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P E E F A OB. 

The ground covered by this book includes those 
portions of Hydrostatics and Pneumatics which are 
usually read by beginners and by candidates for exami­
nations of such a standard as that of the London 
Matriculation. In the illustrative and other examples, 
it has been the authors'-endeavour to deduce results from 
first principles, and as far as possible to discourage 
students from relying on memory for mathematical 
formulae. Where new departures have been thought 
desirable, they have generally been effected in such a 
way as to allow teachers the opportunity of adhering to 
older methods of treatment if they so prefer. Thus, 
according to our arrangement, the student becomes 
familiar with specific gravity and the very important 
methods of determining it, including the use of the 
Hydrostatic Balance, before encounteriug the difficulties 
connected with the measurement of pressure and the 
distinction between pressure and thrust. But any reader 

who prefers may pass straight on to Part II., after 
reading the first three or four chapters of Part I., leaving 
the remaining chapters of Part I. to be read after 
Chapter XIII. Again, proofs involving the Principle 
of W o r k have been introduced in several cases, but the 
possibility of omitting them if desired has been pointed 

out. 



VI PEBFAOE. 

We have given considerable attention to the illustra­
tions, notably those of air and water pumps, in which the 
up and down strokes are figured separately. 

Our thanks are due to Mr. P. Rosenberg for his care 
and attention in revising many of the proofs, and to the 
Vacuum Brake Company and the Westinghouse Brake 
Company for their illustrated pamphlets, on which have 
been based our brief descriptions (page 192) of these two 
interesting and important exemplifications of the princi­
ples of Pneumatics. 
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H Y D K O S T A T I C S , 

I N T R O D U C T I O N . 

SYSTEMS OF UNITS. 

1. The English. System.—In Hydrostatics we shall 
have to compare the sizes and weights of different bodies. 
In measuring these, either the English or the French 
system of weights and measures may be used. 

In the English system, the most usual unit of length 
is the foot (ft.). The foot is one-third of a yard, the 
yard being defined as the distance between two marks on 
a certain bar of platinum which is now kept in the Tower 
of London. There is no reason why this particular length 
should have been chosen as the unit, beyond that of 
custom. This fact is expressed by saying that the yard 
is a purely arhitrary unit. 

Smaller lengths may be measured in inches (1 foot = 
12 inches), longer lengths in miles (1 mile = 5280 feet), 
both units being derived from the foot or yard. 

The unit of area is to be taken as the area of a square 
whose side is the unit of length, i.e., a square foot. 

The unit of volume is to be taken as the capacity of a 
cube whose length, breadth, and height are each equal to 
the unit of length. Thus a cubic foot and a cubic inch 
are the units of volume corresponding to a foot and an 
inch respectively, and we note that 
I cubic foot contains 12 x 12 x 12 = 1728 cubic inches. 
Sometimes volumes are measured in gallons. 
The gallon, like the yard, is an arbitrary unit which is 

defined by standard. 
HYDRO. B 
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2. The weight of a body is a quantity proportional to 
the force with which the body is acted on by gravity. 

The usual English unit of weight is the pound (l̂ »-> 
This is defined as the weight of a certain standard 

piece of platinum kept in London, and which, like the 
yard, was chosen arbitrarily. 

Smaller weights may be measured m ounces (1 lb. = 
16 oz.) or grains (1 lb. = 7000 grs.) ; larger weights in 
tons (1 ton = 2240 lbs.). 

The following facts are important:— 
A cubic foot of pure water weighs about 1000 oz.; 

and, roughly, 
" A pint of clear water 
Weighs a pound and a quarter " ; 

and therefore a gallon (8 pints) weighs 10 lbs. 
W h e n we say that a body weighs one pound, we mean 

that it would balance the standard pound weight in a 
pair of scales, and therefore that it tends to fall to the 
Earth with the same force as a 1-lb, weight at the same 
place. Hence, in weighing a body in the ordinary way, 
the force of gravity on it is measured in terms of another 
force of the same kind, and the common measure of the 
weight is a purely numerical quantity which does not 
depend on-the intensity of gravity, but merely on the 
relative quantity of matter in the body, as compared with 
the quantity of matter in the pound or other standard of-
weight. 

The actual quantity of matter in a body is called its 
m a s s ; hence the weight of a body measures its mass. 

The actual force with which gravity acts on a body at 
any particular place may, for convenience, be called the 
absolute weight of the body, to distinguish it from the 
purely numerical measure of weight obtained with a pair 
of scales. W h e r e no confusion is likely to arise the 
word " absolute " m a y be omitted. * If the term, "gravity" is taken to include the imiversai gravtmion whinli 
exists between the Eartb, Sun, Moon, and- other bodies, it is perfectlv pmT*if,+ + 
speak of the' " weight of the Earth," If, howerer, " weight" is defined Srf^ 
by terrestrial gravity, or by weighing with a pair of scales, the term " weieht of 
the Earth " is meaningless. ' . s x ui 
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3. The Metric System of units, originally introduced 
by the French, is far more convenient for calculations 
than the English system, and for this reason it is now 
very generally used in all scientific measurements even in 
this country. 

The metric unit of length is the metre, and was 
originally defined as the ten-millionth part of a quadrant 
of the Earth's circumference, measured from the North 
Pole to the Equator.* 

The submultiples of the metre have been named as 
follows :—t 

1 metre = 10 Aecimetres 
= 100 centimetres (cm.) 
= 1000 millimetres (mm.) ; 

and the m.ultiples of the metre are— 

1 decameire = 10 metres, 

1 hectowieire = 100 metres, 

1 Talometre = 1000 metres, 

1 myriameire = 10,000 metres. 

In scientific work, the centimetre is usually chosen as 
the unit of length, instead of the metre. 

A metre — 39'37 inches. 
A decimetre is nearly 4 inches. Three centimetres are 

very nearly the diameter of a penny. 
760 millimetres (the. average height of the mercury in a-

barometer) = 3 0 inches. 
T h e unit of area corresponding to the centimetre is 

the area of a square c e n t i m e t r e ; and w e observe t h a t — 
a square decimetre =; 1 0 X 1 0 or 100 square centimetres, 

and a square metre = 100 X 100 or 10,000 sq. cm. 

* Since the metre was introduced, the Earth's circumference has been measured 
with greater accuracy ; but it was not considered advisable to alter the standard 
metre originally adopted, and which is preserved in Paris, The Earth's circum­
ference may be taken as 40,000,000 metres in ordinary calculations, 
t The prefixes ded-, ceniir, imlli- are derived from the Latin for 10, 100, 1000, 

and dem-, kecto-, kilo-, myria- from the Greek for 10,100,1000, 10,000, 
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The corresponding unit of volume is the capacity of a 
cubic centimetre (c.c.) (a cube whose length, breadth, 
and height are each 1 centimetre). Note that 

a cubic decimetre = 10 X10 X10 = 1000 c.c, 

a cubic metre = 100 X 100 X 100 = 1,000,000 c,c. 

The French unit of fluid measure is called -a litre, and 
was originally defined as the volume of a cuhio decimetre. 

A litre = 1'76 pints. 

4, T h e metric unit of weight is the g r a m m e (gm.). 
It was originally defined as the weight of a cubic 
centimetre of water, at temperature 4° Centigrade (39° 
Fahrenheit).* 
Since bodies expand with heat and contract on cooling, the tempera­

ture of the "water must be given. If a long-necked flask of boiling 
water be taken, it vpill be noticed on coohng down that the bulk of 
the water diminishes gradually until 4° C. is reached; then, as it 
continues to cool, water, contrary to the general law, gradually 
increaBes in volume, and so becomes lighter. 4° C, is therefore the 
temperature of maximmn density of water, and this temperature will 
iu future be assumed unless otherwise stated. 
The submultiples and multiples of the gramme, pro­
ceeding by powers of 10, are denoted by the same prefixes 
to the word gramme as in the case of the metre. Thus a 
milligrramme = ^^^^ gramme and a Mlogramme = 1000 
grammes. 

Reduced to English measure, a kilogramme is nearly 
represented by 2'2044 lbs. 

A kilogramme is the weight of a litre of water at 
temperature 4° C, This is the definition of the litre. 
Hence, if a cubic centimetre weighed exactly a g r a m m e 
a litre w o u l d be exactly a cubic decimetre, and this may­
be taken to be the case in all ordinary calculations. 
• Like the metre, the gramme is now defined by means of the original standard 

kilogramme, a piece of platinum preserved at Paris, Por all practical purposes 
however, a cubic centimetre of water may be taken to weigh a gramme. 
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6. Units of Force.—When, as in Hydrostatics, we 
have to deal chiefly with the forces due to the weights 
of bodies, it is most convenient to measure forces in 
gravitation units. The gravitation unit of force is 
a force equal to the absolute weight of a unit of mass. 
Hence the English gravitation unit is the weight of a 
pound, and the Metric gravitation unit is the weight 
of a gramme. W h e n we speak of a " force of 10 pounds " 
or a " force of 10 grammes," we mean a " force equal to 
the absolute weight of 10 pounds " or of "10 grammes," 
and the force is measured in gravitation units. 

The same number which measures the mass of a body 
also measures its weight in gravitation units. Thus a 
body of mass 10 lbs, weighs 10 lbs. 

Similarly, we may say that " a cubic centimetre of water 
weighs 1 gramme," or " the mass of a cubic centimetre 
of water is 1 gramme," and both statements are correct, 
[In Dynamics it is shown that the absolute weight of a given 
quantity of matter is not quite the same at different parts of the 
Earth, and hence that the weights of a pound and a gramme are not 
constant units of force, For this reason forces are measured in terms 
of two dynamical units, the poundal and the dyne, both of which are 
defined without reference to gravity. To reduce pounds' weight to 
poundals, or grammes to dynes, it is only necessary to multiply by 
" g" the acceleration of gravity, measured in the foot-pound-second 
or the centimetre-gramme-second system of units, as the case maybe. 
Taking the usual values of " g," "• pound weight = 32 poundals, and 
a gramme weight = 981 dynes.] 
In Hydrostatics, forces should always be calculated in gravitation 

units unless the contrary is expressly specifi.ed. 
6. Work,^—When a force moves its point of application, 

the w o r k done by the force is the product of the force 
into the distance through which its point of application 
moves in the direction in which the force acts. W h e n 
the point of application moves in the opposite direction, 
the work is negative. 

The English gravitation unit of work is the foot-pound, 
or the work done by raising a weight of 1 lb. through 
1 foot. If W lbs, are raised through a vertical height of 
h feet, the work done is W h foot-pounds. 
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The centimetre-gramme-second gravitation unit is the 
gram,m,e-centimetre or work done in raising a weight of 
1 gramme through 1 centimetre, A larger and more 
convenient unit is the kilogrammetre or work done m 
raising a kilogramme through 1 metre. Hence a kilo­
grammetre = 1000 X 100 = 100,000 gramme-centimetres. 

7, The Principle of Conservation of Energy asserts 
that when a body or machine of any kind is acted on by 
any number of forces (efforts and resistances) which are 
in equilibrium, the sum of the works done by the several 
forces in any displacement of the body or machine is zero. 
In other words, when a machine is acting, no more work 
will be got out of it than is put into it. 
This principle has many important applications to 
Hydrostatics. 

8. Summary.—The principal facts connected with the 
Metric System are shown on page 7. The following 
statistics are mostly only rough, but may be found con­
venient for reference. 

(1) Earth's radius = 4000 miles. 

(2) Earth's circumference = 40,000 kilometres. 

(3) Height of barometer = 30 inches. 

(4) „ „ = 760 millimetres. 

(5) Accel, of gravity g = 3 2 feet ^ per sec. 

(6) „ „ = 980 centimetres j per sec. 

(7) Cubic foot 

(8) Gallon 

(9) Oub,centimetre 

(10) Cub, decimetre 
or litre 

(11) 1000 kilogrammes — 1 ton (minus 36 lbs,). 

= 1000 oz. 

= 10 lbs, 

"ofwater^ 1 gramme. 

= 1 kilogramme. 
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8 HYDEOSTATICS. 

9, On tte use of fornmlse in Hydrostatics.—(1) Although m 
the following chapters many results will be estabHshed in the form 
of algebraic formulae, it must be carefully borne in mind that such 
formulEe are merely mathematical statements of facts, and that the 
essential feature of Hydrostatics consists in. its principles and practical 
applieations rather ih&-a.formulce. In order to acquire a sound know­
ledge of the subject, it is therefore of great importance that numerical 
calculations should be deduced directly from the principles themselves, 
and not by substituting numerical values for the symbols in 
an algebraic formula, Eor this reason, many of the general algebraic 
investigations in this book are preceded (instead of being followed) by 
worked-out numerical examples in fllustration of them, and this is 
done in eveiy case where such numerical calculations are of practical 
importance. In any case where this has not been done, the student 
is advised to work examples by following (in many cases, word for 
word) the methods adopted in the bookwork, but substituting at 
every step the numerical values for the algebraic letters given in the 
text. B y doing so, a far more thorough knowledge of the subject 
will be acquired. 

(2) The elementary student should not attempt to follow an al­
gebraic proof by reading only; he should copy it out, following each 
line as he sets it down, and then recapitulate. 

It is also important that, in writing out calculations, the meaning 
of each step should be written down; it is of little or no use to obtain 
the right answer to a question unless the method used has been 
understood and clearly stated. B y adopting this plan, students will 
be saved from taxing their memory with a number of formulse which 
are difBoult to remember and are sure to be forgotten when wanted 
but which can immediately be deduced from first principles, 

(3) In stating results of numerical calcidations, the unit of measicrenieni 
must always ie specified. Thus, for example—"a force of 100" has 
no meaning, for it might be taken to mean a force of 100 dynes or 
100 grammes weight, or 100 lbs. weight, or 100 tons weio-ht or 100 
of any other unit whatever; before we can attach any definite 
meaning to it, we must say which unit is' employed. Moreover it is 
undesirable to use some units of the metric and others of the Eno-lish 
system in the same calculation; one set should be preserved thi-oughout. 



P A E T 

SPBGIFIO GBA7ITIES OF SOLIDS AND LIQUIDS. 

C H A P T E R J. 

SOLIDS, LIQUIDS, AND GASES. 

1. Hydromechanics, as its name implies, comprises 
all those portions of Mechanics which relate to fluids. 
It is divided into two branches — Hydrostatics and 
Hydrodynamics, 

Hydrostatics deals with the equilibrium of fluids and 
with the forces acting on them when at rest. 

Hydrodynamics deals with the motion .of fluids under 
the action of forces. 

The name Hydraulics is generally given to those 
portions of Hydrodynamics which are useful to the 
practical engineer; it relates to the flow of water through 
pipes, mains, and canals, the construction of water-
wheels, &c. 

2. The three states of Matter.—Every one is more 
or less familiar with matter in its three states of solid, 
liquid, and gas. In ice, water, and steam we have 
examples of a single substance which is capable of existing 
in either of the three states, according to circumstances. 
W h e n frozen, it takes the form of a solid (ice) ; at ordinary 
temperatures it is a liquid (water) ; and when boiled by 
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heating, it becomes a vapour or gas (steam). All simple 
substances (the chemical " elements ") are able to exist m 
each of these states. Thus all the metals can be melted 
and even turned into vapour by the application of heat. 

For some time air and certain other gases were con­
sidered to be " permanent gases'' which could not be turned 
into liquids, and a distinction was drawn between these 
"permanent gases" and "vapours." But in 1878 two 
physicists, M . Oailletet and M . Pictet, succeeded in 
liquefying not only air (which is a mi-rture containing 
oxygen and nitrogen and carbon dioxide), but also oxygen, 
nitrogen, and other gases previously supposed to be 
permanent. Moreover, most of these gases (except 
hydrogen) have been solidified. 
3. Solids and Fluids.—From our everyday experience 
we get a fairly good idea of the general difference between 
solids, liquids, and gases. In Hydrostatics a general idea 
is not sufficient; we must give exact definitions, and these 
we can base on common experience. 

W e know that a solid body, such as a piece of ice, 
metal, glass, or wood, always retains the same shape; 
if put into a bottle, it does not adapt its shape to that of 
the bottle. W e cannot force a piece of stick into it, nor 
can we stir it up. 

O n the other hand, liquids and gases, such as water 
and air, will easily flow from one vessel into another. 
Thus, if water be poured into a bottle, it adapts itself to 
the shape of the bottle, and fills the whole of the bottom 
part. If air be blown into the bottle, it will leave no 
empty spaces, but will fill the bottle. Again, water is 
very easily stirred up with a stick, and air is still more 
easily stirred, so much so, that when we move about we 
hardly experience any perceptible resistance from the air 
which we displace. 

Hence we may distinguish the two kinds of matter, 
solid and fluid, by the property that the former retains a 
definite shape and cannot be stirred up, while the latter 
flows easily from one shape to another and can be readily 
stirred. In exact words— 
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Dbf.—A solid is a substance which tends to keep the 
same shape for an indefinite length of time, and whose 
various parts cannot move freely among themselves, 

Def,—A fluid is a substance which yields to any force, 
however small, tending to change its shape or to produce 
movement of its parts among themselves. 

It might be remarked that fine sand can be easily stirred, but that 
thick treacle is much more difficult to stir, and therefore that the sand 
ought to be considered fl.uid and the treacle sohd. But a sufficiently 
light piece of stick may be made to stand upright in sand for any 
length of time, while, ii it were stood upright in treacle, it would, in 
the course of time, faJl over. The sand never yields to the weight of 
the stick, and therefore each of the individual grains of sand possesses 
the properties of a sohd body. The treacle, on the other hand, yields 
in the long run, however- light the stick may be, and this characterizes it 
as a fluid. Many BoUds may be moulded from one shape into another 
by applying considerable forces or pressures to them, but they do not 
yield to " th-e slightest" force. 
*4. Bigidity.—The property in virtue of which a body 
tends permanently to retain the same shape is called 
rigidity. Hence a solid is distinguished from a fluid by 
being rigid. 
5. Xaq^uids and Gases. — Both liquids and gases 
{e.g., water and air) are fluids according to the above 
definition. But they differ in one important respect. If 
a bottle is half full of water, the water cannot be made to 
occupy either more or less than half of the bottle. If 
the bottle is full, w e cannot get any more water in by 
squeezing, nor. can w e squeeze the water into a smaller 
space by pushing a cork in or otherwise. O n the other 
hand, any amount of air can be compressed into a bottle, 
or, again, part of the air in a bottle m a y be sucked out 
(by means of an air p u m p , such as will be described in 
Chap. XVIII.), and then the remainder will still continue 
to occupy the whole of the bottle. A n easier experiment 
is to boil a little water in a corked bottle till it all 
becomes steam. The whole of the bottle will be filled 
with compressed steam, and unless the cork be fitted in 
tightly it will be forced out with considerable violence. 
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Part of the steam will then escape, but the remainder 
will still continue to fill the whole bottle. H e n c e w e m a y 
distinguish a liquid from a gas by the property that the 
former cannot, and the latter can, be readily m a d e to 
occupy a greater or less amount of space, or, in exact 
language— 

D e f , — A liquid is a fluid whose volume will not increase 
beyond a cei'tain limit, and which offers a very great 
resistance to any decrease of volume, 

D e f , — A gas is a fluid which always tends to occupy 
as large a volume as possible, but which m a y be readily 
forced to occupy any space, however small.* 

6. Compressibility and Elasticity. — A liquid is 
called incompressible w h e n it cannot be forced to occupy a 
smaller volume; a gas is always compressible, because it 
can be easily compressed into any volume. N o liquid is 
•perfectly incompressible; by means of great pressure, water 
m a y be forced to occupy a slightly smaller bulk, but in 
Hydrostatics liquids m a y be treated as incompressible. 

Again, liquids are called inelastic, because they have no 
tendency to expand and increase in bulk, while gases are 
called elastic, because they tend to expand so as to occupy 
as large a space as possible, 

*7, Perfect and viscous fluids.—Although all fluids 
eventually yield to changes of shape or to stirring, 
different fluids behave differently while changing their 
shape or being stirred. S o m e seem to yield very readily, 
others only with apparent reluctance. Water m a y be 
stirred u p easily and quickly, and little resistance will be 
experienced. B u t honey can only be stirred with diffi­
culty, and the faster w e try to stir it the more resistance 
w e encounter. If, however, w e were to stir it snfiiciently 
slowly, w e should feel hardly any resistance, showing that 
the honey is not solid). 
• That is, 30 long as it remains a gas. But, if compressed very iimcli a Has will 

become liquid (compare § 2), Conversely, wlien liquid is introduced into 
vacuum, part of it evaporates, and its vapour lills the space nnocoupied by the 
liquid. 
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But the resistance always tends to retard the passage 
of the spoon through the honey. Hence w e have the 
following definitions :— 

A perfect fluid is one whose parts can move among 
themselves without retardation. 

A viscous fluid is one which continually retards the 
motion of its parts a m o n g themselves. 

Strictly speaking, there is no such thing as a perfect fluid. If 
water were a perfect fluid, a ship when once set in motion would 
continue to move through it without ever stopping, contrary to 
experience. Air and some gases much more closely resemble the 
ideal perfect, fluid, but a bullet experiences considerable resistance 
from the air. Hence air is not a perfect fluid. 
At the same time, some fluids are much more viscous than others. 
Viscosity of fluids does not affect their equilibrium, but only their 

motion; and therefore it has not to be considered in Hydrostatics, 
but only in Hydrodynamics, 
8. The surface of a heavy liquid at rest is hori­
zontal.—For, if the surface were not perfectly horizontal, 
some parts would have to be higher than others. W e 
could then draw an inclined plane—.'fuch as AB—cutting 

Kg. 2, 

off the higher part AOB of the surface. The weight of 
the liquid above A B would tend to make it slide down 
the plane towards the lower part. And, by definition, 
the liquid yields to any force, however small, which tends 
to make its parts move separately. Hence, even if no other 
motion were possible, the liquid above A B would slide 
down the plane towards the places where the surface was 
lower. Therefore the liquid cannot remain in equilibrium 
unless the surface is perfectly horizontal. 
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*9, Cohesion.—If we try to break or cut a solid body 
in two, w e experience considerable resistance. T h e 
property in virtue of which the different parts of a body 
resist separation is called cohesion. It is very easy to 
divide a quantity of water in two, showing that but little 
cohesion exists in most fluids. In some books a fluid is 
defined as " a substance whose particles yield to the 
slightest effort tending to separate them"—i.e., a sub­
stance devoid of cohesion—but this definition is incorrect. 
SUMMAEY. 

I. SOLIDS.—Permanent shape. Parts cannot move about freely. 

II, ITIiUIDS,—^No permanent shape. Yield continually to sKght-
est force tending to move parts. Muids are sub-divided into— 

(i,) lilQUiDS,—Incompressible, i.e., definite volume, cannot be 
reduced ; 

Inelastic, i.e., volume does not expand (unless they 
(ii,) GrASBS,—Compressible, i.e., volume can be reduced till they 

liquefy ; 
Elastic, i.e., volume tends to expand indefinitely. 

Viscosity exists in liquids and gases. 
Cohesion exists in solids and liquids. 

1, Distinguish between •soZi& anA. fluids, and state what you regard 
as the essential features of a fluid. What is the special characteristic 
of a perfect fluid ? What are treacle, sand, putty, india-riibber, gold 
leaf, string, tar, alcohol, and why ? 

2, Distinguish between a ligiiid and a gas. A bottle is half fuU of 
air and half fuU of water. What will be the effect (i.) of exhausting 
the air, (ii,) of pumping out the water, (iii,) of pumping in more air, 
(iv,) of pumping in more water, (v,) of dropping a piece of iron into 
the bottle ? 

3, If a gallon of water weighs 10 lbs., and a, cubic foot weighs 
1000 oz., how many gallons are there in a cubic foot ? 

4. Taking a ton = 1000 Hlog, (roughly), a cubic foot of water 
= 1000 oz,, and a cubic metre of water = 1000 kilog,, find how many 
centimetres there are in a foot. 
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DENSITY AND SPECIFIC GRAVITY. 

10, Idelations between weight and volume of 
water on the English system.—From the fact that a 
cubic foot of water contains 1000 oz,, w e can find the weight 
of a quantity of water, having given its volume, expressed 
in English units. 
Examples.—(1) To find the weight of the water contained in a 

cistern 3 ft, long, 2 ft, broad, 3 ft, deep, fiUed to a depth of 2 ft. 
The volume of the water depends on the depth of the water and 

not on that of the cistern, and is therefore = 3 x 2 x 2 = 12 cub, ft. 
Hence the weight of the water = 12,000 oz, = 750 lbs, 
(2) To find the number of gallons of water in the cistern. 
Since a gallon of water weighs 10 lbs,, and the water in the cistern 

weighs 750 lbs,, therefore its volume is 75 gallons, 

11. Examples on the Metric System. 
W e have seen that a g r a m m e is by definition equal in 

weight to a cubic centimetre of water (at the temperature 
of greatest density). 

Hence, if any vessel is filled with water, the volume of 
the vessel in cubic centimetres is equal to the weight of 
the water in grammes. 
Examples. — (1) Griven a tank of length 25 cm,, breadth 20 cm,, 

height 16 cm. The volume = 25 x 20 x 16 = 8000 cub, cm,, and the 
weight of water filling it = 8000 gm, = 8 Idlog, 

(2) To find the capacity of a bottle which weighs 165 gm, when 
empty, and 916 gm, when full, of water. 
Here (weight of water) + (weight of bottle) =915 gm. 
Subtract (weight of bottle) = 16.5 gm, ; 

, , (weight of water) = 750 gm, ; 
,•. volume occupied by water = 750 cub, cm,; 

and the capacity is 760 cub. cm,, or f litre. 
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(3) Tojfind the length of a tube whose sectional area is 3 sq, cm,, 
and which takes 144 gm, of water to fill it. 
The volume of the tube in cubic centimetres = weight of water in 

grammes = 144, Let h be its length ; then, by mensuration, 
3 X A = volume = 144 ; 

, , h the required length = 144-5-3 = 48 cm, 
12. iDensity.—In the above examples we have based 
our calculations on the facts that a cubic foot of water 
contains 1000 oz,, and that a gramme is defined as 
the weight of a cubic centimetre of water. If, however, 
we were to use mercury instead of distilled water, we 
should find that a cubic foot weighs 13,696 oz.; similarly, 
a cubic centimetre weighs 13'596 gm,, and a cubic deci-
metjre or litre weighs 13'596 kilog. Hence mercury is 
heavier in proportion to its bulk than water. 

This shows that the weight of any quantity of matter 
does not depend only on its volume, but that it also 
depends on the Tiind of matter. 

The same is true of solid, as well as of liquid, matter; 
thus, a bullet of lead is much heavier than a cork, even 
though the cork is the larger body of the two. 

Def.—The mass per unit volume of any substance is 
called the density of that substance. 

The number which measures the density of a substance 
depends not only on the substance, but also on the choice 
of units of length and mass. T h u s — 
the density of water = 1 in centimetre-gramme system, 

.= 62|- in foot-pound system, 
= 1 0 0 0 in ounces per cubic foot, 

13, Relation between the volume, mass, and den­
sity.—It is easy to find the mass of any given volume of 
a substance whose density is given. 
Example.—Having given that the density of sea water is 64 lbs, 

per cub, ft., to find the mass of sea water in a rectangular tank 
whose base measures 3 ft, by 2 ft,, filled to a height of 18 ins. 
The volume of water in the tank = 3 x 2 x IJ cub. ft, = 9 cub, ft. 
Hence the mass of the water in it is 9 times that of a cubic foot. 
But a cub, ft, contains 64 lbs. 
Hence the tank contains 64 x 9 = 576 lbs. 
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14. To find the mass of a body whose volume is 
V and whose density is D. 

Let M be the required mass. 
From the proportionality of mass to volume, we see 

that the mass Jf of the volume V of matter is V times 
the mass of a unit volume. 

But the mass of unit volume is equal to the deuBity D. 
Hence Jf = 7D, 

that is, mass = volume x density. 
From this relation, we have 

•1 -, mass , 
density = — , or volume = volume density' 

Hence, if we know the mass and volume of a body, its 
density may be found; or, given any two of them, we can 
find the third. 

Example.—To find the density of lead in the centimetre-gramme 
system, having given that a bullet of lead, 2 cm, in diameter, weighs 
46-7 gm. 
The bullet is a sphere wliose radius = 1 cm. 
Hence its volume = f x .̂  x (1)̂  = |̂  cub. cm. 
Also the mass of the bullet = 45-7 ; 
, •. density of lead = 45-7 x J|- =11-4 gm. per cub. cm. 

15. Def.—The specific weight of a substance is the 
weight of a unit volume of the substance. 

Since the weight of a unit volume expressed in pounds 
or grammes is the measure of the mass per unit volume 
(Introduction, § 2), it follows that the specific weight of a 
substance is numerically equal to its density, provided that 
its weight is measured by means of a set of weights, as is 
the common practice. 

[This relation is no longer true if by " weights" are 
meant " absolute weights," measured in poundals or dynes, 
or other dynamical units of force.] 

Thus the specific weight of water 
= 62^Z6s,p6r cub, ft, = 62| x 32 ov 2000poundals ̂ eronh. it. 
= 1 gm. per cub, cm, = 981 dynes per cub. cm. 

HYDKO, C 
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16. Specific Gravity.—In § 12, we saw that the den­
sity of a substance depends not only on the kind of matter 
forming it, but also on the chosen units of length and 
mass. But, if equal volumes be taken of two different 
substances, their masses, and therefore also their weights, 
will always be.the same ratio, no matter what be the 
units of measurement, 

lius the weights of a cubic foot of sea and fresh water are 1024 
and 1000 oz,, and their ratio = 1-024, The weights of a cubic yard 
(27 cub, ft,) are, respectively, 1024 x 27 and 1000 x 27 oz., but their 
ratio is still = 1-024, as before. And the ratio is imaltered by 
reducing both weights to pounds, since this is merely the same as 
dividing both sides of the ratio by the same number 16. 
This ratio will be called the specific gravity of sea water. 

It is, therefore, more convenient, instead of measuring 
the actual densities of substances, to compare the masses 
or weights of equal volumes of different substances, and 
for this purpose one particular substance is always chosen 
as the standard substance, with which all others are 
compared. 

The standard substance universally adopted (except 
in comparing certain gases) is water at a temperature of 
4°0, or 39°Fahr, (its point of m a x i m u m density). W e 
have seen that this is the substance chosen in defining 
the gramme, 
Def,—The specific gravity of a substance is the 
ratio of the weight of any volume of that substance to 
the weight of an equal volume of the standard substance. 

The abbreviation for specific gravity is sp. gr. 
Examples.— (1) Thus, from what has been shown in § 16, the 
specific gravity of sea water is 1-024, This implies that any volume 
of sea water is 1 -024 times as heavy as an equal volume of fresh water. 
(i,) A cubic foot of sea water weighs 1-024 x 1000 oz, or 64 lbs, 
(ii,) A gallon of sea water is 1 -024 times as heavy as a gallon of 

fresh water, and therefore weighs 10-24 lbs, 
(iii,) A cubic centimetre of sea water is 1-024 times as heavy as a, 

cubic centimetre of fresh water, and therefore weighs 1-024 tTn, 
(iv,) A Ktre of sea water is 1-024 times as heavy as a litre of fresh 

water, and therefore weighs I Hlog, 24 gm,; and the same propor­
tionality holds for any equal volumes of fresh and sea water. 
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(2)-Again, the specific gravity of mercury is about 13'6. This 
implies that 

(i,) A cubic, foot of mercury weighs 13| times as much as a 
cubic foot of water, or 13,600 oz, 
(ii,) A gallon of. mercury weighs 13f times as much as a gallon 

of water, or 136 lbs,, and so on. 
17. Kelations between Density and Specific 
Gravity. 

Since weight is proportional to mass, therefore, taking 
water as the standard. 

T h e Specific Gbavity of a substance is equal to 
weight of any vol. of substance _ mass of any vol. of substance 
•weig-ht of equal vol, of water ma^ss .of equal vol, of water 

_ weight of imit vol of substance _ mass of unit vol, of substance 
weight of unit vol, of water mass of unit vol, of water 

_ specific -w-eig-Iit of substance _ density of substance 
specific -weight of water density of water 

Hence the density of any substance 
= (specific gravity of substance) x (density of water) ; 

and the specific weight of any substance 
= (specific gravity of substance) x (specific weight of water). 

The specific gravity of water itself (at temperature 
4° C.) is, of course, unity. In fact, the specific gravity of 
the standard substance is necessarily unity. 

Since the g r a m m e is so chosen that the density of water 
at 4° C in the centimetre-gramme system is also unity, it 
readily follows that the specific gra-idty of a substance 
is eq,ual to its density in the centimetre-gramme 
system. 

This fact constitutes one of the m a n y advantages of the 
C.G.S, system. 
Example.—The density of a piece of crystal is 155-75 in the foot­

pound system. What is its specific gravity? 
Weight of a cubic foot of the crystal = 156-75 lbs., 
Weight of a cubic foot of water = 62-5 lbs.; 

.„ ., _ weight of substance 
•'̂  weight of equal volume of water 

= 15676 ̂  2.492. 
62-6 
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18. delations between the volume, weight, and 
specific gra-wty.—We can n o w find the weight of any 
volume of a substance of given specific gravity. 
Examples.—iX) To find in ounces the weight of a cubic inch of lead, 

taking the specific gravity of lead to be 11-4. 
Weight of a cubic foot of water = 1000 oz. ; 

. -, weight of a cubic inch of water = y^Vs '̂'̂- ̂ - — -irft °̂ -
But a cubic inch of lead weighs 11-4 times as much; 

, , weight of a cubic inch of lead = •——— = 6-S5 oz,, approx. 

(2) To find the weight of 40 litres of sea water. 
40 litres of fresh water contain 40 kUog. 

Therefore 40 litres of sea water contain 40 x 1-024 Hlog, 
= 40-96 kilog, = 40 kilog, 960 gm, 

19. To find the weight of a body whose volume 
is V and whose specific gravity is S. 

Let W be the. required weight, w the specific weight of 
water. 

Then weight of unit volume of water ̂  w ; 
.•. weight of volume V of water = w Y . 

But weight of volume Fof substance is S times as great; 
W (the required weight) = V S w ; 

that is, weight of body = (volume) x (specific gravity) 
X (specific weight oi water), 

SUMMAET. 

1, The density of a body 
vohune 

2, The specific weight of a body = I^^ISM. 
volume 

3, The specific gravity of a body = -weight 
wt, of equal vol, of water" 

The densitŷ of water (temp. 4''C.) = 1 gm, per cub, cm, 
= 1000 oz, per cub, ft, 
= 624 lbs- per cub, ft. 

The density of sea water = 64 lbs, per cub, ft. 
The specific gravity of mercury = 13'6 roughly 

[accurately 13-696]. 
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EXAMPLES II. 

[The following specific gra-vities are given:—Air, 0-0012; 
alcohol, 0-835 ; copper, 8-9 ; gold, 19-25 ; ice, 0-92 ; lead, 11-35 ; 
mercury, 13-6 ; sea water, 1-024.] 

1, Eind the weights of fresh and s-Ba water, respectively, required 
to fill the following vessels, and their capacities in gallons:— 

(i,) a rectangular ti-ough 5 ft, long, 1 ft, broad, 1 ft, deep ; 
(ii,) a tank 6 ft, long, 4 ft, broad, 6 ft, deep ; 
(ui,) a piece of hose 30 ft, long and ̂  in. internal diameter, 

2, Eind the weights of water and mercury, respectively, required 
to fill the following vessels, and their capacities in litres:— 

(i,) a trough 6 cm. long, 4 cm. broad, filled to a depth of 1 em. ; 
(ii.) a barometer tube 760 m m . long, 1 cm. in diameter ; 
(iii.) a hemispherical bowl 20 cm. in diameter, 

3, If the rainfall is 1 in., how many tons of water fall on an acre ? 

4, If the rainfall is 1 cm,, how many tonnes fall on a hectare ? 
[An are = 100 sq. metres; a hectare = 100 ares.] 

5. If 6 cub, ins, of mercury weigh 2-45 lbs, and 2 cub, ins, of 
cast iron weigh 0-52 lb,, what ratio does the density of meromy 
bear to that of cast iron ? 

6. The density of cast iron in the 0,G-,S, system of units is 7-2, 
Wlat is its density in the foot-pound system of units ? 

7, Explain what is meant by the statement that the specific 
gravity of mercury is 13-596. 

8, Write down the weights of 
(i,) a cubic foot of copper ; (ii,) a cubic iach of lead ; 

(iii,) a cubic yard of air ; (iv.) a gallon of alcohol; 
(v.) a cubic centimetre of gold ; (vi,) a cubic metre of ice ; 

(vii,) a litre of mercury ; (viii,) a hectoUtre of sea water, 

9, What are the specific gravities of substances of which 
(i,) 1 cub, in, weighs 1 oz, ; (ii,) 1 cub, yd. weighs 1 ton ; 
(iii,) 1 pint weighs-1 lb, ;, (iv,) a ball, 10 cm, in diameter, 

weighs 1 kUog, ; 
(v,) 1 kUog, fiUs 240 cub, cm, ; (vi,) 1000 kilog, fill 625 litres. 
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10, If 6 cub, ins, of silver weigh as much as 21 cub, ins, of plate 
glass, and the specific gravity of silver be 10-6, find that of plate 
glass, 

11, A body A has a volume of 2 cub. yds. and specific gravity of 
1-1, A second body B has a volume of f cub, ft, and specific gravity 
4-95, W h a t ratio does the quantity of matter in A bear to that 
infi? 

12, Show that, if the specific gravity of a substance be multiphed 
^J i> the- product will be the weight of a cubic ya;rd of tiie substance 
in tons, very nearly, water being the standard substance. 

13. Show that, if 35-84 he divided by the specific gravity of a 
substance, the quotient wUl be the number of cubic feet contained in 
a ton of the substance very nearly, water being the standard 
substance. 

14. Show that the specific gravity of any substance 
^ volume of an equal weight of water 

volume of substance 

16. The outer radius of a hollow leaden bullet containing a spherical 
ca-vity is E, and its weight is W . If w is the weight of a unit volume 
of lead, show that the radius of the cavity 

Y ^ 47r w 1 

16. Show that the units may be chosen so that the specific gravity 
and the density of a substance are identical. W h a t is the relation 
between the unit of volume and the unit of weight when the weight 
of a body is numerically equal to 1000 times the product of the 
volume and specific gravity ? 

17. Show that the volume of a. body varies directly as the weight 
and inversely as the specific gravity. 

18. The specific gravity of any substance is the weight of any 
volume of that substance divided by the weight of an equal volume of 
water. Is it correct to substitute the word '' mass '' for weio-ht in 
the above statement f 
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SPECIFIC GRAVITIES OF MIXTURES, 

20, Mixtures by Volume and by Weight. — It is 
often necessary to find the specific gravity of the mixture 
formed by taking given quantities of different substances 
and mixing them together. W h e n the volumes of the 
several substances are given, the mixture is said to be a 
mixture by volume. W h e n their weights are given, it 
is said to be a mixture by weight. 

The total weight of a mixture is invariably equal to the 
sum of the weights of its component parts. 

The total volume of the mixture is in most cases equal 
to the sum of the volumes of its parts, but not invariably 
so. 
When sulphuric acid and water are mixed together, the mixture 

contracts and occupies a smaller volume than its separate parts together 
occupied before mixing, and, generally, where chemical action takes 
place, there is a change in the total volume. Where no data are given 
by which the amount of the contraction could be determined, it is 
always to be assumed that no contraction takes place, and, therefore, 
that the general principle holds good. 
21. De-termination of the specific gravities of 
mixtures by volume.—If then the volumes of each of 
the ingredients forming a mixture are given, and the 
specific gravity of each is also known, the weight of each 
can be found from the formula of § 19, 

(weight) = (volume) X (specific gravity) 
X (specific weight of water). 

Hence, by applying the principle of addition stated 
above, the weight and volume of the mixture are obtained, 
and from these its specific gravity may be determined. 
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Examples. — (1) To find' the specific gravity of a mixture of 2 cub. ftv 
of fresh water and 3 cub, ft. of sea water, having given that the 
specific gravity of sea water is 1-026, 
Here- 2 cub, ft, of fresh water weighu 2000 oz,, and 3 cub, ft, of 

sea water weigh. 3 x 1-026 x 1000 oz, = 3078 oz. 
Hence the weight of the mixture = 6078 oz.' 
Also the volume of the mixture = 6 cub. ft. 
.-. the-weight of an equal volume of water = 5 x 1000 oz. 
.-'. the specific gravity of the mixture = -|§^ = 1-0156, 

It is not really necessary to know the actual volumes of the com­
ponents, pro-vided that their relative proportions are known. In this 
case, we may proceed as in the following examples, which may be­
taken as types, 
(2) To find the specific gra-vity of a mixtui-e of 3 parts (by -Volume) 
alcohol, 2 parts water, and 1 part glycerine ; given that the specific 
gravity of alcohol is 0-794, and that of glycerine is 1-26, 
Let w be the weight of 1 part of water. 
Then the weight of 3 parts of alcohol = 3 x •794mi 

= 2-382to, 
Also the weight of 2 parts of water = 244), 
Also the weight of 1 part of glycerine = l-26io, 

, , the weight of 6 parts of the mixture = 5-742w,-
But the weight of an equal volume of water = 6w, 

6-742 
.-. specific gra-vity of mixture = —-^ = -957, 

6 
(3) A n amalgam is formed by mixing 3 volumes of potassium-

•with 7 of mercury, the volume of the amalgam being four-fifths 
of that of its constituents, Eind its specific gravity, being given 
that specific gravities of mercury and potassium are 13-696 and 
0-860, respectively. 
Let w be the weight of 1 volume of water. 
Then weight of potassium = iw x 0-860, 

weight of mercury = 7«f x 13-696, 
'Volume of mercury and potassituu = 3 vols, + 7 vols. = 10 vols, 

and volume of amalgam = four-fifths of this = 8 vols, 
,-. weight of equal volume of water = Sw, 

.-, specific gravity = . weight of amalgam 
weight of equal volume of water 
3m)x 0-860+ 7^x13-596 

= 5- = ]-2-219,. 
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The following is the general theorem of which these 
examples are illustrations :— 

22. To find the specific gravity of a mixture in 
terms of the volumes and specific gravities [of the 
several components. 

Let Fj, Fj, Fs, ... F„ be the volumes of the different 
components, /Sj, S^, 8^, ... S„ their respective specific 
gravities, and let w be the weight of a unit volume of 
water. 

Then the weights of the different componentseare 
FiSiW, F3S3W, F3S3W, ... V„8„w; 

hence the weight of the mixture is 

= w(rA+rA+r,s,+... + v,A). 
Again, if no contraction takes place on mixing, the 

volume of the mixture 

Hence the weight of an equal volume of water 

= wiV, + r,+ V,+... + V„); 
.'. specific gfravity of mixture 

weight of mixture 
weight of equal vol. of water 

(1). 

If the volume contracts on mixing, we must know the 
new volume of the mixture. Let this be F; then the 
weight of an equal volume of water is wV. Hence 

specific gra-vity of mixtxire 

^ F,;Si+FA+ r,s,+ ... + r„s„ ,.. 
V ^ '' 

The above formulae might be applied to numerical examples on the 
determination of specific gravities of mixtures, but it is better to work 
out each case from first principles, as in Examples 1, 2, 3, § 21, The 
student is, however, recommended to verify the above examples now 
by substitution in the formulee as an instructive exercise. 
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23. Determination of specific gravities of mixtures 
b y w e i g h t . — W h e n the weights of the ingredients forming 
a mixture are given, and their specific gravities are k n o w n , 
their volumes m a y be readily found b y § 19. Hence, b y 
§ 20, w e k n o w both the total weight and volume of the 
mixture, whence its specific gravity can be found. 
Examples.—(1) To find the specific gravity of a mixture of 2000 oz, 
of fresh water and 3000 oz, of sea water, having given that the 
specific gravity of sea water is 1-026, 
Here 2000 oz, of fresh water occupy 2 cub, ft,, and 3000 oz. of sea 

water occupy ffff cub, ft, = 2-924 cub, ft. 
.-. the volume of the mixture = 2-924 + 2 = 4-924 cub. ft., 

and the weight of an equal volume of water = 4924 oz. 
But the weight of the mixture = 6000 oz, ; 
,-, the specific gravity of the mixture = f °°° = 1-0154. 

Note.—The specific gravity is slightly less than in Ex, 1, § 21, This is hecause 
3000 oz, of the heavier sea -water occupy less than 3 cub, ft,, and therefore the 
proportion iy volume of the hea-vier component is no-w less than hefore. Of, § 26, 
(2) To find the specific gra-vity of a mixture of 3 parts {by weight) 
of alcohol, 2 parts of water, and 1 part of glycerine; given that the 
specific gravity of alcohol is 0-794, and that of glycerine is 1-26, 
Let W be the weight of each part, w the weight of a unit volume 

of water. 
Then a unit volume of alcohol w^eighs -794w, and a unit volume of 

glycerine weighs 1 •26w. 
But the weights of alcohol, water, and glycerine are 

STF, 2W, W. 
Hence their volumes are 

iW %W W 
•794w w l-26w 

the whole volume 
W = f ^ +2+-i-)^=(3-778 + 2 + 7 9 4 ) ^ = 6 - 6 7 2 ^ 

V-794 1-26/ w ^ ' w w 
and the weight of an equal volume vol-ume of water = 6-572 W. 
But the weight of the mixture = QW. 

,-, specific gravity of mixtm-e = —— = -913, 

The .student shotfld carefully compare this example with Bx. 2, § 21. 
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The general theorem is as follows:— 

24. To find the specific gra-^ity of a mixture in 
terms of the weights and specific gravities of its 
several components. 
Let IFi, TF2, ... 1F„ be the weights of the different 
components, 8-̂ , S^, ... S„ their respective specific gravities, 
and let w be the weight of unit volume of water. 

Then the weight of the mixture 
= W,+ W,+ ... + W„. 

If F(, Fj, ... V„ are the volumes of the components, 

then IFi = wS,r„ &o. ; .: F^ = ^, 
1081 

Hence the total volume of the mixture 

w\ 8, S, "^ 3„ 
and the weight of an equal volume of water 

= Ei + Es + .., + Ei>. 
81 8̂  8n 

therefore specific gravity of mixture 

_ W,+ W, + ...+ W„ ^g^^ 

'Za -l. 2 J. -J. '"" 
Si S^ Sn 

"25. The specific gravity of a mixture is increased Tjy 
increasing the proportion of its heaviest constitueu-t, and 
decreased by increasing the proportion of its lightest 
constituent. Eor if we replace any volume of any siibstance in 
the mixture by an equal volume of a heavier substance, we" increase 
the weight of the mixture "without altering the volume. Hence we 
increase its specific gravity. And conversely. 
*26. The specific gravity of a mixture in giaen proportions by volume 
is greater than that of a mixture in tlie same proportions by weight.— 
Eor, if m volumes of a hea"vier substance are mixed "with n volumes of 
a lighter substance, the former are heavier in proportion to their bulk 
than the latter, and therefore their proportion by weight is greater 
than m to n. Hence, by § 25, the specific gra"vity is greater than if 
the proportions by weight were as m to n. 
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27. Determination of the composition of a mixture 
from its specific gra-vity. 

W h e n a mixture is k n o w n to consist of tivo substances 
only, whose specific gravities are k n o w n , w e m a y always 
find the relative proportions of these components if w e 
k n o w the specific gravity of the mixture.* Such deter­
minations are of the greatest practical value. T h e specific 
gravity of a mixture of spirit and water enables us to 
find the proportion of spirit in it; the specific gravity of 
an alloy of two metals enables us to find the relative 
amounts of the metals, and the specific gravity of a 
nugget enables us to find the amount of gold which the 
nugget contains. 
The following examples illustrate the method of solving 
problems of this kind :—• 

Examples.—(1) Having given that the specific gravities of gold and 
quartz are 19-36 and 2-18, respectively, to find the proportions of 
gold and quartz in a nugget of specific gra"vity 6-69. 
Let X be the volume of gold per unit volume of the nugget. 
Then 1 - « is the corresponding volume of the quartz. 
Taking the unit of weight such that the specific weight of water 

is xmity, the weights of the gold and quartz in a unit volxraie are, 
respectively, 19-35a; and 2-16 (!-«). 

But the weight of a unit volume of the nugget is 9-49. 
.-. 19-3.5j;-h2-16 (1-2)) = 5-69; 

.". 17-20a; = 3-44 ; 
» = i, and l—x = A. 

Therefore the volumes of the gold and quartz are, respectively, \ 
and f of the whole volume. The weights of the gold and quartz are 
therefore in the proportion of. 

•l-x 19-35 : f x2-15, 
i.e., -9:4. 

Hence the weights of gold and quartz occurring in the nugget are 
•f-̂  and -̂  of the whole weight. 

* Tlie speoiflo gravity of the mixture must be found iy actual experiment We 
shall see ho-w to do this in the next few chapters, and then the process of 
determining the composition of the mixture -will be complete. 
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(2) To find the weights of copper (sp. gr. = 8-8) and zinc (sp. gr. 
= 7) in 1 lb. of brass (sp. gr. = 8). 
Let the weight of copper be x lbs. Then the weight of zinc is 
(l-i!;)lbs. 
Hence we may substitute Wx = x, W^ = l—x, <Si = 8-8, Sj = 7, 

in formula (2) of § 24, and since the specific gravity of the mixture 
is 8, therefore 

„ _ x+{l—x) X l-x 
8-8 7 

8-8x7 
7a+ 8-8 (l-x) 
.-. 88-I82; 

88x7 
88-]8» 

= 77; 

whence x = \̂ , 

1-^ = tV 
Therefore 1 lb. of brass contains -^ lb. of copper and ̂  lb. of zinc. 

