent. The distance correlation

Dcorr(X, Y ) between X and Y is

Dcorr(X, Y ) =
Dcov(X, Y )√

Dcov(X,X)Dcov(Y, Y )
,

which lies in [0, 1].

When applying distance correlation to sample data, the sample distance correla-

tion is defined by properly centering Euclidean distance matrices, followed by taking

a Hadamard product. The sample Dcorr converges to the population Dcorr as sample

size increases to infinity, therefore we concentrate on analyzing the population Dcorr

in the theoretical proofs.

The more recent multiscale generalized correlation (MGC) is a local optimal ver-

sion of distance correlation: when evaluating the integral in Equation (3.1), the char-
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acteristic function is truncated to a neighborhood, which can be shown to yield a

larger statistic and better test power under a wide variety of high-dimensional and

non-linear dependence cases. A detailed discussion of MGC is in [73], which essen-

tially shares the same theoretical properties as distance correlation.

Given pairs of samples {Xi, Yi}mi=1, the sample distance covariance can be com-

puted in the following steps. First, pairwise Euclidean distance matrices C and D

are computed, that is

Cij = ∥Xi −Xj∥ and Dij = ∥Yi − Yj∥.

Then the two distance are double centered.

cij = Cij − Ci· − C·j + C··,

where Ci·, C·j and C·· are the mean of ith row, jth column and the whole matrix

respectively. Similarly,

dij = Dij −Di· −D·j +D··.

The sample distance covariance Dcov({(Xi, Yi)}mi=1) is defined by

Dcov({(Xi, Yi)}mi=1) =
1

n2

∑
i,j

cijdij.

The sample distance correlation Dcorr({(Xi, Yi)}mi=1) can be computed by

Dcov({(Xi, Yi)}mi=1)√
Dcov({(Xi, Xi)}mi=1)Dcov({(Yi, Yi)}mi=1)

.

To calculate sample MGC, we start with computing local distance correlation at

scale k and l. Let R(C·j, i) be the rank of Xi relative to Xj, that is, R(C·j, i) = k if
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Xi is the kth closest point (or neighbor) to Xj, as determined by ranking the n − 1

distances to Xj. Define R(Di·, j) equivalently for the Y s, but ranking relative to the

rows rather than the columns. For any neighborhood size k around each Xi and any

neighborhood size l around each Yj, we set distance outside the neighborhood to 0:

ckij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Cij, if R(A·j, i) ≤ k,

0, otherwise;

dlij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Dij, if R(Bi·, j) ≤ l,

0, otherwise;

(3.2)

and then let ckij = ckij − c̄k, where c̄k is the mean of {ckij}, and similarly for dlij. Then,

the sample local distance correlation Lcorrkl at scale k and l can be calculated

Lcorrkl =

∑
i,j c

k
ijd

l
ij√∑

i,j(c
k
ij)

2
∑

i,j(d
l
ij)

2
.

The sample MGC is defined to be the maximum among local distance correlation

over all possible scales [73], that is

MGC({(Xi, Yi)}mi=1) = max
k,l

Lcorrkl.

3.3 Vertex Screening

The vertex screening procedure provides an estimate of signal subgraph G[Ŝ] via

the following steps: feature extraction, distance-based correlation computation and

thresholding. We also develop an iterative vertex screening procedure, which applies

the three steps recursively. We will first present the non-iterative vertex screening,

followed by the iterative version.
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The first step extracts a feature vector for each vertex in a graph. We use the

notation X̂i[u, ·] to denote the feature extracted for vertex u in graph i where i ∈ [m]

and u ∈ [n]. A simple example is setting X̂i[u, ·] to be the uth row of adjacency matrix

Ai, that is X̂i[u, ·] = Ai[u, ·]. As a result, X̂i[u, ·] is a vector in Rn which can be a

high dimensional space. Alternatively, summary statistics can be treated as a feature

vector. For example, the number of vertices within k-neighborhood of the vertex or

eccentricity of the vertex can be used as the feature for the vertex [78, 79]. Spectral

methods could also be applied to extract a feature vector which lies in Rd. For

example, Adjacency Spectral Embedding [4] and Joint Embedding [6] could recover

a low dimension latent position for each vertex. In this paper, we focus on using

adjacency vector as the vertex feature for simplicity.

The second step computes sample distance-based correlation between the feature

vector {X̂i[u, ·]}mi=1 and label {Yi}mi=1 for each vertex u ∈ V . The correlation choice

is either distance correlation (Dcorr) or multiscale generalized correlation (MGC).

Denote the distance-based correlation by cu, that is

cu =Dcorr({(X̂i[u, ·], Yi)}mi=1), or

cu =MGC({(X̂i[u, ·], Yi)}mi=1).

The motivation of Dcorr and MGC is that they can detect any kind of dependency

when the sample size is large enough. Generally speaking, we recommend using MGC

when m is small but to use Dcorr when m is large. This is because Dcorr runs in

O(m2n) while MGC runs in O(m2nlog(m)). Then for small m, the computation
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difference is negligible while MGC can be more powerful against general dependencies;

while for m large (like above 1000 graphs) the power difference is negligible against

most dependencies due to the consistency, and Dcorr wins in the running time.

The last step orders {cu}u∈V by their magnitudes, and we threshold the corre-

lations by a critical value c. The vertices surviving the threshold are the estimated

signal vertices Ŝ, that is

Ŝ = {u ∈ V |cu > c}.

The estimated signal subgraph and the corresponding adjacency matrix are denoted

by G[Ŝ] and A[Ŝ] respectively. Algorithm 3 describes the general procedure of vertex

screening using adjacency vector as the feature vector.

Algorithm 3 Vertex Screening.

Require: {(Ai, Yi)}mi=1 and c ∈ [0, 1]

1: for u ∈ V do

2: cu = Dcorr({(Ai[u, ·], Yi)}mi=1)

3: end for

4: Ŝ = {u ∈ V |cu > c}.

We observe that vertex feature vector X̂i[u, ·] has dimension n, which is the number

of vertices. If the vertex screening is performed on a smaller graph, X̂i[u, ·] has

fewer dimension and is more likely to exhibit a stronger signal via a larger distance-

based correlation statistic with Yi for a signal vertex. This observation motivates

the iterative version that repeatedly applies Algorithm 3, i.e., at each iteration, only
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a small proportion δ of all vertices are removed from the graph. The size of the

subgraph is iteratively reduced until size 1 or some pre-determined number. Among

all possible subgraphs, pick the subgraph that has the largest Dcorr or MGC statistic

with the class label. The details are described by Algorithm 4, where Ai[Vk] denotes

the adjacency matrix of Vk induced subgraph of graph i.

Alternatively, other possible methods to select the subgraph include: 1) use cross-

validation [48] to select the size of the subgraph with the best leave-one-out prediction

error, which can be computationally expensive; 2) order the correlations {cu}u∈V to

locate a gap among correlations, and select the vertices larger than this gap [80]; 3)

background information available could determine the number of vertices which could

have signal. In the experiment section, we will verify the iterative screening method

that maximizes the statistics, which works very well and almost always achieves the

best leave-one-out prediction error.

Note that the iterative algorithm circumvents choosing the threshold c by desig-

nating a δ. For large graphs, empirically it suffices to let δ be 0.5, which achieves an

excellent performance with only a log(n) factor increase in running time. For graphs

with a small number of vertices, the running time is not a issue; one may let δ be

0.05 or even reduce the size of subgraph by 1 in each iteration.
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Algorithm 4 Iterative Vertex Screening.

Require: {(Ai, Yi)}mi=1 , δ ∈ (0, 1)

1: Set k = 1, and Vk = V

2: while |Vk| > 1 do

3: for u ∈ Vk do

4: cu = Dcorr({(AVk
i [u, ·], Yi)}mi=1)

5: end for

6: Set tk be the δ quantile among {cu, u ∈ Vk}

7: Set Vk+1 = {u ∈ Vk|cu > tk}

8: Set k = k + 1

9: end while

10: k∗ = argmaxk Dcorr({(AVk
i [Vk, ·], Yi)}mi=1)

11: Output the signal vertices Ŝ = Vk∗ .
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3.4 Theoretical Results

3.4.1 Screening Theory

The next theorem states that if the threshold t is small enough to make sure

|Ŝ| > |S|, then Ŝ equals to S with high probability as the number graphs increases.

This theorem is a direct consequence by Li, Zhong and Zhu [76].

Theorem 3.4.1 If the following condition is satisfied

minDcorr(A[u, ·], Y ) ≥ c > 0 for u ∈ S,

then Ŝ contains S with high probability. Specifically, there exist two constants c1, c2 >

0, for any 0 < γ < 1/2,

P(S ⊂ Ŝ) > 1−O(n exp(−c1m
1−2γ) + n2 exp(−c2m

γ)).

The theorem states that the estimated signal subgraph contains the true signal sub-

graph with high probability. Actually, it is also possible to derive a threshold t to

ensure P (S = Ŝ) as the number of graphs goes to infinity. For the proof of, please

refer to Theorem 1 in [76]. Similar results also hold for MGC as well [73].

3.4.2 Justification on Iterative Screening

Despite the consistency of screening proven above, the finite-sample performance

for non-iterative screening can be often improved by iterative screening. The next
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theorem justifies this phenomenon, which demonstrates that the signal vertices will

have its signal amplified under distance correlation by eliminating the noise vertices.

To simplify the discussion, we assume the feature vector X consists of two sets

of entries that is X = [X∗, Z], where X∗ ∈ Rp and Z ∈ Rr. Suppose X∗ is the true

signal and is dependent on Y , while Z is noise and is independent of Y and X∗. The

first Lemma claims that the distance covariance between X and Y increases after

removing the noise entries Z.

Lemma 3.4.2 Suppose that X = [X∗, Z] ∈ Rp × Rr, where X∗ ̸⊥ Y , Z ⊥ Y , and

Z ⊥ X∗. Then,

Dcov(X∗, Y ) ≥ Dcov(X, Y ).

If we let r increase by adding more noise entries to X, the next theorem demonstrates

that the distance correlation will decrease to 0 as r goes to infinity.

Theorem 3.4.3 Suppose that Xr = [X∗, Zr] ∈ Rp × Rr, where X∗ ̸⊥ Y , Zr ⊥ Y ,

and Zr ⊥ X∗. Assume Zr ∈ Rr has independent and identically distributed entries,

then

lim
r→∞

Dcorr(Xr, Y ) = 0.

Therefore, if the screening algorithm iteratively eliminates the noise vertices, the

distance correlation between the signal vertex and label will become larger and larger.

As a result, iterative screening can provide a more accurate ranking of signal vertices

than one-time screening.
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3.4.3 Classification Improvement

The result next shows that the estimated signal subgraph indeed helps the classifi-

cation. Let e denote the number of possible edges on the graph (which is O(n2) except

sparse graphs), and denote the minimum of class priors by α, that is α = min{π0, π1}.

We first analyze the performance of Bayes plug-in classifier based on the whole graph

gV . The next theorem states that its prediction error L(gV ) converges to the Bayes

optimal error L(g∗) as the number of graphs goes to infinity.

Theorem 3.4.4 With high probability, L(gV )− L(g∗) is bounded by ϵ, that is

P(L(gV )−L(g∗) < ϵ) ≥ 1− 2(e+ 1) exp

(
−mαϵ2

(2e+
√
2α)2

)
.

Alternatively, with probability at least 1− η

L(gV )− L(g∗) ≤ (2e+
√
2α)

√
log(2(e+1)

η
)

mα
.

An immediate consequence of the theorem above is the following.

Corollary 3.4.5 For small ϵ > 0,

E(L(gV )) ≤ L(g∗) + ϵ+ 2(e+ 1) exp

(
−mαϵ2

(2e+
√
2α)2

)
.

The theorem and corollary above consider predicting Y based on the whole graph. If

we first apply vertex screening and then predict Y based on estimated signal subgraph

Ŝ using the Bayes plug-in classifier, we will have the following results by applying

Theorem 3.4.1.
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Theorem 3.4.6 With high probability, L(gŜ) − L(g∗) is bounded by ϵ. Specifically,

there exist constants c1, c2, and c3, such that

P(L(gŜ)− L(g∗) < ϵ) ≥ 1− 2(es + 1) exp

(
−mαϵ2

(2es +
√
2α)2

)
− c3(n exp(−c1m

1
3 ) + n2 exp(−c2m

1
3 )),

where es is the number of possible edges in the estimated signal subgraph.

