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PREFACE.

Tre ground covered by this book includes those
portions of Hydrostatics and Pneumatics which are
usually read by beginners and by candidates for exami-
nations of such a standard as that of the London
Matriculation. In the illustrative and other examples,
it has been the authors’ endeavour to deduce results from
first principles, and as far as possible to discourage
students from relying on memory for mathematical
formulee. Where new departures have been thought
desirable, they have generally been effected in such a
way as to allow teachers the opportunity of adhering to
older methods of treatment if they so prefer. Thus,
according to our arrangement, the student becomes
familiar with specific gravity and the very important
methods of determining it, including the use of the
Hydrostatic Balance, before encountering the difficulties
connected with the measurement of pressure and the
distinction between pressure and thrust. But any reader
who prefers may pass straight on to Part II., after
reading the first three or four chapters of Part I., leaving
the remaining chapters of Part I. to be read after
Chapter XIII. Again, proofs involving the Principle
of Work have been introduced in several cases, but the
possibility of omitting them if desired has been pointed
out.



vi PREFACE.

We have given considerable attention to the illustra-
tions, notably those of air and water pumps, in which the
up and down strokes are figured separately.

Our thanks arve due to Mr. F. Rosenberg for his care
and attention in revising many of the proofs, and to the
Vacuum Brake Company and the Westinghouse Brake
Company for their illustrated pamphlets, on which bave
been based our brief deseriptions (page 192) of these two
interesting and important cxemplifications of the princi-
ples of Pneumatics.
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HYDROSTATICS.

INTRODUCTION.

SYSTEMS OF UNITS.

1. The English System.—In Hydrostatics we shall
have to compare the sizes and weights of different bodies.
In measuring these, either the English or the French
system of weights and measures may be used. '

In the English system, the most usual unit of length
‘is the foot (ft.). The foot is one-third of a yard, the
yard being defined as the distance between two marks on
a certain bar of platinum which is now kept in the Tower
of Liondon. There is no reason why this particular length
should have been chosen as the unit, beyond that of
custom. This fact is expressed by saying that the yard
is a purely arbitrary unit.

Smaller lengths may be measured in inches (1 foot =
12 inches), longer lengths in miles (1 mile = 5280 feet),
both units being derived from the foot or yard.

The unit of area is to be taken as the area of a square
whose side is the unit of length, <.e., a square foot.

The unit of volume is to be taken as the capacity of a
cube whose length, breadth, and height are each equal to
the unit of length. Thus a cubic foot and a cubic inch
are the units of volume corresponding to a foot and an
inch respectively, and we note that

1 cubic foot contains 12 x 12 x 12 = 1728 cubic inches.

Sometimes volumes are measured in gallons.

The gallon, like the yard, is an arbitrary unit which is
defined by standard.

HYDRO. B



2 HYDROSTATICS.

2. The weight of a body is a quantity proportl'onai to
the force with which the body is acted on by gravity.

The usual English unit of weight is the p(_mnd. (1b.).

This is defined as the weight of a certain st_a,ndard
piece of platinum kept in London, and which, like the
yard, was chosen arbitrarily. .

Smaller weights may be measured in ounces a Ib. =
16 0z.) or grains (1 Ib. = 7000 grs.) ; larger weights in
tons (1 ton = 2240 Ibs.).

The following facts are important :—

A cubic foot of pure water weighs about 1000 oz. ;

and, roughly,
“ A pint of clear water
Weighs a pound and a quarter ”;

and therefore a gallon (8 pints) weighs 10 1bs.

When we say that a body weighs one pound, we mean
that it would balance the standard pound weight in a
pair of scales, and therefore that it tends to fall to the
Barth with the same force as a 1-l1b. weight at the same
place. Hence, in weighing a body in the ordinary way,
the force of gravity on it is measured in terms of another
force of the same kind, and the common measure of the
weight 1s a purely numerical quantity which does not
depend on-the intensity of gravity, but merely on the
relative quantity of matter in the body, as compared with
the quantity of matter in the pound or other standard of-
weight.

The actual quantity of matter in a body is called its
mass; hence the weight of a body measures its mass.

The actual force with which gravity acts on a body at
any particular place may, for convenience, be called the
absolute weight of the body, to distinguish it from the
purely numerical measure of weight obtained with g pair
of scales. Where no confusion is likely to arise, the
word “absolute ” may be omitted. ’

* If the term. ‘‘gravity” is taken to include the wniversal gr . s
exists between the Earth, Sun, Moon, and- other bodies, it is peﬁggmzr&?%h
spegk of thel' “weig}l,lt ofbthe Ealrth.” t{f’ however, * weight™ is defined 'merelg
by terrestrial gravity, or by weighing with a pair of scales, the term ¢ wei
fhe Earth” is meaningless. N weight of
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3. The Metric System of units, originally introduced
by the French, is far more convenient for calculations
than the English system, and for this reason it is now
very generally nsed in all scientific measurements even in
this country.

The metric unit of length is the metre, and was
originally defined as the ten-millionth part of a quadrant
of the Earth’s circumference, measured from.the North
Pole to the Equator.*

The submultiples of the metre have been named as
follows :—+

1 metre = 10 decimetres

= 100 centimetres (cm.)
= 1000 millimetres (mm.) ;
and the multiples of the metre are—
1 decametre = 10 metres,
1 hectomeire = 100 metres,
1 kilometre = 1000 metres,
1 myriametre = 10,000 metres.

In scientific work, the centimetre is usually chosen as
‘the unit of length, instead of the metre.

A metre = 39°37 inches.

A decimetre is nearly 4 inches. Three centimetres ave
very nearly the diameter of a penny.

760 millimetres (the. average height of the mercury in a
barometer) = 30 inches.

The unit of area corresponding to the centimetre is
the area of a square centimetre ; and we observe that—

a square decimetre = 10 x 10 or 100 square centimetres,
and a square metre = 100 x 100 or 10,000 sq. cm.

# Since the metre was introduced, the Earth’s circumference has been measured
with greater accuracy ; but it was not considered advisable to alter the standard
metre originally adopted, and which is preserved in Paris. The Earth’s circum-
ference may be taken as 40,000,000 metres in ordinary calculations.

t The prefixes deci-, centi-, milli- are derived from the Latin for 10, 100, 1000,
and deca-, hecto-, kilo-, myria- from the Greek for 10, 100, 1000, 10,000.
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The corresponding unit of volume is the capacity th&
cubic centimetre (c.c.) (a cube whose length, breadth,
and height are each 1 centimetre). Note that

a cubic decimetre = 10 x 10 x 10 = 1000 c.c.,
a cubic metre = 100 x 100 x 100 = 1,000,000 c.c.

The French unit of fluid measure is called a litre, and
was originally defined as the volume of a cubic decimetre.

A litre = 1'76 pints.

4. The metric unit of weight is the gramme (gm.).
It was originally defined as the weight of a cubic
centimetre of water, at temperature 4° Centigrade (39°
Fahrenheit).*

Since bodies expand with heat and contract on cooling, the tempera-
ture of the water must be given. If a long-necked flask of boiling
water be taken, it will be noticed on cooling down that the bulk of
the water diminishes gradually until 4°C. is reached; then, as it
continues to cool, water, contrary to the general law, gradually
increases in volume, and so becomes lighter. 4°C. is therefore the
temperature of maximum density of water, and this temperature will
in future be assumed unless otherwise stated.

The submultiples and multiples of the gramme, pro-
ceeding by powers of 10, are denoted by the same prefixes
to the word gramme as in the case of the metre. Thus a
milligramme = 1555 gramme and a kilogramme = 1000
grammes.

Reduced to English measure, a kilogramme is nearly
represented by 2-2044 1bs.

A kilogramme is the weight of a litre of water at
temperature 4°C.  This is the definition of the litre.
Hence, if a cubic centimetre weighed ezactly a gramme,
a litre would be exactly a cubic decimetre, and this maj;
be taken to be the case in all ordinary calculations,

* Like the metre, the gramme is now defined by means of the original standard
kilogramme, a piece of platinum preserved at Paris. For all practical purposes
however, a cubic centimetre of water may be taken to weigh a gramme.
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5. Units of Force.—When, as in Hydrostatics, we
have to deal chiefly with the forces due to the weights
of bodies, it is most convenient to measure forces in
gravitation wunits, The gravitation unit of force is
a force eqnal to the absolute weight of a unit of mass.
Hence the English gravitation unit is the weight of a
pound, and the Metric gravitation unit is the weight
of a gramme. When we speak of a *“force of 10 pounds
or a “force of 10 grammes,” we mean a “ force equal to
the absolute weight of 10 pounds” or of “ 10 grammes,”
and the force is measured in gravitation units.

The same number which measures the mass of a body
also measunres its weight in gravitation units. Thus a
body of mass 10 lbs. weighs 10 lbs.

Similarly, we may say that “a cubic centimetre of water
wetghs 1 gramme,” or ‘“the mass of a cubic centimetre
of water is 1 gramme,” and both statements are correct.

[In Dynamics it is shown that the absolute weight of a given
quantity of matter is not quite the same at different parts of the
TFarth, and hence that the weights of a pound and a gramme are not
constant units of force. For this reason forces are measured in terms
of two dynamical units, the poundal and the dyne, both of which are
defined without reference to gravity. To reduce pounds’ weight to
poundals, or grammes to dynes, it is only necessary to multiply by
‘g’ the acceleration of gravity, measured in the foot-pound-second
or the centimetre-gramme-second system of units, as the case may be.
Taking the usual values of ““g,”’ a pound weight = 32 poundals, and
a gramme weight = 981 dynes.] .

In Hydrostatics, forces should always be calculated in gravitation
units unless the contrary is expressly specified.

6. Work.—When a force moves its point of application,
the work done by the force is the product of the force
into the distance through which its point of application
moves in the direction in which the force acts. When
the point of application moves in the opposite direction,
the work is negative.

The English gravitation unit of work is the foot-pound,
or the work done by raising a weight of 1 lb. throngh
1 foot. If W lbs. are raised through a vertical height of
% feet, the work done is Wh foot-pounds.
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The centimetre-gramme-second gravitation unit is the
gramme-centimetre or work done in raising a weight of
1 gramme through 1 centimetre. A larger and more
convenient unit is the kilogrammetre or work done in
raising a kilogramme through 1 metre. Hence a kilo-
grammetre = 1000 x 100 = 100,000 gramme-centimetres.

7. The Principle of Conservation of Energy asserts
that when a body or machine of any kind is acted on by
any number of forces (efforts and resistances) which are
in equilibrium, the sum of the works done by the several
forces in any displacement of the body or machine is zero.
In other words, when a machine is acting, no more work
will be got out of it than is put into it.

This principle has many important applications to
Hydrostatics.

8. Summary.—The principal facts connected with the
Metric System are shown on page 7. The following
statistics are mostly only rough, but may be found con-
venient for reference.

(1) Earth’s radins = 4000 miles.

(2) Earth’s circumference = 40,000 kilometres.

(8) Height of barometer = = 30 inches.

(4) . » = 760 millimetres,

(5) Accel. of gravity ¢ = 32 feet per sec.
(6) - e = 980 centimetres | per sec.
(7) Cubic foot = 1000 oz.

(8) Gallon = 10 Ibs.

(9) Cub.centimetre rof water= 1 gramme.

(10) Cub. decimetre
or litre

(11) 1000 kilogrammes = 1 ton (minus 36 1bs.).

= 1 kilogramme,
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8 HYDROSTATICS.

9. On the use of formulm in Hydrostatics.—(1) Although in
the following chapters many results will be established in the form
of algebraic formule, it must be carefully borne in mind that such
formulse are mercly mathematical statements of facts, and that the
essential feature of Hydrostatics consists in its principles and practical
applications rather than formule. In order to acquire a sound know-
ledge of the subject, it is therefore of great importance that numerical
calculations should be deduced directly from the principles themselves,
and mot by substituting numerical values for the symbols in
an algebraic formula. For this reason, many of the general algebraic
investigations in this book are preceded (instead of being followed) by
worked-out numerical examples in illustration of them, and this is
done in every case where such numerical calculations are of practical
importance. In any case where this has not been done, the student
is advised to work examples by following (in many cases, word for
word) the methods adopted in the bookwork, but substituting at
every step the numerical values for the algebraic letters given in the
text. By doing so, a far more thorough knowledge of the subject
will be acquired.

(2) The elementary student should mnot attempt to follow an al-
gebraic proof by reading only ; he should copy it out, following each
line as he sets it down, and then recapitulate.

It is also important that, in writing out calculations, the meaning
of each step should be written down ; it is of little or no use to obtain
the right answer to & question unless the method used has been
understood and clearly stated. By adopting this plan, students will
be saved from taxing their memory with a number of formule which
are difficult to remember and are sure to be forgotten when wanted,
but which can immediately be deduced from first principles.

(8) In stating results of numerical caloulations, the unit of measurement
must always be specified. 'Thus, for example—“a force of 100’ has
no meaning, for it might be taken to mean a force of 100 dynes, or
100 grammes weight, or 100 lbs. weight, or 100 tons weight, or 100
of any other unit whatever; before we can attach any definite
meaning to it, we must say which unit is’employed. Moreover, it is
undesirable to use some units of the metric and others of the English
gystem in the same calculation ; one set should be preserved throughout.



PART L

SPECIFIC GRAVITIES OF SOLIDS AND LIQUIDS.

CHAPTER 1.

SOLIDS, LIQUIDS, AND GASES.

1. Hydromechanics, as its name implies, comprises
all those portions of Mechanics which relate to flnids.
It is divided into two branches — Hydrostatics and
Hydrodynamics.

Hydrostatics deals with the equilibrium of fluids and
with the forces acting on them when at rest.

Hydrodynamics deals with the motion of fluids under
the action of forces. ‘

The name Hydraulics is generally given to those
portions of Hydrodynamics which are useful to the
practical engineer; it relates to the flow of water through
pipes, mains, and canals, the construction of water-
wheels, &c.

9. The three states of Matter.—Every one is more
or less familiar with matter in its three states of solid,
liquid, and gas. In ice, water, and steam we have
examples of a single substance which is capable of existing
in either of the three states, according to circumstances.
‘When frozen, it takes the form of a solid (ice) ; at ordinary
temperatures it is a liquid (water) ; and when boiled by
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heating, it becomes a vapour or gas (steam). All simple
substances (the chemical “ elements’) are able to exist in
each of these states. Thus all the metals can be melted
and even turned into vapour by the application of heat.

For some time air and certain other gases were con-
sidered to be “permanent gases’’ which could not be turned
into liquids, and a distinction was drawn between these
“permanent gagses’’ and “vapours.” But in 1878 two
physicists, M. Cailletet and M. Pictet, succeeded in
liquefying mnot only air (which is a mirture containing
oxygen and nitrogen and carbon dioxide), but also oxygen,
nitrogen, and other gases previously supposed to be
permanent. Moreover, most of these gases (except
hydrogen) have been solidified.

3. Solids and Fluids.—From our everyday experience

we get a fairly good idea of the general difference between
solids, liquids, and gases. In Hydrostatics a general idea
is not sufficient ; we must give exact definitions, and these
we can base on common experience.
* We know that a solid body, such as a piece of ice,
metal, glass, or wood, always retains the same shape;
if put into a bottle, it does not adapt its shape to that of
the bottle. We cannot force a piece of stick into it, nor
can we stir it np.

On the other hand, liquids and gases, such as water
and air, will easily flow from one vessel into another.
Thus, if water be poured into a bottle, it adapts itself to
the shape of the bottle, and fills the whole of the bottom
part. If air be blown into the bottle, it will leave no
empty spaces, but will fill the bottle. Again, water is
very easily stirred up with a stick, and air is still more
easily stirred, so much so, that when we move about we
hardly experience any perceptible resistance from the air
which we displace.

Hence we may distingnish the two kinds of matter,
solid and flutd, by the property that the former retains a
definite shape and cannot be stirred up, while the latter
flows easily from one shape to another and can be readily
stirred. In exact words—
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DEr.—A solid is a substance which tends to keep the
same shape for an indefinite length of time, and whose
various parts cannot move freely among themselves.

Der.—A fluid is a substance which yields to any force,
however small, tending to change its shape or to produce
movement of its parts among themselves.

Tt might be remarked that fine sand can be easily stirred, but that
thick treacle is much more difficult to stir, and therefore that the sand
ought to be considered fluid and the treacle solid. But a sufficiently
light piece of stick may be made to stand upright in sand for any
length of time, while, if it were stood upright in treacle, it would, in
the course of time, fall over. The sand never yields to the weight of
the stick, and therefore each of the individual grains of sand possesses
the properties of a solid body. The treacle, on the other hand, yields
in the long run, however light the stick may be, and this characterizes it
as a fluid. Many solids may be moulded from one shape into another
by applying considerable forces or pressures to them, but they do not
yield to ¢ the stightest’’ force.

*4, Rigidity.—The property in virtue of which a body
tends permanently to retain the same shape is called
rigidity. Hence a solid is distingmished from a fluid by
being rigid.

5. Liquids and Gases, — Both liquids and gases
(e.g., water and air) are fluids according to the above
definition. But they differ in one important respect. If
a bottle is half full of water, the water cannot be made to
occupy either more or less than half of the bottle. If
the bottle is full, we cannot get any more water in by
squeezing, nor. can we squeeze the water into a smaller
space by pushing a cork in or otherwise. On the other
band, any amount of air can be compressed into a bottle,
or, again, part of the air in a bottle may be sucked out
(by means of an air pump, such as will be described in
Chap. XVIIL), and then the remainder will still continue
to occupy the whole of the bottle. An easier experiment
is to boil a little water in a corked bottle till it all
becomes steam. The whole of the bottle will be filled
with compressed steam, and unless the cork be fitted in
tightly it will be forced out with considerable violence.
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Part of the steam will then escape, but the remainder
will still continue to fill the whole bottle. Hence we may
distinguish a liquid from a gas by the property that the
former cannot, and the latter can, be readily made to
occupy a greater or less amount of space, or, in exact
language—

Der—A liguid is a fluid whose volume will not increase
beyond a certain limit, and which offers a very great
resistance to any decrease of volume.

Der.—A gas is a fluid which always tends to occupy
as large a volume as possible, but which may be readily
forced to occupy any space, however small.*

6. Compressibility and Elasticity. — A liquid is
called ¢ncompressible when it cannot be forced to occupy a
smaller volume; a gas is always compressible, because it
can be easily compressed into any volume. No liquid is
perfectly incompressible; by means of great pressure, water
may be forced to occupy a slightly smaller bulk, but in
Hydrostatics liquids may be treated as incompressible,

Again, liquids are called Znelastic, because they have no
tendency to expand and increase in bulk, while gases are
called elastic, because they tend to expand so as to occupy
as large a space as possible.

#7. Perfect and viscous fluids.—Although all finids
eventually yield to changes of shape or to stirring,
different fluids behave differently while changing thesr
shape or being stirred. Some seem to yield very readily,
others only with apparent reluctance. Water may be
stirred up easily and quickly, and little resistance will be
experienced. But honey can only be stirred with diffi-
culty, and the faster we try to stir it the more resistauce
we encounter. If, however, we were to stir it sufficiently
slowly, we should feel hardly any resistance, showing that
the honey is not sol¢d).

* That is, so long as it remains a gas. But, if compressed very much, a i
become liql’lid (compare § 2). Co,ﬂversely,’when igutd 1% i¥1 troduc’:edg?r?tz)vlg
vacuum, part of it evaporates, and its vapour fills the space unoccupied by the
liguid. v
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But the resistance always tends to retard the passage
of the spoon through the honey. Hence we have the
following definitions :—

A perfect fluid is one whose parts can move among
themselves without retardation.

A wiscous fluid is one which continually retards the
motion of its parts among themselves.

Strictly speaking, there is no such thing as a perfect fluid. If
water were a perfect fluid, a ship when once set in motion would.
continue to move through it without ever stopping, contrary to
experience. Air and some gases much more closely resemble the
ideal perfect fluid, but a bullet experiences considerable resistance
from the air. Hence air is not a perfect fluid.

At the same time, some fluids are much more viscous than others.

Viscosity of fluids does not affect their equilibrium, but only their
motion ; and therefore it has not to be considered in Hydrostatics,
but only in Hydrodynamics.

8. The surface of a heavy liguid at rest is hori-
zontal.—For, if the surface were not perfectly horizontal,
some parts would have to be higher than others. We
could then draw an inclined plane—such as AB—cutting

Fig. 2.

off the higher part ACB of the surface. The weight of
the liquid above AB would tend to make it slide down
the plane towards the lower part. And, by definition,
the ligquid yields to any force, however small, which tends
to make its parts move separately. Hence, even if no other
motion were possible, the liquid above AB would slide
down the plane towards the places where the surface was
lower. Therefore the liquid cannot remain in equilibrium
unless the surface is perfectly horizontal.
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*9. Cohesion.—If we try to break or cut a solid body
in two, we experience considerable resistance. The
property in virtue of which the different parts of a body
resist separation is called cohesion. It is very easy to
divide a quantity of water in two, showing that but little
cohesion exists in most fluids. In some books a fluid is
defined as “a substance whose particles yield to the
slightest effort tending to separate them’—i.e., a sub-
stance devoid of cohesion—but this definition is incorrect.

SUuMMARY.

I. SOLIDS.—Permanent shape. Parts cannot move about freely.

II. FLUIDS.—No permanent shape. Yield continually to slight-
est force tending to move parts. Fluids are sub-divided into—

(i.) Liquips.—JIncompressible, i.e., definite volume, cannot be

reduced ;
Inelastic, i.e., volume does not expand (unless they
evaporate).
(ii.) Gases.—Compressible, i.¢., volume can be reduced till they
. liquefy ;

Elastic, i.e., volume tends to expand indefinitely.
Viscosity exists in liquids and gases.
Cohesion exists in solids and liquids.

EXAMPLES I.

1. Distinguish between solids and fluids, and state what you regard
ag the essential features of a fluid. 'What is the special characteristic
of a perfect fluid? What are treacle, sand, putty, india-rubber, gold
leaf, string, tar, alcohol, and why ?

2. Distinguish between a liguid and a gas. A bottle is half full of
air and half full of water. What will be the effect (i.) of exhausting
the air, (ii.) of pumping out the water, (iii.) of pumping in more air,
(iv.) of pumping in more water, (v.) of dropping a piece of iron into
the bottle ?

3. If a gallon of water weighs 10 Ibs., and = cubic foot weighs
1000 oz., how many gallons are there in a cubic foot ?

4. Taking a ton = 1000 kilog. (roughly), a cubic foot of water
= 1000 oz., and a cubic metre of water = 1000 kilog., find how many
centimetres there are in a foot.



CHAPTER 1II.

DENSITY AND SPECIFIC GRAVITY.

10. Relations between weight and volume of
water on the English system.,—From the fact that a
cubic foot of water contains 1000 oz., we can find the weight
of a quantity of water, having given its volume, expressed
in English units.

Ezamples.—(1) To find the weight of the water contained in a
cistern 3 ft. long, 2 ft. broad, 3 ft. deep, filled to a depth of 2 ft.

The volume of the water depends on the depth of the water and
not on that of the cistern, and is therefore = 3 x 2 x 2 = 12 cub. ft.
Hence the weight of the water = 12,000 oz. = 750 lbs.

(2) To find the number of gallons of water in the cistern.

Since a gallon of water weighs 10 lbs., and the water in the cistern
weighs 750 lbs., therefore its volume is 75 gallons.

11. Examples on the Metric System.

We have seen that a gramme is by definition equal in
weight to a cubic centimetre of water (at the temperature
of greatest density).

Hence, if any vessel is filled with water, the volume of
the vessel in cubic centimetres is equal to the weight of
the water in grammes.

Examples.—(1) Given a tank of length 25 em., breadth 20 cm.,
height 16 em. The volume = 25 x 20 x 16 = 8000 cub. em., and the
weight of water filling it = 8000 gm. = 8 kilog.

(2) To find the capacity of a bottle which weighs 165 gm. when
empty, and 915 gm. when full, of water.
Here (weight of water) + (weight of bottle) = 915 gm.

Subtract (weight of bottle) = 165 gm. ;
(weight of water) = 760 gm. ;
volume occupied by water = 750 cub. cm.;

and the capacity is 750 cub. cm., or § litre.
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(8) Tojfind the length of a tube whose sectional area is 3 sq. cm.,
and which takes 144 gm. of water to fill it.

The volume of the tube in cubic centimetres = weight of water in
grammes = 144. Let % be its length ; then, by mensuration,

3 x h = volume = 144 ;
/% the required length = 144 +3 = 48 cm.

12. Density.—In the above examples we have based
our calculations on the facts that a cubic foot of water
contains 1000 oz., and that a gramme is defined as
the weight of a cubic centimetre of water. If, however,
we were to use mercury instead of distilled water, we
should find that a cubic foot weighs 13,596 oz.; similarly,
a cubic centimetre weighs 13:596 gm., and a cubic deci-
metre or litre weighs 13'596 kilog. Hence mercury is
heavier in proportion to its bulk than water.

This shows that the weight of any quantity of matter
does not depend only on its volume, but that it also
depends on the kind of matter.

The same is true of solid, as well as of liquid, matter;
thus, a bullet of lead is much heavier than a cork, even
though the cork is the larger body of the two.

Drr.—The mass per unit volume of any substance is
called the density of that substance.

The number which measures the density of a substance
depends not only on the substance, but also on the choice
of units of length and mass. Thus—

the density of water = 1 in centimetfre-gramme system,
= 623 in foot-pound system,
= 1000 in ounces per cubic foot.

13. Relation between the volume, mass, and den-
sity.—1t is easy to find the mass of any given volume of
a substance whose density is given.

Ezample.—Having given that the density of sea water is 64 Ibs.
per cub. ft., to find the mass of sea water in a rectangular tank
whose base measures 3 ft. by 2 ft., filled to a height of 18 ins.

The volume of water in the tank = 8 x 2 x 1} cub. ft. = 9 cub. ft.

Hence the mass of the water in it is 9 times that of a cubic foot,

But ' a cub, ft. contains 64 lbs.

Hence the tank contains 64 x 9 = 576 1bs.
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14. To find the mass of a body whose volume is
¥ and whose density is D,

Let M be the required mass.

From the proportionality of mass to volume, we see
that the mass M of the volume V of matter is ¥ times
the mass of a unit volume.

But the mass of unit volume is equal to the density D.

Hence M = VD,
that is, mass = volume X density.
From this relation, we have
density = ﬂs_s_, or volume = 2258 |
volume density

Hence, if we know the mass and volume of a body, its
density may be found; or, given any two of them, we can
find the third.

Ezample.—To find the density of lead in the centimetre-gramme
system, having given that a bullet of lead, 2 cm. in diameter, weighs
457 gm.

The bullet is a sphere whose radius =1 em.

Hence its volume =£x22x (1)3 = £2 cub. cm.
Also the mass of the bullet = 457 ;
density of lead = 45-7x 2} = 114 gm. per cub. cm.

15. Der.—The specific weight of a substance is the
wetght of a unit volume of the substance.

Since the weight of a unit volume expressed in pounds
or grammes is the measure of the mass per unit volume
(Introduction, § 2), it follows that the specific weight of a
substance s numerically equal to its density, provided that
its weight is measured by means of a set of weights, as is
the common practice.

[This relation is no longer true if by “weights” are
meant “ absolute weights,” measured in poundals or dynes,
or other dynamical units of force. ]

Thus the specific weight of water
— 621 1bs. per cub. ft. = 62 x 82 or 2000 poundals per cub. ft.
=1 gm. per cub. cm. = 981 dynes per cub. cm.

HYDRO. &
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16. Specific Gravity.—In § 12, we saw that the den-
sity of a substance depends not only on the kind of matter
forming it, but also on the chosen units of length and
mass. But, if equal volumes be taken of two different
substances, their masses, and therefore also their weights,
will always be the same ratio, no matter what be the
units of measurement.

Thus the weights of w cubic foot of sea and fresh water are 1024
and 1000 oz., and their ratio = 1'024. The weights of a cubic yard
(27 cub. ft.) are, respectively, 1024 x 27 and 1000 x 27 oz., but their
ratio is still = 1-024, as before. ~And the ratio is unaltered by
reducing both weights to pounds, since this is merely the same as
dividing both sides of the ratio by the same number 16.

This ratio will be called the specific gravity of sea water.

It is, therefore, more convenient, instead of measuring
the actual densities of substances, to compare the masses
or weights of equal volumes of different substances, and
for this purpose one particular substance is always chosen
as the standard substance, with which all others are
compared.

The standard substance universally adopted (except
in comparing certain gases) is water at a temperature of
4°C. or 39° Fahr. (its point of maximum density). We
have seen that this is the substance chosen in defining
the gramme. :

Der.—The specific gravity of a substance is the
ratio of the weight of any volume of that substance to
the weight of an equal volume of the standard substance.

The abbreviation for specific gravity is sp. gr.

Ezyamples.— (1) Thus, from what has been shown in § 16, the
specific gravity of sea water is 1:024. This implies that wzy volume
of sea water is 1'024 times as heavy as an equal volume of fresh water.

(i) A cubic foot of sea water weighs 1:024 x 1000 oz., or 64 Ibs.

(ii.) A gallon of sea water is 1024 times as heavy as 11
fresh water, and therefore weighs 10-24 Ibs. o B polon. of

(iii.) A cubic centimetre of sea water is 1:024 times as h p
cubic centimetre of fresh water, and therefore weighs 1024 ?ga;? o

(iv.) A litre of sea water is 1024 times as heavy as a litre of fr
water, and therefore weighs 1 kilog. 24 gm. ; angythe same ;rollazil.l
tionality holds for any equal volumes of fresh and sea water.
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. (2)-Again, the specific gravity of mercury is about 13'6. This
implies that

(i.) A cubic. foot of mercury weighs 132 times as much as a
cubic foot of water, or 13,600 oz.