SuMMAET. 

1, If (S is the specific gravity of a mixture, and if no contraction 
takes place, 

„ ViS,+ V,S^+... + r„Sn ,,. 
Vi+Y^+.-.+ Vn '̂' 

If the volume of the mixture contracts to V, 

s- r,s,+ v,s, + ... + r„8n (^„j_ 

2. If the weights of the ingredients are given, 

S + Z3 + ...+Z1' 
Si Sj <s„ 

Here Si, &, ..., S„ are the specific gravities of the components 
Vi, F3, ..., Vn their volumes, 

Wi, W^, .., TTn their weights. 
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EXAMPLES III. 

1. Define specific gravity and density. A certain mass of liquid, 
whose specific gravity is 0-5, is mixed, without sufilering contraction, 
•with four times that mass of a second liquid, whose specific gra-vity is 
1-25. Eind the specific gravity of the mixture. 

2. A nugget of gold mixed with quartz weighs 12 oz., and has 
a specific gra-vity 6-4 ; given that the specific gravity of gold is 
19-35, and of quartz is 2-15, find (to one place of decimals) the 
quantity of gold in the nugget. 

3. Eour pints of alcohol, having a specific gravity of -75, are 
mixed with one pint of water (specific gravity 1). Eind the specific 
gravity of the mixture, no change of volume being supposed to take 
place. 

4. T w o vessels each contain 3 pints of fluid, the specific 
gra-vity of the one fluid being- t"wice that of the other. T w o pint 
tumblers are filled, one out of each vessel, and then each tumbler is 
emptied into the vessel from which it was not dra-wn. Prove that, 
after the process has been three times gone through, the specific 
gi-avities of the fluids are to each other as 41 : 40, 

5, To a salt solution, whose specific gra-vity is 1-08 and weight 
27 oz,, 4 oz, of water are added, Eind the specific gravity of the 
mixttu-e, 

6, A Prussian dollar, made of an alloy of silver and copper, has the 
specific gra-vity 10-06, Determine the relative amount of silver and 
copper in it, the specific gra"vity of silver being 10-5, that of copper 
8-7, 

7, Three equal vessels A, B, 0 are half full of liquids, densities 
di,.d̂ , ds, respectively. If now B is filled up from A and then C 
from B, find the density of the liquid now contained in C, the liquids 
being supposed to mix completely, 

8, A mixture is made of 7 cub, cm, of sulphuric acid (specific 
gravity = 1-843) and 3 cub, cm, of distilled water, and its specific 
gravity when cold is found to be 1-616, Determine the contrsiction 
which has taken place, 

9, H o w many gallons of water must be mixed "with 20 gallons of 
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nulk of specific gravity 1-032 in order to give a nuxtm-e of specific 
gra-vity 1-02? 

10, The specific gravity of gold is 19-3, that of silver is 10-4, 
W h a t is the composition of an alloy of gold and silver whose specific 
gra-vity is 17-6, no change of volume being supposed to accompany 
the admixture of the inetals, 

11, If the specific gravity of zinc be 6-88, and that of copper be 
8-92, how much of each must be taken in order to obtain 100 gm, of 
an alloy of the two metals whose specific g-ravity is 8-41 ? 

12, Determine the volumes of two liquids, the densities of which 
are 1-2 and -8 respectively, which must be mixed in order to obtain a 
mixtm-e of 8 volumes whose density is -96, 

13, If equal volumes of two liquids be mixed, a mixture is obtained 
the specific gra-vity of which is 1-12. If, however, two volumes of 
one Kquid are added to one volume of the other, the specific gra"vity 
of the mixture is 1-16, Eind the specific gravities of the two Uquids, 

14. If a, volume Vi of a liquid whose specific gra-vity is Sĵ  be mixed 
"with a volume v^ of a liquid whose specific gra-vity is «2, and the 
specific gravity of the mixture is s, find the change of volume, 

15, W h e n equal volumes of two substances are mixed together, the 
specific gra-vity of the mixture is 4 ; when equal weights of the same 
substances are mixed together, the specific gravity of the mixture 
is 3, Eind the specific gravities of the two substances, 

16, A mixture has to be made by taking m parts by weight 
of one substance and n parts by weight of another. Instead of this, 
m parts by volume of the first and » parts by volume of the second 
are taken. Show that the specific gra"vity of the mixture is greater 
than if the proper proportions were taken. 

17. The specific gra-vity of a mixture of two different liquids being 
supposed -fco be an arithmetic mean between those of the component 
liquids, required the ratio of the volumes of the latter contained in 
the mixture. 

18. If equal weights of two different substances be mixed, show 
that the specific gra-vity of the mixture is the harmonic mean of the 
specific gravities of the component substances,* 

* a: is said to be the harmonic mean between a and & if 2/a: = l/cs+1/6. 
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EXAMINATION PAPER I, 

1, Define a, fluid. What are the distinguishing features of liquids 
and gases ! W h a t is a powder, a soft solid, a viscotis fluid ? 

2, Define density and specific gravity. How are they measured ? 

3, Eind the density of the standard substance, water, when 1 metre 
and 1 Hlog, are the units of length and mass, respectively, 

4, "WTiat is the weight of 10 cub, ft, of a substance whose specific 
gra-vity is 6-4 ? 

5, Show how to find the specific gra-vity of a mixture when the 
volumes and specific gravities of the components are given. 

6. 600 cub, cm, of a gas whose density is 14 are mixed -with 
200 cub, cm, of a gas whose density is 16, and the mixture occupies 
610 cub, cm, Eind its density. 

7, Equal volumes of alcohol (specific gra-vity = -796) and water are 
mixed, and the specific gra-vity of the mixture is fotmd to be -938, 
Eind the percentage diminution of volume, 

8, Weights Wi, W^ of two substances whose specific gra-vities are, 
respectively, Sj, % are mixed together, and the volume of the mixture 
is found to be less than the combined volumes in the ratio of )• : 1, 
Eind the specific gravity of the mixture, 

9, If zinc (specific gra-vity = 7) and copper (specific gra-vity = 8-8) 
are mixed in the proportion of 2 : 6 by weight, find the specific 
gravity of the mixture, 

10, How much tin (specific gravity = 7-3) must be mixed with 
6 oz, of antimony (specific gravity = 6-7) so that the specific gravity 
of the mixture may be 7-2 P 
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DIRECT DETERMINATION OF DENSITIES, 

THE SPBOIPIO GRAVITY BOTTLE, 

28. To find the density and specific gravity of a 
solid or liquid hy direct measurenieiits.—If the shape 
of a solid body is any one of the solid figures treated in 
Mensuration, its volume can he found by direct measure­
ments of its size. 

The mass of the solid can be found by weighing with 
a common balance. B y dividing the mass by the 
volume, the mass per unit volume is found, and this is 
the required density of the solid. If the O.Gr.S. system 
is used in measuring and weighing the solid, its specific 
gravity is equal to its density (§ 17). If not, the calcu­
lated density must be divided by the density of water (in 
terms of the chosen units of length and mass) in order to 
obtain the specific gravity. 

In order to find the density of a liquid by this method, a 
vessel must be taken whose capacity must be calculated 
from direct measurements of its interior. The vessel 
must then be placed in the scale-pan of a balance and 
weighed empty. If it be now filled with liquid and again 
weighed, the difl:erence of the weights when empty and 
when full determines the mass of the liquid filling the 
vessel. 

Dividing this by the calculated capacity, the density of 
the liquid is found as before. 
29. The specific gravity bottle is much used for 
finding the specific gravities of solids and liquids. It is 
constructed for the purpose of weighing exactly equal 
volumes of different liquids, and it consists of a glass 
flask having a tightly fitting stopper through which a 

HYDRO. D 
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very fine hole (Clb) is bored. In using the bottle, it is 
completely filled with the liquid to be weighed, and the 
'stopper is then pushed in till it reaches a certain mark 
(P) on the neck of the bottle. The superfluous liquid 
•overflows through the hole ab, and is wiped ofi; so the 
bottle, when filled in this way, always contains the same 
volume of liquid. 

To obviate the necessity of 
allowing for the weight of the 
bottle in every observation, a 
counterpoise is provided, whose 
weight is exactly equal to that 
pt the bottle. This counterpoise 
is usually a little metal case 
containing small shot, and its 
"weight is adjustable by adding 
•or subtracting shot. 

W h e n the bottle, filled with 
liquid, is placed in one of the 
•scale-pans of a balance, the 
^counterpoise is placed in the 
•other pan in addition to the weights used in weighing. 
•Since the counterpoise balances the weight of the bottle, 
the additional weights give the weight of the contained 
liquid alone. 

Eig. 3. 

30. T o find the specific gravity of a liquid by 
means of the specific gravity bottle. — The process 
is as follows :— 

(i.) Adjust the weight of the counterpoise (if 
necessary) till it balances the bottle when empty. 

(ii.) Fill the bottle with water, carefully insert the 
stopper, and weigh, placing the counterpoise in the 
scale-pan containing the weights. 

(iii.) Fill the bottle with the liquid whose specific 
gra-vity is required, carefully insert the stopper, and 
again weigh, as before. 

T h e second process gives the weight of the water con­
tained in the bottle. The third process gives the weight 
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of an equal volume of the given liquid. Dividing the 
latter by the former, the specific gra-vity of the liquid is 
found. 

!&.—A flask weighs 7-2 gm. when empty, 63-45 gm. when 
fUled with sulphuric acid, and 32-2 gm. when filled -with water. To 
find the specific gra-vity of sulphuric acid. 

Weight of sulphuric acid = 63-46-7-2 gm. = 46-25gm.-; 
weight of equal volume of water = 32-2 —7-2 gm. = 25-0 gm. 

.. specific gravity of sulphuric acid = 46-26 — 25 = 1-85. 
When the counterpoise has been made equal in weight 
to the empty bottle its weight is never altered. 

Moreover, specific gravity bottles are usually constructed 
to hold 10, 20, 25, 50, or 100 gm., or 250, 500, or lOOQ 
grains of water, and when this is the case there is no need 
to weigh the bottle w h e n filled with water. 

31. To find the specific gravity of a solid by the 
original m e t h o d of Archimedes. 

In order to find the specific gravity of a solid, it is 
necessary— 
(i.) To weigh the solid. 
(ii.) To find the weight of an equal volume of water. 
Now let any vessel be filled to the brim with water, 
and let the solid be then immersed in it. A quantity of 
liquid equal in volume to the solid will overflow. Let 
this liquid be weighed. Then the weight of the solid 
divided by this weight gives the specific gravity required. 
This property was discovered by Archimedes, a mathematician 
of Syracuse, in Sicily, -where he flourished about 260 B.o. Hiero, the 
Mng of Syracuse, had given to a goldsmith a certain weight of gold 
to be made into a cro-vvn. Suspecting that a portion of the gold had 
been replaced by an equal weight of alloy, the Mng appUed to Archi­
medes for a test. While thinking the matter over, Archimedes 
•chanced to enter his bath, where it ooourred to him that he displaced 
a quantity of water equal to the volume of his body. This suggested 
that, if the crown contained an alloy of less specific gra-vity than the 
gold, it would, when immersed in water, displace a greater quantity 
of water than a cro-wn of pure gold and of the same weight. When 
the experiment was made, the king's suspicions were justified. 
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32. To find the specific gravity of a solid sub­
stance insoluble in -water, by m e a n s of the specific 
gravity bottle. 

(i,) W e i g h the solid, 

(ii,) Pill the specific gravity bottle with water, and 
place it, together with the solid, in one of the scale-pans 
of a balance, and weigh, 

(iii,) Take the solid and insert it in the bottle, A 
quantity of water will overflow whose volume is equal to 
that of the solid, and the volume of water in the bottle 
will be less than before by the volume of the solid. If, 
therefore, the bottle containing the solid and water be 
again weighed, their total weight will be less than before 
by the weight of the displaced water. Dividing the 
weight of the solid by the latter weight, the required 
specific gravity of the solid is found. 

The specific gravity bottle can only be used to find the 
specific gravity of a solid substance when broken up into 
fragments sufBciently small to go into the bottle. It is, 
therefore, particularly useful in finding the specific gravi­
ties of powders—e.g., sand. 
Examples.—(1) The weight of a solid is 13 gm. When the specific 
gra-vity bottle is fiHed with water, its weight, together with that of the 
sohd, is 63 gm. When the solid is put into the bottle, the combined 
weight is 63 gm. To find the specific gravity of the sohd. 
After the solid is dropped into the bottle, the volume of water in 

the bottle is less than it was before by an amount equal to the volume 
of the soUd, 
Hence the difference of weights, 63 — 63 or 10 gm., equals the 

weight of a quantity of water equal in volume to the sohd. 
But the weight of the solid is 13 gm. ; 

. -. specific gra-vity of sohd = ig. = 1-3. 
(2) The weight of a quantity of powder (insoluble in water) is p 
The weight of a specific gravity bottle filled with water is A and 
when the bottle contains the powder and is filled with water its' total 
weig-ht is S. To find the specific gra-vity of the powder. 
Le* w be the weight of water whose volume ie equal to that of the 

powder. 
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Then, before the powder is placed in the bottle, the total weight of 
the powder, bottle, and water = p + A. 
When the powder is placed in the flask it displaces a quantity of 

water equal in volume to the powder, whose weight is w. 
Therefore the total weight E is less than before by w, that is, 

E = p + A—w; 
w = p + A—B. 

.-. sp. gi-. of powder = weight of powder ^ _^ 
weight of water displaced p . v A — E 

Hence, if p, A, and B are known, the specific gravity can be 
found. Notice that it is not necessary to kaow the weight of the 
specific gra-vity bottle itself. 
S'DiniA.EY. 

1. With the specific gravity bottle, the specific gra-vity of a liquid 
_ weight of liquid which fills the bottle 

weight of water which fills the bottle 

2, Archimedes discovered that when a solid is immersed in liquid it 
displaces an equal volume of liquid, 

3, To find the specific gravity of a solid, 
(i,) Weigh the solid ; 
(ii,) Weigh the specific gra-vity bottle fuU of water ; 
(ui,) Drop in the sohd,^and weigh again. 

Hence calculate weight of water which overflows at third observa­
tion. Then ^1« 

,„ -i ^ -i,-i "' '' weight of solid 
specific gra-vity of sohd = — r ^ ; - — ^ — 

weight of water displaced 

E X A M P L E S IV, 

1. A rectang-ular block of marble whose length is 75 cm., -width 
50 cm., and depth 26 cm., weighs 266^ kUog. Eind its density. 

2. Describe the process of determining the specific gravity of a 
liquid by means of a .specific gravity bottle, and show how the 
capacity of the bottle may be found by filling it -with liquid of kno-wa 
density. 
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3. Define density. A specific gra-vity bottle, completely full of 
water, weighs 38-4 gm. ; and, when 22-3 gm. of a certain solid have 
been introduced, it weighs 49-8 gm. Calculate the density of the 
solid, explaining clearly w h y the result is density in accordance -with 
your definition, and also why the second weighing differs from the 
first by less than the weight of the introduced sohd, 

4, If water be taken as the standard substance, a cubic foot of 
which weighs 1000 oz,, what is the specific gra-vity of a substance of 
which 16 cub, yds, weigh 84f tons? 

6, If water be taken as the standard substance, a cubic foot of 
which weighs 1000 oz,, what is the specific gravity of a substance of 
which 27 cub, ins, weigh 10 drs, ? 

6, The weight of a specific gra-vity bottle when empty is 42 gm,, 
and when full of water and glycerine,. respectively, its weight is 
222 gm, and 292 gm, Eind the specific gra-vity of glycerine, 

7, A specific gra-vity bottle fuU of water weighs 44 gm, ; and when 
some pieces of iron weighing 10 gm, in ait- are intioduced into the 
bottle, and the bottle again filled up -with water, the combined weight 
is 52-7 gm. W h a t is the specific gravity of the iron? 

8, A specific gra-vity bottle weighs 600 gm, when full of water ; 
60 gm. of a given powder is put into the bottle, which is filled up 
-with water, and the whole weighs 530 gm. W h a t is the specific 
gravity of the powder ? 

9, How much mercury of density 13-6 -will be required to iUl a 
tube whose length is 20 cm, and mean section -016 sq, cm, ? 

10, Eind the mean section of a tube 28 cm, long which holds 1 gm. 
of glycerine of density 1-26, 

11, A pound of iron is to be dra-wn into -wire, having a diameter 
of -05 in. W h a t length -will it yield, the specific gra-vity of ii-on 
being 7-6? 

12, The weight of a flask when empty is w, when filled -with water, 
its weight is A , and when filled -with a certain liquid its weight is B. 
W h a t is the specific gravity of the liquid p 
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FLOTATION—THE PRINCIPLE OF ARCHIMEDES. 

THE HYDROSTATIC BALANCE, 

We now come to certain methods of finding specifio 
gravities which depend on measuring the forces that a 
fluid exerts on an immersed solid, 

33, B u o y a n c y . — W h e n a body lighter than water is 
dropped into water, it floats at the top of the water. If, 
however, the body is heavier than water, it sinks to the 
bottom. This is a fact which w e know from everyday 
experience. Thus a cork floats on water while a stone 
sinks to the bottom. If w e push a cork down under 
water, it will again rise to the surface, though the force of 
gra-vity on it acts downwards. 

Therefore w e can infer that a fluid is capable of 
exerting an upward force or thrust tending to lift any 
immersed body to the surface. 

W e commonly speak of this action as due to the 
buoyancy of the fluid. The upward force is really 
produced by the pressure which the fluid exerts against 
the surface of the solid. W e shall now investigate 
the amount of this force by a simple application of the 
Principle of Work, leaving a fuller discussion of the 
pressures of fluids on immersed or floating bodies till 
Chap. XIII.* 
34, To find the upward force -w-hich a heavy fluid 
exerts on an immersed body. 

W h e n a body of volume V sinks in a fluid, an equal 
volume V of the fluid is displaced to make room for it 
(§ 31), A s the body sinks, this fluid is raised, and hence 
work must be done against its weight. A n d in sinking 
• The .student -who has not read the Principle of Work In Dynamics may omit 

-what foUo-ws, and pass on to the statement of the Principle of Archimedes (g 35^ 
relying on the experiments of § 39 to establish it. 
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from A (Fig, 4) to B (Fig, 5) 
the solid displaces the fluid 
at B, and fluid rises and fills 
the space V s.t A. 

Hence the solid in sinking 
through a vertical height h 
must do work against the re­
action of the fluid sufBcient 
to raise an equal volume F -a- r. 
of fluid through an equal '̂̂ ' *• *'̂ - ̂• 
height h. 

Hence, if i? be the reaction of the fluid, we have, by 
equating the works done, 

E X A = (weight of volume V of fluid) x h ; 
,-, JJ = weight of volume 7 of fluid, 

or up-ward thrust of fluid on solid 
= -weight of fluid eciual in volume to the solid 
= -vreight of fluid displaced by the solid. 

35. The Principle of Archimedes.—The principle 
proved above is known as the Principle of Archimedes,*' 
and is generally stated thus :— 

A solid immersed in fluid loses as m u c h of its weight as is 
equal to the weight of the fluid which it displaces. 

Example.—The upward thrust on a body of volume 8 cub. ft. 
totaEy immersed in water 

= wt. of 8 cub. ft. of water = 8000 oz. = 500 lbs. 
In the case of sea water (p. 20) the thrust = 8 x 64 lbs. = 512 lbs. wt. 

36. Case of a floating body.—If the weight of a 
solid is less than the u p w a r d thrust due to the weight 
of the fluid displaced, the solid rises till it floats. 

W h e n the solid is only partially immersed (Fig. 6), the 
space which it occupies is divided into two parts Z7, V by 
A B , the plane of the surface of the fluid. 

It is clear that no fluid is displaced by the upper por-
tion U, nor does the fluid exert any pressure on this 
* Whether Archimedes used this principle in experimenting -with the crown of 

Hiero (§ 31), or discovered it later, is uncertain. 
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portion. Hence the fluid 
displaced is the fluid which 
would fiU the submerged /^ ^\ 
portion 7, and is less than a ( ^ \b 
thewhole volume of the solid. \ j 
The solid therefore comes -"s.,̂  /- -~ 
into a position of equilibrium - ~ = ^ 
in which the weight of the 
fluid displaced (V) is equal pj g 
to the weight of the solid. 
Example.—To find the weight and specific gra-vity of a body of 

volume J cub, ft,, which, when attached to 5 cub, ft, of cork 
(sp, gr, -24), floats -with 1 cub, ft. of the whole projecting. 
Total-wt. supported =-wt. of 4J cub. ft. of water displaced = 4600 oz. 
But -wt. of 5 cub. ft. of cork = 6 x -24 x 1000 oz. = 1200 oz.; 

,-, -wt. of body = 4600-1200 oz. = 3300 oz. =206Jlbs,; 
and ep. gr. of body = 3300/500 = 6-6. 
37. Eq.uilibrium of immersed bodies.—An immersed 
body is always acted on by two forces : 

1st. The weight of the body acting downwards. 
2nd. The thrust of the fluid acting vertically upwards 

and equal to the weight of the fluid displaced. 
If the weight of the solid exceeds that of the fluid 

displaced, the body will sinh. To support it, w e must 
suspend the body by a string, whose tension 

= weight of solid — weight of fluid displaced. 
COE. Hence a solid placed in fluid will sink or float 
according as the solid or the fluid has the greater density. 

[For illustrative examples, see p. 127.] 
38. The Hydrostatic Balance. — When a common 
balance is adapted for weighing bodies suspended in 
fluid, it is called a Hydrostatic Balance (Fig. 7). The only 
difference between a hydrostatic balance and an ordinary 
pair of scales is that one of the scale-pans in the former 
is at a sufficient height to allow a vessel of fluid to be 
placed under it, and has a hook on its under side from 
which any small solid may be suspended by means of a 
fine wire, and weighed when immersed in the fiuid. 
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39. To verify the Principle of Archimedes by 
experiments -with a Hydrostatic Balance. 

ExPEElMENT I. — (i.) Take two brass cylinders, one 
hollow, the other solid and of such a size as just to fit 
into the first. Suspend them from the scale pan of the 
hydrostatic balance, the hollow one uppermost, and weigh. 

(ii.) N o w let the solid cylinder be immersed in water 
and the two again weighed ; they will be found to be 
considerably lighter than before. 

(iii.) Lastly, let the upper cylinder be filled with water 
and the two weighed, the lower cylinder still being 
immersed. It will be found that their combined weight 
is exactly the same as at the first observation. 

Fig-. 7. 

Since the lower cylinder exactly fits the upper, the 
volume of the water in the upper cylinder is exactly equal 
to the volume of the lower cylinder. 

H e n c e the apparent loss of weight w h e n the lower 
cylinder is immersed in water is exactly equal to the 
weight of an equal volume of water, that is, to the weight 
of the fluid displaced. 
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Experiment II.—(i.) Take a vessel or flask (such as a 
specific gravity bottle). Place in it any body, fill it up 
•with water, and weigh it in the scale-pan of the hydro­
static balance. 

(ii.) Take the body out of the flask and hang it from 
below the scale-pan by means of a fine thread, so that it 
is immersed in a vessel of water. Fill the fiask up with 
water again, place it in the scale-pan, and weigh. It 
will be found that exactly the same weights have to be 
placed in the opposite scale-pan as before. 

Now, when the solid is removed from the flask, an 
additional volume of water equal to that displaced by the 
solid has to be poured in to fill the fiask up. Hence the 
weight of the flask and of the water in it is greater than 
before by the weight of the water displaced by the solid. 
Therefore part of the weight of the solid is supported by 
the reaction of the water, and this reaction is equal to the 
weight of the fluid displaced. 

40. T o verify the Principle of Archimedes h y 
experiments -with floating bodies. 

Take any open vessel filled to the brim with water. 
Take any body which is lighter than an equal volume of 
water, and gently lower it into the water until it floats. 
A quantity of water will overflow out of the vessel, whose 
volume is equal to that of the immersed portion of the 
solid. Let this water be weighed; then its "weight will be 
found to be equal to that of the solid. 

Hence, when a solid floats in equilibrium, the weights 
of the solid and of the fluid displaced are equal. 
41. Effect of density of fluid. — In order to prove 
the principle perfectly, generally it would be necessary to 
repeat the above experiments, using difierent liquids. 
W h e n this is done, it is found that in every case the loss 
of weight on immersion is equal to the weight of the 
fluid displaced. Since this is proportional to its density, 
it follows that the reaction of a fluid on a given im­
mersed body is proportional to the density of the fluid. 
[Examples illustrative of the principles contained in this chapter 

•will be found on p. 127.] 



4 4 HYDEOSTATICS. 

SUMMAEV. 

The Principle of Archiinedes asserts that a heavy fluid exerts an 
upward reaction on an immersed or floating solid equal to the weight 
of fluid displaced by the solid. 

If the solid floats, the weight of the displaced fluid equals that of 
the sohd, but its volume is only equal to that of the submerged 
portion. 

EXAMPLES V. 

1. It is required to determine -with great acom-acy the weight of a 
cubic centimetre of water, and it'would be very difficult to construct 
a vessel whose internal capacity is exactly 1 cub, cm. Can you sug­
gest any alternative plan ? 

2, A ship is said to draw more water in a river than at sea. If 
this be so, what is the reason ? 

3, A man weighing 160 lbs, floats -with 4 cub, ins, of his body 
above the surface. W h a t is his volume in cubic feet ? 

4. A cube of wood, whose edge is 10 ins, and specific gravity -8, 
floats in 'water. W h a t weight must be placed on it in order to just 
totally immerse it ? 

6, A cube of wood floating in water descends 1 in. when a weight 
of 270 oz, is placed upon it. Find the size of the cube, 

6, A cylinder weighing 1 lb,, floating in,water -with its axis 
vertical and each of its ends horizontal, requires a weight of 4 oz, to 
be placed on its upper surface to depress it to the level of the water, 
Eind the specific gra-vity of the cylinder, 

7, What is the specific gra-vity of a substance a cubic foot of which 
will just fioat in water when attached to a cubic foot of cork of 
specific gra-vity -2 ? 

8, What is the specific gravity of a metal a cubic foot of which 
-win just fioat iu glycerine of specific gra-vity 1-26 when attached to 
6 cub. ft. of cork of specific gra-vity -24 ? 
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9, How many cubic feet of cork of specific gra-vity -24 must be 
attached to 1 cub, ft, of glass of specific gravity 2-9, in order that the 
whole may float in water just immersed P 

10, A sohd of which the volume is 1-6 cub, cm, weighs 3-4 gm, in 
a fluid of specific gi-a-vity -86, Eind the specific gravity and weight 
of the substance, 

11, A piece of cork whose weight is 19 oz, is attached to a bar of 
silver weighing 63 oz,, and the two together just float in water. The 
specific gTavity of silver is 10-5 times that of water, Eind the specific 
gxavity of the cork, 

12, A body, whose mass is 10 lbs, and specific gra-vity -75, dips 
into water, and is supported partly by the buoyancy of the water and 
partly by the tension of an attached string which passes over a smooth 
pulley, and carries at its other end a mass of 2 lbs, hanging freely in 
the air, Eind what fraction of the volume of the flrst body is 
immersed, 

13, A piece of iron weighing 275 gm, floats in mercm-y of density 
13-59 with five-ninths of its volume immersed. Determine the volume 
and the density of the iron, 

14, An earthenware box and its lid form a hollow cube which 
floats just immersed in water. The thickness of the material is on 
all sides one-eighth of an edge of the cube, Eind the specific gra-vity 
of the earthenware, 

15, Describe experiments to prove that the upward force which a 
fluid exerts on an incompressible solid immersed in it depends only 
on the bulk of the body, the density of the fluid, and the intensity of 
gra-vity, and is independent of the depth of immersion and of the 
shape of the body. W h a t difierence would it make if the body were 
readily compressible? 

16. A stone of specific gravity 4 is dropped from a height of 16 ft. 
above the surface of a lake 36 ft. deep. Supposing no sudden change 
of velocity takes place at the surface of the water, in what time -will 
the stone reach the bottom of the lake ? 
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E X A M I N A T I O N P A P E R II. 

1. 15 cub. ft. of a substance weigh 2ii tons; find its specific 
gravity, 

2, A cylinder, whose height is 21 ins, and the radius of whose base 
is 8 ins,, weighs 412i lbs, ; find its density, (j = %̂ .) 

3, A cone of lead (specific gravity = 11-34), whose height is 6 cm, 
and the radius of whose base is 4 cm,, balances a sphere of brass 
(specific gra-vity = 8 -4), Find the radius of the sphere, 

4, Describe the method of using the specific gravity bottle in 
finding the specific gravities of liquids and powders, 

5, Enunciate the Principle of Archimedes, 

6, A specific gra-vity bottle holds 154-6 gm, of a liquid whose 
specific gra-vity is 1-03, and 108 gm, of ether; find the specific 
gra-yity of ether, 

7, A specific gra-vity bottle filled -with water weighs 36-8 gm, A 
piece of spar weighing 1-68 gm, is placed in it, and the whole now 
weighs 37-85 gm. Eind the specific gra-vity of the spar. 

8. 100 gm. of a certain powder are placed in a specific gravity 
bottle weighing 60 gm. and capable of holding 600 gm. of water. 
The bottle is filled -with ether of specific gra-vity -72, and the whole is 
then found to weigh 474 gm. Eind the specific gravity of the sub­
stance forming the powder. 

9. A glass globe, weighing 100 gm. when exhausted of air, holds 
2 litres of water at standard temperature. EuU of air it weighs 
102-686 gm,, and full of hydrogen it weighs 100-1788 gm, Eind the 
specific gravity of air -with respect to water and hydrogen, 

10, G-ive a short account of the Hydrostatic Balance, How would 
you use it to verify experimentally the Principle of Archimedes ? 
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DETERMINATION OF SPECIFIC GRAVITIES Br 
THE HYDROSTATIC BALANCE, 

42. To flnd the specific gravity of a solid which 
is heavier than a n eciual volume of -water, using-
the hydrostatic balance. 

(i,) Let the solid be first placed 
in the scale-pan and weighed in air. 

(ii,) Let the solid be suspended 
in water by a very fine thread at­
tached to the scale-pan of the balance 
and again weighed. 

B y the Principle of Archimedes, 
the difierenoe of the observed weights 
in air and water is the weight of a Eig,'_8, 
quantity of water equal in volume 
to the solid. Dividing the weight of the solid by this, 
the specific gravity of the solid is found. 
Examples.—(1) A solid weighs 15 gm, in air and 5 gm, in water; 

to find its specific gra-vity. 
The weight in water is less than in air by the weight of the 

water displaced, 
weight of water displaced = 16 — 6 = 10 gm. 

Also weight of solid = 16 gm. ; 
. -. specific gra-vity of solid = \% = 1-5. 

(2) A piece of gold weighs 698-3 gm, in air, and 667-3 gm, in 
water ; to find its volume and specific gravity. 

Weight of water displaced = 698-3-667-3 gm, = 31 g-m, ; 
volume of gold = 31 cub, cm,, 

and specific gravity of gold = 698-3-=- 31 = 19-3, 
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43. To find the specific gravity of a solid whose 
weight in air is W and whose weight in water 
is P. 

The -weight of the water displaced 

= (weight of solid in air) — (weight in water) 

= W-P; 
weight of solid specific gravity of solid = 

weight of water displaced 

W 

W — P (!)• 

When the weights of a sohd in air and in water are given, it would, 
of course, be possible to -write do-wn the specific gra-vity at once from 
this formula, but it is far better tô proceed as in the preceding examples. 

4 4 . T o find the specific gravity of a solid which 
is lighter than an eq^ual volume of water. 

If the solid were suspended 
by itself, it would float in 
water, and w e could not find 
the weight of a quantity of 
water equal in volume to 
the whole solid. To remedy 
this, a heavy piece of metal, 
called a sinker, is attached to 
the thread which supports 
the body to be weighed, and 
this keeps the body under 
water. 

The operations are best 
performed in the following 
manner :— 

(i.) Weigh the solid in air. 
(ii.) Suspend the solid and sinker together from the 

scale-pan of the balance, and weigh them in water 
(Fig, 9), 

(iii,) Weigh the sinker in water. 

Eig. 9, 
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The wejght in water of the solid and sinker combined 
is less than the weight in walier of -the sinker alone by 
th,e aniount of $he total resultant upward force on the 
solid. This force is the exicess of th,e weight of "water 
displaced by the solid over the weight of the solid itself. 
This being known and the weight of the solid being also 
kno"wn from the first observation, the weight of the 
water displaced is found, and the specific gravity of the 
solid can he found, as before. 
Examples.—(1) A soUd weighs 16 gm, in air. When attached to a 

sinker and immersed in water, the -two together weigh 6 gpi. The 
weight of the sinker in water alone is 10 gm, T̂ o find the specific 
gravity of the soHd, 
Here the weight of the solid and sinker in -water together 
= (weight of sinker in water) + (weight of solid in air) 

— (weight of water displaced by solid) 
= 6 gm, 

But weight of sinker in water = 10 gm,, 
and weight of soUd in air = 16 gm, ; 

, , weight of water displaced by solid = 16 + 10 — 6 gm. 
= 20 gm, ; 

,,. -i, _i! 1-1 weight of BoUd ,„ .o 
,-, specifio gravity of solid = —, , , ° r—j-—^ 1 = 4% = °-

r o J weight of water displaced 
46, The -weight .of a solid in air is W, the -weight of a 
sinker in water is A, ajid -the weight of the solid and 
sinker together in -water is JB. To find the specific 
gra-Tiiy of the solid. 
Let w be the weight of the water displaced by the solid. Then 

we have, evidently, 
weight of soUd and sinker in water together 
= (weight of sinker in water) + (weight of soUd in air) 

-? (weight of water displaced by soUd); 
or B = A + W'-w. 
Therefore, by transposition, 

w = A+ W-̂ B. 
Hence the weight of the water displaced by the solid is known, and 

we then have . -ui. j: i-j tjt 
J. •(.•, weight of solid _}r 

specific gravity of solid = ^^^g^t of water displaced ' w 
^ (2). 

W+A 
HYDEO, E 
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46. To find the specific gravity of a liquid by 
m e a n s of the hydrostatic balance. 

Take any solid body of greater specific gra-vity than 
either the liquid or water (the sinker used in the experi­
ments of the last paragraph would do). 

(i.) Weigh the solid in air. 
(ii.) Weigh it in the given liquid whose specific gravi-ty 

is required. 
(iii.) W e i g h it in water. 
The .difference between the weights in air and in the 

given liquid is the weight of the liquid displaced by the 
solid. The difference between the weights in air and in 
water is the weight of water displaced. And, since the 
volumes displaced in both cases are equal, the ratio of 
their weights is the specific gravity of the liquid. 

Example.—To tind the specific gravities of glass and glycerine, 
from the folio-wing data :— 

Weight of a piece of glass in air = 1 0 grs., 
,, „ „ water = 6 grs., 
„ „ ,, glycerine = 6 gi-8. • 

Here weight of water displaced by glass = 10— 6 = 4 grs., 
,, glycerine ,, ,, = 10-6 = 6 grs., 

and weight of glass = 10 grs. 
.-. specific gravity of glycerine = ^^ght of glycerine displaced 

weight of water displaced 
= f =1-25; 

and specific gravity of glass = i^ = 2-6. 

47. Having given that the weight of a body in air is TP, 
its weight in water is jp, and its weight in a given 
liquid is Q, to find the specifio gravity of the liquid. 
Here weight of water displaced by soUd = W — F, 

„ Uquid ,, ,, = W - Q . 
.-. specific gravity of liquid = --, weight of Uquid 

weight of equal volume of water 
W— Q 
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We have hitherto considered only solids which do 
not dissolve in water; w e n o w proceed— 

48. To find the specific gravity of a solid which 
-will dissolve in water. 

If a solid is soluble in water, its specific gravity m a y 
be found by taking some liquid in which it is not soluble, 
and weighing the solid first in air, then in that liquid. 
The liquid taken must be of k n o w n specific gravity. 

In this case, the apparent loss of weight in the liquid 
is equal to the weight of the liquid displaced by the solid. 

Dividing this by the specific gravity of the liquid, the 
weight of an equal volume of water is found, and hence 
the specific gravity of the solid. 
Example.—To find the specific gravity of a substance soluble in 

water, but not in turpentine, from the following data:— 
Weight of soUd in air = 3 2 grs., 

,, ,, turpentine = 3 grs. ; 
specific gra-vity of turpentine = -87. 

The weight of turpentine displaced = 32 — 3 = 29 grs. 
But weight of turpentine = -87 (weight of equal volume of water); 

. , , J, , 1 „ , 29 29 X100 100 
.-. weight 01 equal volume of water = —- = = grs. ; 

-87 87 3 
specific gravity of soUd = = -96. 

Note.—In this example, the soUd was specifically Ugliter than 
water, but hea-vier than turpentine. Had the soUd been insoluble in 
water, it could not have been weighed in water -without attaching it 
to a sinker. 

49. To find the specific gravity of a solid, ha-ving given 
that its weight in air is W, and that its weight iu a 
liquid of specific gravity s is Q. 

The weight of liquid displaced by soUd = W — Q, 
TV—Q 

and weight of equal volume of water = . 
Hence specific gra-vity of soUd = W-. ~— = ——— (4) • 

S rr — y 
The above method m a y also be used to find the specific 

gravity of a solid which is lighter than water by weighing 
it in a liqiiid of still smaller specific gravity, thus dis­
pensing with the use of a " sinker." 
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*50. The above methods may be used to find the sectional diameter of 
a fine wire, as in the following example:— 

Example—To find the diameter of a wire 1 metre long, and weigh­
ing 20 gm. in air and 18 gm. in water. 
The weight of water displaced by the -wire = 20 — 18 = 2 gm. 

. . the volume of the wire = 2 cub. cm., 
and its length =100 cm, 

. , the area of its cross section = ^̂ ^ = -̂-g sq, cm. 
Hence, ii dhe the diameter of the -wire in centimetres, we have 

ird̂  _ 1 . 
4 ~ 60 ' 

whence, taking -n- = ̂ -, we get 
, , 4 x 7 7 77 22x60 

V77 
55 

11 X 
8-775 
56 

1-696 mm. 

26 112x62 

1595 cm. 

*51, Effect of displaced air on the weight of solids. 

In finding specific gravities of solids, we supposed their 
weights found by weighing them in air with a common 
balance. If great accuracy is required, it -will be necessary 
either to weigh the bodies in vacuo, or to allow for the 
fact that the bodies, as well as the set of weights em­
ployed, all displace more or less air, and therefore the 
apparent weight of a body in air is less than its true 
weight by the weight of this displaced air. But the 
density of air is very small compared with that of most 
solids and liquids, being -^wo o"̂  that of water, -Hence 
the weight of the displaced air is in most cases so small a 
fraction of the weight of the body that no serious error 
is introduced by neglecting it altogether. 
It is easy, however, to make aUowance for the displaced air, if 

necessary, Eor when a body is placed in one pan of a pair of scales, 
and balanced by weights in the other, the apparent weights or resultant 
forces tending to draw the body and weights towards the ground are 
equal. Hence 
true weight of body—weight of air displaced by body 

= weight of weights—weight of air displaced by weights. 
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Consider, for example, the weU-kno-wn case of a pound (mass) of 
lead and a pound (mass) of feathers. The weights of the two in 
vacuo are equal. But the feathers displace more air than the lead, 
and therefore their apparent weight in air is less. 
In investigations requiring very deUoate weighings, it is, therefore, 

necessary to specify the metal of which the weights are made. Brass 
weights are commonly used, but platinum weights are employed in 
the most expensive chemical balances. 

SuMMAET, 

Let W be the weight of a soUd in air, 
yS its specific gravity, 
P its weight in water, if heavier than water, 
Q its weight in a given Uquid, 
s the specific gravity of the liquid, 
A the weight of a sinker in water, 
B the weight in water of a sinker and a soUd Ughter than 

water, 
1, To find the specific gravity of an insoluble solid heavier than water. 
Observe W and P. Then 

5=-?L (i), 
W-P 

2, To find tlie specific gravity of a solid lighter than water. 
Observe W , A, B. Then 

^^ T^ (2), 

3, To find the specific gravity of the liquid. 
Observe W , P, Q- Then 

s ^ ' J ^ ^ (3), 
W-P 

4. I'o find the specific gravity of a solid soluble in water but not in 
the liquid. 
Observe W , Q, s. Then 

•-^ ''^-
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EXAMPLES VI. 

1. Distinguish between acttial and apparent weight of a body. 
The apparent weight of a piece of platinum in water is 60 gm, ; the 
actual weight of another piece of platinum twice as big as the 
former is 126 gm. Determine the specific gra-vity of platinum. 

2. A piece of lead weighs 125 oz. in air and 114 in water. Find 
its specific gra-vity. 

3. A piece of silver, whose specifio gravity is 10-5, weighs 120 oz. 
in air. H o w much does it weigh in water ? 

4. A piece of chalk weighs 48 gm. in air and 28 gm. in water. 
Eind its specific gra-vity. 

5, A piece of copper weighs 10 lbs, in air and 8f lbs, iu water. 
Find its specific gra-vity and its volume in cubic inches. 

6. A piece of lead, whose weight in air is 285 gm. and specifio 
gravity 11-4, is weighed iu water. What "will belts apparent weight P 

7. Calculate the mass of 1 cub. cm, of a certain soUd from the 
folio-wing data: — a mass of 720 gm, hanging from one pan of a 
balance is totally innnersed in water, and foimd to be counterpoised 
by a weight of 646 gm. in the other pan. 

8. A piece of iron (specific gravity = 7-21) weighing 216-3 gm, is 
attached to a piece of cork weighing 36 gm,, and the weight of both 
in water is 36-3 gm, ; find the specific gra-vity of the cork, 

9, A piece of cork weighing 12 gm, is joined to a piece of iron 
(specific gravity = 7-21) weighing 72-1 gm. The loss of weight of 
the two in water is 72 gm. What is the specifio gravity of cork ? 

10, What weight of cork of specific gravity -24 must be attached 
to 57 cub, cm, of zinc of specific gravity 7-2 in order that the two 
may just float immersed in water ? 

11, A block of wood, the volume of which is 26 cub, ins,, floats in 
water -with two-thirds of its volume immersed. Eind the volume of 
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a piece of metal, the specifio gra-vity of which is 8 times that of the 
wood, which, when suspended from the lower part of the wood, -wUl 
cause it to be just totaUy immersed. 

W h e n this is the case, find the upward force which -wiU hold 
the wood half immersed. 

12. A piece of paraffin weighs 4-273 gm, in air, and, when attached 
to a piece of lead which v^eighs 7-696 gm, in water, the two together 
weigh 6-423 gm, in water; determine the specific gravity of the 
paraffin, 

13, A piece of glass weighed 8'602 gm, in vacuo, 6-854 gm. in 
water, and 6-395 in alcohol. Calculate the specifio gravity of alcohol. 

14. A soUd body weighs 117 gm. in air, 98 in water, and 101 in 
another liquid. Calculate the specific gravities of the solid and the 
Uquid, 

16, A ball of glass weighing 666-8 grs. in air is found to weigh 
465-8 grs. in water and 297'6 grs, in sulphuric acid. W h a t is the 
specifio gra-vity of the latter ? 

16, A bar of metal weighs 1275 grs, in air, 1147-6 grs, in spirit, 
and 1125 gTS, in water. Find the specific gravities of the metal and 
the spirit compared to that of water. 

17. A ball of metal weighs 9 lbs. in air and 8 lbs. when suspended 
in water. W h a t would be the specifio gravity of a Uquid in which 
it would weigh 7i lbs. ? 

18, A piece of glass, specific gra-vity = 2-6, weighs 26 gm. in air 
and 16-6 g m in oil; find the specific gravity of the oil. 

19. Apiece of gold weighs 96 gm, in air, 91 gm, in water, and 
92-4 gm, in ether. Find the specific gra-vities of the gold and ether, 

20, A piece of glass weighs 47 gm, in air, 22 gm, in water, 
25-8 gm. in alcohol. Find the specific gra-vity of alcohol. 

21. Describe some method of frndiD.g- the specific gravity of a fluid* 
A certain body just floats in water. O n placing it in sulphuric acid 
of specific gi-avity 1-85, it requires an addition of 42-5 gm, to immerse 
it; find its volume. 
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22. A baU of metal is attached to a spring balance, and the index 
shows that it weighs 5 lbs. It is tien allowed to dip below the 
surface of the water, and the weight aippeace to be 4-375 lbs. If it 
be immersed in a Uq-did of specific gravity '76, what -wiH then be the 
apparent weight ? 

23, A glass ball weighs 3000 grs., and has a specific gra-vity 3 ; 
what -will be its appareiit weight in a Uquid whose' specific gra-vity is 

24, It is required to find the specific gravity of potassium, which 
decoriiposes water, A lump weighing 432-5 grs, iu air is suspentied 
in naphtha, the specific gra-vi-ty of which is -847, and is found to 
weigh 9 grs. W h a t is the specific gravity f 

26, A piece of iron "weighs 260 gm, in Water and 260 griii, in 
glycerine of specific gravity 1-26, Eind its specific gravity, 

26, A piece of silver, vvhose weigbt in water is 19 lbs, and specific 
gravity 10-5, is weighed in oil of specific gravity 9, W h a t wiU be 
its apparent weight ? 

27. An iron sheU is foxind to lose half its weight when weighed 
in water. W h a t portion of its volume is hoUow ? (Specific gra-vity 
of iron = 7-2.) 

28, How would yon determine the specific gravity of a gold medal 
by means of a hydrostatic balance furnished -witll brass weights? 
Explain how each weighing and the final result will be affected by 
the presence of air, if no correction is made for the air displaced, 

29. A piece of silver and a piece of gold a.re suspended from the 
arms of an equal-armed balance beam, which is in equiUbrium when 
the silver is immersed iu alcohol (density -86) and the gold in nitric 
acid (dmsity 1-5). The densities of the silver and gold being 10-5 
and 19-3, respectively, what are their relative masses? 

30, Find the volume of a soUd which weighs 500 gms, in air and 
375 gms, in glycerine of specific gravity 1-25, 
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THE HYDROMETERS. 

The iastruments now to be described are chiefly used 
for finding the spBoific gravities of liquids,* They all 
depend on the principle of flotation, namely, that the 
weight of a floating body is equal to the weight of liquid 
which it displaces. 

62. Dr. Wilson's Glass B e a d s are a series of hollow 
balls of glass, the diameters of the hollows in them being 
so adjusted that the average specific gravities of successive 
beads form a series of numbers increasing by -002. Each 
bead is numbered according to its specific gravity, and 
the specific gravity of any liquid m a y be found by 
throwing them all into it. 

All the beads of greater specific gravity than the liquid 
sink, and all those of lesser specific gravity float. B y 
these means the specific gravity of the liquid is found to 
within -002, and this degree of accuracy is sufficient for 
most purposes. 
53. ITicholson's Hydrometer (Pig. 
10) consists essentially of a hollow globe 
or cylinder of metal B, from the top of 
which projects a stem of hardened steel 
wire carrying a small cup or scale-pan A. 
T o the bottom of B is fixed another cup 
or scale-pan G, which is of sufiicient 
weight to keep the hydrometer from 
becoming top-heavy without sinking the 
whole of the bulb even in the lightest 
liquids, A set of weights is provided 
with the hydrometer, and these are to 
be placed in the upper scale-pan so as ^̂ '̂ '̂'' 
* Commercially, this is a very important operation, tlie .-specific gra-vity often 

beinga rough but ready test of the purity of a liquid or degree of concentration 
of a solution. Thus the strongest ammonia has a speoiflo gravity of -880 ; it is a 
concentrated solution of ammonia gas in -water. 
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to sink the hydrometer till the liquid in which it floats 
reaches a fixed mark X on the upright wire. Eor 
convenience, a cylindrical jar is usually provided, to 
contain the liquid whose specific gravity is required, 

54. To iind the specific gravity of any Ug.-aid by 
m e a n s of Nicholson's Hydrometer, the observations 
are made as follows :— 

(i.) Find the weight of the hydrometer (in air). 

(ii,) Lower the hydrometer into a jar of water, and add 
weights to the upper scale-pan A until the instrument 
sinks to the fixed mark on the stem, 

(iii,) Repeat the last operation, replacing the water by 
the liquid whose specific gravity is required. 

The weight of the hydrometer, together with the 
weights in the scale-pan at the second operation, is equal 
to the weight of the water displaced by the part of the 
hydrometer below the fixed mark. 

The weight of the hydrometer and weights in the 
scale at the third operation are equal to the weight 
of the given liquid displaced. A n d the volume displaced 
is the same as before. 

Hence, by dividing the latter weight by the former, the 
specific gravity of the liquid is at once found. 
Example.—To find the specific gra-vity of brandy by means of a 
Nicholson's Hydromfeter weighing 60 gm., having given that 23-7 gm. 
are required in the upper scale-pan to sink the hydrometer to the 
fixed mark when placed in brandy, and that 40 gm. are required to 
sink it to the same mark in water. 
At the first observation, the total weight supported by the brandy 

= 60-f 23-7 = 83-7 gm. 
Hence weight of brandy displaced = 83-7 gm. 
At the second observation, we have, in like manner, 

weight of water displaced = 60 -+40 = 100 gm. 
But the volumes of the brandy and water displaced are equal. 

8.3-7 
specific gra-vity of brandy = ~—- = -837. 



HTDEOMBTERS. 59 

65. The weight of a hydrometer is w, the weig-ht re­
quired to sink the hulb in -water is f, and the weight 
required to sink it in another liqnid is Q. To find the 
specific gravity-of the Uquid. 
Since the hydrometer floats in equiUbrium in each case, 

.•. weight of water displaced by hydrometer = P + W , 
and weight of Uquid displaced = Q+ W. 

weight of Uquid Q + W specifio gra-vity of Uquid = 
-wt. of equal vol. of water JP + W 

56. T o find the specific gra-sity of a solid by m e a n s 
of Ificholsou's Hydrometer.^—^We have to find— 
(I) The weight of the solid in air. 