Corollary 3.4.7 For any ϵ > 0, there exist three constants c1, c2 and c3,

E(L(gŜ)) < L(g∗) + ϵ+ 2(es + 1) exp

(
−mαϵ2

(2es +
√
2α)2

)
+ c3(n exp(−c1m

1
3 ) + n2 exp(−c2m

1
3 )).

Comparing Theorem 3.2 and 3.4, we can see that if n, |S| and |Ŝ| are fixed, L(gV )

and L(gŜ) are both converging to L(g∗) with m going to infinity. In fact, prediction

based on the whole graph converges at a faster rate to the Bayes optimal. If n, |S|

and |Ŝ| increase faster than m
1
2 , then prediction with or without screening have no

error bound guarantees. However, if |S| and |Ŝ| are fixed and n does not grow faster

than m
1
2 , only vertex screening guarantees convergence of prediction error. We state

that in the next theorem.

Theorem 3.4.8 Assume |S| and |Ŝ| are fixed, and n ∈ O(exp(m
1
6 )) and m ∈ o(n2),

then L(gŜ) → L(g∗) while L(gV ) does not converge to the Bayes optimal error.

This justifies the importance of extracting signal subgraph in prediction when the

graphs are large.
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3.5 Numerical Results

3.5.1 Simulation: Vertex Screening under IER

In this experiment, we investigate the performance of vertex screening under var-

ious setting. We generate 100 graphs from 2 classes, that is A|Y = y ∼ IER(P y)

with y ∈ {0, 1} and

P y =

⎡⎢⎢⎣ py × 120×20 0.2× 120×180

0.2× 1180×20 0.3× 1180×180

⎤⎥⎥⎦ ,

where p0 = 0.3 and p1 = 0.4. Based on this data generation scheme, each graph

has 200 vertices with the first 20 vertices being the signal vertices. Note that it is

also equivalent to generating graphs from two Stochastic Block models [4], where the

vertices in the first block are signal vertices.

We carry out the one-time screening using Dcorr and MGC, iterative screening

(ItDcorr and ItMGC) with δ being 0.5 and 0.05 respectively. As the true signal

subgraph size is 20, all the screening methods are required to return the estimated

signal subgraph with 20 vertices. For comparison, screening with canonical correlation

analysis (CCA) [81] and RV coefficient (RV) [82] are also included. We repeat the

data generation and screening 100 times. Figure 3.1 shows the Receiver operating

characteristic (ROC) [83] of one repeat. Due to overlap, only results of screening

using MGC is shown. Table 3.1 reports the area under the curve (AUC) [84] for

all methods along with the running time. We observe that Dcorr and MGC work
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Figure 3.1: Receiver operating characteristic of two vertex screening procedures.

The graphs are generated as described in Section 4.1. Iterative vertex screening is

better than one-time vertex screening.

much better than CCA. In fact, RV is also worse than Dcorr or MGC, when they

are compared using a paired test across 100 repeats. Furthermore, iterative screening

at δ = 0.5 improves the performance further with a slight increase of running time,

while iterative screening at δ = 0.05 improves marginally at the cost of much higher

running time.

3.5.2 Simulation: Graph Classification under IER

In this experiment, we investigate the effects of signal subgraph extraction for

later classification. We consider a 3-class classification problem, that is A|Y = y ∼

IER(P y) with y ∈ {0, 1, 2} and

P y =

⎡⎢⎢⎣ py × 120×20 0.2× 120×180

0.2× 1180×20 0.3× 1180×180

⎤⎥⎥⎦ ,
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Method AUC Time (sec)

ItDcorr-0.05 0.8705 (0.0113) 18.50 (1.35)

ItDcorr-0.50 0.8655 (0.0094) 2.03 (0.17)

ItMGC-0.05 0.8720 (0.0122) 967.42 (17.73)

ItMGC-0.50 0.8625 (0.0106) 120.16 (7.32)

Dcorr 0.8554 (0.0056) 1.23 (0.22)

MGC 0.8555 (0.0057) 38.44 (1.720)

RV 0.8506 (0.0077) 2.12 (0.10)

CCA 0.5353 (0.0080) 0.92 (0.04)

Table 3.1: The mean and standard error of AUC and running time of the eight vertex

screening approaches across 100 repeats. Iterative vertex screening has better AUC,

but takes longer to run.

where

py =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.3 if y = 0,

0.4 if y = 1,

0.5 if y = 2.

Based on this data generation scheme, each graph has 200 vertices with the first 20

vertices being the signal vertices. We consider the classification performance of 5

classifiers; specifically, L(g∗), L(gV ), L(gS), L(gŜ), where Ŝ is estimated using Dcorr

(Ŝ-Dcorr), MGC (Ŝ-MGC), or iterative Dcorr (Ŝ-Iter). Note that here L(g∗) and
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L(gS) are shown for demonstration purpose and are the best possible error rate one

can accomplish in theory. Stopping at |S| = 20, the classification performance and

false positive rate in identifying signal vertices are shown in Figure 3.2. Prediction

based on the signal subgraph estimated by screening has a clear advantage over pre-

diction based on the whole graph. Furthermore, screening with MGC is better than

screening with Dcorr, and iterative screening is better than non-iterative screening.

Since the interpretation are similar as the first experiment, we do not include CCA,

or RV performance here. Note that screening is able to recover the signal vertices

perfectly when m > 300. However, due to estimation error in P̂ y, prediction error

L(gŜ) of plugin classifier based on the subgraph still is not as good as Bayes optimal

error L(g∗).
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Figure 3.2: The graph classification error of 7 approaches with their standard errors

are shown at the top panel. We generate graphs from 3 inhomogeneous Erdos-Renyi

model as described in Section 4.2, then apply 7 approaches to classify these graphs:

Bayes plug-in on G (G), Bayes plug-in on G[S] (S), Bayes optimal classifier (Bayes),

Bayes plug-in on G[Ŝ] with Ŝ estimated by Dcorr or MGC (Ŝ-Dcorr, Ŝ-MGC), and

Bayes plug-in on G[Ŝ] with Ŝ estimated by iterative Dcorr or MGC (Ŝ-ItDcorr, Ŝ-

ItMGC). The plot at top shows graph prediction error using these 7 approaches. The

plot at bottom shows the false positive rate in identifying signal vertices using 4 signal

subgraph estimation approaches. The classifiers based on estimated signal subgraph

have significantly better classification performance compared to classifiers based on

the whole graph, and are close to Bayes optimal classifier when given 300 graphs.

Furthermore, screening with MGC is better than screening with Dcorr and iterative

screening is better than non-iterative screening, in terms of both graph classification

and signal subgraph estimation.

If we assume |S| is unknown and estimate the size of signal subgraph via maximiz-

ing the distance correlation between the subgraph and label, the resulting subgraph
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Figure 3.3: The cross validation error and distance correlation with their standard

error based on different size of subgraph, produced by the iterative Dcorr screening

algorithm. The optimal size of signal subgraph implied by these two statistics are

both 20.

at the maximal correlation statistic coincides with the subgraph of the best classifi-

cation error. Figure 3.3 shows the classification error and distance correlation with

their standard error for different size of subgraph using iterative screening. Given

300 graphs, finding the best prediction error or maximizing the distance correlation

between the subgraph and label yield the same estimate of the size of signal sub-

graph. However, calculating the distance correlation between subgraph and label is

computationally cheaper than computing the prediction error. This point will be

demonstrated in real data experiments as well.
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3.5.3 Real Data: Site and Sex Prediction With

Human Functional Magnetic Resonance Im-

ages

We consider the task of predicting the site and sex based on functional magnetic

resonance image (fMRI) graphs [85]. Two datasets used are SWU4 [86] and HNU1

[87], which have 467 and 300 samples respectively. Each sample is an fMRI scan

registered to the MNI152 template using the Desikan altas, which has 70 regions [55].

We first merge two data sets and then try to predict the site a sample come from. In

addition, we try to predict the sex of subject based the fMRI scan.

There are multiple scans (samples) per subject; as a consequence, we carry out

a leave-one-subject-out signal subgraph estimation and prediction procedure. To

estimate the signal subgraph for site and sex, we first apply iterative vertex screening

with samples from one subject left out. Next, we apply 11-Nearest Neighbor to predict

the site and sex of the left out samples. The prediction is based on the estimated

signal subgraph. This procedure is repeated for all subjects and we compute the

leave-one-subject-out screening and prediction error [48,50].

The prediction error and distance correlation between the subgraph and label

with varying size of signal subgraph are shown in Figure 3.4. Predicting randomly

or using no graph at all will have error rate 0.39 and 0.50 for site and sex prediction

respectively, which is shown in the Figure 3.4 with the number of vertices at 0.
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Sex prediction has prediction error around 0.5 and correlation small. However, the

site prediction has achieved high accuracy with classification error less than 0.1 when

predicting using a signal subgraph with around 10−30 vertices. The best performance

is achieved by the signal subgraph with 30 vertices.

As in the simulation experiment, we further utilize the minimum prediction error

and the maximum correlation between the subgraph and label to estimate the size of

the signal subgraph. In addition, we order the correlations between vertices and the

label to find a gap between signal vertices and insignal vertices. The estimated size of

signal subgraph to predict site using the three methods is 30, 25 and 27 respectively.

The estimated size of signal subgraph to predict sex is 45, 10 and 12. The three

different methods yield similar error rate, which validates that the stopping criterion

in the iterative screening algorithm works well.

We further apply the iterative vertex screening to all samples and pick the top

30 signal vertices with large distance-based correlations. It turns out that these 30

vertices are matched across left and right hemispheres. If we consider the 35 paired

regions in Desikan atlas, we can group the pairs according to whether both regions

are among the top 30 signal vertices or not. Table 3.2 shows the result. The regions

with large distance-based correlations are significantly matched based on Chi-square

test with a p-value of 0.0020. The 11 left-right hemisphere matched regions are

caudal anterior cingulate, corpus callosum, cuneus, fusiform, lateral occipital, lingual,

parsorbitalis, precuneus, rostral anterior cingulate, rostral middle frontal gyrus, and
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Figure 3.4: Leave-one-subject-out prediction error and distance correlation based

on different size of the signal subgraph. Two studies SWU4 and HNU1 are merged

into one data set. We carry out a leave one subject out, screening and prediction

procedure to predict sex or site of the left-out sample. The prediction error with

different size of signal subgraph is represented by the solid lines. When predicting

with no graph or predicting all samples randomly, the prediction error is 0.39 and

0.50 for site and sex respectively, which are shown with the number of vertices being

0. The distance correlation between the subgraph and two covariates is represented

by dashed lines. Sex prediction performs poorly in this setting with prediction error

being around 0.5 and correlation small. The site prediction has high accuracy with

the best performance achieved when the subgraph has 10− 30 signal vertices.

superior frontal gyrus. They are shown in Figure 3.5.
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Figure 3.5: Desikan atlas with highlighted brain regions which are significantly

dependent on site. The 11 matched brain regions as found in Table 3.2 are highlighted

in red. They are spatially adjacent.

Number of Pairs Right-Large Right-Small

Left-Large 11 1

Left-Small 7 16

Table 3.2: The number of left-right hemisphere matched regions with large or small

distance-based correlations.

3.5.4 Real Data: Sex Difference in Mouse Brain

with Magnetic Resonance Diffusion Tensor

Imaging

Structural magnetic resonance imaging has provided insight into the genetic basis

of mouse brain variability, by examining the relationship between volume covariance
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and genotypes [88]. Using high resolution diffusion tensor imaging and tractography

we can now examine the underlying bases for structural connectivity patterns [89],

in relationship with genotype and sex. 55 mouse brains (of pooled genotypes) were

scanned and registered into the space of a minimum deformation template, aligned

to Waxholm space [90]. The atlas labels were propagated onto the template, and

subsequently onto each individual brain using ANTs [91]. DSI Studio [92] was used

to estimate tract based structural connectivity for each brain. Each connectome was

represented as a graph with 332 vertices, 166 per hemisphere. Out of 55 mice, 32 of

them are male and 23 are female. Again, we carry out a leave-one-out iterative vertex

screening to estimate the signal subgraph. Then, the left-out sample is predicted

based on the estimated signal subgraph using a 9 nearest neighbor classifier. The

prediction result and distance correlation based on various size of signal subgraph are

shown in Figure 3.6. Due to the small sample size, the prediction error becomes more

volatile. Furthermore, correlation becomes monotone decreasing probably because

of over-fitting, since the sample size is small and graph size is large. The iterative

screening algorithm yields a signal subgraph of size 10, which is very close to the

best possible leave-one-out error at size 20. The top ranked nodes include a thalamic

component and the periaqueductal gray, which are important in driving the sexually

dimorphic mouse brain development [93] [94].
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Figure 3.6: Mouse sex prediction and distance correlation based on different size

of signal subgraph. Left one out iterative vertex screening and prediction is carried

on the mouse brain dataset. Signal subgraph with 10 or 20 vertices yield the best

performance.