(i) A gallon of mercury weighs 132 times as much as a gallon
of water, or 136 1bs., and 50 on.

17. Relations between Density and Specific
Gravity. )

Since weight is proportional to mass, therefore, taking
water as the standard,

TrE Sprciric GRAVITY of a substance is equal to
weight of any vol. of substance _ mass of any vol. of substance
weight of equal vol. of water  mass of equal vol. of water

_ weight of unit vol. of substance _ mass of unit vol. of substance

weight of wnit vol. of water mass of unit vol. of water
_ specific weight of substance _ deusity of substance
specific weight of water density of water

Hence the density of any substance
= (specific_gravity of substance) x (density of water) ;
and the specific weight of any substance
= (specific gravity of substance) x (specific weight of water).

The specific gravity of water itself (at temperature
4°C.) is, of course, unity. In fact, the specific gravity of
the standard substance is necessarily unity.

Since the gramme is so chosen that the density of water
at 4° C. in the centimetre-gramme system is also unity, it
readily follows that the specific gravity of a substance
is equal to its demnsity in the centimetre-gramme
system.

This fact constitutes one of the many advantages of the
C.G.8. system.

Ezample.—The density of a piece of crystal is 1565-75 in the foot-
pound system. What is its specific gravity?

‘Weight of a cubic foot of the erystal = 1565-75 Ibs.,
‘Weight of a cubic foot of water = 625 1bs.;
Snecific gravity = weight of substance
DECHIC BTATLY weight of equal volume of water

_ 18575 _ 5 499,
625
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18. Relations between the volume, weight, and
specific gravity.—We can now find the weight of any
volume of a substance of given specific gravity.

Ezamples.—(1) To find in ounces the weight of a cubic inch of lead,
taking the specific gravity of lead to be 11-4.
‘Weight of a cubic foot of water = 1000 oz. ;
weight of a cubic inch of water = 1755 cub. ft. = 042 oz.
But a cubie inch of lead weighs 11-4 times as much ;
1000 x 11-4
-1728
(2) To find the weight of 40 litres of sea water.
40 litres of fresh water contain 40 kilog.
Therefore 40 litres of sea water contain 40 x 1:024 kilog.
= 4096 kilog. = 40 kilog. 960 gm.

weight of a cubic inch of lead = = 655 oz., approx.

19. To find the weight of a body whose volume
is ¥ and whose specific gravity is S.
Let W be the required weight, w the specific weight of

water.
Then weight of unit volume of water = w;

weight of volume V of water = wV.
But weight of volume V of substance is S times as great ;
W (the required weight) = VSw;
that is, weight of body = (volume) X (specific gravity)
X (specific weight of water),

SuMmMARY.
1. The density of a body = Thass
volume
2. The specific weight of a body = M,
volume

weight
wt. of equal vol. of water’
The densitylof water (temp, 4°C.) = 1 gm. per cub. cm.
= 1000 oz. per cub. ft.
= 62} lbs. per cub. ft.
The density of sea water = 64 lbs. per cub. ft.
The specific gravity of mercury = 136 roughly
[accurately 13-596].

3. The specific gravity of a body =
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EXAMPLES II.

[The following specific gravities are given :— Air, 0-0012 ;
alcohol, 0835 ; copper, 8:9; gold, 19:25; ice, 0:92; lead, 11-85;
mercury, 13'6; sea water, 1'024.]

1. Find the weights of fresh and ssa water, respectively, required
to fill the following vessels, and their capacities in gallons :—
(i.) a rectangular trough 5 ft. long, 1 £t. broad, 1 ft. deep ;
(ii.) a tank 5 ft. long, 4 £t. broad, 6 ft. deep ;
(iii.) a piece of hose 30 ft. long and % in. internal diameter.

2. Find the weights of water and mercury, respectively, required
to fill the following vessels, and their capacities in litres :—
(i.) a trough 5 cm. long, 4 cm. broad, filled to a depth of 1 em. ;
(ii.) a barometer tube 760 mm. long, 1 cm. in diameter ;
(iii.) a hemispherical bowl 20 cm. in diameter.

3. If the rainfall is 1 in., how many tons of water fall on an acre?

4. TIf the rainfall is 1 em., how many tonnes fall on a hectare ?
[An gre = 100 sq. metres; = hectare = 100 ares, |

5. If 5 cub. ins. of mercury weigh 2:451bs. and 2 cub. ins. of
cast iron weigh 0-52 Ib., what ratio does the density of mercury
bear to that of cast iron ?

6. The density of cast iron in the C.G.S. system of units is 7-2.
‘What is its density in the foot-pound system of units ?

7. Explain what is meant by the statement that the specific
gravity of mercury is 13-596.

8. Write down the weights of

(i.) a cubic foot of copper ; (ii.) a cubic inch of lead ;
(iii.) a cubic yard of air; (iv.) a gallon of alcohol ;
(v.) a cubic centimetre of gold ; (vi.) a cubic metre of ice ;
(vii.) a litre of mercury ; (viii.) a hectolitre of sea water.
9. What are the specific gravities of substances of which
(i.) 1 cub. in. weighs 1 oz. ; (ii.) 1 cub. yd. weighs 1 ton ;
(iii.) 1 pint weighs-11b.;. (iv.) a ball, 10 cm. in diameter,

weighs 1 kilog. ;
(v.) 1 Kkilog. fills 240 cub. cm. ; (vi.) 1000 kilog. fill 625 litres.
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10. If 5 cub. ins. of silver weigh as much as 21 cub. ins. of plate
glass, and the specific gravity of silver be 105, find that of plate
glass.

11. A body A has a volume of 2 cub. yds. and specific gravity of
1'1. A second body B has a volume of ¢ cub. ft. and specific gravity
4'95. What ratio does the guantity of matter in 4 bear to that
in B?

12. Show that, if the specific gravity of a substance be multiplied
by %, the product will be the weight of a cubic yard of the substance
in tons, véry mnearly, water being the standard substance.

13. Show that, if 35-84 be divided by the specific gravity of a
substance, the quotient will be the number of cubic feet contained in
a ton of the substance very nearly, water being the standard
substance.

14. Show that the specific gravity of any substance

_ volume of an equal weight of Water
volume of substance

15. The outer radius of a hollow leaden bullet containing a spherical
cavity is R, and its weight is 7. If w is the weight of a unit volume
of lead, show that the radius of the cavity

[w-2F]

ir w
16. Show that the units may be chosen so that the specific gravity
and the density of a substance are identical. What is the relation
between the unit of volume and the unit of weight when the weight

of a body is numerically equal to 1000 times the product of the
volume and specific gravity ?

17. Show that the volume of a. body varies directly as the weight
and inversely as the specific gravity.

18. The specific gravity of any substance is the weight of any
volume of that substance divided by the weight of an equal volume of
water. Is it correct to substitute the word “mass’’ for weight in
the above statement ?



CHAPTER TIII.

SPECIFIC GRAVITIES OF MIXTURES.

20. Mixtures by Volume and by Weight.— It is
often necessary to find the specific gravity of the mixture
formed by taking given quantities of different substances
and mixing them together. When the volumes of the
several substances are given, the mixture is said to be a
mixture by volume. When their weights are given, it
is said to be a mixture by weight.

The total weight of a mixture is invariably equal to the
sum of the weights of its component parts.

The total volume of the mixture is in most cases equal
to the sum of the volumes of its parts, but not invariably
s0.

When sulphuric acid and water are mixed together, the mixture
contracts and occupies a smaller volume than its separate parts together
occupied before mixing, and, generally, where chemical action takes
place, there is a change in the total volume. Where no data are given
by which the amount of the contraction could be determined, it is
always to be assumed that no contraction takes place, and, therefore,
that the general principle holds good.

21. Determination of the specific gravities of
mixtures by volume.—If then the volumes of each of
the ingredients forming a mixture are given, and the
specific gravity of each is also known, the weight of each
can be found from the formula of § 19,

(weight) = (volume) x (specific gravity)
X (specific weight of water).

Hence, by applying the principle of addition stated
above, the weight and volume of the mixture are obtained,
and from these its specific gravity may be determined.
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EBramplés. — (1) To find the specific gravity of a mixture of 2 cub. ft.
of fresh water and 3 cub. ft. of sea water, having ‘given that the
specific gravity of sea water is 1:026.

Here: 2 cub. ft. of fresh water weigh 2000 oz., and 3 cub. ft. of

sea water weigh. 3% 1:026 x 1000 oz. = 3078 oz.
Hence the weight of the mixture = 5078 oz.
Also the volume of the mixture = § cub. ft.

the weight of an equal volume of water = 5 x 1000 oz.
the specific gravity of the mixture = £3%8 = 1:0156.

Tt is not really necessary to know the actual volumes of the com-
ponents, provided that their relative proportions are known. In this
case, we may proceed as in the following examples, which may be
taken as types.

(2) To find the specific gravity of a mixture of 3 parts (by Yolume)
alcohol, 2 parts water, and 1 part glycerine; given that the specific
gravity of alcohol is 0-794, and that of glycerine is 1:26.

Let w be the weight of 1 part of water.

Then the weight of 3 parts of alcohol = 3 x 794w

= 2+382w.
Also the weight of 2 parts of water = 2uw.
Also the weight of 1 part of glycerine = 1-26w.

the weight of 6 parts of the mixture = 5-742w..
But the weight of an equal volume of water = 6w.

specific gravity of mixture = 52—42 = +957.

(8) An amalgam is formed by mixing 3 volumes of potassium
with 7 of mercury, the volume of the amalgam being four-fifths
of that of its constituents. Find its specific gravity, being giver
that specific gravities of mercury and potassium are 13:596 and
0-860, respectively.

Let w be the weight of 1 volume of water.

Then weight of potassium = 3w x 0-860,
weight of mereury = 7w x 13-596.
Volume of mercury and potassium = 3 vols. + 7 vols, = 10 vols.,,
and volume of amalgam = four-fifths of thig = § vols.

weight of equal volume of water = 8.
weight of amalgam
weight of equal volume of water:
31 x 0°860 -5
_ X ;Zw % 13-596 _ 12-219..

.". specific gravity =
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The following is the general theorem of which these
examples are illustrations :—

22. To find the specific gravity of a mixture in
terms of the volumes and specific gravities of the
several components.

Let Vi, Vo Vs, ... V,, be the volumes of the different
components, S, S; 8, ... S, their respective specific
gravities, and let w be the weight of a unit volume of
water.

Then the weights of the different componentstare

ViSw, V,Sw, V,Sw,...V,Sw;
hence the weight of the mixture is
=w (V8 + VoS, + Vi Ss+... + V,8.).
Again, if no contraction takes place on mixing, the
volume of the mixture
=T+ Vet Vst + Vo
Hence the weight of an equal volume of water
=w(Vi+ Vet Vit + V)5
specific gravity of mixture
s weight of mixture
weight of equal vol. of water

— V_ISI+V2S2+V3SS+"'+KzSn (1)
Vit Vot Vyt+ ...+ 7V, '
If the volume contracts on mixing, we must know the
new volume of the mixture. Let this be V'; then the
weight of an equal volume of water is wV. Hence

specific gravity of mixture

_ VS, + VoS k- V3 S5+ ...+ V3.8, . (1a)
V s -

The above formule might be applied to numerical examples on the
determination of specific gravities of mixtures, but it is better to work
out each case from first principles, as in Examples 1, 2, 8, § 21. The
student is, however, recommended to verify the above examples now
by substitution in the formule as an instructive exercise.
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23. Determination of specific gravities of mixtures
by weight.—When the weights of the ingre(_iients forming
a mixture are given, and their specific gravities are known,
their volumes may be readily found by § 19. Hence, by
§ 20, we know both the total weight and volume of the
mixture, whence its specific gravity can be found.

Ewamples—(1) To find the specific gravity of a mixture of 2000 oz.
of fresh water and 3000 oz. of sea water, having given that the
gpecific gravity of sea water is 1-026.

Here 2000 oz. of fresh water occupy 2 cub. ft., and 3000 oz. of sea
water occupy 5000 cub. ft. = 2:924 cub. ft.

the volume of the mixture = 2:924 +2 = 4:924 cub. ft.,
and the weight of an equal volume of water = 4924 oz.

But the weight of the mixture = 5000 oz. ;

the specific gravity of the mixture = 5392 = 1-0154.

49024

Note.—The specific gravity is slightly less than in Ex. 1, § 21. This is because
3000 oz. of the heavier sea water occupy less than 3 cub. ft., and therefore the
proportion by volume of the heavier component is now less than before. Cf. § 26.

(2) To find the specific gravity of a mixture of 3 parts (by weight)
of alcohol, 2 parts of water, and 1 part of glycerine; given that the
specific gravity of alcohol is 0'794, and that of glycerine is 1-26.

Let 7 be the weight of each part, w the weight of a unit volume
of water.

Then a unit volume of alcohol weighs 794w, and a unit volume of
glycerine weighs 1-26w.

But the weights of alcohol, water, and glycerine are

3W, 2W, W.

Hence their volumes are

3w 2w /4
) 794w’ w’ 126w
the whole volume

=( 3 o4 1 )W=(3-773+2+794)W=6-57217;
w

794 126/ w w
and the weight of an equal volume volume of water = 6-572 7.
But the weight of the mixture = 6 7.
specific gravity of mixture = 2292 = *913.
572

The student should carefully compare this example with Ex. 2, § 21.
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The general theorem is as follows :—

24. To find the specific gi-a.vity of a mixture in
terms of the weights and specific gravities of its
several components.

Let W,, W, ... W, be the weights of the different
components, S,, S,, ... S, their respective specific gravities,
and let w be the weight of unit volume of water.

Then the weight of the mixture

=W+ W,+...+W,.
It V3, V3 ... V, are the volumes of the components,
then W, = w8, 7V, &e.; s = %
v
Hence the total volume of the mixture '
=1, W VL)
(5t g -t )
and the weight of an equal volume of water
=", W, W,
= r S B e S
therefore specific gravity of mixture
=Wt Wkt Wy (2.

W, W, W,
S + S, Tt S,

w

#25. The specific gravity of a mixture is increased by
increasing the proportion of its heaviest comstituent, and
decreased by increasing the proportion of its lightest
constituent. For if we replace any volume of any substance in
the mixture by an equal volume of a heavier substance, we" increase
the weight of the mixture without altering the volume. Hence we
increase its specific gravity. And conversely.

*#26. The specific gravity of @ mixture in given proportions by volume
is greater than that of a mazture in the same proportions by weight.—
For, if m volumes of a heavier substance are mixed with » volumes of
a lighter substance, the former are heavier in proportion to their bulk
than the latter, and therefore their proportion by weight is greater
than » to #n. Hence, by § 25, the specific gravity is greater than if
the proportions by weight were as m to n.
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27. Determination of the composition of a mixture
from its specific gravity.

When a mixture is known to consist of fwo substances
only, whose specific gravities are known, we may always
find the relative proportions of these components if we
know the specific gravity of the mixture.* Such deter-
minations are of the greatest practical value. The specific
gravity of a mixture of spirit and water enables us to
find the proportion of spirit in it; the specific gravity of
an alloy of two metals enables us to find the relative
amounts of the metals, and the specific gravity of a
nugget enables us to find the amount of gold which the
nugget contains.

The following examples illustrate the method of solving
problems of this kind :—

Ezamples.—(1) Having given that the specific gravities of gold and
quartz are 19'35 and 2°15, respectively, to find the proportions of
gold and quartz in a nugget of specific gravity 5'69.

Let @ be the volume of gold per unit volume of the nugget.

Then 1 - is the corresponding volume of the quartz.

Taking the unit of weight such that the specific weight of water
is unity, the weights of the gold and guarfz in a unit volume are,

respectively, 19-352 and 2-15(1-2).
But the weight of a unit volume of the nugget is 9-49.
193524215 (1—2) = 5'69;
17202 = 344 ;
z=1, and l—z =4

Therefore the volumes of the gold and quartz are, respectively, 1
and ¢ of the whole volume. The weights of the gold and quartz are
therefore in the proportion of.

1x19:35 1 £x 215,
ie., 914,

Hence the weights of gold and quartz occurring in the nugget are
-2 and % of the whole weight.

* The specific gravity of ‘the mixture must be found by actual eriment. W
shall see how to do this in the next few chapters, and then etflj:e process 0?
determining the composition of the mixture will be complete.
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(2) To find the weights of copper (sp. gr. = 8'8) and zinc (sp. gr.
=7)in 1Ib. of brass (sp. gr. = 8§). ° : e
( Le{'5 }:}l)le weight of copper be # lbs. Then the weight of zinc is
1—ux) 1bs.

Hence we may substitute 7, =2, Wy =1—2, § =288, S,=1,
in formula (2) of § 24, and since the specific gravity of the mixture
is 8, therefore

g — z+ (1—2)
& o1z
88
_ 8:8x7 _ 88x7 .
T2+88(1—2z) 88—18z’
88—182 = 77;
whence z =11,
l—z =75

Therefore 1 Ib. of brass contains 11 1b. of copper and 5 Ib. of zinec.

SUMMARY.

1. If § is the specific gravity of a mixture, and if no contraction

takes place,
NS+ St 4 VS )

i+ Vot+.oo+ Vo

8

If the volume of the mixture contracts to 7,

P bl LR (1a)
v
2. If the weights of the ingredients are given,
g BtV @).
LW P L
S8, S, Sii
Here 8y, Sz, --., S, are the specific gravities of the components

71 Vas --+y Va their volumes,
Wi, Wa, .., W their weights.
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EXAMPLES IIT.

1. Define specific gravity and density. A certain mass of liquid,
whose specitic gravity is 0°5, is mixed, without suffering contraction,
with four times that mass of a second liquid, whose specific gravity is
1:25. Find the specific gravity of the mixture.

2. A mugget of gold mixed with quartz weighs 12 oz., and has
a specific gravity 6:4; given that the specific gravity of gold is
19-35, and of quartz is 2-15, find (to one place of decimals) the
quantity of gold in the nugget.

3. Four pints of alcohol, having a specific gravity of ‘75, are
mixed with one pint of water (specific gravity 1). Find the specific
gravity of the mixture, no change of volume being supposed to take
place.

4. Two vessels each contain 3 pints of fluid, the specific
gravity of the one fluid being twice that of the other. Two pint
tumblers are filled, one out of each vessel, and then each tumbler is
emptied into the vessel from which it was not drawn. Prove that,
after the process has heen three times gome through, the specific
gravities of the fluids are to each other as 41 : 40.

5. To a salt solution, whose specific gravity is 1:08 and weight
27 0z., 4 oz. of water are added. Find the specific gravity of the
mixture.

6. A Prussian dollar, made of an alloy of silver and copper, has the
specific gravity 10-05. Determine the relative amount of silver and
copper in it, the specific gravity of silver being 10-5, that of copper
87.

7. Three equal vessels A, B, C are half full of liquids, densities
dy, -dg, ds, respectively. If now B is filled up from A and then C
from B, find the density of the liquid now contained in C, the liquids
being supposed to mix completely.

8. A mixture is made of 7 cub. cm. of sulphuric acid (specific
gravity = 1'843) and 3 cub. cm. of distilled water, and its specific
gravity when cold is found to be 1'615. Determine the contraction
which has taken place.

9. How many gallons of water must be mixed with 20 gallons of
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milk of specific gravity 1-032 in order to give u mixture of specific
gravity 1:029

10. The specific gravity of gold is 193, that of silver is 10-4.
‘What is the composition of an alloy of gold and silver whose specific
gravity is 17+6, no change of volume being supposed to accompany
the admixture of the metals.

11. Tf the specific gravity of zinc be 688, and that of copper be
8:92, how much of each must be taken in order to obtain 100 gm. of
an alloy of the two metals whose specific gravity is 841 ?

12. Determine the volumes of two liquids, the densities of which
are 1'2 and '8 respectively, which must be mixed in order to obtain a
mixture of 8 volumes whose density is *95.

13. If equal volumes of two liquids be mixed, a mixture is obtained
the specific gravity of which is 1-12. If, however, two volumes of
one liquid are added to one volume of the other, the specific gravity
of the mixture is 1'16. Find the specific gravities of the two liquids.

14. If a volume v; of a liquid whose specific gravity is s; be mixed
with ‘a volume v, of a liquid whose specific gravity is s,, and the
specific gravity of the mixture is s, find the change of volume.

15. 'When equal volumes of two substances are mixed together, the
specific gravity of the mixture is 4; when equal weights of the same
substances are mixed together, the specific gravity of the mixture
is 3. Find the specific gravities of the two substances.

16. A mixture has to be made by taking m parts by weight
of one substance and # parts by weight of another. Instead of this,
m parts by volume of the first and » parts by volume of the second
are taken, Show that the specific gravity of the mixture is greater
than if the proper proportions were taken.

17. The specific gravity of a mixture of two different liquids being
supposed to be an arithmetic mean between those of the component
liquids, required the ratio of the volumes of the latter contained in
the mixture.

18. If equal weights of two different substances be mixed, show
that the specific gravity of the mixture is the harmonic mean of the
specific gravities of the component substances.*

* gz ig said to be the harmonic mean between « and b if 2/z = 1/a+1/b.
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EXAMINATION PAPER 1.

1. Define a fluid. What are the distinguishing features of liguids
and gases 2 'What is a powder, a soft solid, a viscous fluid ?

2. Define density and specific gravity. How are they measured ?

3. Find the density of the standard substance, water, when 1 metre
and 1 kilog. are the units of length and mass, respectively.

4. What is the weight of 10 cub. ft. of a substance whose specific
gravity is 64 ?

5. Show how to find the specific gravity of a mixture when the
volumes and specific gravities of the components are given.

6. 500 cub. cm. of a gas whose density is 14 are mixed with
200 cub. cm. of a gas whose density is 16, and the mixture occupies
510 cub. cm. Find its density.

7. Equal volumes of alcohol (specific gravity = *796) and water are
mixed, and the specific gravity of the mixture is found to be -938.
Find the percentage diminution of volume.

8. Weights W, W, of two substances whose specific gravities are,
respectively, s), s, are mixed together, and the volume of the mixture
is found to be less than the combined volumes in the ratio of #: 1.
Find the specific gravity of the mixture.

9. If zinc (specific gravity = 7) and copper (specific gravity = 8-8)
are mixed in the proportion of 2 :5 by weight, find the specific
gravity of the mixture.

10. How much tin (specific gravity = 7:3) must be mixed with
5 oz. of antimony (specific gravity = 6-7) so that the specific gravity
of the mixture may be 7:2?



CHAPTER 1IV.

DIRECT DETERMINATION OF DENSITIES.
THE SPECIFIC GRAVITY BOTTLE.

28. To find the density and specific gravity of a
solid or liquid by direct measurements.—If the shape
of a solid body is any one of the solid figures treated in
Mensuration, its volume can be found by direct measure-
ments of its size.

The mass of the solid can be found by weighing with
a common balance. By dividing the mass by the
volume, the mass per unit volume is found, and this is
the required density of the solid. If the C.G.S. system
is used in measuring and weighing the solid, its specific
gravity is equal to its density (§ 17). If not, the calcu-
lated density must be divided by the density of water (in
terms of the chosen units of length and mass) in order to
obtain the specific gravity.

In order to find the density of a liguid by this method, a
vessel must be taken whose capacity must be calculated
from direct measurements of its interior. The vessel
must then be placed in the scale-pan of a balance and
weighed empty. If it be now filled with liquid and again
weighed, the difference of the weights when empty and
when full determines the mass of the liquid filling the
vessel.

Dividing this by the calculated capacity, the density of
the liquid is found as before.

29. The specific gravity bottle is much used for
finding the specific gravities of solids and liquids. It is
constructed for the purpose of weighing exactly equal
volumes of different liquids, and it comsists of a glass
flask having a tightly fitting stopper through which a

HYDRO. D



34 HYDROSTATICS.

very fine hole (ab) is bored. In using the Lottle, it is
completely filled with the liquid to be weighed, and the
stopper is then pushed in till it reaches a certain mark
(P) on the neck of the bottle. The superfluous liquid
overflows through the hole ab, and is wiped off; so the
bottle, when filled in this way, always contains the same
volume of liquid.

To obviate the mecessity of
allowing for the weight of the
bottle in every observation, a
counterpoise is provided, whose
weight is exactly equal to that
of the bottle. This counterpoise
is usually a little metal case
containing small shot, and its
weight is adjustable by adding
or subtracting shot.

When the bottle, filled with
liquid, is placed in one of the
scale-pans of a balance, the
counterpoise is placed in the
-other pan in addition to the weights used in weighing.
Since the counterpoise balances the weight of the hottle,
‘the additional weights give the weight of the contained
liquid alone.

Fig. 3.

30. To find the specific gravity of a liquid by
means of the specific gravity bottle.— The process
is as follows:—

(i.) Adjust the weight of the counterpoise (if
necessary) till it balances the bottle when empty.

(ii.) Fill the bottle with water, carefully insert the
stopper, and weigh, placing the counterpoise in the
scale-pan containing the weights.

(iii.) Till the bottle with the liquid whose specific
gravity is required, carefully insert the stopper, and
again weigh, as before.

‘The second process gives the weight of the water con-
tained in the bottle. The third process gives the weight
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of an equal velume of the given liquid. Dividing the
latter by the former, the specific gravity of the liquid is
found.

Erample.—A flask weighs 7'2 gm. when empty, 53'45 gm. when
filled with sulphuric acid, and 32°2 gm. when filled with water. To
find the specific gravity of sulphuric acid.

Weight of sulphuric acid = 53'45—7'2 gm. = 4625 gm. ;
weight of equal volume of water = 32:2 ~7:2 gm. = 25°0 gm.

. specific gravity of sulphuric acid = 4625+ 25 = 1-85,

‘When the counterpoise has been made equal in weight
to the empty bottle its weight is never altered.

Moreover, specific gravity bottles are usually constructed
to hold 10, 20, 25, 50, or 100 gm., or 250, 500, or 1000
grains of water, and when this is the case there is no need
to weigh the bottle when filled with water.

31. To find the specific gravity of a solid by the
original method of Archimedes.

In order to find the specific gravity of a solid, it is
necessary—

(i.) To weigh the solid.
(ii.) To find the weight of an equal volume of water.

Now let any vessel be filled to the brim with water,
and let the solid be then immersed in it. A quantity of
liquid equal in volume to the solid will overflow. Let
this liguid be weighed. Then the weight of the solid
divided by this weight gives the specific gravity required.

This property was discovered by Archimedes, a mathematician
of Syracuse, in Sicily, where he flourished about 250 8.c. Hiero, the
king of Syracuse, had given to a goldsmith a certain weight of gold
to be made into a crown. Suspecting that a portion of the gold had
been replaced by an equal weight of alloy, the king applied to Archi-
medes for « test. While thinking the matter over, Archimedes
chanced to enter his bath, where it ocecurred to him that he displaced
a quantity of water equal to the volume of his body. This suggested
that, if the erown contained an alloy of less specific gravity than the
gold, it would, when immersed in water, displace a greater quantity
of water than a crown of pure gold and of the same weight. When
the experiment was made, the king’s suspicions were justified.
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32. To find the specific gravity of a solid s_ub-
stance insoluble in water, by means of the specific
gravity bottle.

(i) Weigh the solid.

(ii.) Fill the specific gravity bottle with water, and
place it, together with the solid, in one of the scale-pans
of a balance, and weigh.

(iii.) Take the solid and insert it in the botftle. A
quantity of water will overflow whose volume is equal to
that of the solid, and the volume of water in the bottle
will be less than before by the volume of the solid. If,
therefore, the bottle containing the solid and water be
again weighed, their total weight will be less than before
by the weight of the displaced water. Dividing the
weight of the solid by the latter weight, the required
specific gravity of the solid is found.

The specific gravity bottle can only te used to find the
specific gravity of a solid substance when broken up into
fragments sufficiently small to go into the bottle. It is,
therefore, particularly useful in finding the specific gravi-
ties of powders—e.g., sand.

Ezamples.—(1) The weight of a solid is 13 gm. When the specific
gravity bottle is filled with water, its weight, fogether with that of the
solid, is 63 gm. When the solid is put into the bottle, the combined
weight is 53 gm. To find the specific gravity of the solid.

After the solid is dropped into the bottle, the volume of water in
the bottle is less than it was before by an amount equal to the volume
of the solid.

Hence the difference of weights, 63—53 or 10 gm., equals the
weight of a quantity of water equal in volume to the solid.

But the weight of the solid is 13 gm., ;

specific gravity of solid = 12 = 1-3.

(2) The weight of a quantity of powder (insoluble in water) is p.
The weight of a specific gravity bottle filled with water is 4 , and
when the bottle contains the powder and is filled with water its total
weight is B. To find the specific gravity of the powder.

Let w be the weight of water whose volume is equal to that of the
powder.
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Then, before the powder is placed in the bottle, the total weight of
the powder, bottle, and water = p+ 4

‘When the powder is placed in the flask it displaces a quantity of
water equal in volume to the powder, whose weight is 4.
Therefore the total weight B is less than before by w, that is,

B=p+d—w;
w=p+A—B.

weight of powder _ P
weight of water displaced p+A—B "

sp. gr. of powder =

Hence, if p, 4, and B are known, the specific gravity can be
found. Notice that it is not necessary to kmow the weight of the
specific gravity bottle itself.

SUMMARY.

1. With the specific gravity bottle, the specific gravity of a liguid
_ weight of liguid which fills the bottle
weight of water which fills the bottle’

2. Archimedes discovered that when a solid is immersed in liquid it
displaces an equal volume of liquid.

3. To find the specific gravity of a solid,
(i.) Weigh the solid ;
(ii.) Weigh the specific gravity bottle full of water ;
(iii.) Drop in the solid,7and weigh again.
Hence calculate weight of water which overflows at third observa-
ton.Then  “weight of solid
Sl weight of water displaced’

EXAMPLES IV.