(2) The weight of the water displaced by the solid when 
immersed. 
To do this, we proceed as as follows :— 

(i.) Plunge the hydrometer in water, 
and place weights in the upper scale-pan 
till the stem sinks to the fixed mark. 
(ii.) Place the solid in the upper 
scale-pan, taking oiF weights to make 
the stem again sink to the fixed mark. 

The total weight supported by the 
hydrometer is the same as before. Hence 
the weights taken oS must be equal to 
the added weight of the solid, which is 
therefore known. 
(iii.) Place the solid in the lower cup ^^S- 10-
and again plunge the hydrometer in 
water. The water displaced will now exert an upward 
force on the solid. Hence extra weights must be placed 
in the upper scale-pan to sink the hydrometer to the fixed 
mark, and these added weights are equal to the weight 
of the water displaced by the solid. 

Hence the specific gravity of the solid is at once found. 
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57. If the solid is specificaliy lighter than water, it must be 
fastened d o w n to the lower cup of the hydrometer during 
the third process of -weighing, so as to prevent its rising 
to the surface. Eor this purpose the cup is sometimes 
provided with a cap of wire gau:2e. In Atkin's form of 
the instrument, there is a small spike projecting down­
wards over the cup (S, Eig. 10), on the point of which 
any small bodies lighter than water can be impaled. 

In such cases the cup acts as a sinker. 
In other respects, the method of finding specific gra-vity 

is exactly the same. 
Example.—^A Nicholson's Hydrometer when placed in -w-ater required 
a weight of 40 gm. in the upper scale to sink it to the fixed mark. 
When a piece of silver was placed in the upper scale-pan, 8-6 gm. 
were required to sink it; and when the silver was placed in the lo-wer 
scale-pan, 11-5 gm. were required in the upper. I'o find the specific 
gravity of silver. 
Here, when the silver was placed in the upper scale-pan, 40—8-6 
or 31 -6 gm. had to be taken out in order to make the total weight the 
same as before. 
Therefore the weight of the silver was 31-6 gm. 
When the silver was transferred to the lower pan and immersed, 

we had to add 11-5 — 8-5 or 3 gm. to the upper pan to counteract the 
upward thrust of -Uie water on the silver, 

•, weight of water displaced by silver = 3 gm, 
31-5 

,-, specific gravity of silver = -̂ = 10-5, 
58, The weight required to sink the hulb of a hydro­
meter is F. W h e n a body is placed in the upper scale-
pan, the weight required to sink the bulb is Q; and w h e n 
the body is placed in the lower pan, the weight required 
is IB. To find the specific gravity of the solid. 
Let 7F be the weight of the body, w the weight of the water it 

displaces. Then, since the resultant force required to sink the bulb 
is the same in each ease, 

.. P-^Q+TF, 
and Q+W=Ii+W-w; 

weight of soUd W = P — Q, 
and weight of water displaced w = li—Q ; 
specific gravity of soUd = — = '' . 

w JC—Q 
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Fig. U. 

59. The C o m m o n Hydrometer is 
adapted for finding the specific gravities 
of liquids only. It consists of a glass 
tube or stem A E G blown out into two 
bulbs B, G at its lower end, and closed 
at its upper end. The stem and the 
upper bulb B are filled with air, the 
lower bulb G being loaded with mercury 
or small shot, so that when the hydro­
meter is in liquid it floats upright with 
the whole of the bulb and part of the 
stem submerged. 
N o moveable weights are used, but the 

stem is provided with a graduated scale. 
The height to which the liquid rises on 
the stem is indicated by the scale, and 
serves to determine the specific gravity 
of the liquid. 
60. To find the specific gra-vity of a liquid by 
means of the C o m m o n Hydrometer. 

In order to find the specific gravity of a liquid, it is 
sufficient to know—• 

(1) The weight of the hydrometer. 
(2) The volume of liquid displaced when the hydro­

meter floats iu it. 
W o w the stem of the hydrometer is cylindrical; hence, 

if its thickness be known, the volume of any length of it 
can be found. Hence, if the volume of the bulbs or of 
the whole hydrometer be known, we can find the required . 
volume immersed when the liquid reaches a given height 
on the stem. 

The weight of the hydrometer is equal to the weight of 
the displaced liquid, and, dividing this by the volume, the 
weight of a unit volume is found, and hence the specific 
gravity can be determined. 

The general formula being somewhat complicated, it is 
usual to deduce the specific gravity of liquids by first 
principles in the manner illustrated in the foHo-wing 
examples. 
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— (1) To find the specifio gra-vity of a Uquid, ha-ving 
given that a hydrometer weighing IJ oz. sinks in it until 2-4 cub. ins. 
are immersed. 
Here weight of 2 -4 cub. ins. of liquid =1-5 oz. ; 

1-6 
.-. weight of 1 cub. in. of Uquid •- — " — 

2-4 
and 1080 oz. 

ut 
weight of 1 cub. ft. of Uquid = 1728 x f oz. 
weight of 1 cub. ft. of water = 1000 oz. ; 
, , specific gra-vity of Uquid = ^°gg = 1-08. 

(2) To find the density of a Uquid in which k common hydrometer 
floats "with 3J ins, oi its stem immersed, ha-ying given that the 
diameter of the stem is -2 in,, the volume of the two bulbs is 
-764 cub, in,, and the weight of the hydrometer IJ oz. 
Here the portion of the stem immersed is a cylinder of height 

3J ins,, the radius of whose base is 
= ix -2 = -1 in. 

Hence the volume of the immersed portion of the stem 
= ^ x (-1)2xi =,-11 cub, in. 

Moreover, the volume of the bulbs = -764 cub, in. 
Hence the whole volume of the displaced Uquid 

= -764-f-11 = -864 cub, in. 
But weight of displaced Uquid = weight of hydrometer = J oz,; 

, , -864 cub, in, of Uquid weighs J oz, ; 
,-,1 cub, in, of-Uquid weighs = oz,; 

2X-864 1-728 
179S 

- 1 cub. ft. of Uquid weighs oz. = 1000 oz. 
^ ° 1-728 

Hence the liquid is of the same density as 
water, and its specific gra-vity is unity. 
(3) The stem of a hydrometer is di-vided into 
100 equal parts. It reads 0 in water and 100 in 
Uquid of specific gravity -8. To flnd the specific 
gra-vity for which the hydrometer reads 60. 
Let 0, Q be the points marked 0, 100 ; P the 

point marked 60. 
Let V be the volume of water whose weight is 

equal to that of the hydrometer. Then V is the 
volume of water displaced when the hydrometer 
floats in water, 
, , volume displaced by portion below 0 = V. 

W h e n the hydrometer floats in the Ughter 
Uquid of specific gravity -8, it displaces an equal weight, and therefore a greater volume, of Uquid, 

1 

I ) 

Fig, 12. 
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,-. volimie displaced by portion below Q = F-f-8 = I-26K; 
volume of stem OQ = 1-25 V — F = -25 F; 

that is, volume of 100 divisions of stem = -26 7-̂; 
,-, volume of 50 di-visions of stem = -125F; 

,-, volume displaced by portion below P = F+•125F= 1-126F, 
This is the volume displaced by the hydrometer in the given 

Uquid, and its weight is equal to the weight of water displaced, 
wt, of vol, 1-126 Fof given Uquid = -wt, of vol, Fof water; 

, •, -wt, of vol, 1 of given Uquid = wt, of vol, 1 -=-1 -126 of water; 
, , required specific gravity of Uquid = lH-l-125 = f = -8, 
[Note,—Although the mark 60 is midway betwoen the marks 0 

and 100, the required specifio gravity is not midway between the 
corresponding specific gravities, for its value is -8, and not -9 as might 
on first thoughts be expected, ] 

(4) With the data of the last example, to find the specific gravity 
of a Uquid whose reading is 28, 
W e have seen that 

volume of 100 di-visions of stem = -26 F; 
, •, volume of 28 divisions = ^^ x -26 F = -07 F; 

, , volume displaced by hydrometer in given Uquid = 1-07 F; 
, -. weight of volume 1 • 07 F of Uquid = weight of volume V of water ; 

specific gra-vity of Uquid = 1 -r 1-07 = -9346, nearly, 
61, Beaume's and Ttvaddell's Hydrometers. — The 
stem of a hydrometer is usually divided into a number of 
equal parts, very often 100. Thus Beaume's hydrometer 
for fluids lighter than water has the stem graduated from 
10 up to 70. W h e n plunged into water it reads 10, and 
the lighter the liquid the higher the reading. Another 
hydrometer was used by B e a u m e for fluids heavier than 
water. 

Twaddell's hydrometers for fluids heavier than water 
are a set of six. The first is graduated from 0 to 24, 
and indicates 0 when placed in water. The second sinks 
to the highest mark on the stem in a liquid in which the 
first rises to the lowest ma.rk, and is therefore used for 
rather heavier liquids, and so on. 

Tables have been constructed giving the specific gravity 
corresponding to any reading. In commerce, however, it 
is very customary to specify the specific gravity of a liquid 
by its hydrometer reading, thus: " 10|° Twaddell." 
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62, The Lactometer is a common hydrometer adapted 
for testing whether milk has been adulterated with water. 
The extremities of the scale are the points to which the 
hydrometer sinks in pure water and pure milk respec­
tively, and the interriiediate divisions indicate the pro­
portions of milk and water occurring in a mixture. 
Lactometers may now be purchased for a very small sum. 

A 

*63. Sikes' Hydrometer is similar in 
construction to the C o m m o n Hydrometer, 
the only essential difference being that the 
bulb B and the counterpoise G are separated 
by a thin conical stem, on which may be 
placed different weights of the form W 
(Fig. 13). The slot in each weight is just 
wide enough to go over the thinnest or 
upper part of the stem C, while the central 
hole just fits on to the lower part. 

The scale of the hydrornefer is divided 
into ten equal parts or degree;S, numbered 
from the top (lownwards, and each degree 
is subdivided into fifths. Nine difierent 
weights are supplied with the instrnm,ent, 
and these are numbered 10, 20, ... 90, re­
spectively. The smallest weight 10 is such 
as to sink the hydrometer from the mark 
10 to the mark 0 in a liquid of the proper 
density. 

In addition there is another weight A 
which can be placed on the top of the stem 
when the hydrometer is employed for liquids 
heavier tha,n water. 

In using Sikes' hydrometer, the number on the weight 
is added to the reading of the scale. Thus in water 
(specific gravity 1) the scale reads 10 when the weight 90 
is attached, and the hydrometer reading is therefore 100. 
With the upper weight A attached, the hydrometeaf read­
ing for water is zero. 
Ilie advantage of Sites' hydrometer is that the moveable weights 

allow it to be used for a large range of different densities, a result 

Fig. 13. 



HYDROMETERS. 6.H 

that could not otherwise have been effected except by malting the stem 
20 times as long, which would be very inconvenient, or by making 
the di-visions 20 times as close together, in which case the hydrometer 
would be -much less sensitive, or by having a number of difiierent 
hydrometers, as in the case of TwaddeU's hydrometers. 
R-TTMUfAH.V 

1. Nicholson's Hydrometer has scale-pan above and cup below b-ulb, 
and is always sunk to a fixed mark on stem. 

213 find sp. gr. of Uquid, it is sunk in Uquid by weights in upper pan. 
These wts. -f wt. of hydrom. = wt. of Uquid displaced by hydrom. 
Similarly, -wt. of equal vol. of water is found ; hence sp. gr. 

To find sp. gr. of solid, it is sunk in water as before. W t . of soUd 
(?F) = -wt. subtracted when soUd is placed in upper pan. W t . of 
water displaced (w) = wt. added when soUd is transferred from upper 
to lower pan ; and sp. gr, of soUd = W-^w. 

2, The CoDimon Hydrometer has graduated stem, no scale-pan. 
The sp. gr. of " liqtiid is given by W = wsV; , , s = W-i- (wV), 

where W = wt, of hydrom,, w = sp, -wt, of water, V == vol, sub­
merged in Uquid, 

3. Siies' Hydrometer combines a, graduated stem -with moveable 
weights. 
EXAMPLES VII, 

1, A Nicholson's hydrometer, whose o-wn weight is 4| oz., requires 
weights of 2 and 2|- oz., respectively, to sink it to the fixed mark in 
two different fluids. Compare the specific gravities of the fluids. 

2. A Nicholson's hydrometer weighs 3} oz., and requires a weight 
of If oz. to sink it to the fixed mark in water. What weight "wiU be 
required to sink it to the fixed mark in a Uquid whose density is 2-5 P 

3. A Nicholson's hydrometer of weight 4J ozs. requires a weight 
of 2|- oz. to sink it to the fixed mark in a fluid whose specific gravity 
is 1-36. What weight -wiU sink it to the fixed mark in water ? 

4. A soUd is placed in the upper cup of a Nicholson's hydrometer, 
and it is found that 12 grs. are required to sink the instrument to a 
certain depth; when the soUd is in the lower cup, 16 grs. are 
required, and, when the soUd is removed, 22 grs. are required. What 
is the specifio gravity of the soUd ? 

6. A soUd of specific gra-vity 8 is placed in the upper cup of a 
Nicholson's hydrometer, and it is found that 12 gm. are required to 

HYDKO. F 



66 HYDROSTATICS. 

sink the instrument to a fixed mark on the stem, and when the soUd 
is removed, it is found that 28 gm. are required. W h a t weight must 
be placed in the upper cup, when the soUd is in the lower cup, in 
order to sink the hydrometer to the fixed mark ? 

6. A piece of marble weighing 142 grs, is placed in the upper dish 
of a Nicholson's hydrometer, and it is found that an additional weight 
of 40 grs, is requu-ed to sink the hydrometer to a, fixed mark in its 
stem. W h e n the marble is placed in the lower dish, it is found that 
90 grs. are necessary. W h a t is the specific gra-vity of the marble ? 

7. A body weighing 120 gm. is placed in the upper portion of a 
Nicholson's hydrometer, and it is found that an additional weight of 
30 gm. is necessary to sink the hydrometer to the fixed mark on the 
stem. W h e n the substance is placed in the lower dish, 72 gm. are 
necessary. W h a t is the specific gravity of the substance ? 

8. Explain the principle of the common hydrometer, and show that 
the volume of the part immersed is inversely proportional to the 
density of the Uqidd. 

9. W h e n the common hydrometer floats in water, ̂  of its volume 
is immersed ; and when it floats in milk, .jW- of its volume is immersed. 
Find the speciflc gravity of milk. 

10. The volume of a hydrometer is 10 cub. cm. and its weight 6 - 6 gm. 
Find how much of it -wiU be immersed when it is set. to float in a 
Uquid of specific gravity -88. 

11. The whole volume of a common hydrometer = 6 cub. ins., and 
its stem, which is square, is f in. in breadth ; it floats in one Uquid 
with 2 ins. of stem above surface, and in another liquid -with 4 ins, 
of stem above surface. Compare the specific gra-vi-ties of the two 
Uquids. 

12. A common hydrometer floats in water -with ^ of its volume 
immersed. H o w much of its volume wiH be immersed when it floats 
in oil of specific gravity -9 ? 

13. A common hydrometer weighs 2 oz., and is graduated for 
specific gravities varying from 1 to 1-2. What should be the volume 
in cubic inches of the portion of the instrument below the graduations 
1, 1-1, 1-2, respectively, it being assumed that a cubic foot of water 
con 1000 oz. f 
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14. The stem of a common hydrometer is cylindrical, and the 
highest graduation corresponds to a, specific gra-vity of 1, and the 
lowest to 1-3. W h a t specific gravity corresponds to a point exactly 
midway between these di-visions ? 

16. Ha-ying given the positions of the marks on a common hydro­
meter corresponding to the specific gi-a-vLties 1 and -8, show how to 
find the points to which the hydrometer wUl sink when plunged in 
Uquids of specific gravities -85 and 1-1, respectively, 

16, The stem of a common hydrometer is di-vided into 100 gradua­
tions, beginning from the top ; when it is placed in a fiuid of specific 
gravity 1-6, the surface of the fluid is at the graduation 20 ; when 
in a fluid of specific gra-vity 1-6, it is at the graduation 66, W h a t is 
the specific gra-vity of a fluid of which the surface is at the gradua­
tion 96 p 

17, What is meant by the "specifio gra-vity" of a substance? 
A body floats with one-tenth of its volume above the surface of pure 
water. W h a t fraction of its -volunie would project above the surface 
if it were floating in a Uquid of speciflc gra-vity 1-26 ? 

IS, A cube of wood, whose edge is 4 ins, and specific gravity -72, 
floats in oil of specific gra-vity,-9, W h a t weight must be placed on it 
in order to just totaUy immerse it ? 

19, A cylinder, loaded so as to float verticaUy, and weighing 2 gm, 
altogether, just sinks o-verhead in water when J gm, extra is put on 
its top ; otherwise it protrudes 7 cm, above the surface. W h a t length 
-wiU protrude above the surface of a Uquid whose density is five-sixths 
that of water, if the cyUnder be set fioatiug in it "without the extra 
load? 

20. A soUd cylinder of uniform material -wiU float in water with its 
axis vertical and 2 ft. of its length immersed; or, again, iu oil of 
specific gra-vity -8, -with 9 ins. more than half of its length immersed. 
Find its length and specific gra-vity. 
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E X A M I N A T I O N P A P E R III, 

1, How is the specific gra-vity of a body lighter than water found 
by means of the hydrostatic balance ? 

2, A piece of iron weighs 32-64 gm, in air, and 28-288 g-m, in 
water ; find its specific gravity, 

3. A body weighs 60 gm. in air, and to sink it a piece of iron 
(specific gra-vity = 7-6) weighing 300 gm. in air is attached to it. 
The two together weigh 220 gm, in water. Find the specific gra-vity 
of the body, 

4. A body weighing 30 oz, in air weighs 22-8 oz, in a liquid of 
unkno-wn specific gra-vity, and 22-6 oz, in water. Find the speciflc 
gravity of the liquid. 

6. How would you detei-mine the specific gra-vity of a body which 
is soluble in water ? 

6. A body which is soluble in water weighs 27 gm.; and when 
weighed in oil of specific gravity -9, its weight is 20J gm. Eind its 
specific gra-vity. 

7. Describe the common hydrometer, 

8. Give an account of Nicholson's I-Iydrometer, How is it used 
for finding the specifio gra-vities of soUds and Uquids ? 

9, A piece of crystal weighing 28 grs, is placed in the upper cup 
of a Nicholson's hydrometer, and 206 grs, are required to sink it to 
the fixed mark. When it is placed in the lower cup, 213 grs, are 
needed. Determine the specific gravity of the crystal. 

10. A Nicholson's hydrometer weighing 60 gm. requires 270 gm. 
to sink it to the given level in water, and 238 gm. when immersed in 
a given Uquid. Find the specifio gra-vity of the liquid. 
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FLUID PBFSSUBF. 

C H A P T E R V I I I 

DEFINITIONS AND PROPERTIES OP PRESSURE. 

64. Thrust.—Dbf.—When two bodies in contact or 
two parts of a body press Hgainst each other, the forces 
which act between them are said to constitute a thrust. 

W e will now examine how the thrust of a fluid on any 
body is distributed over different portions of the body's 
surface. 

If one or more holes be made anywhere in the side or 
bottom of a vessel full of water, the water will ran out 
through them, provided they are below its surface. If 
the holes are stopped up with plugs, a certain force will 
have to be applied to each plug in oi-der to prevent their 
being pushed out. Hence the water exerts a thrust on 
every portion of the surface of the vessel with which it is 
in con tact, instead of its action being applied at one or more 
separate points. Such a dis­
tribution of thrust over a 
surface is called a pressure. 

Pressure is not confined 
to the boundaries of a fiuid ; 
every portion exerts a pres­
sure on the adjacent portions, 
Eor, il̂  the portion S were 
removed from the interior-, the 
surrounding fluid would rush 
in on all sides and fill the Fig, 14, 
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cavity thus formed. Hence the fluid inside S must exert 
pressure on that outside. And, since action and reaction 
are equal and opposite, the fiuid outside S must exert 
pressure on that inside, 

65. rundamental Property of a Fluid.—We have 
defined a fiuid as a substance which yields continually to 
any force, however small, tending to produce motion of its 
parts amongst themselves. 

From this definition may be deduced the following 
rUNDAMENTAI. PROPERTY OP A FLUID, 
T h e pressure of a fluid at rest on any surface 

is everywhere perpendicular to that surface. 

/ t / > 

( a l i - ' 

^X 

Fig. 16, 

[For take any mass of fiuid, and suppose it cut into two parts 
A, B hj the plane CD. If the force which B exerts on A is not 
perpendicular to CD, let it be a force P in another direction. Then P 
can be resolved into components—one (Z) along CD, and the other (Y) 
perpendicular to CD. And if we were to try to make the part A slide 
along the part 6 in the direction DC, we should have to exert a force 
equal to the resistance X before it would move at aU, which would be 
contrary to the supposition that the fluid yields to any force, however 
smaU, tending to move the two portions separately. Hence the 
actions between the portions A, B must be pei-pendicula,r to the surface 
of separation CO.] 
Exam-pie.—In raising a vertical sluice-gate, the force that must be 

used to Uft it does not depend on the pressure of the water against 
the gate. For the action of the water is pei'p3ndioulax to the g.ate, 
and is therefore horizontal. Hence it cannot affect the vertical lifting 
force applied to the gate. 
*66. Distinction between perfect and viscous fluids.—The 
above proof may be employed to show that the action exerted by a 
perfect fiuid on any surface ih always perpendicular to the surface 
whether the fluid is at rest or in motion. But a viseou-s fiuid tends to 
retard motion of its x̂ arts. Hence the perpendicularity of pressure 
to the surface does not necessarily hold in the case of viscous fluids, 
except when they are at rest. 
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We -wiU now define "pressure," and state how it is measured. 

67. Def.—A Pressure is a distribution of thrust over 
a surface. 

Pressure is measured by the amount of the thrust per 
unit area of a plane surface exposed to it. 

68. Uniform Pressure.—Def.—A pressure is said to 
be uniform when the thrusts exerted on two equal plane 
areas, however small, are equal, no matter where these 
areas be situated. 

Uniform pressure is measured by the thrust exerted on 
every unit of area of any plane to which it is applied. 
Thus, if a fluid exerts a thrust of 15 lbs. weight on every square 

inch of its surface, the pressure is said to be a uniform pressure of 
16 lbs. per square inch. 

It is clear that the whole force exerted on 2 sq. ins. of surface is 
twice as great as on 1 sq. in., and is, therefore, 30 lbs. weight; on 
3 sq. ins., it is three times as great, or 46 lbs. weight; and so on. 
But the pressure is the same in each case, for pressure is measured, 
not by the force on the whole surface, but by that on a -unit area of 
the surface. Thus, pressure is a different kind of quantity from force.* 
69. Unit of Pressure.— The unit of pressure is that 
pressure which exerts a unit of force on every unit of 
area. Thus, if forces are measured in pounds weight and 
lengths in feet, the unit of pressure is a pressure of 1 Ih. 
per sq,nare foot (now sometimes written 1 Ib./ft*). 

A pressure of 15 lbs. per square inch is called an 
atmosphere, being the average pressure of atmospheric air, 
and for certain purposes this is adopted as the unit of 
pressure. 

It is often convenient to measure pressures in pounds 
per square inch or ounces per square foot. 

In the G.0.8. dynamical sydem, where a centimetre and a 
d y n e are the units of length, a n d force, the unit of pressure 
is a pressure of o n e d y n e p e r s q u a r e centimetre. 
* The -word pressure is still sometimes used in iMcchanics to denote a force; 
for in.stance, tlie " pres.sure of a body on an inclined plane " or tlie " pressure of a 
ciiair on the floor." But it is incon-ect to call a foicc a pressure uudei- any 
circumstances. It is far l)etter to speak of such a force as a tlinist, tiiough it may, 
if preferred, be called a force of ̂ essure. 
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A " O.G.8. atmosphere'' is the name given to a pressure of on 
million dynes per square centimetre, and is nearly, but not quite 
equal to the ordinary atmospheric pressure. 

70. The resultant thrust on any plane area exposed 
to uniform fluid pressure is eq.ual to the product of 
the pressure into the area. 

Let p be the pressure, A the area of the surface. 
Let the area be divided into a number of portions each 

of unit area. 
Then since the pressure is p, 

the thrust on each unit of area is p. 

Now the number of such units of area is A, and, since 
the whole area is plane, the forces on them are parallel, 
hence their resultant is equal to their sum. Hence, if P 
denote the resultant thrust, 

P = pA; 
that is, resultant thrust = (pressure) X (area). 

Hence, also, y = —r ; 

so that the pressure is measured by the resultant thrust 
divided by the area. 

Examples.—(11 If a ton of water is contained in a rectangular tank 
whose base is 4 ft. by 2 ft., the whole thrust on the base 

= 1 ton = 2240 lbs,, 
and the area over which it is distributed = 8 sq, ft,; 
,-, pressure on base of tank = a^-a = 280 lbs, per square foot 

= -ff̂  = 1-94 lbs, per square inch, 
(2) If the pressure of the steam inside a boiler is 140 lbs. to the 
square inch, to find the thrust supported by the ends of the boiler, 
given that they are circular and 6 ft, in diameter. 
Here the area of either enA = :^x (f)̂  sq, ft, = i^A sq. ft. 

= 2 8|j.2 gq. ins., 
and the pressui-e = 140 lbs. per sq, in. ; 

. . thi-ust on either end =ip= x 140 = 28512 x 20 
isB 670240 lbs. weight = 264|- tons. 
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71. Change of Units.—When a given pressure is 
expressed in terms of one system of units its measure in 
terms of any other unit m a y be found in the manner 
illustrated in the following examples :— 

Examples.—(1) To express a pressure of 16 lbs. per square inch in 
(i.) tons per square foot, (u,) poundals per square foot. 
O n 1 sq, in, the pressure produces a thrust of 15 lbs, weight. 
Therefore, on 1 sq, ft, (= 144 sq, in,) the pressure produces a 

thrust of 15 X 144 lbs, weight, 
,-, pressure = 16 x 144 lbs, per square foot 

= — tons per square foot 
2240 

= -U of a ton per square foot, 
(u,) Taking the acceleration of gravity as 32, 

1 lb, weight = 32 poundals ; 
,-, pressure = 16 x 144 x 32 poundals per square foot 

= 69120 poundals per square foot, 
(2) To express a pressure of 1000 oz, per square foot in pounds per 
square inch. 

On 1 sq, ft, (= 144 sq. ins.) the pressure exerts a force = 1000 oz. 
Therefore, on 1 sq, in. the pressure exerts a force 

1000 1000 oz. -lbs. 
144 144x16 

.- pressure = = -434028 lbs. per square inch. 
144 X 16 

(3) To express a pressure of 1 kilog. per square metre (i.) in 
grammes per square centimetre, (U.) in C.G-.S. dynamical units. 
O n 1 sq. metre (= 100^ sq. cm.) the pressure exerts a force 

= 1 kUog. = 1000 gm. 
Therefore, on 1 sq. cm. the pressure exerts a force 

= ]m.^. = -1 gm. 
100-2 6 

Hence pressure = -1 gm. per square centimetre. 
The O.Gr.S. dynamical unit of pressm-e is a pressure of 1 dyne per 

square centimetre. 
N o w the acceleration of g-ravity = 981 cm. per second per second ; 

. , weight of a gramme = 981 dynes ; 
, , given pressure = 981 x -1 = 98-1 dynes per square centimetre. 
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- (4) Tlie measure of a pressure in terms of certain units of length m%d 
force is p. To fi/iid its measure when the unit of length is increased L 
times, and the unit offeree is increased E times. 

The new unit of area = area of square on new unit of length = area 
of a square whose side contains L old units = Z' old units of area. 

Hence the thrust on the new unit of area 
= pl^ old units of force 
= ^—• new units of force : 

E 
and, therefore, the measure of the pressrure 

= ^— new units of pressure, 
72. Pascal's La-w.—This law, which is also known as 
the Principle of Transmission of Fluid Pressure, 
m a y be stated thus : 

W h e n any pressure is applied to any part of the 
surface of a fluid, an equal and uniform pressure is 
-transmitted over the -whole fluid. 

73. Experimental Verification,—^Let a closed vessel 
of any shape be filled with water, or other-fluid (Fig, 16). 
L.et short tubes of equal sectional area (say 1 sq. in,) 
be attached to openings made in different parts of the 
walls of the vessels, and let these tubes be closed with 
tight-fitting plugs or pistons, acted upon by such forces 
as support the weight of the flaid. If now an additional 
force, say of 1 lb,, be applied to any one of the plugs 
(say A) it will be necessary to apply'an additional force 
of I lb, to each of the other plugs B, 0, D, to prevent their 
coming out; similarly, if the force on A be increased by 
2 lbs, or any other amount, the force appUed to each of 
the other plugs will also have to be increased by 2 lbs. 
Hence a pressure of I, 2 or more pounds per square inch 
imparted to the surface of A gives rise to an equal pressure 
over every other square inch of the surface. 
Observation, — This experiment would be very difficult to arrange 

-in practice. 
But, without actually performing the experiment, the law may be 

deduced from the principle of " Conservation of Energy," as 
follows:—* • Anotlier proof -vvjU be given in §§ 75 8Q, 
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*74. Proof of Pascal's Imelvt.—Let a quantity of fluid 
be contained in a vessel furnished with projecting tubes 
of sectional areas A, B, 0, D, along which tight-fitting 
pistons A, B, G, D can slide. Suppose the fluid without 
weight, so that the only forces acting on it are thrusts 
P, Q, B, 8 applied on the pistons. 

Kg. 16. 

Let the piston A be pushed in to a, and let it push the 
piston B out to b, so that the volume of the fluid is 
unaltered and the other pistons remain where they were. 

Since a flaid offers no resistance to changes of shape 
which do not alter its volume, therefore no work is done 
on the fluid itself in moving the pistons. 

Therefore the work done by P is equal to the work done 
against Q. .-. P x A a = Q x B b (i-)-

Again, the volume of fluid forced out of the tube Aa is 
equal to the volume forced into Bb ; that is, 

/4a X (area 4 ) = fi6 X (area B) (ii) 

From (i.) and (ii.) we have 

IL - 3 
A " B' 

But P-^A and Q-^B are the pressures on the pistons 
A. B (§ 70). . • -1 1 ,1, 

Therefore these pressures are equal, and similarly tne 
pressures on the other pistons are also equal. 
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75. Variable Pressure.—Dip.—When the thrusts of 
a fluid on equal plane areas are not equal, the pressure 
of the fluid is said to be variable. 

W h e n a fluid is subjected to forces (such as that due to 
its weight) which act on its substance and not merely on 
its bounding surface, the pressure of the fluid is in general 
variable. 

Variable pressure cannot in general be measured by the 
thrust actually exerted on a unit of area, but it m a y be 
said to be measured by the thrust per unit of area. B y 
"the thrust per unit area" is meant the thrust which 
would be produced on a unit area by a uniform pressure 
of the same intensity. 

76. Average Pressure. — Dee. ^—The average pres­
sure of a fluid over any plane area is measured by the 
resultant thrust of the fluid di-vided by the area. 

Examples.—(1) If a fluid exerts a thrust of 144 lbs. on a square 
whose area is 9 sq, ins., the average pressure is 144/9 or 16 lbs. per 
square inch. The same thrust would be exerted on the area by a 
uniform pressure of 16 lbs. per square inch over the area. 

(2) If the thrust on an area of ̂ -Ĵ  sq. in. is J^ lb., the average 
pressure = -^-i-y^ = 6 lbs. per square inch. 
The same thrust would be produced on the same area by a uniform 
pressure of 6 lbs. per square inch. 
The word "per" "thus implies that the area actually exposed to 

fluid pressure is not necessarily equal to the unit of area. 
From § 70, it appears that, when the pi-essure of a fluid 
is uniform, the average pressures on different areas are all 
equal to the pressure of the fluid. W h e n the pressure on 
any area is variable, the average pressure measures the 
pressure that, acting uniformly over the area, would 
produce the same thrust as the given pressure. 
77. If we consider the action of fluid, pressure' over a suficiently 
.smflB p]a,n6 area, the pressure will not vary appreciably iu the very 
sma-U distance separating two different pai-ts of this ai-ea, and it may 
therefore be regarded aapmcticaUy a uniform pressure. This pres,sur'e 
is equal to the average pressure over the whole of the little area, a,ud, 
since it is uniform, it may be said to be the pressure at any point of 
the area. 
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78. PRESSURE AT A POINT. 
DEEiNrnoN.—The pressure at a point of a fluid is the 

average pressure {or average thrust per unit area) taken over 
any very small plane area enclosing that point. 

The area in question must be so small that the pressure 
all over it is sensibly uniform (§ 77), 

Obsbevatiok,—It is advisable to regard " pressure at a 
point" as an abbreviated expression for " pressure in the. 
immediate neighbourhood of a point." It would, of coarse, 
be absurd to imagine that fluid pressure could have any 
effect on a mere mathematical point, for pressure could 
produce no thrust if it had nothing to act on. 

79. PUITDAMEITTAI. LAW OP HYBROSTAT-
ICS.—The pressure at any point of a fiuid at rest 
is the s a m e in all directions. 
*Proof of the Law, — Let A be any point in a fluid. Let a 

wedge in the form of a triangular right prism be constructed in the 
fluid at A (Mg, 17), having its faces in any given directions. 

D a 
Kg, 17, 

Then the fluid inside the wedge is kept in equilibrium by (i,) the 
thrusts of the fluid on its faces, and (ii.) its o-wn weight. But, 
if the wedge is very small, its weight may be sho-wn to be very 
small compared with the thrusts on its faces ; hence, by taking the. 
wedge small enough, we may neglect its weight altogether. 
Let the forces on the rectangular faces Bo, Ca, Ab be denoted by 

P Q, E. These three forces must be in equilibrium among them­
selves, since the only other forces on the wedge—viz., the thrusts 
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perpendicular to the triangular faces—are perpeitdicular to P, Q, E. 
N o w the forces P, Q, R are perpendicular to BC, CA, AB, the sides 

of the triangle ABC; therefore, by the '' Perpendicular Triangle 
of Forces," these forces are proportional to the sides ; 

BC CA AB ' 
But Aa, Bb, Co, the heights of the faces, are equal, 

• J' _ Q ^ R . 
rectangle Bo rectangle Ca rectangle Ab 

average pressure on face Bo = average pressure on Ca 
= average pressure on Ab. 

^ 

* r 

S 
V 

Kg, 17, 

And since the areas have been takeii very small, these average pres­
sures are the pressures at the point A in the directions perpendiciilar 
to the planes Bo, Ca, Ab, which are therefore equal. 

In the same way, it may be shown that the pressures at A in any 
other directions are equal. 
[That the -weight of the fluid may be left out of account in considering the 

equilibrium of the very small -wedge may be shown as follows:—Let the wedge 
be inverted; then, if the wedge is very small, the forces P, <>, U arising 
from the fluid jiressures on its faces are reversed in direction -without being 
sensibly altered in magnitude. But the direction in which the weight acts is Tiot 
reversed. Hence the weight of the fluid cannot sensibly affect the conditions of 
equilibrium of the wedge, for, if it did, the wedge would no longer be in equi­
librium in its inverted position.] 

Observations,-—Since the pressure at a point is the 
same in all directions, w e speak of the "pressure at a 
point " in a fluid without specifying its direction. 

W h e n , however, the fluid pressure acts on the surface 
of any solid body, its direction is fully specified, being 
perpendicular or normal to the surface. 
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*80, BedtLction of Pascal's law for a weig-htless fluid. 
When no forces act on the mass of a fiuid the pressure is the same in 

Consider a rectangular column of the fluid taken in any direction, 
whose ends ABCD and abed are each, say, 1 in, square. In order 
that this column m a y be in equilibrium, the forces on these two ends 

Fig, 18. 

rl 
t ^ ^ 

must be equal; for the only other forces are due to the pressures on 
the other faces, and are perpendicular to them. But the areas of 
the faces ABCD and abed are equal; therefore the pressures on them 
are equal. 

And, from § 79, we see that the pressures in the neighbourhood of 
A, a are the same in aU directions. Hence the pressure is the same 
throughout the whole of the fluid. 

SUMMABY, 

1, Definitions of Pressure.—If P is the thrust of a fluid against a 

plane surface of area A , the fraction — 

measures— 
(i,) The pressure of the fluid, if this pressure be uniform. 
(ii.) The a/Derage pressure on the area, if the pressure be variable. 
(iii,) The pressure at a point, if the area ̂  be a very small plane 

area containing that point. 
2, laws of Fluid Pressure.—The pressure of a fluid at rest 

(i,) Is perpendicular to the surface on which it acts. 
(ii.) Is the same in all directions at a given point, 

3. Pascal's law.—^When no forces (such as that due to gravity) act 
on the fluid particles themselves, the pressure is the same throughout 
the fluid. 
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EXAMPLES VIII, 
1, H o w is fluid pressure measured when uniform? Compare the 

pressures of 15 lbs, on a sqaare inch and of 1000 oz, on a square foot, 
2. Compare [i.e., find the ratio of) the following pressures :— 
(i.) 14 lbs. per square inch and 8 tons per square yard ; 
(ii.) 28 lbs. per square inch and 162 tons per square foot; 
(iii.) 28 gm. j)er square centimetre and 16-1 kilog. per squaro metre, 
3, The pressui-e of the atmosphere is 15 lbs, per square inch. 

Express this pressure— 
(i.) in ounces per square foot; 
(ii.) in poundals per square foot; 
(iii.) in tons weight per square yard ; 
(iv.) iu grains per square line (1 lb. = 7000 grs., 1 in. = 12 lines). 

4, The pressure of the atmosphere is 103 gm, per square centimetre. 
Express this (i,) n kilogrammes per square metre, (ii.) in toimes per 
square kilometre, (iu.) in miUigTammes per square millimetre, (iv.) in 
dynes per square centimetre. 

5. Taking the pressui-e of the atmosphere as equal to 14J lbs. per 
square inch, iind its value in dynes per square centimetre, assuming 
that a gramme is -0022 lb., and that a meti-e is 39 ins. 

6. A piston 6 sq. ins. in area is inserted into one side of a closed 
cubical vessel measming 10 ft. each way, filled with water; the 
piston is pressed inwards -with a force of 12 lbs. Find the increase of 
thrust produced on the face of the vessel. 

7. The neck and bottom of a bottle are J in. and 4 ins. in diameter, 
respectively. If, when the bottle is full of water, the cork is pressed 
in with a force of 1 lb., what force is exerted upon the bottom of the 
bottle? 

8. Explain what is meant by the pressure at a point in a fluid. 
A prism, whose height is 10 m m . and whose base is an isosceles 

triangle -with sides 10, 10, 12 m m . and altitude 8 mm., respect­
ively, is placed in a fluid where the average pressure is 100 gm. per 
square centimetre. Find the thrusts on the respective faces, and 
the ratios to them of the weight of water required to fill the prism. 

9. If all the dimensions of the prism (see the last question) be 
reduced to one-tenth of the above measurements, show that these 
ratios will be one-tenth of then- pre-vious values. Hence show that, 
if a prism be taken sufficiently small, the weight of the fluid in it can 
be neglected in comparison -(vith thrusts of the fluid on its faces. 
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APPLICATIOlSrS OF FLUID PRESSURE. 

THE BRAMAH PRESS. 

81. The Bramah, or Hydrostatic, Press.— The 
hydraulic press, used for subjecting bales of cotton, sheets 
of paper for printing, and other goods, to great pressure, 
afibrds an excellent illustration of Pascal's Law of trans­
mission of fluid pressure. 
It consists, essentially, of a large cylinder A and a small 

cylinder G, filled with water and connected by a pipe. 
Both contain pistons or plungers B, K, which can slide up 

Fig. 19. 

and down in them, the larger one B being called the 
press-plunger and the smaller the pum.p-plunger. 

The goods to be compressed are placed on a platform 
attached to the press-plunger B, above which is a fixed 
framework. To work the machine a force is applied to 
push down the pump-plunger K. The pressure thus 
produced raises the press-plunger B and compresses the 
goods between the platform and the framework. 

B y making the plunger B very large and the plunger K 
very small, a small downward force applied to K will 
produce a very great upward force on the platform. For 

HYDEO. G 
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the pressures of the water over the two plungers 
are equal. Hence the thrusts on them are proportional to 
their areas. 

Example.—If the area of the pump-plunger is 1 sq, in,, and the 
area of the press-plunger is 100 sq, ins,, then a force of 1 lb, on the 
former will produce a pressure in the fluid of 1 lb, per square inch. 
And this pressure, acting over the whole area of the press-plunger 

(100 sq, ins,), -will produce a thrust of 100 lbs, on the platform, 
'Thus, by applying a force of 1 lb,, we can lift a weight or overcome 
a resistance of 100 lbs, 
. The following additional details are required to complete 
the actual working machine, represented in Fig, 21 :— 

82, Water-tight Collar. — To 
prevent the water from escaping, 
the space between each plunger and 
its containing cylinder is closed with 
a packing or collar of the form 
shown in section in Fig, 20, A ring 
of leather is folded over the rim of 
the cylinder so that its section re­
sembles an inverted U, and this 
leather is forced against the plunger 
by the pressure of the water under­
neath. The greater this pressure 
the more tightly does the leather fit 
round the plunger. 

83. P n m p Action.—When the pump-plunger is pushed 
down through the whole length of the cylinder containing 
it, the press-plunger only rises through a very small 
distance. In order to lift the press-plunger throtigh the 
required height, the pump-plunger is arranged to work 
up and down as a forcing-pump, as shown in Fig. 21. 
W h e n the pump-plunger is pushed down, the valve V 
closes and the valve F opens, and the water lifts the press-
plunger. At the end of the stroke the small piston is 
again raised ready for a second stroke. The valve F is 
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now closed by the pressure in front, and prevents the 
escape of the water from the large cylinder, while a fresh 
supply of water is admitted from a reservoir / to the 
small cylinder by means of the valve \l. At the next 
down-stroke this water is forced into the large cylinder. 
Thus the large piston is raised at each stroke of the pump. 

Fig, 21, 

When the bales have been compressed, the water is 
allowed to return from the large cylinder to the reservoir 
by turning on a tap £, and the piston descends by its 
own weight ready for another load, 

84, Lever,—Instead of operating directly on the small 
piston, it is usually raised and lowered by a lever /!/, and 
this serves to still further increase the mechanica advan­
tage of the apparatus. 
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Examples.—(1) If the pistons are circular, and of diameters 1 in. 
and 2 ft,, respectively, to find the force required to overcome a, 
resistance of 9 tons. 

Here the areas of the circular pistons are, respectively, Jtt x 1° and 
Jtt X 24^ sq, ins. Also the thrust of the fiuid on the larger piston is 
required to be 9 x 2240 lbs. 

Hence the pressure of the fluid is 
9 X 2240 „ , , 

lbs, per square mch, 
1447r 

and, since the area of the smaller piston is \v sq, in,, the force on it 
must be = 9x2240x^. ̂  9x660 ^ 35 j^^_ 

144471 144 
[I>r,B,—The numerical value of tt should not be substituted,] 

(2) If the areas of the two plungers are J sq, in. and 10 sq. in,, 
and the pump-plunger is worked by a lever whose arms are 2 ins, and 
28 ins,, to iind the resistance that can be overcome by applying a 
force of 16 lbs, to the end of the longer arm of the lever. 

Let Q be the resultant thrust on the plunger. For the equilibrium 
of the lever, we have, by taking moments about the fulcrum; 

Q X 2 = 15 X 28 ; 
,-, 0 = 16 X 14 = 210 lbs. 

This force of 210 lbs, is distributed over the area of the small 
plunger, which is J sq, in, 
, , pressure produced = 210 -fj = 210 x 4 = 840 lbs, per square inch. 
This pressure is transmitted to the surface of the large plunger, 

whose area is 10 sq, ins. ; 
.-. upward thrust on large plunger = 840 x 10 lbs. 

Hence the press can overcome a resistance of 8400 lbs, that is 
3J tons weight, 
(3) If, in the last example, the end of the lever is raised and 
lowered through 1 ft, at every stroke, to find the number of strokes 
requisite to raise the press-plunger through 1 in. 

Since the arms of the lever are 28 and 2 ins,, respectively, therefore 
when the end of tJie longer ai-m is lowered through 1 ft,, the piunp-
plunger falls through Jy ft., j.(!., fin. ' 

Hence the volume of water forced out of the pump cylinder 
i X f cub. in. = ^ cub. in. 

This volume is forced into the press cylinder; hence the press-
plunger rises at each stroke through ̂ - M O ins,, i.e., throuo-h-a-in 

Hence the number of strokes requii-ed to .raise it throuo-h 1 ' ̂  " 

140 -
in, is 

46|. Hence 46 complete strokes must be made, and the lever must be 
pressed two-thirds do-wn in the 47th stroke. 
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85. KCechanical advantage of Bramah's Press 
-without a lever.-̂ Let A, B be the areas of the large and 
the small plunger, Q the effort or force applied directly 
to the small plunger, W the resistance to be overcome. 
Then, since the pressure due to the force Q distributed 

over the area B is equal to that due to the force W 
distributed over the area A (by Pascal's Law), 

• 9 l ^ E . 
" E A ' 

, , , , , W A area of press-plunger 
. . mechanical advantage -̂-- = — = -'^ c-—°-^. 

Q JB area or pump-plunger 
In practice the plungers are always-circular. 
Let a, b be their diameters; then 

A = iTra\ B = iTTb̂  ; 
, . , , , W iirâ  â  

.'. mechanical advantaare -^ = *̂ —r„ = —=•. 
Q i-rrb̂  b̂  

86. Mechanical advantage taking acconnt of the 
lever.—^Next suppose the pamp worked by means of a 
lever whose arms are x, y, the effort used to work it being 
a force P applied at the end of the arm x. Then, if Q 
denote as before the thrust acting on the pump-plunger 
applied at the end of the arm y, we have, by taking 
moments, P X jc = Qxy, 

•Q X 
or — = ~ ; 

P y 
whence, by the last article, 
:. mech. advantage -— = -pr y~ -^ — -r: ^ — =tt>^—• 

P Q, P B y Ir y 
— (mechanical advantage of lever) x (that of press), 

as it obviously should be. 
87. The so-called " Hydrostatic Paradox " cons 

in the fact that a small force mny be made to overcome a 
far greater resistance by means of a hydraulic press. 
There is really nothing paradoxical ia this, for the simple 
machines or " mechanical powers " described in text-books 
in Mechanics all have the same property. 
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The Principle of Conservation of Energy is satisfied in 
all cases. In the hydraulic press, in which a small force 
applied to the small plunger overcomes a large resistance 
applied to the large plunger, the former plunger has to be 
moved through a considerable distance in order to m o v e 
the latter through a small distance, and the work done by 
the effort always equals that done against the resistance. 
Examples.—(1) To verify the principle of Conservation of Energy 

for the Example of § 81 (p. 82). 
The area of the large piston is 100 sq. ins.; hence, if we want to 

raise it through y^g in. we must drive 1 cub. in. of water from 
the small cylinder into the large one, and to do this the small 
piston must be pushed down 1 in. 
But the work done by 1 lb. in moving through 1 in. is equal to the 

work done by 100 lbs. in mo-ving through y^^ in. Hence the work 
done by the eflort is equal to the work done against the resistance. 

(2) In the press of Examples (2), (3), p. 84, the work done by 
the effort (15 lbs.) in 46f strokes of the pump 

= 15 X 46| ft.-lbs. = 700 ft.-lbs. 
The work done against the resistance of 8400 lbs. in raising the 

platform through 1 in. 
= 8400 X -jL ft.-lbs. = 700 ft.-lbs. 

These works are equal, thus veriiying the principle. 
88. To verify the Principle of Conservation of Energy 
for the hydraulic press generally, the process is the converse of 
§ 74, where the principle was used to prove Pascal's Law by means 
of a similar contrivance. The proof is left as an exercise to the 
student. 
89. The Safety-Valve.—The boiler of every steam-
engine is furnished with at least one safe-ty-valve 
(more often two), which prevent the pressure from be­
coming sufBcient to burst or 
injure the boiler. A safety-
valve is also attached to the 
hydraulic press at L (Fig, 21) i-^ ^ .̂  . 
for a similar purpose, I i ."^t' —̂'-'-

The tube K (Fig, 22) is con­
nected with the fluid under 
pressure, and is closed by the 
valve V, w-hich is held down Fig, 22, 

W 
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by an adjustable weight W. The pressure required to lift 
the valve must not exceed the greatest pressure of fluid 
consistent with safety. For less pressures the valve 
remains closed; for greater pressures the valve rises and 
fluid escapes, so that no further increase of pressure can 
take place. 