3.6 Discussion

In summary, we developed an iterative vertex screening methodology to estimate

the signal subgraph of interest. The data experiments and theories offer strong ev-

idence that our screening algorithm estimates the signal subgraph effectively and

accurately, which leads to better performance for subsequent inference task. Our ap-

proach is intimately related to classical feature screening under linear models [7,67,68].

However, instead of Pearson correlation, we utilize distance correlation [69] and mul-

tiscale generalized correlation [72] to measure the dependency between the vertex and

response variable. This approach allows the possibility to estimate signal subgraph

based on non-scalar response variable or response with non-Euclidean metric. Our

method also naturally applies to topological or spectral features of vertices [4, 78],
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which have been shown to be effective in analyzing fMRI data [95, 96]. Thus our

method provides a general and viable tool for supervised learning problems on graphs.

3.7 Proofs

Proof of Lemma 3.4.2 By definition of distance covariance,

Dcov(X, Y )

=
1

cp+rcq

∫
s,t

|ϕX,Y (s, t)− ϕX(s)ϕY (t)|2

∥s∥1+p+r∥t∥1+q

=
1

cp+rcq

∫
sp,sr,t

|ϕX∗,Y (sp, t)− ϕX∗(sp)ϕY (t)|2|ϕZ(sr)|2

∥[sp, sr]∥1+p+r∥t∥1+q

≤ 1

cp+rcq

∫
sp,sr,t

|ϕX∗,Y (sp, t)− ϕX∗(sp)ϕY (t)|2

∥[sp, sr]∥1+p+r∥t∥1+q

= Dcov([X∗, 0⃗)], Y ),

where the inequality holds because |ϕZ(sr)| ≤ 1.

Using the alternative definition of distance covariance, we have

Dcov([X∗, 0⃗)], Y )

= E(∥[X∗, 0⃗)]− [X∗′, 0⃗)]∥∥Y − Y ′∥) + E(∥[X∗, 0⃗)]− [X∗′, 0⃗)]∥)E(∥Y − Y ′∥)

− 2E(∥[X∗, 0⃗)]− [X∗′, 0⃗)]∥∥Y − Y ′′∥)

= E(∥X∗ −X∗′∥∥Y − Y ′∥) + E(∥∥X∗ −X∗′∥∥)E(∥Y − Y ′∥)

− 2E(∥∥X∗ −X∗′∥∥∥Y − Y ′′∥)

= Dcov(X∗, Y ).
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This concludes Dcov(X∗, Y ) ≥ Dcov(X, Y ).

Proof of Corollary 3.4.3 By definition of distance correlation,

Dcorr(Xr, Y ) =
Dcov(Xr, Y )√

Dcov(Xr, Xr)Dcov(Y, Y )
.

We first show that Dcov(Xr, Y ) converges to 0 as the number of noise dimension r

goes to infinity. By definition,

Dcov(Xr, Y ) = E(∥Xr −X ′
r∥∥Y − Y ′∥)+

E(∥Xr −X ′
r∥)E(∥Y − Y ′∥)− 2E(∥Xr −X ′

r∥∥Y − Y ′′∥)

= E(∥Xr −X ′
r∥∥Y − Y ′∥)− E(∥Xr −X ′

r∥)E(∥Y − Y ′∥)+

2E(∥Xr −X ′
r∥)E(∥Y − Y ′∥)− 2E(∥Xr −X ′

r∥∥Y − Y ′′∥)

= Cov(∥Xr −X ′
r∥, ∥Y − Y ′∥)− 2Cov(∥Xr −X ′

r∥, ∥Y − Y ′′∥)

Let us look at Cov(∥Xr −X ′
r∥, ∥Y − Y ′∥).

Cov(∥Xr −X ′
r∥, ∥Y − Y ′∥)

= E(∥Xr −X ′
r∥∥Y − Y ′∥)− E(∥Xr −X ′

r∥)E(∥Y − Y ′∥)

≤ E(∥Xr −X ′
r∥∥Y − Y ′∥)− E(∥Zr − Z ′

r∥)E(∥Y − Y ′∥)

= E(∥Xr −X ′
r∥∥Y − Y ′∥)− E(∥Zr − Z ′

r∥∥Y − Y ′∥)

= E(∥Xr −X ′
r∥∥Y − Y ′∥ − ∥Zr − Z ′

r∥∥Y − Y ′∥)
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Let Z be the first entry of Zr, and we define

µ = E((Z − Z ′)2),

σ2 = V ar((Z − Z ′)2),

γ2 = Cov((Z − Z ′)2, (Z − Z ′′)2).

Applying the Taylor expansion to
√

∥Zr−Z′
r∥2

r
at µ, we have

∥Zr − Z ′
r∥√

r
=µ

1
2 +

1

2
µ− 1

2 (
∥Zr − Z ′

r∥2

r
− µ)

− 1

8
(
∥Zr − Z ′

r∥2

r
− µ)2 +O(r−

3
2 ).

Similarly,

∥Xr −X ′
r∥√

r
=µ

1
2 +

1

2
µ− 1

2 (
∥Xr −X ′

r∥2

r
− µ)

− 1

8
(
∥Xr −X ′

r∥2

r
− µ)2 +O(r−

3
2 ).

Therefore,

∥Xr −X ′
r∥ − ∥Zr − Z ′

r∥ = O(r−
1
2 ).

As a consequence,

Cov(∥Xr −X ′
r∥, ∥Y − Y ′∥)

≤ E(∥Xr −X ′
r∥∥Y − Y ′∥ − ∥Zr − Z ′

r∥∥Y − Y ′∥)

= O(r−
1
2 ).
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We can also derive a lower bound:

Cov(∥Xr −X ′
r∥, ∥Y − Y ′∥)

= E(∥Xr −X ′
r∥∥Y − Y ′∥)− E(∥Xr −X ′

r∥)E(∥Y − Y ′∥)

≥ E(∥Zr − Z ′
r∥∥Y − Y ′∥)− E(∥Xr −X ′

r∥)E(∥Y − Y ′∥)

= E(∥Zr − Z ′
r∥)E(∥Y − Y ′∥)− E(∥Xr −X ′

r∥)E(∥Y − Y ′∥)

= E(∥Zr − Z ′
r∥ − ∥Xr −X ′

r∥)E(∥Y − Y ′∥)

= O(r−
1
2 )

Similarly, we can show that

Cov(∥Xr −X ′
r∥, ∥Y − Y ′′∥) → 0.

This proves Dcov(Xr, Y ) → 0.

Next, we demonstrate that Dcov(Xr, Xr) is non-vanishing. Again, we need to

analyze Cov(∥Xr −X ′
r∥, ∥Xr −X ′

r∥) and Cov(∥Xr −X ′
r∥, ∥Xr −X ′′

r ∥).

Cov(∥Xr −X ′
r∥, ∥Xr −X ′

r∥)

= E(∥Xr −X ′
r∥2)− E2(∥Xr −X ′

r∥)

= E(∥X∗ −X∗′∥2) + rµ− E2(∥Xr −X ′
r∥)

= E(∥X∗ −X∗′∥2) + rµ− r(µ
1
2 +

1

2
µ− 1

2
E(∥X∗ −X∗′∥2)

r
− 1

8
µ− 3

2
σ2

r
+O(r−

3
2 ))2

=
1

4
µ−1σ2 +O(r−1).

Use the similar Taylor expansion technique, we can show

Cov(∥Xr −X ′
r∥, ∥Xr −X ′′

r ∥) =
1

8
µ−1γ2 +O(r−1).
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As long as Z is non-degenerate, σ2 − γ2 > 0. This shows

lim
r→∞

Dcov(Xr, Xr) =
1

4
µ−1(σ2 − γ2) > 0

. Moreover, Dcov(Y, Y ) is always a fixed positive number for non-degenerate Y , thus

we conclude

lim
r→∞

Dcorr(Xr, Y ) = 0.

Proof of Theorem 3.4.4 It suffices to show the Bayes plug-in density L(A; P̂ y) is

close to the true density L(A;P y) with high probability. We will assume πy ≥ α for

some fixed α > 0. Applying Hoeffding’s Equality to π̂y [97],

P(|π̂y − πy| < ϵ1) ≥ 1− 2 exp(−2mϵ21).

By choosing ϵ1 small enough such that π̂y >
α
2
, and applying Hoeffding’s Equality to

P̂ y
ij, it follows that

P(|P̂ y
ij − P y

ij| < ϵ2) ≥ 1− 2 exp(−mαϵ22).

If |π̂y − πy| < ϵ1 and |P̂ y
ij − P y

ij| < ϵ2, for any adjacency matrix A:

|πyL(A;P y)− π̂yL(A; P̂ y)| ≤ |πyL(A; P̂ y)− π̂yL(A; P̂ y)|+ |πyL(A;P y)− πyL(A; P̂ y)|

<ϵ1 + |πyL(A;P y)− πyL(A; P̂ y)|

<ϵ1 + |L(A;P y)− L(A; P̂ y)|

<ϵ1 + eϵ2.
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The last inequality follows from recursively applying the technique used in the first

inequality and the fact that |P̂ y
ij −P y

ij| < ϵ2. As a consequence, conditioned on π̂y and

P̂ y satisfy the Hoeffding’s inequality,

EA(|π0L(A;P 0)− π̂0L(A; P̂ 0)|+ |π1L(A;P 1)− π̂1L(A; P̂ 1)|) ≤ 2(ϵ1 + eϵ2).

Setting 2(ϵ1 + eϵ2) = ϵ and 2ϵ21 = αϵ22, we have ϵ2 = ϵ
2e+

√
2α
. Then, apply Theorem

2.3 in [77] yields

P(L(gV )− L(g∗) < ϵ) ≥ 1− 2(e+ 1) exp

(
−mαϵ2

(2e+
√
2α)2

)
.

Alternatively, setting η = 2(e+ 1) exp( −mαϵ2

(2e+
√
2α)2

) yields that with probability at least

1− η, it holds that

L(gV )− L(g∗) ≤ (2e+
√
2α)

√
log(2(e+1)

η
)

mα
.

Proof of Corollary 3.4.5 Following Theorem 3.2, we have

E(L(gV ))− L(g∗) = E(L(gV )− L(g∗))

< ϵI{L(gV )− L(g∗) < ϵ}+ I{L(gV )− L(g∗) ≥ ϵ}

< ϵ+ 2(e+ 1) exp

(
−mαϵ2

(2e+
√
2α)2

)
.
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Chapter 4

Optimal Decisions for Discovery

Science via Maximizing

Discriminability

4.1 Introduction

In this era of big data, many scientific, government, and corporate groups are

collecting and processing massive data sets [8, 9]. To obtain optimal quantitative

answers to any inquiry about data requires making two decisions: (i) how should the

data be collected?, and (ii) how should the data be processed?. When the downstream

inference task is specified, a priori, we can collect and process data to optimize the

performance of task [48, 98]. However, recently, across industry, governmental, and
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academic settings, certain data sets become benchmark or reference data sets. Such

data sets are then used for a wide variety of different inferential problems. Collecting

and processing these data sets requires massive institutional investments, and choices

related to questions(i) and (ii) above have dramatic effects on all subsequent analyses.

Optimally addressing experimental design decisions can yield significant savings in

both the financial and human costs, and also improve accuracy of analytical results

[10–12]. Therefore, a theoretical framework to enable investigators to select from a

set of possible design decisions in the absence of an explicit task or for multiple tasks

could reap great rewards.