1. A rectangular block of marble whose length is 75 em., width
50 cm., and depth 25 cm., weighs 266 kilog. Find its density.

2. Describe the process of determining the specific gravity of «
Jliquid by means of « specific gravity bottle, and show how the
capacity of the bottle may be found by filling it with liquid of known
density.
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3. Define demsity. A specific gravity bottle, completely full of
water, weighs 384 gm. ; and, when 223 gm. of a certain solid have
been introduced, it weighs 498 gm. Caleulate the density of the
solid, explaining clearly why the result is density in accordance with
your definition, and also why the second weighing differs from the
first by less than the weight of the introduced solid.

4. If water be taken as the standard substance, a cubic foot of
which weighs 1000 oz., what is the specific gravity of a substance of
which 16 cub. yds. weigh 84% tons?

5. If water be taken as the standard substance, u cubic foot of
which weighs 1000 oz., what is the specific gravity of a substance of
which 27 cub. ins. weigh 10 drs. ?

6. The weight of a specific gravity bottle when empty is 42 gm.,
and when full of water and glycerine, respectively, its weight is
222 gm. and 292 gm. TFind the specific gravity of glycerine.

7. A specific gravity bottle full of water weighs 44 gm. ; and when
some pieces of iron weighing 10 gm. in air are introduced into the
bottle, and the bottle again filled up with water, the combined weight
is 52'7 gm. What is the specific gravity of the iron?

8. A specific gravity bottle weighs 500 gm. when full of water ;
50 gm. of a-given powder is put into the bottle, which is filled up
with water, and the whole weighs 530 gm. What is the specific
gravity of the powder?

9. How much mercury of density 13-6 will be required to fill «
tube whose length is 20 cm. and mean section *015 sq. cm. ?

10. Find the mean section of a tube 28 cm. long which holds 1 gm.
of glycerine of density 1-26. '

11. A pound of iron is to be drawn into wire, having a diameter
of ‘05 in. What length will it yield, the specific gravity of iron
being 7-6?

12. The weight of a flask when empty is w, when filled with water.
its weight is 4, and when filled with a certain liquid its weight is B.
‘What is the specific gravity of the liquid ?



CHAPTER V.

FLOTATION—THE PRINCIPLE OF ARCHIMEDES.
THE HYDROSTATIC BALANCE.

We now come to certain methods of finding specific
gravities which depend on measuring the forces that a
fluid exerts on an immersed solid.

33. Buoyancy.—When a body lighter than water is
dropped into water, it floats at the top of the water. 1If,
however, the body is heavier than water, it sinks to the
bottom. This is a fact which we know from everyday
experience. Thus a cork floats on water while a stone
sinks to the bottom. If we push a cork down under
water, it will again rise to the surface, though the force of
gravity on it acts downwards.

Therefore we can infer that a fluid is capable of
exerting an upward force or thrust tending to lift any
immersed body to the surface.

We commonly speak of this action as due to the
buoyancy of the fluid. The upward force is really
produced by the pressure which the fluid exerts against
the surface of the solid. We shall now investigate
the amount of this force by a simple application of the
Principle of Work, leaving a fuller discussion of the
pressures of fluids on immersed or floaling bodies till
Chap. XIIL*

34. To find the upward force which a heavy fluid
exerts on an immersed body.

When a body of volume V sinks in a fluid, an equal
volume V of the fluid is displaced to make room for it
(§31). As the body sinks, this fluid is raised, and hence
work must be done against its weight. And in sinking

* The student who has not read the Principle of Work in Dynamics may omit,
what follows, and pass on to the statement of the Principle of Archimedes (§ 85)
relying on the experiments of § 89 to establish it.
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from 4 (Fig. 4) to B (Fig. 5)
the solid displaces the fluid
at B, and fluid rises and fills
the space V at 4.

Hence the solid in sinking
through a vertical height A
must do work against the re-
action of the fluid sufficient
to raise an equal volume ¥V
of fluid through an equal
height 2.

Hence, if B be the reaction of the fluid, we have, by
equating the works done,

B x h = (weight of volume V of fluid) X & ;
R = weight of volume ¥ of fluid,
or upward thrust of fluid on solid
= weight of fluid equal in volume to the solid
= weight of fluid displaced by the solid.

Fig. 4. Fig. 5.

35. The Principle of Archimedes.—The principle
proved above is known as the Principle of Archimedes,*
and is generally stated thus:—

A solid immersed in fluid loses as much of its weight as s
equal to the weight of the fluid which it displaces.
Ezample.—The upward thrust on a body of volume 8 cub. ft.

totally immersed in water
= wt. of 8 cub. ft. of water = 8000 oz. = 500 Ibs.

In the case of sea water (p. 20) the thrust = 8 x 64 1bs. = 512 Ibs. wt.

36. Case of a floating body.—If the weight of a
solid is less than the mpward thrust due to the weight
of the fluid displaced, the solid rises till it floats.

‘When the solid is only partially immersed (Fig. 6), the
space which it occupies is divided into two parts U, V by
AB, the plane of the surface of the fluid.

It is clear that no fluid is displaced by the upper por-
tion U, nor does the fluid exert any pressure on this

* Whether Archimedes used this principle in experimenting with the erown of
Hiero (§ 31), or discovered it later, is uncertain.
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portion.  Hence the Auid
displaced is the fluid which
would fill the submerged
portion ¥, and is less than
the whole volume of the solid. :
The solid therefore comes
into a position of equilibrium
in which the weight of the
fwid displaced (V') is equal
to the weight of the solid.

Ezample—To find the weight and specific gravity of a body of
volume 3 cub. ft., which, when attached to 5 cub. ft. of cork
(sp. gr. -24), floats with 1 cub. ft. of the whole projecting.

Total wt. supported = wht. of 4% cub. ft. of water displaced = 4500 oz.

But wt. of 5 cub. ft. of cork = 5 x *24 x 1000 0z. = 1200 0z.;
wt, of body = 4500— 1200 oz. = 3300 0z, = 206} 1bs.;
and sp. gr. of body = 3300/500 = 66.

37. Equilibrium of immersed bodies.—An immersed
body is always acted on by two forces :

1st. The weight of the body acting downwards.

2nd. The thrust of the fluid acting vertically upwards
and equal to the weight of the fluid displaced. i

If the weight of the solid exceeds that of the fluid
displaced, the body will sink. To support it, we must
suspend the body by a string, whose tension

= weight of solid — weight of fluid displaced.

Cor. Hence a solid placed in fluid will sink or float
according as the solid or the fluid has the greater density.
[For illustrative examples, see p. 127.]

38. The Hydrostatic Balance. — When a common
balance is adapted for weighing bodies suspended in
fluid, it is called a Hydrostatic Balance (Fig. 7). The only
difference between a hydrostatic balance and an ordinary
pair of scales is that one of the scale-pans in the former
is at a sufficient height to allow a vessel of fluid to be
placed under it, and has a hook on its under side from
which any small solid may be suspended by means of a
fine wire, and weighed when immersed in the fluid.
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39. To verify the Principle of Archimedes by
experiments with a Hydrostatic Balance.

Expermmest I.— (i) Take two brass cylinders, one
hollow, the other solid and of such a size as just to fit
into the first. Suspend them from the scale pan of the
hydrostatic balance, the hollow one uppermost, and weigh.

(ii.) Now let the solid cylinder be immersed in water
and the two again weighed ; they will be found to be
considerably lighter than before.

(iil.) Lastly, let the upper cylinder be filled with water
and the two weighed, the lower cylinder still being
immersed. It will be found that their combined weight
is exactly the same as at the first observation.

Fig. 7.

Since the lower cylinder exactly fits the u pper, the
volume of the water in the upper cylinder is exactl y equal
to the volume of the lower cylinder.

Hence the apparent loss of weight when the lower
cylinder is immersed in water is exactly equal to the
weight of an equal volume of water, that is, to the weight
of the fluid displaced.
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Expermuent I1.—(i.) Take a vessel or flask (such as a
specific gravity bottle). Place in it any body, fill it up
with water, and weigh it in the scale-pan of the hydro-
static balance.

(ii.) Take the body out of the flask and hang it from
below the scale-pan by means of a fine thread, so that it
is immersed in a vessel of water. Fill the flask up with
waber again, place it in the scale-pan, and weigh. It
will be found that exactly the same weights have to be
placed in the opposite scale-pan as before.

Now, when the solid is removed from the flask, an
additional volume of water equal to that displaced by the
solid has to be poured in to fill the flask up. Hence the
weight of the flask and of the water in it is greater than
before by the weight of the water displaced by the solid.
Therefore part of the weight of the solid is supported by
the reaction of the water, and this reaction is equal to the
weight of the fluid displaced.

40. To verify the Principle of Archimedes by
experiments with floating bodies.

Take any open vessel filled to the brim with water.
Take any body which is lighter than an equal volume of
water, and gently lower it into the water until it floats.
A quantity of water will overflow out of the vessel, whose
volume is equal to that of the immersed portion of the
solid. Let this water be weighed; then its weight will be
found to be equal to that of the solid.

Hence, when a solid floats in equilibrium, the weights
of the solid and of the fluid displaced are equal.

41. Effect of density of fluid.—1In order to prove
the principle perfectly, generally it would be necessary to
repeat the above experiments, using different liquids.
When this is done, it 1s found that in every case the loss
of weight on immersion is equal to the weight of the
fluid displaced. Since this is proportional to its density,
it follows that the reaction of a fluid on a given im-
mersed body is proportional to the density of the fluid.

[Examples illustrative of the principles contained in this chapter
will be found on p. 127.]
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SUMMARY.

The Principle of Arclimedes asserts that a heavy fluid exerts an
upward reaction on an immersed or floating solid equal to the weight
of fluid displaced by the solid.

If the solid floats, the weight of the displaced fluid equals that of
the solid, but its volume is only equal to that of the submerged
portion.

EXAMPLES V.

1. Tt is required to determine with great accuracy the weight of a
cubic centimetre of water, and it"would be very difficult to construct
a vessel whose internal capacity is exactly 1 cub. ecm. Can you sug-
gest any alternative plan?

2. A hip is said to draw more water in a river than at sea. If
this be so, what is the reason ?

3. A man weighing 160 lbs. floats with 4 cub. ins. of his body
above the surface. 'What is his volume in cubic feet ?

4. A cube of wood, whose edge is 10 ins. and specific gravity -8,
floats in ‘water. 'What weight must be placed on it in order to just
totally immerse it ?

5. A cube of wood floating in water descends 1 in. when a weight
of 270 oz. is placed upon it. Find the size of the cube.

6. A cylinder weighing 1 lb., floating in water with its axis
vertical and each of its ends horizontal, requires a weight of 4 oz. to
be placed on its upper surface to depress it to the level of the water.
Find the specific gravity of the cylinder.

7. What is the specific gravity of a substance a cubic foot of which
will just float in water when attached to a cubic foot of cork of
specific gravity -2?

8. What is the specific gravity of a metal a cubic foot of which
will just float in glycerine of specific gravity 1-25 when attached to
6 cub. ft. of cork of specific gravity -24?
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9. How many cubic feet of cork of specific gravity -24 must be
attached to 1 cub. ft. of glass of specific gravity 2-9, in order that the
whole may float in water just immersed ?

10. A solid of which the volume is 16 cub. cm. weighs 34 gm. in
a fluid of specific gravity -85. Find the specific gravity and weight
of the substance.

11. A piece of cork whose weight is 19 oz. is attached to « bar of
silver weighing 63 oz., and the two together just float in water. The
specific gravity of silver is 10-5 times that of water. Find the specific
gravity of the cork.

12. A body, whose mass is 10 lbs. and specific gravity 75, dips
into water, and is supported partly by the buoyancy of the water and
partly by the tension of an attached string which passes over a smooth
pulley, and carries at its other end a mass of 2 Ibs. hanging freely in
the air. Find what fraction of the volume of the first body is
immersed.

13. A piece of iron weighing 275 gm. floats in mercury of density
13-59 with five-ninths of its volume immersed. Determine the volume
and the density of the iron.

14. An earthenware box and its lid form a hollow cube which
floats just immersed in water. The thickness of the material is on
all sides one-eighth of an edge of the cube. Find the specific gravity
of the earthenware.

15. Describe experiments to prove that the upward force which «
fluid exerts on an incompressible solid immersed in it depends only
on the bulk of the body, the density of the fluid, and the intensity of
gravity, and is independent of the depth of immersion and of the
shape of the body. What difference would it make if the body were
readily compressible ?

16. A stone of specific gravity 4 is dropped from a height of 16 ft.
above the surface of a lake 36 ft. deep. Supposing no sudden change
of velocity takes place at the surface of the water, in what time will
the stone reach the bottom of the lake?
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EXAMINATION PAPER II.

1. 15 cub. ft. of a substance weigh 241 tons; find its specific
gravity.

2. A cylinder, whose height is 21 ins. and the radius of whose base
is 8 ins., weighs 4123 1bs. ; find its density. (m = 22.)

3. A cone of lead (specific gravity = 11-34), whose height is 5 cm.
and the radius of whose base is 4 cm., balances a sphere of brass
(specific gravity = 8°4). Find the radius of the sphere.

4. Describe the method of using the specific gravity bottle in
finding the specific gravities of liquids and powders.

5. Enunciate the Principle of Archimedes.

6. A specific gravity bottle holds 1545 gm. of « liquid whose
specific gravity is 1-03, and 108 gm. of ether; find the specific
gravity of ether.

7. A specific gravity bottle filled with water weighs 368 gm. A
piece of spar weighing 168 gm. is placed in it, and the whole now
weighs 37-85 gm. Find the specific gravity of the spar.

8. 100 gm. of a certain powder are placed in a specific gravity
bottle weighing 50 gm. and capable of holding 500 gm. of water.
The bottle is filled with ether of specific gravity 72, and the whole is
then found to weigh 474 gm. TFind the specific gravity of the sub-
stance forming the powder.

9. A glass globe, weighing 100 gm. when exhausted of air, holds
2 litres of water at standard temperature. Full of air it weighs
102586 gm., and full of hydrogen it weighs 1001788 gm. Find the
specific gravity of air with respect to water and hydrogen.

10. Give a short account of the Hydrostatic Balance. How would
you use it to verify experimentally the Principle of Archimedes?
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DETERMINATION OF SPECIFIC GRAVITIES BY
THE HYDROSTATIC BALANCE.

42, To find the specific gravity of a solid which
is heavier than an equal volume of water, using
the hydrostati¢ balance.

(i.) Let the solid be first placed
in the scale-pan and weighed in air.

(ii.) Let the solid be suspended
in water by a very fine thread at-
tached to the scale-pan of the balance
and again weighed.

By the Principle of Archimedes,
the difference of the observed weights
in air and water is the weight of a Fig.'§.
quantity of water equal in volume
to the solid. Dividing the weight of the solid by this,
the specific gravity of the solid is found.

Ezamples.—(1) A solid weighs 15 gm. in air and 5§ gm. in water;
to find its specific gravity.

The weight in water is less than in air by the weight of the
water displaced.

weight of water displaced = 15—5 = 10 gm.
Also weight of solid = 15 gm. ;
specific gravity of solid = 15 = 1-5.

(2) A piece of gold weighs 598-3 gm. in air, and 567'3 gm. in
water ; to find its volume and specific gravity.
Weight of water displaced = 598:3 —567°3 gm. = 31 gm. ;
volume of gold = 31 cub. cm.,
and specific gravity of gold = 598-3-+31 = 19'3.
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43. To find the specific gravity of a solid whose
weight in air is # and whose weight in water
is P.

The weight of the water displaced

= (weight of solid in air) — (weight in water)
= W-P;
", specific gravity of solid = — weight of SOI_ld
weight of water displaced

‘When the weights of a solid in air and in water are given, it would,
of course, be possible to write down the specific gravity at once from
this formula, but it is far better to proceed as in the preceding examples.

44, To find the specific gravity of a solid which
is lighter than an equal volume of water.

If the solid were suspended
by itself, it would float in
water, and we could not find l
the weight of a quantity of
water equal in volume to
the whole solid. To remedy
this, a heavy piece of metal,
called a sinker, is attached to
the thread which supports
the body to be weighed, and
this keeps the body under
water.

The operations are best
performed in the following TFig. 9.
manner :—

(i) Weigh the solid in air.

(ii.) Suspend the solid and sinker together from the
scale-pan of the balance, and weigh them in water
(Fig. 9).

(iii.) Weigh the sinker in water.
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The weight in water of the solid and sinker combined
is less than the weight in water of the sinker alone by
the amount of the total resultant npward force on the
solid. This force is the excess of the weight of water
displaced by the solid over the weight of the solid itself.
This being known and the weight of the solid being also
known from the first observation, the weight of the
water displaced is found, and the specific gravity of the
solid can be found, as before.

Ezamples.—(1) A solid weighs 16 gm. in air. When attached to a
ginker and immersed in water, the two together weigh 6 gm. The
weight of the sinker in water alone is 10 gm. To find the specific
gravity of the solid.

Here the weight of the solid and sinker in water together

= (weight of sinker in water) + (weight of solid in air)

— (weight of water displaced by solid)

= 6 gm.
But weight of sinker in water = 10 gm.,
and weight of solid in air = 16 gm. ;
weight of water displaced by solid = 16+10—6 gm,
= 20 gm. ;

weight of solid
weight of water displaced

— 16

55 =

-8.

specific gravity of solid =

45. The weight of a solid in air is W, the weight of a
gsinker in water is 4, and the weight of the solid and
sinker together in water is B. To find the specific
gravity of the solid.

Let w be the weight of the water displaced by the solid. Then
we have, evidently,
weight of solid and sinker in water together
= (weight of sinker in water) + (weight of solid in air)

— (weight of water displaced by solid) ;
or B = A+ W=w. )

Therefore, by transposition,

w=A4+W=58.

Hence the weight of the water displaced by the golid is known, and

we then have

. o o weight of solid _ Z
specific g'rawty of golid = weight of water displaced w
w
= T B— (2).
W+ A—B

HYDRO. E
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46. To find the specific gravity of a liquid by
means of the hydrostatic balance.

Take any solid body of greater specific gravity than
either the liquid or water (the sinker used in the experi-
ments of the last paragraph would do).

(i.) Weigh the solid in air. _

(ii.) Weigh it in the given liquid whose specific gravity
is required.

(iii.) Weigh it in water.

The difference between the weights in air and in the
given liquid is the weight of the liquid displaced by the
solid. The difference between the weights in air and in
water is the weight of water displaced. And, since the
volumes displaced in both cases are equal, the ratio of
their weights is the specific gravity of the liguid.

Ezample.—To find the specific gravities of glass and giycerine,
from the following data :—

‘Weight of a piece of glass in air = 10 grs.,
) ) ” water = 6 grs.,
2 ” 2 glycerine = 5 grs. .
Here weight of water displaced by glass = 10—6 = 4 grs.,
- glycerine ,, yy = 10—56 =5 grs.,
and weight of glass = 10 grs.

weight of glycerine displaced

specific gravity of glycerine =
P = % 0% Bl weight of water displaced

and specific gravity of glass = 12 = 2-5.

47. Having given that the weight of a body in air is W,
its weight in water is P, and its weight in a given
liquid is @, to find the specific gravity of the liquid.

Here  weight of water displaced by solid = 7 — P,

2] ]iq.uid 2] wi = w— Q.
specific gravity of liquid = ——— Weight of liquid
s ey 4 weight of equal volume of water
w—0
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We have hitherto considered only solids which do
not dissolve in water ; we now proceed—

48. To find the specific gravity of a solid which
will dissolve in water.

If a solid is soluble in water, its specific gravity may
be found by taking some liquid in which it is not soluble,
and weighing the solid first in air, then in that liquid.
The liquid taken must be of known specific gravity.

In this case, the apparent loss of weight in the liquid
is equal to the weight of the liquid displaced by the solid.

Dividing this by the specific gravity of the liquid, the
weight of an equal volume of water is found, and hence
the specific gravity of the solid.

Ezample.—To find the specific gravity of a substance soluble in
water, but not in turpentine, from the following data :—

Weight of solid in air 32 grs.,
o o turpentine = 3 grs. ;
specific gravity of turpentine = -87.
The  weight of turpentine displaced = 32—3 = 29 grs.
But weight of turpentine = 87 (weight of equal volume of water) ;

weight of equal volume of water = 2l Sielid, S0 g8, ;
-87 87 3
specific gravity of solid = 3?;03 = -96.

Nors.—In this example, the solid was specifically lighter than
water, but heavier than turpentine. Had the solid been insoluble in
water, it could not have been weighed in water without attaching it
to a sinker.

49. To find the specific gravity of a solid, having given
that its weight in air is W, and that its weight in a
liguid of specific gravity s is Q.

The weight of liquid displaced by solid = W —@,

and weight of equal volume of water = ZVT_Q—
Hence specific gravity of solid = 7+ Z;—Q = WTSQ ......... (4).

The above method may also be used to find the specific
gravity of a solid which is lighter than water by weighing
it in a liqlid of still smaller specific gravity, thus dis-
pensing with the use of a “ sinker.”
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#50. The above methods may be used to find the sectional diameter of
a _fine wire, as in the following example :—

Ezample.—To find the diameter of a wire 1 metre long, and weigh-
ing 20 gm. in air and 18 gm. in water.
The weight of water displaced by the wire = 20—18 = 2 gm.
the volume of the wire = 2 cub. cm.,
and its length = 100 cm.
the area of its cross section = 35 = % 8¢. cm.

Hence, if d be the diameter of the wire in centimetres, we have

md? 1,
450’
whence, taking = = 2%, we get
o AxT T _ (K
22 x 50 11x25 112x 52
a=2T0 8775 _ 1505 om.
56 55
= 1595 mm.

*51. Effect of displaced air on the weight of solids.

In finding specific gravities of solids, we supposed their
weights found by weighing them in air with a common
balance. If great accuracy is required, it will be necessary
either to weigh the bodies in wacuo, or to allow for the
fact that the bodies, as well as the set of weights em-
ployed, all displace more or less air, and therefore the
apparent weight of a body in air is less than its true
weight by the weight of this displaced air. But the
density of air is very small compared with that of most
solids and liquids, being 5 of that of water. -Hence
the weight of the displaced air is in most cases so small a
fraction of the weight of the body that no serious error
is introduced by neglecting it altogether.

It is easy, however, to make allowance for the displaced air, if
necessary. For when a body is placed in one pan of a pair of scales,
and balanced by weights in the other, the apparent weights or resultant
forces tending to draw the body and weights towards the ground are
equal. Hence
true weight of body —weight of air displaced by body

= weight of weights— weight of air displaced by weights,
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- Counsider, for example, the well-known case of a pound (mass) of
lsad and a pound (mass) of feathers. The weights of the two in
vacuo are equal. Butb the feathers displace more air than the lead,
and therefore their apparent weight in air is less.

In investigations requiring very delicate weighings, it is, therefore,
necessary to specify the metal of which the weights are made. Brass
weights are commonly used, but platinum weights are employed in
the most expensive chemical balances.

SUMMARY.

Let 7 be the weight of a solid in air,
S its specific gravity,
Pits weight in water, if heavier than water,
Q its weight in a given liquid,
s the specific gravity of the liquid,
A the weight of a sinker in water,
B the weight in water of a sinker and a solid lighter than
water.

1. To find the specific gravity of an insoluble solid heavier than water.
Observe # and P. Then )
w
o LA 1).
=D 1
2. To find the specific gravity of a solid lighter than water.
Observe W, A, B. Then

3. To find the specific gravity of the liquid.

Observe W, _P, Q Then
8 = ;;V P R (3).

4. To find the specific gravity of & solid soluble in water but not in
the liguid.
Observe W, @, s. Then
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EXAMPLES VI.

1. Distinguish between actual and apparent weight of a body.
The apparent weight of a piece of platinum in water is 60 gm. ; the
actual weight of another piece of platinum twice as big as the
former is 126 gm. Determine the specific gravity of platinum.

2. A piece of lead weighs 125 oz. in air and 114 in water. Find
its specific gravity.

3. A piece of silver, whose specific gravity is 105, weighs 120 oz.
in air. How much does it weigh in water ?

4. A piece of chalk weighs 48 gm. in air and 28 gm. in water.
Find its specific gravity.

5. A piece of copper weighs 10 lbs. in air and 8% Ibs. in water.
Find its specific gravity and its volume in cubic inches.

6. A piece of lead, whose weight in air is 285 gm. and specific
gravity 11-4, is weighed in water. What will beits apparent weight?

7. Calculate the mass of 1 cub., em. of a certain solid from the
following data:-—a mass of 720 gm. hanging from one pan of a
balance is totally immersed in water, and found to be counterpoised
by a weight of 645 gm. in the other pan.

8. A piece of iron (specific gravity = 7-21) weighing 2163 gm. is
attached to a piece of cork weighing 36 gm., and the weight of both
in water is 363 gm, ; find the specific gravity of the cork.

9. A piece of cork weighing 12 gm. is joined to a piece of iron
(specific gravity = 7-21) weighing 72'1 gm. The loss of weight of
the two in water is 72 gm. What is the specific gravity of cork ?

10. What weight of cork of specific gravity "24 must be attached
to 57 cub. em. of zinc of specific gravity 7-2 in order that the two
may just float immersed in water ?

11. A block of wood, the volume of which is 26 cub. ins., floats in
water with two-thirds of its volume immersed. Find the volume of
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a piece of metal, the specific gravity of which is 8 times that of the
wood, which, when suspended from the lower part of the wood, will
cause it to be just totally immersed.
‘When this is the case, find the upward force which will hold
the wood half immersed.

12. A piece of paraffin weighs 4:273 gm. in air, and, when attached
to a piece of lead which weighs 7:596 gm. in water, the two together
weigh 6423 gm. in water; determins the specific gravity of the
paraffin,

18. A piece of glass weighed 8'602 gm. in vacuo, 5:854 gm. in
water, and 6-395 in alcohol. Calculate the specific gravity of alcohol.

14. A solid body weighs 117 gm. in air, 98 in water, and 101 in
another liquid. Calculate the specific gravities of the solid and the
liguid.

15. A ball of glass weighing 6658 grs. in air is found to weigh
4658 grs. in water and 297-6 grs. in sulphuric acid. What is the
specific gravity of the latter?

16. A bar of metal weighs 1275 grs. in air, 11475 grs, in spirit,
and 1125 grs. in water. Find the specific gravities of the metal and
the spirit compared to that of water.

17. A ball of metal weighs 9 Ibs. in air and 8 lbs. when suspended
in water. 'What would be the specific gravity of a liquid in which
it would weigh 74 1bs.?

18. A piece of glass, specific gravity = 2°5, weighs 25 gm. in air
and 156 gm 4n oil; find the specific gravity of the oil.

19. A piece of gold weighs 96 gm. in air, 91 gm. in water, and
92+4 gm. in ether. Find the specific gravities of the gold and ether.

20. A piece of glass weighs 47 gm. in air, 22 gm. in water,
258 gm. in alcohol. TFind the specific gravity of alcohol.

921. Describe some method of finding the specific gravity of a fluid.
A certain body just floats in water. On placing it in sulphuric acid
of specific gravity 1'85, it requires an addition of 42+5 gm. to immerse
it; find its volume.
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22. A ball of metal is attached to a spring balance, and the index
shows that it weighs 51bs. It is then allowed to dip below the
gurface of the water, and the weight appears to be 4:3756 1bs. If it
be immersed in a liquid of specific gravity 75, what will then be the
apparent weight ?

23. A glass ball weighs 3000 grs., and hag a speeiﬁg gravity 3;
what will be its apparent weight in a liquid whose specific gravity is
*92°?

24. It is required to find the specific gravity of potassium, which
decomposes water. A lump weighing 4325 g#s. in ai¥ is suspended
in naphtha, the specific gravity of which is -847, and is found to
weigh 9 grs. 'What is the specific gravity ?

25. A piece of iron weighs 260 gm. in water and 250 gm. in
glycerine of specific gravity 1-25. Find its specific gravity.

26. A piece of silver, whose weight in water is 19 lbs. and specific
gravity 10-5, is weighed in oil of specific gravity 9. What will be
its apparent weight?

27. An iron shell is found to lose half its weight when weighed
in water. ‘What portion of its volume is hollow? (Specific gravity
of iron = 7-2.)

28. How would you determine the specific gravity of a gold medal
by means of a hydrostatic balance furnished with brass weights?
Explain how each weighing and the final result will be affected by
the presence of air, if no correction is made for the air displaced.

29. A piece of silver and a piece of gold are suspended from the
arms of an equal-armed balance beam, which is in equilibrium when
the silver is immersed in alcohol (density *85) and the gold in nitric
acid (donsity 1'5). The densities of the silver and gold being 10-5
and 193, respectively, what are their relative masses ?

30. Find the volume of a solid which weighs 500 gms. in air and
375 gms. in glycerine of specific gravity 1-25.



CHAPTER VII.

THE HYDROMETERS.

The instruments now to be described are chiefly used
for finding the specific gravities of liquids.* They all
depend on the principle of flotation, namely, that the
weight of a floating body is equal to the weight of liguid
which it displaces.

52. Dr. Wilson’s Glass Beads are a series of hollow
balls of glass, the diameters of the hollows in them being
so adjusted that the average specific gravities of successive
beads form a series of numbers increasing by ‘002. Bach
bead is numbered according to its specific gravity, and
the specific gravity of any liquid may be found by
throwing them all into it.

_All the beads of greater specific gravity than the liquid
sink, and all those of lesser specific gravity float. By
these means the specific gravity of the liquid is found to
within ‘002, and this degree of accuracy is sufficient for
most purposes.