The figure shows the most c o m m o n foi-m of safety-valve, 
in which the weight is attached to a lever O B , operating 
on the valve at A. B y varying the weight, or sliding it 
along the lever, the valve m a y be m a d e to open at any 
desired pressure. 
Examples.—(1) If the section of the tube of the safety-valve is a 
square of side J in., to find the weight which must be placed on it so 
that it opens when the pressure exceeds 135 lbs. per square inch. 
Here the area of the valve exposed to pressure is -§- sq. in. Heiioe 

the upward force on it at the given pressure 
= 135 X i lbs. = 16 lbs.; 

therefore the valve must be loaded -with a weight of 16 lbs. 
(2) Suppose the tube is circular and J in. in diameter, the maximum 
pressure 140 lbs. per square inch, and the valve is held down by a 
lever carrying a moveable weight of 6f lbs., to flnd where this weight 
must be placed. 
The thrust required to lift the lever must 

= 140 X ̂  X (i)2 lbs. = ^ lbs. 
Hence, if 0 is the fulcrum, A the centre of the valve, and B the 

point where the weight is attached, we have, by taking moments, 
jyt X 0/1 = -V- X OB, 
.- 0B = 5.0A; 

that is, the distance of the weight from the fulcrum must be five 
times the distance of the centre of thelvalve. 
(3) The area of a safety-valve exposed to pressure is A, and the 
valve is held do-wn by a weight W which can slide along a lever, the 
distance OA of the centre of the valve from the fulcrum being kno-wn. 
To find where the weight must be placed, if the maximum pressure 
that the boiler -will stand is p. 
Let B be the required point at which the weight must be hung 

from the lever. 
Whien the pressure is p, the force acting on the lever at A is p x A . 

Therefore, by taking moments about 0, 
W x OB = pA X OA ; 

whence the required distance OB = - x OA. 
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90. The Steam H a m m e r 
(Fig. 23) consists of a heavy 
metal hammer attached to a 
piston, which is forced down 
by steam pressure applied 
to its upper surface. O n 
striking the bar of iron or 
otlier object to be forged, 
the energy of its motion is 
converted into useful work. 

A similar machine is used 
in driving rivets or bolts 
through metal plating in 
ship-building, &o. 

Fig. 23. 
SuMMAEY. 

1. The principal parts of Bramah's Press are— 
Large cylinder containing press-plunger, attached to platform on 

which goods are compressed against framework; 
SmaU cylinder containing pump-plunger, operated by lever ; 
Water-tight coUars fitted round plungers ; 
Valves allo-wing small plunger to be worked as a forcing-pump. 

2. By Pascal's Law, 
pressure over small plunger = pressure over large one ; 

hence the thrusts on them are proportional to -their areas. 
3. The safety-valve and steam hammer also work by fluid pressure. 

EXAMPLES IX, 

1, In a hydraulic press the pump-plunger is a cylinder Icm, in 
diameter, and makes a stroke 7 om, long. The plunger of the press 
is 20 om, in diameter. Calculate («) the pressure in the press when 
a weight of 100 lbs, is applied to the pump-plxmger (ignoring fric­
tion) ; (i) the force acting on the press-plunger; (c) the number of 
strokes which the pump must make in order to raise the press-plunger 
10 cm. 
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2, In the Bramah press the areas qf the two cylinders are ^ sq, in, 
and 6 eq, ins,, and the lengths of the arms of the lever by which it is 
worked are 36 ins, and 1 J- ins. H o w much thrust is obtained by 
applying to the end of the longer arm a force of 16 lbs. ? 

3, In the Bramah press the areas of the two pistons are J sq, in, 
and 16 sq, ins,, respectively. If the lengths of the arms of the lever 
are in the ratio of 20 : 1, what force must be applied at the end of the 
lever in order to produce a thrust of 16,000 lbs, ? 

4, If a resistance of 1 ton is overcome by a force of 6 lbs, applied 
to a Bramah press, and the diameters of the pistons are in the ratio of 8 
to 1, flnd the ratio of the arms of the lever employed to work the piston. 

5, If the lengths of the arms of the lever in a Bramah press are 
30 ins, and 2 ins,, respectively, and area of the smaller piston be 
-̂  sq, in,, what must be the area of the larger piston in order that a 
force of 10 lbs, applied at the end of the lever may product a thrust 
of 9000 lbs. ? 

6, Verify the Principle of Conservation of Energy for Bramah's press, 

7, A safety-valve whose area is IJ ins, is held down by a weight 
of 28 lbs, attached to the longer arm of a lever whose arms are 2 ins, 
and 2 ft. What pressure "wiU just Hft the valve ? 

8, Supposing the -tube to be circular and f in, in diameter, 
and the maximum pressure to be 360 lbs, per square inch, flnd the 
load which must be placed on the valve. 

9. The piston of a steam hammer is f sq, ft, in area, and it is 
forced do-wn through 18 ins, by a steam-pressure of 240 lbs, per square 
inch. H o w many foot-pounds of work have been done on it ? 

10, A steam hammer weighing 1 ton, and the diameter of whose 
piston is 14 ins., is forced down by steam at a pressure of 30 lbs, 
per square inch, and on striking a piece of iron compresses it by |- in. 
If the total distance fallen by the hammer is 2 ft,, find the average 
resistance of the iron, 

[Assume that the whole work done on the hammer is expended 
in compressing the iron,] 
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EXAMINATION PAPER IV. 

1. What is meant by the pressure of a fluid? How does it differ 
from ordinary statical pressure ? 

2. Estimate a pressure of 15 lbs. weight per square foot in dynes 
per square centimetre. 

3. Show that any pressure applied to the surface of a fluid is 
transmitted equally in aU directions. 

4, A thrust of 16 lbs, is applied to a, square piston whose edge is 
5 ins,, fitting into a vessel containing liquid. What pressure per 
square inch is transmitted to the liquid ? 

5, Explain the Hydrostatic Paradox, 

6, Two communicating cylinders, the diameters of whose bases are 
3 ins, and 8 ins,, respectively, are fitted -with pistons. If a weight 
of 27 lbs, be placed on the smaller piston, what weight must be placed 
on the larger to keep it at rest ? 

7, Describe Bramah's Press. Upon -what principle does its action 
depend ? 

8, Find the thrust that can be produced in a Bramah's press, the 
areas of whose pistons are as 100 : 1, by a force of 16 lbs, applied at 
the end of a lever 28 in, long, and at a distance of 24 ins, from the 
point of attachment of the piston rod, (In this and the two following 
examples the lever is of the second class,) 

9, If the areas of the pistons in a Bramah's press are as 8:1, 
what force must be applied at the end of a lever 21 ins, long and at 
a distance of 18 ins, from the piston rod to produce a thrust of 
2i tons ? 

10, Find the ratio of the areas of the pistons if a force of 12 lbs, 
produces a thrust of 3 tons, the lever being 28 ins. long and the force 
applied at a distance of̂ 24 ins. from the fulcrum. 
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PRESSURE IN A LIQUID ARISING FROM 
WEIGHT, 

Having defined the pressure at a point of a fluid in 
Chap, VIII,, § 78, we now proceed to consider the pres­
sures at different points of a liquid due to its weight, and 
we shall first show that 

91. T he pressxire of a hea-py liquid at rest is the 
same at all points in the same horizontal plane. 

Consider the equilibrium of a long thin rectangular 
portion of liquid, whose faces A B C D and abod ai-e 

. ^ 

Fig. 24. 

vertical, and whose edges Aa, Bb, Cc, Dd are horizontal. 
The forces acting on this portiou are— 

(i.) The weight of the liquid acting vertically ; 
(ii.) The thrusts of the liquid on- the six faces acting 

perpendicular to them. 
N o w the thrusts on the ends A B C D and abod are 

parallel to Aa and perpendicular to all the other forces, 
none of which can therefore affect their equilibrium. 

Hence the thrusts on A B G D and abod must be equal. 
But the areas are equal. 
Therefore the average pressures on them are equal. 
And, since the areas ABOD, abed may be taken to be 

very small, it follows that the pressure at the point A is 
equal to the pressure at the point a. 

Similarly, the pressures a-t any other points in the same 
horizontal plane are equal, as was to be proved. 
CoE. Hence, if a plane area be placed horizontally in heavy liquid, 

the pressure over its face is uniform. 
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92. The pressure of a uniform hea-vy liquid is 
proportional to the depth below the surface and to 
the density of the liquid. 

Consider a rectangular column A B whose _̂  
square base is the unit of area, extending | 
from the surface of the liquid down to any 1 • 1 
given depth. The liquid inside this column 
is kept in equilibrium by the following 
forces:— 

i (i.) Its weight acting vertically down­
wards ; 

(ii.) The upward vertical thrust of the 
adjacent liqnid on its base at B; 

(iii.) The horizontal thrusts on the 
vertical faces. «* 'p 

The first two must be equal, since the Fig. 25. 
other forces are all perpendicular to them. 
Hence the thrust on the base is equal to the weight of 
the liquid column AB. 

But, since the base is of unit area and the pressure is 
uniform over it, this thrust is equal to the pressure at B. 

A n d the weight of the column is proportional to its 
volume, and therefore to its height. Hence the pressure 
is proportional to the depth below the surface. Also the 
weight of the column is proportional to the density of 
the liquid; therefore the pressure is proportional to the 
density. 

OoE. Hence we have the following very important 
result:— 

The pressure of a heavy liquid at a given depth is measured 
by the tveight of a column of liquid whose height is equal to the 
given depth, and whose base is the unit of area. 

This result enables us to-deduce, from first principles, 
the pressure in water or any other liquid at any given 
depth measured in feet or centimetres. 
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Example. — To find the pressure in water at a 
depth of 6 ft. 
Let B be a point 6 ft. below the surface. 
Construct a rectangular column whose base is 1 ft. 

square, extending to the surface at A. Since the 
height is 6 ft., the column can be di-vided into 6 
cubes, each containing a cubic foot; 

.'. volmne of column = 6 cub. ft. 
Now a cubic foot of water weighs 1000 oz.; 

.-. weight of column = 6000 oz. 
.•. thrust on base atB = 6000 oz. weight ; 
. , pressure ,, ,, = 6000 oz, per square 

foot 
= 376 lbs, per square 

foot. Fig, 26, 
9.3, T o find expressions for the pressure of a given 

liquid at a depth of .̂ feet. — Firstly, let the liquid 
be water. Construct a rectangular column whose base is 
a foot square, extending from the surface down to the 
depth h feet; then the weight of this column is supported 
by the force on its base, and therefore measures the pressure 
per square foot. 

B y dividing the height into h portions of I ft. high, 
the column may be divided into h cubes, each measuring 
1 cub. ft. Hence the volume of the column is h cub. ft., 
and the weight of the water contained in it = lOOO/i oz.; 
.•. pressure in -water at depth of h ft. 

= XOOOJi, oz. weight per square foot. 
If the liquid be of specifio gravity s, the weight of the 

column is s times as great as the weight of the corre­
sponding column of water, 
.". pressure at depth /*. ft. in liquid of specific gralvity s 

= lOOQThs oz. per square foot. 

CoE. 1. The pressure in water increases by 1000 oz. per square foot for 
every foot of increase of 

CoE, 2. If the specific gravity of a liquid be s, the increase of pressure 
for every foot increase of depth is sjimes as great as for neater. 
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91, To find the pressure of a given liquid at a 
depth of h centimetres. — Construct a column whose 
base is I cm. square, and whose height is h cm.; the weight 
of the liquid in this column measures the pressure at its 
base per square centimetre. 

N o w the volume of the column is h cub. cm. 
But a cubic centimetre of water weighs a gramme. 
Therefore, if the liquid be water, the weight of the 

column is h gm,, and if the liquid be of specific gravity s, 
its weight is hs gm,; 
,", pressure at depth of Ji cm. 

= h g r a m m e s per square centimetre for water 

= hs g r a m m e s per square centimetre for 
liquid of specific gravity s. 

Cob. The pressure in water increases by 1 gm. per sqiuwe centimetre 
for every centimetre increase in depth. 

Exa/mples.—(1) A corked-up bottle is lowered to a depth of 28 ft. 
in water, and the cork is -̂  ft. in diameter. What is the force tending 
to drive the cork in ? 

The pressure at depth of 28 ft. = 28,000 oz. per square foot. 
Also the diameter of the cork = yL ft. ; 

. -. its area = .̂  x (Jj)̂  square feet, 
and the force on the cork 

= ¥ X -sV =< A X 28,000 oz. = ifp oz. = 92t^ oz, 
= 5 lbs, 1 2 ^ oz, weight, 

(2) A penny sinks to the bottom of a lake 100 metres deep. To 
find the force which the pressure of the water exerts on either face of 
the penny. 
The pressure at a depth 100 metres, or 10,000 cm,, 

= 10,000 gm, per square centimetre 
= 10 Idlog, per square centimetre. 

The diameter of a penny is 3 om,; 
.-, its area = .y-x f x f sq, cm,, or ̂  sq, cm,; 

, , the force on either face = 2 ^ Idlog. weight = Afi kOog. weight 
= 70-f kilog. weight. 
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Obseevation.—This force does not represent the resultant 
force on the penny as a whole, because both sides of the 
penny are exposed to pressure, and these pressures act in 
opposite directions. The only resultant force on the penny 
is equal to the weight of water displaced (Chap. V. ) . 

W e m a y find in like manner the difference between the 
pressures at two diflierent depths of a liquid. 

-To find the difference of pressure at the top and bottom 
of a vertical tube 760 mm, long filled -with mercury. 
The specific gravity of mercury is 13-0, 
Therefore 1 cub, cm, of mercury weighs 13-6 gm. 
Therefore difllerence of pressure for 1 cm, of height 

= 13-6 gm, per square centimetre. 
Therefore difference of pressure for 76 cm, of height 

= 13-6 X 76 = 1033-6 gm, per square centimetre. 

95. To find a general expression for the increase of 
pressure in a hea-vy liq-aid corresponding to a given in­
crease of depth. 
Let any units of weight and length be chosen. Let 

i4, B be two points in the liquid in the same vertical 
line. Let p be the pressure at A, Pthe pressure at B, 
h the vertical distance .^B, w the weight of a unit volume 
of liquid. 
Describe any rectangular or cylindrical column of 

liquid whose height is AB, and let A denote the area of 
its base ; the volume of the column is therefore Ah. 
Then the only vertical forces acting on the column are— 
(i,) the pressure j)^ acting do-wnwards at A ; 

(ii,) the pressure F A acting upwards at B ; 
(ni.) the weight of the column wAh acting do-wnwards. 
Therefore, for the equilibrium of the column. Fig-. 27. 

PA = pA -̂  wAh ; 
. . P = jj + wh, 

or P—p = wh. 
In other words, thê iucrease of pressure P—p 

= (increase of depth) x (weight of unit volume of liquid). 

mI 

1 

A 

B 
Ml 
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96. Experimental Illustrations. — The properties 
proved above may be verified by means of the apparatus 
shown in Fig, 28, A cylindrical tube has its lower end 
closed by a flat plate which can be held up by means of a 
string. O n lowering the cylinder in water it will be found 
that, after a certain depth has been reached, the string may 
be let go without the plate sinking. The exact depth at 
which this happens may be found by again raising the tube 
slowly until the plate just sinks; the 
force produced by the pressure on the 
under side is then just equal to the weight 
of the plate. N o w repeat the experiment 
with different weights placed on the 
plate. If the added weight is equal to 
the weight of the plate (so that the total 
weight supported is doubled) it will be 
found that the depth at which the string 
may be let go is also doubled. That is, 
if the depth be doubled, the pressure is 
doubled. 

Similarly, if the depth of immersion 
be increased threefold, the total weight Fig, 28, 
when the plate sinks is also increased 
threefold, and so on. Hence the pressure is proportional 
to the depth. 

Next, let the experiment be repeated with liquids of 
different densities. It will be found that, isf the cylinder 
be always immersed to the same depth, the total weight 
required to sink the plate (including, of course, the weight 
of the plate itself) is proportional to the specifio gravity 
and therefore to the density, of the liquid. 
97. To show that the free surface of a heavy 
liquid at rest is horizontal. 
_ Take any t-wo points P, Q in the liquid, such that the 
line PQ is horizontal, and lies entirely in the liquid. Let 
the verticals through P, Q meet the surface in A, B. 

Since PQ is horizontal, 
.•. pressure at /' = pressure at Q. (§ 91.) 
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But the pressures at P, Q are pro­
portional to AP, BQ, the depths below 
the surface; 

,-, AP = BQ; 
.-. A B is parallel to PQ. 

But PQ is horizontal; 
,", AB is horizontal. 

And, similarly, any line drawn in 
the surface is horizontal; therefore 
the surface is horizontal. 

B A • 

Fig, 29, 

98. The surface of a liquid at rest rises every­
where to the same level. 

Experimental Illustration.—This well-known property 
may be verified experimentally by constractrag an 
apparatus such as that shown in Fig, 30,_ in which 
several open vessels of different shapes and sizes D, t, F 
communicate freely with one another. If water or any 
other liquid be poured into one of them, it will rise to the 
same level iu them all. 

The proof of §97 holds when the liquid is contained in 
two or more communicating vessels such as D, E. In 
this case all the free surfaces are at the same level, and 
form part of one and the same horizontal plane. If the 
liquid is contained in a vessel such as that shown at F 
the proof fails, for we cannot construct a vertical column 

HYDEO. H 
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whose base is at a point R of the bottom without passing 
out of the liquid. 

But w e can always connect any point R with the 
surface by means of a zigzag of alternately vertical and 
horizontal straight lines OH, HK, KR, and can find the 
difference between the pressures at any two points on 
this zigzag by § 95, 

Thus, since O H is vertical, we have 
pressure a,t H = w x O H (i,), 

where w is the weight of unit volume of liquid. 
Since B O is horizontal, 

pressure at A" — pressure at // = 0 ("•)• 

Since K R is vertical, 

.'. pressure at R — pressure at A" = wxKR ... (iii.). 

Fig. 30. 

Therefore, by adding (i,), (ii.), (iii,), 

pressure at R = wx (OH + KR) 

= wx depth of R below surface,* 

We may now show that the liquid in the vessel F 
reaches the same level as in D. For, if R is on the same 
level as P, the pressures at R, P are equal, and therefore 
the depth of R below the surface at 0 is equal to that of P 
below the surface at A. Hence A G is horizontal. 

• For, produce RK up to meet the horizontal plane through C in L. Since CL, HK 
are parallel, ,-, C W = i/T, and ,-, C//-tCT = iff = depth of ff belo-vv level of surface. 
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99, The Water Level, an instrument used in sur­
veying, is based on this principle. It consists of two 
vessels D, E communicating by m.eans of a tube, and 
partially filled with water. The water of course rises to 
the same level in both, and enables us to find the 
horizontal direction. To facilitate its use, the two vessels 
contain floats A, B having "sights" X, Y fixed on them, 
which rise to equal heights above the level of the water. 
Since the water reaches the same level in the vessels D, E, 
the sights are also on the same level, and the line joining 
them is horizontal. If now a distant object be observed 
to be in a line with the two sights, we know that the 
object and the sights are on the same level. W e are thus 
able to find any number of different points on the same 
level, and hence to determine the difference of level of 
two different places. 

Fig, 31, 

lOG, The water supply of to-wns affords an excellent 
illustration of these principles. The water is brought 
from a reservoir above the town by means of a series of 
mains and pipes, and, whatever be the arrangement of 
these mains, the water everywhere tends to rise to the 
level of its surface at the reservoir. W h e n at rest, the 
pressure of the water at any point is proportional to the 
vertical depth of that point below the reservoir, 
[Practically, however, the reservoir must be placed somewhat above 

the highest point to be supplied, in order that the water may floio 
through the pipes sufficiently ra,pidly to supply the to-wn.] 
101. Dee.—The head of liquid means the height of 
the column of liquid to which the pressure at any given 
point is due. 
Thus, at a point 100 ft. below the level of the reservoir there is a 

head of water of 100 ft. 
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102, The thrust exerted by a liquid of given depth 
on the base of its containing vessel is independent 
of the shape of the remaining portion of the vessel. 

For the pressure at any point of tho base depends only 
on the depth of the liquid and the density, and not on the 
shape of the other part of the containing vessel; and 
the thrust upon the base depends only on this pressure 
and the area of the base. 

103. Pascal's Vases.—The above properties may be 
illustrated 'by taking a number of vessels of conical, 
cylindrical, and other shapes (Figs. 33, 34, 35), the aper-
tures at the bottom of which are of the same size and can 
be closed by a circular disc. 
One of the vessels is fixed 
upright, and the disc closing 
it suspended from a hydro­
static balance by a string 
fastened to a hook on its 
upper side (Fig. 32). 

In the other scale-pan are 
placed weights by which 
the disc is held up against 
the bottom rim of the vessel. 

Now, let water be poured 
into the vessel. The disc 
will fall, and the water will 
escape as soon as the weight -'̂ 8̂'- 32, 
of the disc and the thrust 
of the water on it together exceed the weights in the 
oppttsite scale. 

Let the experiment be repeated, using the same weights 
and one of the other vessels. W h e n the water has been 
poured in to the same height as before, it will again escape. 
Hence the thrust on the disc is the same in each case, 
provided that the depth of water and the area of the base 
are the same. 



PEESSURE IK A LIQUID AEISING EROM WEIGHT, 101 

104, To explain why the thrusts on the bases of 
Pascal's Vases are not always equal to thp -weight 
of the contained liquid. 

Case I. — In a cylindrical vessel ABOD (Fig, 33) the 
reactions of the sides AD, B O are horizontal, and therefore 
the thrust on the base equals the weight of the liquid. 

Case II. — If the sides slant upwards from the base 
(Fig. 34), the thrust on the base (being independent of 
the shape of the vessel) is the same as in a cylindrical 
vessel A B E F with the same base and altitude, and is 
therefore less than the total weight of liquid. 

Here, however, the pressures of the liquid acting per­
pendicularly to the sides of the vessel have a. vertical 
component which produces a downward thrush on these 
sides. 

Considering separately the equilibrium of the liquid 
outside and inside the cylinder ABEF, and observing that 
the pressures of these portions on each other have no 
vertical component, we have 

vertical thrust on sides AD, BC = weight of liquid outside ABEF; 
ABEF. „ „ base AB = ,, ,, 

Adding these together, we find, as we might expect, 
that 

vertical thrust on whole vessel DABO = weight of whole of liquid. 
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Case III.—If the sides slant inwards from 
the base (Fig, 35), the vessel contains less 
liquid than a cylinder A B E F on the same 
base;- hericfe the thrust on its base is greater 
than the weight of the contained liquid. 

Here, however, the pressures on the sides 
AD, B O have an upward component, and 
therefore the liquid tends to lift, the sides. 

Suppose liquid poured into the cylinder 
A B E F to the same height outside A B O D as 
inside. The pressures on the inside and outside of the 
faces AD, B O will now balance each other. Hence 
upward thrust on sides AD, BC = weight of liquid outside ABCD. 

^But 
do-wnward ,, ,, base AB = ,, ,, in cylinder ABEF. 

Subtracting these, w e find, as we might expect, that 

resultant thrust on whole vessel DABC = weight of contained liquid. 

105, The HydrauUc Lift. 
— I n this, as in the Hydrostatic 
Press, very large weights are 
raised by the pressure of water 
on the under surface of a large 
piston ; but this pressure is 
produced by the weight of a 
column of water instead of 
by a force applied to a small 
plunger. 

Thus, if O E is a vertical 
column of water connected 
with a cylinder which con­
tains the piston AB, and if the 
surface A B produced meets 
the column OE in D, the pres­
sure per square inch at the 
level A B D is equal to the weight 
of a column of height OD and 
sectional area 1 sq, in. Hence 

Fig, 36, 
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the thrust on AB is equal to the weight of a cylinder of 
water of height O D , whose base is the area A B . 

A n d , by m a k i n g the piston A B very large, this u p w a r d 
force can be m a d e as large as w e like without altering the 
weight of fluid in O D which produces it. 
Thus any quantity of fluid, however small, may be made 
to lift any weight, however large. 
When the lift is raised, water flows into the cylinder 
A B , and the tube is kept filled from a high reservoir. 
T o lower the lift, the cylinder is disconnected from the 
tube O E , and the water allowed to escape b y the tap X, 
the piston descending by its o w n weight. 

*106. Effect of variations in the, direction of gravity.— 
The proof that the surface of a liquid is a horizontal plane is only 
true when the body of fluid considered is so small that the '' verticals'' 
or directions of gravity are parallel at all points of the fiuid. But in 
a large body of water, such as a lake or ocean, the verticals at difEerent 
points cannot be regarded as parallel, since they meet in the centre 
of the Earth, and the proofs of ^ 97, 98 no longer hold. Here the 
surface of the water is not plane, but convex. 
The surface of water in the neighbourhood of any point is still 

horizontal, if by " horizontal'' w e mean everywhere perpendicular 
to the vertical or direction of gravity. Combining this -with the fact 
that the verticals at different places meet approximately at the centj-e 
of the Earth, it is possible to show that the surface of the ocean ia 
approximately spherical, its centre being at the centre of the Earth; 
as is easily verified by observation. 
*107. The intensity of ffra-vlty g is kno-wn to vary slightly in diiTerent 
latitudes, and this produces slight local variations in the pressure due to the 
-weight of a column of liq̂ uid of given depth and density. Employing the 
formula p —wh for the increase of pressure in depth h, we notice that w is-
proport;ional to g ; hence the pressure p is proportional to g. If w and p be 
measured in dynamical units of force, and if d be the density, then, since the 
-weight of a unit volume in dynamical̂ units is g times its mass 

. -. w ~dg ; 
. -. p — dgh dynamical units of pressure. 

If the experiments of §§ 96,108 were repeated in different latitudes—say at the 
equator and near the pole—no difference would he observed, because in these 
experiments the pressure is made to balance the weights of masses {i.e., the 
set of weights employed), and these also undergo the same proportional 
variations according to the value of " g." 
Thns -we could prove by experiment that the pressure due to a given depth of given liquid is proportional to g. Experiment also shows that the intensity of gravity decre.ises if we go from the surface towards the centre of the Earth. Hence in the case of a very deep ocean, the pressure is no longer strictly proportional to the depth. 
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*108. Effect of compressibility of liquid.—Another reason 
w h y the pressure at great depths is not strictly proportional to the 
depths is that all liquids are slightly compressible. The lower por­
tions are squeezed do-wn by the pressure due to the weight of the 
liquid above, and occupy slightly less bulk than they would do if the 
pressure were removed. Hence, in a column of liquid, the density 
increases slightly -«dth the depth. For this reason, also, the weight 
of the column, and therefore the pressure at great depths increases 
a little more rapidly than it would if the liquid were absolutely 
incompressible. 
*109. Effect of variations of temperature.—If a liquid be 
heated, it expands and occupies a greater volume than before. Hence 
its density, and therefore the weight of a unit volume, decreases. 
Therefore t;he pressure at a given depth also decreases -vrith a rise of 
temperature. But, if the Gquid is contained in a cylindrical vessel 
and is heated, it -ndll rise to a greater height in the vessel, and this 
"vrill make up for the diminution of density, so that the force on the 
base -svill still be equal to the weight of the liquid. 

1. The pressure in a liquid arising from its weight 
(i.) Is the same at all points on the same level; 
(ii.) Is proportional to the depth and the density of the liquid ; 
(iii.) Is measured by the weight of a column of unit sectional area 

extending to the surface. 

2. Tlie pressure at depth h = toll 
= 1000 hs oz. per square foot if h is measured iafeet 
= hs gm. per square centimetre if h is measured in centimetres ; 

where w = speci&c weight of liquid, 
s = specific gra-vity referred to wa,ter. 

3. If the surface is at pressure p, the above pressures must all 
be increased by^. 

EXAMPLES X. 

1. Find in pounds per square inch the pressure in water at a 
depth of 32 ft. 

2. Show that the pressm-e is the same at equal depths in a body 
of liquid, and find the increase of pressure in pounds per square inch 
for every foot-depth of water. 
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3. Find the difference between the pressures at the top and bottom 
of (i.) a column of water 30 ft. high; 

(ii.) a column of air a mile high (specific gra-vity = -001) ; 
(iii.) a column of sea-water a kilometre deep; 
(iv,) a column of mercury 760 m m . high. 

4. H o w would you show experimentally that the difference in 
pressure at two points in a heavy liquid is proportional to the differ­
ence in depth of the points ? Does the pressure at any point depend 
on anything besides the depth of the point ? 

5. A vessel, whose shape is that of a pyramid 4 ft. high, has a 
base 6 sq. ft. in area. Find the pressure and the force on the base 
when the vessel is filled -with water. 

6. Three rectangular cisterns are filled -with water. One of them is 
in the form of a cube whose edge is 7 ft. ; another is 4 ft. high, 4 ft. 
-wide, and 13 ft, long; and the third is 3 ft, high, 3 ft, -wide, and 
15 ft, long. Show that the thrust on the base of the second is 
5 tons 1,800 lbs,, the weight of a cubic foot of water being 1000 oz,, 
and that this thrust is equal to the difference between the thrusts on 
the bases of the other two, the atmospheric pressure not being taken 
into consideration. 

7. A spherical boiler 4 ft, in height is half full of water and half 
full of steam. W h a t is the difference between the pressure at the 
top and bottom of the boiler ? 

8. Find the height of a column standing in water 30 ft. deep, when 
the pressure at the bottom is to the pressure at the top as 4 to 3. 

9, A long glass tube of 1 in, diajneter has a disc weighing 2 oz, 
placed at one end. H o w far under water must the end of the tube, 
with the disc below it, be immersed, in order that the disc may not 
all off, 
10, Determine the g-reatast depth in fathoms at which a submarine 

diver can work in sea-water, supposing he can bear a pressure of 
5 atmospheres, taking an atmosphere to be a pressure of 15 lbs, per 
square inch, 

11, A hole 6 ins, square is made in a ship's bottom 20 ft, below 
the water-line. W h a t force must be exerted in order to keep the 
water out, by holding a piece of wood against the hole, if a cubic foot 
of water weighs 64 lbs, ? 
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12, A and B are vessels full of water -with circular and horizontal 
bases 12 ins, and 8 ins, in diameter, respectively, ^ is 8 ins,, and B 
is 9 ins,, high. Compare the pressure on the bases, 

13, T w o rectangular cisterns standing on a horizontal plane are 
joined at their bases by a leathern pipe resting on the plane. If one 
of them be 5 ft, long and 3 ft, broad and the other 4 ft, 6 ins, long 
and 3 ft, 4 in, broad, and water be poured into either, then, when 
water is at rest, the thrusts on the bases -will be equal, 

14, Prove that the surface of a hea-vy fiuid at rest -under the action 
of gravity is a horizontal plane. W h y is this not true of very large 
surfaces of water ? 

15, Find the pressure at a given depth («) in a liquid whose specific 
gra-vity is s, and whose surface is subject to a given pressure P. 

16, Taking 1000 oz, as the weight of a cubical foot of water, and 
15 lbs, weight on a square inch as the atmospheric pressure, find, in 
hundredweights, the thrust on a horizontal area of 7 sq. ft, in water 
at the depth of 32 ft, 

17, Find the pressure at a depth of 96 ft, below the surface of the 
sea, the pressure of the atmosphere at the surface being 14 lbs, per 
square inch, the weight of a cubic foot of ordinary water 1000 oz,, 
and the specific gravity of sea-water 1-025, 

18, If a cubic foot of sea-water weighs 1025.oz,, what wiU be the 
pressure on the square inch at the depth of \ mile ? (The pressure of 
the atmosphere at the surface is to be taken into account.) 

19. Show that the effect of an external pressure of ISflbs. per 
square inch may be allowed for when the liquid is water, by supposing 
a layer of water, 32 ft. thick, to be superposed on the original liquid, 

20, The pressure at the bottom of x. well is four times that at a 
depth of 2 ft, ; what is the depth of the weU if the pressui-e of the 
atmosphere is equivalent to 30 ft. of water? 

21. If the pressure at a point 5 ft. below the surface of a lake be 
one-half of the pressure 44 ft. below the surface, account being taken 
of the atmospheric pressure, flnd the atmospheric pressure in pounds 
on the square inch, assuming a cubic foot of water to weigh 1000 oz. 

22. The pressure at a point 3 ft. below the sm-face of a heavy fluid 
is 30 lbs, per square inch, and at a depth of 7 ft. it is 50 lbs. Wliat 
is the pressure at the surface ? 
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PRESSURE DUE TO THE WEIGHT OF 

SEVERAL DIFFERENT LIQUIDS. 

110. W e shall n o w consider tbe pressures arising from 
the weigbt of several liquids of diflierent densities which 
do not mix, but rest on one anotber. 

T h e proofs of §§ 91, 98 sbow that in any continuous 
portion of the same liquid tbe pressure is always the same 
at all points in the same horizontal plane, whether this 
pressut-e is due to the weight of the liquid itself or to the 
weight of superincnmbent liquids. 
[Note.—By a conlinuovs portion, we imply that any two points can be connected 
by a zigzag of alternately horizontal and vertical lines, as in § 98, -mthQUt passing 
out of the liquid.3 

— A vessel 10 cm. deep contains mercury to the depth of 
1 cm., and is fiQed up -with water. To find the pressure at the 
bottom of the vessel, the atmospheric pressure being 1033 gm. per 
square centimetre. 

Construct a rectangular column whose base is 
1 cm. square,- extending from the bottom to the 
top of the liquid, and consider the equilibrium 
of the liquid in this column. 
The column may be di-vided into ten cubes, 

each 1 cub. cm.: nine flUed -with water, and one 
-with mercury. 

But 
weight of 9 cub. cm. of water = 9 gm., 
weight of 1 cub. cm. of mercury = 13-6 gm., 

and thi-ust on upper end =1033 gm. ; 
thrust on base = 1055-6 gm., 

and pressui-e at bottom of liquid 
= 1055-6 gm. per square centimetre. 

Fig. 37. 
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111. T o find tte press-are at any point due to the 
•weiglit of se-v-eral liquids which, rest one on another 
-without m.i::iug. 

Let «[, Sj, S3 be the specifio gravities of 
any different liquids that do not mix, 
w being the weight of unit volume of 
water. 

Let P be the atmospheric pressui-e at 
the surface Aa, p the required pressure 
at any given point /?, 

Draw RQPO vertical, and construct a 
rectangular colnmn on a unit of area as 
base, extending from R to the surface 
Aa. From the equilibi-iam of this 
column, we find— 
Pressure at R ^ pressure at 0 + sum of lueigJits of vertical 
columns of the several liquids having the unit of area for 
their base, and extending from R to 0. 

A 

B 

C 

D 

^ , 

Fig, 38, 

N o w the weights of the columns are tus, , OP, w--<,, 
wsg. QR, respectively, 

:•, p = P + w(si.OP + s,.PQ-\-^,.QR). 

PQ, 

112. T o prove that, w h e n several lictuids of 
different densities do not mix, the c o m m o n surface 
of any two of the ligiuids is horizontal. 

Consider two liquids of specific 
-gravities «,, s.̂. 

Let M, Q be any two points in 
their common surface. 

Draw the verticals LMN, PQR 
through M, Q, and on them take 
points L, P in the upper and N, R 
in the lower liquid, such that the 
lines LP and N R are horizontal. Then the pressures at 
L, P are equal, and the pressures at N, R are equal; there­
fore pressure due to columns LM, M N = pressure due to 
columns PQ, QR. 

Fig, 39, 
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Therefore, as in the last paragraph, 

w ihPQ+s.QR) = w (siLM+s,MN); 
that is, 

,-, Si(PR-QR)+s,QR = si {LN-MN)+s,MN. 
Also SiPR = 8iLN. 
Hence, by subtraction, 

s,QR-SiQR = s^MN-SiMN; 

i.e., ih-h) QB = ih-^i) I^N-
But Sj—«! is not zero; 

.-. QR = MI\l. 

Hence Q M is parallel to Rl\l, and therefore horizontal, 

. Obsbevations, — When -the liquids are contained in two or more 
intercommunicating vessels, such as the U-tube about to be described, 
we shall see that the common surfaces of separate portions (of. § 110, 
note) are not necessarily all at the same level. 
When several liquids are poured into a vessel they "wiU always 

arrange themselves in order of their densities, the heaoiest liquid being 
the lowest. If the density of any liquid were greater than that of the 
one next below, the two might for an instant remain in equilibrium 
•with their common surface horizontal, but the least disturbance would 
turn them topsy-turvy. The equilibrium would, in fact, be 
"unstable." 113, T h e U-tube is, as its name implies, 
simply a glass tube bent into the shape of 
an elongated [J, one of its uses being to 
compare the specific gravities of liquids 
which do not mix. For this purpose, the 
heavier of two given liquids should first 
be poured into the bend of tbe tube, and 
the lighter then poured down one oF tbe 
branches. 

The heights of the free surfaces P, R 
above the surface of separation Q can be 
measured by a scale of inches or milli­
metres placed behind the two tubes, and 
by comparing these heights the densities 
or specific gravities of the liquids m a y be compared. 
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Example.—A U-tube was partly filled -vfith water, and oil was 
poured into one of the branches to a depth of 6 ins. The surface of 
the water in the other branch stood 5-49 ins, above the common 
surface of the oil and water. To find the specific gra-vity of the oil. 
Let PCQ be the water, QR the column of oil 
(Fig, 40), and let 0 be the point on the branch 
PC at the same level as Q. 

Since the portion QCO is aU filled -with the same 
liquid (water). pressure at ̂  = pressui-e at 0 

Let W be the weight of a cubic inch of water, 
' that of a cubic inch of oil. Then, since 

PO = 5-49 ins. and 
pressure at 0 (per sq. in.) = 

pressure at ̂  = 
therefore,by (i.), W x 5-4:9 = 

and specific gra-vity of oil = 

/?g = 6 ins.. 
TFxPO = W x 5-4:9 
wx RQ = w X 6 ; 
IV X 6, 

^ = ^ = • 9 1 5 . 

114, W h e n the -two branches of a U-tube contain 
two different lio|.uids which do not mix, their specific 
gra-vities are inversely as the heights of their free 
surfaces above their surface of separation. 

For, let Si, s^ be the specific gravities of the liquids in 
th« portions POQ, QR (Fig, 40), w the weight of a unit 
volume of water. 
Let the horizontal through Q meet the branch AG in 0. 

Then we have for the equilibrium of the liquid QOO 
pressure at 0 = pressure at Q. 

.-. wsiXPO = ws^xRQ, 

s. PO' 
whence 

Qy specifio gravity of liquid in PQ _ height of R above Q 
specific gravity of liquid in RQ height of P above Q' 

as was to be proved. 
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Example.—If the U-tube contains mercury of specific gra-vity 13-5 
to within 5 ins, of the top, to find the height of the column of water 
which must be poured in to iill one of the branches. 
Let p, qhe the original surfaces of the mercuiy. 

As soon as water ia poured into the branch BC, the 
surface of the mercury -will sink in that branch 
from q (say) to Q, and -svOl rise in the other 
from branch p to P. W e suppose the branches of 
the tube to be of equal diameter; we shall then 
have pP = qQ. 
Let qQ = x. 
Since Bq = 5 ins,, we have 

height of column of water BQ = 5 + x, 
height of mercury at P above common surface at Q 

= Pp + qQ = 2x. 
Hence, since the pressures at the level of Q are 

equal in the two branches, 
,-, Ix (5 + 2:) = 13-5x23: = 27»; 

,-, 6 = 26:r,- ,-, x = ^-, 
and height of water column BQ = 5 + x = 5-^ ins. SUMMABY, 

1, The common surface of -two continuous portions of different 
liquids is horizontal, 

2, The pressure at a given depth in one of the lower liquids = sum 
of pressures due to separate liquids, 

3, If the U-tube contains two liquids, heights above common 
s-urface are inversely proportional to densities. 

EXAMPLES XI. 
1. Prove that the common surface of two liquids of different 

density which do not mix is a horizontal plane. Does the argument 
apply to the parts of the common surface in the two branches of a 
U-tube containing water, when different quantities of oil are poured 
do-wn the two arms ? 
2, A vessel whose bottom is horizontal contains mercury whose 
depth is 20 ins,, and water floats on the mercury to the depth of 
16 ins. Find the pressure at a point on the bottom of the vessel 
in lbs, per square inch, speciflc gravity of mercury being 13-6, 
3, A vessel whose base is a square, the side of which measures 
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6 ins,, contains meromy to the depth of 1 in,, and water is pom-ed 
upon the mercury to the depth of lOJ ins. If the speoMlo gravity of 
the mercury be 13-5 times that of water, flnd the pressure on the base 
of the vessel, 

4, Find the whole thrust on a square, the length of a side of which 
is 4 ins,, immersed horizontally in oil at a depth of 5 ins,, the specific 
gravi.ty of oil being -87, 

5, A circular cylinder, whose radius is 14 cm, and height 40 cm,, 
is filled half with water and half -with oil of specific gra-vity -9, Find 
the pressure anywhere on the curved surface of the cylinder, and also 
the thrust on the base, (Take ir — ^̂ -.) 

6, The two branches of a uniform bent tube are straight and 
vertical, and the portion of the tube which unites them is horizontal. 
Water is poured in sufficient to fill 6 ins, of the tube, and then oil, 
sufficient to occupy 6 ina,, is poured in at one end, the specific gra-vity 
of the oil being four-fifths that of water. Find the position of the 
fiuids when they are in equilibrium, the horizontal part of the tube 
being 2 ins, long, 

7, T w o liquids which do not mix are contained in a U-tube, 
Obtain a relation between their densities and their heights above 
the common surface, 

8, Water is poured into a U-tube, the legs of which are 8 ins, long, 
until they are half full. A s much oil as possible is then poured into 
one of the legs. W h a t length of the tube does it occupy, the weight 
of the oil being two-thirds that of water P 

9. The lower ends of two vertical tubes, whose cross sections are 
1 and -1 sq. ins. respectively, are connected by a tube. The tubes 
contain mercury. H o w much water must be poured in to raise the 
level of the mercury in the smaller tube 1 in. ? 

10. A bent tube containing equal quantities of two liquids which 
do not mix consists of two branches inclined at angle 60°. W h e n one 
of the branches is held vertically, the different fluids meet at the angle 
of the tube. Show that when the tube is held -with the two branches 
equally inclined to the vertical, one-fourth of the liquid contained in 
the branch which was previously inclined to the vertical fiows into the 
one which was vertical. 
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RESULTANT THRUSTS OF HEAVY LIQUIDS 

ON PLANE AND OTHER SURFACES, 

115. Def,—When one side of any surface is exposed 
to pressure, the force which that surface experiences 
owing to the pressure is called the resultant thrust 
or pressure-resultant on the surface,* 

Its vertical and horizontal components are the vertical 
a n d horizontal thrusts on the area respectively, 

[Note that a resultant thrust is a particular force, 
while a pressure is a force per unit area,] 

In the present chapter, w e shall show h o w to find— 
(i,) The resultant thrust of a heavy liquid on a hori­

zontal plane area, 
(ii,) The vertical thrust on any surface. 
(iii.) The resultant thrust on a plane area inclined to 

the horizon or vertical. 

116. To find the resultant thrust on a horizontal 
plane a r e a . — W h e n a horizontal surface is exposed to the 
pressure of a heavy liquid, this pressure is uniform over 
the whole surface, and its amount m a y be found as in 
Chap. X . Multiplying this pressure by the area of the 
surface, w e have the required resultant thrust on the 
area. 
* When this book was first in manuscript, it -was our inteutiou to use the term 
"pressure-resultant"; but quite recently the term "thrust" has come into very 
general use in Hydrostatics, and accordingly we have gladly adopted it. The 
student should, however, take care i:o be able to identify any of the .other terms 
used in this sense, such as resultant •pressure, which is still commonly found in 
books and examination papers, although it would be more correct to speak of 
resultatU force of pressure. 

HYDEO. I 
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117. To find the vertical thrust on any surface.— 
W h e n any surface S is exposed to the pressure of a heavy 
liquid, the vertical thrust may be found by drawing ver­
ticals, such as AB, OD, from the boundary of S to the surface 
of the liquid. These verticals, together with the surface 
itself, will enclose a column of liquid ABDG, whose weight 
is equal to the required vertical thrust on the surface. 

Case I.—Suppose.that the liquid presses on the upper 
side of the surface 5 (Fig. 42). 

m:A 
Fig. 42 Fig. 44. 

Consider the equilibrium of the liquid in this column. 
The pressures acting perpendicularly on its vertical sides 
are horizontal. Hence they have no vertical component. 
If there is no pressure at the upper surface BD, we 
therefore have 
vertical thrust on S = weight of liquid in column ABDG. 

Case II. — If the sides of the vessel should anywhere 
fall within the cylinder A B D G (as in Fig. 43), it is only 
necessary to suppose the vessel replaced by a larger one, 
whose sides do not fall within the cylinder, the liquid 
rising to the same level as before. The pressure at every 
point of S will be unaltered, and therefore the vertical 
thrust on S will still be equal to the weight of liquid 
required to fill ABDG. 
Case III.—Let the liquid press on the lower side of the 
surface S (Fig. 44). Let the vertical column A B D G be 
constructed as before, extending from the surface S to the 
plane of the free surface. If this column be supposed 
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filled with liquid, the pressures on the upper and under 
sides of S will n o w be everywhere equal, and therefore 
the thrusts on the two sides of S will be also equal and 
opposite. Hence the liquid exerts an upward vertical 
thrust on the under side of the surface S equal to the 
weight of the liquid required to iill the column A B D G . 

These results are expressed by the statement that 
the vertical thrust on a surface is altuays equal to the 
weight of the superincumbent column of liquid. 

Examples.—(1) To flnd the resultant thrust on the concave surface 
of a hemispherical bowl 1 ft. in diameter, immersed in water, -with 
ita base horizontal, at a depth of 2 ft. below the surface. 

Construct a vertical cylinder ha-ving the rim of the bowl for its 
base. The weight of superincumbent water contained between the 
cylinder and bowl is equal to the resultant thrust on the surface 
of the bowl. 
Now, the radius of the cylinder = J ft., and height = 2 ft. ; 

. . area of its base = ^ x (J)^ = J^ sq. ft. ; 
. . volume of cylinder = ii x 2 cub. ft. = ii cub. ft. ; 

and . •. weight of water in cylinder = JJ- x 1000 oz. 
Again, volume of hemisphere = f irr' = f • -̂  x (i)̂  cub. ft. 

.-. weight of water in hemisphere — ^ x 1000 oz. 
If the hemisphere is -turned base upwards, the resultant thrust 

= whole weight of water supported = '̂ °̂°° + "̂ °̂°° oz. 
= Ttaoo oz. = ISSSJ oz. 

If the hemisphere is base downwards, the resultant thruat 
11000 11000 (,V 

= s ^ o oz, = 1308-J!j oz. 
(2) A cone, whose height is 3 cm. and the area of whose base is 
10 sq. cm., is filled with water and placed vertex upwards on a table. 
To find the thruat on ita base and sides. 
Pressure at depth 3 cm = 3 gm. per sq. om. ; 

,-, thrust on base = 30 gm. 
Also vol. of cone = J base x height = ^.10.3 = 10 cub. cm. ; 

, , weight of water in cone = 10 gm. 
From the equilibrium of the liquid iu the cone, we therefore have 

vertical thrust on sides of oone = 30 gm, —10 gm, = 20 gm,, 
and this thrust acts upwards, tending to hft the sides. 
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118, T o find the resultant thrust on a n y plane 
area, it is sufficient to find the average pressure on the 
area. Since the area is plane, the product of this average 
pressure into the area is equal to the required resultant 
thrust on the area. 

The folio-wing example -will be an instructive introduction to the 
method to be followed in the next article. 
Example.—To show that in the case of a rectangle ABCD in a 

vertical plane immersed to any depth the average pressure is equal to 
the pressure at the centre of gravity of the area. 
Di-vide the rectangle into a large number of very thin strips of 

equal breadth, by ruling a number of equidistant horizontal Unea 
across its face. Let EF be the vertical Kne bisecting the rectangle, 
and therefore passing through its centre of gra-vity G. Consider any 
pair of strips PQ, RS of equal 
area a, whose centies H, K are at 
equal distances above and below G. 
If 0 be in the surface of the liquid, 
we have 

pressure at H = w x OH, 
pressure at G = w x OG, 
pressure a,t K = w x OK; 

, -, thrust on strip PQ 
= w x OH X area a, 

thrust on strip RS 
= wx OKx area a. 

Now HG ^ 6K; 
,-, 0H-+0K={06-HG) + {0G-i 

hence, sum of thrusts on the two strips 
= w x {OH+OK) xa = w x 20G x a 
= w x O G x sum of areas of strips ; 

and this is the same as if the pressure on either strip were equal to 
w X OG, that is, equal to the pressure at 6, 

In the same way, the sum of the thrusts on every other pair of 
strips is the same as if the pressures on them were equal to that at G. 
Therefore the thruat on the whole rectangle is the same as if the 

pressure were everywhere equal to that at G. 
Hence, the average pressure on the rectangle is equal to the pres­

sure at its centre of gra-vity 6, 
The following generalization of this result is most im­
portant :— 
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-GK) 
Fig, 46, 
= 206: 
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119. To prove that the average pressure'on any 
plane area immersed in a hea-vy liquid is eg^nal to 
the pressure at its centre of gra-vity. 

Divide the area into a very large number n of strips by 
ruling horizontal lines across it at small distances apart. 

0 

T>f ^ « 

Fig, 46. 
Let PQ be any such strip, H its middle point, and let 

the vertical through H meet the surface in 0. Let the 
area of the strip = a, and let O H = z. 

The pressure at // = w . OH. And since (by construc­
tion) the difference of level of the top and bottom edge 
of the strip is very small, the pressure is sensibly the 
same all over the strip. 

Hence, thrust on strip = w . O H X area PQ = wza. 
Thus, if Zi, ẑ , ... z„ are the depths and a„ â , ... a„ the 

areas of the strips, the thrust on the n^^ strip is w xz„a„. 
N o w the thrusts on the different strips are parallel. 

.". resultant thrust on whole area =: sum of thrusts on 
strips = w x (%ai-|-«2aj-|-...+z„a„). 

Also whole area = aj-t-Oj-f ... -l-a„; 
z,a,-{-z,â -\-... -^z^an 

.'. averag-e pressure = w x ' ' —^—^ . 
^ ^ (ij-a,-̂ ...-\-a„ 

N o w it is proved in Statics that if z be the depth of the 
centre of gravity of tl.e areas a„ a.j, ... a,„ 

- _ -vvL" £2+^-, +g..'t» 
Hence average pressure on area 

= w x z = pressure at depth z 
= pressure at C.G. of area. 
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COI&. 1.—The resultant thrust on any plane area 
is eq.ual to the product of the area into the pressure 
at its C.G-. 