This framework should provide a measure of consistency of data collection and

processing, which is intuitive to understand and easy to implement. It should be

non-parametric and robust; therefore, it is ready to be applied under a variety of

settings. It should not be computationally expensive and can be applied to large

data sets. Furthermore, it should be simple and unified; as a consequence, we can

easily compare it across data sets. Lastly, theories and real data experiments should

provide solid support to use this measure to guide data collection and processing.

To this end, we have proposed and developed a formal definition of discriminability

to guide data collection and processing. Discriminability is a non-parametric statis-

tical property of a joint distribution in a hierarchical model, which can be used to

differentiate between classes of objects. We prove that discriminability (which may

be more aptly called reliability), provides a lower bound on predictive accuracy for
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any downstream inference task, even if we have never seen the covariates to predict in

the processing. We then design an estimator of discriminability computed from test-

retest data set, demonstrate that it is unbiased, and derive our estimators asymptotic

distribution. Furthermore, one sample and two sample tests for discriminability are

developed. These tests determines the statistical significance of hypothesis of interest

based on the discriminability estimator.

Numerical simulations are conducted to demonstrate the basic property of our dis-

criminability estimator and tests in a variety of settings. Then, we apply our approach

to choose amongst a set of choices one must make when designing a neuroimaging

study to investigate functional connectomics [99, 100]. We start by finding the most

discriminable threshold for converting correlation connectome matrices into binary

graphs. Indeed, consistent with our theoretical and simulated results, maximizing

the discriminability also maximizes performances on a suite of different downstream

inference tasks. We then ask about a series of pre-processing steps: should one mo-

tion correct or not, should one perform frequency filtering or not, and should one

implement global signal regression or not, etc. We determine the optimal choice

for each pre-processing steps, and find the most discriminable pipelines amongst 64

pre-processing pipelines.

Thus, in total, our discriminability analysis is a powerful tool for making decisions

about how to collect and process data sets designed for discovery science. In the

next section, we discuss previous work on measuring reliability or reproducibility. In
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Section 4.3, we present the discriminability and its estimator. In Section 4.4, we

demonstrate theoretical properties of discriminability. In Section 4.5, we illustrate

the utility of our discriminability framework through experiments with emphasis on

processing human brain networks.

4.2 Related Work

There are some successful attempts to quantify reliability or reproducibility in

neuroimaging studies [101–109]. We are going to review a subset of them which is

related to our approach.

• Intraclass correlation coefficient (ICC) is introduced to measure consistency

or reproducibility of scalar quantitative measurements [101]. In neuroimag-

ing, people attempt to extract one or a few summary scalar statistics from

each image and then evaluate the ICC of the statistics [104, 105]. They report

moderate-to-high test-retest reliability for different statistics. The problem with

this approach is that the summary statistics may not be representative. Also,

there is no principled approach to average over multiple ICCs.

• Image intraclass correlation coefficient (I2C2) is proposed by Shou et al. to

measure reliability [106]. It generalizes classic intraclass coefficient to high di-

mensional observations. It computes reliability estimates based on the traces of

within subject and across subject covariance matrix. It relies on the assumption
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that noise is additive and observations lies in the space equipped with Euclidean

distance. As a consequence, it is not suitable to apply to more general settings.

• Graphical intraclass correlation coefficient (GICC) is a reproducibility measure

proposed by Yue et al. [107]. It is designed specifically for the case when data

of interest are binary graphs. It takes a parametric approach by first assuming

a probit link function and estimating latent edge feature vectors. Then, it

computes GICC based on variation of latent edge feature vectors. In practice,

its assumptions is hard to justify and it is computationally expensive to estimate

latent features for graphs of moderate size.

• Correspondence curve is introduced to study reproducibility of signals [109].

It first ranks all the signals by a scalar score within each replicates, and then

the proportion of signals which ranked among top percentile of both replicates

is computed. It generalizes Spearman’s rank correlation coefficient and can

be used to detect irreproducible signals. In our studies, we are interested in

reproducibility of measurements instead of signals and the measurements are

vectors or matrices, which makes this approach not immediately applicable.

• Distance components (DISCO) is proposed by Rizzo and Székely as a measure

of dispersion [103]. It computes one distance statistic for multiple empirical

distributions based on pairwise distances between samples. It can also be used

to test the hypothesis that whether multiple sets of samples are drawn from the
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same distribution or not. Our approach is similar to DISCO in the sense that

we all rely on pairwise distance matrix. However, DISCO is designed for testing

which requires a fixed number of subjects and a large amount of measurements

from each subject. In our studies, we only have a few measurements from each

subject which makes DISCO hard to apply.

• NPAIRS data analysis framework is proposed in [102]. It takes a resampling

approach by splitting data in half. After performing a series of dimension re-

duction on the data, a label is predicted using Gaussian mixture model. Then,

correlation between all pairs of spatially aligned voxels is calculated. A signal-

to-noise ratio measure is computed based on the correlation.

• A statistics called estimation stability (ES) is proposed in [108]. It is similar

to a variance estimator computed through delete-d jacknife resampling. It is

applied to smoothing parameter selection in Lasso and is shown to obtain a

great reduction of model without sacrificing prediction performance in a task

fMRI study.

95



CHAPTER 4. OPTIMAL DECISIONS FOR DISCOVERY SCIENCE VIA
MAXIMIZING DISCRIMINABILITY

4.3 Discriminabilty

4.3.1 Discriminability to Guide Processing

In this section, we present the discriminability as a framework to guide processing.

Discriminability measures the overall consistency and differentiability of observations.

For example, if a subject is measured twice under the same conditions, two obser-

vations should be close to each other given the measure is consistent. In addition,

one should be able to tell these two observations come from the same subject when

compared to observations from other subjects given the measure is differentiable. We

quantify this idea of consistency and differentiability through discriminability.

To formalize the definition of discriminability, consider the following generative

process. For each sample i, there exists some true physical property vi. Unfortunately,

we do not get directly to observe vi, rather, we measure it with some device, that

transforms the truth from vi to wi via fϕ. The parameter ϕ ∈ Φ characterizes all

options in the measurement, including, for example, which scanner to use, which

resolution, the number of images, sampling rate, etc. The output of fϕ is the “raw”

observation datawi, but it is corrupt in various ways, including movement or intensity

artifacts introduced by the measurement process. Therefore, rather than operating

directly on wi, we intentionally “pre-process” the data, in an effort to remove a

number of nuisance variables. This pre-processing procedure further transforms the

data from wi to xi via gψ. The parameter ψ ∈ Ψ indexes all pre-processing options.
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In neuroimaing, these options may include whether to perform motion correction,

which motion correction, deconvolution, etc. More specifically, the entire code base,

including dependencies, and even the hardware the pre-processing is running on, could

count as ψ. For brevity, we define xi := gψ
(
fϕ(vi)

)
. We should notice that gψ and

fϕ by their natures are random functions which means even if we measure the same

physical property vi twice the results could be different.

Let i denote the sample’s unique identity (hereafter, referred to as the subject)

and t denote the trial number. Thus, there is a single vi for subject i, but we have

xi,t, which is the tth trial, implicitly also a function of ϕ and ψ, which encodes all

the details of the measurement and pre-processing. If both gψ and fϕ together do

not introduce too much noise, then we would expect that xi,t and xi,t′ are closer to

one another than either are to any other subject’s measurement, xi′,t′′ . Define δ to

be a metric computing the distance between two measurements, δ : X × X → R+.

Formally, we expect that δ(xi,t,xi,t′) < δ(xi,t,xi′,t′′), for most combinations of i, i′ ̸=

i, t, t′ ̸= t, t′′. For brevity, let δi,t,t′ := δ(xi,t,xi,t′) and δi,i′,t,t′′ := δ(xi,t,xi′,t′′). This

intuition leads to our definition of discriminability:

D(ψ,ϕ) = P(δi,t,t′ < δi,i′,t,t′′). (4.1)

In words, discriminability is the probability that within subject distance is smaller

than across subject distance. D(ψ,ϕ) depends on three matters, namely measure-

ment options fϕ, processing options gψ and the distribution of true physical property
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v. To understand the equation 4.1 better, we can expand it,

D(ψ,ϕ) = E(P(δ(gψ(fϕ(vi))t, gψ(fϕ(vi))t′) < δ(gψ(fϕ(vi))t, gψ(fϕ(vi′))t′′)|vi,vi′)).

(4.2)

The distribution of v is usually out of the control of researchers. However, we want

to find the best data collection and processing options. To achieve this, we consider

maximizing the discriminability of processed data, that is

maximize
ψ∈Ψ,ϕ∈Φ

D(ψ,ϕ). (4.3)

It is often the case that data collection is also out of control of researchers, that is ϕ is

a fixed element in Φ. Therefore, we are only interested in finding the best processing

routine encoded by ψ. This is also the focus of this paper, since we do not have

opportunity to make decisions on the data collection choices. In this case, we drop ϕ

in our notation and only maximize the discriminability over set Ψ

maximize
ψ∈Ψ

D(ψ) (4.4)

This approach is intuitive and easy to understand. We will show that maximizing

discriminability leads to good prediction performance. In addition, an unbiased esti-

mator is designed to compute discriminability from test-retest data set. Furthermore,

we have developed a one sample test procedure to determine whether there are sub-

ject specific information in the data, and a two sample test procedure to compare

two processing pipelines. In experiment section, we will demonstrate the utility of

discriminability through data experiments.

98



CHAPTER 4. OPTIMAL DECISIONS FOR DISCOVERY SCIENCE VIA
MAXIMIZING DISCRIMINABILITY

4.3.2 Discriminability Estimator

In real applications, distribution of xi,t may never known to us; hence, it is not

possible to compute discriminability D(ψ) or D in short when there is no ambiguity

in processing pipelines under consideration. However, samples xi,t are observed, and

we can approximate true discriminability D using an estimator D̂ which is a function

of observed samples. For each pair of observations xi,t and xi,t′ from subject i, we

first define

D̂i,t,t′ =

n∑
i′ ̸=i

s∑
t′′=1

I{δi,t,t′ < δi,i′,t,t′′}

(n− 1)s
,

where I{·} is the indicator function, n is the number of subjects, and s denotes

the number of observations per subject. D̂i,t,t′ is the faction of observations from

other subjects farther away from xi,t than xi,t′ . It approximates the probability that

distances from observations of other subjects to the tth observation of subject i is

larger than the distance between tth and t′th trial of subject i. Then, we define

the discriminability estimator D̂ to be the mean of D̂i,t,t′ averaged over all pairs of

observations from same subjects,

D̂ :=

n∑
i=1

s∑
t=1

s∑
t′ ̸=t

D̂i,t,t′

ns(s− 1)
.

D̂ is the sample discriminability which approximates discriminability or population

discriminability. In Section 4.4, we discuss theoretical properties of discriminability.

One important property is that the discriminability estimator D̂ is unbiased and

converges to D as the number of subjects n goes to infinity [63].
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4.3.3 One Sample Test for Discriminability

In applications, we sometimes are interested in whether there is any subject spe-

cific information in the data. In other words, we want to know whether xi,t is inde-

pendent of vi. Formally, it is equivalent to test the hypothesis that xi,t is independent

of vi. If we fail to reject the hypothesis, it implies the measurement xi,t reveals no

information of true physical property vi. As a consequence, xi,t is independent of

any phenotype yi, and there is no hope in predicting yi based on xi,t. If this is the

case, the researchers should consider collecting more data or processing data differ-

ently. Since vi is unobserved and yi is unknown, a direct independence test is not

applicable. We consider a test through discriminability. If measurements are inde-

pendent of physical properties, xi,t and xi′,t′ should follow the same distribution. In

this case, within subject distances should not differ across subject distances in distri-

bution; therefore, discriminability should be 0.5. Conversely, we show in Lemma 4.4.5

that discriminability being 0.5 implies that xi,t and vi are independent. If we think

any phenotype yi is independent of measurement xi,t conditioned on true physical

property vi, an immediate consequence is that we can test the null hypothesis that

measurements xi,t are independent of any phenotype yi through testing the hypothesis

whether discriminability is 0.5.

H0 : x ⊥ y , and HA : x ̸⊥ y.
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We reject the null hypothesis above when there are strong evidences suggesting that

D > 0.5.