53. Nicholson’s Hydrometer (Fig.
10) consists essentially of a hollow globe
or cylinder of metal B, from the top of
which projects a stem of hardened steel
wire carrying a small cup or scale-pan A.
To the bottom of B is fixed another cup
or scale-pan @, which is of snfficient
weight to keep the hydrometer from
becoming top-heavy without sinking the
whole of the bulb even in the lightest
liguids. A set of weights is provided
with the hydrometer, and these are to
be placed in the mpper scale-pan so as

* Commercially, this is a very important operation, the specific gravity often
being a rough but ready test of the purity of a liqnid or degree of concentration
of a solution. Thus the strongest ammonia has a specific gravity of 880 ; it is a
concentrated solution of ammonia gas in water.
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to sink the hydrometer till the liguid in which it floats
reaches a fixed mark X on the upright wire. For
convenience, a cylindrical jar is usually provided, to
contain the liquid whose specific gravity is required.

54. To find the specific gravity of any liguid by
means of Nicholson’s Hydrometer, the observations
are made as follows :—

(i.) Find the weight of the hydrometer (in air).

(ii.) Lower the hydrometer into a jar of water, and add
weights to the upper scale-pan A until the instroment
sinks to the fixed mark on the stem.

(iii.) Repeat the last operation, replacing the water by
the liquid whose specific gravity is required.

The weight of the hydrometer, together with the
weights in the scale-pan at the second operation, is equal
to the weight of the water displaced by the part of the
hydrometer below the fixed mark.

The weight of the hydrometer and weights in the
scale at the third operation are equal- to the weight-
of the given liquid displaced. And the volume displaced
is the same as before.

Hence, by dividing the latter weight by the former, the
specific gravity of the liquid is at once found.

Ezample.—To find the specific gravity of brandy by means of
Nicholson’s Hydrométer weighing 60 gm., having given that 23-7 gm.
are required in the upper scale-pan to sink the hydrometer to the
fixed mark when placed in brandy, and that 40 gm. are required to
sink it to the same mark in water.

At the first observation, the total weight supported by the brandy

= 60 +23'7 = 837 gm.
Hence weight of brandy displaced = 837 gm.

At the second observation, we have, in like manner,

weight of water displaced = 60 +40 = 100 gm.
But the volumes of the brandy and water displaced are equal.

specific gravity of brandy = §1§)—(')7 = -837.
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55. The weight of a hydrometer is w, the weight re-
quired to sink the bulb in water is P, and the weight
required to sink it in another liguid is @. To find the
specific gravity-of the liquid. ’

Since the hydrometer floats in equilibrium in each case,
weight of water displaced by hydrometer = P+ W7,
and weight of liquid displaced =Q+W.

weight of liguid _ 04w

5, ifi ity of liquid = =
epocific gravity of liqui wt. of equal vol. of water P4+Ww '

56. To find the specific gravity of a solid by means
of Nicholson’s Hydrometer.—We have to find—

(1) The weight of the solid in air.

(2) The weight of the water displaced by the solid when
immersed.

To do this, we proceed as as follows :—

(i.) Plunge the hydrometer in water,
and place weights in the upper scale-pan
till the stem sinks to the fixed mark.

(ii.) Place the solid in the upper
scale-pan, taking off weights to make
the stem again sink.to the fixed mark.

The total weight supported by the
hydrometer is the same as before. Hence
the weights taken off must be equal to
the added weight of the solid, which is
therefore known.

(ii1.) Place the solid in the lower cup Fig. 10.

and again plunge the hydrometer in
water. The water displaced will now exert an upward
force on the solid. Hence extra weights must be placed
in the upper scale-pan to sink the hydrometer to the fixed
mark, and these added weights are equal to the weight
of the water displaced by the solid.

Hence the specific gravity of the solid is at once found.
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57. If the solid is specifically lighter than water, it must be
fastened down to the lower cup of the hydrometer during
the third process of weighing, so as to prevent its rising
to the surface. For this purpose the cup is sometimes
provided with a cap of wire gaunze. In Atkin’s form of
the instrument, there is a small spike projecting down-
wards over the cup (8, Fig. 10), on the point of which
any small bodies lighter than water can be impaled.

In such cases the cup acts as a sinker.

In other respects, the method of finding specific gravity
is exactly the same.

Ezample.—A Nicholson’s Hydrometer when placed in water required
a weight of 40 gm. in the upper scale to sink it to the fixed mark.
‘When a piece of silver was placed in the upper scale-pan, 85 gm.
were required to sink it ; and when the silver was placed in the lower
scale-pan, 11-5 gm. were required in the upper. To find the specific
gravity of silver.

Here, when the silver was placed in the upper scale-pan, 40—8-5
or 315 gm. had to be taken out in order to make the total weight the
same as before.

Therefore the weight of the silver was 31'5 gm.

‘When the silver was transferred to the lower pan and immersed,
we had to add 11-5—8-5 or 3 gm. to the upper pan to counteract the
upward thrust of the water on the silver.

weight of water displaced by silver = 3 gm.

specific gravity of silver = 3113—5 = 10°6.

58. The weight required to sink the bulb of o hydro-
meter is P. When a body is placed in the upper scale-
pan, the weight required to sink the bulb is Q; and when
the body is placed in the lower pan, the weight required
is ®. To find the specific gravity of the solid."

Lat 777 be the weight of the body, w the weight of the water it
displaces. Then, since the resultant force required to sink the bulb
is the same in each case,

. P=Q+ W,
and Q+ W =R+ W—w;
weight of solid W = P—qQ,
and weight of water displaced w = R—@Q ;

specific gravity of solid = ¥_r=¢ .
w  R—Q
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59, The Common Hydrometer is
adapted for finding the specific gravities
of liquids only. It consists of a glass
tube or stem AEG blown out into two
bulbs B, G at its lower end, and closed
at its upper end. The stem and the
upper bulb B are filled with air, the
lower bulb G being loaded with mercary
or small shot, so that when the hydro-
meter is in liquid it floats upright with
the whole of the bulb and part of the
stem submerged.

No moveable weights are used, but the
stem is provided with a graduated scale.
The height to which the liquid rises on
the stem is indicated by the scale, and
serves to determine the specific gravity .
of the liguid. Fig. 1L

60. To find the specific gravity of a liquid by
means of the Common Hydrometer.

In order to find the specific gravity of a liquid, it is
sufficient to know—

(1) The weight of the hydrometer.

(2) The volume of liquid displaced when the hydro-
meter floals in it.

Now the stem of the hydrometer is cylindrical ; hence,
if its thickness be known, the volume of any length of it
can be found. Heunce, if the volume of the bulbs or of
the whole hydrometer be known, we can find the required .
volume immersed when the liquid reaches a given height
on the stem.

The weight of the hydrometer is equal to the weight of
the displaced liquid, and, dividing this by the volume, the
‘weight of a unit volume is found, and hence the specific
gravity can be determined. ) )

The general formula being somewhat complicated, it is
usual to deduce the specific gravity of liquids by first
principles in the manner illustrated in the following

examples.
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Eramples.—(1) To find the specific gravity of a liquid, having
given that a hydrometer weighing 13 oz. sinks in it until 2-4 cub. ins.
are immersed.

Here wsight of 24 cub. ins. of liquid = 1°5 oz ;

weight of 1 cub. in. of liquid = %{— oz. = § oz.,
and weight of 1 cub. ff. of liquid = 1728 x & oz. = 1080 oz.

ut weight of 1 cub. ft. of water = 1000 oz. ;
specific gravity of liquid = 1389 — 1-08.

(2) To find the density of a liquid in which a common hydrometer
floats with 3% ins. of its stem immersed, having given that the
diameter of the stem is ‘2 in., the volume of the two bulbs is
“754 cub. in., and the weight of the hydrometer 1% oz.

Here the portion of the stem immersed is a cylinder of height
3% ins., the radius of whose base is

=4x2="1in.
Hence the volume of the immersed portion of the stem
=22x ("1)?x Z = -11 cub. in.
Moreover, the volume of the bulbs = -754 cub. in.
Hence the whole volume of the displaced liquid
= 7564 + 11 = *864 cub. in.

But weight of displaced liquid = weight of hydrometer = } oz. ;

*864 cub. in. of liquid weighs } oz. ;

3 o 3 1 1
.*. L cub. in. ofliquid hs ———— = .
eub. 0. BERguid weighs. o T haat.
1 cub. ft. of liquid weighs 11(7?.‘;88 oz. = 1000 oz.

Hence the liquid is of the same density as
water, and its specific gravity is unity.

(3) The stem of a hydrometer is divided into
100 equal parts. It reads 0 in water and 100 in
liquid of specific gravity -8. To find the specific
gravity for which the hydrometer reads 50.

Let 0, Q be the points marked 0, 100; P the
point marked 50.

Let 7 be the volume of water whose weight is
equal to that of the hydrometer. Then V7 is the
volume of water displaced when the hydrometer
floats in water.

. volume displaced by portion below 0 = 7.

When the hydrometer floats in the lighter
liquid of specific gravity °8, it displaces an equal
weight, and therefore a greater volume, of liquid.
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volume displaced by portion below § = ¥+:8 = 1-257;
volume of stem 0Q = 1-26V—V = 257 ;
that is, volume of 100 divisions of stem = *257;
volume of 50 divisions of stem = *1257;
volume displaced by portion below P = 7 +125F = 1-125 7.
This is the volume displaced by the hydrometer in the given
liquid, and its weight is equal to the weight of water displaced.
wt. of vol. 1-125 7 of given liquid = wt. of vol. 7 of water;
.. 'wt. of vol. 1 of given liquid = wt. of vol. 1+1-125 of water;
. required specific gravity of liquid = 1+1°125 = & = 8.
[Nore.—Although the mark 50 is midway betwsen the marks 0
and 100, the required specific gravity is Nor midway between the
corresponding specific gravities, for its value is -8, and ot -9 as might
on first thoughts be expected. ]
(4) With the data of the last example, to find the specific gravity
of a liquid whose reading is 28.
‘We have seen that
volume of 100 divisions of stem = 257 ;
volume of 28 divisions = 28;x"257 = 07V ;
volume displaced by hydrometer in given liquid = 1-077;
-. weight of volume 107V of liquid = weight of volume 7 of water ;
specific gravity of liquid = 1+1-07 = 9346, nearly.

61. Beaumé’s and Twaddell’s Hydrometers. — The
stem of a hydrometer is usually divided into a number of
equal parts, very often 100. Thus Beaumé’s hydrometer
for fluids lighter than water has the stem graduated from
10 up to 70. When plunged into water it reads 10, and
the lighter the liquid the higher the reading. Another
hydrometer was used by Beaumé for fluids heavier than
water.

Twaddell’s hydrometers for fluids heavier than water
are a set of six. The first is graduated from O to 24,
and indicates O when placed in water. The second sinks
to the highest mark on the stem in a liquid in which the
first rises to the lowest mark, and is therefore used for
rather heavier liquids, and so on.

Tables have been constructed giving the specific gravity
corresponding to any reading. In commerce, however, it
is very customary to specify the specific gravity of a liquid
by its hydrometer reading, thus: 104° Twaddell.”
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62. The Lactometer is a common hydrometer adapted
for testing whether milk has been adulterated with water.
The extremities of the scale are the points to which the
hydrometer sinks in pure water aud pure milk respec-
tively, and the intermediate divisions indicate the pro-
portions of milk and water occurring in a mixture.
Lactometers may now be purchased for a very small sum.

*63. Sikes’ Hydrometer is similar in
construction to the Common Hydrometer, A
the only essential difference being that the l:-—‘..ll._f

o |

bulb B and the counterpoise G are separated 4
by a thin conical stem, on which may be
placed different weights of the form W 1
(Fig. 18). The slot in each weight is just

wide enough to go over the thinnest or
upper part of the stema @, while the central b
hole just fits on to the lower part.

The scale of the hydrometer is divided
into ten equal parts or degrees, numbered
from the top downwards, and each degree
is subdivided into fifths. Niune different
weights are supplied with the instrament,
and these are numbered 10, 20, ... 90, re-
spectively. The smallest weight 10 is such
as to sink the hydrometer from the mark
10 to the mark O in a liguid of the proper

density.
In addition there is another weight A
which can be placed on the top of the stem Fig. 13.

when the hydrometer is employed for liquids
heavier than water.

In using Sikes’ hydrometer, the number on the weight
is added to the reading of the scale. Thus in water
(specific gravity 1) the scale reads 10 when the weight 90
is attached, and the hydrometer reading is therefore 100.
With the upper weight A attached, the hydrometer read-
ing for water is zero.

The advantage of Sikes” hydrometer is that the moveable weights
allow it to be used for a large range of different demsities, a result
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that could not otherwise have been effected except by making the stem
20 times as long, which would be very inconvenient, or by making
the divisions 20 times as close together, in which case the hydrometer
would be much less sensitive, or by having a number of different
hydrometers, as in the case of Twaddell’s hydrometers.

Summary.
1. Nicholson’s Hydrometer has scale-pan above and cup below bulb,
and is always sunk to a fixed mark on stem.
To find sp. gr. of liquid, it is sunk in liquid by weights in upper pan.
These wts. + wt. of hydrom. = wt. of liquid displaced by hydrom.
Similarly, wt. of equal vol. of water is found ; hence sp. gr.

To find sp. gr. of solid, it is sunk in water as before. Wt. of solid

W) = wt. subtracted when solid is placed in upper pan. Wt. of

water displaced (w) = wt. added when solid is transferred from upper
to lower pan ; and sp. gr. of solid = W +w.

2. The Common Hydrometer has graduated stem, no scale-pan.

The sp. gr. of = liquid is given by W =wsV; .. s= W+ wV),
where 77 = wt. of hydrom., w = sp. wt. of water, 7" = vol. sub-
merged in liquid.

3. Sikes’ Hydrometer combines a graduated stem with moveable
weights.

EXAMPLES VII.

1. A Nicholson’s hydrometer, whose own weight is 42 oz., requires
weights of 2 and 22 oz., respectively, to sink it to the fixed mark in
two different fluids. Compare the specific gravities of the fluids.

2. A Nicholson’s hydrometer weighs 3% oz., and requires a weight
of 1% oz. to sink it to the fixed mark in water. What weight will be
required to sink it to the fixed mark in a liquid whose density is 2:5°?

3. A Nicholson’s hydrometer of weight 41 ozs. requires a weight
of 2% oz. to sink it to the fixed mark in a fluid whose specific gravity
is 1-35. What weight will sink it to the fixed mark in water ?

4. A solid is placed in the upper cup of a Nicholson’s hydrometer,
and it is found that 12 grs. are required to sink the instrument to a
certain depth; when the solid is in the lower cup, 16 grs. are
required, and, when the solid is removed, 22 grs. are required. What
is the specific gravity of the solid ?

5. A solid of specific gravity 8 is placed in the upper cup of a
Nicholson’s hydrometer, and it is found that 12 gm. are required to

HYDRO. F
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sink the instrument to a fixed mark on the stem, and when the solid
is removed, it is found that 28 gm. are required. What weight must
be placed in the upper cup, when the solid is in the lower cup, in
order to sink the hydrometer to the fixed mark ?

6. A piece of marble weighing 142 grs. is placed in the upper dish
of a Nicholson’s hydrometer, and it is found that an additional weight
of 40 grs. is required to sink the hydrometer to u fixed mark in its
stem. When the marble is placed in the lower dish, it is found that
90 grs. are necessary. What is the specific gravity of the marble ?

7. A body weighing 120 gm. is placed in the upper portion of a
Nicholson’s hydrometer, and it is found that an additional weight of
30 gm. is necessary to sink the hydrometer to the fixed mark on the
stem. When the substance is placed in the lower dish, 72'gm. are
necessary. What is the specific gravity of the substance ?

8. FExplain the principle of the common hydrometer, and show that
the volume of the part immersed is inversely proportional to the
density of the liquid.

9. When the common hydrometer floats in water, & of its volume
is immersed ; and when it floats in milk, 2% of its volume is immersed.
Find the specific gravity of milk.

10. The volume of a hydrometer is 10 cub. cm. and its weight 6-5 gm.
Find how much of it will be immersed when it is set. to float in a
liquid of specific gravity -88.

11. The whole volume of a common hydrometer = 6 cub. ins., and
its stem, which is square, is } in. in breadth ; it floats in one liquid
with 2 ins. of stem above surface, and in another liquid with 4 ins.
of stem above surface. Compare the specific gravities of the two
liguids.

12. A common hydrometer floats in water with £ of its volume
immersed. How much of its volume will be immersed when it floats
in oil of specific gravity -9 ?

13. A common hydrometer weighs 2 oz., and is graduated for
specific gravities varying from 1 to 1:2. 'What should be the volume
in cubic inches of the portion of the instrument below the graduations
1, 1-1, 1-2, respectively, it being assumed that a cubic foot of water
con 1000 oz. ?
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14. The stem of a common hydrometer is cylindrical, and the
highest graduation corresponds to a specific gravity of 1, and the
lowest to 1'3. 'What specific gravity corresponds to a point exactly
midway between these divisions ?

15. Having given the positions of the marks on a common hydro-
meter corresponding to the specific gravities 1 and -8, show how to
find the points to which the hydrometer will sink when plunged in
liquids of specific gravities -85 and 11, respectively.

16. The stem of a common hydrometer is divided into 100 gradua-
tions, beginning from the top; when it is placed in a fluid of specific
gravity 15, the surface of the fluid is at the graduation 20; when
in a fluid of specific gravity 1-6, it is at the graduation 56. What is
the specific gravity of a fluid of which the surface is at the gradua-
tion 96 ?

17. What is meant by the ‘‘specific gravity '’ of a substance?
A body floats with one-tenth of its volume above the surface of pure
water, What fraction of its Yolume would project above the surface
if it were floating in a liquid of specific gravity 1-25°?

18. A cube of wood, whose edge is 4 ins. and specific gravity 72,
floats in oil of specific gravity,'9. What weight must be placed on it
in order to just totally immerse it ?

19. A cylinder, loaded so as to float vertically, and weighing 2 gm.
altogether, just sinks overhead in water when 1 gm. extra is put on
its top ; otherwise it protrudes 7 ecm. above the surface. What length
will protrude above the surface of a liquid whose density is five-sixths
that of water, if the cylinder be set floating in it without the extra

load ?

20. A solid cylinder of uniform material will float in water with its
axis vertical and 2 ft. of its length immersed; or, again, in oil of
specific gravity ‘8, with 9 ins. more than half of its length immersed.
Find its length and specific gravity.
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EXAMINATION PAPER III.

1. How is the specific gravity of a body lighter than water found
by means of the hydrostatic balance ?

2. A piece of iron weighs 32:64 gm. in air, and 28-288 gm. in
water ; find its specific gravity.

3. A body weighs 60 gm. in air, and to sink it a piece of iron
(specific gravity = 7-5) weighing 300 gm. in air is attached to it.
The two together weigh 220 gm. in water. Find the specific gravity
of the body.

4. A body weighing 30 oz. in air weighs 22-8 oz. in a liquid of
unknown specific gravity, and 225 oz. in water. Find the specific
gravity of the liquid.

5. How would you determine the specific gravity of a body which
is soluble in water P

6. A body which is soluble in water weighs 27 gm.; and when
weighed in oil of specific gravity -9, its weight is 20+ gm. TFind its
specific gravity.

7. Describe the common hydrometer.

8. Give an account of Nicholson’s Hydrometer. How is it used
for finding the specific gravities of solids and liquids ?

9. A piece of crystal weighing 28 grs. is placed in the upper cup
of a Nicholson’s hydrometer, and 205 grs. are required to sink it to
the fixed mark. When it is placed in the lower cup, 213 grs. are
needed. Determine the specific gravity of the crystal.

10. A Nicholson’s hydrometer weighing 50 gm. requires 270 gm.
to sink it to the given level in water, and 238 gm. when immersed in
a given liguid. Find the specific gravity of the liquid.



PART ITI.

FLUID PRESSURE.
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CHAPTER VIII.

DEFINITIONS AND PROPERTIES OF PRESSURE.

64. Thrust.—Der.—When two bodies in contact or
two parts of a body press against each other, the forces
which act between them are said to constitute a thrust.

‘We will now examine how the thrust of a fluid on any
body is distributed over different portions of the body’s
surface.

If one or more holes be made anywhere iz the side or
bottom of a vessel full of water, the water will run out
through them, provided they are below its surface. If
the holes are stopped up with plugs, a certain force will
have to be applied to each plug in order to prevent their
being pushed out. Hence the water exerts a thrust on
every portion of the surface of the vessel with which it is
in contact, instead of its action being applied at one or more
separate points. Such a dis-
tribution of thrust over a
surface is called a pressure.

Pressure is mnot confined
to the boundaries of a fluid;
cvery portion exerts a pres-
sure on the adjacent portions.
For, it the portion § were
removed from the interior, the
surrounding fluid would rush
in on all sides and fill the
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cavity thus formed. Hence the fluid inside § must exert
pressure on that outside. And, since action and reaction
are equal and opposite, the fluid outside § must exert
pressure on that inside.

65. Fundamental Property of a Fluid.—We have
defined a fluid as a substance which yields continually to
any force, however small, tending to produce motion of its
parts amongst themselves.

From this definition may be deduced the following

FUNDAMENTAL PROPERTY OF A FLUID,

The pressure of a fluid at rest on any surface
is everywhere perpendicular to that surface.

Fig. 15.

[For take any mass of fluid, and suppose it cut into two parts
A, B by the plane CD. If the force which B exerts on A is mot
perpendicular to CD, let it be a force P in another direction. Then P
can be resolved into components—one (X) along CD, and the other (¥)
perpendicular to CD. And if we were to try to make the part 4 slide
along the part B in the direction DC, we should have to exert a force
equal to the resistance X before it would move at all, which would be
contrary to the supposition that the fluid yields to any force, however
small, tending to move the two portions separately. Hence the
actions between the portions A, B must be perpendicular to the surface
of separation CD.]

Frample.—In raising a vertical sluice-gate, the force that must be
used to lift it does not depend on the pressure of the water against
the gate. TFor the action of the water is perpandicunlar to the gate,
and 1s therefore horizontal. ITence it cannot atfect the vertical lifting
force applied to the gate.

*#66. Digtinction between perfect and viscous fluids.—The
above proof may be employed to show that the action exerted by a
perfect fluid on any surface is always perpendicular to the surface
whether the fluid is at rest or in motion. But a viscous fluid tends to
retard motion of its parts. Ience the perpendicularity of pressure
to the surface does not necessarily hold in the case of viscous fluids,
cxcept when they are at rest.
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We will now define ‘“ pressure,”” and state how it is measured.

6%7. DEr.
a surface.

Pressure is measured by the amount of the thrust per
unit area of a plane surface exposed to it.

A. Pressure is a distribution of thrust over

68. Uniform Pressure.—DEr.— A pressure is said to
be uniform when the thrusts exerted on two equal plane
areas, however small, are equal, no matter where these
areas be situated.

Uniform pressure is measured by the thrust exerted on
every unit of area of any plane to which it is applied.

Thus, if a fluid exerts a thrust of 15 lbs. weight on every square
inch of its surface, the pressure is said to be a uniform pressure of
15 Ibs. per square inch.

It is clear that the whole force exerted on 2 sq. ins. of surface is
twice as great as on 1 sq. in., and is, therefore, 30 lbs. weight; on
3 8q. ins., it is three times as great, or 45 lbs. weight; and so on.
But the pressure is the same in each case, for pressure is measured,
not by the force on the whole surface, but by that on a unit area of
the surface. Thus, pressure is a different kind of quantity from force.*

69. Unit of Pressure.— The unit of pressure is that
pressure which exerts a unit of force on every unit of
area. Thus, if forces are measured in pounds weight and
lengths in feet, the unit of pressure is a pressure of 1 1b.
per sguare foot (now sometimes written 1 1b.[ft?).

A pressure of 15 lbs. per square inch is called an
atmosphere, being the average pressure of atmospheric air,
and for certain purposes this is adopted as the unit of
pressure.

It is often convenient to measure pressures in pounds
per square inch or ounces per square foot.

Inthe C.G.8. dynamical system, where a centimetre and a
dyne are the units of length and force, the unit of pressure
is a pressure of one dyne per square centimetre.

* The word pressure is still sometimes used in Mcchanies to denote a force ;
for instance, the ‘“ pressure of a body on an inclined plane ” or the * pressure of a
chair on the floor.” But it is incorrect to call a force a pressure under any
circumstanees. It is far better to speak of such a force as a thrust, though it may,
if preferred, be called a force of pressure.
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A ¢ 0.G.S. atmosphere’® is the name given to a pressure of on
million dynes per square centimetre, and is mearly, but not quite
equal to the ordinary atmospheric pressure.

70. The resultant thrust on any plane area exposed
to uniform fluid pressure is equal to the product of
the pressure into the area.

Let p be the pressure, 4 the area of the surface.

Let the area be divided into a number of portions each
of unit area.

Then since the pressure is p,

the thrust on each unit of area is p.

Now the number of such units of area is 4, and, since
the whole area is plane, the forces on them are parallel,
hence their resultant is equal to their sum. Hence, if P
denote the resultant thrust,

P=ypd;
that is, resultant thrust = (pressure) x (area).

Hence, also, pe=cri
so that the pressure is measured by the resultant thrust

divided by the area.

Ezamples.—(1) If a ton of water is contained in a rectangular tank
whose base is 4 ft. by 2 ft., the whole thrust on the base
=1 ton = 2240 lbs.,
and the area over which it is distributed = 8 sq. ft.;
pressure on base of tank = 2220 — 280 lbs. per square foot

=280 —1-94 Ibs. per square inch.

(2) If the pressure of the steam inside a boiler is 140 Tbs. to the
square inch, to find the thrust supported by the ends of the boiler,
given that they are circular and 6 ft. in diameter.

Here the area of either end = 22 x (8)? sq. ft. = 198 gq. ft.

2
7
and the pressure = 140 lbs. per sq, in. ;
thrust on either end = 28212 140 = 28512 x 20
= 570240 Ibs. weight = 2544 tons.
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71. Change of Units.—When a given pressure is
expressed in terms of one system of units its measure in
terms of any other unit may be found in the manner
illustrated in the following examples :—

Ezamples.—(1) To express a pressure of 15 lbs. per square inch in
(i.) tons per square foot, (ii.) poundals per square foot.
On 1 sq. in. the pressure produces a thrust of 15 lbs. weight.
Therefore, on 1 sq. ft. (= 144 sq. in.) the pressure produces a
thrust of 15 x 144 lbs. weight.
pressure = 15 x 144 Ibs. per square foot
_ 15x 144
2240
= 21 of a ton per square foot.

(ii.) Taking the acceleration of gravity as 32,
1 1Ib. weight = 32 poundals ;
pressure = 15 x 144 x 32 poundals per square foot
= 69120 poundals per square foot.

tons per square foot

(2) To express a pressure of 1000 oz. per square foot in pounds per
square inch.
On 1 8q. ft. (= 144 sq. ins.) the pressure exerts a force = 1000 oz.
Therefore, on 1 sq. in. the pressure exerts a force
_ 1000 o 1000

T 144 " T iaax16
pressure = 1000 _ 434028 Ibs. per square inch.
144 x 16

(3) To express = pressure of 1 kilog. per square metre (i.) in
grammes per square centimetre, (ii.) in C.G.8. dynamical units.
On 1 sq. metre (= 100% sg. cm.) thz pressure exerts a force
= 1 kilog. = 1000 gm.
Therefore, on 1 sq. em. the pressure exerts a force
1000
=— = vl .
1002 & .
Hence pressure = ‘1 gm. per square centimetre.
The C.G-.8. dynamical unit of pressure is a pressure of 1 dyne per
square centimetre.
Now the acceleration of gravity =
weight of a gramme = 981 dynes;
given pressure = 981 x -1 = 98-1 dynes per square centimetre.

981 cm. per second per second ;
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(4) The measure of a pressure in terms of certain units .af.lmgth and
Sorce is p.  To find its measure when the unit of length is inereased L
times, and the unit of force is inereased F times.

The new unit of area = area of square on new unit of length = area
of a square whose side contains Z old units = Z# old units of area.
Hence the thrust on the new unit of area
= pL2 old units of force
2
= 1% new units of force ;
and, therefore, the measure of the pressure

2
= 7% new units of pressure.

72. Pascal’s Law.—This law, which is also known as
the Principle of Transmission of Fluid Pressure,
may be stated thus:

When any pressure is applied to any part of the
surface of a fluid, an equal and uniform pressure is
Aransmitted over the whole fluid.

73. Experimental Verification,—Let a closed vessel
of any shape be filled with water, or other-fluid (F'ig.16).
Let short tubes of equal sectional area (say 1 sq. in.)
be attached to openings made in different parts of the
walls of the vessels, and let these tubes be closed with
tight-fitting plugs or pistons, acted upon by such forces
as support the weight of the fluid. If now an additional
force, say of 11b., be applied to any one of the plugs
(say A) 1t will be necessary to apply an additional force
of 1 1b. to each of the other plugs B, @, D, to prevent their
coming out ; similarly, if the force on 4 be increased by
2 Ibs. or any other amount, the force applied to each of
the other plugs will also have to be increased by 2 lbs.
Hence a pressure of 1, 2 or more pounds per square inch
imparted to the surface of 4 gives rise to an equal pressure
over every other square inch of the surface.

OsservarioN. — This experiment would be very difficult to arrange
“in practice.

But, without actually performing the experiment, the law may be
ge]c}uced fﬂl;om the principle of ¢ Conservation of Energy,” as
ollows [ —~

#* Another ]{')1‘001’ will be given in §§ 79 80.
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#74. Proof of Pascal’s Law.—Let a quantity of fluid
be contained in a vessel furnished with projecting tubes
of sectional areas 4, B, 0, D, along which tight-fitting
pistons A, B, 0, D can slide. Suppose the fluid without
weight, so that the only forces acting on it are thrusts
P, @, R, S applied on the pistons.