CoE. 2.—The resultant thrust on a plane area depends 
only on the area and the depth of its CO., and is unaltered 
by turning the area about its CO., provided that the whole 
of the area is kept below the surface. 

Observation.—In the above proof, the area need not be 
in a vertical plane, for the formula giving the depth of its 
C.G. in terms of the depths of the separate strips holds 
good whatever be the position or form of the area. 

Examples.— (1) To find the resultant thrust on a vertical dock-gate 
14 ft, -wide if one side is exposed to the pressure of sea-water 10 ft. 

The area exposed to pressui-e = 14 x 10 = 140 sq, ft, ; 
the depth of its ca, = 56 ft. 

N o w a cubic foot of sea-water weighs 64 lbs,, 
,-, pressure at ca, of area = 6 x 64 = 320 lbs, per sq, ft, ; 

,-, thrust on dock-gate = 320 x 140 lbs, = 44,800 lbs, = 20 tons, 

(2) To find the resultant thrust of water on the slanting face of an 
embankment 100 metres long and 30 metres broad, which shelves 
do-wn to a depth of 12 metres below the surface at the lowest part. 
The area exposed to pressure = 100 x 30 = 3000 sq, metres. 

The depth of its ca, = J depth of lowest portion 
= 6 metres = 600 cm, ; 

,-, average pressure = 600 gm, per sq, cm, 
= 600 X 100 x 100 gm, per aq, metre 
== 6000 Mlog, per sq, metre, ; 

,-, resultant thrust = 6000 x 3000 kilog. = 18,000,000 kilog. 

(3) A hemispherical bowl holding 4 lbs. of a liquid is held -with ita 
rim resting against a vertical waU. To find the resultant thrusts of 
the water (i.) on the wall, (ii.) on the bowl. 
Let r be the radius of the bowl, w the specific weight of the 
liqnid. Then weight of liquid in bowl = îrr'w = 4 lbs. 
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Since the area of the base is irr' and the depth of its centre of gravity 
is r, and the base ia plane, the thrust on the wall is equal to 
irrtjj xr = iri^w = I -wt, of liquid = 6 lbs. 
The three forces acting on the liquid contained in the hemiaphere are 

(i,) The reaction of the bowl, equal and opposite to the reqiiired 
resultant thrust. 
(ii.) The weight of the liquid, which ia equal to 4 Iba, and acta 
vertically downwards, 
(ni,) The thrust of the base of the hemisphere, acting horizontally. 

Hence the conditions of equilibrium require that the horizontal and 
vertical oomponenta of the resultant thrust on the bowl ahaU be 
6 lbs. and 4 lbs., respectively. These components are at right angles ; 
hence, if M denote the required resultant thrust, we have 
_g2 = 62 + 42 = 62; 
.-. resultant thruatR = \V1Z . ni^w 
= ^52Vos. = 7-2lbs., nearly. 

*120. Centre of P r e s s u r e . — D b f . — T h e centre of 
pressure of a plane area immersed in fluid is the point in 
which the line of action of the resultant thrust of the fluid 
meets the area. 

It does not coincide with the centre of gravity unless 
the pressure be uniform. T h u s the centre of pressure of a 
rectangle with one side in the surface is at a depth equal 
to two-thirds the depth of the lowest side. 

*121. W h o l e pressure on a curved surface.—When an area 
is not plane—as, for example, any part of the surface of a sphere or 
cylinder, the product of the area into the pressure at its centre of 
gra-vity is no longer equal to the resultant thrust, but is equal to a 
quantity called the '' whole pressure.'' 
W h e n a surface consists of a number of plane areas (such as the six 

faces of a cube), the whole pressure is defined as the sum of the thrusts 
acting on the several faces. W h e n the surface is cm-ved, it must be 
divided into a large number of smaU portions, each portion being so 
small as to be approximately plane. The sum of the forces acting on 
all the small areas is defined as the whole pressure on the surface. 
From these definitions it may be deduced that the whole preaaure 

on any surface is equal to the product of ita area into the pressure at 
ts centre of gravity. 
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The " whole pressure " on a plane area is the same as the resultant 
thrust. In all other cases, calculations of the whole pressure^ on 
surfaces are devoid of interest, and are not of the sHghtest practical 
use. They are, however, sometimes set in examinations. 

The quantity found by dividing the whole pressure by the area of 
the surface is called the averag^e pressure on the surface. Hence 
the average pressure on any surface is equal -to the pressure at the 
centre of gra-vity of that surface. 
The average pressure ia, therefore, not equal to the resultant thrust 

di-vided by the area, except when the sxuf ace is plane. 
Example.—(1) A hemispherical bowl whose diameter is 12 cm. is 
full of oil whose specific gravity is -92. Find the whole pressure on 
the bowl, and the pressure-resultant. 
Area of surface of bowl = J x 47r x 6^ sq. cm. = IItt sq. om. 

Depth of centre of gra-vity of bowl = half the radius = 3 om. 
.-, whole pressure = weight of 3 x ̂ 2•w cm, of oil 

= 216ir X -92 gm, = 624-3 gm,, nearly. 
Pressure-resultant = weight of fiuid contained 

= weight of 1̂  X .|7r X 6' cm, of fluid 
= fir X 216 X -92 gm, = 416-2 gm,, nearly. 

SUMMAEY, 

1, The vertical thrust of a liquid on any area is equal to the weight 
of the superincumbent column of liquid (§ 117), 

2. The average pressure of a heavy liquid on any area is equal to the 
pressure at the o.a. of the area (} 119). 

3. Hence resultant thrust on any plane area A = wzA, where 
vj = speoiflo weight of Hquid, 
n = depth of CO. of area A below surface of liquid. 

4. This thrust acts perpendicular to plane of area at «. point called 
its centre of pressure, which is usually lower than ita 0. g. 

S. If the area is not plane, wnA represents the "wholepressure," 
and not the resultant thrust. 
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EXAMPLES XII, 

(Except where other-wise stated, a cubic foot of water weighs 
1000 oz,) 

1. A cubical box whose edge measures 1 ft, has a pipe communi­
cating -with it which risea to a vertical height of 20 ft, above the lid. 
It is filled -svith water to the top of the pipe. Find the upward force 
on the lid and the do-wnward force on the base, and show that their 
difference is equal to the weight of water in the box. H o w do you 
account for the pressure on the base being greater than the weight of 
water it has to support ? 

2. A tapering glass tube, 10 ina, long, 1 in, in diameter at one end 
and J in, at the other, is held vertically and filled -with water, a thin 
plate (the weight of which ia negligible) being pressed against the 
lower end to prevent the water from escaping. Compare the foroea 
-vidth which the plate must be held in its place, according as the larger 
end of the tube is at the top or bottom, 

3, A hollow oone stands -with its base on a horizontal table. The 
area of the base is 100 sq, ins,, and the height 8-64 ins, ; its weight is 
equal to the weight of water it -vdll contain. When filled "with water, 
what is the ratio of the pressure of the water on the base to that of 
the base on the table (supposed uniform) ? H o w do you account for 
the result ? (The volume of a cone is one-third of that of a cylinder 
-with the same base and altitude,) 

4, A right circular cone is open at the base and has a small hole at 
the vertex; it reata on a horizontal plane, the diameter of the base 
being 1 decim, and the height of the cone 2 decim. Find the weight 
of the cone that it may be just possible to fill it -with water -without 
causing it to lift from the plane, 

6, Prove that, in a liquid subject to gra-vity, the average intensity 
of the pressure over a.ny plane area is equal to the intensity at the 
centre of gra-vity of the area. 

Does the Hue of action of the resultant thrust pass through 
the centre of gravity ? 

6, Determine the thrust in pounds on every foot-breadth of a 
vertical wall of a rectangular reservoir of water 160 ft, deep. 
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7, A lock-gate, 10 ft, -wide and 10 ft, deep, has water on one side 
8 ft, deep and on the other 5 ft, deep, in each caae measured from 
the lower edge of the gate. Determine the resultant thrust, 

8, Determine the total thruat on one side of a rectangular vertical 
dock-gate 60 ft, -wide immersed in salt water to u, depth of 26 ft,, 
ha-ving given that the specific gra-vity of sea water is 1-026, 

9, A cube whose edge is 1 ft, is s-uspended in water with its upper 
face horizontal, at a depth of 2|- ft, below the surface. Find the 
thrust on each face of the cube, 

10, An artificial lake, j mile long and 100 yds. broad, "with a 
gradually shel-ving bottom varying from nothing at one end to 88 ft. 
at the other, is dammed at the deep end by a masonry wall across its 
entire breadth. Find the total thrust on the embankment when the 
lake is full of water weighing f ton to the cubic yard. Find also 
the total weight of water in the lake, 

11, Find the thrusts on the faces of a cube, whose edge is 6 ins, 
long, immersed in water "with its upper face horizontal at a depth of 
6 ina, 

12. A rectangular box is 18 ins, long, 8 ins, -wide, and 12 ins, deep. 
One of its sides is removed, and a board is nailed on, joining that 
edge of the bottom from which the aide has been removed to the top 
of the opposite side, and fitting against the enda of the box so as to 
be water-tight. The box is placed -with its base horizontal, and the 
space between the bottom and the board is filled "with water through 
a small hole made at the top of the Iboard, Find the vertical thruat 
on the board, 
13, A rectangular board is immersed in water -with one of its 
longer edges parallel to the surface and at a given depth. Compare 
the whole thrust on the board when it is (i,) horizontal, (ii,) vertical 
and upwards, (3) vertical and do-wnwards, 

14, A bowl in the shape of a hemisphere is filled -with wa-ter. Find 
the vertical thruat and the horizontal thrust on either of the portions 
into which it is di-vided by a vertical plane through its centre, 

16, A hollow cone, whose height is 4 ins, and the radius of whose 
base is 3 ins,, is fixed -with its base horizontal and its vertex do-wn-
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wards. The cone is filled -with water; flnd the reaultant thrust on 
the curved surface, taking ir = f̂-. 

16, If the cone in the last queation be inverted eo aa to stand on 
its base, flnd the increase of the resultant thrust on the curved 
surface, 

17, The surface of a vessel containing liquid consists of a number 
of plane faces of areas «i, Uj, â , ..., &c., and the centres of gra-vity of 
these areas are at depths z,, Zj, %, •••, &o., below the surface of the 
liquid. Write do-wn the sum of the resultant thrusts on the several 
faces, the weight of a unit volume of Uquid being w, and show that 
this sum is equal to the product of the whole superficial area of the 
vessel into the pressure at the centre of gra-vity of this area. 

18. Explain in what respect the quantity called "whole pressure " 
on a curved surface difiiera from (i.) a pressure, (U.) a force. W h a t 
is the whole pressure on a.plane surface? 

19, A smooth vertical cylinder, 1 ft. in height and 1 ft. In diameter 
is filled with water and closed by a heavy piston weighing 6 bs. 
Find the '' whole pressure '' on its curved surface. 

20, A cubic block, each of whose edges is 6 ias,, is sunk fn water 
to a depth of 2240 ft. Find the "whole pressure" Upoa its erftface 
in tons, neglecting the dimensions of the cube in comparison with 
the depth of its immersion, and supposing a cubic foot of water to 
weigh 62-6 Iba, 

21, A sphere, the radius of which is 4 ins,, is totally immersed in 
water, -with its centre at a depth of 6 ins. Find the "whole pres­
sure" and the resultant thruat, 

22, A hoUow cone, whose axis is vertical and vertex downwards, ia 
filled -with water. At what depth is a horizontal plane situated when 
the " whole presaures" on the portions of the curved surface above 
and below it are equal ? 
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EXAMINATION PAPER V, 

1, Define pressure at a point in a fluid. Show that the pressure in 
a fluid is the same at all points in a horizontal plane, 

2, Show that the pressure at any point in a fluid is proportional to 
the depth of the point below the surface, 

3, Find the pressure at a depth of 120 ft, below the surface of a 
lake (i,) in pounds weight per square foot, (ii,) in dynes per square 
centimetre ; the atmospheric pressure being neglected, 

4, Show that the surface of a heavy Hquid at rest in a vessel is 
horizontal, 

6, Find the whole thrust on a plane surface immersed in hquid. 

6. A cylindrical vessel, the radius of whose base is 4 ins., is placed 
with its base horizontal, and is filled -with water to a height of 14 ins. 
Find the whole pressures on the base and the curved surface. (Take 

7, The face of an embankment is a rectangle J mile long and 50 ft, 
-wide, and is inclined so that it is completely immersed in water whose 
depth is 30 ft. Find the total thrust on the embankment, 

8, A cube whose edge is 6 ins, is completely immersed in mercury 
(specific gra-vity = 13-6), so that its upper face is horizontal and at a 
depth of 9 ins, below the airrfaoe. Find the thrusts on the faces, 

9, Find the whole resultant thrust on the surface of a circle whose 
radius is 4 ins, immersed in water -with its centre at a depth of 14 ins, 

10, How would you show experimentally that the pressure on the 
base of a vessel is independent of the shape of the vessel ? 
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RESULTANT THRUSTS ON IMMERSED AND 
FLOATING SOLIDS, 

In the present chapter we shall consider more fully 
the principle of Archimedes which asserts that a body 
floating or immersed in liquid experiences an upward 
force equal to the weight of the liquid it displaces. 

This force, since it is due to the pressure of the liquid, 
is the resultant thrust on the body, and we shall now find its 
line of action as well as its magnitude, 

122. To find the magnitude and line of action 
of the resultant thrust of a liq,uid on any floating 
or immersed body. 

Let the submerged portion of the body occupy the space 
bounded by the surface S (Fig. 5, p. 40). 

The pressure at any point of S depends only on the 
density and depth of the liquid at that point; hence the 
thrust of the outside liquid on 5 does not depend on 
the nature of the substance filling S. 

Let the body be removed and let S be filled with liquid 
similar to that surrounding S. This liquid is called 
the liquid displaced by the body. The Hquid inside and 
outside <S is now in equilibrium, since it may be regarded 
as forming part of the same continuous mass of liquid. 

N o w the forces acting on the liqnid inside S are— 
(i.) Its weight, acting vertically downwards through 

its centre of gravity ; 
(ii.) The resultant thrust of the surrounding liquid. 
Hence the conditions of equilibrium show that— 
The resultant thrust of a hea-sy H^uid on any body 
(1) Is equal to the -weight of liquid displaced; 
(2) Acts vertically up-wards through the centre 

of gravity of this displaced liquid. 
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Dee.—The centre of gra-vity of the liquid displaced 
by any body is called the centre of buoyancy. 

123. Conditions of equilibrium of a floating body. 
— W h e n a body (e.gr., aboat) floats in equilibrium at the 
surface of a liquid, there are two forces on it, namely, its 
weight acting at its centre of gravity, and the resultant 
thrust of the surrounding liquid acting through the centre 
of buoyancy. If these keep the body in equilibrium, they 
must be equal and opposite and in the same straight line. 
Hence the conditions of equilibrium are—-
(1) The weight of the liquid displaced m,ust be equal to 

the weight of the solid; 
(2) The centres of gravity of the solid and of the liquid 

displaced must lie in the same vertical line. 
Obseevatiow.—If the flrst condition is satisfied but not the second, 

the two forces acting on the body -will constitute a cotiple, which wiU 
cause the body to roll over until it comes into a position of equiUbrium. 

124. Equilibrium of a Submerged Body. —-Ii W 
denote the weight of a submerged body, w the weight of 
liqnid it displaces, it readily follows from § 122 that 

Oasb I.—If W>w, the body will sink unless it is held 
up by a string whose tension = W — w (Fig 47, A ) . 

Fig. 47. 

Case II. — If TF = w, it will rest in any position 
(Fig. 47, B ) . 

Case III.—If W < w, it will rise till it floats, and will 
then displace less liquid than before (Fig. 47, 0), unless 
it is held down by. a string whose tension = w — I f 
(Fig. 47, D ) . 
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Examples.—(1) A cube of gold (speciflc gra-vity 19-35), whose edges 
are 5 cm. in length, is suspended in mercury -with 4 cm. of each of its 
sides submerged. To flnd the tension in the supporting string. 

Volume of cube = 6 x 5 x 5 c.c. = 125 c.c, 
.-. weight of cube = 125 x 19-35 gm. = 2418-75 gm. ; 

volume of mercury displaced = 5 x 5 x 4 c.c. = 100 c.c.; 
weight of mercury displaced = 100 x 13-6 = 1360 gm.; 

.-. required tension of string = 2418-75 — 1360 gm. = 1058f gm, 
(2) If the tension be reduced to 1 kUog,, to flnd how much the 
cube -will sink. 

Here the cube sinks until the weight of the additional liquid 
displaced equals the decrease of tension, or 68f gm,; 
, -, the additional volunie displaced = 58-75 -̂  13-6 o,c, = 4-32 cc. 
But the area of the base of the cube = 26 sq, cm,, 
-, increase in depth of immersion = 4-32 -i- 26 cm, = -1728 cm, 

= 1-728 m m , 
(3) To find the weight of a cylindrical cork (specific gravity -24) 
which requii-ea a weight of 13 gm, to sink half the length of its axis 
in water. 

Let the volume of the cylinder = iv cub, cm. 
Then the volume of the water displaced = v cub, cm, ; 

,-, weight of water displaced = v gm,, 
and weight of cylinder = 2vx -24 gm, = •4%v gm, ; 
therefore, from the equilibrium of the cylinder, 

•48D + 13 = V ; 
•, -624) = 13 or V = 25 cc, ; 

,-, -weight of cork = •48«) = 12 gm, 
*126, The conditions of eciuilibrium of a solid in liquid 
suspended by a string may be completely found as follows :— 
Let W be the weight of the sohd, 

G its centre of gravity, w the 
weight of the liquid displaced, H 
its centre of buoyancy, T the ten­
sion of the string, P its point of 
attachment. 
Then the only three forces acting 

on the body are— 
(i,) a do-wnward force W at G, 
(ii,) an upward force «« at W, and 
iii,) an upward force T at P. 

p 1 

^ i ^ 

i 

{ 

T 

f) 
a ^ / ^ — . 

^ ^ ^ 

Fig, 48, 
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Hence (1) The three forces lie in one plane, or the pointa P,. G, H 
and the string must lie in one vertical plane, 

(2) If H, G meet the direction of the stiing in F, taking moments 
about F, W x G F =,wxHF. 

(3) Lastly, resolving vertically, T = W - w, 
which determines the tension in the string, 

126, T o find the conditions of equilibrium of a 
solid body floating in a series of liquids of different 
densities that do not m i x . — L e t S be any solid floating 
partly immersed in several different liquids I, 2, 3, .,, 
bounded by the horizontal planes Aa, Bb, Oo. Then it is 
clear, as in the foregoing investigations, that the equi-

Fig, 49. 
librium will be unaffected by removing the solid 5 and 
supposing the space A B b a filled with the liquid 1, the space 
BOob filled with the liquid 2, the space ODe filled with 
the liquid 3, and so on. The liquids that would fill these 
spaces are the liquids displaced by the solid, and the 
resultant upward thrust of -the liquid on S is the resultant 
of the weights of the liquids displaced acting vertically 
through their respective centres of gravity. Hence, for 
equilibrium, the weight of the solid must be equal to the sum 
of the weights of the different liqziids displaced. 
The centre of buoyancy in this caae is the centre of gra-vity of the 

whole series of liquids displaced. This point and the centre of 
gravity of the solid must be in the same vertical hue. 
The most interesting cases of equiUbrium, however, are those in 

which the solid is symmetrical about a vertical axis—such as a prism, 
cylinder, or right cone having its axis vertical, a cube -with one edge 
or one diagonal vertical, a sphere, &c. In such cases, the centres of 
gravity of the different liquids displaced and that of the solid all he 
in the same vertical line, namely, the axis of symmetry, and the 
second condition of equilibrium is necessarily satisfied, 
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Examples.—(1) Water being- poured on the top of mercury (specific 
gra-vity 13-6), to find the speciflc gravity of a body which floats 
with one-thii-d of its volume above water, one-third immersed in the 
water, and the remaining third immersed iu the mercury. 
Here the volumes of the water and mercury displaced are equal, 
and their densities are as 1 ." 13.6. 

Let weight of water displaced = w\ 
Then w-eight of mercury displaced = l'6-6w. 

But the solid is floating in equilibrium ; 
the weight of the solid 

= weight of mercui-y displaced + weight of water displaced 
= 13-6W + W = 14-6w. 

Again, one-third of the volume of the solid is immersed in water -, 
.-. volume of solid = 3 volumes of water displaced ; 

weight of an equal volunie of water = 3w ; 
.-. required specific gravity of solid 

weight of soUd 14-6i,o 14-i weight of equal volume of water 3w 3 • = 4-! 

(2) A cone whose specific gravity is 2-575 rests partly immersed in 
water and partly in mercury. To find what fraction (i.) of its 
volume, (ii.) of its axis, is immersed in mercury, taking the axis 
vertical and vertex downwards. 
(i.) Let V be the volume of the oone, x that of the portion 
submerged in mercxuy. 

Then the weights of the cone, the mercury displaced, and the 
water displaced, are proportional to 2-575 f̂ , \i-&x, V — x . 
For equilibrium, the former equals the sum of the two latter 

weights; .-. 2-576F= I3-6a;+F-a;; 
-. 12-6» = l-575r or « = -1257''= i-T. 

Therefore ̂  of the volume is immersed in mercm-y. 
(ii.) This portion is a cone -with the same vertical angle aa the 
original cone. N o w it is kno-wn that the volumes of two such cones 
are proportional to the cubes of their heights. 
Therefore ̂ i or j of the axis is immersed in mercui-y. 

127, Effect of Immersed Solids on Pressure. — If 
solids be lowered into a vessel containing liquid, the level 
of the liquid will rise owing to the displacement produced 
by the solids, and therefore there will be an increase of 
pressure all over the surface of the vessel, 

HYDEO, K 
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Fig, 60, 

Since the pressure at any point of a heavy liquid 
depends only on the depth and density, it follows that 
the pressure on the sides and bottom of the vessel is tho 
same as if the solids were replaced b y liquid equal m 
a m o u n t to that which they displace. 
Illustrative Examples.—(1) Consider a bucket contain­
ing water and suspended by a rope. Now, let anybody 
—say a brickbat—^be lowered into the bucket by means 
of a second rope. The water -ndU rise in the bucket; 
tilers will, therefore, be an increase in the pressure all 
over the bucket, and the tension in the first rope "will 
be greater than before, since it has to support a greater 
resultant thrust. 

In this caae, the tenaion in the rope supporting the 
bucket 

= weight of bucket + weight of water actually contained in it 
+ weight of water displaced by brickbat. 

Also, we know that 
tension in rope supporting brickbat 

= weight of brickbat—weight of water displaced by brickbat ; 
sum of tensions in the two ropes 
= weight of bucket + actual weight of water + weight of brickbat; 

as e-vidently should be the case, for the two ropes together have to 
support the bucket, the water, and the brickbat, 
(2) If, instead, we place in the bucket a body lighter 
than water—say a block of wood—and allow it to float, 
it will displace a quantity of water of weight equal to 
its o-wn weight. As before, we have 
tension in supporting rope 

= weight of bucket + weight of water actually _, 
contained in it ^̂- • 

+ weight of water displaced by wood 
= weight of bucket + weight of contained water 

+ weight of wood ; 
as evidently should be the case, since the rope has to support the 
'bucket, the water, and the wood. 
*(3) Next consider a barge filled with coal, mo-ving slowly along a 
canal crossing a bridge. The pressure of the water, and therefore the 
"weight supported by the bridge, -mil be unaltered by its presence, 
'Suppose now that some of the coal ia thro-wn auddenly "from the barge 
-on to the to-wing-path ; the barge, being lightened, -wiU rise up out 
of the water ; and, the displacement being reduced, the water -wUl 
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-fall in its immediate neighbourhood. The resultant thrust produced 
by the press-urea on the sides of the canal -will, therefore, be instant-
-aneously reduced by an amountequal to the weig-ht of the coal, so that 
the whole weight supported by the bridge is the same aa before. But 
-the lowering of the water level soon cauaes more water to flow into 
the canal from the ends of the bridge, and this g-oes on until the water 
lias reached the same level as before. The bridge, then, has to sup-
jjort the same thrusts due to the water pressui-e as at the beginning, 
and has to support the weight of the coal in addition. 

Thus the whole weight supported by the bridge increases slowly. 
S-nMMAEV. 
1. The resultant thrust of a liqiiid on any body 
(1) Is equal to the weight of liquid displaced ; 
•(2) Acta vertically upwards through the CO. of this liquid. 
2. The conditions of equilibrium of a floating body are 
<(1) Weight of liquid displaced = weight of body ; 
(2) o.G.of body and o.&. of liquid in same vertical line. 

3. A body tends to sinh, float, or rise according as 
weight of body [W) ^ , =, or < weight of liquid displaced [iv). 

4. If the body is attached to a string, the tenaion = W—w upwards 
in first case and w — W dowmcards in third. 
5. If a body floats partly immersed in each of several Uquids, 

weight of body = sum of weighta of liquids displaced. 
(The other condition ia rarely used.) 

6, The increase of pressure on the containing vessel due to an immersed 
solid is the same as if the solid were replaced by the liquid it 
displacea, 

EXAMPLES XIII, 

1, State the conditions necessary for the equilibrium of a floating 
"body, and discuss the effect of mo-ving a hea-vy weight across the deck 
of a ship, 

2, A body whose speciflc gra-vity ia less than that of water is 
iaatened to a string and dra-wn completely below the surface of the 
-water in a vessel, the string being fastened to the bottom of the 
-vessel. Find the tension of the string. Is there any alteration in 
-the fluid pressure upon the base of the vessel ? 
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3, A body whose apecifto gravity is greater than that of water 1,5 
fastened to a string and lowered into a vessel containing water. If 
it be completely immersed, flnd the tension of the string. W h a t 
effect has this on the pressm-e of the water upon the base of the 
vessel ? 

4. A piece of lead and a piece of sulphur are suspended by fine 
sti-ings from the extremities of a balance beam, and just balance each 
other in water. Compare their volumes, theii- densities being respec­
tively 11-4 and 2 gm. per cubic centimetre. Which of them will 
appear to be the lighter in air,, and what weight must be added to it 
to restore equilibrium ? 

6. A piece of lead weighing 17 gms. and a piece of sulphm- have 
equal apparent weights when suspended from the xians of a balance 
and immersed in water. W h e n the water ia replaced by alcohol of 
density 0 9, 1-4 gma. must be added to the pan from which the lead 
is suspended to restore eqxulibrium. Determine the weight of the 
sulphui-, the density of lead being 11-333, 

6, A block of wood (specific gravity -75), whose volume ie 260 cc, 
is totally immersed in a liquid of specific gra-fity 1-26 by means of a 
string attached to the bottom of the vessel containing the liquid. 
Find the tension of the string. 

7. A block of wood, whose weight is 63' lbs. and whose specific 
gravity is -6, is in a pond. If a ball of lead, whose specific gra-vity 
is 11-6, be attached to the block by a string, find the least weight 
which the ball can have so as to keep the block quite under water. 

8. T w o solids, whose weights are 4 and 6J lbs., the volume of the 
former being double that of the latter, are connected by a weightless 
string passing over a .smooth pulley, and rest in equilibrium totally 
immersed in fluids of specific g-ravity 1-3 and 3-24 respectively. Find 
the volumes of the sohds. 

9. T w o pieces of iron (specific gi-avity 7-7), suspended from the-
two scale-pans of a balance, the one in water and the other in alcohol 
of specific gra-vity 0-86, afe found to weigh exactly alike. Find the 
proportion between their true weig-hts. 

] 0. The edge of a hollow cube of lead (sjDeciflc gra-vity = 11-35) is 
7 om. ; the thickness of the metal forming the cube is 1 cm. F.tnd 
the apparent weight of the cube in water. 
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11, A cube of wood floating in water supports a weig-ht of 480 oz. 
O n the weight being removed, it rises 1 in. Find the size of the 
•cube, 

12, A cubical block of wood, specific gravity -6, whose edge is 
1 ft,, floats, with two faces horizontal, do-wn a fresh-water river and 
out to sea, where a fall of snow takes place, causing the block to sink 
to the same depth as in the river. If the specific gravity of sea-water 
1)0 1-025, show that the weight of snow on the block is 15 oz, 

13, A square .piece of wood of uniform thiolmeaa floata in water 
with two of its sides vertical and -with seven-eighths of ita surface area 
immersed. Find how deep it would aink when floating in a similar 
poaition in a fluid whose specific gravity is 1-26. Show that, if it 
float -with one of its diagonals vertical in a mixture composed of equal 
volumes of the fluid and water, then one-third of that diagonal will 
be above the surface. 

14. A wooden cone (speciflc gra-vity -84), whose volume is 36 cub, 
Ins., floats vertex do-wnwarda in a liquid, -with its base horizontal and 
two-thii-da of its axis immeraed. W h a t weight must be placed on 
the baae in order that three-fourths of the axis may be immersed 'i 

15. A right cone, whoae weight is W , floats in a liquid, vertex 
do-wnwards, -with one-third of ita axis immersed. W h a t additional 
weight must be placed on the baae of the cone so as just to sink it 
entirely in the liquid ? 

16. Show that, if the apparent weight of a body, suspended in 
.a mix-ture by volume of two fluids which mix "without contracting, 
be equal to the aritlimetio mean between its apparent weights when 
suspended in the two fluids separately, the mixture contains equal 
volumes of the two fluids, 

17, A piece of wood floats partly immersed in water, and oil is 
jpoured on the water until the wood is completely covered. Explain 
clearly whether this -will make any change (if so, whether there -will 
be an increase or decrease) in the portion of the wood below the 
aui-face of the water, 

18, A mass composed partly of solid copper, apeciflc gTa-vity 8-8, 
and partly of sohd lead, specific gi-a-vity 11-4, floats -with two-thirds 
ai. its bulk immeraed in mercury, specific gravity 13-6, and the 
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remaining one-third in water. Compare the volumes and weights of 
the copper and lead in the mass. 

19. A lump of metal of specific gi-a-vity 4-05 fioats partly in oil of 
specific gravity -9 and partly in mercm-y of specific gra-vity 13-5. 
W h a t portion of its volume is in each ? 

20. A block of oak, whose specific gravity is 1-2 and weight 6 Iba.^ 
18 supported by a string, which cannot bear a strain of more than 
1 -6 lbs., in a large barrel partly filled -with water, in which the block 
is wholly immersed. Fluid whoae specific gra-vity ie -7 is now pom-ed 
into the barrel ao as to mix -with the water, until it is fllled. Show 
that the string will break if the barrel was originally less than two-
thirda filled up -with water. 

21. A uniform rod 10 ins. long fioats vertically with -9 of its 
length immersed in a cylindrical veaael containing water. If alcohol,. 
specific gravity -8, be now poured on the water to the depth of 6 ins., 
show that the upper surfaces of the rod and alcohol wiU coincide. 

22. A piece of wood of specific gra-vity -8 fioata partly in water and. 
partly in a liquid lighter than water, and the part immersed in water 
is two-sevenths of the whole. W h a t is the specific gravity of the-
other liquid ? 

23. A cube of bronze, whose edge is 10 cm. and specific gravity-
8-6, floats in mercury, of speciflc gravity 13-6, with two faces 
horizontal. W h a t length of the edge of the cube ia immersed in tlie 
mercui-y ? 

24. If, in the last question, oil of specific gravity -86 is now poured 
on the mercury until the cube is totally immersed in liquid, how far 
will the cube rise out of the mercury ? 

25. Water floats upon impure mercury whose speciflc gravity is 13,. 
and a mass of platinum whose speciflc gravity is 21 is held suspended 
by a string ao that if of ita volume is immersed in the mercury and 
the, remainder of ita volume in the water. Compare the tension of 
the string "with the weight of the platinum. 

26. A cylinder of wood floats in water with its axis vertical and 
ha-ving three-fom-ths of its length immersed. Oil whose weight is 
half that of water is then pom-ed into the vessel to a, sufiicient depth 
to cover the wood. H o w much of the cylinder will now be unmersed 
in water P 
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27, Water is poui-ed -without mixing upon glyceiine whose speciflc 
gravity is 1-26, and a mass of cork whose speciflc gi-avity is 0-24 is 
held down by a string so that half its volume ie immeraed in the 
mercury and half in the water. Compare the tension of the etring 
-with the weight of the cork, 

28, A body of uniform density floats in mercm-y whose speciflc 
gra-vity is 13-6 -with one-eighth of its volume immersed. If watei be 
poured upon the mercury so that the body is completely immersed,, 
show that one-eighteenth part of the volume wUl be immersed in the: 
mercury. 

29. A piece of metal floats partly in oil of specifio gravity -9 and' 
partly in mercury of speciflc gra-vity 13-6, and the volumes of the, 
portions in oil and mercury are in the ratio of 3 to 4. Find ita. 
speciflc gTa-vity, 

30, A piece of wood of speciflc gravity -84 floats partly in ether of 
specific gTa-vity -72 and partly in water. W h a t portion of its volume 
is in each ? 

31, A vessel containing water is placed in one scale of a balance 
and counter-balanced by weights, A person dips his hand in mthout 
touching the sides of the vessel, W i U the equUibiitim be disturbed ?• 
Grive your reasons, 

32, A cube, each edge of which is 4 ins, long, weighs 16,244 grs, 
in air and 95 grs, in water. Find the weight of a cubic inch of 
water, having given that the specific gra-vity of water = 770 times 
the specific gi-a-vity of air, 

33. Find the volume of a block of chalk (sjieciflc gra-vitj' 1 -9) whieh 
weighs the same as a block of iron whose volume is 125 cub. cm. and 
specific gravity 7-6. W h a t will be the volume of the chalk if the 
-weight of the air displaced be taken into account ? (Speciflc gi-avity 
of air = -0013.) 

34. A bucket haH-full of water is suspended by a string which passes, 
over a pulley small enough to let the other end fall into the bucket. 
To this end is tied a ball whose speciflc gi-a-vitĵ  s is greater than 2. 
Show that, if the ball do not touch the bottom of the bucket, and if 
no water overflow, equilibrium is possible if the weight of the ball lie 
between W and (sW)j{s — 2), where 7F is the weight of the bucket and 
-water. 
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EXAMINATION PAPER VI. 

1. Find the resultant vertical thrust on any area immersed in a 
hea-vy liquid. 

2 A rectangular area, whose sides are 1 ft. and 2 ft., is immersed 
in water -with its shorter side in the surface and its plane inclined at 
an angle of 30° to the horizon. Find the reaultant vertical thrust on 
the area, 

3, A aolid hemisphere whose radius is 7 em, is immersed in liquid 
of speciflc gravity 1-5, -with its curved surface uppermost and its 
plane surface horizontal at a depth of 20 om. Find the resultant 
vertical thrusts on both the plane and the curved surfaces, 

4, A cylindrical vessel, the radius of whose base is 3J cm. and 
whose height ia 16 cm., is filled -with water and mercury (specific 
gra-vity = 13-6), the mercury occupying a depth of 4 cm. at the bottom 
of the vessel. Find the preaaure per square centimetre on the base of 
the vessel, and the total thrust on the base. 

5. In the preceding question, calculate the whole preaaure and the 
average pressure of the contained liquid on the curved surface of the 
vessel, 

6, Show that the resultant vertical thruat on a body wholly or 
partially immersed in a fluid is equal to the weight of the fluid 
diaplaced, 

7, A body floats in -water -with haK of its volume immersed. What 
pi-oportion of its volume -wiU be immersed when it is placed in 
sulphuric acid of density 1-8 ? 

8, A certain body just floats in fresh water. On placing it in sea 
water of speciflc gra-vity 1-028, it requires the addition of 5-6 gm, to 
just immerse it. Find its volume, 

9. A body floats -with half of its volume immersed in water, and 
when placed in oil -̂  of its volume is immersed. Wliat ie the specific 
gravity of the oil ? 

10. A piece of cork (speciflc gravity = -24), whose volume is 
200 cub. cm., is kept totally immersed in water by means of a, string 
attached to it and to the bottom of the vessel. Find the tension of 
the string. 
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PAET III. 

C H A P T E R X I V . 

ATMOSPHEREC AIR.—BAROMETERS. 

128. Pneumatics is that portion of Hydrostatics which 
treats of gases. 

Gases are distinguished from liquids by 
(i.) Their compressibility, in -virtue of which they can 

be compressed into any volume, however small (until they 
liquefy), by the application of sufficiently great joressure. 
Gases can be compressed by the condensing-pump (which will be 

described in Chap. XVIII.), 

(ii,) Their elasticity,.in -virtue of which they expand 
w h e n the pressure is reduced, so as always to fill the 
whole volume, however large, of the containing vessel, 
and exert pressure on its sides, 
G-ases can be rarefied by the air-pump (Chap, XVIII,), until a nearly 

perfect vacuum or empty space ie formed in any given vessel. 
The press-ure of a gas on the sides of its containing vessel ia some-

timea called its elastic force, but the terra pressure is better. 
Gases, being material substances, have weight, although 

their density is generally very small comj)ared with that 
of most solids and liquids. 
Thus, a cubic inch of water when boiled at ordinai-y pressiu-e yields 

about a cubic foot of steam. But matter is indestructible ; hence the 
mass of the stea-m is equal to that of the water, and its density ie 
therefore only about -xyVs °̂  *̂ ^ density of water. 
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129. Aristotle's Experiments. — Ai-istotle (b.o. 384-322), 
-wishing to teat whether air had weight, experimented^ by weighing 
a bladder when empty, and again when inflated with air. H e found 
that the weight was the same in both oases, and hence he was led to 
infer that air was -without weight. This conclusion was universally 
accepted up to the seventeenth century, when it was diaproved by 
the folio-wing experiment:— 
130. To find the density of atmo­
spheric a i r . — A large glass fiask fur­
nished with a tap or stopcock is taken; 
the air in it is completely" exhausted 
by means of an air-pump, and the tap 
is closed. The fiask is then weighed 
with a bala.iice (Fig. .52). O n opening 
the tap, air rushes into the flask and 
depresses the scale-pan carrying it; 
hence the flask is heavier than before. 
T h e difference of weight is found by 
again weighing, and is e-vidently equal 
to the weight of air which entered the 
flask; and, if the volume of the flask 
be determined, the density and specific 
gra-vity of the air m a y be found. 

[Another method will be given in Chap, XV.] Fig. 52. 
Example.—A flask weighs 273-4 gm. when empty, 276-5001 gm. 

when filled -with air, and 2805-1 gm. when filled -with water. To 
flnd the weight of a litre of air. 

Weig-ht of air in flask = 276-5- 273-4= 3-1 gm. ; 
weight of equal volume of water = 2805-1— 273-4 = 2531-7 gm. ; 

speciflc gravity of air = 3-1 -=-2631 -7 = -001224. 
But a litre of water weighs 1000 gm. ; 

. . weight of a litre of air = 1-224 gm. 
The density of air is generally takeii as about 1-3 oz, 

per cubic foot, so that the specific gravity, with water as 
•the standard, is -0013, and a litre of air weighs 1-3 g m . 

But, as air is so readily compressible, its density depends on the 
pressure and temperature. 
The speciflc gra-vitiea of other gases may be found in the same way. 

These are generally referred either to atmospheric air or to hydrogen 
gas as the standard substance instead of water. Hydrogen is the 
lightest gas known, its density being only about Ĵ- of that of air ; 
hence it is convenient to take hydrogen as the standard. 
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131, Effect of Buoyancy of Displaced Air.—Since 
the flask is weighed in air, its apparent weight in each 
case is less than its true weight by the weight of air 
which the flask displaces. But this is the same at both 
observations; hence it does not affect the difference of the 
observed weights, which therefore still equals the weight 
of air inside the flask at the second observation. 

Hence no allowance need be made for the buoyancy of 
the displaced air. 
In Aristotle's ecperimciit, on the other hand, the bladder expanded 

as it was fllled, so that the more air he blew in the more air he dis­
placed, and the buoyancy of this dieplaced air exactly balanced the 
increaee of weight inaide the bladder. 
The buoyancy of the air displaced by a body is usefully 
applied in the balloon. 

132. T h e Balloon is a large globular envelope of oiled 
silk or other air-proof material filled with hydrogen, coal 
gas, or some other gas lighter than air. Attached to it is 
a light car to hold the aeronauts. 

The forces acting on the balloon are 
(i.) The weight of the balloon and its contained gas 

acting do-9vnwards. 

(ii.) The resultant thrust of the surrounding air which 
acts upwards and is equal to the weight of air displaced. 

'So^Y the gas inside the balloon weighs less than the air 
it displaces. Hence, if their difference is greater than 
the weight of the envelope and car, the balloon will 
ascend. B y letting part of the gas escape throug-h a 
valve, the volumes of the balloon and displaced air will 
decrease, until the balloon begins to descend. 

Example.—A cubic foot of ah- weigha 1"29 oz., while a cubic foot 
of hydrogen only weighs -09 oz. To flnd the volume of a hydrogen 
balloon which -will just lift 250 lbs. 
Since each cubic foot of hydrogen weighs -09 oz. and displaces 

1-29 oz. of ah-, 
,-, 1 cub, ft, -wiUHft 1-29--09 oz., or 1-2 oz.-; 
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,-, number of cubic feet required to hft 260 lbs, 
= 250x_16 ̂  4000 ̂  10,000 ̂  ggggi . 

1-2 1-2 3 " ''" 
i.e., required volume of the balloon = 3333J cub. ft. 

133, Pressure of the Atmosphere.—Since air has 
weight, the reasoning of Chap. X. shows that the 
atmosphere must exert a pressure on all surfaces with 
which it is in contact, and that with the usual density of 
air this pressure must increase by about I'S oz. per sq. ft, 
for every foot increase of depth. 

The effects of atmospheric pressure m a y be illustrated 
by several simple experiments. 

Thus, if w e take a glass tumbler filled i. -̂-.i 
to the brim with water and lay a sheet of li | 
cardboard over the top, pressing it well j|_^_J| 
down, it will be found that the glass m a y A ' 
be inverted without the water falling out. I. 
The card is in fact held up by the thrust of Fig. 63. 
the atmosphere upwards on its under side. 
This upward thrust has to support the weight of the card and the 

thrust of the water on the upper side, besides pressing the card tightly 
against the rim of the glass. 
Hence the pressure of the air (per square inch), acting upwards on 

the card, must exceed the pressure of the water do-wnwards; other-wise 
the card would fall do-wn. The atmospheric preaaure ie therefore 
greater than the pressure due to a column of water of the same 
height as the glass. IM. T h e M a g d e b u r g Hemispheres, invented by 
Otto Guericke, of Magdeburg (1602-1686), are two hollow 
hemispheres whose edges fit truly when in contact. W h e n 
the air is withdra-wn by means of an air-pump from the 
spherical ca-vity thus formed, it will be found that the 
hemispheres cannot be pulled asunder except by applica­
tion of considerable force. This force is required to 
overcome the resultant thrusts produced by the pressure 
of the atmosphere on the outer surfaces of the hemi­
spheres. 
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1 3 5 . Torricelli's E x p e r i m e n t . — T h e Barometer.— 
The first actual measurement of the pressure of the 
atmosphere is due to Torricelli (1643), and 
his experiment resulted in the invention of 
the mercurial barometer. & 

To perform the experiment or to construct 
a barometer in its simplest form, a glass 
tube about 33 ins. long and closed at one 
end is completely filled with mercury. The 
open end is then closed with the fing-er, the 
tube inverted into a cup of mercury, and the 
finger then removed, care being taken not to 
allo-sv any air to get into the tube. The 
mercury will at once sink and leave a clear 
space at the top of the tube, and the height 
of the column of mercury above the surface 
in the cup -will be found to be about 3 0 inches 
or 7 6 0 millimetres. 

Fig. 84. 

If the tube be furnished with a scale for reading off 
the height of the mercury, the apparatus constitutes a 
mercurial barometer. 

The space above the mercury is practically a vacuum, 
and is called the Torricellian vacuum.* Hence there 
is no pressure at the top of the tube. 

The atmospheric pressui'e at the surface of the mercury 
in the cup must therefore be equal to that due to the 
weight of the column of mercury in the tube. The height 
of this column is called the height of the barometer, 
or the barometer reading. Hence 

T h e height of the barometer measures the pres­
sure of the atmosphere. 

Note.—If we perform TorriceUi's experiment with a tube shorter 
than the column of mercury which the atmospheric pressm-e is capable 
of supporting, no vacuum -will be formed. 

* Strictly, it contains a very minute quantity ot the vapour of mercury ; see 
Ste-ivart's Text-Book of Heat, § 66. 



142 PNEUMATICS. 

Examples.—(1) If the height of the meroiu-y be 29^ ins., to frud 
the atmospheric pressure in pounds per square inch, taking specific 
gra-vity of mercury = 13-6. 
Weight of 1 cub. ft. of mercury = 13-6 x weight of 1 cub. ft. of water 

= 13,600 oz. ; 
. . pressureduetolft.of mercui-y = 13,600 oz. per aq. ft. ; 

,, ,, 294ins. ,, = 13,600x29-5/12 oz. per sq, ft, ; 
13,600x29-6,, 

= — lbs, per sq, in,: 
12x16x144 ^ ^ ' 

,', preeeure of atmosphere = 14-51 lbs, per square inch, 
(2) If the height of the mercm-y be 750 mm,, to flnd the preaaure 

(i,) in statical, (ii,) in C,G,S, absolute, units, 
(i.) The pressure due to 1 cm, of mercury = 13-6 gm, per sq, cm,; 

„ 75 „ „ = 1020 „ 
i.e., required atmospheric pressm-e = 1020 CG.S. statical units, 

(ii,) Taking the acceleration due to gravity aa 981 cm, per second 
per second, a grammei,weighe 981 dynee ; 
-, pressure of the atmosphere = 1020 x 981 dynes per square centimetre 

= l,000,620dynesper square centimetre, 
i.e., 1,000,620 C,G,S, absolute-asits. 
136, Water and G-lycerine Barometers. — Instead 
of performing Torricelli's experiment with mercury, w e 
might use a column of water or any other liquid to 
measure the pressure of the atmosphere, provided that 
w e took a sufficiently long tube for the purpose. 

Examples.—(1) W h e n the mercury stands at 30 ins,, to flnd the 
height of the water barometer. 

The density of mercury is 13-6 times that of water, 
,-, pressrure due to 1 ft, of mercm-y = pressure due to 13-6 ft, of water ; 

)) !! ^a )) )i = )) )) ItJ'O X 22 ,, ,, 
. , height of water barometer = 13-6 x 2J ft, = 34 ft, 
UnlesB, therefore, the tube exceeded 34 ft, in height, no vacuum 

would be formed and the instrument would be useless, 
(2) W h e n the water barometer ie at a height 34 ft,, to find the 

ieight of a glycerine barometer, the specific gra-vity of glycerine 
being 1-26, 

The pressure due to 1 "26 f t, of water = pressm-e due to 1 ft, of glycerine; 
34 „ ,. = „ „ 34^1-26,, „ 

height of glycerine barometer = 34-r 1-26 = 27 ft., nearly. 
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(3) To show that the heights to which Uquids rise iu the barometer 
tube are inversely proportional to their densities. 
Let W, w be the speciflc weights of any two fluids, H, h the 

heights of the columns of the fluids which the atmaspheric pressure 
is capable of supporting. Then we have 

preesui-e of atmosphere = W S — wh ; 
h 'W' 
Q̂ . height of first hquid _ density of second liquid 

height of second liquid density of first hquid 

137. The -water barometer is much more sensitive to 
small changes of atmospheric pressure than a mercurial 
barometer. 
For the column of water is always 13-6 times as high as the column 

of mercm-y. Thus the change of presam-e which would cause the 
mercury to rise -1 would cause the water to rise 13-6 times as much, 
or 1-36 ins. 

The great objection to a water barometer is the difficulty 
of retaining a good vacuum at the top of the tube. Not 
only does water evaporate freely into the vacant space, 
but air gets absorbed at the surface of the cup, and is given 
off again at the surface of the column. 

These objections are to a great extent ob-viated by the 
use of glycerine. Its specific gravity being 1-26, the 
glycerine barometer is more than ten times as sensitive 
as a mercurial barometer, and a much better vacuum is 
obtained than with water. 
138. The height of the barometer is independent 
of the shape and size of the tube. 

For, if h be the height of the barometer, i.e., the 
vertical height of the surface of the mercury in the tube 
above its surface in the cup, and w the speciflc weight of 
mercury, then the atmospheric pressure P is given by the 
formula of § 95, P = wh ; 
and it is shown in § 98 that this formula is independent 
of the shape and area of the tube; hence the height h 
depends only on the atmospheric pressure and the specifio 
weight of the mercury. 
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_ 139. The effect of inclining the tube wUl be that the mercury will 
rise to the same vertical height as before, and wiH therefore occupy a 
greater length of tube. 
[An inclined tube barometer has been constructed on this principle ; 

the upper part of the tube is inclined at a smaU angle to the horizon, 
and a small rise or fall in the vertical height therefore causes the 
mercury to move throug-h a considerable length of tube. ] 

140. To test if the barometer is true or faulty.—It often happens that 
in an old barometer a little ah- has leaked into the space above the 
mercury, which is therefore no longer a true vacuum. This air may 
be detected by inchning the tube till the height of its upper end 
above the cup is less than the height of the barometer. If the baro­
meter is perfect, the mercm-y -wiU then fill the whole tube ; if not, a 
bubble of ah- will remain. 

Fig. 55, Fig, 56. 