We have two valid approaches to determine D > 0.5 through discriminability

estimate D̂. The first approach takes the advantage of the bound on variance of D̂

which we derived in proving Lemma 4.4.4. Specifically, we show that the variance of

D̂ is less than or equal to 1/n. Based on Chebyshev’s inequality, we can derive a 95

percent confidence interval (D̂ − 2
√
5√
n
, D̂ + 2

√
5√
n
). If 0.5 lies in the confidence interval,

we do not reject the null hypothesis; otherwise, we reject the null hypothesis. This

approach is computationally simple; however, generally has small power due to the

bound on variance is not tight. The second approach based on estimating a null

distribution for D̂ through permutation. In particular, we randomly permute subject

labels for each trial and then estimate discriminability based on permuted labels. We

repeat this procedure a large number of times and find the 95th quantile of permuted

discriminability estimates. If D̂ is less than the 95th quantile, we do not reject the

null hypothesis; otherwise, we reject the null hypothesis. The details of this approach

is described by Algorithm 5. This approach has larger power than the first approach,

the only downside is that estimating discriminability for permuted samples takes

sometime. In most applications, with less than a few hundred measurements, we

recommend using the second approach.
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Algorithm 5 One Sample Test for Discriminability

1: procedure Test the null hypothesis D̂ = 0.5

2: Compute discriminability with true subject label D̂

3: for i=1 do n

4: Compute discriminability with permuted subject label D̂i

5: end for

6: Compute p-value as the fraction of times that D̂i > D̂

7: Reject the null hypothesis if p-value is less than 0.05

8: end procedure

4.3.4 Two Sample Test for Discriminability

In many applications, we want to know whether one data processing pipeline ψ1

yields more discriminable data set than another pipeline ψ2. Based on the theory,

by choosing the processing pipeline with larger discriminability, we can have a lower

bound on Bayes prediction error. To achieve this, we consider testing the null hy-

pothesis that two discriminabilities are equal:

H0 : D(ψ1) = D(ψ2) , and HA : D(ψ1) > D(ψ2).

However, D(ψ1) and D(ψ2) are not known to us, we have to decide based on es-

timators D̂(ψ1) and D̂(ψ2). We have two valid approaches to test this. The first

approach takes the advantage of the bound on variance of D̂ which we derived in

proving Lemma ??. Specifically, we show that the variance of discriminability esti-
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mate is bounded by 1/n. Therefore, we can derive two confidence intervals centered

at D̂(ψ1) and D̂(ψ2). Then, the null hypothesis is rejected if two confidence inter-

vals does not overlap. Unfortunately, due to the fact that inequalities are not tight,

this approach has very low power. For this method to work, the number of sub-

jects n usually needs to be larger than a thousand. It is impractical for most of the

data set. The second approach estimates null distribution of D̂(ψ1)− D̂(ψ2) through

bootstrapping. We can bootstrap copies of the original data set and compute discrim-

inability on bootstrapped data set to approximate the null distribution. Specifically,

let D̂(i)(ψj) denote the discriminability estimate for ith bootstrapped copy with data

processed by pipeline j. If the null hypothesis is true, D̂(ψ1) − D̂(ψ2) should have

similar distribution as D̂(i)(ψj)− D̂(i′)(ψj). To bootstrap a copy of original data set,

we need to make sure that the copy have the same number of subjects and number

of measurements per subject as the original data set. To bootstrap measurements for

a subject, we first randomly choose two subjects from original data sets, and then

take a random convex linear combination of measurements of these two subjects. We

keep repeating this step until the bootstrapped data set has the same number of

subjects as the original data set, and discriminability D̂(i)(ψj) is estimated. To ap-

proximate the null distribution, a large number of bootstrapped discriminabilities are

computed, and their pairwise differences D̂(i)(ψj)− D̂(i′)(ψj) are used to compute a

p-value for D̂(ψ1)−D̂(ψ2). We should notice that bootstrapped data tends to be less

discriminable than the original data due to the fact bootstrapped subjects are closer
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to each other. However, we only use differences in bootstrapped discriminability. The

Algorithm 6 summarizes the steps to estimate p-value for testing D(ψ1) = D(ψ2).

Algorithm 6 Two Sample Test for Discriminability

1: procedure Test the null hypothesis D(ψ1) = D(ψ2)

2: Process the data set with pipelines ψ1 and ψ2

3: Compute D̂(ψ1) and D̂(ψ2)

4: for i in 1 through number of repeats do

5: for j in 1 through number of subjects do

6: Randomly select two subjects from data set

7: Linearly combine measurements of these subjects

8: end for

9: Form two bootstrapped data sets processed by ψ1 and ψ2

10: Compute D̂(i)(ψ1) and D̂(i)(ψ2)

11: end for

12: Compute pairwise differences D̂(i)(ψ1)− D̂(i′)(ψ1) and D̂(i)(ψ2)− D̂(i′)(ψ2)

13: Compute p-value as the fraction of times that D̂(ψ1) − D̂(ψ2) > D̂(i)(ψj) −

D̂(i′)(ψj)

14: Reject the null hypothesis if p-value is less than 0.05.

15: end procedure
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4.4 Theoretical Results

4.4.1 Optimizing Discriminability Optimizes Per-

formance For Any Classification Task

Consider the situation that the downstream inference task is classification, that is

in addition to vi, there are other properties of subject i of interest; we call all of them

yi ∈ Y . These may include, for example, the phenotype of the subject, including

personality tests, demographic information, and genetic data. In this paper, we focus

on binary classification problem that is Y = {0, 1}. The goal of experimental design,

in this context, is to choose ψ ∈ Ψ to make good prediction of yi based on observation

xi. In this section, we will see that given two pipelines ψ1 and ψ2, the one with larger

discriminability is more likely to have better prediction performance.

To quantify the performance of our choice, we introduce some assumptions. First,

assume that each (vi,yi) pair is sampled independently and identically from some

distribution, (vi,yi)
i.i.d.∼ FV,Y . The goal is to predict the binary-valued target variable

yi, using xi as the predictor variables. Given a classifier g : X → Y , to quantify the

performance of classifier, we define the loss function L(g) to be the probability of

making error in prediction that is

L(g) = P(g(xi) ̸= yi).

It is known that the minimal prediction error L∗(xi,yi) among all possible prediction
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function is achieved by Bayes classifier [77]

L∗(xi,yi) := L(g∗),

where g∗ is the Bayes classifier which is defined by

g∗(xi) := argmax
y∈{0,1}

P(yi = y|xi).

Since xi depends on pipeline ψ, we denote the loss of pipeline ψ by ℓ(ψ) which is the

Bayes prediction error of (xi,yi),

ℓ(ψ) := L∗(xi,yi) = L∗(gψ(fϕ(vi)),y).

The next theorem shows the relationship between Bayes classification error and dis-

criminability. Under assumptions that the noise is additive, we can prove theorem 1

which asserts that Bayes classification error is bounded by a decreasing function of

discriminability.

Theorem 4.4.1 There is a decreasing function h which only depends on v and y,

such that

ℓ(ψ) ≤ h(D(ψ)).

As a consequence, we expect the classification error to be small when the discrim-

inability is large. An immediate corollary justifies using discriminability to select the

optimal processing pipeline.
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Corollary 4.4.2 Given two processing pipelines ψ1 and ψ2, suppose ψ1 is more

discriminable than ψ2, that is D(ψ1) > D(ψ2). If ℓ(ψ2) ≥ h(D(ψ1)), then

ℓ(ψ1) ≤ ℓ(ψ2).

Also, we must have

ℓ(ψ1) ≤ h(D(ψ2)).

It tells us for any distribution of y, we have a tighter bound on Bayes error using the

more discriminable pipeline. When choosing from two processing pipelines ψ1 and

ψ2, we should first compute D(ψ1) and D(ψ2). We then select the pipeline which

yields larger discriminability to have lower bound on the Bayes classification error.

This theorem justifies maximizing discriminability for subsequent classification tasks.

Figure 4.1 summarizes the framework to find the optimal processing pipeline.

4.4.2 Discriminability and Its Estimator

In this section, we discuss some properties of discriminability and its estimator.

First, the next lemma asserts that the sample discriminability is an unbiased estimator

of discriminability.

Lemma 4.4.3 D̂ is an unbiased estimator of D, that is

E(D̂) = D.
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Figure 4.1: Decision Making Through Discriminability Framework. Test-retest

data set is collected under experiment design options ϕ and processed by pipeline ψ.

The pairwise distances of all measurements are computed using a metric δ(·, ·). For

each pair of measurements of the same subject, we estimate the probability of across

subject distances being larger than the within subject distance. Discriminability is

the mean of estimated probabilities. Select the option and pipeline with maximum

discriminability.

If we keep sampling from new subjects, the sample discriminability will converge to

the true discriminability in probability.

Lemma 4.4.4 As n → ∞, D̂ converges to D in probability, that is

D̂
p→ D.

To justify our one sample test, we show that under additive noise model discrim-

inability is 0.5 implies independence of x and v.
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Lemma 4.4.5 Under some regularity conditions, discriminability is 0.5 implies mea-

surements are independent of physical property, that is

D = 0.5 ⇒ x ⊥ v.

4.5 Numerical Results

4.5.1 Simulation: Convergence of Discriminability

Estimator

In Lemma 4.4.3 and 4.4.4, we claim discriminability D̂ is unbiased and converges

to the true population discriminability in probability. We demonstrate these two

lemmas through simulation. We consider a simple case that gψ and fϕ together

introduce independent additive Gaussian noise ϵ, that is

xi,t = gψ
(
fϕ(vi)

)
= vi + ϵi,t. (4.5)

vi and ϵi,t are both independent and identically distributed standard Gaussian ran-

dom variable that is

vi
i.i.d.∼ G(0, 1) , and ϵi,t

i.i.d.∼ G(0, 1).

In addition, vi and ϵi,t are assumed to be independent. For each subject, we sample

one true physical property vi and two noises ϵi,t with t ∈ {1, 2}. Then, two measure-
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ments are generated by xi,t = vi + ϵi,t. We let the number of subjects n vary from 10

to 200. For each value of n, we repeatedly generate data and compute discriminability

100 times using Euclidean distance. It leaves us 100 estimates of discriminability D̂.

With this data generation scheme, we can actually compute the population discrim-

inability D through numerical integration, which turns out to be 0.615. Subtracting

D from 100 D̂s, we can estimate the distribution of estimation error. Figure 4.2 shows

the difference between D̂ and D. We can see that the mean of difference is centered

around 0, and discriminabiity estimates D̂ converge to D as the number of subject

increases.

4.5.2 Simulation: Test Power of Discriminability

In this section, we investigate the power of one sample and two sample tests

for discriminability through simulation. For one sample test for discriminability, we

consider the simple additive noise case as in the previous section, that is,

xi,t = vi + ϵi,t,vi
i.i.d.∼ G(0, 1); ϵi,t

i.i.d.∼ G(0, 1).

Again, we let the number of subjects n to increase from 10 to 200, and for each

subject we sample two observations. For each generated data set, we first estimate

discriminability, and a p-value is computed based on 100 permutations. The null

hypothesis that D = 0.5 is rejected when p-value is less than 0.5. Under this data

generation scheme, the true discriminability is 0.615; therefore, rejecting the null
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Figure 4.2: Convergence of D̂. Distribution of difference between discriminability

estimates and truth is shown. The physical property and noise are generated from

standard Gaussian distribution as described in the simulation section. The black dots

indicate the mean over 100 repeats. As the number of subjects increases, the sample

discriminability converges to the true population discriminability.

hypothesis is preferred. For each value of n, we independently generate 100 data sets

and perform the one sample test. The fraction of times in which the null hypothesis

is rejected with its standard error is shown in Figure 4.3. The power of the test

quickly increases as the number of subjects increases, and is close to 1 with more

than 50 subjects. For two sample test for discriminability, we generate two sets

of measurements x1
i,t and x2

i,t. The superscript is to denote the pipeline which the

measurements come from. The noise is still Gaussian and additive; however, the
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Figure 4.3: Discriminability Test Power. One sample and two sample test power

of discriminability with varying sample size is shown. The physical property and

additive noise are generated from standard Gaussian distribution as described in the

simulation section. At level of 0.05, the power is estimated based on 100 repeats. The

power of two tests become close to 1 with more than 100 samples.

pipeline 1 has smaller noise level compared to pipeline 2. Specifically,

x1
i,t = vi + ϵ

1
i,t;x

2
i,t = vi + ϵ

2
i,t;vi

i.i.d.∼ G(0, 1); ϵ1i,t
i.i.d.∼ G(0, 0.25); ϵ2i,t

i.i.d.∼ G(0, 1).