Fig. 16.

Let the piston A be pushed in to @, and let it push the
piston B out to b, so that the volume of the fluid is
unaltered and the other pistons remain where they were.

Since a fluid offers no resistance to changes of shape
which do not alter its volume, therefore no work is done
on the fluid itself in moving the pistons.

Therefore the work done by P is equal to the work done

against Q. A Pyda = QxBb ... e ().

Again, the volume of fluid forced out of the tube Aa is
equal to the volume forced into Bb; that is,

Aa x (area A) = Bb x (area B) ......... (ii.)
From (i.) and (ii.) we have
P_4Q
4~ B

But P=A4 and =B ave the pressures on the pistons
A. B (§70). o

Therefore these pressures are equal, and similarly the
pressures on the other pistons are also equal.
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75. Variable Pressure.—Drr.—When the thrusts of
a fluid on equal plane areas are not equal, the pressure
of the fluid is said to be variable. )

‘When a fluid is subjected to forces (such as that due to
its weight) which act on its substance and not merely on
its bounding surface, the pressure of the fluid is'in general
variable.

Variable pressure cannot in general be measured by the
thrust actually exerted on a unit of area, but it may be
said to be measured by the thrust per unit of area. By
“the thrust per unit area” is meant the thrust which
would be produced on a unit area by a uniform pressure
of the same intensity.

76. Average Pressure.— Drr.— The average pres-
sure of a fluid over any plane area is measured by the
resnltant thrust of the flmid divided by the area.

Lvamples.—(1) If a fluid exerts a thrust of 144 lbs. on a square
whose area is 9 sq. ins., the average pressure is 144/9 or 16 Ibs. per
square inch. The same thrust would be exerted on the area by a
uniform pressure of 16 Ibs. per square inch over the area.

(2) If the thrust on an area of 37 sq. in. is % Ib., the average
pressure = g5+ 15 = 5 1bs. per square inch.

The same thrust would be produced on the same area by a uniform

pressure of 5 Ibs. per square inch.
The word ‘per” thus implies that the area actually exposed to
fluid pressure is not necessarily equal to the unit of area.

From § 70, it appears that, when the pressure of a fluid
is nniform, the average pressures on different areas are all
equal to the pressure of the fluid. When the pressure on
any area is ‘variable, the average pressure measures the
pressure that, acting uniformly over the area, would
produce the same thrust as the given pressure.

77. If we consider the action of fluid pressurve over a sufliciently
-small plane area, the pressure will not vary appreciably in the very
small distance separating two diffevent parts of this area, and it may
therefore be regarded as practically a uniform pressure. This pressure
is equal to the average pressure over the whole of the little area, and,
since it is uniform, it may be said to be the pressure a¢ auy point of

the area.
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78. PRESSURE AT A POINT.

Derivrrion.—The pressure at a point of a fluid is the
average pressure (or average thrusi per wnit area) taken over
any very small plane aren enclosing that point.

The area in question must be so small that the pressure
all over it is sensibly uniform (§ 77).

OsservarioNn.—It is advisable to regard “ pressure at a
point ” as an abbreviated expression for ¢ pressure in the
immediate neighbourhood of a point.” It would, of course,
be absurd to imagine that flnid pressure could have any
effect on a mere mathematical point, for pressure could
produce no thrust if it had nothing to act on.

79. FUNDAMENTAL LAW OF HYDROSTAT-
ICS.—The pressure at any point of a fluid at rest
is the same in all directions.

#Proof of the Law. — Let 4 be any point in a fluid. ILet a
wedge in the form of a triangular right prism be constructed in the
fluid at 4 (Fig. 17), having its faces in any given directions.

Fig. 17.

Then the fluid inside the wedge is kept in equilibrium by (i.) the
thrusts of the fluid on its faces, and (ii.) its own weight. But,
if the wedge is very small, its weight may be shown to be very
small compared with the thrusts on its faces; hence, by taking the
wedge small enough, we may neglect its weight altogether.

Tet the forces on the rectangular faces Be, Ca, Ab be denoted by
P, Q, B. These three forces must be in equilibrium among them-
gelves, since the only other forces on the wedge—viz., the thrusts
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perpendicular to the triangular faces—are perpendicular to P, Q, R.

Now the forces P, Q, R are perpendicular to BC, CA, AB, the sides
of the triangle ABC; therefore, by the ¢ Perpendicular Triangle
of Forces,”” these forces are proportional to the sides ;

P_Q_x
BC CA 4B’
But Aa, Bb, Cc, the heights of the faces, are equal.
P Q B

rectangle Be  rectangle Ca  rectangle Ab '
average pressure on face Be = average pressure on Ca
= average pressure on Ab.

Fig. 17.

And since the areas have been taken very small, these average pres-
sures are the pressures at the point A in the directions perpendicular
to the planes Be, Ca, Ab, which are therefore equal.

In the same way, it may be shown that the pressures at 4 in any
other directions are equal.

[That the weight of the fluid may be left out of account in considering the
equilibrium of the very small wedge may be shown as follows:—Let the wedge
be inverted ; then, if the wedge is very small, the forces P, @, R arising
from the fluid pressures on its faces are reversed in direction without being
sensibly altered in magnitude. But the direction in which the weight acts is not
reversed. Hence the weight of the fluid cannot sensibly aflect the conditions of
equilibrium of the wedge, for, if it did, the wedge would no longer be in equi-
librinm in its inverted position.]

OBsERVATIONS. — Since the pressure at a point is the
same in all directions, we speak of the ‘“pressure at a
point ” in a fluid without specifying its direction.

When, however, the fluid pressure acts on the surface
of any solid body, its direction is fully specified, being
perpendicular or normal to the surface.
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*80. Deduction of Pascal’s law for a weightless fluid.

When no forces act on the mass of a fluid the pressure is the same in
different parts.

Consider a rectangular column of the fluid taken in any direction,

whose ends ABCD and abed are each, say, 1 in. square. In order
that this column may be in equilibrium, the forces on these two ends

C
1 i
«)—1 i B[
a | D P
c ¥ A
Fig. 18

must be equal ; for the only other forces are due to the pressures on
the other faces, and are perpendicular to them. But the areas of
the faces ABCD and abed are equal ; therefore the pressures on them
are equal.

And, from § 79, we see that the pressures in the neighbourhood of
A, a are the same in all directions. Hence the pressure is the same

throughout the whole of the fluid.

SUMMARY.

1. Definitions of Pressure.—If P is the thrust of a fluid against a
plane surface of area 4, the fraction 5

measures—
(i.) The pressure of the fluid, if this pressure be uniform.
(ii.) The awerage pressure on the area, if the pressure be variable.
(iii.) The pressure at a point, if the area A be a very small plane
area containing that point.

9. Laws of Fluid Pressure.—The pressure of a fluid at rest
(i.) Is perpendicular to the surface on which it acts.’
(ii.) Is the same in all directions at a given point.
3. Pascal’s Law.—When no forces (such as that due to gravity) act
on the fluid particles themselves, the pressure is the same throughout
the fluid.
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EXAMPLES VIII.

1. How is fluid pressure measured when uniform? Compare the
pressures of 15 1bs. on a square inch and of 1000 oz. on a square foot.

2. Compare (i.e., find the ratio of) the following pressures :—

(i.) 14 lbs. per square inch and 8 tons per square yard ;

(ii.) 28 Ibs. per square inch and 162 tons per square foot ;

(iii.) 28 gm. per square centimetre and 16-1 kilog. per squars metre,

3. The pressure of the atmosphere is 15 Ibs. per square inch.
Eixpress this pressure—

(i.) in ounces per square foot ;
(ii.) in poundals per square foot ;
(iii.) in tons weight per square yard ;
(iv.) in grains per square line (1 1b. = 7000 grs., 1 in. = 12 lines).

4. The pressure of the atmosphere is 103 gm. per square centimetre,
Express this (i.) n kilogrammes per square metre, (ii.) in tonnes per
square kilometre, (iii.) in milligrammes per square millimetre, (iv.) in
dynes per square centimetre.

5. Taking the pressure of the atmosphere as equal to 144 lbs. per
square inch, find its value in dynes per square centimetre, assuming
that a gramme is *0022 Ib., and that a metre is 39 ins.

6. A piston 6 sq. ins. in area is inserted into one side of a closed
cubical vessel measuring 10 ft. each way, filled with water; the
piston is pressed inwards with a force of 12 Ibs, Find the increase of
thrust produced on the face of the vessel.

7. The neck and bottom of a bottle are & in. and 4 ins. in diameter,
respectively. If, when the bottle is full of water, the cork is pressed
in with a force of 1 Ib., what force is exerted upon the bottom of the
bottle?

8. Explain what is meant by the pressure at a point in a fluid.

A prism, whose height is 10 mm. and whose base is an isosceles
triangle with sides 10, 10, 12 mm. and altitude 8 mm., respect-
ively, is placed in a fluid where the average pressure is 100 gm. per
square centimetre. Find the thrusts on the respective faces, and
the ratios to them of the weight of water required to fill the prism.

9. If all the dimensions of the prism (see the last question) be
reduced to ome-tenth of the above measurements, show that these
ratios will be one-tenth of their previous values. Hence show that,
if a prism be taken sufficiently small, the weight of the fluid in it can
be neglected in comparison with thrusts of the fluid on its faces.



CHAPTER IX.

APPLICATIONS OF FLUID PRESSURE.
THE BRAMAH PRESS.

81. The Bramah, or Hydrostatic, Press.— The
hydraulic press, used for subjecting bales of cotton, sheets
of paper for printing, and other goods, to great pressure,
affords an excellent illustration of Pascal’s Law of trans-
mission of fluid pressure.

It consists, essentially, of a large cylinder 4 and a small
cylinder G, filled with water and connected by a pipe.
Both contain pistons or plungers B, K, which can slide up

Fig. 19.

and down in them, the larger one B being called the
press-plunger and the smaller the pump-plunger.

The goods to be compressed are placed on a platform
attached to the press-plunger B, above which is a fixed
framework. To work the machine a force is applied to
push down the pump-plunger K. The pressure thus
produced raises the press-plunger B and compresses the
goods between the platform and the framework.

By making the plunger B very large and the plunger K
very small, a small downward force applied to K will
produce a very great upward force on the platform, For

HYDRO. G
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the pressures of the water over the two plungers
are equal. Hence the thrusts on them are proportional to

their areas.

Ezample—Tf the area of the pump-plunger is 1 sq. in., and the
area of the press-plunger is 100 sq. ins., then a force of 11b. on the
former will produce a pressure in the fluid of 1 Ib. per square inch.

And this pressure, acting over the whole area of the press-plunger
(100 sq. ins.), will produce a thrust of 100 lbs. on the platform.
Thus, by applying a force of 1 Ib., we can lift a weight or overcome
a résistance of 100 Ibs.

. The following additional details are required to complete
the actual working machine, represented in Fig. 21 :—

82. Water-tight Collar. — To
prevent the water from escaping,
the space between each plunger and
its containing cylinder is closed with
a packing or collar of the form
shown in section in Fig. 20. A ring
of leather is folded over the rim of
the cylinder so that its section re-
sembles an inverted U, and this
leather is forced against the plunger
by the pressure of the water under-
neath. The greater this pressure
the more tightly does the leather fit Fig. 20.
round the plunger.

83. Pump Action.—When the pump-plunger is pushed
down through the whole length of the cylinder containing
it, the press-plunger only rises through a very small
distance. In order to lift the press-plunger through the
required height, the pump-plunger is arranged to work
up and down as a forcing-pump, as shown in Fig. 21.
When the pump-plunger is pushed down, the valve J
closes and the valve F opens, and the water lifts the press-
plunger. At the end of the stroke the small piston ig
again raised ready for a second stroke. The valve £ ig
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now closed by the pressure in front, and prevents the
escape of the water from the large cylinder, while a fresh
supply of water is admitted from a reservoir / to the
small cylinder by means of the valve V. At the next
down-stroke this water is forced into the large cylinder.
Thus the large piston is raised at each stroke of the pump.
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When the bales have been compressed, the water is
allowed to return from the large cylinder to the reservoir
by turning on a tap £, and the piston descends by its
own weight ready for another load.

84. Tiever.—Instead of operating directly on the small
piston, it is usually raised and lowered by a lever /, and
this serves to still further increase the mechanica advan-
tage of the apparatus.
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Ezamples.—(1) Tf the pistons are circular, and of diameters 1 in.
and 2 ft., respectively, fo find the force required to overcome u
registance of 9 tons.

Here the areas of the circular pistons are, respectively, = x 1° an.d
4mx 24% 8q. ins. Also the thrust of the fluid on the larger piston is
required to be 9 x 2240 Ibs.

Hence the pressure of the fluid is

9 x 2240
144w
and, since the area of the smaller piston is L sq. in., the force on it
. =QXZ24OX%;‘”=9X560=35H)5,
14447 144
[N.B.—The numerical value of 7 should 7ot be substituted. ]

(2) If the areas of the two plungers are % sq. in. and 10 sq. in.,
and the pump-plunger is worked by a lever whose arms are 2 ins. and
28 ins., to find the resistance that can be overcome by applying a
force of 15 1bs. to the end of the longer arm of the lever.

Let @ be the resultant thrust on the plunger. For the equilibrium
of the lever, we have, by taking moments about the fulerum;

Qx2=15%x28;
ce Q@ =15%x14 = 210 1bs.

This force of 210 lbs, is distributed over the area of the small
plunger, which is 1 sq. in.

- pressure produced = 210--F = 210 x 4 = 840 lbs. per square inch.

This pressure is transmitted to the surface of the large plunger,
whose area is 10 sq. ins. ;

upward thrust on large plunger = 840 x 10 Ibs,

Hence the press can overcome a resistance of 8400 Ibs., that is,

32 tons weight.

(8) If, in the last example, the end of the lever is raised and
lowered through 1 ft. at every stroke, to find the number of strokes
requisite to raise the press-plunger through 1 in.

Since the arms of the lever are 28 and 2 ins., respectively, therefore,
when the end of the longer arm is lowered through 1 ft., the pump-
plunger falls through % ft., .e., & in.

Hence the volume of water forced out of the pump cylinder

) i x¢cub.in. = 2 cub. in.

This volume is forced into the pross cylinder; hence the press-
plunger rises at each stroke through -3 +10ins., i.c., through 2 in.
Hence the number of strokes required to raise it through 1 in, is
= 120 _ 462

El i

Hence 46 complete strokes must be made, and the lever must be

pressed two-thirds down in the 47th stroke.

1bs. per square inch,
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85. Mechanical advantage of Bramah’s Press
without-a lever,—Let 4, B be the areas of the large and
the small plunger, @ the effort or force applied directly
to the small plunger, W the resistance to be overcome.

Then, since the pressure due to the force @) distributed
over the area B is equal to that due to the force W
distributed over the area 4 (by Pascal’s Law),

. _w

A k)
__ A _ areaof press-plunger
@~ B areaofpump-plunger
In practice the plungers are always circular.
Let a, b be their diameters; then

A = iwd’, B = lalb?;

N =IO

‘. mechanical advantage

, W _ imd® _ &
mechanical advantage e

86. Mechanical advantage taking account of the
lever.—Next suppose the pump worked by means of a
lever whose arms are z, y, the effort used to work it being
a force P applied at the end of the arm . Then, if @
denote as before the thrust acting on the pump-plunger
applied at the end of the arm y, we have, by taking

moments, Pxao= @Qxy,
Q_e.
or =y

whence, by the last article,
: w_w_ Q _A_ =z _ a  x
. mech. adva,n‘ba,gef;y—-— 6 —F—- EX?—?X?
= (mechanical advantage of lever) x (that of press),

as it obviously should ke.

87. The so-called “ Mydrostatic Paradox” consists
in the fact that a small force may be made to overcome a
far greater resistance by means of a hydraulic press.
There is really nothing paradoxical in this, for the simple
machines or * mechanical powers’ described in text-books
in Mechanics all have the same property.
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The Principle of Conservation of Energy is satisfied in
all cases. In the hydraulic press, in which a small force
applied to the small plunger overcomes a large resistance
applied to the large plunger, the former plunger has to be
moved through a considerable distance in order to move
the latter through a small distance, and the work done by
the effort always equals that done against the resistance.

Ezamples.—(1) To verify the principle of Conservation of Energy
for the Example of § 81 (p. 82).
The area of the large piston is 100 sq. ins. ; hence, if we want to

raise it through +i; in. we must drive 1 cub. in. of water from

the small cylinder into the large ome, and to do this the small
piston must be pushed down 1 in.

But the work done by 1 1b. in moving through 1 in. is equal to the
work done by 100 lbs. in moving through iy in. Hence the work
done by the effort is equal to the work done against the resistance.

(2) In the press of Examples (2), (3), p. 84, the work done by
the effort (15 1bs.) in 463 strokes of the pump
= 15 x 463 ft.-1bs. = 700 ft.-1bs.
The work done against the resistance of 8400 lbs. in raising the
platform through 1 in.
= 8400 x ; ft.-1bs. = 700 ft.-1bs.
These works are equal, thus verifying the principle.

88. To verify the Principle of Conservation of Energy
for the hydraulic press generally, the process is the converse of
§ 74, where the principle was used to prove Pascal’s Law by means
of g similar contrivance. The proof is left as an exercise to the
student.

89. The Safety-Valve.—The boiler of every steam-
engine is furnished with at least one safety-valve
(more often two), which prevent the pressure from be-
coming sufficient to burst or
injure the boiler. A safety-
valve is also attached to the
hydraulic press at L (Fig. 21)
for a similar purpose.

The tube K (Fig. 22) is con-
nected with the fluid under
pressure, and is closed by the
valve V/, which is held down
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by an adjustable weight /. The pressure required to lift
the valve must not exceed the greatest pressure of fluid
consistent with safety. For less pressures the valve
remains closed ; for greater pressures the valve rises and
fluid escapes, so that no further increase of pressure can
take place.

The figure shows the most common form of safety-valve,
in which the weight is attached to a lever 0B, operating
on the valve at 4. By varying the weight, or sliding it
along the lever, the valve may be made to open at any
desired pressure.

Exa-mple.s.—(l) If the section of the tube of the safety-valve is a
square of side 4 in., to find the weight which must be placed on it so
that it opens when the pressure exceeds 135 1bs. per square inch.

Here the area of the valve exposed to pressure is & sq. in. Hence
the upward force on it at the given pressure

= 135 x 3 Ibs. = 15 Ibs. ;
therefore the valve must be loa.ded with a weight of 15 lbs.

(2) Suppose the tube is circular and 3 in. in diameter, the maximum
pressure 140 lbs. per square inch, and the valve is held down by a
lever carrying amoveable weight of 5% 1bs., to find where this weight
must be placed.

The thrust required to lift the lever must

= 140 x 22 x (1)% Ibs. = 55 Ibs.
Hence, if 0 is the fulecrum, A the centre of the valve, and B the
point where the weight is attached, we have, by taking moments,
32x 04 =12 x 08,
08 = 5. 04
that is, the distance of the weight from the fulcrum must be five
times the distance of the centre of thelvalve.

(3) The area of a safety-valve exposed to pressure is 4, and the
valve is held down by a weight 7 which can slide along a lever, the
distance 0A of the centre of the valve from the fulerum being known.
To find where the weight must be placed, if the maximum pressure
that the boiler will stand is p.

Let B be the required point at which the weight must be hung
from the lever.

‘When the pressure is p, the force acting on the lever at A is px 4.
Therefore, by taking moments about 0,

Wx0B=pdx04;
whence the required distance 0B = HI‘; x 0A.
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90. The Steam Hammer
(Fig. 23) consists of a heavy
metal hammer attached to a
piston, which is forced down
by steam pressure applied
to its upper surface. On
striking the bar of iron or
other object to be forged,
the energy of its motion is
converted into useful work.

A similar machine is used
in driving rivets or bolts
through metal plating in
ship-building, &ec.

SUMMARY.

1. The principal parts of Bramah’s Press ave—

Large cylinder containing press-plunger, attached to platform on
which goods are compressed against framework ;

Small cylinder containing pump-plunger, operated by lever ;
‘Water-tight collars fitted round plungers ;
Valves allowing small plunger to be worked as a forcing-pump.

2. By Pascal’s Law,
pressure over small plunger = pressure over large one;
hence the thrusts on them are proportional to their areas.

3. The safety-valve and steam hammer also work by fluid pressure.

EXAMPLES IX.

1. In a hydraulic press the pump-plunger is a cylinder 1.cm. in
diameter, and makes a stroke 7 em. long. The plunger of the press
is 20 om, in diameter. Calculate (¢) the pressure in the press when
a weight of 100 Ibs. is applied to the pump-plunger (ignoring fric-
tion) ; (4) the force acting on the press-plunger; (¢) the number of
strokes which the pump must make in order to raise the press-plunger
10 cm.
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2. In the Bramah press the areas of the two cylinders ave } sq. in.
and § sq. ins., and the lengths of the arms of the lever by which it is
worked are 36 ins. and 14 ins. How much thrust is obtained by
applying to the end of the longer arm a force of 15 Ibs.?

3. In the Bramah press the areas of the two pistons are } sq. in.
and 16 sq. ins., respectively: If the lengths of the arms of the lever
are in the ratio of 20 : 1, what force must be applied at the end of the
lever in order to produce a thrust of 16,000 Ibs. ?

4. If a resistance of 1 ton is overcome by a force of §1bs. applied
to a Bramah press,and the diameters of the pistons are in the ratio of 8
to 1, find the ratio of the arms of the lever employed to work the piston.

5. If the lengths of the arms of the lever in a Bramah press are
30 ins. and 2 ins., respectively, and area of the smaller piston be
% 8q. in., what must be the area of the larger piston in order that a
force of 10 Ibs. applied at the end of the lever may produce a thrust
of 9000 lbs. ?

6. Verifythe Principle of Conservation of Energy for Bramah’s press.

7. A safety-valve whose area is 1} ins. is held down by a weight
of 28 1bs. attached to the longer arm of a lever whose arms are 2 ins.
and 2 ft. 'What pressure will just lift the valve?

8. Supposing the tube to be circular and £ in. in diameter,
and the maximum pressure to be 350 lbs. per square inch, find the
load which must be placed on the valve.

9. The piston of a steam hammer is £ sq. ft. in area, and it is
forced down through 18 ins. by a steam-pressure of 240 1bs. per square
inch. How many foot-pounds of work have been done on it ?

10. A steam hammer weighing 1 ton, and the diameter of whose
piston is 14 ins., is forced down by steam at u pressure of 30 Ibs.
per square inch, and on striking a piece of iron compresses it by § in.
If the total distance fallen by the hammer is 2 ft., find the average
resistance of the iron.

[Assume that the whole work done on the hammer is expended
in compresging the iron.]
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EXAMINATION PAPER IV.

1. What is meant by the pressure of @ fluid? How does it differ
from ordinary statical pressure ?

2. Estimate a pressure of 15 lbs. weight per square foot in dynes
per square centimetre.

3. Show that any pressure applied to the surface of o fluid is
transmitted equally in all directions.

4. A thrust of 15 lbs. is applied to « square piston whose edge is
5 ins., fitting into a vessel containing liquid. What pressure per
square inch is transmitted to the liquid ?

5. Explain the Hydrostatic Paradox.

6. Two communicating cylinders, the diameters of whose bases are
3 ins. and 8 ins., respectively, are fitted with pistons. If a weight
of 27 1bs. be placed on the smaller piston, what weight must be placed
on the larger to keep it at rest ?

7. Describe Bramah’s Press. Upon what principle does its action
depend ?

8. Find the thrust that can be produced in a Bramah’s press, the
areas of whose pistons are as 100 : 1, by a force of 16 lbs. applied at
the end of a lever 28 in. long, and at a distance of 24 ins. from the
point of attachment of the piston rod. (In this and the two following
examples the lever is of the second class.)

9. If the areas of the pistons in a Bramah’s press are as 8 : 1,
what force must be applied at the end of a lever 21 ins. long and at
u distance of 18 ins. from the piston rod to produce a thrust of
2% tons ?

10. Find the ratio of the areas of the pistons if a force of 12 Ibs.
produces a thrust of 3 tons, the lever being 28 ins. long and the force
applied at a distance of 24 ins. from the fulerum.



CHAPTER X.

PRESSURE IN A LIQUID ARISING FROM
WEIGHT.

Having defined the pressure at a point of a flnid in
Chap. VIIL, § 78, we now proceed to counsider the pres-
sures at different points of a liquid due to its weight, and
we shall first show that

91. The pressure of a heavy liguid at rest is the
same at all points in the same horizontal plane.

Consider the equilibrium of a long thin rectangular
portion of liquid, whose faces ABCD and abed are

Ac ’
b
i B
Q /’l ID P
a ‘L /
Fig. 24.

vertical, and whose edges Aa, Bb, C’c, Dd are horizontal.
The forces acting on this portion are—

(i.) The weight of the liquid acting vertically ;

(ii.) The thrusts of the liquid on.the six faces acting
perpendicular to them.

New the thrusts on the ends ABCD and abed are
parallel to Aa and perpendicular to all the other forces,
none of which can therefore affect their equilibrium.

Hence the thrusts on ABCD and abed must be equal.

But the areas are equal.

Therefore the average pressures on them are equal.

And, since the areas ABCD, abed may be taken to be
very small, it follows that the pressure at the point A is
equal to the pressure at the point a.

Similarly, the pressures at any other points in the same
horizontal plane are equal, as was to be proved.

Cor. Hence, if a plane area be placed horizontally in heavy liquid,
the pressure over its face is uniform.
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92, The pressure of a uniform heavy liquid is
proportional to the depth below the surface and to
the density of the ligmid.

Consider a rectangular column AB whose
square base is the unit of area, extending
from the surface of the liquid down to any
given depth. The liquid inside this column
is kept in equilibrium by the following
forces :—

(i.) Its weight acting vertically down-
wards ;

(ii.) The upward vertical thrust of the
adjacent liquid on its base at B;

(iii.) The horizontal thrusts on the
vertical faces.

The first two must be equal, since the Fig. 25.
other forces are all perpendicular to them.
Hence the thrust on the base is equal to the weight of
the liquid column AB.

But, since the base is of unit area and the pressure is
uniform over it, this thrust is equal to the pressure at B.

And the weight of the column is proportional to its
volume, and therefore to its height. Hence the pressure
is proportional to the depth below the surface. Also the
weight of the column is proportional to the density of
the liquid ; therefore the pressure is proportional to the
density. ’

Cor. Hence we have the following wery smportant
result :—

The pressure of a heavy liquid at a given depth is measured
by the weight of a column of liquid whose height is equal to the
gtven depth, and whose base is the unit of area.

This result enables us to- deduce, from first principles,
the pressure in water or any other liquid at any given
depth measured in feet or centimetres.
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Ezample. — To find the pressure in water at a A
depth of 6 ft. !
Let B be a point 6 £t. below the surface. -:
Construct a rectangular column whose base is 1 £. i
square, extending to the surface at 4. Since the :
height is 6 ft., the column can be divided into 6 :
cubes, each containing a cubic foot ; E
volume of column = 6 cub. ft. i
Now a cubic foot of water weighs 1000 oz. ; ’;
weight of column = 6000 oz. '
thrust on base at B = 6000 oz. weight ; Tl
pressure ,, ,»' = 6000 oz. per square i B
foot 7
= 3875 1bs. per square )
foot. Fig. 26.

93. To find expressions for the pressure of a given
liguid at a depth of & feet.— Firstly, let the liqnid
be water. Construct a rectangular column whose base is
a foot square, extending from the surface down to the
depth h feet; then the weight of this column is supported
by the force on its base, and therefore measures the pressure
per square foot.

By dividing the height into % portions of 1 ft. high,
the column may be divided into % cubes, each measuring
1 cub. ft. Hence the volume of the column is % cub. ft.,
and the weight of the water contained in it = 1000% oz. ;

pressure in water at depth of & ft.
= 10007 oz. weight per square foot.

If the liquid be of specific gravity s, the weight of the
column is s times as great as the weight of the corre-
sponding column of water.

.. pressure at depth 7 £t. in liguid of specific gravity s
= 1000s oz. per sguare foot.

Cor. 1. The pressure in water increases by 1000 oz. per square foot for
every foot of inerease of depth.

Cor. 2. If the specific gravity of a liquid be s, the increase of pressure
Jor every foot increase of depth is s_times as great as Jor water,



94, HYDROSTATICS.

94. To find the pressure of a given liguid at a
depth of » centimetres. — Construct a column whose
base is 1 em. square, and whose height is  em.; the weight
of the liquid in this column measures the pressure at its
base per square centimetre.

Now the volume of the column is & cub. cm.

But a cubic centimetre of water weighs a gramme.

Therefore, if the liquid be water, the weight of the
column is 2 gm., and if the liquid be of specific gravity s,
its weight is hs gm. ;

pressure at depth of 7 cm.
= h grammes per square centimetre for water

= s grammes per square centimetre for
liquid of specific gravity s.

Cor. The pressure in water increases by 1 gm. per square centimetre
JSor every centimetre increase in depth.

Examples.—(1) A corked-up bottle is lowered to a depth of 28 ft.
in water, and the cork is ; ft. in diameter. 'What is the force tending
to drive the cork in ?

The pressure at depth of 28 ft. = 28,000 oz. per square foot.
Also the diameter of the cork = 2 ft. ;
its area = 22 x (J;)? square feet,
and the force on the cork

= 22 x g5 X 55 x 28,000 0z. = 1215 oz. = 923: oz.
= 5 Ibs. 12:3; oz. weight.

(2) A penny sinks to the bottom of a lake 100 metres deep. To
find the force which the pressure of the water exerts on either face of
the penny.