1 4 1 . T h e Siphon Barometer consists of a U-tube 
which has branches of unequal length. The shorter 
branch is open to the atmosphere and corresponds to the 
cup of Torricelli's instrument, while the longer one is 
closed, and a vacuum is formed above the mercury at its 
upper end. W h e n the mercury rises in one arm it falls 
in the other, and the height of the barometer is the 
difference of level of the mercury in the two branches. 
It is often read off on a graduated dial by means of the 
arrangement shown in Fig. 66. 
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_ Examples.^1) If the sectional areas of the longer and shorter 
limbs are 1 sq,_cm, and IJ sq, cm,, and the height of the barometer 
in centimetres is read ofB on a scale attached to the upper limb, to 
find the distance between the graduations. 
Let the mercury in the shorter or larger hmb fall 1 om. 

Then IJ oub, cm, of mercury -will flow into the longer limb ; 
,•, the mercury in the longer limb -will rise 1^ cm,; 

, , the difierenoe of level "will increase 2J cm., 
i.e., barometer rises f cm, when mercury in upper limb riaee f cm, ; 
,-, barometer rises 1 om, when mercury in upper limb rises ̂ om. 
Therefore the graduations must be | cm, or 6 m m , apart to indicate 

centimetres of barometric height. 
Similarly, if for a scale attached to the lower hmb, the graduations 

must be 4 m m , apart, and must read downtoards. 
(2) If the sectional area of the tiibe of an ordinary barometer is 
J sq, in., and it dips into a cistern of mercury whose superflcial area 
is 5 sq.ins,, to graduate the tube in inches of barometric height. 

The area of the cistern outside the tube 
= 6—i sq, in, = -y sq, in, 
= 19 times sectional area of tube. 

If, therefore, the mercury rises 1 in, in the tube, it -wiU fall J^ in, 
outside, and the change in barometer reading -will be f§ in. 
Therefore 1 in. of barometer reading is measured on the scale by a 

length of ij in, 
142, The Aneroid Barometer ie a hollow metal box exhausted 
of air. The atmospheric pressure tends to force in the top of the 
box, but is reaisted by the elasticity of the metal, which acts like a 
spring. W h e n the pressure increases or decreases, the lid einka or 
risee slightly, and moves a pointer which indicates the preaaure on a 
dial. This dial is graduated in "inches" or " miUimetres," corre­
sponding to the readings of a mercurial barometer. The aneroid is 
chiefly used on account of its portability. 
143. The use of the barometer is to indicate the 
pressure of the atmosphere. If the barometer rises, 
it indicates an increase in the atmospheric pressure, while 
a falling barometer indicates a decrease of pressure. 

T h e reason w h y the barometer can be used to predict 
the weather is because experience has shown that certain 
changes of weather are generally accompanied by certain 
changes of atmospheric pressure. 

gvDEO. I, 
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Thus, when we say that "the barometer usuaUy faUs for rarn, 
we mean that rainy weather is usually preceded by a decrease m m e 
pressure of the atmosphere. Similarly, an improvement m the weatMir 
uauaUy occurs ehuultaneously with an increase ot pressure, ine 
same changes are not indicated in the same manner m aU parts ot 
the globe. But in no case can changes of weather affect the baro-
metS- otherwise than by causing changes m the preaaure of the 
atmosphere. , ,, i • j! j i 
For further information on this subject, the reader is referred to 

treatises on meteorology. 
144. Precautions and Corrections.—Barometers for 
scientific use are provided with a scale to read the lower 
level of the mercury in the cup or short branch, in addition 
to the scale on the tube. Both scales are read, the differ­
ence gi-ving the actual height of the mercury. T o this 
the folio-wing corrections are applied (vide §§ 1 4 5 - 1 4 7 ) : — 

(i,) Correction for capillarity. 
(ii,) Correction for temperature, 

(iii,) Correction for variations in intensity of gravity, 
(iv,) Reduction to sea level, 
145, " Tapping the barometer."—^When the mercmy is rising 
or falling, a sudden jar or blow -vdll often cause the reading to change 
coneiderably. This ie due to the adhesion of the surface of the 
mercury to the sides of the barometer tube, which causes it to adapt 
itself with reluctance to changes of level, A smart blow loosens the 
mercury, which then at once moves to the level neceeeary to balance 
• the a-tmospheric pressure. 

This adhesion at the e-urface of liquids is called capillarity. Even 
when tapping has no further effect, the mercury sm-face -will still 
asaume a somewhat concave form, and there is therefore a further 
correction for capillarity. This correction depends on the area of the 
section of the tube at the surface of the mercury, being greater for 
small than large tubes ; hence the height of the mercury is not quite 
independent of the bore of the tube at its upper end. The shape of 
the tube below the sm-face does not, however, affect the reading, 
*146, Corrections for Temperature and Intensity of G-ravity. 

From !j!j 92, 109, the absolute pressure due to a given column or 
head of mercury is proportional to the density of the mercury, which 
is affected by changes of temperature, and from J 107 this pressure is 
also proportional to "g," which varies slightly in different places. 
Hence, in order that the same barometer reading may always repre­
sent the same atmoapherio pressm-e, it is necessary to apply corrections 
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for temperature and intensity of gravity. The reading, when thus 
corrected, representa the height of the mercury column that the 
atmospheric pressui-e would support at a standard temperature (usually 
the freezing-point of water, O^C, or 32°F,) at a standard place (usually 
taken at the sea level in latitude 45°), The press-ure of the atmosphere 
is then said to be reduced to "standard inches (or millimetres) of 
pressure,'' 
*147, Seduction to sea level.—We shall see in the next chapter that 
the pressure of the atmosphere depends on the altitude. In comparing 
the readings of the barometer for purely meteorological purposes, it is 
therefore necessary that the observatione should all be made at the 
same altitude, and for this purpoee the sea level is generally chosen. 
As this is impracticable at inland stations, the observations are 
corrected for altitude by being reduced to the sea level. They therefore 
represent what wozUd be the corresponding reading of a barometer 
placed at the sea level under similar meteorological conditions. 
1-48. The average height of the mercurial barometer 
is generally taken as 3 0 ins. or 7 6 0 m m . This corre­
sponds to 3 4 ft. height of the water barometer, or an 
atmospheric pressure of about 1 5 lbs. per sq.. in. This 
pressure is called one atmosphere (§ 70). 

[N.B. It is useful to remember tiese numbers.] 
149. Effect of Atmospheric Pressure on Liquids.— 
If the surface of a hea-vjr liquid is exposed to atmospheric 
pressure, the pressure at any point "will be the same as if 
the surface of the liquid were raised b y an amount equal 
to the height of the barometer of that liquid and the 
pressure at the n e w surface were zero. 

This theorem is ob-vious from the following examples :— 
Examples.—(1) To find the preaaure in water at a depth of 110 ft., 
the height of the water barometer being 34 ft. 

Atmoapherio preaaure at aurface = presem-e due to 34 ft. of water 
= 34,000 oz. per sq. ft. 

Increase of pressure in 110 ft. = 110,000 oz. per sq. ft. ; 
. . total pressure required = 110,000 + 34,000 oz. per sq. ft. 

= 144,000 oz. per eq. ft. 
= 1,000 oz. or 62^ Ibe. per eq. in. 

W e thus see that the pressure is that due to a column of water of 
height 110 + 34 ft., and is therefore the same as if the depth of the 
water were increased by 34 ft., the height of the water barometer. 
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(2) To flnd the pressure at depth /» in a heavy liquid exposed to 
atmospheric pressure, the height of a barometer of that hquid 
being H . 

Let w be the speciflc weight of the liquid, p the atmospheric 
pressure. Then (by § 95) 

pressure at depth h = p-^ wh. 
But (by 5 138) p = wH-, 
. . required pressure = w H + w h = w { B + h) 

pressure due to a column of height H-i- h. 
Note.—Tlie same result could be at once proved by supposing a barometer 

of tbe liquid to be constructed above its surface, tbe lower end of tbe tube 
dipping into it. Tbe pressure at any point of the liquid -would evidently be 
tbat due to tbe column R-\-h extending from tbe surface of the "Torricellian" 
vacuum in the tube down to that point. 

Effect on Resultant Thrusts due to Fluids.—^When a vessel is fllled -with 
a hea-vy hquid, the atmospheric pressure acts on the outer eurface of 
the vessel, besides being fa-ansmitted by the liquid to the inner surface. 
Hence the resultant thrusts on the base and sidee of such a vessel are 
the same ae if the atmoepherio pressure did not exist, and are there­
fore found ae in Chap, XII, 

The preaaure on the inner surface of the vessel is, however, increased 
by the atmospheric pressure, 
SlJMMAET, 

1, Tlie density of air is found by weighing a flask when exhausted 
and when filled -with air, 

2. The pressure of the atmosphere is measured by the height of the 
fluid column it supports in a barometer, the top of whose tube is a 
vacuum. 

The fluid is usually mercury (speciflc gra-vity, 13-6), sometimes 
water or glycerine. 

3. The principal hinds of baraneter are— 
(i.) The common barometer, ha-ving cup of mercury ; 
(ii.) The siphon or bent-tube barometer ; 
(iii.) The aneroid barometer (not mercurial). 

4. To read the barometer accurately, both upper and lower levels of 
the mercury are taken and the reading corrected for— 

(i.) Capillarity; (ii.) Temperature of mercury ; 
(iii.) Intensity of gravity ; (iv.) Reduction to sea level, 

5, The average height of the mercury barometer 
= 30 ins. = 760 m m . 

the average height of the water barometer 
= 30 ins. X 13-6 = 34 ft.; average pressure of atmosphere = 34,000 oz, per square foot = 16 lbs, J)er square inch, roughly. 
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E X A M P L E S XIV, 

[Unless othei-wise stated, the following data wiU be assumed:—height 
of mercurial barometer, 30 in,, or 76 cm, ; height of water 
barometer, 34 ft, ; speciflc gravity of mercury, 13-6,] 

1, A flaek -when empty weighe 120 gm,, when full of air it weighs 
121-3 gm,, and when fuU of water, 1120 gm. Calculate the density 
of the air. 

Explain whether it is or is not necessary to take account of 
the weight of air displaced. 

2. With the barometer at 760 nun., the mass of a litre of air is 
1-2 gm., and of a hire of hydrogen -089 gm. The material of a 
balloon weighs 50 kHog. : what must be its volume in order that it 
may just rise when filled -vrith hydrogen ? Explain carefully how 
you obtain your result, 

3, If the atmospheric pressure is 15 lbs, per square inch and the 
diameters of a pair of Magdeburg Hemiepheres are 7 ins,, find the 
force required to pull them asunder. 

4, Show that the thrust of the atmosphere on either of the Magde­
burg Hemispheres ie half the "whole preeeure" on the hemisphere. 

6, Describe an experiment to prove that the pressure of the atmo­
sphere is measured by the height of a barometer column, 

6, Explain the construction of a barometer, what it measures, and 
how it measures it. 

Need the bore of a barometer tube be uniform ? Give reasons 
for your answer, 

7, If the atmospheric pressure at the surface of the earth be 
14J lbs, per square inch, find the height of the water barometer in 
feet, 

8, Calculate the air pressures when the mercurial barometer stands 
at 27 ins, and at 30-5 ins,, assuming that a cubic foot of water weighs 
62-5 lbs. 
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9, If the height of the water barometer is 34 ft,, and that of the 
mercurial barometer is 30 ins,, show that the specifio gra-vity of 
mercury is 13-6, 

10, If the specific gravity of mercury be 13-6 and that of glycerine 
be 1-255, what reading of a mercurial barometer correeponde to a 
reading of 320 ins, on a glycerine barometer ? 

11, Translate pressure measured in terms of the height of a baro­
meter mercury column (say, either 27 ins, or 60 om.) into absolute 
{i.e., dynamical) units of pressure. 

12. Find the absolute pressure on a bottle of air immeraed in sea 
water to a depth of 50 metres, the density of sea water being 1-027, 
and the value of g being 980 (cm./eec.=), and compare this pressure 
-with that of the atmosphere, the barometer standing at 76 cm. 

13. If the diameters of the two branches of a siphon barometer are 
equal, show how to graduate (i.) the upper, (ii.) the lower, branch to 
indicate inches of barometric height, 

14, The section of the closed limb of a siphon barometer ie to that 
of the open h m b as 3 to 17, The mercury rises 1-275 ins, in the 
closed branch. W h a t change takes place in the mercury of an 
ordinary barometer ? 

16, A siphon barometer is so constructed that the long closed tube 
has an internal sectional area equal to J sq, in,, whUe the short open 
tube has an internal sectional area equal to J sq, iu. Find what fall 
-wiU take place in the long tube of this barometer when the true 
pressure of the air falls 1 in. 

16. What would be the height of a column of air of uniform density 
1-2 oz. per cubic foot which would produce a pressm-e equal to that 
of the atmosphere P 

17, A body floats in water contained iu a vessel placed under an 
exhausted receiver with half its volume immersed. Air is then 
forced into the receiver tiU its density ie 80 times that of air at 
atmospheric pressm-e. Show that the volume immersed in water 
will then be four-ninths of the whole volume, assuming the specific 
gra-vity of air at atmospheric pressure to be -00125, 
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BOYLE'S LAW. 

150, From the fundamental properties by which gases 
are defined it appears that the Tolume of a given quantity 
of gas becomes less as the pressure to which it is subjected 
becomes greater, and vice versa. The relation which 
exists between the volume and pressure of a gas at any 
given temperature was discovered by Robert Boyle, of 
Lismore, Ireland (1662), and by Mariotte, in Prance 
(1679), This relation, which is kno-wn in England as 
Boyle's Law, and in Prance as Mariotte's Law, is usually 
stated thus : 

151. BOYLE'S LAW. — The volume of a given 
mass of gas is inversely proportional to the pressure 
when the temperature is kept constant. 

Thus, let^ be the pressure of a gas occupying the volume v ; 
Then at presaure 2p the volume of the gae -will be ̂ v, 

JJ )) '̂P )J )? 't -ẑt 
„ „ iP „ „ „ 2», 
,, ,, W« " " " "̂ ' 

and so on. Since 
pv = 2 p x ^ = Spx^v = ̂ px2v = pjn x nv, 

it follows that 
The product of the pressure into the volume of a given mass 
of gas at constant temperature is constant. 

Por let V be the volume of the gas when the pressure 
is p, V its volume when the pressure is P, the tempera­
ture being the same in both cases. Boyle's L a w states 
that P, p are inversely proporiional to V, v, that is, 

I 
p _ 
p 

V 
1^ 
V 

V 
f' 
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or, clearing of fractions, we may state Boyle's Law m. 
symbols thus, 

P V = pv (!)• 
The following alternative statement of Boyle's Law is 

important: 

152. The pressure in a given kind of gas at a 
given temperature is proportional to its density. 

Por, if m be the mass of the gas, d, D its densities when 
its volumes are v, V, then, by § 14, 

whence, 

or 

D = 

by Boyle's Law 

P _ 

P 

F 

m 
V' 
) 
1 
F. 
I • 
V 
•.p 

d = 

m 
_ F. 
m 
V 

= D : 

m 
V 

D 
~ T ' 

d (2). 

Note.—This last relation is true whether the mass of gas is the same or 
different in the two eases, provided that it is the same hind of gas at the 
same temperature. 
Exa/mples.—(1) A mass of air at atmospheric presam-e occupies 
44 cub. ins. To find the preeeure when the volume is reduced to 
24 cub. ins., taking an atmosphere as 15 lbs, per square inch. 
Let p be the required preaaure in, pounda per square inch. Then, 

by Boyle's Law, ^ x 24 = 44 x 15, 
p = !iiil^ = ii^ = 27J lbs, per square inch, 

(2) To compare the weights of a cubic foot of air when the baro­
meter stands at 29 and 30 ins. 

Since the densities are proportional to the pres.sures, and these are 
proportional to the heights of the barometer, the required weights are 
in the proportion of 29 : 30, 
(3) A vessel containing 2 litres of air at a pressure of J atmosphere 
is put into commnnioation with another vessel containing 3 litres of 
ail- at a jpressm-e of 3 atmospheres. To find the subsequent pressure 
of the air in the two vessels. 
If the pressure hi each mass of air were changed to 1 atmosphere, the 

ah- in the flrst--vessel would occupy 2 x J hires = 1 litre, and that iu 
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the second 3x3 litres = 9 Utrea, The total mass of air would there­
fore occupy 10 litres at atmospheric pressure. But it has to occupy 
2 + 3 hires = 5 hires (the sum of the volumes of the veesele),. Since 
the volume is thue halved ; the pressure is doubled, therefore the 
required pressure is 2 atmospheres, 
_ (4) A bubble of air rises from the bottom of a lake, and its 

diameter has doubled when it reaches the eurface. To find the depth 
of the lake. 
The volume of a sphere is proportional to the cube of its diameter 

[-,- vol, = îrr̂  = |-!r (diam.)'']. 
, •, vol, at surface = 8 times vol, at bottom. 

Therefore, by Boyle's Law, 
presaure at surface = i preaaure at bottom, 
pressure at bottom = 8 atmospheres, 

Now, taking the height of the water, barometer as 34 ft,, the pressure 
increases 1 atmosphere for every 34 ft, descended. But the difference 
of pressure at the top and bottom is 8 — 1, or 7 atmospheres, 

, • required depth of lake = 34 x 7 = 238 ft, 
153. To veriify Boyle's Law experi­
mentally for pressures greater than 
that of the atmosphere. — A piece of 
apparatus called Boyle's T u b e is generally 
used (Pig, 67), This is a U-tube -with very 
unequal branches, the longer arm being 
sometimes as m u c h as 6 ft, long, A scale of 
inches or millimetres is attached to each 
branch, A little mercury is poured into 
the bend until it reaches the point marked 
zero on the two scales. The air in either 
branch being at atmospheric pressure, the 
shorter branch is n o w closed with a tightly 
fitting screw cap, the length of the enclosed 
column of air being measured on the scale. 
More mercury is then poured into the long 
branch, and, as its level rises, the increase 
of pressure diminishes the volume of the 
air in the closed branch. B y measuring 
the length of the column of enclosed air 
and the difference of level of the mercury in 
the two branches, the pressure and volume 
of this air can be found, and, by making a 

Fig, 67, 
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n u m b e r of such experiments, the relation connecting t h e m 
m a y be verified. 

Thus, suppose the mercurypoured in untUthelength of the air column 
AP (Fig, 68) is half what it was when the end A was closed. Then 
O'Q-OP, the difference of height of the mercury in the two branches, 
-will be observed to be equal to the height of the mercurial barometer 
(about 30 ina,), 
Now the pressure due to this colnmn of mercury is 
equal to 1 atmosphere. But the surface Q is at 
atmospheric pressure. Hence the total pressure of 
the air at P ia 2 atmospherea, or double what it 
was originally. 
halved, the 

if the volume of the air 
pressure is doubled. 
Again, when the air in the short branch occupies 
one-third of its original volume, O'Q-OP, the 
difference of level -wfll be observed to be twice the 
height of the mercurial barometer. This column 
produces a pressure of 2 atmospheres, and the 
surface Q is at atmospheric pressure; hence the 
total pressure at P is 3 atmospheres. 
Hence, if the volume be reduced to one-third, the 
pressure is trebled, and eo on. 
Thus Boyle's Law ie veiified. 

Excmiple.—The shorter branch of Boyle's tube is closed when it 
contains a column of air 10 cm, long. To flnd how much mercury 
must be poured into the longer branch to raise the level in the 
shorter branch by 2 cm,, the height of the barometer being 76 om. 
The length of the air column ie reduced from 10 to 8 om. Hence 
ite new volume ie -J of ite original volume, 

,•, the preeeure ia f atmosphere, 
, , the diflerence of level in the two branches corresponds to a 
pressure of J atmosphere, and ia therefore 76 x J cm, = 19 cm. 

But the level in the shorter branch has risen 2 cm. 
. -, the level in the longer branch must have risen 19 + 2 cm, = 21 cm, 

, , the quantity of mercury poured in must be sufiicient to flU 
21 + 2 cm, or 23 cm. 
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0 
iP 

. 1 5 4 . T o verify Boyle's L a w for pressures less 
than that of the atmosphere.—The most convenient 
apparatus consists of a glass tube rather over 
30 ins, long furnished with a screw-cap A 
(Pig, 69) and a cylindrical jar of the same 
height filled with mercury. The tube is 
lowered into the jar of mercury, leaving a 
length A O projecting, and the upper end A 
is closed with the cap, the air thus enclosed 
in the tube being at atmospheric pressure. 
The length A O is measured on a scale of 
inches or millimetres which m a y conveniently 
be engraved on the tube. O n the tube being 
raised, the mercury rises above the outside 
level, as at P, but the reduction of pressure 
causes the air column to expand from A O 
to A P and occupy a greater length of tube 
than before. B y measuring the heights AP, 
PQ, the volume and pressure of the enclosed 
air can be found and the relation connecting 
them verified, -pj gg 
Thus, when the air column AP occupies double ita original length AO, 

the height of the mercury column PQ is observed to be ̂ H, where H 
is the height of the mercurial barometer. Hence the difference of the 
press-ures at P, Q is ̂  an atmosphere, and therefore the pressure at 
P is 1-j atmosphere, or J an atmosphere, or half the original 
pressure of the air. 
Hence, if the volume be doubled, the pressure is halved, in accordance 
-with Boyle's Law, 
When the air column AP occupies three times its original length, 

Boyle's law requires that the pressure at P = i atmosphere, whence 
the diflerence of pressures at P, § = f atmosphere and therefore 

PQ = fif. 
In actual experimente the height PQ is then observed to be exactly 
^H, thue oonflrming Boyle'e Law, 
Similarly, when AP = iAO, Boyle's Law requires that PQ = ̂ H, 

and this aleo is confirmed by obaervation. 
In like manner, Boyle's Law may be verified for any pressures less 

than that of the atmosphere. 
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155. To verify Boyle's Law for any gas it is only 
necessary to substitute that gas for air in the closed end 
of the U-tube of § 153, or in the barometer tube of § 154, 

*156. Effect of Temperature.—Charles' Law.—In the above 
experiments, care must be tahen to heep the temperature of the gas constant. 
For this reason it is sometimes a good plan to keep the U-tube or the 
mercury jar immersed in a large vessel of water which is constantly 
stirred so as to maintain a -uniform temperature, 
A rise of temperature will cause a gas to expand even if ite pressure 

is unaltered. The relation established by experiment between the 
volume and temperature at constant preeeure is kno-wn as Charles' 
Iiaw, and m a y be conveniently stated thus— 
When, the pressure of a ^as is kept constant, the 
v o l u m e is proportional to 273-|-f, w h e r e t is the Centi­
grade temperature. 
Combining this -with Boyle's La-w, it may be sho-wn that, if the pressure, volume, 

and Centigrade temperature of a gas change from p, v, t to P, V, T, then 
pv _ PV ^̂  _̂?J_ _ 273+1 

273+J 27S+r PI-' 273+r' 
The quantity 273+f is called the absolute temperature; the temperature 

—273° C. being called the absolute zero.* 
Eence the ̂ oduct of the pressure and volume of a given mass of gas is proportional 

to the absolute temperature. 
*157. Limits of Boyle's Law.—^From experiments such as 
those described above, Boyle's L a w may be proved to be a very 
approximate statement of the relation between the pressure and the 
volume of air or other gases when the pressure is not very great. But 
more accurate observations show that in no gas is the pressure exactly 
proportional to the density. 

'ths divergence from Boyle's L a w in most gases ie too small to be 
of any practical importance, and is therefore commonly neglected 
except when the preeeure approaches the amount required to cause 
liquefaction. W h e n , however, air is saturated -with the vapour of 
water, an increase of pressure produces condensation, and Boyle's 
L a w no longer holds good. 

A perfect gas is deimed aa an ideal eubstance which always obeys 
Boyle's Law. Like a perfect fluid, no such substance really exists. 
In numerical calculations and problems, it is always 
assumed that gases obey Boyle's L a w and that their tempera­
tures remain constant unless the contrary is specifled. 
• Por further details, see Stewart's Text-Boole of Heat, Chap. V. 
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158. Application of Boyle's Law to the faulty 
Barometer. — W h e n a little air has got into the end of a 
barometer tube it expands and depresses the mercury. 
A s the mercury rises and falls this air obeys Boyle's Law, 
and hence the relation between the readings and those of 
a perfect barometer m a y be found, as in the following 
example, which m a y be taken as typical. 

Example.—A faulty barometer reads 28 ins. and 30 ins. when a true 
barometer reads 28J ins. and 31 ins. respectively. To flnd (i.) the 
whole length of the tube of the faulty barometer, (ii.) the true read­
ing when the faulty barometer stands at 29 ins. 
(i.) Let I be the length of the tube. Then at the flrst observation, 
the air in the upper end occupies a space Z— 28 ins., and is under a 
pressure 28§ — 28 ina. of mercury (the difference of height of the two 
barometers). At the second the air occupies Z— 30 ine,, -nnder preeeure 
31 - 30 ins. Therefore, by Boyle's Law {PV = pv), 

{1-2S} X J = (Z-30) X 1, whence I = 32 ine, 
(ii,) Hence at the first observation, the air occupied 32 — 28 ins, at a 
pressure of Jin, When the faulty barometer reads 29 ins,, this air 
occupies 32 — 29 ina,; therefore, if ̂  be ita pressure in inches, Boyle's 
Law gives 

p x Z = ^xi, whence p — %. 
Therefore the ti-ue barometer reading is fin, higher, or 29f ine. 

159. Determination of Heightsbythe Barometer.— 
Since the pressure of the atmosphere is due to the weight 
of the superincumbent air, it increases with the depth, as 
is evident from Chap, X , W h e n therefore w e ascend a 
few hundred feet, the weight of the column of air tra­
versed makes a perceptible difference in the pressure and 
the barometer reading is perceptibly lower at the top 
than at the bottom of the column. If, then, w e kno-w the 
difference of atmospheric pressure at the top and bottom 
of a mountain, and also the density of the air, w e can flnd 
the height of the mountain. 
Conversely, to flnd the density of atmospheric air, it is only necessary 
to observe the difference of pressure at the top and bottom of a tower 
or hill whose height is kno-wn, [This is an alternative to the 
method of J 130,] 
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Example.—Tlo find the height of a hill if the barometer readings at 
the top and bottom difler by Jg in,, the deneities of air and 
mercury being -001 and 13-6, 

Here density of mercury = 13,600 x density of air. 
Hence difference of pressure due to -1 in, of mercury = pressure 

due to a column of air of 13,600 x -1 ins, 
, , height of hia = 1360 ins, = 113 ft, 

160, Since, by Boyle's Law, the density of air is pro­
portional to its pressure, this density decreases as w e 
ascend, and hence the reduction of pressure is not strictly 
proportional to the height risen unless this height be 
small. 
Thus, when we aecend 1000 ft,, the pressure, and therefore the 
density, of the air decreaeee. The density of the second 1000 ft, is 
therefore less than that of the first; therefore the reduction of pressure 
in the second 1000 ft, is also less than in the first 1000 ft. Hence, if 
a barometer is carried up 2000 ft,, the mercury falls less than twice aa 
much aa in the firet 1000 ft. Similarly for each riee of 100 ft,, the 
fall of the barometer is rather less than for the preceding 100 ft, 
[Since the density of the ,air depends also on the temperature, this also must be 

observed in determining heights by the barometer ; unless the temperature of the 
air colnmn is the same throughout, the calculation is one of considerable difficulty, 
*161, Specific Gravities of G-ases,—The specific gravity of a gae 
ia independent of the pressure, pro-vided that the standard substance ie 
another gas at the same pressure. Thus, if a cubic foot of air and a 
cubic foot of hydrogen at the same pressure are weighed, and if the 
pressure is then doubled, the volumes of air and hydrogen -will each 
be J cub, ft,, and -will therefore be equal. Hence the ratio of the 
weights of equal volumes of two gaaea is independent of the pressm-e 
pro-vided that tjue ie the same for both gases, 
[By diaries' Law, the ratio of the weights of equal volume.s of two gases at 
the same temperature and pressm-e may be shown to be independent also of the 
isni^erature.\ 
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.̂ TTM-M-a-R.Y. 
1. Boyle's L a w {or Mariotte's Laio).—The volume of a given mass of 

a given gas at constant temperature is inversely proportional to the 
pressure. 

Hence the density of a given gae at constant temperature ie 
proportional to the preaa-ure. 

Taking the kind of gae and the temperature to be the same in the 
two oaeee coneidered, w e have 

P r = p v (1) and Pjp = Djd (2), 
where the mass of gas must be kept the same in (1), but not neces­
sarily in (2), 

[* The relations .are also written thus (where oc means "varies as"):— 
jyv = const,, pa-.—, p = dx const,, pad, 

V 
2, If the temperature varies, Charles' Law asserts that v is proportional to 

278+i, with p constant, and therefore generally 
pv/PV = {273+()/(273+r) or pv a 273+t, 

where t, T are Centigrade temperatures, 
273+f, 273+2* are absolute temperatures,] 

3, For pressures greater than an atmosphere, Boyb's L a w is verifled 
by means of Boyle's Tube of § 163 (U-tube -with air or gas in shorter 
closed branch), 

4, For pressures less than an atmosphere, a barometer tube and jar 
of mercury are used (see § 164). 

6. The air in a faulty barometer obeys Boyle's L a w . 
6. Heights may be measured by the barometer if the densities of the 

intervening strata of air be kno-wn. 
EXAMPLES XV. 
[The data given on page 149 are assumed.] 
1. A -wide-mouthed bottle full of air is closed -with a weU-ground 
glass stopper, 6 cm. in diameter, w h e n the barometer stands at 
772 m m . W h a t weight must the stopper have in order that it m a y 
be just blo-wn out if the barometer goes d o w n to 730, the temperature 
remaining the same ? 
2. In a tube of uniform bore a quantity of air is enclosed. What 
-will be the length of this column of air under a pressure of 3 atmo­
spheres, and what under a pressure of ̂  atmosphere, ite length under the pressure of a single atmosphere being 12 ins. ? 3, If a vessel of 3 cub, ft, capacity, containing air at a pressure of 2 atmospheres, is put into communication with a vessel of 
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18 cub, ft, capacity, containing air at a pressure of J atmosphere, 
what -win be the pressure of the air in the two vessels P State the 
principle or law on which the solution of this question depends, 

4, W h a t do you know about the density of gases in relation to 
temperature and pressure ? Describe experiments which show that 
the density of a gas at constant temperature is proportional to its 
pressure, 

6, A Mariotte's tube haa a uniform section of 1 sq, in,, and ia 
graduated in inches ; 6 cub, ina, are encloaed in the shorter (closed) 
Umb, when the mercury is at the same level in both tubes. W h a t 
volume of mercury must be poured into the longer limb in order to 
compress the air into 2 ins, P 

6, Mercury is poured into a uniform bent tube, open at both ends, 
and ha-ving its two branches vertical. One end ie closed, ita height 
above the mercury being 4 ins. H o w much mercury must be poured into 
the open end eo that the mercury may rise 1 in, iu'the closed branch? 

7, The height of the column of mercury in the open branch of an 
eudiometer ie 12 ine, above that of the column in the closed branch, 
and the air in the closed branch occupies a length of 4 ins. H o w 
much mercury must be poured into the open branch in order to 
compresB the air to half its volume ? 

8, A uniform tube closed at top, open at bottom, is plunged into 
mercury, eo that it containa 26 o,o, of gas at atmoepherio pressure of 
76 cm, ; the tube is now raised until the gas occupies 60 cc. H o w 
much has it been raised ? 

9, A straight uniform tube closed at one end, whose length is 2h, 
has the open end just immersed in a, basin of mercury. If the tube 
contain a quantity of air which under atmospheric pressure would 
occupy a length of the tube equal to ̂ h, show that the mercury -will 
rise in the tube to a height equal to f A, h being the height of the 
mercurial barometer at the time of the experiment. 

10. A cylindrical veaael, cloaed at one end only, is 20 cm. tall, and 
its open end is immersed in mercury until the interior level ie 5 cm. 
below that of the general level of the liquid outside. The barometric 
height being 75 cm., calculate how far the mercury has risen into the 
vessel, or how deep the lip of the vessel haa been submerged. 
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11, A bubble of air whose volume is -004 c.c. is dislodged fi-om 
the bottom of a lake 61 ft. deep, and rises to the surface. W h a t is 
ite volume when it reaches the surface ? 

12. A bubble of air whose volume is -0004 cub. in. is formed at 
the bottom of a pond 17 ft. deep. What -will be its volume when it 
reaches the surface ? 

13. A bubble of air J5 in. in diameter etarte from the bottom of 
the Atlantic at a depth of 2 miles, l̂ ind its size on reaching the 
surface, 

14, A bubble of aii- whose volume ie -0028 oub, in, is formed at 
the bottom of a pond; on reaching the surface its volume is 
•004 cub, in. W h a t is the depth of the pond P 

16, W h y does a small weight of air introduced into the upper part 
of the tube depress the mercury considerably, whereas a small piece 
of iron floating on the mercury doea not depress it P 

16, A mercury barometer, whose cross- section ie 1 sq, om., stands 
at 76 cm., and the length of the vacuum above the column of mercui-y 
is 3 cm. H o w much air at ordinary atmospheric preaaure must be 
introduced into the tube in order to depress the mercm-y 16 cm. P 

17, The readings of a true barometer and of a barometer which 
contains a small quantity of air in the upper portion of the tube are 
respectively 30 and 28 ins. W h e n both barometers are placed under 
the receiver of an air-pump from which the air is partially exhausted, 
the readings are observed to be 15 and 14-6 ine, reepectively. Show-
that the length of the tube of the faulty barometer, meaeured from 
the surface of the mercury in the baein, is 31-35 ina, 

18, W h e n the reading of the true barometer is 30 ins,, the reading-
of a barometer the tube of which contains a small quantity of air, 
a,nd whose height above the surface of the mercury in which it is 
immersed is 311 ins,, ie 28 ine. If the reading of the true barometer 
fall to 29 ine,, show that the reading of the faulty barometer -wUl be 
27J ins, 

19, A barometer reads 30 ins, at the base of a tower, and 29-8 ins. 
at the top, 180 ft. above. Eind the average mass of a cubic foot of 
air in the tower, taking the speciflc gravity of mercury as 13-5, and 
the mass of a cubic foot of water as 62-4 lbs. 

HYDEO. JI 



162 PNEUMATICS. 

20. Eind the height between two stations, having given the 
following data:— 

Density of merom-y, 13-6 gm. per cubic centimetre ; 
Mean density of air between the two stations, -00121 gm. per 

cubic oentimentre; 
Height of barometer at lower station, 786 m m . ; 
Height of barometer at upper station, 630 m m . 

21. A balloon is filled -with a gas whose speciflc gra-vity is one-tenth 
of that of air at the pressure of 760 m m . of mercury at 0°C. Compare 
the liiH;ing power of the balloon in air when the height of the 
barometer is 760 m m . -with ita lifting power when the barometer 
stands at 760 m m . The temperature in both cases is 0°C., and the 
volume of the balloon ie supposed to remain unaltered. 

22. If a body be suspended by an elastic string, explain how the 
length of the eti-ing -will be afflected by a rise in the barometer. 

23. A cube floats in distilled water under the pressure of the 
atmosphere -with fom'-flfthe' of its volume immersed and -with two of 
its faces horizontal. W h e n it is placed under a condenser where the 
pressure is that of 10 atmoapheree, find the alteration in the depth 
of immersion (the specifio gra-vity of air at the atmospheric presaui-e 
being -0013). 

*24. State the law connecting the pressura, volume, and absolute 
temperature of a gas. 

A mass of air under a given pressui-e occupies 24 cub. ins. at 
the temperature of 39° G. If the presaure be diminished in the 
ratio of 3 : 4, and the temperature raised to 78° C , show that 
the vol-ume of the air "will be 36 cub. ins. 

*25. A mass of air under given pressure occupies 44 cub. ins. at a 
temperature of 13''C. If the volume of the ah- be reduced to 
24 cub, ins,, and the temperature raised to 39°C., show that the 
preseure -will .be doubled. 

26. A retort of 3 htres capacity, and -with its open end submerged 
3-4 cm. below the surface of water in a trough, is seen to be 
completely full of an- on a certain day. Next day the mercm-y 
barometer is observed to have fallen from 76 to 74 cm,, without any 
change of temperature. H o w much of the air originally in the 
retort has by that time bubbled out? 
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E X A M I N A T I O N P A P E R VII, 

1. Describe the mercui-ial barometer, and show that it measures 
accui-ately the pressure of the atmosphere, 

2, A bottle when full of air weighs 3-544 gm,, when full of water 
it weighs 103-426 gm,, and when full of alcohol (specific gravity 
= -836) it weighs 86-926 gm. Calculate the specific gra-vity of air. 

3. A barometer reads 761 mm. at the base of a tower, and 764 mm. 
at the top, 75 meti-ee above. Eind the average mass of a cubic metre 
of air in the tower, taking the specific gravity of mercury as 13-5. 

4. Enunciate Boyle's Law. 

5. If the speciflc gra-vity of air is -001, calculate the weight of the. 
air that escapes from a room 20 ft. long, 25 ft. wide, and 10 ft. high, 
on the barometer falling from 31 ine. to 30 ins. 

6. 100 cub. ins. of an-, at a pressm-e of 15 lbs. to the sc[uare inch, 
are pumped into a- cha,inber already containing 50 cub. ins. of ail- at 
a pressure of 10 lbs. to the square inch. What is the pressure of the 
mixture P 

7. Explain the use and action of the vent-peg. 

8. A bubble of air, Jj cub. in., rises from the bottom of a lake at a 
point where it is 200 ft. deep. On reaching the surface, its volunie, 
is -36147 cub. in. Eind the specific gra-vity of the water of the lake.. 

9, A mercurial barometer 34 ins, long stands at 30 ins,; ^ cub, in, 
of external air is introduced, and the mercury drope 4 ins. What is, 
the sectional area of the barometer? 

10, In a siphon barometer the sectional area of the open end' ia 
3|- times that of the closed end, A faU of J in, takes place in it, 
What fall occurs at the same time in an ordinary barometer ? 
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SIMPLER PNEUMATIC APPLIANCES. 

W e shall now describe certain simple apparatus 
depending on the principles proved in the foregoing 
chapters, leaving more complicated contrivances, such as 
pumps, to be treated in the two following chapters. 

162, Hare's Hydrometer is a kind of inverted U tube 
for comparing the specific gra-vities of 
two liquids. The lower ends of the two 
branches are immersed in the liquids, and 
part of the air is dra-wn out of the upper 
part of the tube by means of an air pujnp 
or otherwise. The atmospheric pressure 
outside the tubes causes the liquids to rise 
to heights which are inversely proportional 
to their densities. 
For, if w, Whe the speciflc weights of the liquid 

columns AP, BQ, we have 
pressure of atmosphere — pressm-e in tube PCQ 

= w.AP = W.BQ; 
,-, AP : BQ ̂  W : w. 

Hence by measuring AP, BQ the specific gravities of 
the liquids may be compared, 

163. The Sipbou, is a bent tube with unequal arms 
used for dra-wing off liquid from vessels or reservoirs 
which have no outlet at the bottom. 

To explain its action, suppose that the siphon has been 
filled -with liquid, both ends A, D ha-ving been temporarily 
closed -with plugs, and that the shorter arm has been 
lowered into a vessel of the same liquid as in Eig, 61, 
N o w let the end A be opened, the end D being still closed. 
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Then, if the height P B is less than the height to which 
the liquid would ascend in a barometer, the pressure of 
the atmosphere on the surface P will prevent a v a c u u m 
-from forming in the tube, which will therefore i-emain 
filled with liquid. 

A n d ii Q he taken on the longer arm on the level of the 
surface at P, then (by connecting Q with P by a zigzag or 
horizontal and vertical lines) w e m a y show that the pres­
sure at Q is equal to that at P, i.e., to the atmospheric 
pressure. T h e pressure inside the tube at D is therefore 
greater than outside by the amount due to the column Q D , 
and this excess of pressure tends to force the plug out. 

Eig. 61. 

If, therefore, the plug be removed, the liquid will flow 
out at D. A n d , since no vacuum is formed in the tube, 
the pressure of the atmosphere at P -will cause fresh 
liquid to rise in the tube at A, thus producing a con­
tinuous stream. 

Example.—To examine the efilect of making holes in the siphon at 
different points. 
W h e n the end D is closed, the pressme in the tube at any point H 

in the part PBCQ above the horizontal line PQ is lose than the atmo­
spheric preseure. Hence, if a hole be made at H, air -will enter and 
fill the bend and -wiU stop the working of the siphon. 

If, however, a hole be made at K below Q, the remaining portion 
above K -wUl stiU. form a siphon through which hquid -wiU continue to 
fiow, just as it would do if the portion DK were altogether removed. 
rVoTE —Experiment shows that in this ease hubbies of air are sueked in at K 
and carried down the tube KD \vith the liquid. If the arm QD is sufficiently long, 
it is found that the same thing nw.y happen if a sutjiciently small hole is made 
above Q, provided that the siphon is in full xoorUng at the time 

file:///vith
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164, Open-tube Manometers.—Any instrument used 
for measuring pressures of gases or vapours is called a 
manometer or pressure-gauge. 
Such a gauge may be used to measure the presaure of the steam in 

the boiler of a steam engine, the preaam-e of the air etfll left in the 
receiver of an air pump, and so on. 

In the gauges now to be described, differences of pres­
sure are measured by the height of a column of mercury 
(or other fluid), just in the same way that the mercury 
column of the barometer measures the pressure of the 
atmosphere. 
165. The barometer gauge (Eig. 62) is a flask filled 
with mercury from the bottom of which rises a long g-lass 
tube having a scale of inches or millimetres attached. 

To measure pressures greater than an atmosphere, the upper end of the 
tube is left open to the air, and the flask communicates -with the air 
or steam whose pressui-e is requh-ed. This pressure forces'up a 
column of mercury into the tube whose height QP measures the 
•amount by which the required pressure exceeds that of the atmosphere. 

To measure pressures less than an atmosphere, the fiask is open to 
the air and the upper end of the tube communicates -with the receiver. 
The height QP to which the mercury rises in the tube now mea,sures 
the amount by which the pressure in the receiver is less than that of 
the atmosphere. Eor a perfect vacuum the height of the mercury 
-column is equal to that of the barometer, 

Examjjle.—If the barometer stands at 30 ins, when the barometer 
-gauge is at 24 ins.,* to flnd the pressure in the receiver. 

The pressure ia that due to 30 — 24, or 6 ins. of mercury, and is 
therefore £-̂  or -2 of an atmosphere ; 

i.e., 16 X -2, or 3 lbs, per square inch approximately, 
166, Ths siphon gauge is a glass U-tube about half 
full with meroui'y or any other convenient liqnid. If one 
branch be connected with a receiver or vessel containing 
gas, the other being left open to the air, the meroiiry -will 
fall in the branch having the greater pressure and rise in 
the other, the difference of level Q P measuring the differ­
ence of pressure in the branches (Eig, 63), 
* This is sometimes expressed by saying that the receiver has "a vacuum of 
'24 ins," 
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If the arms are of equal section, and the mercury rises J in, in one 
it wiU fall f in, in the other, indicating a diiference of pressure of 
1 in. 

Eig. 62. Eig. 63. Eig. 64. 

167. The vacuum gavLge of an air pump differs from the 
siphon gauge just described ((Eig. 63) iu ha-ving no ah- in the end A 
of the tube which ie cloeed. At a certain stage of the exhauetion the 
mercury falls and leaves a, vacuum in this end, and its difference of 
level in the two branches measures the pressra-e of the residual air in 
the receiver. When the vacuum is perfect, the mercury stands at the 
same level in both branches. 

168, Compressed-air m a n o m e t e r s . — T h e condenser 
gauge is a narrow glass tube A B (Eig. 64) whose closed 
end contains some air separated off by the drop of mer­
cury P. B y Boyle's Law, the length A P is inversely 
proportional to the pressure; hence by measuring A P the 
pressure of any gas connected -with the end B can be found. 
Thue, if 0 be the position of the drop when the air is at atmo­

spheric pressure, then, under pressures of 2, 3, 4 atmospheree, the 
clietances of the drop from A are ̂ AO, ̂ AO, \A0, reepectively. 
169. Another form of closed-tube manometer is a 
siphon manometer like that represented in Eig. 63, but with 
the end A closed and containing air instead of being open. 

W h e n the end B is exposed to pressure greater than 
that of the atmosphere, the meroiuy falls at Q and rises 
at P, and by reading off its height on a scale the required 
pressure at Q m a y be found. 
By Boyle's Law the preeeure at P is inversely proportional to AP, 

and the difference of pressures at P, Q is proportional to the height 
QP. The sum of these quantities gives the pressm-e at Q. 
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Eig, 65, 

1 7 0 . T h e Diving-bell is a large bell-shaped, or nearly 
cylindrical, vessel, of iron, open at 
the bottom, and containing a plat­
form and seats for the persons inside. 
It is lowered into the water by a 
chain, and is of sufficient weight to 
sink even w h e n filled with air. A s 
the bell descends, the pressure of 
the water increases and compresses 
the air in the interior. Hence, to 
prevent water from rising into the 
bell, and also to enable the w o r k m e n 
to breathe, a constant sujsply of 
atmospheric air is p u m p e d into the 
bell through a tube from the sur­
face by means of a condensing p u m p (Chap, XVIII,), 
the superfluous air overflowing and bubbling out round 
the bottom. 

The pressure of the air inside the bell exceeds the atmospheric pres­
am-e by the amount due to a column of water whose height is the 
depth of the surface of the water in the beU below the surface of the 
water outside. 

The pull on the chain is the excess of the weight of the bell and its 
contained air over the weight of the water displaced ; the weight of 
the air may generally be neglected. 
Examples. — (1) An iron di-ving-beU weighs 6 tons, and holds 
200 cub, ft, of air. To find the tension on the supporting chain when 
the bell ie completely immersed in sea-water and kept full of air 
(specific gra-vity of iron = 7-2, of sea water 1-024), 
Weight of a cubic foot of sea-water = 1024 oz, = 64 lbs, 
,-, weight of water displaced by ah- inside = 64 x 200 = 12800 lbs, 

,, ,, ,, ironof bell = 6x 1024-=-7-2 tone, 
= lOlUbe. (toneareetlb.); 

.- total weight of water dieplaced = 14,711 lbs. 
But weight of bell = 6 x 2240 = 13,440 lbs. 

tension of chain =1271 lbs. 
(2) If a bell whose internal capacity is 200 cub. ft. is lowered in a 
river till its base is 20 ft. below the surface, to flnd how many cubic 
feet of air at atmospheric pressure must be pumped in to prevent the 
water from rising inside. 
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Let r be the volume which the au- fiUing the bell would occupy 
when at atmospheric pressure. 

The pressure of atmosphere = that due to 34 ft. of water, 
,, ,, inside bell = ,, 34 + 20 ft, ,, 

The volume actually occupied by the air = 200 cub, ft. 
Therefore by Boyle's Law, 

V X 34 = 200 X 64 ; 
V = 200 X 54-^34 = 318 cub. ft. nearly. 

Hence 318 — 200, or 118 cub. ft. of air at atmoapherio pressure must 
be pumped in. 

(3) A bottle full of air is inverted and lowered'in water to a depth 
of 61 ft. To find how much water has entered the bottle. 
Here the pressure increases 1 atmosphere for 34 ft., or IJ atmo-
epheree for 61 ft. deecended. Therefore the presaure at 51 ft. depth 
is 2J or f times that at the surface. Hence, by Boyle's Law, the 
volume of the air is f its volume at the surface. Therefore the water 
enters till it fills the remaining 4 of the volume of the bottle. 
(4) A cylindiical diving-bell 9 ft. high ia lowered into a lake until 
the -top of the bell is 11 ft. below the surface. If no air is pumped 
in, to find how high the water rises in the interior. 
Let X ft. be the height still occupied by air {AQ, Eig. 65). 

Tiien the depth PQ = {11+x) ft. 
The pressure at Q ia therefore that due to a head of water of 

(34 + 11+»)ft, = (46 + a;)ft, 
But the ah' originally occupied a length of 9 ft, under a pressure 

of 34 ft, head of water. Therefore, by Boylo's Law, 
34 X 9 = (45 + a;) X a:; 

, , x--^-i5x-2l6 = 0, 
Solving this quadratic equation by factorizing or otherwise, we have 

(a; + 51) {x-Q) = 0 ; 
,-, a: = — 61 or 6, 

N o w the length occupied by air cannot be a minus quantity ; 
.t = 6 ; and the water rises in the beU tln-ough 9 — 6 or 3 ft. 

(5) To find the effect of making a hole in the side of a diving-bell. 
If the hole is above the surface of the water in the bell, the 

preseure inside the bell -will be rather greater than the pressure of the 
water outside the hole. Therefore air -will escape through the hole 
and water wiH rise in the bell until it reaches the level of the hole. 
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(6) To examine whether the tension of the chain increases or 
decreases as the bell descends. 

(i.) If no air is pumped in, the air inside wiU. become compressed 
and ivill displace less water ; hence the tension -wiU increase. 

(ii.) If more air is pumped in to keep the bell full, the weight of 
this air -will increase, and the tension -wiU increase somewhat, but 
much less than before. 
171. Caissons.—Where masonry has to be built under 
water (as, for example, in laying the foundations for the 
Eorth Bridge), a great portion of the w o r k has to be 
carried on in caissons, or large cylindrical cases of metal, 
sunk to the bottom of the water and filled with compressed 
air at the same pressure as the water outside. 
In entering or leaving a caisson, the workmen have to pass through 

an " air-lock," a. small chamber -with a door at each end opening 
towards the caisson. Without such a lock the air would all escape 
fi-om the caisson. 
Example.—An empty bottle is uncorked and again corked inside a 
caisson, and then removed from the caisson. What happens ? 