We let the number of subjects n to increase from 10 to 200, and for each subject we

sample two observations. We generate measurements for both pipelines, and apply

the two sample test procedure as described in Algorithm 6. Under this data gener-

ation scheme, the true discriminability of pipeline 1 is larger than that of pipeline

2; therefore, rejecting the null hypothesis is preferred. For each value of n, we in-
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dependently generate 100 pairs of data sets and perform the two sample test. The

fraction of times in which the null hypothesis is rejected with its standard error is

shown in Figure 4.3. The power of the test quickly increases as the number of subjects

increases, and is close to 1 with more than 100 subjects.

4.5.3 Simulation: Parameter Selection Through Dis-

criminability

In this simulation, we consider the task of projecting 2-dimensional measurements

linearly into 1-dimensional space. Like in the previous experiment, we assume inde-

pendent additive noise. In addition to xi,t, there is a binary class label yi associated

with subject i. The true physical property is Gaussian distributed conditioned on yi,

vi|yi = 1
i.i.d.∼ G(

⎡⎢⎢⎣1
0

⎤⎥⎥⎦ ,

⎡⎢⎢⎣1 0

0 1

⎤⎥⎥⎦) , and vi|yi = 0
i.i.d.∼ G(

⎡⎢⎢⎣−1

0

⎤⎥⎥⎦ ,

⎡⎢⎢⎣1 0

0 1

⎤⎥⎥⎦).
We consider two cases for the distribution ϵi,t. The first case is that ϵi,t has larger

variance in the first coordinate; the other case is that ϵi,t has larger variance in the

second coordinate, that is

Case 1: ϵi,t ∼ G(

⎡⎢⎢⎣0
0

⎤⎥⎥⎦ ,

⎡⎢⎢⎣2 0

0 1

⎤⎥⎥⎦)

Case 2: ϵi,t ∼ G(

⎡⎢⎢⎣0
0

⎤⎥⎥⎦ ,

⎡⎢⎢⎣1 0

0 4

⎤⎥⎥⎦)
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The noise is assumed to be independent of vi and yi. The Figure 4.4 shows the scatter

plot of measurements. Under this generation scheme, the class signal only exists in

the first coordinate. Therefore, the optimal linear projection should only keep the

first coordinate.

We sample 200 subjects with vi from each class conditional distribution. Furthermore,

2 measurements are sampled for each subject. We use both discriminability and

principal component analysis (PCA) [13] to find the optimal linear projection. After

finding the projection, we estimate two class conditional distribution through a kernel

density estimator [110]. The results of two cases are provided in two columns of Figure

4.4. In the first case, both methods find the optimal linear projection which separates

two classes. However, in the second case only discriminability recovers the optimal

projection. PCA finds linear projection with little class signal.

4.5.4 Real Data: Optimal Discriminability Yields

Optimal Predictive Accuracy

In this experiment, we are going to investigate the thresholding step in process-

ing resting state functional magnetic resonance imaging (fMRI). In fMRI processing,

time series is first extracted for each region of interest (ROI) of brain [111]. Then, a

pairwise connectivity matrix is estimated through computing absolute Pearson cor-

relation [112]. To remove noise and obtain a binary graph, the pairwise connectivity
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Figure 4.4: Finding the optimal projection. Linear projections are computed us-

ing PCA and optimizing discriminability. Physical properties vi of 200 subjects are

sampled from 2-D two class conditional Gaussian distribution. 2 measurements are

sampled for each subject with additive Gaussian noise. Noise could have either large

variance in x-coordinate or y-coordinate. The details of generating data can be found

in simulations section. The results for two cases are shown in two columns. Maximiz-

ing discriminability yields separated samples which have Bayes optimal classification

error.
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matrix needs to be thresholded by a value which lies in [0, 1] [113, 114]. We would

like to find the optimal value for the threshold. In addition to neuroimages, demo-

graphic information and five neuro factors [115] are also collected from each subject.

We also want to find the threshold which leads to graphs with the best prediction

performance.

HCP100 data set is used in this experiment [116]. It contains data from 461

subjects with 4 measurements per subject. We let the threshold vary from 0 to 1. For

each value of the threshold, binary graphs is constructed by thresholding correlations.

Then, the discriminability is computed with Euclidean distance. In addition, sex, age

and the neuro factors are predicted using k-nearest neighbor [117]. For comparison,

another reliability statistics, namely image intraclass correlation coefficient (I2C2) is

also computed which generalizes intraclass correlation coefficient for high dimensional

observations [106]. The discriminability, I2C2, and prediction errors versus the values

of threshold are shown in figure 4.5. The threshold which maximizes discriminability

is close to the thresholds yielding smallest predicting errors for three covariates.

4.5.5 Real Data: fMRI Processing Pipelines

In this experiment, we are going to investigate the pre-processing options in ac-

quiring resting state fMRI graphs [118]. There have been a lot of steps proposed for

pre-processing connectomes in the last decade. Here, we study a subset of them. In

particular, we are interested in options include atlas [?], anatomical registration [119],
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Figure 4.5: Optimizing discriminability yields optimal prediction accuracy for mul-

tiple covariates. HCP100 is used to investigate optimal threshold to convert correla-

tion graphs into binary graphs. Curves are scaled to have similar value range. For

each statistic, the optimal threshold and value pair is indicated by a circle on the

curve. The threshold maximizing discriminability is close to the optimal thresholds

for predicting three covariates.

temporal filtering [120], motion correction [121] and nuisance signal regression [122].

We want to find the optimal pre-processing pipeline and the best decision for each

option. We are going to index each pipeline by five letters which is explained in

Table 4.1. As an example, the best pipeline found is CFXSG which means the data

is pre-processed using CC200 atlas, registered with FSL, no frequency filtering, with
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Option Letter

Atlas C for CC200, H for HOX, A for AAL, D for DES [55,123]

Anatomical Registration F for FSL, A for ANTS [124,125]

Temporal Filtering F for frequency filtering, X for not [120]

Motion Correction S for scrubbing, X for not [121]

Nuisance Signal Regression G for global signal regression , X for not [122]

Table 4.1: fMRI processing options.

scrubbing and with global signal regression. There are 4 possible choices for atlas

and 2 possible choices for other options. This leaves us 64 different combinations of

options. We select 13 test-retest fMRI data sets with the number of measurements

ranging from 50 to 300. The details of these data sets are given in Table 4.2. These

data sets are pre-processed by the 64 pipelines through the configurable pipeline for

the analysis of connectomes (c-pac) [126]. We also consider an extra rank conversion

step which proves to be helpful in boosting discriminability. Rank conversion trans-

forms a weighted undirected graph into a graph with rank weights. Specifically, in

the previous experiment all edge weights are absolute correlations which lie in [0, 1].

In rank conversion step, for each edge in a graph, its weight w is replaced by the rank

of w among all edge weights. If we denote a graph by a node set and an edge weight

set pair (V,E) with E = {wi,j}, rank conversion is a function maps (V,E) to (V,E ′),

that is

(V,E) → (V,E ′) , where E ′ = {rank(wi,j)}.
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The rank conversion is designed to improve signal to noise ratio by removing back-

ground noise. We carry out this step on the 13 data sets pre-processed by 64 pipelines

and compare the difference in discriminability with and without rank conversion. It

turns out that the rank conversion does help improving mean discriminability in all

pipelines. When global signal regression is not performed, rank conversion signif-

icantly boosts discriminability. The Figure 4.6 shows the discriminability of rank

fMRI graphs and the discriminability of raw fMRI graphs are provided in Figure 4.7.
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Figure 4.6: Discriminability of rank fmri graphs from 13 data sets processed 64

ways. Discriminability of BNU1, BNU2, DC1, HNU1, IACAS, IBATRT, IPCAS,

JHNU, NYU1, SWU1, UM, UWM and XHCUMS pre-processed by 64 pipelines are

shown in the plot. Color of each dot indicates data set and size indicates the number

of measurements in data set. The black square indicates the weighted mean discrim-

inability across 13 data sets. For each data set, all pipelines are compared to the

pipeline CFXSG using two sample test, and a single p-value is calculated by Fisher’s

method. The pipelines are grouped by p-values. The number at the top indicates

the range of the p-values. Within each group, the pipelines are ordered by the mean

discriminability. CFXSG pipeline has the best mean discriminability across data sets.

There is notable variation in discriminability. The discriminability of 13 data sets

processed by 64 pipelines vary from 0.732 to 0.997. The sample-size weighted mean

discriminability of 64 pipelines vary from 0.868 to 0.966. CFXSG turns out to be the
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Figure 4.7: Discriminability of raw fmri graphs from 13 data sets processed 64 ways.

Discriminability of BNU1, BNU2, DC1, HNU1, IACAS, IBATRT, IPCAS, JHNU,

NYU1, SWU1, UM, UWM and XHCUMS pre-processed by 64 pipelines are computed

and shown in the figure. Color of each dot indicates data set and size indicates the

number of measurements in data set. The black square indicates the weighted mean

discriminability across 13 data sets. For each data set, all pipelines are compared

to the pipeline CFXSG using two sample test, and a single p-value is calculated by

Fisher’s method. The pipelines are grouped by p-values. The number at the top

indicates the range of the p-values. Within each group, the pipelines are ordered by

the mean discriminability. CFXXG pipeline has the best mean discriminability across

data sets.

best pipeline with maximum mean discriminability. In Figure 4.6, for each data set,

we compare CFXSG to all the other pipelines using the two sample test. We combine
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Data set Scanner Num. of

channel

Structrual

Sequence

Functional

Sequence

Flip Angle

of fMRI

Echo Time

(TE in ms)

Repetition

Time (TR

in ms)

Dimensions

(mm x mm

x mm)

BNU1 Siemans

TrioTim

12

Channel

3D

MPRAGE

EPI 90 30 2000 3.1 x 3.1 x

3.5

BNU2 first scan Siemans

TrioTim

12

Channel

3D

MPRAGE

EPI 90 30 2000 3.1 x 3.1 x

3.0

BNU2 retest Siemans

TrioTim

12

Channel

3D

MPRAGE

EPI 90 30 1500 3.1 x 3.1 x 4

DC1 Philips 32

Channel

3D T1-

TFE

EPI 90 35 2500 3 x 3 x 3.5

HNU1 GE Discov-

ery MR750

8 Chan-

nel

3D SPGR EPI 90 30 2000 3.4 x 3.4 x

3.4

JHNU Siemans

TrioTim

8 Chan-

nel

3D

MPRAGE

EPI 90 30 2000 3.75 x 3.75

x 4

IACAS GE Sigma

HDx

8 Chan-

nel

3D

BRAVO

EPI 90 30 2000 3.4 x 3.4 x 4

IBATRT Siemans

TrioTim

12

Channel

3D

MPRAGE

EPI 90 30 1750 3.4 x 3.4 x

3.6

NYU1 Siemans Al-

legro

90 15 2000 3 x 3 x 4

SWU1

UM

UWM

IPCAS

XHCUMS Siemans Al-

legro

90 15 2000 3 x 3 x 3

Table 4.2: fMRI data sets with scanning parameters

the p-values by Fisher’s method [127], then we group pipelines by the magnitude of

their p-values and order them by mean discriminability. Furthermore, we carried out
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a multi-factor analysis of variance test to study each option [128]. Specifically, we

fix decisions for all options except one, and investigates whether there is significant

difference in discriminability. It turns out that FSL, no frequency filtering, no scrub-

bing, global signal regression and rank conversion is better than their alternatives

in terms of mean discriminability. However, fsl and no scrubbing is not statistical

significantly better at level 0.05. No frequency filtering, global signal regression and

rank conversion is better than their alternatives at level 0.001. Figure 4.8 shows the

distribution of paired difference in discriminability.

4.5.6 Real Data: DTI Experiment Design and Pro-

cessing

In this experiment, we consider the experiment design of collecting DTI data.

In particular, we are interested the effect of b-value and number of directions on

discriminability [129]. We pick four data sets with different b-value and number of

directions and compute discriminability. The result is show in the right panel of

Figure 4.9. We can see they have comparable discriminability. Given four data sets,

we cannot conclude the optimal value for the parameters. It would be ideal if we

could carry out a more controlled study with more data.