The pressure at a depth 100 metres, or 10,000 cm.,

= 10,000 gm. per square centimetre
= 10 kilog. per square centimetre.
The diameter of a penny is 3 cm. ;
its area = 22x 3 x 2 8q. cm., or 22 gq. cm. ;
.+ the force on either face = 220 kilog. weight = £25 kilog. weight
= 70§ kilog. weight,
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OssErvATION.—T'his force does mot represent the resultant
force on the penny as a whole, because both sides of the
penny are exposed to pressure, and these pressures act in
opposite directions. The only resultant force on the penny
is equal to the weight of water displaced (Chap. V.).

We may find in like manner the difference between the
pressures at two different depths of a liguid.

Ezample.—To find the difference of pressure at the top and bottom
of a vertical tube 760 mm. long filled with mercury.

The specific gravity of mercury is 13-6.
Therefore 1 cub. cm. of mercury weighs 136 gm.
Therefore difference of pressure for 1 cm. of height

= 136 gm. per square centimetre.
Therefore difference of pressure for 76 cm. of height
= 136 x 76 = 10336 gm. per square centimetre.

95. To find a general expression for the increase of
pressure in a heavy liquid corresponding to a given in-
crease of depth.

Let any units of weight and length be chosen. Let
A, B be two points in the liquid in the same vertical
line. ILet p be the pressure at 4, P the pressure at B,
% the vertical distance AB, w the weight of a unit volume
of liquid.

Describe any rectangular or cylindrical column of
liquid whose height is AB, and let 4 denote the area of
its base ; the volume of the column is therefore 4%.

Then the only vertical forces acting on the column are—

(i.) the pressure pA4 acting downwards at 4 ;

(ii.) the pressure P4 acting upwards at B ;

(iii.) the weight of the column w.4?% acting downwards.

Therefore, for the equilibrium of the column,

P4 =pd+wdh;
P = p+wh,

or P—p = wh.

In other words, the increase of pressure P—p
= (increase of depth) x (weight of unit volume of liquid).
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96. Experimental Illustrations. — The properties
proved above may be verified by means of the apparatus
shown in Fig. 28. A cylindrical tube has its lower end
closed by a flat plate which can be held up by means of a
string. On lowering the cylinder in water it will be found
that, after a certain depth has been reached, the string may
be let go without the plate sinking. The exact depth at
which this happens may be found by again raising the tube
slowly until the plate just sinks; the
force produced by the pressure on the
under side is then just equal to the weight
of the plate. Now repeat the experiment
with different weights placed on the
plate. If the added weight is equal to
the weight of the plate (so that the total
weight supported is doubled) it will be
found that the depth at which the string
may be let go is also doubled. That is,
if the depth be doubled, the pressure is
doubled.

Similarly, if the depth of immersion
be increased threefold, the total weight Fig. 28.
when the plate sinks is also increased
threefold, and so on. Hence the pressure is proportional
to the depth.

Next, let the experiment be repeated with liquids of
different densities. It will be found that, #f the cylinder
be always immersed to the same depth, the total ‘Weight
required to sink the plate (including, of course, the weight
of the plate itself) is proportional to the specific gravity
and therefore to the density, of the liquid. ’

97. To show that the free surface of a heavy
liguid at rest is horizontal.

Take any two points P, () in the liquid, such that the
line P is horizontal, and lies entirely in the liquid. TLet
the verticals through P, ) meet the surface in 4, B.

Since P() is horizontal, ’

pressure at P = pressure at (. (§ 91.)
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But the pressures at P,  are pro-

portional to AP, B(, the depths below
the surface ;

AP =BQ;
AB is parallel to PQ.
But PQ is horizontal ;
AB is horizontal.
And, similarly, any line drawn in

the surface is horizontal; therefore
the surface is horizontal. Fig. 29.

98. The surface of a liquid at rest rises every-
where to the same level.

EBzperimental Illustration.—This well-known p}'operty
may be verified experimentally by constracting an
apparatus such as that shown in Fig. 30, in which
several open vessels of different shapes and sizes D, E,F
communicate freely with one another. If Yvate_r or any
other liquid be poured into one of them, it will rise to the
same level in them all,

Fig. 30.

The proof of § 97 holds when the liquid is contained in
two or more communicating vessels such as D, E. In
this case all the free surfaces are at the same level, and
form part of one and the same horizontal plane. If the
liquid is contained in a vessel such as that shown at F
the proof fails, for we cannot construct a vertical column

HYDRO. H
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whose base is at a point R of the bottom without passing

out of the liguid.
But we can always counect any point R with the

surface by means of a zigzag of alternately vertical and
horizontal straight lines CH, HK, KR, and can find the
difference between the pressures at any two points on
this zigzag by § 95.

Thus, since CH is vertical, we have

pressure at H = wxCH ............... (i.),
where w is the weight of unit volume of liquid.
Since BC is horizontal,
pressure at K — pressure at H = 0 ...... (L)
Since AR is vertical,
pressure at B — pressure at K = wx KR ... (iii.).

Fig. 30.

Therefore, by adding (i.), (ii.), (iii.),
pressure at B = wx (CH+KR)
= w x depth of R below surface.®

‘We may now show that the liquid in the vessel F
reaches the same level as in D. For, if B is on the same
level as P, the pressures at R, P are equal, and therefore
the depth of R below the surface at C is equal to that of P
Lelow the surface at 4. Hence AC is horizontal.

* For, produce RK up to meet the horizontal plane through Cin L. Since CL, HK
are parallel, ... CH =LK, and .". CH+KR = LR = depth of # below level of surface.
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99. The Water Level, an instrument used in sur-
veying, is based on this principle. It consists of two
vessels [0, E communicating by means of a tube, and
partially filled with water. The water of course rises to
the same level in both, and enables us to find the
horizontal direction. To facilitate its use, the two vessels
contain floats A, B having “sights” X, ¥ fixed on them,
which rise to equal heights above the level of the water.
Since the water reaches the same level in the vessels D, E,
the sights are also on the same level, and the line joining
them is horizontal. If now a distant object be observed
to be in a line with the two sights, we know that the
object and the sights are on the same level. We are thus
able to find any number of different points on the same
level, and hence to determine the difference of level of
two different places.

Fig. 31.

100. The water supply of towns affords an excellent
illustration of these principles. The water is brought
from a reservoir above the town by means of a series of
mains and pipes, and, whatever be the arrangement of
these mains, the water everywhere tends to rise to the
level of its surface at the reservoir. When at rest, the
pressure of the water at any point is proportional to the
vertical depth of that point below the reservoir.

[ Practically, however, the reservoir must be placed somewhat above

the highest point to be supplied, in order that the water may flow
through the pipes sufficiently rapidly to supply the town.]

101. Der—The head of liquid means the height of
the column of liquid to which the pressure at any given
point is due.

Thus, at a point 100 ft. below the level of the reservoir there is a
head of water of 100 ft.
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102. The thrust exerted by a liguid of given depth
on the base of its containing vessel is independent
of the shape of the remaining portion of the vessel.

For the pressure at any point of the base depends only
on the depth of the liquid and the density, and not on the
shape of the other part of the containing vessel; and
the thrust upon the base depends only on this pressure
and the area of the base.

103. Pascal’'s Vases.—The above properties may be
illnstrated "by taking a number of vessels of conical,
cylindrical, and other shapes (Figs. 33, 34, 35), the aper-
tures at the bottom of which are of the same size and can
be closed by a circular dise.
One of the vessels is fixed
upright, and the disc closing
it suspended from a hydro-
static balance by a string
fastened to a hook on its
upper side (Fig. 32).

In the other scale-pan are
placed weights by which
the dise is held up against
the bottom rim of the vessel.

Now, let water be poured
into the vessel. The dise
will fall, and the water will
escape as soon as the weight Fig. 32.
of the disc and the thrust
of the water on it together exceed the weights in the
opposite scale.

Let the experiment be repeated, using the same weights
and one of the other vessels. When the water has been
poured in to the same height as before, it will again escape.
Hence the thrust on the disc is the same in each case,
provided that the depth of water and the area of the base
are the same.




PRESSURE IN A LIQU!D ARISING FROM WEIGHT. 101

104. :.1‘0 explain why the thrusts on the bases of
Pascal’s Vases are not always equal to the weight
of the contained liguid. ‘

Case I. — In a cylindrical wvessel ABCD (Fig. 33) the
reactions of the sides AD, BC are horizontal, and therefore
the thrust on the base equals the weight of the liquid.

Case 1L — If the sides slant upwards from the base
(Fig. 34), the thrust on the base (being independent of
the shape of the vessel) is the same as in a cylindrical
vessel ABEF with the same base and altitude, and is
therefore less than the total weight of liquid.

(=) ©) )
D

x|
o
e S
-
e

Fig. 33. Fig. 34. Fig. 35.

Here, however, the pressures of the liquid acting per-
pendicularly to the sides of the vessel have a vertical
component which produces a downward thrust on these
sides.

Considering separately the equilibrium of the liquid
outside and inside the cylinder ABEF, and observing that
the pressures of these portions on each other have no
vertical component, we have

vertical thrust on sides AD, BC = weight of liquid outside ABEF ;

'y 59 base AB = - ,, nside ABEF.

Adding these together, we find, as we might expect,
that

vertical thrust on whole vessel DABC = weight of whole of liquid.
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Case I[I —If the sides slant inwards from
the base (Flg 35), the vessel contains less
liquid than a cylinder ABEF on the same
base; hence the thrust on its base is greater
than the weight of the contained liquid.

Here, however, the pressures on the sides
AD BC have an upward component, and
theretore the liquid tends to lift the sides.

Suppose liquid poured into the cylinder Fig. 35.
ABEF to the same height outside ABCD as
inside. The pressures on the inside and outside of the
taces AD, BC will now balance each other. Hence

upward thrust on sides AD, BC = weight of liquid outside =~ ABCD.

. But

downward ,, ,, base AB = % ,, in cylinder ABEF.
Subtracting these, we find, as we might expect, that

resultant thrust on whole vessel DABC = weight of contained liquid.

105. The Hydraulic Lift.
—TIn this, as in the Hydrostatic
Press, very large weights are
raised by the pressure of water
on the under surface of alarge
piston ; but this pressure is
produced by the weight of a
column of water instead of
by a force applied to a small
plunger.

Thus, if CE is a vertical
column of water conunected
with a cylinder which con-
tains the piston AB, and if the
surface AB produced meets
the column CE in D, the pres-
sure per square inch at the
level ABD is equal to the weight
of a column of height 6D and
sectional arvea 1 sq. in. Hence
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the thrust on AB is equal to the weight of a cylinder of
water of height 0D, whose base is the area AB.

And, by making the piston AB very large, this upward
force can be made as large as we like without altering the
weight of fluid in €D which produces it.

Thus any quantity of fluid, however small, may be made
to lift any weight, however large.

When the lift is raised, water flows into the cylinder
AB, and the tube is kept filled from a high reservoir.
To lower the lift, the cylinder is disconnected from the
tube CE, and the water allowed to escape by the tap X,
the piston descending by its own weight.

#106. Effect of variations in the direction of gravity.—
The proof that the surface of a liquid is a horizontal plane is only
true when the body of fluid considered is so small that the ‘¢ verticals”’
or directions of gravity are parallel at all points of the fluid. But in
a large body of water, such as a lake or ocean, the verticals at different
points cannot be regarded as parallel, since they meet in the centre
of the Earth, and the proofs of §§ 97, 98 no longer hold. Here the
surface of the water is not plane, but convex. _

The surface of water in the neighbourhood of any point is still
horizontal, if by ‘‘horizontal’’ we mean everywhere perpendicular
to the vertical or direction of gravity. Combining this with the fact
that the verticals at different places meet approximately at the centre
of the Earth, it is possible to show that the surface of the ocean is
approximately spherical, its centre being at the centre of the Earth ;
as 1s easily verified by observation.

*107. The intensity of gravity g is known to vary slightly in different
latitudes, and this produces slight local variations in the pressure due to the
weight of a column of liguid of given depth and density. Employing the
formula p = wh for the increase of pressure in depth 7, we notice that w is
proportional to g; hence the pressure p is proportional to g. If wand p be
measured in dynamical units of force, and if d be the density, then, since the
weight of a unit volume in dynamical units is g times its mass

w=dg;
p = dgh dynamical units of pressure.

If the experiments of §§ 96, 103 were repeated in different latitudes—say at the
equator and near the pole—no difference would be observed, because In these
experiments the pressure is made to balance the weights of masses (i.e., the
set of weights émployed), and these also undergo the same proportional
variations according to the value of “g.”

Thus we could prove by experiment that the pressure due to a given depth
of given liquid is proportional to g.

Experiment also shows that the intensity of gravity decreases if we go from
the surface towards the centre of the Earth. Hence in the case of a very deep
ocean, the pressure is no longer strictly proportional to the depth.
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*108. Effect of compressibility of liguid.—Amnother reason
why the pressure at great depths is not strictly proportional to the
depths is that all liquids are slightly compressible. The lower por-
tioms are squeezed down by the pressure due to the weight of the
liquid above, and occupy slightly less bulk than they would do if the
pressure were removed. Hence, in a column of liquid, the density
increases slightly with the depth. For this reason, also, the weight
of the column, and therefore the pressure at great depths increases
a little more rapidly than it would if the liquid were absolutely
incompressible.

*109. Effect of variations of temperature.—If a liquid be
heated, it expands and occupies a greater volume than before. Hence
its density, and therefore the weight of a unit volume, decreases.
Therefore the pressure at a given depth also decreases with a rise of
temperature. But, if the liquid is contained in a cylindrical vessel
and is heated, it will rise to a greater height in the vessel, and this
will make up for the diminution of density, so that the force on the
base will still be equal to the weight of the liquid.

STMMARY.

1. The pressure in a liquid arising from its weight
(i.) Is the same at all points on the same level ;
(ii.) Is proportional to the depth and the density of the liquid ;
(iii.) Is measured by the weight of a column of unit sectional area
extending to the surface.

2. The pressure at depth h = wh
= 1000 %s oz. per square foot if / is measured in feet
= hs gm. per square centimetre if % is measured in centimetres ;
where w = specific weight of liquid,
s = specific gravity referred to water.

3. If the surface is at presswre p, the above pressures must all
be increased by p.

EXAMPLES X.

1. Find in pounds per square inch the pressure in water at a
depth of 32 ft.

2. Show that the pressure is the same at equal depths in a body
of liguid, and find the increase of pressure in pounds per square inch
for every foot-depth of water.
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3. Find the difference between the pressures at the top and bottom
of (i.) a column of water 30 ft. high ;
(ii.) a column of air a mile high (specific gravity = -001) ;
(iii.) a column of sea-water a kilometre deep ;
(iv.) a column of mercury 760 mm. high.

4. How would you show experimentally that the difference in
pressure at two points in a heavy liquid is proportional to the differ-
ence in depth of the points? Does the pressure at any point depend
on anything besides the depth of the point?

5. A vessel, whose shape is that of a pyramid 4 ft. high, has a
base 5 sq. ft. in area. Find the pressure and the force on the base
when the vessel is filled with water.

6. Three rectangular cisterns are filled with water. One of them is
in the form of a cube whose edge is 7 ft. ; another is 4 ft. high, 4 ft.
wide, and 13 ft. long; and the third is 3 ft. high, 3 ft. wide, and
15 ft. long. Show that the thrust on the base of the second is
5 tons 1800 lbs., the weight of a cubic foot of water being 1000 oz.,
and that this thrust is equal to the difference between the thrusts on
the bases of the other two, the atmospheric pressure not being taken
into consideration.

7. A spherical boiler 4 ft. in height is half full of water and half
full of steam. What is the difference between the pressure at the
top and bottom of the boiler?

8. Find the height of a column standing in water 30 ft. deep, when
the pressure at the bottom is to the pressure at the top as 4 to 3.

9. A long glass tube of 1in. diameter has a disc weighing 2 oz.
placed at one end. How far under water must the end of thé tube,
with the disc below it, be immersed, in order that the disc may not

all off.

10. Determine the greatest depth in fathoms at which a submarine
diver can work in sea-water, supposing he can bear a pressure of
5 atmospheres, taking an atmosphere to be a pressure of 15 Ibs. per
square inch.

11. A hole 6 ins. square is made in a ship’s bottom 20 ft. below
the water-line. What force must be exerted in order to keep the
water out, by holding a piece of wood against the hole, if a cubic foob
of water weighs 64 1bs.?
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12. A and B are vessels full of water with circular and horizontal
bases 12 ins. and 8 ins. in diameter, respectively. A is 8 ins., and B
is 9 ins., high. Compare the pressure on the bases.

13. Two rectangular cisterns standing on a horizontal plane are
joined at their bases by a leathern pipe resting on the plane. If one
of them be 5 ft. long and 3 ft. broad and the other 4 ft. 6 ins. long
and 3 ft. 4 in. broad, and water be poured into either, then, when
water is at rest, the thrusts on the bases will be equal.

14. Prove that the surface of a heavy fluid at rest under the action
of gravity is a horizontal plane. Why is this not true of very large
surfaces of water ?

15. Find the pressure at a given depth (2) in a liquid whose specific
gravity is s, and whose surface is subject to a given pressure P.

16. Taking 1000 oz. as the weight of a cubical foot of water, and
15 Ibs. weight on « square inch as the atmospheric pressure, find, in
hundredweights, the thrust on a horizontal area of 7 sq. ft. in water
at the depth of 32 ft.

17. Find the pressure at a depth of 96 f£t. below the surface of the
sea, the pressure of the atmosphere at the surface being 14 lbs. per
square inch, the weight of a cubic foot of ordinary water 1000 oz.,
and the specific gravity of sea-water 1-025.

18. Tf a cubic foot of sea-water weighs 1025.0z., what will be the
pressure on the square inch at the depth of  mile? (The pressure of
the atmosphere at the surface is to be taken into account.)

19. Show that the effect of an external pressure of 13& lbs. per
square inch may be allowed for when the liquid is water, by supposing
a layer of water, 32 ft. thick, to be superposed on the original liquid.

20. The pressure at the bottom of ~ well is four times that at a
depth of 2 ft. ; what is the depth of the well if the pressure of the
atmosphere is equivalent to 30 ft. of water?

21. If the pressure at a point 5 ft. below the surface of a lake be
one-half of the pressure 44 ft. below the surface, account being taken
of the atmospheric pressure, find the atmospheric pressure in pounds
on the square inch, assuming a cubic foot of water to weigh 1000 oz.

22. The pressure at a point 3 ft. below the surface of a heavy fluid
is 30 Ibs. per square inch, and at a depth of 7 ft. it is 50 Ibs. What
is the pressure at the surface ?



CHAPTER XI.

PRESSURE DUE TO THE WEIGHT OF
SEVERAL DIFFERENT LIQUIDS.

110. We shall now consider the pressures arising from
the weight of several liquids of different densities which
do not mix, but rest on one another.

The proofs of §§ 91, 98 show that in any continuous
portion of the same liquid the pressure is always the same
at all points in the same horizontal plane, whether this
pressure is due to the weight of the liquid itself or to the
weight of superincumbent liguids.

[NoTE.—By a continuous portion, we imply that any two points can be connected

by a zigzag of alternately horizontal and vertical lines, as in § 98, withqut passing
out of the liquid.]

Ezample.—A vessel 10 cm. deep contains mercury to the depth of
1 cm., and is filled up with water. To find the pressure at the
bottom of the vessel, the atmospheric pressure being 1033 gm. per
square centimetre.

Construct a rectangular column whose base is
1 ¢cm. square, extending from the bottom to the
top of the liquid, and consider the equilibrium
of the liquid in this column.

The column may be divided into ten cubes,
each 1 cub. cm.: nine filled with water, and one

with mercury.
But
weight of 9 cub. cm. of water = 9 gm.,
weight of 1 cub. em. of mercury = 13-6 gm.,
and thrust on upper end = 1033 gm. ;

Eol thrust on base = 10556 gm.,
and pressure at bottom of liquid
= 1055'6 gm. per square centimetre.
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111. To find the pressure at any point due to the
weight of several liguids which rest one on another
without mixing.

Let s, s,, 53 be the specific gravities of
any different liquids that do not mix,
w being the weight of unit volume of
water. )

Let P be the atmospheric pressure at
the surface Aa, p the required pressure
at any given point A.

Draw RQPO vertical, and construct a
rectangular column on a unit of area as
base, extending from R to the surface
Aa. TFrom the equilibrium of this Tig. 38.
column, we find—

Pressure at B = pressure at 0 + sum of weights of vertical
columns of the several liquids howing the umit of area for
their base, and extending from R to 0.

Now the weights of the columns are ws,. 0P, ws, . PQ,
wss . QR, respectively.

= P+w(sl.0P+52._PQ+sa.QR).

112. To prove that, when several 1liguids of
different densities do not mix, the common surface
of any two of the liquids is horizontal.

Consider two liguids of specific
gravities s, §,.

Let M, Q be any two points in
their common surface.

Draw the verticals LMN, PQR
through M, @, and on them take
points L, Pin the upper and N, R Fig. 39.
in the lower liquid, such that the
lines LP and NR are horizontal. Then the pressures at
L, P are equal, and the pressures at I/, R are equal ; there-
fore pressure due to columns LM, MN = pressure due to

columns PQ, QR.
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Therefore, as in the last paragraph,

w (PO +5,0R) = w (s:LM +5,MN ) ;
that is,

s;(PR—QR) +5,0R = s (LN—MN) +s,MN.
Also sPR = s, LN.

Hence, by subtraction,

5,Q0R—5,0R = s,MN —s, MN ;

.., (s,—s1) QR = (s,—s) MN.
But s,—s, is not zero; -
QR =MN.

Hence QM is parallel to RN, and therefore horizontal.

 OBsERvATIONS. — When the liquids are contained in two or more
intercommunicating vessels, such as the U-tube about to be described,
we shall see that the common surfaces of separate portions (cf. § 110,
note) are not necessarily all at the same level.

‘When several liquids are poured into a vessel they will always
arrange themselves in order of their densities, the heaviest liquid being
the lowest. If the density of any liquid were greater than that of the
one next below, the two might for an instant remain in equilibrium
with their common surface horizontal, but the least disturbance would
turn them topsy-turvy. The equilibrium would, in fact, be
“Cunstable.”’

118. The U-tube is, as its name implies,
simply a glass tube bent into the shape of
an elongated [J, one of its uses being to
compare the specific gravities of liquids
which do not mix. For this purpose, the
heavier of two given liquids should first
be poured into the bend of the tube, and
the lighter then poured down one of the
branches.

The heights of the free surfaces P, R
above the surface of separation  can be
measured by a scale of inches or milli-
metres placed behind the two tubes, and
by comparing these heights the densities
or specific gravities of the liquids may be compared.
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Example.—A U-tube was partly filled with water, and oil was
poured into one of the branches to a depth of 6 ins. The surface of
the water in the other branch stood 5-49 ins. above the common
surface of the oil and water. To find the specific gravity of the oil.

Let PCQ be the water, QR the column of oil
(Fig. 40), and let O be the point on the branch
PC at the same level as .

Since the portion QCO0 is all filled with the same
liquid (water),

pressure at § = pressure at 0 ...... (i.).

Let 77 be the weight of a cubic inch of water,
w that of a cubic inch of oil. Then, since

PO =549 ins. and RQ = 6 ins.,
pressure at 0 (per sq. in.) = W x PO = W x 549,
pressure at § wxRQ) = wx6;
therefore, by (i.), W x 549 = wx 6,
549

6

= -915.

and specific gravity of oil = % =

114. When the two branches of a U-tube contain
two different liguids which do not mix, their specific
gravities are inversely as the heights of their free
surfaces above their surface of separation.

For, let s,, 5, be the specific gravities of the liquids in
the portions PCQ, QR (Fig. 40), w the weight of a unit
volume of water.

Let the horizontal through @ meet the branch AC in 0.
Then we have for the equilibrium of the liquid QG0

pressure at 0 = pressure at (.
ws; X PO = ws, X RQ,
RQ .

L
s, PO’

specific gravity of liquid in PQ _ height of R above @
specific gravity of liquid in B height of P above 0
as was to be proved.

whence

or
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Example.—If the U-tube contains mercury of specific gravity 18+5
to within 5 ins. of the top, to find the height of the column of water
which must be poured in to fill one of the branches.

Let p, q be the original surfaces of the mercury. A
As soon as water is poured into the branch BC, the
surface of the mercury will sink in that branch
from g (say) to @, and will rise in the other
from branch p to P. We suppose the branches of
the tube to be of equal diameter; we shall then
have pP = q(Q.

Let q0 = z.
Since Bg = 5 ins., we have
height of column of water BQ = 5 +z,
height of mercury at P above common surface at ()
=Pp+qQ = 2z.

Hence, since the pressures at the level of @ are Fig. 41.

equal in the two branches,
1x(6+2) = 13-6x 2z = 2Tz ;

B,
=

5 =26z; .. z=4HF;
and height of water column BQ = 5+2 = 55 ins.
SuMMARY.

1. The common surface of two continuous portions of different
liquids is horizontal.

2. The pressure at a given depth in one of the lower liquids = sum
of pressures due to separate liquids.

3. If the U-tube contains two liquids, heights above common
surface are inversely proportional to densities.

EXAMPLES XI.

1. Prove that the common surface of two liquids of different
density which do not mix is a horizontal plane. Does the argument
apply to the parts of the common surface in the two branches of a
U-tube containing water, when different quantities of oil are poured
down the two arms ?

2. A vessel whose bottom is horizontal contains mercury whose
depth is 20 ins., and water floats on the mercury to the depth of
16 ins. Find the pressure at a point on the bottom of the vessel
in Ibs. per square inch, specific gravity of mercury being 13-6.

3. A vessel whose base is a square, the side of which measures
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6 ins., containsg mercury to the depth of 1in., and water is poured
upon the mercury to the depth of 103 ins. If the specific gravity of
the mercury be 135 times that of water, find the pressure on the base
of the vessel.

4. Find the whole thrust on a square, the length of a side of which
is 4 ins., immersed horizontally in oil at a depth of 5 ins., the specific
gravity of oil being 87.

5. A circular cylinder, whose radius is 14 cm. and height 40 cm.,
is filled half with water and half with oil of specific gravity -9. Find
the pressure anywhere on the curved surface of the cylinder, and also
the thrust on the base. (Take w = 22.)

6. The two branches of 4 uniform bent tube are straight and
vertical, and the portion of the tube which unites them is horizontal,
‘Water is poured in sufficient to fill 6 ins. of the tube, and then oil,
sufficient to occupy 5 ins., is poured in at one end, the specific gravity
of the oil being four-fifths that of water. Find the position of the
fluids when they are in equilibrium, the horizontal part of the tube
being 2 ins. long.

7. Two liquids which do not mix are contained in a U-tube.
Obtain a relation between their densities and their heights above
the common surface.

8. Water is poured into a U-tube, the legs of which are 8 ins. long,
until they are half full. As much oil as possible is then poured into
one of the legs. 'What length of the tube does it occupy, the weight
of the oil being two-thirds that of water ?

9. The lower ends of two vertical tubes, whose cross sections are
1 and ‘1 sq. ins. respectively, are connected by a tube. The tubes
contain mercury. How much water mnst be poured in to raise the
level of the mercury in the smaller tube 1 in. ?

10. A bent tube containing equal quantities of two liquids which
do not mix consists of two branches inclined at angle 60°. When one
of the branches is held vertically, the different fluids meet at the angle
of the tube. Show that when the tube is held with the two branches
equally inclined to the vertical, one-fourth of the liquid contained in
the branch which was previously inclined to the vertical flows into the
one which was vertical.



CHAPTER XII.

RESULTANT THRUSTS OF HEAVY LIQUIDS
ON PLANE AND OTHER SURFACES.

115. Der.—When one side of any surface is exposed
to pressure, the force which that surface experiences
owing to the pressure is called the resultant thrust
or pressure-resultant on the surface.®

Its vertical and horizontal components are the vertical
and horizontal thrusts on the area respectively.

[Note that a resultant thrust is a particular force,
while a pressure is a force per unit area.]

In the present chapter, we shall show how to find—

(i.) The resultant thrust of a heavy liquid on a hori-
zontal plane area.

(ii.) The vertical thrust on any surface.

(iii.) The resultant thrust on a plane area inclined to
the horizon or vertical.

116. To find the resultant thrust on a horizontal
plane area.—When a horizontal surface is exposed to the
pressure of a heavy liquid, this pressure is wniform over
the whole surface, and its amount may be found as in
Chap. X. Multiplying this pressure by the area of the
surface, we have the required resultant thrust on the

aren.

* When this book was first in manuseript, it was our intention to use the term
‘¢ pressure-resultant” ; but quite recently the term *thrust” has come into very
general use in Hydrostatics, and accordingly we have gladly adopted -it. The
student should, however, take care to be able to identify any of the .other terms
used in this sense, such as resultant pressure, which is still commonly found in
books and examination papers, although it would be more correct to speak of
resultant force of pressure.

HYDRO. I
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117. To find the vertical thrust on any surface.—
When any surface S is exposed to the pressure of a heavy
liquid, the vertical thrust may be found by drawing ver-
ticals, such as AB, CD, from the boundary of § to the surface
of the liguid. These verticals, together with the surface
itself, will enclose a column of liquid ABDC, whose weight
ig equal to the required vertical thrust on the surface.

Case L.—Suppose that the liguid presses on the upper
side of the surface § (Fig. 42).

Fig. 44.

Counsider the equilibrium of the liquid in this column.
The pressures acting perpendicularly on its vertical sides
are horizental. Hence they have no vertical component.
If there is no pressure at the upper surface BD, we
therefore have

vertical thrust on § = weight of liquid in column ABDC.