Since the bottle originally contained air at atmospheric pres,sm'e, 
on uncorking in the caisson air rushes in till its pressure ia the same 
aa in the caisson. W h e n the bottle is removed from the caisson, the 
pressure of the enclosed air is greater than the atmospheric pressure, 
and therefore it tends to blow the cork out. SUMMAET. 

1. Hare's Hydrometer is an inverted U-tube. 

2, The siphon wiU draw liquid from a vessel pro-vided that— 
(i,) The outlet is below the liquid surface in the vessel; 
(ii,) The greatest height above the sm-face in the vessel < the 

barometric height of the liquid, 
3, The principal kinds of manometer are— 

(i,) The barometer gauges ; 
(ii.) The siphon, open-tube, vacuum, and compressed-air gauges; 
(iii.) The condenser gauge. 

4. The diving-bell.—^Problems on this generally depend on applying 
Boyle's L a w to the air inside the bell, and noting that the total 
pressure is that due to a head of water extending from the surface of 
the water iu,side the bell to a point above the surface equal to the 
height of the water barometer. 
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EXAMPLES XVI, 

[Height of water barometer = 34 ft, Speciflc gra-vity 
of mercm-y = 13-6,] 

1, What is the limit to the height over which a water siphon can 
.-act when the barometer stands at 30-25 ins, ? 

2, A bubble of air is inserted into a siphon while it is worldng. 
W h a t effect does it have ? 

3, A siphon is fllled with water and inverted into a veeeel of liquid 
of epeciflc gra-yity 1-6, W h a t ia the condition that the liquid may 
flow through the siphon ? 

4, If the mercury in a siphon manometer be of apeciflc gra-vity 
13-5, flnd in lbs, per sq, in, the difference of pressure which -will give 
a difference of level of 8 ins, in the two branches, 

6, What would have to be the height of a mercurial open - tube 
manometer adapted for measuring preasm-es up to 10 atmospheres ? 

6, A barometer in a di-ving-bell indicates a preaaure of 38|^in,s., 
whereas at the surface of the water it indicates a pressure of 30 ins., 
of mercury. W h a t is the depth of the di-ving-beU ? 

7. A diving-bell whose capacity is 600 cub. ft. is lowered iu water 
until its mouth ie at a depth of 61 ft. below the surface. H o w much 
.air at ordinary atmospheric x̂ ressure must be pumped in so that aU 
the water m a y be expelled ? 

8. A diving-bell of 200 cub. ft. capacity ie lowered in fresh water, 
.and air is pumped in eo ae to keep the water completely out. W h a t 
depth has it reached when 600 cub, ft, of air has been pumped in ? 

9, What depth is reached in Question 5 if the beU is lowered in 
the sea instead of fresh water f 

10. The top of a cylindrical di-ring-bell, whose volume is 200 cub. ft. 
.and height 8 ft., is at a depth of 60 ft. below the surface of the 
water. H o w much air at ordinary atmcspherio pressure must be 
pum.ped in to keep the bell full of air ? 
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11, A small bottle, the capacity of which is 10 cc, is carried mouth 
downwards to the bottom of a pond 8J ft, deep. H o w much water 
•will have entered the bottle when it reaches the bottom ? 

12, If the density of the air in a closed vessel be double that of 
atmospheric air, and the vessel be lowered into a lake, explain what 
-will happen if a hole be made in the bottom of the vessel when its 
depth is (i,) less than, (ii.) equal to, (iii.) greater than 34 ft. 

13. A di-ving-bell ie lowered into the sea until the surface of the 
water inside is at a depth of 20 ft. W h a t proportion of ite volume is 
occupied by air, the speciflc gra-vity of sea-water being 1-026 ? 

14. A deep-sea sounding apparatus has been invented, consiating of 
a glass tube 3 ft. long, open at the bottom and closed at the top, and 
weighted so that it sinke in a vertical position. It is let do-wn to the 
bottom, and the length of the inside of the tube, which haa been 
wetted, ie afterwards measured. If this length is 35 ins., find the 
depth of the sea, the (sea-) water barometer standing at 32 ft. 

16. A diving-beU 8 ft. high is lowered in water until its top ia 
60 ft, below the surface. W h a t depth of water wiU have entered 
the bell ? 

16, A di-ving-beU is lowered in a lake until two-thirds of it is 
fllled with water. Show that, if d be the depth of the top of the bell 
below the surface, the height of the bell is 3 {2h—d}, where h is the 
height of the water barometer, 

17, A diving-bell is lowered flrst in water and afterwards to the 
same depth as before iu a fluid of less specific gra-vity than water, 
.Does the water or the other fiuid rise higher in the bell? In which 
case is the tension of the chain greater ? Give your reasons in each 
case, 

18, Describe an arrangement by means of which people could pass 
in and out of a caieeon filled with compressed air without allowing 
more than a small fraction of the aii- to escape. W h y would it be 
necessary to have small air valves which could be opened at either 
- end of the air-lock besides the large doors f 
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WATER PUMPS. 

In the present chapter we shall describe the action of 
different kinds of pumps used for raising water. Most of 
these pumps depend on the principle that the pressure 
of the atmosphere is capable of supporting- any column 
of water whose height does not exceed the height of the 
water barometer. 

172. The C o m m o n F u m p consists of a barrel or 
cylinder connected with the 
well or source of water by a 
pipe which opens into its lower 
end, and is covered by a valve or 
lid U opening upwards. 

In the barrel is a closely fitting 
piston or plug P which can be 
raised or lowered by means of 
the rod. This piston also contains 
an opening which is covered by 
a valve V opening upwards. 

The top of the barrel is gener­
ally furnished -with a spout S, 
and the piston rod is worked by 
the lever or " pump handle " L. 

To EXPLAIN THE ACTION OP THE PUMP, let US start wdth 
the barrel full of water and the piston at the bottom of 
the cylinder. 
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In the up-strohe (Eig, 66) the valve 1/ remains closed,. 
and the pressure below the piston is reduced, and the 
atmospheric pressure acting on the surface of the water 
in the well forces water up the pipe which lifts the 
valve U and enters the barrel. A t the same time the 
water above the piston is raised to the level of the spout, 
and runs out. 

In the domi-stroTce (Fig, 67) the valve U closes, and the 
water lifts the valve V and passes from the lower to the 
upper side of the piston P. 

In the next up-siroke this water is raised to the spout, 
while a fresh supply of water runs into the barrel through 
the valve U. 

Examples.— (1) To flnd the force required to lift the piston (neglect­
ing the weig-ht of the piston), if its sectional area is 100 sq, cm, and 
the epout ia 10 metrea above the water-surface in the well. 
Let X cm, be the depth of the piston below the epout, h cm, the 

height of the water barometer. Then the pressm-es above and below the 
piaton are due to heads of water of heights 

{h-i-x) and {A-(lOOO-a:)} cm., 
respectively. Therefore their difference is that due to a head 
of 1000 cm. (the total height of the column, as we should expect). 
Hence 
diff, of pressures on two sides of the piston = 1000 gm, per eq, cm. 

Also area of piston = 100 eq, cm, ; 
,-, resultant force on piston = 1000 x 100 gm, = 100 kUog, 
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[Notice that the force dependa only on the total height of the 
column to be raieed and the area of the piston, and not on the poaition 
of the piston in the stroke.] 
(2) If the spout is 10 ft. above the water aurface, and 5 Iba. of 
water are delivered at each stroke, to flnd the work done in the 
up-stroke. 

Let the length of the stroke be lit., and let the sectional area of 
the piston be A sq. ft. 
The difference of pressures on the two sides of the piston 

= that due to a head of 10 ft, of water 
= 10,000 oz, per square foot 
= 10,000/16 lbs, per square foot; 

,-, resultant thruet on piston = 10,000 x ̂ /16 Ibe, ; 
, -, work done in up-etroke = 10,000 x Al/W ft,-lbs. 

N o w Al = volume of water raised to spout in cubic feet; 
lOGOAl = weight of water raised in ounces, 

and 1000^//16 = weight of water raised in pounds 
= 6 lbs, (by data); 

work done in up-stroke = 6 x 10 ft.-lbs, = 50 ft.-lbs. 
This is the work required to raise the 6 Ibe. of water through the 

total height of 10 ft. 
Hence the work done by the pump is the same as if the water were 

lifted directly up from the bottom of the well to the spoilt. This is in 
accordance with the Principle of Conservation of Energy. 
173. liimits to the action of the common pump.— 
Since the water below the piston is raised from below b y 
the pressure of the atmosphere, it follows that the height 
of the piston above the surface of the water must never exceed 
the height of the vmter barometer (about 34 ft.) Otherwise 
a v a c u u m will be formed in the barrel, and -water will 
cease to flow in.* 
If the weight of the lower valve U be taken into account, the limit 

to the height of the piston -will have to be rather less than 34 ft. in 
order that the water may lift this valve. 

If the pump is used for raising any other liquid, the greatest 
height is, of course, the height of a barometer of that hquid; e.g., 
mercury could only be dra-wn up 30 ina. "with a pump. 
•* If duriug a portion of the stroke the piston is less than 34 ft. ahove the -water 

level, -water -will then enter the barrel; hut the portion of the stroke in which the 
piston rises ahove that height will he useless. 
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174. Action of the pump at first starting.—When 
a p u m p is first placed in water, the pipe and barrel are 
full of air, which m u s t be p u m p e d out before the water 
will rise into the barrel. 
Suppose the piaton at the lowest point of the oyHnder. 

7)! the flrst up-strohe, the air in the pipe expands and part of it 
rushes through the valve U into the barrel, while the reduction of 
pressure allows a column of water to riee up into the pipe. 

In the first down-strohe, the valve (/ cloeee, and ae soon as the air 
in the barrel has got compreeeed to atmospheric pressure it begins to 
escape through y. 
In the next up-strohe, the air in the pipe again expands through the 

valve U into the cylinder, and the reduction of presaure allows the 
water to riee still further in the pipe. This process continues till 
the water at last reachea the barrel, when the continuous action as a 
-vvater-pump begins, and a volume of water equal to that of the 
baiTel is raised at each stroke. 
Examples.—(1) If the lower valve ia 17 ft. above the water, to find 
the volume of the barrel if the water Just reaches it in the first 
stroke. 

The water barometer being 34 ft. high, the pressure of the air 
inside the pump when the water reaches the valve ia that due to 
34 —17 ft., or J atmoephere. Therefore the volume of the air is double 
of what it .was at the beginning of the stroke, and the volume of the 
bairel must be double that of the pipe. 
(2) If the barrel is 11 ins. long, and its bottom 21 ft. above the 
surface of the water, and if the section of the pipe is ̂ ^ of that of 
the barrel, to find the height of the water at the end of the first 
stroke, given the height of the water barometer = 32 ft. 

Let X ft. be the required height of the water. 
Before the up-stroke, the air occupies 21 ft. of pipe under a pres­

sure of 32 ft. of water. 
After the up-stroke, the air occnpiea (21—.-s) ft. of pipe pine the 

volume of the barrel, under a preesure of (32 — x) ft. of water. 
Aleo the volume of the barrel ie ̂  timee the volume of an equal 

length of pipe, and is therefore equal to that of Jjt x I- ft. of pipe, 
i.e., 7 ft. of pipe. Hence the air occupies a total volume equal to 
(21-.-!; +7) ft., or (28-ic) ft. of pipe. Therefore, by Boyle'e Law, 

201x32 = (28-ic) (32-a;) ; 2:2-603; +224 = 0; 
.-. (.-!;-66) (a:-4) = 0 ; .-. a: = 66, or 4. 

N o w the water evidently cannot riee 56 ft., therefore a = 4, and 
the water rises 4 ft. 
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176. Clearance.—When the piston does not descend quite to the 
bottom of the barrel, the space left below it is called the clearance. 

Example.—(I) If the length of the stroke is 12 ina. and the clear­
ance is 6 ins., to find the greatest height to which the water -will rise. 
If the valve U remains closed, the air, which at the beginning of 

the up-atroke occupied 6 ina., at atmoapherio pressure, will at the 
end of -the stroke occupy 17 ins., and its pressure will therefore be 
^ atmosphere. Hence, in order to lift the lower valve, the pressure 
on the underside muet exceed ̂  atmosphere, i.e., that due to 10 ft. 
head of water. Therefore the water cannot rise more than 34 —10 ft., 
or 24 ft. If then the height of the lower valve exceed 24 ft., the 
pump -will never fill with water, although if once started it would 
work continuously. 
[In such oases, the proper way to start the pump is to pour water 

into the clearance, and this is caHeApriming the pump."] 1 7 6 . T h e Lift P u m p is a modification of the c o m m o n 
p u m p , adapted for raising water to a cistern 
at any desired height above the barrel. 

T h e top of the barrel, instead of being 
open, is covered with a lid in which the 
piston-rod passes through a tight-fitting 
collar 0. E r o m this lid rises a pipe K con­
ducting the water to the required height. 
The bottom of this pipe is sometimes fur­
nished with a third valve W opening 
upwards. 
In the up-strohe (Eig, 68), the water above the 

piston is lifted up into the pipe K through the valve 
W, and the atmospheric preseure in the well forces 
water through the valve U into the barrel below 
the piston. 
In the down-strohe, the water- in the barrel paeees through the 

valve V, jnst as in the common pump. 
The valve W is unnecessary, for the lower valve U is sufficient to 

keep the water from flowing back. 
There is no limit to the height to which wafer can be lifted 
above the piston, but, as in the c o m m o n p u m p , the column 
below the piston cannot exceed the height of a barometer 
of the liquid that is being pumped, 

HYDRO, N 

Eig, 68, 
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The force on the piston-rod in the up-stroke may be found as m 
« 172, Bx, 1. The difference of preesmes on the two sides is mar 
due to the head of water extending from the surface m the well up 
to the outlet. 

177, T h e rorcing P u m p has already been mentioned 
in connexion with the B r a m a h Press, It 
differs from the c o m m o n p u m p in having 
no aperture in the piston P, but instead 
of this a pipe K containing a valve F 
opening outwards conducts the water 
from the barrel to any desired height. 
In the up-stroke (see right-hand barrel 
in Eig, 70) the valve F closes, and water 
enters the barrel through the valve U, as 
in the c o m m o n p u m p . 

In the down-stroke (Eig, 69) this water 
is forced out again through the valve F 
and up the pipe K. 

As in the lift pump, water may be forced up to any 
height above the piston, but it cannot be raised from a 
greater depth below the piston than about 34 ft. 

Example.—The area of the piston of the forcing pump being 
90 eq. in., find the force on the piaton-rod neceesary to raise water 
from a well 20 ft. deep and force it up to a cistern 30 ft, high. 
In the up-stroke the piston supports the column leading from the 
well, and in the do-wn-stroke it supports the column leading up to the 
cistern. Therefore the difference of pressure on the two faces of 
the piston (the upper face being xmder atmospheric pressure) is 
20 X 1000 oz. per sq. ft. in the up-stroke and 30 x 1000 oz. per sq. ft. 
in the down-stroke ; 
, , force required to raise piston = 20 x 1000 x 90/144 oz, 

= 12,500 oz. = 781i lbs. ; 
foi-ce required to lower piston = 30 x 1000 x 90/144 oz. 

= 18,760 oz. = 1171 lbs. 14 oz. 
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1 7 8 . T h e " M a n u a l " Pire Engine consists of two 
forcing p u m p s worked by alternately raising and lowering 
the two handles of a double lever HL (Pig, 70), so that as 
one piston descends the other ascends, and water is forced 
out at each stroke, 

179. Air-Vessel, — The action of the pumps is not 
perfectly continuous, because the pistons momentarily stop 
w h e n their motions are reversed. In order to produce 
a continuous jet of water from the hose, the pumps 
communicate with an air-vessel A (Eig, 70), This is 
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Eig, 71, 

a large metal dome partly filled -with air. W h e n the 
pistons are mo-vdng most rapidly, water is delivered into 
the air-vessel faster than it can escape; hence it rises 
in the dome and compresses the air. W h e n the action of 
the p u m p s stops for an instant, the air agaia expands and 
forces water out of the hose S. 

180, The Steam Pire Engine is a double-action forcing pump 
furnished -with an air-vessel A (Eig, 71), The pwton is driven back­
wards and forwards by steam-power, and water enters the barrel on 
the two aides of the piston, alternately. Each end is furmehed -with 
separate valves, and forms a complete pump, one or other of these 
pumps producing a discharge at each stroke of the piston. 
The arrangement of Fig, 71 is used in most steam pumps. The barrel is usually 

horizontal. 
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Summary, 
1, The different forms of water ̂ Jumps are— 

(i-) The common pump ̂  ̂ j^j^ ̂^̂ ^̂  ^ i^ton; 
(u,) The hft pump ) j j; i, i 
(iii.) The forcing pump, -with second valve at side of barrel. 

2. The fire engine oonsiste of two forcing pumps, or a double forcing 
pump, -with an air-vessel to produce continuous stream. 

3, The condition that the pump may worh continuously is that 
height of piston above water aurface < height of water barometer. 
But water may be Ufted or forced to any height, 
4, Tlie force on the piston rod = wAh, where A = area of piston, 

h = height of column raised, w = specifio weight of water. 

E X A M P L E S XAni. 

1, Describe and explain the action of the common suction pump. 
W h y will it not work equally well at the top of a high mountain ? 

2, One foot of the length of the barrel of a suction pump holds 
8 lbs, of water. At each stroke the piston works through 3 ins. 
The spout is 24 ft, above the surface of the water in the well. H o w 
many ft, -lbs, of work are done per stroke f 

3, W h a t is the greatest length of the suction tube of a pump used 
for raising eea-water, the height of the mercury barometer being 
30 ins, ? (Specific gra-vity of eea-water = 1-028,) 

4, A tank on the sea-shore is fiUed by the tide -with sea-water 
whose specific gra-vity is 1-026, It is desired to empty it at low tide 
by means of a common pump whose lower valve is on the same level 
as the top of the tank, Eind the greatest depth which the tank can 
have, so that this may be possible, when the water barometer stands 
at 34 ft, 2 ins, 

6, If the water barometer stand at 33 ft, 8 ine,, and if a common 
pump is to be used to raise petroleum from an oil-well, find the 
greatest height at which the lower valve of the pump can be placed 
above the surface of the oil in the well. (The specific gra-vity of 
petroleum is -8.) 

6, In the common pump, if the barrel is 18 ins, in length and its 
bottom 21 ft, above the surface of the water, and if the section of 
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the pipe is y\ of that of the barrel, find the height of the water in 
the pipe at the end of the first stroke; given the height of the water-
barometer = 32 ft, 

7, The height of the lower valve of a common pump above the 
surface of the water to be raised is 10 ft,, and the cross-eection of 
the barrel is five times that of the pipe. W h a t must be the length 
of the stroke in order that the water may riee to the lower valve at 
the end of the firet stroke (the water barometer standing at 34 ft,) ? 

8, If the pump in the la,st question be used for raising sea-water 
of specific gravity 1-026, "will the stroke be shorter or longer, and by 
how much ? 

9, If the fixed valve of the common pump be 29 ft, above the 
surface of the water, and the piston, the entire length of whose stroke 
is 6 ins,, is, when at the lowest point of its stroke, 4 ins, from the 
fixed valve, find whether the water -will reach the pump-barrel, the 
height of .the water barometer being 32 ft, 

10, If the plunger of the force-pump has a oroes-eection of 
8 sq, ins, and works 80 ft, below the cistern, what thruet is required 
to force it do-wn ? 

11. In the common pump, why is the lower tube narrower than the 
upper ? W h a t are the forces acting on the piston when the pump is 
in action ? 

12. How would you arrange a pump so that the work done in 
lifting the weight of the piston and its connecting rod should not be 
wasted ? 

13. What additional apparatus ia neceaeary to make the aupply of 
water continuous inatead of being intermittent ? 

14. If the piston only traverses the upper half of the pump-barrel, 
find the greatest height to which the water -wffl rise, the pump being 
originally full of air. 
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E X A M I N A T I O N P A P E B VIIL 

1. Explain the action of the siphon. Why cannot it be used to 
carry water over a mountain P 

2. What -wfil be the effect on the working of a siphon if a hole be 
made (i.) at the highest point, (ii.) at a point above the surface in 
the longer branch ? 

3. A vessel containing water is to be emptied by means of a siphon 
which ie filled -with a liquid of specific gra-vity 'S. Eind the minimum 
length of the longer arm when the length of the shorter is 8 ft., 
in order that the siphon may work. 

4. Describe some simple form of gauge which would enable you -to 
measure the pressure at which gas is supplied, and explain the 
principle upon which it is oonetructed. 

5. Describe the construction and use of the di-ving-bell, and show 
how to find the tension of the supporting rope when the bell is full 
of air at any given depth. 

6. What -will happen if, when the bell is totally immersed, a small 
aperture is made in the vertical side of the bell above the surface of 
the water inside P 

7. What volume of air must be introduced into » cylindrical 
diving-beU to keep the water outside from entering it if -the bell has 
an internal section of 18 sq. ft. and an internal height of 10 ft., and 
the top of the bell is immersed to a depth of 90 ft. in fresh water ? 

8. What -wiU be the effect of inverting a siphon full of air and 
placing it under the rim of a di-ving-beU -with the shorter arm 
projecting upwards into the air in the beU P 

9. Describe and explain the action of the common pump. What is 
meant by the term '' clearance '' P 

10. One foot length of the barrel of a pump holds 15 lbs. of water ; 
at each stroke the piston works through 3 ins., and the epout is 
20 ft. above the water in the weU. H o w much work is done per 
stroke f 



C H A P T B E X V I I I . 

AIE PUMPS. 

181. The pumps used for compressing or rarefying air 
are almost identical in construction with the water pumps 
described in the last chapter, which they also closely 
resemble in principle. 
Any of these pimips may be (and often are) caEed ah- pumps. 

But, in general, the term air pzimp means a pump for exhausting air 
{§ 186). A pump for oompreaaing air is called a condenser, and has 
many important uses, such as for supplying air to a di-ving-bell or 
caisson {§§ 170, 171), inflating the pneumatic tires of a bicycle, 
filling the reservoirs and pipes of the Westinghouse Brake (§ 196), 
making aerated waters, &c. 

-^.^-^ \f 

Eig, 72, Eig, 73, Eig, 74, 

182. T h e Condenser or Condensing P u m p consists of 
a barrel B, traversed by a piston P, and communicating at 
one end -with the vessel A, into which air is to be 
compressed. 

This vessel is called the receiver, and is sho-wn only in 
Eig. 74. 

Both the piston and the end of the barrel contain 
valves I/, F opening fi-om the outside air towards the 
receiver. 

In the backward stroke (i.e., when the piston P is being 
pulled back, Eig. 72), the valve F is closed by the pressure 
in the receiver, while air at atmospheric pressure passes 
through the valve 1/ to the front of the piston and fills 
the barrel. 
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In the beginning of the forward .stroke (Eig, 73) both 
valves I/, F remain closed, and the air inside the barrel is 
compressed until its pressure just equals that in the 
receiver,* 

In the remainder of the forward stroke (Eig, 74), the 
valve F opens, and air is forced through it into the 
receiver. 

In w h a t follows, the backward and forward strokes of 
the piston of a p u m p are together considered as con­
stituting one complete stroke of the p u m p . 
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Eig. 72. Eig. 73. Eig. 74. 

Examples.—(1) The volume of the receiver is 80 oub. ins., and that 
of the barrel 20 cub, ins, Eind how many strokes must be made 
before the pressure of the air in the receiver is 3 atmospheres. 
By Boyle's Law, the density in the receiver ie three times the 
deneity of atmospheric air. Hence the air in the receiver would 
occupy 240 cub, ins, at atmospheric preeeure ; 
160 cub, ins, of air have been forced in. 
But at each back-stroke 20 cub. ins. of air enter the barrel, and 
are forced into the receiver at the forward stroke ; 
,-, number of complete strokes = 160/20 = 8, 

(2) To find when the valve in the barrel opens in the next forward 
stroke (see Ex, 1), 
The valve F opena when the air in the barrel haa a presaure of 
3 atmospherea, that ia, when it occupies one-third its original 
volume, or the piston has traversed two-thirds the length of the 
barrel. 
* Except in the flrst stroke, -when- tlie air in the receiver is at atmospheric 

pressure and F opens at once 
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183. To find the density and pressure in the 
receiver after n, complete strokes. 

Let A be the volume of the receiver, B that of the 
barrel, D the density of atmospheric air, d the density in 
the receiver after n strokes. 

Then the receiver originally contained a mass of air A D 
A t each backward stroke a volume B of air at atmo­

spheric density D enters the barrel. A t the forward 
stroke this air enters the receiver. Hence, after n com­
plete strokes, 

mass of air in receiver = (.4 + w B ) D. 
But its volume = A ; 

.-. its density d = ^+J^^D = (l+n-)j) ... (1), 

This relation is independent of the law connecting the pressure and 
density. If, however, these follow Boyle's Law, we have also 
pressure in receiver = ( 1-l-n.— I atmospheres. 

184. Iiimits to the action.—In obtaining (1), we have supposed 
that all the air which enters the barrel ia forced into the receiver in 
the forward stroke. In such cases, there is no liinit to the preesure 
which can be produced in the receiver. 
In actual pumps, however, the action is limited by the existence 

of a clearance, or residual space, left between the valve F and the 
piston, after the latter has been pushed as far forward aa it -will go. 
Example.—The volume of the barrel is 20 cub. ina., and the 
clearance J oub. in.; to find the greatest pressure that can be 
produced. 
If the air in the barrel is all forced down into the clearance, its 

greatest pressm-e -will be 20-^ J or 40 atmospheres. Hence the pres­
sure in the receiver can never be greater than 40 atmospheres, for 
otherwise the valve F would not open. 
186. Difference 'between the condensing- and the air 
pump.—In the condensing pump, a quantity of air whoee volume is 
that of the barrel is forced into the receiver at each stroke, and the 
density of this air is always that of the outside air. Consequently, the 
mass of the air forced in at each stroke ie constant. But in the air 
pump, though the same volume of air is extracted at each stroke, its 
density diminishes with each strohe, and therefore the mass of the air 
extracted also diminishes. 



186 PNEUMATICS. 

186. T he Air Pump.—^If we suppose a common p u m p 
(§ 172) used for pumping out air instead of water, w e 
shall have an air pump. The vessel to be exhausted of 
air is called the receiver {A, Eigs. 76, 77), and the p u m p 
itself consists essentially of a cylinder B traversed by a 
piston P, both containing valves opening outwards from 
the receiver. 
These valves must be light enough to yield to a very slight exceee of 

pressm-e on their lower side ; hence the valves used in a water pump 
would be far too hea-vy. 

To DESCRIBE ITS ACTION, supposo the piston at the 
bottom of the barrel. 

^ 

\ 

-Y 

Eig. 74. Eig. 76. 

In the up-stroke (Eig, 74) the valve 1/ closes, and the 
air in the receiver and tube lifts the valve U, and part of 
it passes into the barrel. A t the end of the up-stroke the 
barrel is therefore filled -with air at the same pressure, 
and therefore also at the same density, as the air left 
in the receiver. 

In the flrst part of the down-strohe (Eig, 75) the valve U 
closes, and the valve 1/ also remains closed, while the air 
beneath the piston is compressed until its pressure equals that 
of the atmosphere.* 

In the remainder of the down-stroke (Eig, 76) the piston-
valve 1/ opens and allows the air to escape from beneath 
the piston, 
* In consequence of the compressibility of the air, tile piston-valve V does Tiot 
open at once, as it -w-onld do if the barrel contained -water, Tlie present action also 
takes place in a -water pump before the -water reaches the barrel, 
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187. Ha-wksbee's Air Pump (sometimes called the 
double-barrelled air p u m p ) is provided -with two barrels 
instead of one, and the pistons are worked up and do-wn 
by means of w h a t is called a rack a n d pinion (Eig, 77), 
so that, as the handle H is m o v e d to and fro, one piston 
rises as the other falls, G is a mercurial v a c u u m g-aug-e 
(see § 167), 
Advanta&es.—This arrangement possesses two advantages : 

1st.—The air is exhausted twice as quickly as -with a single barrel. 
2nd,—During the up-stroke and the first part of the do-wn-stroke, 

the pressure in the barrel is less than the pressure of the atmosphere. 
This excess of preseure on the upper side of the piston makes the 
single-barrelled pump hard to work. In the double-barrelled pump 
the resultant thrust of the air on the descending piston aeeists in 
puUing the other piston up. 

aiiiii&. 

Eig, 77, 

',e.—If the volumes of the barrel and receiver are equal, 
to find the preseure left in the receiver after 6 complete etrokes. 
In the first up-stroke, half the air from the receiver enters the 

barrel and half ie left behind; therefore, by Boyle'e Law, 
pressure in receiver after the stroke = J atmosphere. 

In the second stroke, half -the remaining air paseee into the barrel; 
.-, pressure in receiver after 2 strokes = ^ x ^ = ^ atmosphere. 
Similarly, at each complete stroke, the quantity of air in the 

receiver, and therefore also the pressure, is reduced by one-half. 
Hence, e-vidently, pressure of air left after 8 complete strokes 

= | x j x | x j x | = {lY = ^ atmoephere. 
Taking an atmosphere as 15 lbs. per square inch, 

the required pressure = 74 oz. per sq. in. 
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188. To find the density and pressure of the air 
left in the receiver after n strokes. 

Let A be the volume of the receiver and connecting-
pipe, B that of the barrel. Let D be the density of the 
atmospheric air originally in the receiver. Let dj, d̂ , ... d„ 
be the densities of the air left after 1, 2, ... n strokes 
respectively. 

After the first up-stroke, the air originally in the 
receiver expands from volume A to volume A-i-B. 
Hence, since its mass is unaltered, its densities are 
connected by the relation 

di (A-^B)=DA-, 
.: di = D-^. 
During the do-wn-stroke the air left in the receiver 
remains at the same density di unaltered, but in the next 
up-stroke it again expands in volume from A to A-\-B. 
Hence, for its subsequent density, we have 

d^(A + B ) = diA ; 
... d ^di^—=D(-^]\ 
At the third stroke the air left in the receiver again 
expands in volume from A to A-\-B, and therefore 

d,(A + B)^d,A; 

•;• '^-'^Ah=HA^Bf-
Proceeding in this way, it is ob-vious that the density 

of the air is reduced at each up-stroke in the ratio of 
A to .4 -|- B, and therefore after n strokes it is given by 
(ln = D i—^Y (2). 

This is true independently of the law connecting the pressure and 
density. If, however, Boyle's Law be assumed, we have 
pressure iu receiver after ii strokes 

\A-^JiJ atmospheres. 
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[This result might be obtained -without first finding the density by 
foUo-wing the method of Ex. 1 below.] 

Examples.—(1) The volumes of the barrel and receiver are 28 and 
78 oub; ine.; to find the pressure of the air left after 3 strokes. 
In the firet up-etroke, 76 cub, ins, of air at atmospheric preeeure 
expand till they fUl the receiver and baixel, i.e., 100 cub. ine. ; 
.-. preesure after the stroke = ^'^ = f atmosphere. 
In each succeeding up-atroke, the air remaining in the receiver 
expands from 75 to 100 cub. ins., and its presaure ia therefore reduced 
to -f what it was before; 
.•, pressure after 3 etrokee = f x | x f = (f)^ = |i atmoephere, 

(2) The volume of the barrel being two-fifthe that of the receiver, 
to find how many strokes are required to reduce the density to less 
than one-third the original density, 
TT B 2 . A 5 5 

Here B = — A ; 8 A + B 5 + 2 7 
„ / 5 \2 26 1 / 6 \3 126 1 / 6 \4 

Hence 4 strokes are required. 

626 l̂  
2401 ^ 3 • 

189, Limits to Exhaustion.—The fraction {Aj{A + B)]" can, 
by taking n- sufficiently large, be made as small ae we please ; hence, 
theoretically, w e could attain any required degree of exhaustion short 
of a perfect vacuum if we were only to work the pump long enough. 
But in an actual pump the degree of exhaustion falls abort of that 
given by (1), owing to the following causes :— 
(i,) The clearance.—Even when the piston is pushed "full home," 
there must be a httle apace or clearance between the two valves. 
If w e go on pumping long enough, we shall at last arrive at a limit 
beyond which the valves never open, and the air between them 
alternately expands into the barrel and is forced back into the 
clearance, 
(U,) Tlie weight of the valves.—The pressure in the receiver can 
never become less than the amount necessary to lift the lower valve ; 
when this is attained, further exhaustion is impossible. 

In order to reduce the weight of the valves as much as possible, 
they are sometimes made of a very thin film of gutta percha or oiled 
sUk overlying very small air holes in the piston and cylinder, respect­
ively. 
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^^ 

190, Smeaton's A i r P u m p (Eig, 78) is identical in 
the arrangement of its parts with the lift p u m p of 
Chap, X V I I , It differs from the c o m m o n 
air p u m p in having the barrel closed b y a 
lid in which the piston-rod passes through 
a tight-fitting collar, and this lid has a 
small hole covered b y a valve \l\l opening 
into the air. 

The action ia aa follows :— 

In the up-strohe, air from the receiver enters 
through the valve ]/. At flrst, the valve \N remaina 
closed, until the air above the piaton is compressed to 
atmospheric preesure; subsequently, W opens and this air escapee. 

Eig, 78, 

In the down-strohe, the piston-valve V opens at once and air passes 
from the under to the upper side of the piston. 

The advanta&ks of Smeaton's Pump are ae follows :— 

(i,) The difficulty of working is far less than in an ordinary single-
barrelled pump, because in the greater portion of the complete stroke 
the pressure on top of the piston ia less than atmospheric pressure. 
(ii.) The action ie much leaa limited by the clearance at the bottom 
of the barrel, the valve V opening more readily owing to the reduction 
of pressure above it. 
In a modified form, the air from the receiver enters the side of the barrel 
at X, and, as the piston descends below X, this air flo-ws straight on to its upper 
SHde -without having to lift the -weight of any valves. 

Eig, 79, 

191, Tate's Air P u m p (Eig, 79) has two pistons P, Q 
attached to the piston-rod at a distance apart of rather 
less than half the length of the barrel. The air from 
the receiver enters at the middle of the barrel at /, 
and valves F, G open outwards at both ends. 
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The AoraoN ia aa follows :— 
In the forward strohe, repreaented in Eig, 79, the air in Q6 is first 

compressed to atmospheric pressure and then forced out through G. 
At the same time a vacuum is formed in FP, and when the piston P 
has just passed beyond Y, air from the receiver rushes into this 
vacuum. 

In tlie backward strohe this air is forced out through F, and a vacuum 
is formed in QG which receives ah- when the piston Q has passed 
beyond Y. 
The ADVANTAGtES are as follows :— 

(i.) Double action -with a sing-le barrel. 
(ii.) N o valves have to be hfted by the pressure of the air in the 

receiver ; consequently a much better vacuum is obtainable, 
[It is only after tlie air has been compressed at the ends of the barrel that its 
pressni-e has to lift the valves F, G.] 

•*192, Sprengel's Air P u m p (Eig, 80), although 
called a "pump," has no pistone or valves. The 
funnel A contains mercury, and ae this falls down 
the tube AB air from the receiver enters at P and 
is carried do-wn in bubbles alternating -with columns 
of mercury. 

The air bubbles escape into the atmoephere at the 
s-urtace of the cup B. 

O n turning off the tap H, mercury again rises 
from B and prevents the reilux of air, ite height 
meaeming the degree of exhaustion as in a barometer 
gauge. 

There is no limit to the exhaustion, short of a 
perfect vacuum, provided that the tube PB exceeds 
the height of the mercurial barometer. 

193. T h e ejector of a V a c u u m Brake ie 
similar in principle to Sprengel'e Pump, but a power­
ful jet of steam from the locomotive boiler replaces 
the mercury column. This jet rushing through the tube, as in 
Eig. 81 (p. 192), carries with it the air from the brakes, producing 
a very fair vacuum. 
194. The Vacuum Brake. — By means of thie apparatus the 
pressure of the atmosphere is made to apply the brakes simultaneously 
to the wheels of all the carriages in a railway train. The brakes on 
each carriage are connected by levers -with a piston P working in a 
large cylinder (Fig. 81). A pipe running along the whole train 
connects these cylinders -with the engine. 

Eig. 80. 
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When the train is running, the ejector on the engine exhausts the air 

Eig. 81. 

on both sides of the piston P by means of the ball-valve V. The 
piston P remains at the bottom of the cylinder, and the brakes are off. 
To stop the train, air is readmitted by the train pipe to the under 
side of the piaton P, but the ball-valve V closes and prevents its 
passing to the upper side. Hence the pressure of the air hfts the 
piston and applies the brakes. 
198. The Westinghouse Brake is worked by compressed air. 
Each carriage ie provided -with a receiver R (Eigs. 82, 83), a brake 
cylinder B and large piston H, and a " triple valve" F consisting of 
a small piston Q and slide-valve S. 

Eig. 82. Eig. 83. 

When the train is running (Eig. 82), air is forced into the train pipe 
by a condensing pump on the engine, and it hfte the email piston 0 
and enters the receiver R. A n y air in the brake cyhndCT B can 
escape through the slide-valve S, and the brakes aire off. 
To stop the train (Eig. 83), air ie allowed to escape from the train 
pipe. The excess of pressure in R depresses the piston 0 and valve S 
Compressed air now rushes from R into the brake cylinder B pushes 
out the piston P, and applies the brakes. ' [The actual -working apparatus contains many additional complications. 
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SuMMAEY. 

1. With the condensing pump, the density after n strokes 

= — X (density of atmoepherio air). 

2. With the air pump, the deneity after n strokes 
1 A \'̂  

= I -^—- j X (density of atmospheric air). 
In each case, A = volume of barrel, B = volume of receiver. 

3. The different air pumps can be classified thus : 

{a) Mechanical air pumps, with pistons and valves—• 
(i.) The common air pump, single barrelled ; 
(ii.) Hawksbee's, double barrelled ; 
(iii,) Smeaton's ; 
(iv,) Tate's, double acting, -with single barrel, 

(A) Air pumps worked by a stream of fluid— 
(i.) Sprengel's mercurial pump ; 
(ii,) The ejector (steam). 

*4. The Vacuum Brahe is applied by atmospheric preesure on piston 
in a vacuum chamber, while the Westinghouse Brahe is apphed by 
compressed air entering brake cylinder on reduction of pressure. 

EXAMPLES XVIII. 

1. The volume of the receiver in a condeneing air pump being 
8 times that of the barrel, after how many etrokee -will the density of 
the air in the receiver be t-wice that of the external air ? 

2. The volumes of the receiver and barrel of a condenser are in 
the ratio of 8 to 1; find the density of the air iu the receiver after 
3 complete strokes. 

3. The receiver of a condenser is 9 times ae large ae the barrel; 
how many strokes must be made before the density of the air in the 
receiver is 4 times that of the external air ? 

4. Describe the common air pump, and state the principal causes 
which limit the action of a pump of this oonsti-uotion. 

HTDBO. 0 
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6. The volume of the receiver in an exhausting, air pump being 
8 times that of the barrel, after how many strokes wiU the deinsity of 
the air in the receiver be haH that of the external air ? 

6. The volumes of the receiver and barrel of an exhausting air 
pump are in the ratio of 6 to 1 ; find the density of the air in the 
receiver aftdr 4 complete-strokes. 

7. The volume of the receiver of an exhausting air pump being 
9 times that of the barrel, how many strokes must be made before 
the deneity of the air in the receiver ia one-third that of the external 
air? 

8. If the receiver of a Tate's air pump holds 90 grs. of air at the 
ordinary pressure, and the piston-barrel 10 grs., what weight of air 
-will be left iu the receiver after 4 complete strokes of the piston ? 

9. In one exhausting ah- pump the volume of the barrel is one-
tenth of that of the receiver, and in another it is one-fifth of it. 
Show that the densities of the air in the two receivers after 3 ascents 
of the pistons are as 12' : 11^, 

10, The con+ents of the receiver of an exhausting air pump is 
6 -times that of the barrel, Eind the elastic force of the air in the 
receiver at the end of the eighth stroke of the piston, when the 
atmospheric pressure is 16 lbs, to the square inch, 

11, Supposing the receiver of an air pump to be made of such a form 
that a mercury barometer can be placed inside, and its volume to be 
8 times that of the barrel, how far -will the mercury have fallen - at 
the end of the second and third etrokes, the height of the mercm-y 
being originally 729 m m , ? 

12, If the volume of the apace between the bottom of the pump. 
barrel and the lower sm-face of the piston when the latter is at the 
«nd of its do-wnward stroke be -01 cub. in,, and the volume of the 
pump-barrel be 16 cub, ina,, find the pressure of the air in the receiver 
when the greatest exhaustion has taken place, the height of the 
barometer being 30 ins,, and tho pump being supposed in other 
respects perfect. 



AIB PUMPS, 195 

13, If the volume of the barrel of an air pump is 4 oub. ins., and 
there is a clearance of -̂  cub, in. at the bottom, find the pressure in 
the receiver when the pump ceases to act. 

14. If the receiver of an air pump is connected -with both a 
barometer gauge and a siphon gauge whose closed end is empty, 
show that the sum of the heights of the mercury columns in the two 
gauges is equal to the height of the barometer. 

16. Why is Hawksbee's air pump made with two barrels, and 
Smeaton's -with only one? 

Show that the expression for the density after n strokes is the 
same whether the common air pump or Smeaton's is used. 

16, A Cartesian diver consists of an indiarubber figure containing 
air, and loaded so as to just rise to the surface in water. W h e n 
placed in the receiver of a condenser, the diver sinks. W h y is this ? 

17, The area of the piston of a vacuum brake ie 200 eq, ins, Eind 
the maximmn force which it is capable of exerting when the 
barometer stands at 29j ins. Is it easier {theoretically) to stop the 
train when the barometer is high or low ? 

18. Explain what happens when some of the carriages of -a, train 
fitted -with the Westinghouse brake become detached o-wing to the 
oouplings breaMng. 
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E X A M I N A T I O N P A P E R IX. 

1. Describe an apparatus suitable for inflating the pneumatic tires 
of a bicycle. 

2. The volume of a receiver of an air condenser is six times that of 
the barrel. After how many etrokes -sviH the density of the air in the 
receiver be five times that of the external air ? 

3. Describe Hawksbee's air pump, and explain the advantage 
gained by the use of two pistons. 

4. Eind the pressure of the air iu the receiver of an air pump after 
n strokes. 

6. If the pressure ia reduced to \ of the atmospheric pressure ia 
6 strokes, to what -will it be reduced in 9 strokes ? 

6. How may the degree of exhaustion of the receiver of an air 
pump be determined by a body floating in water -within the receiver f 

7. If the barometer stands at 29-6 ins., what -will the mercurial 
gauge of an air pump read when the quantity of air -withdra-wu is 
6 times ae much aa the quantity left in the receiver ? 

8. Describe the action of au ordinary pair of beUowe. How can a 
continuous blast of air be obtained as in the forge bellows ? 

9. A siphon is made to transfer mercury from one vessel to another, 
the whole being under a beU jar. When the air is exhausted to 
one-third of its original density, the siphon ceases to act. Eind the 
height of its highest point above the mercury in the lower vessel 
when this occurs. 

10. Describe and explain the action of the Vacuum Brake. 



RESULTS IN MENSURATION. 

The following facts in Solid Geometry and Mensuration are 
assumed. The references given below are to the articles in Briggs 
and Edmondson'a Mensuration, where the reader -will find the pro­
perties in question fully proved. Proofs of them are also given in 
moat elementary treatises on Solid Geometry. The results alone need 
be remembered:— 
(1) The area of a triangle 

= — {base) X {altitude). (§45.) 
2 

(2) The area of a trapezoid {i.e. a quadrilateral with two 

sides parallel) = {its height) x {^ sum of parallel sides). (§^9,) 

(3) The length of the circnmfereuce of a circle of radius r 

= T X I 

= 2iTr; (§ 57,) 

where the Greek letter t ("pi") stands for a certain "incommensur­
able" number (that is, a number which cannot be expressed as an 
exact arithmetical fraction), whose value lies between 3-141692 and 
3-141593, The following approximate values should be remembered 
and used, unless other-wise stated, 
22 

IT = - j — , for all rough calculations; 
ir = 3*1416, more approximately. 

(4) The area of the circle 

= — {radius) x {circiimterence) 
2 

(§ 58.) 
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(5) The volume of a pyramid 

= — {height) x {area of base) 
3 

= -L7i4, (§105-> 
3 

the height n being the perpendicular from the vertex on the plane oi 
the base, and A the area of the base. 
(6) The area of the curved surface of a cylinder, whosa 
height is h and the radius of whose base is r, 

= {height) x {circumference of base) 
= 2irWi. (§115.)-

(7) The volume of the cylinder 
= {height) x {area of base) 
= TTl-'/l. (§ 116.) 

(8) The area of the curved surface of a right circular 
cone, whose height is Ji and the radiua of whose base is r, 

= -^ {circumference of base) x {length of slant side) 
2 

= irr V (ftHi-^) J (§117.) 
a slant side being a line dra-wn from the vertex to a point in the-
circumferenoe of the base. 

(9) The volume of the cone 

— -— {vol. of cylinder of same base and height) 
3 

^-g-w^ft. (§118.) 

(10) The area of the surface of a sphere of radiua r 
= 4 times area of circle of same radius 

= ^^1^. (§ 126.) 

(11) T h e volume of the sphere 

= — {radius) x {surface) 

-*-irf3. 
3 

(§§ 127, 128.> 
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Examples I. (Page 14.) 

3 61. 4. 30-3 

Examples II. (Pases 2a, 22.), 

1. (i.) 8000 oz., 5120 oz. (ii.) 120,000 oz., 122,880 oz. 
(iii.) 40-92 oz., 41-9 oz. 

2. (i.) 20 gm., 272 gm. (ii.) 59f gm., 812.^ gm. 
(iii.) 2095^^ gm., 28496^ gm. 

3. 101-28. 4. 100. 5. 49 : 26, or 1-88 : 1. 6. 450. 
8. (i) 566i lbs, (ii,) 6-57 oz, (iii,) 32-4 oz, (iv,) 8-38 lbs, 

(v,) 19-36gm, (vi,) 920 kilog, (-vii,) 13,600gm. (viii.) 102-4kilog. 
9. (i) 1-728, (ii,) 1-32740, (iu,)-8, (iv,) l^f (v,) 4-16, (vi,) 1-6. 

10. 2-6, 11. 96 : 1. 
16. Unit of-wt, = y^^-wt, of unit vol, of standard substance, 18. Yes, 

Examples III, (Pages 30, 31,) 

1. -If, 2. 8-96 oz. 3, -8, 5. 1-0689. 6. 3 : 1 by voh 
7. if?5-tJ(f?i-K?2). 8. -164 c.c. 9.12. 10. 72 to 17 by vol. 

11. 20-45 gm. zinc, 79-58 gm. copper, 12. 3 of hea-vier, 5 of lighter. 
13. 1-24 and 1, 14. {vi{si-s)-t-v.,{s2-s)] /s. 
15. 6 and 2, IT. The volumes are equal. 

Examination Papee I, (Page 32,) 

1. See 55 3, 5, 7, 2. See §§ 12, 16. 3. 1000, 4. 4000 lbs. 
5. See 5 22. 6. 20. 7. 4-264. 

8. {Wi + JTs) / »•( S + ^ j V 9. 8-2, 10, 27-24 oz,, nearly. 



200 ANSWERS. 

Examples IV. (Pages 37, 38.) 

1. 2-84. 3. 2-046. 4. 7-031, 5. "04. 
6. 1-38, 7. 7-692, 8. 2-5. 9. 4-08 gm. 

10. -028 sq, om, 11. 164 ft. 4 in,, nearly, IZ. {B-w) j {A-w). 

Examples V, (Pages 44, 46,) 

3. 2-86231, 4. 118f^oz. 5. 21-6 in, side, 6. -8, 7. 1-8, 
8.7-31, 9. 21 oub. ft. 10. 2-976, 4-76 gm. 11. -28. 

12. i. 13. 36-42 c.c, 7-85, 14. 1-729. 16. -86 sec. 

Examination Papee II, (Page 46,) 

1.6-6. 2. 2700oz.percu,ft, 3.3cm, 4. See§§30-32, 5. See§36. 
6. -72. 7. 2-6, 8. 2. 9. -001293, 14-46, 10. See §§ 38, 39. 

Examples VI, (Pages 54-66,) 

1. 21, 2. 11-36, 3. 108AOZ. 4. 2-4, 
' 5. 8, 34-56cub,in, 6, 260 gm, 7. 9-6 gm. 8. •1936. 
9. -1935, lO. 111-6 gm, 11. 2 oub, in,; 7-823 oz, 

12. -7846, 13, -803, 14. 6-188, -842. 15. 1-841. 
16, 8-8, -88. 17. 1-5, 18. "94, 19. 19-2, -72, 20. -848, 
21. 50 gm, 22. 4-53125. 23. 2080 gr, 24. "SOS, 25. 7-6. 
26. 191 lbs, 27. T^, 29.1-00352, 30. 100 cc. 

Examples YJl. (Pages 65-67,) 

1. 18 : 19, 2. 10 oz, 3. f oz. 4. 2-5. 5. 14 gm. 
6. 2-84, 7. 2f. 9. 1-03, 10. lU or 7-3863 cc 

11. 190 : 191. 12. |2. 13. 3-466, 3-142, 2-88 cub, in, 14. 1^. 

15, , — — , where a and b are the readings corre­

sponding to specifio gravities 1 and -8. 
16.1-728, 1 7 . ^ , 18. 6foz, 19. 1-4 om. 20. 3i ft. ; f. 