We also consider the processing of diffusion tensor imaging (DTI) [129]. In par-

ticular, we are interested in finding the optimal number of ROI, and the optimal
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Figure 4.8: Paired difference in discriminability of pre-processing options. Difference

in discriminability for each option is compared by fixing the other options and data

set. The symbols at top indicates the significance. No frequency filtering, global

signal regression and rank conversion are statistical significantly better than their

alternatives at level 0.001. Fsl and no scrubbing are not significantly better.

approach to process edge weights. SWU4 data set is used in this experiment. We

process four DTI data sets using 15 atlases with the number of ROI ranging from 48

to 1875 [130]. For edge weights, we consider three options. First, raw edge weights are

used which are fiber counts. Furthermore, we consider two alternatives: log weights

and rank weights as discussed in the previous experiment. Top left panel of figure 4.9

shows the results. We see discriminability is basically stable across different atlases
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Figure 4.9: Discriminability of DTI data sets. The top left plot shows the discrim-

inability of SWU4 registered with 15 atlases with ROI varying from 48 to 1875. Raw,

rank and log edges weights are considered. Discriminability of DTI and fMRI graphs

are compared for BNU1, HNU1, SWU4 and KKI data set. The results are shown in

the bottom left panel. DTI data sets tend to be more discriminable than fMRI data

sets. The plots in the right column show the discriminability of different data sets

with different b-values and number of directions.

when raw and log edge weights are used. When using the rank weights, discriminabil-

ity is low when the number of ROI is small and high when ROI is large. For three out

of four data sets, the discriminability is very close to 1. As a consequence, we cannot

find any statistical relationship between the number of ROI and discriminability.

Furthermore, we want to compare discriminanility of fMRI and DTI data sets.
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Four data sets with both fMRI and DTI images are selected for the comparison.

In processing fMRI data sets, the most dicriminable pipeline (*FXXG) and raw edge

weights are used. In processing DTI data sets, the raw edge weights are also used. The

detailed DTI processing configurations and parameters are provided in the appendix.

The result is shown in the bottom left panel of Figure 4.9. Our conclusion is that

DTI data sets have at least comparable discriminability as fMRI data sets. Actually,

DTI measurements are better than fMRI measurements in three out of four data sets.

4.6 Discussion

We propose a non-parametric statistics of discriminability which is define to be

the probability that within subject distance is smaller than across subject distance.

We prove discriminability bounds Bayes prediction error. An estimator is designed

to estimate the discriminability based on test-retest data set. We show the estimator

is unbiased and converges to the discriminability asymptotically. Furthermore, we

developed one sample and two sample tests for discriminability, which can be used

to detect subject signal in data set and compare discriminability of two processing

pipelines. We apply the discriminability framework under various setups in neu-

roimaging processing. We find the best processing pipeline for fMRI pre-processing

and look into options in DTI processing. Furthermore, fMRI and DTI are shown to

have comparable discriminability.
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From the theoretical point of view, most of our theories require the noise to

be additive and independent of subjects. The effects of subject specific noise on

discriminability are left uninvestigated. As for applications, more experiments should

be carried out to analyze processing options. In particular, we could investigate

processing of DTI more thoroughly given more data sets. Also, the effect of the

number of ROI on discriminability is still not determined. Second, metrics other than

Euclidean distance could be studied. Third, a testing procedure could be developed

for comparing discriminability of multiple data sets.
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4.7 Proofs

Proof of Theorem 4.4.1 Consider the additive noise setting, that is xi,t = vi+ϵi,t,

P(δi,t,t′ < δi,i′,t,t′′)

= P(∥xi,t − xi,t′∥ < ∥xi,t − xi′,t′′∥)

= P(∥ϵi,t − ϵi,t′∥ < ∥vi + ϵi,t − vi′ − ϵi′,t′′∥)

≤ P(∥ϵi,t − ϵi,t′∥ < ∥vi − vi′∥+ ∥ϵi,t − ϵi′,t′′∥)

= P(∥ϵi,t − ϵi,t′∥ − ∥ϵi,t − ϵi′,t′′∥ < ∥vi − vi′∥)

=
1

2
P(∥ϵi,t − ϵi,t′∥ − ∥ϵi,t − ϵi′,t′′∥ < ∥vi − vi′∥|∥ϵi,t − ϵi,t′∥ − ∥ϵi,t − ϵi′,t′′∥ < 0) +

1

2
P(∥ϵi,t − ϵi,t′∥ − ∥ϵi,t − ϵi′,t′′∥ < ∥vi − vi′∥|∥ϵi,t − ϵi,t′∥ − ∥ϵi,t − ϵi′,t′′∥ > 0)

=
1

2
+

1

2
P(∥ϵi,t − ϵi,t′∥ − ∥ϵi,t − ϵi′,t′′∥ < ∥vi − vi′∥|∥ϵi,t − ϵi,t′∥ − ∥ϵi,t − ϵi′,t′′∥ > 0)

=
1

2
+

1

2
P(
⏐⏐∥ϵi,t − ϵi,t′∥ − ∥ϵi,t − ϵi′,t′′∥

⏐⏐ < ∥vi − vi′∥)

= 1− 1

2
P(
⏐⏐∥ϵi,t − ϵi,t′∥ − ∥ϵi,t − ϵi′,t′′∥

⏐⏐ > ∥vi − vi′∥).

To bound the probability above, we bound the ∥vi−vi′∥ and
⏐⏐∥ϵi,t−ϵi,t′∥−∥ϵi,t−ϵi′,t′′∥

⏐⏐
separately. We start with the first term

E(∥vi − vi′∥2)

= E(vT
i vi + vT

i′vi′ − 2vT
i vi′)

= 2σ2
2.
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Here, σ2
2 is the trace of covariance matrix of vi. We can apply Markov’s Inequality

P(∥vi − vi′∥ < t) ≥ 1− 2σ2
2

t2
.

Let σ2
1 denote the trace of covariance matrix of ϵi,t, and let a and b be two constants

satisfy

E(
⏐⏐∥ϵi,t − ϵi,t′∥ − ∥ϵi,t − ϵi′,t′′∥

⏐⏐2) ≥ a2σ2
1,

E2(
⏐⏐∥ϵi,t − ϵi,t′∥ − ∥ϵi,t − ϵi′,t′′∥

⏐⏐2)
E(

⏐⏐∥ϵi,t − ϵi,t′∥ − ∥ϵi,t − ϵi′,t′′∥
⏐⏐)4 ≥ b.

Then, we can apply Paley-Zygmund Inequality [131],

P(
⏐⏐∥ϵi,t − ϵi,t′∥ − ∥ϵi,t − ϵi′,t′′∥

⏐⏐2 > t2) ≥ b(1− t2

a2σ2
1

)2.

Understand the fact that vs and ϵs are independent, we can combine the two inequal-

ities and get a bound on P(δi,t,t′ < δi,i′,t,t′′)

P(δi,t,t′ < δi,i′,t,t′′)

= P(∥xi,t − xi,t′∥ < ∥xi,t − xi′,t′′∥)

≤ 1− 1

2
P(
⏐⏐∥ϵi,t − ϵi,t′∥ − ∥ϵi,t − ϵi′,t′′∥

⏐⏐ > ∥vi − vi′∥)

≤ 1− 1

2
P(
⏐⏐∥ϵi,t − ϵi,t′∥ − ∥ϵi,t − ϵi′,t′′∥

⏐⏐2 > t2)P (∥vi − vi′∥2 < t2)

≤ 1− 1

2
b(1− t2

a2σ2
1

)2(1− 2σ2
2

t2
).

Assume a2σ2
1 ≥ 2σ2

2 and set t2 =
√
2aσ1σ2,

P(∥xi,t − xi,t′∥ < ∥xi,t − xi′,t′′∥) ≤ 1− 1

2
b(1−

√
2σ2

aσ1

)3.
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By definition, D = P(∥xi,t − xi,t′∥ < ∥xi,t − xi′,t′′∥), we can have a bound on σ2

σ1
,

σ2

σ1

≥ a√
2
(1− (

2− 2D

b
)1/3). (4.6)

To obtain a bound on Bayes error, we apply Devijver and Kittler’s result [132], which

is

L(g∗) ≤ 2π0π1

1 + π0π1∆µTΣ−1∆µ
.

Here, π0 and π1 are prior probabilities for two classes. ∆µ is the difference between

means of two classes. Since ϵ is assumed to be independent of x and y,

∆µ = E(x|y = 0)− E(x|y = 1) = E(v|y = 0)− E(v|y = 1).

Σ is the weighted covariance matrix of x,

Σ = π0Var(x|y = 0) + π1Var(x|y = 1)

= π0Var(v|y = 0) + π1Var(v|y = 1) + Var(ϵ).

If we further assume Var(ϵ) = λΣ′ where the trace of Σ is 1, then equation 6 implies

λ ≤ λ∗, where

λ∗ =

√
2σ2

a(1− (2−2D
b

)1/3)
.

Hence, Σ ≤ Σ∗ where

Σ∗ = π0Var(v|y = 0) + π1Var(v|y = 1) + λ∗Σ′.
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Therefore, Σ−1 ≥ Σ−1
∗ , and we have

L(g∗) ≤ 2π0π1

1 + π0π1∆µTΣ−1∆µ

≤ 2π0π1

1 + π0π1∆µTΣ−1
∗ ∆µ

.

Proof of Lemma 4.4.3 By definition of D̂,

D̂ =

n∑
i=1

s∑
t=1

s∑
t′ ̸=t

D̂i,t,t′

ns(s− 1)
.

Notice that the expectation of D̂i,t,t′ is actually D,

E(D̂i,t,t′) =

n∑
i′ ̸=i

s∑
t′′=1

E(I{δi,t,t′ < δi,i′,t,t′′})

(n− 1)s

=

n∑
i′ ̸=i

s∑
t′′=1

P[δi,t,t′ < δi,i′,t,t′′ ]

(n− 1)s

=

n∑
i′ ̸=i

s∑
t′′=1

D

(n− 1)s

= D.

Therefore, we have

E(D̂) =

n∑
i=1

s∑
t=1

s∑
t′ ̸=t

E(D̂i,t,t′)

ns(s− 1)

=

n∑
i=1

s∑
t=1

s∑
t′ ̸=t

D

ns(s− 1)

= D.

This concludes that D̂ is an unbiased estimator of discriminability D.
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Proof of Lemma 4.4.4 By definition of D̂,

D̂ =

n∑
i=1

s∑
t=1

s∑
t′ ̸=t

D̂i,t,t′

ns(s− 1)

=

n∑
i=1

s∑
t=1

s∑
t′ ̸=t

n∑
i′ ̸=i

s∑
t′′=1

I{δi,t,t′ < δi,i′,t,t′′}

ns(s− 1)(n− 1)s

=

∑
i,i′,t,t′,t′′

I{δi,t,t′ < δi,i′,t,t′′}

ns(s− 1)(n− 1)s
.

In the last sum above, we should keep in mind that i ̸= i′ and t ̸= t′. We show

in the previous lemma that E(D̂) = D. To demonstrate that D̂ converges to D

in probability, it is suffice to show that Var(D̂) → 0. Since then, by Chebyshev’s

inequality,

P[|D̂ −D| ≥ ϵ] ≤ Var(D̂)

ϵ2
→ 0.

If we expand the variance of R,

Var(D̂) =

∑
i,i′,t,t′,t′′

∑
j,j′,r,r′,r′′

Cov(I{δi,t,t′ < δi,i′,t,t′′}, I{δj,r,r′ < δj,j′,r,r′,r′′})

(ns(s− 1)(n− 1)s)2
.

There are (ns(s−1)(n−1)s)2 covariance terms in the sum of nominator; however, most

of them are actually 0. I{δi,t,t′ < δi,i′,t,t′′} is a function of xi,t, xi,t′ and xi′,t′′ ; therefore,

is independent of any observations of subjects other than i and i′. This implies

I{δi,t,t′ < δi,i′,t,t′′} is independent of I{δj,r,r′ < δj,j′,r,r′′} as long as {i, i′} ∩ {j, j′} = ∅.