Case II, —If the sides of the vessel should anywhere
fall within the cylinder ABDC (as in Fig. 43), it is only
necessary to suppose the vessel replaced by a larger one,
whose sides do not fall within the cylinder, the liguid
rising to the same level as before. The pressure at every
point of & will be unaltered, and therefore the vertical
thrust on § will still be equal to the weight of liquid
required to fill ABDC.

Casg TII.—Let the liquid press on the lower side of the
smface § (Fig. 44). Let the vertical column ABDC be
constructed as before, extending from the surface 8 to the
plane of the free surface. If this column be supposed
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filled with liquid, the pressures on the upper and under
sides of §& will now be everywhere equal, and therefore
the thrusts on the two sides of § will be also equal and
.opposite. Hence the liquid exerts an wpward vertical
thrust on the under side of the surface §& equal to the
weight of the liguid required to £ill the column ABDC.

These results are expressed by the statement that
the vertical thrust on a surface is always equal 1o the
weight of the superincumbent column of liquud.

Examples.— (1) To find the resultant thrust on the concave surface
of a hemispherical bowl 1 ft. in diameter, immersed in water, with
its base horizontal, at a depth of 2 ft. below the surface.

Construct a vertical cylinder having the rim of the bowl for its
base. The weight of superincumbent water contained between the
cylinder and bowl is equal to the resultant thrust on the surface
of the bowl.

Now, the radius of the cylinder = } ft., and height = 2 ft. ;

area of its base = 22 x (3)? = 11 sq. ft. ;
volume of cylinder = 11 x 2 cub. ft. = 12 cub. ft. ;
and .*. weight of water in cylinder = 11 x 1000 oz.

Again, volume of hemisphere = 2m3 = 2. 22 x ()% cub. ft.

weight of water in hemisphere = 13 x 1000 oz.

If the hemisphere is turned base upwards, the resultant thrust

= whole weight of water supported = 1100011000 gz,
= 12000 oz, = 1833% oz.
If the hemisphere is base downwards, the resultant thrust

— 11000 _ 11000
- 7 4«2 0z.

— 55000 — B
= 55000 oz, = 1308 oz.

(2) A cone, whose height is 3 cm. and the area of whose base is
10 8q. cm., is filled with water and placed vertex upwards on a table.
To find the thrust on its base and sides.

Pressure at depth 3 em = 3 gm. per sq. cm. ;
thrust on base = 30 gm.
Also vol. of cone = § base x height = §.10.3 = 10 cub. cm. ;
weight of water in cone = 10 gm.
From the equilibrium. of the liquid in the cone, we therefore have
vertical thrust on sides of cone = 30 gm.—10 gm. = 20 gm.,
and this thrust acts upwards, tending to lift the sides.
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118. To find the resultant thrust on any plane
area, it is sufficient to find the average pressure on the
arvea. Since the area is plane, the product of this average
pressure into the area is equal to the required resultant
thrust on the area.

The following example will be an instructive introduction to the
method to be followed in the next article.

Example.—To show that in the case of a rectangle ABCD in a
vertical plane immersed to any depth the average pressure is equal to
the pressure at the centre of gravity of the area.

Divide the rectangle into a large number of very thin strips of
equal breadth, by ruling a number of equidistant horizontal lines
across its face. Let EF be the vertical line bisecting the rectangle,
and therefore passing through its centre of gravity G. Consider any
pair of strips PQ, RS of equal

area a, whose centres H, K are at 0
equal distances above and below G.
If 0 bein the surface of the liquid,
we have
pressure at H = wx OH, A E__g
pressure at @ = wx 0G,
pressure at K = wx 0K ; Pﬁﬂ:q

.. thrust on strip PQ ﬁﬁ——
= wx OH x area a, —
thrust on strip RS R 1 s
= wx 0K x area a. 1] F
Now HG = GK; Fig. 45.
OH + 0K = (06— HG) + (06 +GK) = 206 ;
hence, sum of thrusts on the two strips
=wx(0H+0K)xa =wx20Gxa
= wx 0G x sum of areas of strips;
and this is the same as if the pressure on either strip were equal to
w x 0@, that is, equal to the pressure at G.
I[n t_he same way, .the sum of the thrusts on every other pair of
strips is the same as if the pressures on them were equal to that at G.
Therefore the thrust on the whole rectangle is the same as if the
pressure were everywhere equal to that at G.

Hence, the average pressure on the rectangle is equal to th -
sure at its centre of gravity G. & 4 e

The following generalization of this vesult s most tm-
portant :—
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119. To prove that the average pressure on any
plane area immersed in a heavy liguid is equal to
the pressure at its centre of gravity.

Divide the area into a very large number = of strips by
ruling horizontal lines across it at small distances apart.

Fig. 46.

Let PQ be any such strip, H its middle point, and let
the vertical through H meet the surface in 0. Let the
area of the strip = a, and let OH = 2.

The pressure at H = w.0H. And since (by construc-
tion) the difference of level of the top and bottom edge
of the strip is very small, the pressure is semsibly the
same all over the strip.

Hence, thrust on strip = w.0H x area PQ = wza,

Thus, if 2, 2, ... 2, are the depths and a,, a, ... @, the
areas of the strips, the thrust on the nth strip is w X 2,a,.

Now the thrusts on the different strips are parallel.

resultant thrust on whole area = sum of thrusts on
strips = w X (2,8, + 2,05+ ... + 2, @)

Also whole area = a,+a,+... +a,;
average pressure = w X L L
£ g 8
Now it is proved in Statics that it » be the depth of the
centre of gravity of tl.e arens a,, ay, ... @,
7= s 8+ ',“2+ +z,,a,,,'
a1+"g+..‘ g

Hence average pressure on area
= w Xz = pressure at depth z
= pressure at C.G. of area.
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COR. 1.—The resultant thrust on any plane area
is equal to the product of the area into the pressure
at its C.G.

Cor. 2.—The resultant thrust on a plane area depends
only on the area and the depth of its ¢.a., and is unaltered
by turning the avea about its c.c., provided that the whole
of the area is kept below the surface.

OBsERVATION.—In the above proof, the area need not be
in a vertical plane, for the formula giving the depth of its
€.G. in terms of the depths of the separate strips holds
good whatever be the position or form of the area.

Ezamples.— (1) To find the resultant thrust on a vertical dock-gate
14 ft. wide if one side is exposed to the pressure of sea-water 10 ft.
deep.

The area exposed to pressure = 14 x 10 = 140 sq. ft. ;

the depth of its ¢.a. = 56 ft.
Now a cubic foot of sea-water weighs 64 Ibs.,
pressure at ¢.6. of area = 5 x 64 = 320 lbs. per 8q. ft. ;
thrust on dock-gate = 320 x 140 Ibs. = 44,800 lbs. = 20 tons.

(2) To find the resultant thrust of water on the slanting face of an
embankment 100 metres long and 30 metres broad, which shelves
down to a depth of 12 metres below the surface at the lowest part.

The area exposed to pressure = 100 x 30 = 3000 sq. metres.

The depth of its c.¢. = % depth of lowest portion

= 6 metres = 600 cm. ;
average pressure = 600 gm. per sq. cm.
600 x 100 x 100 gm. per gq. metre
6000 kilog. per sq. metre. ;
resultant thrust = 6000 x 3000 kilog. = 18,000,000 kilog.

1

(3) A hemispherical bowl holding 4 Ibs. of a liquid is held with its
rim resting against a vertical wall. To find the resultant thrusts of
the water (i.) on the wall, (ii.) on the bowl.

Let r be the radius of the bowl, w the specific weight of the
lignid. Then weight of liquid in bowl = 2mr¥w = 4 lbs,
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. Since the area of the base is 772 and the depth of its centre of gravity
is 7, and the base is plane, the thrust on the wall is equal to

72w x r = 9w = 2 wt. of liquid = 6 1bs.
The three forces acting on the liquid contained in the hemisphere are

(1111){: Tth?; rea(;tion of the bowl, equal and opposite to the required
resultant thrust.

(ii.) The weight of the liquid, which is equal to 4 Ibs. and acts
vertically downwards.

(iii.) The thrust of the base of the hemisphere, acting horizontally.

Hence the conditions of equilibrium require that the horizontal and
vertical components of the resultant thrust on the bowl shall be
61bs. and 4 Ibs., respectively. These components are at right angles ;
hence, if B denote the required resultant thrust, we have

B = 62447 = 52
resultant thrust R = /13 . mdw
= ,/521bs. = 72 1bs., nearly.

*120. Centre of Pressure.— Dir.—The centre of
pressure of a plane area immersed in fluid is the point in
which the line of action of the resultant thrust of the fluid

meets the area.

It does not coincide with the centre of gravity unless
the pressure be uniform. Thus the centre of pressure of a
rectangle with one side in the surface is at a depth equal
to two-thirds the depth of the lowest side.

*121. Whole pressure on a curved surface.—When an area
is not plane—as, for example, any part of the surface of a sphere or
cylinder, the product of the area into the pressure at its centre of
gravity 18 no longer equal to the resultant thrust, but is equal to a
quantity called the ‘‘ whole pressure.”’

‘When a surface consists of a number of plane areas (such as the six
faces of a cube), the whole pressure is defined as the sum of the thrusts
acting on the several faces. When the surface is curved, it must be
divided into a large number of small portions, each portion being so
small as to be approximately plane. The sum of the forces acting on
all the small areas is defined as the whole pressure on the surface.

From these definitions it may be deduced that the whole pressure
on any surface is equal to the product of its area into the pressure at
ts centre of gravity.
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The “ whole pressure’’ on a plane area is the same as the resultant
thrust. In all other cases, calculations of the whole pressure om
surfaces are devoid of interest, and are not of the slightest practical
use. They are, however, sometimes set in examinations.

The quantity found by dividing the whole pressure by the area of
the surface is called the average pressure on the surface. Hence
the average pressure on any surface is equal to the pressure at the
centre of gravity of that surface.

The average pressure is, therefore, not equal to the resultant thrust
divided by the area, except when the surface is plane.

Zzample.—(1) A hemispherical bowl whose diameter is 12 cm. is
full of oil whose specific gravity is -92. Find the whole pressure on
the bowl, and the pressure-resultant.

Area of surface of bowl = } x 47 x 62 8q. cm. = 72x 5q. cm.
Depth of centre of gravity of bowl = half the radius = 3 cm.
whole pressure = weight of 3 x 727 cm. of oil
= 2167 x 92 gm. = 6243 gm., nearly.
Pressure-resultant = weight of fluid contained
= weight of § x 4w x 6% cm. of fluid
= 3w x 216 x *92 gm, = 4162 gm., nearly.

SUMMARY.

1. The vertical thrust of a liguid on any area is equal to the weight
of the superincumbent column of liquid (§ 117).

2. The average pressure of a heavy liquid on any area is equal to the
pressure at the 0.¢. of the area (§ 119).

3. Hence resultant thrust on any plane area A = wzA, where
w = specific weight of liquid,
z = depth of c.a. of area A below surface of liquid.

4. This thrust acts perpendicular to plane of area at . point called
ite centre of pressure, which is usually lower than its o.c.

5. If the area is mnot plane, w2z represents the ‘“ whole pressure,”’
and not the resultant thrust.
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EXAMPLES XII.

(Except where otherwise stated, a cubic foot of water weighs
1000 oz.)

1. A cubical box whose edge measures 1 ft. has a pipe communi-
cating with it which rises to a vertical height of 20 ft. above the lid.
It is filled with water to the top of the pipe. Find the upward force
on the lid and the downward force on the base, and show that their
difference is equal to the weight of water in the box. How do you
account for the pressure on the base being greater than the weight of
water it has to support?

2. A tapering glass tube, 10 ins. long, 1 in. in diameter at one end
and } in. at the other, is held vertically and filled with water, « thin
plate (the weight of which is negligible) being pressed against the
lower end to prevent the water from escaping. Compare the forces
with which the plate must be held in its place, according as the larger
end of the tube is at the top or bottom.

3. A hollow cone stands with its base on a horizontal table. The
area of the base is 100 sq. ins., and the height 8-64 ins. ; its weight is
equal to the weight of water it will contain. When filled with water,
what is the ratio of the pressure of the water on the base to that of
the base on the table (supposed uniform)? How do you account for
the result? (The volume of a cone is one-third of that of a cylinder
with the same base and altitude.)

4. A right circular cone is open at the base and has a small hole at
the vertex ; it rests on a horizontal plane, the diameter of the base
being 1 decim. and the height of the cone 2 decim. Find the weight
of the cone that it may be just possible to fill it with water without
causing it to lift from the plane.

5. Prove that, in a liquid subject to gravity, the average intensity
of the pressure over any plane area is equal to the intensity at the
centre of gravity of the area.

Does the line of action of the resultant thrust pass through
the centre of gravity P

6. Determine the thrust in pounds on every foot-breadth of a
vertical wall of a rectangular reservoir of water 150 ft. deep.
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7. A lock-gate, 10 ft. wide and 10 ft. deep, has water on one side
8 ft. deep and on the other 5 ft. deep, in each case meagured from
the lower edge of the gate. Determine the resultant thrust.

8. Determine the total thrust on one side of a rectangular vertical
dock-gate 50 ft. wide immersed in salt water to » depth of 25 ft.,
having given that the specific gravity of sea water is 1-026.

9. A cube whose edge is 1 ft. is suspended in water with its upper
face horizontal, at a depth of 2% ff. below the surface. Find the
thrust on each face of the cube.

10. An artificial lake, £ mile long and 100 yds. broad, with a
gradually shelving bottom varying from nothing at one end to 88 ft.
at the other, is dammed at the deep end by a masonry wall across its
entire breadth. Find the total thrust on the embankment when the
lake is full of water weighing 2 ton to the cubic yard. Find also
the total weight of water in the lake.

11. Find the thrusts on the faces of a cube, whose edge is 6 ins.
long, immersed in water with its upper face horizontal at a depth of
5 ins.

12. A rectangular box is 18 ins. long, 8 ins. wide, and 12 ins. deep.
One of its sides is removed, and a board is nailed on, joining that
edge of the bottom from which the side has been removed to the top
of the opposite side, and fitting against the ends of the box so as to
be water-tight. The box is placed with its base horizontal, and the
space between the bottom and the board is filled with water through
a small hole made at the top of the board. Find the vertical thrust
on the board.

13. A rectangular board is immersed in water with one of its
longer edges parallel to the surface and at a given depth. Compare
the whole thrust on the board when it is (i.) horizontal, (ii.) vertical
and upwards, (3) vertical and downwards.

14. A bowl in the shape of a hemisphere is filled with water. Find
the vertical thrust and the horizontal thrust on either of the portions
into which it is divided by a vertical plane through its centre.

15. A hollow cone, whose height is 4 ins. and the radius of whose
base is 3 ins., is fixed with its base horizontal and itz vertex down-
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wards. The cone is filled with water; find the resultant thrust on
the curved surface, taking = = 22.

16. If the cone in the last question be inverted so as to stand on
its base, find the increase of the resultant thrust on the curved
surface.

17. The surface of a vessel containing liquid consists of a number
of plane faces of areas «,, dq, a3, ..., &c., and the centres of gravity of
these areas are at depths z, 2y, 7, ..., &c., below the surface of the
liquid. Write down the sum of the resultant thrusts on the several
faces, the weight of a unit volume of liquid being w, and show that
this sum is equal to the product of the whole superficial area of the
vessel into the pressure at the centre of gravity of this area.

18. Explain in what respect the quantity called ¢ whole pressure ’’
on a curved surface differs from (i.) a pressure, (ii.) a force. What
is the whole pressure on a plane surface ?

19. A smooth vertical cylinder, 1 ft. in height and 1 £t.in diameter
is filled with water and closed by a heavy piston weighing 5 bs.
Find the ¢ whole pressure ’ on its curved surface.

20. A. cubic block, each of whose edges is 6 ius., is sunk fn waber
to a depth of 2240 ft. Find the ** whole pressure’’ upon its surface
in tons, neglecting the dimensions of the cube in comparison with
the depth of its immersion, and supposing a cubic foot of water to
weigh 625 1bs.

21. A sphere, the radius of which is 4 ins., is totally immersed in

water, with its centre at a depth of 6 ins. Find the ‘‘whole pres-
gure’’ and the resultant thrust.

29. A hollow cone, whose axis is vertical and vertex downwards, is
filled with water. At what depth is a horizontal plane situated when
the ‘¢ whole pressures’’ on the portions of the curved surface above
and below it are equal ? ’
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EXAMINATION PAPER V.

1. Define pressure at a point in a fluid. Show that the pressure in
a fluid is the same at all points in a horizontal plane.

2. Show that the pressure at any point in a fluid is proportional to
the depth of the point below the surface.

3. Find the pressure at a depth of 120 ft. below the surface of a
lake (i.) in pounds weight per square foot, (ii.) in dynes per square
centimetre ; the atmospheric pressure being neglected.

4. Show that the surface of a heavy liquid at rest in a vessel is
horizontal.

5. Find the whole thrust on a plane surface immersed in liquid.

6. A cylindrical vessel, the radius of whose base is 4 ins., is placed
with its base horizontal, and is filled with water to a height of 14 ins.
Find the whole pressures on the base and the curved surface. (Take

m=22.)

7. The face of an embankment is a rectangle 1 mile long and 50 ft.
wide, and is inclined so that it is completely immersed in water whose
depth is 30 ft. Find the total thrust on the embankment.

8. A cube whose edge is 6 ins. is completely immersed in mercury
(specific gravity = 13-6), so that its upper face is horizontal and at a
depth of 9 ins. below the surface. Find the thrusts on the faces.

9. Find the whole resultant thrust on the surface of a circle whose
radius is 4 ins. immersed in water with its centre at a depth of 14 ins.

10. How would you show experimentally that the pressure on the
base of a vessel is independent of the shape of the vessel ?



CHAPTER XIII.

RESULTANT THRUSTS ON IMMERSED AND
FLOATING SOLIDS.

In the present chapter we shall consider more fully
the principle of Archimedes which asserts that a body
floating or immersed in liquid experiences an upward
force equal to the weight of the liquid it displaces.

This force, since it 13 due to the pressure of the liquid,
ig the resultant thrust on the body, and we shall now find its
line of action as well as its magnitude.

122. To find the magnitude and line of action
of the resultant thrust of a liguid on any floating
or immersed body.

Let the submerged portion of the body occupy the space
bounded by the surface 8§ (Fig. 5, p. 40).

The pressure at any point of § depends only on the
density and depth of the liquid at that point; hence the
thrust of the outside liquid on & does not depend on
the nature of the substance filling §.

Let the body be removed and let § be filled with liquid
similar to that surrounding §. This liquid is called
the liguid displaced by the body. The liquid inside and
outside § is now in equilibrium; since it may be regarded
as forming part of the same continuous mass of liquid.

Now the forces acting on the liquid inside § are—

(1.) Its weight, acting vertically downwards through
its centre of gravity ;

(ii.) The resultant thrust of the surrounding liquid.

Hence the conditions of equilibrium show that—

The resultant thrust of a heavy liquid on any body

(1) Is equal to the weight of liquid displaced;

(2) Acts vertically upwards through the centre
of gravity of this displaced liquid,
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Drr.—The centre of gravity of the liquid displaced
by any body is called the centre of buoyancy.

123. Conditions of equilibrium of a floating body.
—When a body (e.g.,a boat) floats in equilibrium at the
surface of a liquid, there are two forces on it, namely, its
weight acting at its centre of gravity, and the resultant
thrust of the surrounding liquid acting through the centre
of buoyancy. If these keep the body in equilibrium, they
must be equal and opposite and in the same straight line.

Hence the conditions of equilibrium are—

(1) The weight of the liquid displaced must be equal fo
the weight of the solid ;

(2) The centres of gravity of the solid and of the liquid
displaced must lie in the same vertical line.

OssErvarion. —If the first condition is satisfied but not the second,

the two forces acting on the body will constitute a couple, which will
cause the body to roll over until it comes into a position of equilibrium.

124. Equilibrium of a Submerged Body.—If W
denote the weight of a submerged body, w the weight of
liquid it displaces, it readily follows from § 122 that

Case T.—If W>uw, the body will sink unless it is held
up by a string whose tension = W—w (Fig 47, 4).

Fig. 47.

Casg IL —If W=w, it will rest in any position
(Fig. 47, B).

Case IIL.—If W < w, it will »ise till it floats, and will
then displace less liquid than before (Fig. 47, (), unless
it is held down by. a string whose tension = w—W
(Fig. 47, D).
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Examples.—(1) A cube of gold (specific gravity 19:35), whose edges
are 5 ém. in length, is suspended in mercury with 4 cm. of each of its
sides submerged. To find the tension in the supporting string.

Volume of cube = 5§ x5 x 5 c.c. = 125 c.c.,
weight of cube = 125 x 19°35 gm. = 2418°75 gm. ;
volume of mercury displaced = 5 x 5 x 4 c.c. = 100 c.c. ;
weight of mercury displaced = 100 x 186 = 1360 gm. ;
required tension of string = 2418-756—1360 gm. = 1058% gm.

(2) If the tension be reduced to 1 kilog., to find how much the
cube will sink.
Here the cube sinks until the weight of the additional liquid
displaced equals the decrease of tension, or 58% gm. ;
the additional volume displaced = 5875 =136 c.c. = 432 c.c.
But the area of the base of the cube = 25 sq. cm.,
increase in depth of immersion = 432 + 25 cm. = *1728 cm.
= 1-728 mm.

(3) To find the weight of a cylindrical cork (specific gravity -24)
which requires a weight of 13 gm. to sink half the length of its axis
in water.

Let the volume of the cylinder = 20 cub. cm.

Then the volume of the water displaced = » cub. cm. ;

weight of water displaced = » gm.,
and weight of cylinder = 20 x 24 gm. = *480 gm. ;
therefore, from the equilibrium of the cylinder,
‘48v+13 = v ;
620 =13 or v = 25ce.;
weight of cork = *48v = 12 gm.

#125. The conditions of equilibrium of a solid in liguid
suspended by a string may be completely found as follows :—

Let 7 be the weight of the solid,
G its centre of gravity, w the
weight of the liquid displaced, H
its centre of buoyancy, 7' the ten-
sion of the string, P its point of
attachment.

Then the only three forces acting
on the body are—

@i.) a downward force # at G,
(ii.) an upward force w at H, and
iii.) an upward force 7"at P.
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Hence (1) The three forces lie in one plane, or the points P, G, H
and the string must lie in one vertical plane.

(2) If H, G meet the direction of the string in F, taking moments
about F, Wx GF = wx HF.

(8) Lastly, resolving vertically, 7 = W —w,
which determines the tension in the string.

126. To find the conditions of equilibrium of a
solid body floating in a series of liquids of different
densities that do not mix.—Let § be any solid floating
pavtly immersed in several different liquids 1, 2, 3, ...
bounded by the horizontal planes Aa, Bb, Ce. Then it is
clear, as in the foregoing investigations, that the equi-

Fig. 49.

librium will be unaffected by removing the solid § and
supposing the space ABba filled with the liquid 1, the space
BCcb filled with the liquid 2, the space CD¢ filled with
the liquid 3, and so on. The liquids that would fill these
spaces are the liguids displaced by the solid, and the
resultant upward thrust of the liquid on & is the resultant
of the weights of the liquids displaced acting vertically
through their respective centres of gravity. Hence, for
equilibrivm, the weight of the solid must be equal to the sum
of the weights of the different liquids displaced.

The centre of buoyancy in this case is the centre of gravity of the
whole series of liquids displaced. This point and the centre of
gravity of the solid must be in the same vertical line.

The most interesting cases of equilibrium, however, are those in
which the solid is symmetrical about a vertical axis—such as a prism,
cylinder, or right cone having its axis vertical, a cube with one edge
or one diagonal vertical, a sphere, &c. In such cases, the centres of
gravity of the different liquids displaced and that of the solid all lie
in the same yertical lipg, namely, the axis of symmetry, and the
second condition of equlhbrm,m is necessa,rﬂy satisfied,
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Eoxamples.—(1) Water being poured on the top of mercury (specific
gravity 13-6), to find the specific gravity of a body which floats
with one-third of its volume above water, one-third immersed in the
water, and the remaining third immersed in the mercury.

Here the volumes of the water and mercury displaced are equal,
and their densities are as 1 : 13.6.
Let weight of water displaced = .
Then weight of mercury displaced = 13-6w.
But the solid is floating in equilibrium ;
the weight of the solid
= weight of mercury displaced + weight of water displaced
= 13-6w+w = 14-6w.
Again, one-third of the volume of the solid is immersed in water ;
volume of solid = 3 volumes of water displaced ;
weight of an equal volume of water = 3w ;
required specific gravity of solid
_ weight of solid _ 4w 146, ee
weight of equal volume of water 3w

(2) A cone whose specific gravity is 2'576 rests partly immersed in
water and partly in mercury. To find what fraction (i.) of its
volume, (ii.) of its axis, is immersed in mercury, taking the axis
vertical and vertex downwards.

(i.) Let 7 be the volume of the come, # that of the portion
submerged in mercury. )

Then the weights of the cone, the mercury displaced, and the
water displaced, are proportional to 2:575V, 136z, V—u=.

For equilibrium the former equals the sum of the two latter
weights ; s 2575V = 1362+ V—z;

1262 = 1575V or » =127 =1V,
Therefore  of the volume is immersed in mercury.

(ii.) This portion is a cone with the same vertical angle as the
original cone. Now it is known that the volumes of two such cones
are proportional to the cubes of their heights.

. Therefore 3/% or £ of the axis is immersed in mercury.

127. Effect of Immersed Solids on Pressure.— If
solids be lowered into a vessel containing liquid, the levet
of the liquid will rise owing to the displacement produced
by the solids, and therefore there will be an increase of
pressure all over the surface of the vessel.

HYDRO. K
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Since the pressure at any point of a heavy liquid
depends only on the depth and density, it follows that
the pressure on the sides and bottom of the vessel is tl'le
same as if the solids were replaced by liquid equal in
amount to that which they displace.

Tllustrative Examples.—(1) Consider a bucket contain-
ing water and suspended by a rope. Now, let any body
—say a brickbat—be lowered into the bucket by means
of a second rope. The water will rise in the bucket; 1
there will, therefore, be an increase in the pressure all ‘
over the bucket, and the tension in the first rope will
be greater than befors, since it has to support a greater
resultant thrust. Fig. 50.
In this case, the tension in the rope supporting the
Jbucket
= weight of bucket + weight of water actually contained in it

+ weight of water displaced by brickbat.
Also, we know that

‘tension in rope supporting brickbat
= weight of brickbat— weight of water displaced by brickbat ;
sum of tensions in the two ropes
= weight of bucket + actual weight of water + weight of brickbat ;

as evidently should be the case, for the two ropes together have to
support the bucket, the water, and the brickbat.

(2) If, instead, we place in the bucket a body lighter
than water—say a block of wood—and allow it to float,
it will displace a quantity of water of weight equal to
its own weight. As before, we have

tension in supporting rope

= weight of bucket + weight of water actually
contained in it

+ weight of water displaced by wood
= weight of bucket + weight of contained water
+weight of wood ;

‘as evidently should be the case, since the rope has to support the
‘bucket, the water, and the wood.

Fig. 51.

#(3) Next consider a barge filled with coal, moving slowly along a
canal crossing a bridge. The pressure of the water, and therefore the
‘weight supported by the bridge, v_vﬂl be unaltered by its presence.
iSuppose now that some of the coal is thrown suddenly from the barge
-on to the towing-path ; the barge, being lightened, will rise up out
.of the water ; and, the displacement being reduced, the water will
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fall in its immediate neighbourhood. The resultant thrust produced
by the pressures on the sides of the canal will, therefore, be instant-
-aneously reduced by an amount equal to the weight of the coal, so that
the whole weight supported by the bridge is the same as before. But
-the lowering of the water level soon causes more water to flow into
the canal from the ends of the bridge, and this goes on until the water
Thas reached the same level as before. The bridge, then, has to sup-
port the same thrusts due to the water pressure as at the beginning,
and has to support the weight of the coal in addition.
Thus the whole weight supported by the bridge increases slowly.

SUMMARY.

1. The resultant thrust of a liquid on any body
{1) Is equal to the weight of liquid displaced ;
{2) Acts vertically upwards through the c.. of this liquid.

2. The conditions of equilibrium of a floating body are
{1) Weight of liquid displaced = weight of body ;
{2) o.¢.0f body and c.. of liquid in same vertical line.

3. A body tends to sink, float, or rise according as
weight of body (W) », =, or < weight of liquid displaced (w).

4. If the body is attached to a string, the tension = W—w upwards
in first case and w— W downwards in third.

5. If a body floats partly immersed in each of several liquids,
weight of body = sum of weights of liquids displaced.
(The other condition is rarely used.)
6. The increase of pressure on the containing vessel due to an immersed

solid is the same as if the solid were replaced by the liquid it
displaces.

EXAMPLES XIIT.

1. State the conditions necessary for the equilibrium of a floating
body, and discuss the effect of moving a heavy weight across the deck
«of a ship.

9. A body whose specific gravity is less than that of water is
Ffastened to a string and drawn completely below the surface of the
water in a vessel, the string being fastened to the bottom of the
—vessel. Find the tension of the string. Is there any alteration in
the fluid pressure upon the base of the vessel ?
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3. A body whose specific gravity is greater than that of water is
fastened to a string and lowered into a vessel containing water. If
it be completely immersed, find the tension of the string. ‘What
effect has this on the pressure of the water upon the base of the
vessel ¥

4. A piece of lead and a piece of sulphur are suspended by fine
strings from the extremities of a balance beam, and just balance each
other in water., Compare their volumes, their densities being respec-
tively 11°4 and 2 gm. per cubic centimetre. Which of them will
appear to be the lighter in air, and what weight must be added to it
to restore equilibrium ?