Examination Papbb III, (Page 68,) 

1. See I ii. 2. 7-6. 3. -6, 4. -96, 5. See § 48. 
6. 3-6. 7. See f 69. 8. See §§ 54-58. 9. 3-5. 10. -9, 
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Examples VIII. (Page 80.) 

1. 864 : 25 or 34-66 : 1. 2. (i,) 81 : 80, (ii,) 1 : 9. (iii.) 400 : 23, 
3. (i,) 34660, (ii,) 69120. (iii.) 8if. (iv.) 7291. 
4. (i.) 1030. (ii.) 1,030,000. (iu.) 1030, (iv,) 101,043, 
5. 983,430. 6. 172,800 lbs. per sq. in. 7. 64 lbs. 
8. 100 gm., 100 gm., 120 gm., 48 gm. ; -0048, -0048, -004, -01. 

Examples IX. (Pages 88, 89.) 

1. 127fV lbs. persq, cm,, 17f tone, 671f, 2. 14,400 lbs. 
3. 12i lbs. 4. 7 : 1. 5. 10 sq. in, 7. 268-8 lbs, per sq, in, 
8. 38,880. 9. 44 lbs. 10. 160Jg. tons weight. 

# 
Examination Papee TV. (Page 90.) 

1. See 5§ 68, 69. 2. 7188 dynes per sq. cm., nearly. 
3. See \l 73, 79. 4. 9f oz. 5. See § 87. 6. 192 lbs. 
7. See § 82. 8. 5 tons, 9. 100 lbs, lO. 80 : 1. 

Examples X, (Pages 106, 106,) 

1. 113f. 2. -434. 
3. (i.) 13-021 lbs, per eq, in, (ii,) 2 ^ lbs, per sq, in, 

(iii,) 102-4 Klog, per sq, cm, (iv,) 1-0336 kilog, per sq, om, 
4. On the sp, weight of the fiuid, 5. 260 lbs. per sq, ft,, 1250 lbs, 
6. The thrusts on the bases are 84374 It's,, 13,000 lbs,, 21,437J lbs, 
7. -̂ J- lbs, per sq, in, 8. 7J ft, 9. 4-4 in,, nearly, 

10. 22Jfathoms, aUo-wingfor atm.'pressure, 11, 320lbs, 12. 2 : 1. 
15. P + zsw, where w is weight of unit volume of standard substance. 
16, 260 o-wt. 17. 66-7 lbs. per eq. in. 
18. 1188-48 lbs. per sq. in. 20. 98 ft, 
21. 14-7 lbs, per sq, in, 22. 15 lbs, per sq, in. 

Examples XI. (Pages 111, 112.) 

2. IOt^ lbs, per sq, in, 3. 31J lbs, 4. 2-82 lbs, 
5. " Whole pressm-e " = 68-12 kUog.; thrust on base = 23-408 kilog, 
6. 4 ins. water, 5 ins. oil. 7, See § 112. 8. 6 ins, 9. SJJj oz. 
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Examples XII, (Pages 121-123,) 

1. 1250 lbs,, 1312|lbs, 2. 1 : 4, 3. 3 : 2.. 
4. If kUog, 5, No, 6. 703,125, 7. 8-441 tons. 
8. 447-3 tons, nearly, 9. 2600 oz,, 3000 oz,, 3600 oz. 

10. 32,266ftons, 484,000 tons, 11. 104Joz,, 166| oz,, 229^ oz, 
12. 311 lbs, 

13. h : h : A + —, where li is the given depth and b the length 
2 2 

of the other edge, 
14. iand^ofthewt,ofwaterinheinisphere,respectively. 15. 21-82oz. 
16. 21-82 oz, 17. •I«(«iai4-ff2%+,,.). 19. 118̂ =,-lbs. 
20. 93|tons. 21. 43^1 lbs., 9||.flbs. 22. HaH-way down. 

Examination Papee V. (Page 124.) 

1. See \\ 78, 91. 2. See \ 92. 3. 7600, 3,584,000, approx.. 
4. See \ 97. 5. See \\ 116, 117. 
6. 407ii oz., 425ff oz. 7. 27,623 tons, nearly. 
8. Thrust on top face= 159f lbs., on bottom face = 265f lbs,, 

on each side face = 212J lbs, 
9. 28|f lbs. 10. See « 101. 

Examples XIII, (Pages 131-136,) 

2. F(l-s); increased, 3. F(s-l); increaeed, 
4. 6 : 52 ; lead ; |f of weight of lead. 5. 31 gm. , 
6. 126 gm. 7. 46 lbs. 8. 216 cub. in., 108 cub. iu. 
9. 137 : 134. 10. 2131-3 gm. H . Edge = 28-8 in. 

13. ^o area immersed. 14. 7-4 oz. nearly. 15, 26 TT. 
17. The -wood -will rise, as it now displaces oil instead of air. 
18. Volumes 10 : 3 ; weights 440 : 171, 
19. 3 parts in oil, 1 part in mercury, 22. -72. 
23. 6-26 cm, 24. -25 cm, 25. 1 : 2. 26. \ vol. 
27. 3-71, 29. 8-15 nearly, 30. f m ether, f iu water, 
31. The scale-pan on which the vessel is placed-wiU go down for the 

level of the water is raieed, and coneequentiy the pressme 
on the base is increased. 

32. 262-65 grs, 33. 600 cc, 500-28 cc, nearly. 
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Examination Papee VI, (Page 136,) 
1. See § 115, 2. 800a/3 oz, 3. 4-62 Mlog., 3-542 kilog. 
4. 66-4 gm,, 2566-4 gm, 5. 6033-6 gm. ; 14-3 gm, per sq, cm, 
6, See § 120, 7. A- 8. 200 c c 9. -9, 10. 162 gm. 

Examples XIV. (Pages 149, 150.) 

1. -0013; No. 2. 46,004-6 Ktree. 3. 1155 Ibe. 6. No. 
7. 33-408 ft. 8. 13-281 and 16-003 lbs. per sq. in. 

10. 29-7481 in. 
11. 426 poundals per sq, in,, 800,496 dynes per sq, cm, 
12. 6,045,228 dynes per sq, cm, ; 6 : 1 nearly, 
14. 1| in, rise, 15. f iu, 16. 5-366 miles. 

Examples XV, (Pages 189-162,) 
1. 1-122 kilog, 2. 4 in,, 36 in, 3. J atmosphere. 
5. 68 in. 6. Enough to fiU 12 in. of tulje. 
7. Enough to fill 46 in. of tube, 8. 63 cm, if section be 1 sq, cm. 

10. The mercury rises Ij cm. 11. -01 c c 
12. -0006 oub. in. 13. -163 cub. in, 14. 14f ft. 16. 4 c.c. 
19. -078 lb, 20. 1742 metres, nearly. 21, 337 : 342. 
22. Density of air increases, weight of the body in air decreases, 

the string contracts. 
23. -0024 less of its edge immersed. 26. -g%-g. 

Examination Papee VII, (Page 163.) 
1. See § 135, 2. -00119, 3. 1260 gm. 
4. See § 151. 5. 10 lbs. l-fj: oz, 6. 40 lbs. to the sq. in. 
8. 1-025. 9. -̂ 5 sq. in. 10. -66 in. 

Examples XVI. (Pages 171, 172,) 
1. 34-283 ft, 
3. The highest point muet be less than 21j ft. above the level of 

the liquid in the vessel. 
4. 3ff lbs. per sq. in. 5.26 ft. 6. 9-63 ft. 
7. 750 cub. ft. 8. 102 ft. 9. 99-61 ft. 

10. 400 cub. ft. 11. 2 cc, 
12. (i,) Air rushes out, (ii,) No change. (iii,) Water rushes in. 
13. ̂ V !*• 1120 ft. 15. 8-19 ft. 
17. In water; in the latter case. 
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Examples XVII, (Pages 180, 181), 

1. The atmospheric pressure, forcing the water up, ia leae, 
2. 48 ft.-lbs, 3. 33-074 ft. 4. 33 ft. 4in. 5. 42ft. 1 m. 
6. 4 ft. 7. 2 ft. 10 in, 8, 2ft ft, 9. No, 

10. 173-61 Ibe, 13. A n ab-veasel; aee § 179, 14. 17 ft. 

Examination Papee VIII, (Page 182,) 

1. See § 163 ; the vertical height of the highest point of the siphon 
above the level of the water must be leas than the height of 
the water barometer, 

2. (i) and (ii.) The liquid in the two branches flows in opposite 
directions from the point at which the hole is made ; the 
siphon empties itself and ceaeee to work, 

3. 6 ft, 4.. See §̂  164-169, 5. See § 170. 
6. Air -will eeoape through the hole, and water -wiU rise in the bell 

to the level of the hole, 7. 441^^ cub, ft, 
8. Air -will escape through the siphon and water will riee in the bell, 
9. See §§ 172-176, 10. 76 ft,-lbs, 

ExAMPLES.XVIII, (Pages 193-195,) 

1. 8. 2. 1-6, 3. 27. 5. 6. 6. -5398. 7. 11. 
8. About 59 grs, 10. 4-37 lbs, per sq, hi, 11. 163 mm.; 217 m m . 

12. -02 in, of mercury. 13. -15 in. of mercury. 
16. The increaee of preeeure diminishes the volume of the air in the 

diver, and -therefore the weight of the fluid displaced dimi­
nishes ; the diver therefore ainka. 

17. 2902 lbs. When the barometer ia high. 

Examination Papeb IX, (Page 196,) 

1. See 5 182, 2, 24, 3. See § 187, 4. See § 188. 5. i, 
6. The body ainka in the water aa the air is exhausted; if the 

volume of the body {e.g., a vertical cylinder) be graduated, 
the density of the air it displaces can be calculated from the 
respective volumes immersed in water and air. 

7. 4-23 in. 9. 10 in. 10. See 5 194. 
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THE UNIVERSITY TVTOPIAIL SERIES. 

V a z laniversiti? tTutovial Series 

General Editor: WILLIAM Beigos, M,A,, LL,B,, F,C,S,, F,E,A,S. 

Classical Editor: B. J. HAYES, II.A. 

The object of the Untveesity Tutoeial Seeies is to provide 
candidates for examinations and learners generally with text-books 
which shall convey in the simplest form sound instruction in accord­
ance with the latest results of. scholarship and scientilic research. 
Important points are fully and clearly treated, and care has been 
taken not to introduce details which are likely to perplex the bo-
ginner. 

The Publisher -wiU. be happy to entertain applications from School­
masters for specimen copies of any of the books mentioned in this 
List. 

SOME PRESS OPINIONS, 
" The special use of such manuals as those published by the T7niTer«ity Corre-
apondence Collofre is that theĵ  help the student to systematise hi.-; knowknl^e. and 
also indicate clearly and dulinituly the plan to be pursued."—Journal uf Jî i/iication. 
"This scries of educational 'works, now almost forming a scholastic library in 

itself."—Educational lieciew. 
•'The more -we see of these excellent manuals the more highly do -wo think ot 

them."—Schoolmaster. 
""We have often had occasion to speak in temw of high praise of tho tTnireraty 

Correspondence College Tutorial Scries."—Hoai-d Teacher, 
"As near perfection as can be desired."—Teachers^ Aid. 
"This valuable library."—School Board Chronicle. 
"This excellent and -widoly appreciated series."—Freeman*s Journal. 
*' The notes have the merit of brevity and practical directness."—Guardian. 
"As usual with the series, little is omitted that might have found a place in the 

books, and no point seems unbroachcd."—Educational Times. 
"The work of men who have proved themselves to be possessed of the special 

qualifications necessary."—School Gua^'dian. 
"By this time every one knows the material and uniform excellence of this 

series."—Practical Teacher. 
"The evident care, the clearly conceived plan, the genuine scholarship, and the 

general excellence of the productions in this series, give them, for the special 
purpose they are intended to accomplish, high claims to conunendation—especially 
the commendation of diligent use."—Educational News. "This useful series of text-books."—Nature. " Has done excellent work in promoting higher education."—i/oniZ/iî  I'ost. 



THE UNIVERSITY TUTORIAL SERIES. 3 

Xatin ant) (BreeU Classics. 
{See also page 4.) 

Caesar,—Gallic War, Book I. By A. H. Allceoet, M,A, Oxon,, and 
E, G, Pl.,ustowe, M,A, Camb, Is, Od, 

" A clearly printed text, a pood introduction, an excellent set of notes, and an 
historical and geojn"nptiical index, make up a very good edition at a very small 
price,"—The Schoolmaster. 
Cicero,—De Aniicitia. By A. H. Allceoet, M.A, Oxon,, and W . P . 

Masom, M.A. Lend. Is, 6d, 
Cicero.—De Seneotute. JJy the same Editors, Is, 6d, 
" Tlie notes, altliougli full, are ̂ m-̂ Xa."—Educational Times. 

Horace,—Odes, Books I,—III, By A, H , Allceoft, M.A. Oxon,, and 
B, J. Hayes, M.A, Loud, and Camb, Is, Cd, each, 

"Notes Thich leave no difficulty nnesplained,"—The Schoolmaster. 
"The Notes (on Book III,) are full and good, and notliing more can well be 

dcmaudcd of them,"—Journal of Education. 
Livy,—Book I, By A, H. Allceoft, M.A. Oxon., and W , F, Masou 

M,A, Lend, Third Edition. 2s, 6d, 
" The notes are concise, dwellinpr much on prammaticnl points and dealing irith 

q-aestions of history and archmology in a simple but in'torestiug fashion,"—Education. 
Vergil—Aeneid, Book I. By A, H, Allceoft, M,A, Oxon,, and 

W . F, M-iSOJl, M,A, Loud, Is, 6d, 
Zenophon Anabasis, Book I, By A, H, Allceoft, M.A. Oxon., 

and E. L. D, Eichaedson, B,A, Lend, Is, 6d, 
"The notes are all that could be desired,"—Schoolmaster. 
Tho above editions of LATIN and Geeek Classics are on the 

following plan:— 
A short INTEODTTCTION gives an account of the Author and his 

chief works, the circumstances under which he -\vrote, and hia style, 
dialect, and metre, where these call for notice. 
The Text is based on the latest and best editions, and ia clearly, 

printed in large type. 
Tlie distinctive feature of the NOTES is tho omission of parallel 

passages and controversi.il discussions of dilliculties, and stresa :'j 
laid on all the important points of gi-ammiir and subject-matter. 
Information as to persons and places mentioned is gi'onped together 
in an HiSTOElCAL asd Gi-:oGE.U'iirc.\L Ixdi-;.Y; by this means the 
expense of procuring a Classical Dictionary is rendered unnecessary. 
The works in the Matriculation scries have been edited with a 
-view to meeting the wants of beginners, while the Graduation seriea 
furnishes suitably annotated editions for the more advanced student. A complete list ia given overleaf. 
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TEE UNIVERSITY TUTORIAL SERIES. 

E&ltions Ot Xatin anO ©rceft Classics. 

The following editions are now ready, -with the exception of those 
marked* (in the press), and those marked t (in preparation). 

MATRICULATION SERIES. 
s. d. 

Caesar—Gallic War, Bk. i 16 
Caesak—GaUic War, Bk. 5 16 
Caesab—Gallic War, Bk. 6 16 
Caesae—GaUio War, Bk. 7 2 6 
Caesae—Gallic War, Bk.7, . 

Ch. 1-68 16 
CiCBSO—^De Amicitia 16 
Ciceeo—De Senectute .... 16 
•CiCEHO—^In Catilinam, Bk. 3 1 6 
CiCEEO—Pro Archia 16 
Ciceeo—Pro Balbo 16 
tEuEIPIDES—^Andromache 3 6 
Homeb—lUad, Bk. 6 16 
Homes—Odyssey, Bk. 17.. 16 
HOEACE—Odes, Bk. 1 16 
HoEACE—OdeSj'Bk. 2 16 
HOEACE—Odes, Bk. 3 .... 16 
Hoeacb—Odes, Bk, i .... 16 
LiVY—Bk, 1 , 2 6 

s,d, 
Livx—Bk, 21 2 6 
*Otid—Heroides 1, 2, 3, 5, 

7, 12 2 6 
Otcd—Metamorphoses,Bk,ll 1 6 
Otto-Tristia, Bk, 1 16 
Ovid-Tristia, Bk, 3 .16 
Sallitst—CatiUne ; 2-6 
Sophocles-Antigone 2 6 
VEEeiL—^Aeneid, Bk, 1,,.. 16 
Vee&il—Aeneid, Bk, 3 16 
VEE&H^-Aeneid, Bk. 5 16 
VBEaiL—Aeneid, Bk. 6 16 
Veegu,—^Aeneid, Bk. 7 16 
Vbesil-Aeneid, Bk. 9 16 
Veegil—Aeneid, Bk. 10 .. 16 
Xeh-qphow—Anabasis, Bk.l 1 6 
XejtopHOS"—Hellenica, 3.. 3 6 
Xes"OPH0N—HeUenioa, 4.. 3 6 

GRADUATION SERIES. 

B. d, 
AeSCHTLTJS — Prometheus 

Vinctus 2 6 
Aristophanes—Plutus .. 2 6 
CiCEEO—Ad Atticum, Bk. 4 3 6 
CiCEEO—De Einibua, Bk. 1 2 6 
tOlCEEO—De Ernibus, Bk.2 3 6 
t CiCEEO—Pro Milone 3 6 
CiCEEO—Pro Plancio 2 6 
HeeodoiitS-Bk. 6 2 6 
HEEOBOltrs—Bk. 8 3 6 
HoMEE—Odysaey,Bks. 9,10 2 6 
HoMEE—Odyssey,Bks.ll,12 2 6 
HoMEE—Odyssey,Bks.13,14 2 6 
HoEACE—Epistles 3 6 tHOEACB—Epodes 16 HoEACB—Satires 4 6 

B.d. 
JtrraNAL—Satires, 1, 3, 4.. 3 6 
JOTENAL—Satires, 8, 10, 13 2 6 
LrvT—Bk. 3 36 
LiTT—Bk. 5 26 
OviD—Fasti, Bks. 3, 4 ....' 2 6" 
Plato—Phaedo 3 6 
tSoPHOCLES—Ajax 3 6 
Sophocles—Electra ' 3 6 
Tacitus-Annals, Bk. i ,. 2 6 
Tacitus—Annals, Bk. 2 .. 2 6 
Tacitus—Histories, Bk. l.. 3 6 
Thuctbibes-Bk. 7 3 6 
tyEEGiL — Georgics, Bks'. 

1, 2 3 6 *Xefophos- —Oeconomicua 4 6 
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Vocabularies an& Uest ipapers. 
The VOCABULAS.T contains, arranged in the order of the Text, 

words with which the learner is likely to be unacq[uainted. The 
principal parts of verbs are given, and (when there is any difficulty 
about it) the parsing of the word as it occurs in the Text, The 
Vocabulary is interleaved with -writing paper. 
Two aeries of Test Papees are, as a rule, provided, of which the 

first and easier seriea is devoted entirely to translation, accidence, and 
very elementary points of Syntax; the second, which is intended for 
use the last time the book is read through, deals -with more advanced 
points. 

1 0 
1 6 
1 0 
1 0 
1 0 

Acts of the Apostles .. 1 0 
Adschtlus — Prometheus 

Vinctus 1 0 
Caesae—Gallic War, Bk. 1 1 0 
Caesar—GaUio War, Bk. 5 1 0 
Caesae—GaUic War, Bk. 6 
Caesae—Gallic War, Bk, 7 
Ciceeo—De Amicitia .... 
Ciceeo—De Senectute 
tClCEEO—^In Catilinam, Bk, 3 
Ciceeo—^Pro Archia 1 0 
Ciceeo—^Pro Balbo 1 0 
Ciceeo—Pro Cluentio 1 0 
fClCEEO—Pro Milone 1 0 
Ciceeo—Pro Plancio 1 0 
EtmrPLDES—Ion 1 0 
Heeodotus—^Bk. 6 10 
Hbeobotus-Bk. 8 10 
HoMEE—Eiad, Bk. 6 10 
Houee—Odyssey, Bk. 17 ,. 10 
HoEACB—^Epistles 10 
HoEACE—Odea, Bka, 1-4, each 1 0 
Hoeace—Satires 10 
LiTY—Bk. 1 10 
LiTT—Bk, 3 10 

s,d, 
LiTT—Bk, 6 1 0 
LiVT—Bk, 21 1 0 
Orm—Fasti, Bks, 3 and 4., 10 
*OTrD—Heroides, 1, 2, 3, 5, 

7, 12 16 
Otld—^Metamorphoses, Bk, 

11 10 
Ovid-Tristia, Bk, 1 10 
Ovid—Tristia, Bk, 3 10 
Sallust—Catiline 10 
Sophocles—^Antigone 10 
Sophocles—Electra 10 
Tacitus—Annals, Bk. 1 10 
Tacitus—Histories, Bk. 1., 1 0 
Veegil—Aeneid, Bk. 1,,.. 10 
Veegil—^Aeneid, Bk, 3,... 1 0 
Veegil—Aeneid, Bk, 5.... 10 
Veegil—^Aeneid, Bk, 6.... 10 
Veegil—Aeneid, Bk, 7 10 
Veegil—Aeneid, Bks. 9, 10 10 
Veegil—Georgics, Bks. 1, 2 10 
Xenophon—Anabasis, Bk. 1 1 0 
Xenophon — Cyropaedeia, 

Bks. 1 and 5, each ..,, 10 
tXESOPHON, Oeconomicus,. 1 0 
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Xatin anb Greets* 
Gkammaks and Readeks. 

Greek Eeader, The Tutorial, or Pr.ooE-^riA GnAECA. By A. "Waugh 
Young, M.A. Lond., Gold Medallist in Classics. 2s. 6d. 

Higher Greek Eeader: A Course of 132 Extracts from the best writers, 
ia Three Parts, with an Appendix containing the Greek Unseens 
set at B.A. Lond. 1877—1893. Ss. 6d. 

The Tutorial Latin Grammar. By B. J. Hates, Isl.K. Lond. and 
Camb., and W . i\ M.4S03I, M . A . Lond. Second Edition. Ss. 6d. 

'* Practical experience In teaching and thorough familiarity with details are 
plainly recogTiisable in this new Latin Grammar. Great pains have been taken to 
bring distinctly before the mind all those main points whieh are of fimdamental 
importance and require firm fixture in the mcmorjs and the illustrative examples 
Lave been gathered with much care from the classics mo.st usually read for examina­
tions. Though full, it is not overcrowded with minuti^."—Educaiional Ncics. 
"It ia accurate and full without being overloaded with detail, and varieties of 

type are used with such effect as to minimise the work of the learner. Tested in re­
spect of any of the crucial points, it comes well out of the ordeal."—Schoolmaster. 
The Preceptors' Latin Course. [^I^i preparaiiojt. 
Latin Composition and Syntax. "With copious Exeectses. By A. H. 

AXLCHOFT, M . A . Oxon., and J. H . Haydojj-, M . A . Camb. and 
Lond. Third Edition. 2s. 6d. 

The more advanced portions of the book-work are denoted by an 
asterisk, and the relative importance of rules and excex^tions is shown 
by variety of type. Each Exercise is divided into three sections of 
progressive difficulty. 
"This useful little book."—Journal of Education., 
"This is one of the best manuals on the above subject that we have met with for 

flome time. Simplicity of statement and arrangement: apt examples illustrating 
each rule;' exceptions to these adroitly stated just at'the proper place and time, are 
among some of the striking characteristics of this excellent book. Every advantage 
too has been taken of printing and type, to bring tho leading statements pramincntly 
laefore the eye and mind of the reader. It will not only seiwe as an admirable class-
book^ but from its table of contents and its copious index \vill prove to the jirivate 
student an excellent reference book as well."—The. Schoolmaster, 
"Tho doamess and concise accuracy of this book througkout are truly remark­

able."—Education. 
"The arrangement and order are exceedingly good."—School Board Chronicle, 

The Tutorial Latin Header, la. 6d. With YoCABULAitr. 2s. 6d. 
*'A soundly practical work."—The Guardian. 
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•̂ TJIi: UNIVERSITY TUTORIAL SERIES. 

IRoman anb Grecian Ibistor^. 

The Tutorial History of Rome, (To A,D, 14.) By A. H. Allcboft, 
M.A. Oxon., and W . ¥. IVlASOJl, M.A, LoXD, With Maps, 3s, 6d, 

" It is well and clearly -written,"—Saturday Jievieic. 
A History of Eome from B,C, 31 to A,D, 96: The Early Principate. 

By A, II. Allchoft, M.A. Oxon., and J, H, Hatdos", il.A. 
Camh, and'Lond, 2s. 6d. 

" Aecnrate, and in accordance -wit]! the authorities."—Journal of Education. 
'* It i-s deserving; of the highest pr.ai=e. All that the student can require for hia 

examination is supplied in scholarly shape, and in so clear a manner that the task 
of the learner is made comparatively casy.̂ '—̂ LUerarg World. 
A Longer History of Eome, The following volumes are ready or in 

preparation:— 
1, History of Rome, B.C. 287-202: The Struggle for Empire. B y 

AV. F, MASOil; Jl.A, Lond, 4s, 6d, 
2, History of Eome, B,C, 202-133; E o m e under the Oligarchs, B y 

A. H. Allceoft, M.A. Oxon., and W . F. Masom, M.A. Lond. 
4s. 6d. 

3. History of Rome, B,C, 133-78. By W . F. Masom, M.A. Lond, 
[_In preparation. 

4. History of Eome, B,C. 78-31; The Maldng of the' Monarchy, 
By A. H, Allceoft, M.A. Oxon. 4s. 6d. 

5. History of Eome, B.C. 31 to A.D, 96, f'See above.) 
A History of Greece, To he completed in Six Volumes :— 

1, Early Grecian History, A Sketch of the Historic Period, and 
its Literature, to 495 B.C. By A, H, AlLCfiOFT, M,A, Oxon,, 
and W , F, JIasoii, M.A. Lond. 3s. 6d. 

'Tor those who require a knowledge of the period no hetter book could bfl 
recoimnended."—Educationai Times. 
2, Vol. II. will cover tlie period iS5-i31 B.c, 
3, 4, History of Greece, B,C, 431-371, By A, H, At.lceoft, M,A, 

Oxon. 6s 6d, [_In preparation. 
6, History of Greece, B.C, 371-323: The Decline of Hellas, By 

A, H. Allceoft, M.A, Oxon. 4s. 6d. 
6. History of Sicily, B.C, 490-289, from the Tyranny of Gelon to 

the Death of Agathocles, with a History of Literature. By 
A. H. AXLCEOET, M.A, Oxon,, and W , F, Masom, M,A, Lond. 
3s, 6d, 

""We can hear high testimony to its merits,"—Schoolmaster. 
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frencb. 
The Tutorial French Accidence. By Eeitbst Weeedbt, M.A, Lond. 

3s. 6d. 
" The essentials of the accidence of the French Language are sMUully exhibited 

in carefully condensed synoptic sections."—Educational News. 
*' A most practical and able compilation."—Fuhlic Opinion. 
" The inanual is an excellent one—clear, well-arranged, and if not quite exhaus­

tive, at least very fairly complete."—Glasgow Herald. 
" "A simply expounded and serviceable handbook."—Scotsman, 
The Tutorial French Syntax, 3s, 6d, [In preparation. 
The Preceptors' French Course. {In preparation. 
The Preceptors' French Eeader. With Vooahulary, Is, 6d, 

[In preparation. 
French Prose Eeader, Edited hy S, Baklet, B, fes So,, Examiner 

in French to the College of Preceptors, and W , F. Masom, 
M.A, Lond, With VOCABTTLAET, Second Edition. 2s, 6d, 

"The book is very well adapted to the purpose for •which it is intended,"— 
Schoolmaster. 
"Admirably chosen extracts. They are so selected as to be thoroughly interesting 

and at the same time thoroughly illustrative of all that is best in Prench literature," 
-School Board GJironiele. 

Advanced French Eeader: Containing passages in prose and verse 
representative of all the modem Authors, Edited hy S, Baelet, 
B. es Sc, Examiner in French to the College of Preceptors, and 
W . F. Masom, M.A. Lond. 3s. 6d. 

" Chosen from a large range of good modem author.s, the book provides excellent 
practice in ' Unseens.'--"—The Schoolmaster. 

TBiXQiisb 1bl9tor^. 

The Tutorial History of England, By C, S, FEABElsrsrDE, M,A. 
Oxon, [In preparation. 

The Intermediate Text-Book of English History: a Longer History 
of. England. B y C. S. Feaeensibe, M.A. Oxon., and A, 
Johnson Etam"S, M,A, Camh, With Maps and Plans, 

VoiiniEE I,, to 1485, [Inpreparation. 
Volume n,, 1485 to 1603, 5a, 6d. 
Volume HI,, 1603 to 1714, [in the press. 
Volume IV,, 1685 to 1801, 4s, 6d, 
" The results of extensive reading seem to have been photographed upon a small 
l>late, so that nothing? of the efVect of the larger scene is lost."—7>«cAer*' Monthly. 
" His genealogical tables and his plans of the great battles are very well done, as 

also are the brief biographical sketches which come in an appendix at the end." 
Literary Opinion. 
" It is lively; it is exact; the style is vigorous and has plenty of swing; the facts 

are numerous, but well balanced and admirably arranged."—Education. 
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jSnglisb Xanguage anb Xitevaturc. 

The English Language; Its History and Structure. By W. H. Low, 
M . A . Lend. Second Edition. 3s. 6d. 

CoKTENTS :—The Relation of English to other Languages—Survey 
of the Chief Changes that have taken place in the L a n g u a g e — 
Sources of our Vocahulary—The Alphahet and the Sounds of 
English—Grimm's Law—Gradation and Mutation—^Trans­
position, Assimilation, Addition and Disappearance of Sounds in 
English—Introductory Bemarks on G r a m m a r — T h e Parts of 
Speech, etc.—Syntax—Parsing and Analysis—^Metre—Examina­
tion Questions. 

" A clear workmanlike history of the English language done on sound principles." 
—Saturday Xevieic. ,, . „ , mi. 
" The author deals very fully with the source and growth of the language, liie 

parts of speech are dealt with historically as well as grammatically. The work is 
scholarly and ticQUTa.te.''—Schoolmaster. 
" The history of the language and etymology are both well and f uUy treated;' — 

Teachers' Monthly. 
" Aptly and cleverly -written."—Teachers' Aid. ...... 
" The arrangement of the book is devised in the manner most suited to the 

student's convenience, and most calculated to impress his memory."—Xycewm. 
" It is in the best sense a scientifio treatise. There is not a superfluous sentence. 

—Educational News, 
The Intermediate Text-Book of English Literature. By W. H. Low, 

M . A . Lond. 
Volume I., to 1568, 3s, 6d. [In preparation. 
Volume n,, 1558 to 1660, 3s. 6d. 
Volume III,, 1660 to 1798, 33, 6d. 
Vols. II, and ni., hound together, 6s, 6d, 
• " Really iudioious in the selection of the details gWen."—Saturday Review. 
"Designed on a thoroughly sound principle. Facts, dates, and representative 

quotations are plentiful. The critical extracts are judiciously chosen, and Mr. Low 3 
own writing is clear, effective for its purpose, and evidently the result of thorougli 
knowledge and a very considerable ability to choose between good and bad. — 
National Observer. . * ,.. v, .. 
" It affords another example of the author's comprehensive grasp of his sublet t, 

combined with a true teacher's power of using such judicious condensation that the 
more salient points are brought clearly into view."—reacAers" Monthly. , . ,. 
" Mr. Low has succeeded iu giving a very readable and lucid account of the 

literature of the time."—Literary World. _ . "Mr. Low's book forms a serviceable student's digest of an nnportant penod m our literature."—Schoolmaster. "The style is terse and pointed. The representative quotations are aptly and judloiously chosen. The criticisms are well grounded, clearly expressed and modestly presented."—Morning Post. A Middle English Eeader. By S. J. Evans, M.A. Lond. [In preparation. 
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jSnglisb (Tlassics. 

Addison.—Essays on Milton, Notes on. By W . H. Low, M.A. 23. 

Aelfric's Homilies, Glossary to, in order of the Text. By A. J. Wtait, 
M.A. Lond., and H. H. Jonxsox, B.A. Lond. 2s. Od. 

Chaucer.—Prologue, Knight's Tale. Edited hy A. J. Wtatt, M.A. 
Lond, 2s. 6d. [In the press. 

Dryden,—Essay on Dramatic" Poesy, Edited by W, H, Low, M,A. 
Loud, Test and Notes, 3s, 6d, Or separately, 2s, each. 

Goldsmith,—Poems. Edited by Austin Dobson, 2s, 6d, 

Havelok the Dane, A Close Teanslation, preceded by the Addi­
tional Notes and Corrections issued in Prof, Skeat's New Edition 
By A, J, Wl-All, M.A. Lond. 3s. 

Milton,—Samson Agonistes. Edited by A, J, Wtaii, M,A Lond 
2s, 6d, 

"A capital Introduction, The notes are excellent,"—Educational Times. 

Milton,—Sonnets. Edited hy W. P, Masom, M,A, Lond, Second: 
Edition. Is, 6d, 

Saxon Chronicle, The, from 800-1001 A,D, A Teanslation Bv 
W . H. Low, M.A. Lond. 3s, 

Shakespeare.-Henry VIII. With Inteobuction and Notes by 
W , H. Low, M.A. Lond. Second Edition. 23. 

Shakespeare,—Eichard II, Edited by Prof, W, J. Eolfe. (Harper 
Bros., New York.) 2s. 

Shakespeare—Twelfth Night. Edited hy Prof. W. J. Eolfe (Harper 
Bros., New York.) 23. ' '. a--

Sheridan.—The Rivals, Edited by W, H, Low, M,A, Lond, Is. 

"A fully annotated edition , , complete and thoroughly workmanlike." 
Education. 
Spenser's Shepherd's Calender, Notes on, with an iNTEODUCTloif 

By A. J. WXATT, M.A. Lond. 23. 
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flDental auD HDoral Science. 

Ethics, Mainial of. By J. S. Maceenzie, M.A., FeUo-w of Trinity 
College, Cambriclge, Examiner in the "University of Aberdeen. 

Second Edition. 6s. 6d. 

"In •nritint^ this book ilr. Jlackenzie has produrod an earnest and striking con­
tribution to tbe ethical literature of the time."—J/'iVirf. 
"This excellent manual."—International Journal of Ethics. 
"ITr. ^Mackenzie may be congratulated on havinir presented a thoronghly good 
*iM helpful guide to this attractive, yet elusive and difficult, subject."—Schoolmaster, 
"It is a most admiKible student's manual."—Teachers* Monthly. 
"JTr. Mackenzie's book is as nearly perfect as it could be. It covers the -whole 
field, and for per.sjiicuity and thoroughness leaves nothing to be desired. The pupil 
•who masters it Trill find himself equipped \rith a sound gi*asp of the subject such- a^ 
no one book with which we are acquainted has hitherto been equal to supplying. 
Not the least recommendation ia the really interesting style of the work."—Literary 
World. 
*' "Written with lucidity and an obvious mastery of the whole bearing of the subject," 
—Standard. 
" Xo one can doubt either the author's talent or his information. The ground of 
ethical science is covered by his treatment completely, sensiblyj andinmany respecta 
brilliantly."—Manchester Gttardian. 
"For a practical aid to the student it is very admirably adapted. It is able, clear, 
lizid acute. The arrangement of the book is excellent."—JV'eiocaŝ ie Daily Chronicle. 
Logic, A SCanual of. By J. Weltok, M.A. Lond. 2 vols. Vol. I., 
lOa. 6d. \_Vol. II. inprepdrdiioh. 
Ttls book embraces the entire London B.A. and B.So. Syllabns, 
and renders unnecessary the purchase of the numerous books hitherto 
used. The relative iinportance of the sections is denoted by variety of 
type, and a minimum course of reading is thus indicated. 
Vol. I. contains the whole of Deductive Logic, except Fallacies, 
which -will be ttfeated, with Inductive Fallacies^ in Vol. II. 
"A clear and compendious summary of the views of various thinkers on important 
and doubtful points."—Journal of Education. 
"A very good book . . . not likely to be superseded for a long time to come."— 
Educational Review. 
"Ijnusually complete and reliable.. The arrangement of divisions and subdivisions 
is excellent, and cannot but greatly facilitate the study of the subject by the diligent 
student.''—Schoolmaster. 
"The manual may be safely reconmiended."^J?(iwca(»o»a/ Times. 
"Undoubtedly excellent."—^oard Teacher. 

file:///rith
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ilDatbematics anb flDecbanics. 

Algebra, The Intermediate Text-Book of. \_Shortly, 

Astronomy, Elementary Mathematical. B y 0. "W. 0. Bairiow, M.A. 
Lond. and Oamb., B.Sc. Lond., and G-. H . Bbyan, M.A. Camb., 
Fellow of St. Peter's College. Second Edition, vnth ANSWEBS. 
8s. 6d." 

"Probably within the limits of the volume no better description of the methodiiby 
:which the marvellous structure of scientifio astronomy 1ms been built up could have 
been given."—Athenmum. 
"Sure to find favour with students of astronomy."—Nature. 
"This book supplies a distinct want. The diagrams are clear, the style of writing 

lucid, and the mathematical knowledge req.uired but small."—Teachers' Monthly. 
"Completely successful."—Literary World. 
"One noticeable feature of the book is that the more important theorems are care­

fully illustrated by worked out numerical examples, and are so well arranged and 
deaily written that the volume ought to serve as a good text-book."—Bombay 
Advertiser. 
"A careful examination has led to the verdict that the book is the best of its kind. 

It is accuiute and well arranged, and iu every respect meets the reguirements for 
which it has been designed."—Proc^ica? Teacher. 
"It is an admirable text-hook."—School Guardian. 
"It will carry a student a long way in the sound study of astronomy."—National 

Observer, 
Coordinate Geometry: The Right Line and Circle. B y William 

BsiGGS, M.A., LL.B.j F.B.A.S., and Q. H . Bktan, M.A. Second 
Edition. 3s. 6d. 

"It is thoroughly sound throughout, and indeed deals with some difficult pointa 
with a clearness and accuracy that has not, we believe, been surpassed.''—Education. 
"An admirable attempt on the part of its authors to realize the position of the 

average learner, and to provide for the wants of the private student. . . . Erequent 
exercises and examination papers have been interspersed, and different sizes of type 
and intelligently drawn figiu-es will afford great assistance in revision. "-jEî wcofjona/ 
Times. 
"Thoroughly practical and helpful."—Schoolmaster. 
"Thoroughly sound aud deals clearly and accurately with difficult points "—Th* 

Indian Engineer. 
'̂Another of the excellent books published by tbe University Correspondence 

Opllege Press. The arrangement of matter and the copious explanations it would be 
hard to surpass. It is the best book we have seen on the subject."—Board Teacher. 
"The authors have had exceptional opportunities of appreciating the difficulties of beginners, and they have succeeded in producing a work whidi will be found especially useful."—English Mechanic. 

file:///_Shortly
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/Dbatbematics a n b /iDecbanics—co»!!««m«(?. 

Coordinate Geometry, "Worked Examples in: A Qraduated Course on 
the Eight Line and Circle. 2s. 6d. 

Eeferences are made to the hook-work of Coordinate Geometry. 
Dynamics, Text-Book of. By Whliam: Beisgs, M,A,, LL,B., 

P,E,A.S,, and G, H, Betan, M,A, 2s, 
Geometry of Similar Figures and the Plane, (EuoM VI, and XI,) 

With numerous Deductions worked and unworked, 3s, 6d. 
[Shortly. 

Hydrostatics, An Elementary Text-Book of. By William Beiggs, 
M.A,, LL.B., F.E.A.S., and G. H. Bbtan, M.A, [Shortly. 

Mechanics and Hydrostatics, Worked Examples in: A Graduated 
Course on the London Matriculation Syllahus. Is, 6d, 

""Will prove itself a TaluaWe aid, Not only are the "worked examples well graded, 
but in many cases expla.natory pajagraphs give useful hints as to processes. The 
book has our warm approbation,*'—Schoolmaster. 
Mensuration and Spherical Geometry: Being Mensuration of the 

Simpler Mgures and the Geometrical Properties of the Sphere, 
By WrLLiAM Beiggs, M. A,, LL,B,, i',E, A,S,, and T,"W, Edmond-
SOlf, B,A, Lond, and Camh, Ss, 6d, 

'̂Although intended to meet the requirements of candidates for particular 
examinations, this book may be used generally with safety. The chief feature in it 
appears to be the inclusion of proofs of all formulffi presented. It is thns far-
more than a mere collection of rules and examples."—Eaucational Times. 
"The book comes from the hands of experts; we can think of notliing better 

qualified to enable the student to master this branch of the syllabus, and what is 
more important still, to promote a correct style in his mathematical manipulations." 
—Schoolmaster. 
Mensuration of the Simpler Figures, By WrLLIAM Beiggs, M,A,, 

B',E,A.S., andT, W , EdmoNBSON-, B,A, Lond, and Camh, 2s, 6d. 
Statics, Text-Book of. B y WrLMAu: Beiggs, M,A,, LL,B,, P,E.A.S. 

and G. H, Betait, M,A, Is, 6d, 
Trigonometry, The Tutorial, [In preparation. 
Trigonometry, Synopsis of Elementary, Interleaved. Is, 6d. 
"An admirable little handbook."—Lyceum. 
"Por its purpose no better book could be recommended."—Educational News. 
"Pithy definitions, numerous foimulre, and terse explanatory notes."—School*̂  

master. 
"The facts could hardly be better given."—Ereema/n's Journal, 
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Sciences* 
Analysis of a Simple Salt. "With a Selection of Model Analyses. B y 

AViLLiAK BuiGGS, JI.A., LL.B., F.C.S., and R. W . SiJi:wAiiT, 
D.Sc. Lond. Third Edition, ̂ 'ith Tables of iU'AXYSis (on lincrij; 
2s. 6d. 

"T.ikoly to prove a u.=5eful and trustworthy assi:dtance to those for whom it is 
especialIly iutendcd."—Nutnre. 
"Eviry bclp that can be priven, short of oral iiiBtniction and demonstration, is 

here •'ivL-ii; ami not oiilv will the privnte stiiiii'iil find this a uulcunio aid, but the 
class-iiiN.siur will be gliiJ of llic hul]̂) funiisliL-d by Ml>.-;.si-s. iJriggs and Stewart, whose 
names are a guanmlou of accurate infuniiJitiun."—Education. 
"lU treatment of tho subject in hand is very thorough, and the method is on 

Bound lines."—Svhnoimnster. 
"The selection of model analyses is an excellent feature."—Educational Times. 

Elementary Qualitative Analysis. B y tho same Authors. Is. Gd, 
Biology, Text-Book of. B y II. G. W E L L S , B.Sc. Lond., F.Z.S.,F.C.P. 

AVith an LvniODUCriox by Brof. G. B. IIowES, F.L.S., F.Z.S. 
P a r t I., Vertebrates. Second Edition. Gs. 6d. 
P a r t II., Invertebrates and Plants. 6s. Gd. 

"The Text-Book of Biology is a mo.st ii.'̂eful nddilion to tho series already i.̂ wmed, 
it is wfll arranst'd, and coiitair.s tlie mutter nocessary for an elementary course of 
vertcljiate zoology in a concise and logical order,"—Journal of Education. 
" Jlr. Wells* practical experience shows itself on every papre; bis descriptions aro 

short, lucid, and to the poiiit. W e can oonbdently recommend it."—Educational 
Timi-H. 
"The numerous drawings, the well arranged tables and iho careful descriptions 

irill be of the utmost value to tbe .student."—Schoolmaster. 
"Mr. Wells deals with everything he ought to deal u-ith, and touches nothing that 

he ouirht not to touch. For the higlior furms of Modern Side we commend tliiVlext-
book without reserve; for the special student of biology we urge its use with enthu­
siasm."—Educational lieciew. 
Chemistry, Synopsis of Non-Metallic. With an Appendix on Calcula­

tions. B y W i l l i a m Briggs, M.A., LL.B., F.C.S. Interleaved. 
Is. 6d. 

"The notes arc very clear, and just the thing to assist in the revision of tbit 
«ubject."—Literary Opinion. 
"Arranged in a very clear and handy form."—Journal of Education. 

Heat and Light, Elementary Text-Book of. B y K. W . SiEWAOiT, 
D.Sc. Lond. Second Edition. 3s. 6d. 

" A student of ordinary ability who works carefully through this book need not 
fear the examination."—The Schoolmaster. 
" It will be found an admirable text-book."—̂ fllHcflrffona/ ̂ ews. " A well-printed and well-illustrated book. It strikes us as a trustivorthy guide." —Practical Teacher. " A -welcome addition to a useful series."—School Guardian. 
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S CiCUCCB ~ continued. 

Magnetism and Electricity, Elementary Text Book of: Being an 
Abridgment of the Text-Book of Magnetism and Electricity, with 
143 Diagrams and numerous Questions. B y R. W . STEWART, 
D.Sc. Lond. 33. Gd. 

"Plain and intelligible. It is a capital example of what a good Test-book should 
bo."—Edttcnlional Kews. 
"Will prove to be pai-ticulnrly helpfiil to students in general."—Science and Art. 
" W e can heartily recummond it to all who need a text-book."—Lgrenm. 
"This is an admirublo volume. ... A very good point is tho ntmiber of worked-

out examples."—Teachers' Zlonthhj. 
"Leaves Utile to be desired."—Educational Times. 
"Another of his excellent text-books."—Nature. 

THE TUTORIAL PHYSICS. 
I. Sound, Text-Book of. By E. Catchpool, B.Sc. Lond. 3s. 6d. 
II. Heat, Text-Book of. W i t h 81 Diagrams and numerous Calculations. 

B y B. W . Stkwart, D.Sc. Lond. Second Edition. 3s. Gd. 
"Clear, concise, well an*anged and well iUustratod, and, as far as we have tested, 

accurate."—Journal of Educatioji. 
"Distinguished by accurate scientific knowledge and lucid explanations."— 

Educational Times. 
"The principles of tho subject are clearly set forth, and are exemplified by car«-

iully chosen examplqs."—Oxford Magazine. 
III. Light, Text-Book of (uniform with the Text-Boole of Heat). With 

111 Diagi-ams and numerous Calculations. B y B. W . STEWART, 
D.Sc. Lond. Second Edition. 3s. Gd. 

"The diagrams are neat and accurate, the printing excellent, and the arrangement 
of the matter clear and preci.-!e."—Practical Teacher. 
"Tho Toliunes {Light and Heat) will bo found well adapted for general use by those 

students who have already mastered the first principles of physics. Tbe subjects are 
treated both mathematically and experimentally, and the most important theorcma 
are illustrated by diagi-ams and figures."—School Guardian. 
IV. Magnetism and Electricity, Text-Book of. With 159 Diagrams. 

B y R. W . Stewart, D.Sc. Lond. Second Edition. 5s. Gd. 
"Will be found suitable for general use as an introduction to the study of elee-

trical science."—Iron. 
"It is thoroughly well done."—Schoolmaster. 
"The author has been very successful in making portipns .ot the work nol 

ordinarily regarded as elementary appeal* to be so by his .§imple exppsition o) 
them.''—Teachers' Monthly. 
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2)irectoine0. 
Matriculation Directory, with Ftdl Answers to the Ezamination 

Papers. {No. XVII. will be published during the fortnight following 
the Examination of January 1895.) Nos. IV., VI., Til., IX,, X., 
XI., XII., XIIT., XIV., XV., and X V I . Is. each, net. 

Intermediate Arts Directory, with Full Answers to the Examination 
Papers (except in Special Sahjeots for the Year), {No. VII. will 
be published during the fortnight following the Examination of July 
1895,) No, ri. (1889) to No, VI, (1893), 2s, 6d,,each, net. . 

Inter. Science and Prelim, Sci, Directory, with Full Answers to the 
Ezamination Papers. {No. V. will be published during the fortnight 
following the Examination of July 1895,) No. I. (1890) to No. IV. 
(1893), 2a. 6d. each, net. 

B.A. Directory, with Full Answers to the Ezamination Papers 
(except in Special Subjects for the Year.) No. I., 1889; II., 
1890; ni,, 1891. 2b. 6d. each, net. No, IV,, 1893 (with Full 
Answers to the Papers in Latin, Gtxeek, and Pure Mathematics). 
2s. Si. net. (No. V. will be published in November U%5.) 

TL\it "ClniversitB dorrespon&ent 
AND 

UNIVERSITY C O R R E S P O N D E N C E COLLEGE MAGAZINE. 
Issued every Saturday. Price Id., hy Post IJd.; HaU-yeaxly 

Suhsoription, 3s.; Yearly Suhsoription, 5s. 6d. 
T h e Uniteesitt Coeeespostdent has a wide circulation among 

Grammar and Middle Glass Schools, and, as a weekly journal, ofiers an 
exceUeut medium for Advertisements of IPosTS VACANT AITD WAlfTED; 
no charge for these is made to Yearly Suhscribers. 

liEADDfa FEATTJEBS OP " T H B TJirrVEBSITT COBBESPOITDBNT." 
1. Fortnightly Prizes of One Guinea. 
2. Frequent Vigilance Frizes (One to Three Guineas). 
3, Special Frizes (One to Five Guineas). 
i. Eints and Answers to Students reading for London University, 
5. Answers to Correspondents on all University Hatters. 
6. Fapers set at London Examinations. 
7. Full Solutions to Matriculation Fapers. 
8. Fass Lists of London University Examinations. 
9. Calendar of London University Events. 
10. Latest University News. 
11. Test Fapers (with Answers) for London Matriculation. 
12. Articles on /Special Subjects for London University Examinations. 
13. A Series of Articles on the Universities of the United Kingdom. 
14. Ladies' Column. 15, Reviews of Current Educational Literature. 16, List of Educational Boolcs published during the month. 
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