As a consqeunce, there are (4n−6)(s(s−1)s) = ns(s−1)(n−1)s−(n−2)s(s−1)(n−

3)s combinations of j, j′, r, r′, r′′ such that covariance between I{δi,t,t′ < δi,i′,t,t′′} and

I{δj,r,r′ < δj,j′,r,r′,r′′} maybe non-zero. Furthermore, the covariance must be less 1
4
due
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to the fact that they are indicator random variables. Therefore, we have

Var(D̂) =

∑
i,i′,t,t′,t′′

∑
j,j′,r,r′,r′′

Cov(I{δi,t,t′ < δi,i′,t,t′′}, I{δj,r,r′ < δj,j′,r,r′,r′′})

(ns(s− 1)(n− 1)s)2

≤

∑
i,i′,t,t′,t′′

(4n− 6)(s(s− 1)s)

4(ns(s− 1)(n− 1)s)2

=
(4n− 6)(s(s− 1)s)

4ns(s− 1)(n− 1)s

=
4n− 6

4n(n− 1)

<
1

n

→ 0 , as n → ∞.

As discussed before, this concludes that D̂ converges to D in probability.

Proof of Lemma 4.4.5 Consider the additive noise setting, that is xi,t = λvi+ ϵi,t.

We further assume vi and ϵi,t have continuous distributions, and vi has spherical

distribution. We will show that D = 0.5 implies λ = 0, hence xi,t = ϵi,t. This implies

xi,t is independent of physical property vi and hence, any phenotype yi. First, we

rewrite the definition of discriminability.

P(δi,t,t′ < δi,i′,t,t′′)

= P(∥xi,t − xi,t′∥ < ∥xi,t − xi′,t′′∥)

= P(∥ϵi,t − ϵi,t′∥ < ∥λvi + ϵi,t − λvi′ − ϵi′,t′′∥)

= E(P(∥ϵi,t − ϵi,t′∥ < ∥λvi − λvi′ + ϵi,t − ϵi′,t′′∥)|∥λvi − λvi′∥ = v).

Let A1, A2 and V denote the ϵi,t − ϵi,t′ , ϵi,t − ϵi′,t′′ and λvi − λvi′ respectively. Due
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to the assumption that vi has spherical distribution,

P(∥A1∥ < ∥A2 +V∥|∥V∥ = v) =

∫
Sd−1

P(∥A1∥ < ∥A2 + t∥)dS/Area(Sd−1),

where Sd−1 is the ball in Rd with radius v. We are going to show the expression above

is greater than 0.5 as long as v > 0. Therefore, D = 0.5 implies λvi−λvi′ = 0. Since

vi is not constant, we have λ = 0. Due to symmetry in A1 and A2, we have

2

∫
Sd−1

P(∥A1∥ < ∥A2 + t∥)dS

=

∫
Sd−1

P(∥A1∥ < ∥A2 + t∥)dS +

∫
Sd−1

P(∥A2∥ < ∥A1 + t∥)dS

=

∫
Sd−1

P(∥A1∥ < ∥A2 + t∥) + P(∥A2∥ < ∥A1 + t∥)dS

=

∫
Sd−1

∫
I(∥a1∥ < ∥a2 + t∥) + I(∥a2∥ < ∥a1 + t∥)dP(a1, a2)dS

=

∫ ∫
Sd−1

I(∥a1∥ < ∥a2 + t∥) + I(∥a2∥ < ∥a1 + t∥)dSdP(a1, a2).

Let us consider the inner integral
∫
Sd−1 I(∥a1∥ < ∥a2 + t∥) + I(∥a2∥ < ∥a1 + t∥)dS

and denote its value by V . Next, we show V is greater than or equal to Area(Sd−1)

for any a1 and a2. First, let us consider the case that t lies on the circle which is

contained in the plane spanned by a1 and a2, there are three cases.

1. If ∥t∥ ≤ |∥a1∥ − ∥a2∥|, then one of the two indicators holds for all t; hence,

V = Area(S1).

2. If |∥a1∥ − ∥a2∥| < ∥t∥ ≤ |∥a1∥+ ∥a2∥|, then due to symmetry V = Area(S1).
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3. If ∥t∥ > |∥a1∥ + ∥a2∥|, then both of the two indicators holds for all t; hence,

V = 2Area(S1).

If t does not lie in the plane spanned by a1 and a2, we can always project t on to the

plane first. This discussion shows that

I(∥a1∥ < ∥a2 + t∥) + I(∥a2∥ < ∥a1 + t∥) ≥ 1,

for any a1, a2 and t. Therefore, this implies V always greater than or equal to

Area(Sd−1). Since A1 and A2 have positive mass at any open ball centered at origin,

case (3) must happen with positive probability. As a consequence,

∫ ∫
Sd−1

I(∥a1∥ < ∥a2 + t∥) + I(∥a2∥ < ∥a1 + t∥|)dSdP(a1, a2) > Area(Sd−1)

This shows P(∥A1∥ < ∥A2 + V∥|∥V∥ = v) > 0.5 as long as v ̸= 0. Therefore,

P(∥A1∥ < ∥A2 + V∥) = 0.5 implies V = 0. As discussed above, this shows xi,t is

independent of vi.
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agonalization with non-orthogonal transformations and its application to blind

source separation,” Journal of Machine Learning Research, vol. 5, no. Jul, pp.

777–800, 2004.

[35] J. D. Carroll and J.-J. Chang, “Analysis of individual differences in multidi-

mensional scaling via an n-way generalization of eckart-young decomposition,”

Psychometrika, vol. 35, no. 3, pp. 283–319, 1970.

[36] W. Tang, Z. Lu, and I. S. Dhillon, “Clustering with multiple graphs,” in Data

Mining, 2009. ICDM’09. Ninth IEEE International Conference on. IEEE,

2009, pp. 1016–1021.

[37] T. G. Kolda, “Numerical optimization for symmetric tensor decomposition,”

Mathematical Programming, vol. 151, no. 1, pp. 225–248, 2015.

[38] J. C. Bezdek and R. J. Hathaway, “Convergence of alternating optimization,”

Neural, Parallel & Scientific Computations, vol. 11, no. 4, pp. 351–368, 2003.

[39] S. J. Wright, “Coordinate descent algorithms,”Mathematical Programming, vol.

151, no. 1, pp. 3–34, 2015.

[40] A. Beck and L. Tetruashvili, “On the convergence of block coordinate descent

141



BIBLIOGRAPHY

type methods,” SIAM journal on Optimization, vol. 23, no. 4, pp. 2037–2060,

2013.

[41] J. Nocedal and S. Wright, Numerical optimization. Springer Science & Business

Media, 2006.

[42] N. Bell and M. Garland, “Implementing sparse matrix-vector multiplication

on throughput-oriented processors,” in Proceedings of the Conference on High

Performance Computing Networking, Storage and Analysis. ACM, 2009, p. 18.

[43] C. J. Hillar and L.-H. Lim, “Most tensor problems are np-hard,” Journal of the

ACM (JACM), vol. 60, no. 6, p. 45, 2013.

[44] H. Kim and H. Park, “Nonnegative matrix factorization based on alternating

nonnegativity constrained least squares and active set method,” SIAM journal

on matrix analysis and applications, vol. 30, no. 2, pp. 713–730, 2008.

[45] M. Aharon, M. Elad, and A. Bruckstein, “rmk-svd: An algorithm for design-

ing overcomplete dictionaries for sparse representation,” IEEE Transactions on

signal processing, vol. 54, no. 11, pp. 4311–4322, 2006.

[46] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by basis

pursuit,” SIAM review, vol. 43, no. 1, pp. 129–159, 2001.

[47] J. A. Tropp and A. C. Gilbert, “Signal recovery from random measurements

142



BIBLIOGRAPHY

via orthogonal matching pursuit,” IEEE Transactions on information theory,

vol. 53, no. 12, pp. 4655–4666, 2007.

[48] R. Kohavi et al., “A study of cross-validation and bootstrap for accuracy esti-

mation and model selection,” in Ijcai, vol. 14, no. 2, 1995, pp. 1137–1145.

[49] J. Neyman and E. L. Scott, “Consistent estimates based on partially consistent

observations,” Econometrica: Journal of the Econometric Society, pp. 1–32,

1948.

[50] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE transac-

tions on information theory, vol. 13, no. 1, pp. 21–27, 1967.

[51] S. N. Dorogovtsev, A. V. Goltsev, J. F. Mendes, and A. N. Samukhin, “Spectra

of complex networks,” Physical Review E, vol. 68, no. 4, p. 046109, 2003.

[52] D. Koutra, J. T. Vogelstein, and C. Faloutsos, “D elta c on: A principled

massive-graph similarity function,” in Proceedings of the SIAM International

Conference in Data Mining. Society for Industrial and Applied Mathematics.

SIAM, 2013, pp. 162–170.

[53] R. Arden, R. S. Chavez, R. Grazioplene, and R. E. Jung, “Neuroimaging cre-

ativity: a psychometric view,” Behavioural brain research, vol. 214, no. 2, pp.

143–156, 2010.

143



BIBLIOGRAPHY

[54] M. Brant-Zawadzki, G. D. Gillan, and W. R. Nitz, “Mp rage: a three-

dimensional, t1-weighted, gradient-echo sequence–initial experience in the

brain.” Radiology, vol. 182, no. 3, pp. 769–775, 1992.

[55] R. S. Desikan, F. Ségonne, B. Fischl, B. T. Quinn, B. C. Dickerson, D. Blacker,

R. L. Buckner, A. M. Dale, R. P. Maguire, B. T. Hyman et al., “An automated

labeling system for subdividing the human cerebral cortex on mri scans into

gyral based regions of interest,” Neuroimage, vol. 31, no. 3, pp. 968–980, 2006.

[56] G. Kiar, W. Gray Roncal, D. Mhembere, E. Bridgeford, R. Burns,

and J. Vogelstein, “ndmg: Neurodata’s mri graphs pipeline,” Aug. 2016,

open-source code. [Online]. Available: http://dx.doi.org/10.5281/zenodo.60206

[57] T. M. Amabile, “The social psychology of creativity: A componential concep-

tualization.” Journal of personality and social psychology, vol. 45, no. 2, p. 357,

1983.

[58] S. Suwan, D. S. Lee, R. Tang, D. L. Sussman, M. Tang, C. E. Priebe et al.,

“Empirical bayes estimation for the stochastic blockmodel,” Electronic Journal

of Statistics, vol. 10, no. 1, pp. 761–782, 2016.

[59] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and

A. Y. Wu, “An efficient k-means clustering algorithm: Analysis and imple-

mentation,” IEEE transactions on pattern analysis and machine intelligence,

vol. 24, no. 7, pp. 881–892, 2002.

144

http://dx.doi.org/10.5281/zenodo.60206


BIBLIOGRAPHY

[60] D. Steinley, “Properties of the hubert-arable adjusted rand index.” Psychologi-

cal methods, vol. 9, no. 3, p. 386, 2004.

[61] E. Rendón, I. Abundez, A. Arizmendi, and E. Quiroz, “Internal versus external

cluster validation indexes,” International Journal of computers and communi-

cations, vol. 5, no. 1, pp. 27–34, 2011.

[62] R. I. Jennrich, “Asymptotic properties of non-linear least squares estimators,”

The Annals of Mathematical Statistics, vol. 40, no. 2, pp. 633–643, 1969.

[63] P. J. Bickel and K. A. Doksum, Mathematical Statistics: Basic Ideas and Se-

lected Topics, volume I. CRC Press, 2015, vol. 117, ch. 6.

[64] C. Davis and W. M. Kahan, “The rotation of eigenvectors by a perturbation.

iii,” SIAM Journal on Numerical Analysis, vol. 7, no. 1, pp. 1–46, 1970.

[65] R. Govindan and H. Tangmunarunkit, “Heuristics for internet map discovery,”

in INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE Computer

and Communications Societies. Proceedings. IEEE, vol. 3. IEEE, 2000, pp.

1371–1380.

[66] D. M. Da Zheng, R. Burns, J. Vogelstein, C. E. Priebe, and A. S. Szalay,

“Flashgraph: Processing billion-node graphs on an array of commodity ssds,” in

Proceedings of the 13th USENIX Conference on File and Storage Technologies,

2015, pp. 45–58.

145



BIBLIOGRAPHY

[67] J. Fan, R. Samworth, and Y. Wu, “Ultrahigh dimensional feature selection:

beyond the linear model,” Journal of Machine Learning Research, vol. 10, no.

Sep, pp. 2013–2038, 2009.

[68] J. Fan, R. Song et al., “Sure independence screening in generalized linear models

with np-dimensionality,” The Annals of Statistics, vol. 38, no. 6, pp. 3567–3604,

2010.
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