5. A piece of lead weighing 17 gms. and a piece of sulphur have
equal apparent weights when suspended from the pans of a balance
and immersed in water. When the water is replaced by alcohol of
density 0 9, 1'4 gms. must be added to the pan from which the lead
is suspended to restore equilibrium. Determine the weight of the
sulphur, the density of lead being 11-333.

6. A block of wood (specific gravity -75), whose volume is 250 cc.,
is totally immersed in a liquid of specific gravity 1-25 by means of a
string attached to the bottom of the vessel containing the liquid.
Find the tension of the string.

7. A block of wood, whose weight is 63 lbs. and whose specific
gravity is *6, is in a pond. If « ball of lead, whose specific gravity
is 11-5, be attached to the block by a string, find the least weight
which the ball can have so as to keep the block quite under water.

8. Two solids, whose weights are 4 and 63 Ibs., the volume of the
former being double that of the latter, are connected by a weightless
string passing over a smooth pulley, and rest in equilibrium totally
immersed in fluids of specific gravity 1-3 and 3-24 respectively. Find
the volumes of the solids.

9. Two pieces of iron (specific gravity 7-7), suspended from the
two scale-pans of a balance, the one in water and the other in alcohel
of specific gravity 0-85, are found to weigh exactly alike. Find the
proportion between their true weights.

10. The edge of a hollow cube of lead (specific gravity = 11-35) is

7 cm. ; the thickness of the metal forming the cube is 1 em. Find
the apparent weight of the cube in water.
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11. A cube of wood floating in water supports a weight of 480 oz.
On the weight being removed, it rises 1in. Find the size of the
cube.

12. A cubical block of wood, specific gravity *6, whose edge is
1 ft., floats, with two faces horizontal, down a fresh-water river and
out to sea, where a fall of snow takes place, causing the block to sink
to the same depth as in the river. If the specific gravity of sea-water
‘be 1-025, show that the weight of snow on the block is 15 oz.

13. A square piece of wood of uniform thickness floats in water
with two of its sides vertical and with seven-eighths of its surface area
immersed. Find how deep it would sink when floating in a similar
position in a fluid whose specific gravity is 1-25. Show that, if it
float with one of its diagonals vertical in a mixture composed of equal
volumes of the fluid and water, then one-third of that diagonal will
be above the surface.

14. A wooden cone (specific gravity *84), whose volume is 36 cub.
ins., floats vertex downwards in a liquid, with its base horizontal and
two-thirds of its axis immersed. What weight must be placed on
the base in order that three-fourths of the axis may be immersed ¥

15. A right cone, whose weight is 77, floats in a liquid, vertex
downwards, with one-third of its axis immersed. What additional
weight must be placed on the base of the cone so as just to sink it
entirely in the liquid ?

16. Show that, if the apparent weight of a body, suspended in
a mixture by volume of two fluids which mix without contracting,
be equal to the arithmetic mean between its apparent weights when
suspended in the two fluids separately, the mixture contains equal
volumes of the two fluids.

17. A piece of wood floats partly immersed in water, and oil is
poured on the water until the wood is completely covered. Explain
clearly whether this will make any change (if so, whether there will
be an increase or decrease) in the portion of the wood below the
surface of the water.

18. A mass composed partly of solid copper, specific gravity 8-8,
and partly of solid lead, specific gravity 11-4, floats with two-thirds
of its bulk immersed in mercury, specific gravity 13-6, and the
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remaining one-third in water. Compare the volumes and weights of
the copper and lead in the mass.

19. A lump of metal of specific gravity 405 floats partly in oil of
specific gravity ‘9 and partly in mercury of specific gravity 13-5.
‘What portion of its volume is in each ?

20. A block of oak, whose specific gravity is 1'2 and weight 6 1bs.,
is supported by a string, which cannot bear a strain of more than
15 lbs., in a large barrel partly filled with water, in which the block
is wholly immersed. TFluid whose specific gravity is *7 is now poured
into the barrel so as to mix with the water, until it is filled. Show
that the string will break if the barrel was originally less than two-
thirds filled up with water.

21. A uniform rod 10 ins. long floats vertically with -9 of its
length immersed in a cylindrical vessel containing water. If alcohol,
specific gravity '8, be now poured on the water to the depth of 5 ins.,
show that the upper surfaces of the rod and alcohol will coincide.

22. A piece of wood of specific gravity ‘8 floats partly in water and
partly in a liquid lighter than water, and the part immersed in water
is two-sevenths of the whole. What is the specific gravity of the
other liquid ?

23. A cube of bronze, whose edge is 10 cm. and specific gravity
85, floats in mercury, of specific gravity 13-6, with two faces
horizontal. What length of the edge of the cube is immersed in the
mercury ?

24. If, in the last question, oil of specific gravity *85 is now poured
on the mercury until the cube is totally immersed in liquid, how far
will the cube rise out of the mercury ?

25. Water floats upon impure mereury whose specific gravity is 13,
and a mass of platinum whose specific gravity is 21 is held suspended
by a string so that 32 of its volume is immersed in the mercury and
the_ remainder of its volume in the water. Compare the tension of
the string with the weight of the platinum.

26. A cylinder of wood floats in water with its axis vertical and
having three-fourths of its length immersed. Oil whose weight is
half that of water is then poured into the vessel to w sufficient depth
to cover the wood. How much of the cylinder will now be immersed
in water ?
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27. Water is poured without mixing upon glycerine whose specific
gravity is 126, and a mass of cork whose specific gravity is 0:24 is
held down by a string so that half its volume is immersed in the
mercury and half in the water. Compare the tension of the string
with the weight of the cork.

28. A body of uniform density floats in mercury whose specific
gravity is 13-6 with one-eighth of its volume immersed. If water be
poured upon the mercury so that the body is completely immersed,,
show that one-eighteenth part of the volume will be immersed in the.
mereury.

29. A piece of metal floats partly in oil of specific gravity -9 and
partly in mercury of specific gravity 136, and the volumes of the.
portions in oil and mercury are in the ratio of 3 to 4. Find its
specific gravity.

30. A piece of wood of specific gravity -84 floats partly in ether of
specific gravity -72 and partly in water. 'What portion of its volume
is in each ?

31. A vessel containing water is placed in one scale of a balance
and counter-balanced by weights. A person dipshis hand in without
touching the sides of the vessel. Will the equilibrium be disturbed #
Give your reasons.

32. A cube, each edge of which is 4 ins. long, weighs 16,244 grs.
in air and 95 grs. in water. TFind the weight of a cubic inch of
water, having giveén that the specific gravity of water = 770 times
the specific gravity of air.

33. Find the volume of a block of chalk (specific gravity 1-9) which
weighs the same as a block of iron whose volume is 125 cub. cm. and
specific gravity 7-6. What will be the volume of the chalk if the
weight of the air displaced be taken into account? (Specific gravity
-of air = +0013.)

34. A bucket half-full of water is suspended by a string which passes;
over a pulley small enough to let the other end fall into the bucket.
To this end is tied a ball whose specific gravity s is greater than 2.
Show that, if the ball do mnot touch the bottom of the bucket, and if
no water overflow, equilibrium is possible if the weight of the ball lie
between 77 and (s777)/(s—2), where J7 is the weight of the bucket and
water.
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EXAMINATION PAPER VI.

1. Find the resultant vertical thrust on any area immersed in
heavy liquid.

2 A rectangular area, whose sides are 1 ft. and 2 ft., is immersed
in water with its shorter side in the surface and its plane inclined at
an angle of 30° to the horizon. Find the resultant vertical thrust on
the area.

3. A solid hemisphere whose radius is 7 em. is immersed in liquid
of specific gravity 1-5, with its curved surface uppermost and its
plane surface horizontal at a depth of 20 cm. Find the resultant
vertical thrusts on both the plane and the curved surfaces.

4. A cylindrical vessel, the radius of whose base is 3} cm. and
whose height is 16 cm., is filled with water and mercury (specific
gravity = 13-6), the mercury occupying a depth of 4 em. at the bottom
of the vessel. Find the pressure per square centimetre on the base of
the vessel, and the total thrust on the base.

5. In the preceding question, calculate the whole pressure and the
average pressure of the contained liquid on the curved surface of the
vessel.

6. Show that the resultant vertical thrust on a body wholly or
partially immersed in « fluid is equal to the weight of the fluid
displaced.

7. A body floats in water with half of its volume immersed. What
proportion of its volume will be immersed when it is placed in
sulphuric acid of density 1-8?

8. A certain body just floats in fresh water. On placing it in sea
water of specific gravity 1-028, it requires the addition of 56 gm. to
just immerse it. Find its volume.

9. A body floats with half of its volume immersed in water, and
when placed in oil % of its volume is immersed. What is the specific
gravity of the oil ?

10. A piece of cork (specific gravity = -24), whose volume is
200 cub. cm., is kept totally immersed in water by means of « string:
attached to it and to the bottom of the vessel. Find the tension of
the string.



PNEUMATICS.

PART TIII.

CHAPTER XIV.

ATMOSPHERIC AIR.—BAROMETERS.

128. Pneumatics is that portion of Hydrostatics which
treats of gases.

Grases are distinguished from liguids by

(i.) Their compressibility, in virtue of which they can
be compressed into any volume, however small (until they
liquety), by the application of sufficiently great pressure.

Gases can be compressed by the condensing-pump (which will be-
described in Chap. XVIIL.).

(11.) Their elasticity, in virtue of which they expand
when the pressure is reduced, so as always to fill the
whole volume, however large, of the containing vessel,
and exert pressure on its sides.

Grases can be rarefied by the air-pump (Chap. XVIIL.), until a nearly
perfect vacuwm or empty space is formed in any given vessel.

The pressure of a gas on the sides of its containing vessel is some-
times called its elastic force, but the term pressure is better.

(tases, being material substances, have weight, although
their density is generally very small compared with that
of most solids and liquids.

Thus, a cubic inch of water when boiled at ordinary pressure yields
about a cubic foot of steam. But matter is indestructible ; hence the
mass of the steam is equal to that of the water, and its deusity is
therefore only about 1 of the density of water.
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129. Arvistotle’s Bxperiments, — Aristotle (s.c. 384-322),
wishing to test whether air had weight, experimented by weighing
a bladder when empty, and again when inflated with air. He found
that the weight was the same in both cases, and hence he was led to
infer that air was without weight. This conclusion was universally
accepted up to the seventeenth century, when it was disproved by
the following experiment :—

130. To find the density of atmo-
spheric air.—A large glass flask fur-
nished with a tap or stopcock is taken ;
the air in it is completely éxhausted
by means of an air-pump, and the tap
is closed. The flask is then weighed
with a balance (Fig. 52). On opening
the tap, air rushes into the flask and
depresses the scale-pan carrying it;
hence the flask is heavier than before.
The difference of weight is found by
again weighing, and is evidently equal
to the weight of air which entered the
flask; and, if the volume of the flask
be determined, the density and specific
gravity of the air may be found.

[Another method will be given in Chap. XV.] Tig. 52.

Ezample.—A flask weighs 2734 gm. when empty, 276:5001 gm.

when filled with air, and 2805'1 gm. when filled with water. To-
find the weight of a litre of air.

Weight of air in flask = 276'5— 2734 = 31 gm.;
weight of equal volume of water = 2805:1— 273'4 = 2531°7 gm. ;
specific gravity of air = 31256317 = -001224.
But a litre of water weighs 1000 gm. ;
weight of a litre of air = 1-224 gm.

The density of air is generally taken as about 1'3 oz.
per cubic foot, so that the specific gravity, with water as
the standard, is ‘0013, and a litre of air weighs 1'3 gm.

But, as air is so readily compressible, its density depends on the
pressure and temperature.

The specific gravities of other gases may be found in the same way.
These are generally referred either to atmospheric air or to hydrogen
gas as the standard substance instead of water. Hydrogen is the
lightest gas known, its density being only about Jr of that of air;
hence it is convenient to take hydrogen as the standard.
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131. Effect of Buoyancy of Displaced Air.— Since
the flask is weighed in air, its apparent weight in each
case is less than its true weight by the weight of air
which the flask displaces. But this is the same at both
observativns ; hence it does not affect the difference of the
observed weights, which therefore still equals the weight
of air inside the flask at the second observation.

Hence no allowance need be made for the buoyancy of
the displaced air.

In Ayistotle’s experiment, on the other hand, the bladder expanded
as it was filled, so that the more air he blew in the more air he dis-
placed, and the buoyancy of this displaced air exactly balanced the
increase of weight inside the bladder.

The buoyancy of the air displaced by a body is usefully
applied in the balloon.

132. The Balloon is a large globular envelope of oiled
silk or other air-proof material filled with hydrogen, coal
gas, or some other gas lighter than air. Attached to it is
a light car to hold the aeronauts.

The forces acting on the balloon are

(i.) The weight of the balloon and its contained gas
acting downwards.

(ii.) The resultant thrust of the surrounding air which
acts nupwards and is equal to the weight of air displaced.

Now the gas inside the balloon weighs less than the air
it displaces. Hence, if their difference is greater than
the weight of the envelope and car, the balloon will
ascend. By letting part of the gas escape through a
valve, the volumes of the balloon and displaced air will
decrease, until the balloon begins to descend.

Ezample.—A cubic foot of air weighs 1°29 oz., while a cubic foot
of hydrogen only weighs ‘09 oz. To find the volume of a hydrogen
balloon which will just lift 250 Ibs.

Since each cubic foot of hydrogen weighs ‘09 oz. and displaces
1-29 oz. of air,

1 cub. ft. will lift 1-29—-09 oz., or 1'2 0z.;;
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number of cubic feet required to lift 250 lbs.

< 208102000 . JOO00 . gagas .
1-2 1-2 3
i.e., required volume of the halloon = 3333% cub. ft.

133. Pressure of the Atmosphere.—Since air has
weight, the reasoning of Chap. X. shows that the
atmosphere must exert a pressure on all surfaces with
which it is in contact, and that with the usual density of
air this pressure must increase by about 1'3 oz. per sq. ft.
for every foot increase of depth.

The effects of atmospheric pressure may be illustrated
by several simple experiments.

Thus, if we take a glass tumbler filled
to the brim with water and lay a sheet of
cardboard over the top, pressing it well
down, it will be found that the glass may
be inverted without the water falling out.
The card is in fact held up by the thrust of Fig. 53.
the atmosphere upwards on its under side.

This nupward thrust has to support the weight of the card and the
thrust of the water on the upper side, besides pressing the card tightly
against the rim of the glass.

Hence the pressure of the air (per square inch), acting upwards on
the card, must exceed the pressure of the water downwards; otherwise
the card would fall down. The atmospheric pressure is therefore
greater than the pressure due to a column of water of the same
height as the glass.

134. The Magdeburg Hemispheres, invented by
Otto Guericke, of Magdeburg (1602-1686), are two hollow
hemispheres whose edges fit truly when in contact. When
the air is withdrawn by means of an air-pump from the
spherical cavity thus formed, it will be found that the
hemispheres cannot be pulled asunder except by applica-
tion of considerable force. This force is required to
overcome the resultant thrusts produced by the pressure
of the atmosphere on the outer surfaces of the hemi-
spheres.
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135. Torricelli’s Experiment.—The Bavometer. —
The first actnal measurement of the pressure of the
atmosphere is due to Torricelli (1643), and
his experiment resulted in the invention of
the mercurial barometer.

To perform the experiment or to construct
a barometer in its simplest form, a glass
tube about 33 ins. long and closed at one
end is completely filled with mercury. The
open end is then closed with the finger, the
tube inverted into a cup of mercury, and the
finger then removed, care being taken not to
allow any air to get into the tube. The
mercury will at once sink and leave a clear
space at the top of the tube, and the height
of the column of mercury above the surface
in the cup will be found to be about 30 inches
or 760 millimetres.

If the tube be furnished with a scale for reading off
the height of the mercury, the apparatus constitutes a
mercurial barometer.

The space above the mercury is practically a vacuum,
and is called the Torricellian vacuum.* Hence there
is no pressure at the top of the tube.

The atmospheric pressure at the surface of the mercury
in the cup must therefore be equal to that due to the
weight of the column of mercury in the tube. The height
of this column is called the height of the barometer,
or the barometer reading. Hence

The height of the barometer measures the pres-
gure of the atmosphere.

Nore.—If we perform Torricelli’s experiment with a tube shorter
than the column of mercury which the atmospheric pressure is capable
of supporting, no vacuum will be formed.

# Strictly, it contains a very minute quantity of the vapour of mercury ; sce
Stewart’s Text-Book of Heat, § 56.
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Exaimples.—~(1) If the height of the mercury be 291 ins., to find
the atmospheric pressure in pounds per square inch, taking specifie
gravity of mercury = 13-6.

Weight of 1 cub. ft. of mercury = 136 x weight of 1 cub. ft. of water

= 13,600 oz. ;

. . pressuredueto 1 ft. of mercury = 13,600 oz. per sq. ft. ;

: - ,y  29%inms. = 13,600 x 29-5/12 oz. per sq. ft. ;
13,600 % 29°5

o D0 T6 Cin.;
1w ibwide 0% B0

pressure of atmosphere = 1451 1bs. per square inch.

(2) If the height of the mercury be 750 mm., to find the pressure
(i.) in statical, (ii.) in C.G.S. absolute, units.
(i.) The pressure due to 1 cm. of mercury = 13:6 gm. per sq. cm. ;
”» wo 15, 32 = 1020 ,, )
i.e., required atmospheric pressure = 1020 C.G.S. statical units.
(ii.) Taking the acceleration due to gravity as 981 em. per sscond
per second, a gramme,weighs 981 dynes ;
*. pressure of the atmosphere = 1020 x 981 dynes per square centimetre
=1,000,620 dynes per square centimetre,
i.¢., 1,000,620 C.G.8. absolute units,

136. Water and  Glycerine Barometers.— Instead
of performing Torricelli’s experiment with mercury, we
might use a column of water or any other liqgmd to
measure the pressure of the atmosphere, provided that
we took a sufficiently long tube for the purpose.

Ezamples.—(1) When the mercury stands at 30 ins., to find the
height of the water barometer.

The density of mercury is 136 times that of water.

.-. pressure due to 1 ft. of mercury = pressure due to 13-6 ft. of water ;
R bE] 2% 5 2} = 2 2 IS.GXQ'%H 2
height of water barometer = 13-6 x 2} ft. = 34 ft.

Unless, therefore, the tube exceeded 34 ft. in height, no vacuum
would be formed and the instrument would be useless.

(2) When the water barometer is at a height 34 ft., to find the
height of a glycerine barometer, the specific gravity of glycerine
being 1:26.

Thepressuredue to 1+26 ft. of water = pressuredue to L ft. of glycerine ;
= » » 34, n o= 3 » 34+126,,
height of glycerine barometer = 34 +1-26 = 27 ft., nearly.
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(3) To show that the heights to which liquids rise in the barometer
tube are inversely proportional to their densities.

Let W, w be the specific weights of any two fluids, H, % the
heights of the columns of the fluids which the atmospheric pressure
is capable of supporting. Then we have
pressure of atmosphere = WH = wh ;

H w
W
height of first liquid _ density of second liquid
height of second liquid =~ density of first liquid

137. The water barometer is much more sensitive to
small changes of atmospheric pressure than a mercurial
barometer.

For the column of water is always 13-6 times as high as the column
of mercury. Thus the change of pressure which would cause the
mercury to rise *1 would cause the water to rise 13-6 times as much,
or 1-36 ins.

The great objection to a water barometer is the difficulty
of retaining a good vacuum at the top of the tube. Not
only does water evaporate freely into the vacant space,
but air gets absorbed at the surface of the cup, and is given
off again at the surface of the column.

These objections are to a great extent obviated by the
use of glycerine. Tts specific gravity being 126, the
glycerine barometer is more than ten times as sensitive
as a mercurial barometer, and a much better vacuum is
obtained than with water.

138. The height of the barometer is independent
of the shape and size of the tube.

For, if h be the height of the barometer, i.e., the
vertical height of the surface of the mercury in the tube
above its surface in the cup, and w the specific weight of
mercury, then the atmospheric pressure P is given by the
formula of § 95, P = wh;

and it is shown in § 98 that this formula is independent
of the shape and area of the tube; hence the height %
depends only on the atmospheric pressure and the specific
weight of the mercury.
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139. The effeet of inclining the tude will be that the mercury will
rise to the same vertical height as before, and will therefore occupy a
greater length of tube.

[An inclined tube barometer has been constructed on this principle ;
the upper part of the tube is inclined at a small angle to the horizon,
and a small rise or fall in the vertical height therefore causes the
mercury to move through a considerable length of tube. ]

140. To test if the barometer is true or fanlly.—Tt often happens that
in an old barometer a little air has leaked into the space above the
mercury, which is therefore no longer a true vacuum. This air may
be detected by inclining the tube till the height of its upper end
above the cup is less than the height of the barometer. If the baro-
meter is perfect, the mercury will then fill the whole tube; if not, a
bubble of air will remain.

141. The Siphon Barometer consists of a U-tube
which has branches of unequal length. The shorter
branch is open to the atmosphere and corresponds to the
cup of Torricelli’s instrument, while the longer ome is
closed, and a vacuum is formed above the mercury at its
upper end. When the mercury rises in one arm it falls
in the other, and the height of the barometer is the
difference of level of the mercury in the two branches.
It is often read off on a graduated dial by means of the
arrangement shown in Fig. 56.
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Ezamples.—(1) If the sectional areas of the longer and shorter
limbs are 1 sq. cm. and 1} sq. cm., and the height of the barometer
in centimetres is read off on a scale attached to the upper limb, to
find the distance between the graduations.

Let the mercury in the shorter or larger limb fall 1 cm.
Then 13 cub. cm. of mercury will flow into the longer limb ;
the mercury in the longer limb will rise 1% cm. ;
the difference of level will increase 2% cm.,
i.e., barometer rises § cm. when mercury in upper limb rises 2 om. ;
barometer rises 1 cm. when mercury in upper limb rises 2 cm.

Therefore the graduations must be 2 em. or 6 mm. apart to indicate
centimetres of barometric height.

Similarly, if for a scale attached to the lower limb, the graduations
must be 4 mm. apart, and must read downwards.

(2) If the sectional area of the tube of an ordinary barometer is
% 8. in., and it dips into a cistern of mercury whose superficial area
is 6 8q. ins., to graduate the tube in inches of barometric height.
The area of the cistern outside the tube
= 5—%8q. in. = 12 gq. in.
= 19 times sectional area of tube.
If, therefore, the mercury rises 1 in. in the tube, it will fall 7 in.
outside, and the change in barometer reading will be 22 in.

Therefore 1 in. of barometer reading is measured on the scale by a
length of 18 in.

142. The Amneroid Barometer is a hollow metal box exhausted
of air. The atmospheric pressure tends to force in the top of the
box, but is resisted by the elasticity of the metal, which acts like a
spring. When the pressure increases or decreases, the lid sinks or
rises slightly, and moves a pointer which indicates the pressure on a
dial. This dial is graduated in ‘‘inches’’ or ‘‘ millimetres,”’ corre-
sponding to the readings of a mercurial barometer. The aneroid is
chiefly used on account of its portability.

143. The use of the barometer is to indicate the
pvressure of the atmosphere. If the barometer rises,
it indicates an increase in the atmospheric pressure, while
a falling barometer indicates a decrease of pressure.

The reason why the barometer can be used to predict
the weather is because experience has shown that certain
changes of weather are generally accompanied by certain
changes of atmospheric pressure.

HYDRO. ’ L
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L3 7y

Thus, when we say that ¢ the barometer usually falls for ¥alf,
we mean that rainy weather is usually pregeded by a d(?crfﬁsew E;ther
pressure of the atmosphere. Similarly, an }mprovement in t1 ee pas
usually occurs simultaneously with an increase of Pre%ﬁu‘ m ;
same changes are not indicated in the same manncr f1f11 2 " 11[9 bs o
the globe. But in no case can changes of Weather affect the fa:}(i_
meter otherwise than by causing changes In the pressure of the
at?‘gipfﬁ%er information on this subject, the reader is referred to

treatises on meteorology.

144, Precautions and Corrections.—Barometers for
scientific use are provided with a scale to reaJd.the lgvyer
level of the mercury in the cup or short branch, in addition
to the scale on the tube. Both scales are read, the differ-
ence giving the actual height of the mercury. To this
the following corrections are applied (vide §§ 145-147).—

(i.) Correction for capillarity.

(ii.) Correction for temperature.
(iii.) Correction for variations in intensity of gravity.
(iv.) Reduction to sea level.

145. “Tapping the barometer.”—When the mercury is rising
or falling, a sudden jar or blow will often cause the reading to change
considerably. This is due to the adhesion of the surface of the
mercury to the sides of the barometer tube, which causes it to adapt
itself with reluctance to changes of level. A smart blow loosens the
mercury, which then at once moves to the level necessary to balance

“the atmospheric pressure.

This adhesion at the surface of liquids is called capillarity. Fven
when tapping has no further effect, the mercury surface will still
assume & somewhat concave form, and there is therefore a further
correction for capillarity. This correction depends on the area of the
section of the tube at the surface of the mercury, being greater for
small than large tubes ; hence the height of the mercury is not quite
independent of the bore of the tube at its upper end. The shape of
the tube below the surface does not, however, affect the reading.

*#146. Corrections for Temperature and Intensity of Gravity.

From §§ 92, 109, the absolute pressure due to a given column or
head of mercury is proportional to the density of the mercury, which
is affected by changes of temperature, and from § 107 this pressure is
also proportional to ¢‘y,’” which varies slightly in different places.
Hence, in order that the same barometer reading may always Tepre-
sent the same atmospheric pressuve, it is necessary to apply corrections
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for temperature and intensity of gravity. The reading, when thus
corrected, represents the height of the mercury column that the
atmospheric pressure would support at a standard temperature (usually
the freezing-point of water, 0°C. or 82°F.) at a standard place (usually
taken at the sea level in latitude 45°). The pressure of the atmosphere
is then said to be reduced to ‘‘standard inches (or millimetres) of
pressure.’’

¥147. Reduction to sea level.—We shall see in the next chapter that
the pressure of the atmosphere depends on the altitude. In comparing
the readings of the barometer for purely meteorological purposes, it is
therefore necessary that the observations should all be made at the
same altitude, and for this purpose the sea level is generally chosen.
As this is impracticable at inland stations, the observations are
corrected for altitude by being reduced to the sew level. They therefore
represent what would be the corresponding reading of a barometer
placed at the sea level under similar meteorological conditions.

148. The average height of the mercurial barometer
is generally taken as 30 ins. or 760 mm. This corre-
sponds to 34 f&. height of the waler barometer, or an
atmospheric pressure of about 15 lbs. per sq. in. This
pressure is called one atmosphere (§ 70).

[N.B. It is useful to remember these numbers.]

149. Effect of Atmospheric Pressure on Liquids.—
If the surface of a heavy liquid is exposed to atmospheric
pressure, the pressure at any point will be the same as if
the surface of the liquid were raised by an amount equal
to the height of the barometer of that liquid and the
pressure at the new surface were zero.

This theorem is obvious from the following examples :—

FEzamples.—(1) To find the pressure in water at a depth of 110 ft.,
the height of the water barometer being 34 ft.
Atmospheric pressure at surface = pressuve due to 3¢ £t. of water
= 34,000 oz. per sq. ft.
Tncrease of pressure in 110 £t. = 110,000 oz. per sq. £b. ;
total pressure required = 110,000 + 34,000 oz. per sq. ft.
144,000 oz. per sq. ft.
= 1,000 oz. or 624 lbs. per sq. in.
We thus see that the pressure is that due to a column of water of

height 110 + 34 ft., and is therefore the same as if the depth of the
waiter were increased by 34 ff., the height of the water barometer.

i

Il
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(2) To find the pressure at depth % in u heavy liquid exposed tg
atmospheric pressure, the height of a barometer of that Ligui
being M.

Let w be the specific weight of the liquid, p the atmospheric
pressure. Then (by § 95)

pressure at depth & = p+wh.
But (by § 138) » = wH; )
required pressure = wH+wh = w (H + %)
pressure due to a column of height H+ 4.
Nore.—The same result could be at once proved by supposing a barometer
of the liquid to be constructed above its surface, the lower end of the tube
dipping into it. The pressure at any point of the liquid would evidently be
that due to the column H+ 7 extending from the surface of the “Torricellian™
vacuum in the tube down to that point.

Effect on Resultant Thrusts due to Fluids.—When a vessel is filled with
a heavy liquid, the atmospheric pressure acts on the outer surface of
the vessel, besides being transmitted by the liquid to the inner surface.
Hence the resultant thrusts on the base and sides of such a vessel are
the same as if the atmospheric pressure did not exist, and are there-
fore found as in Chap. XII.

The pressure on the inmer surface of the vessel is, however, increased
by the atmospheric pressure.

SUMMARY.
1. The density of air is found by weighing a flask when exhausted
and when filled with air.

9. The pressure of the atmosphere is measured by the height of the
fluid column it supports in a barometer, the top of whose tube is a
vacuum.

The fluid is usually mercury (specific gravity, 13:6), sometimes
water or glycerine.

3. The principal kinds of bavometer are—
(i.) The common barometer, having cup of mercury ;
(ii.) The siphon or bent-tube barometer ;
(ili.) The aneroid barometer (not mercurial).

4. To read the barometer accurately, both upper and lower levels of
the mercury are taken and the reading corrected for—
(i.) Capillarity ; . (ii.) Temperature of mercury ;
(fii.) Intensity of gravity ;  (iv.) Reduction to sea level.
5. The average height of the mercury barometer
= 30 ins. = 760 mm,
the average height of the water barometer
= 30 ins. x 136 = 34 f. ;
average pressure of atmosphere = 34,000 oz. per square foot
= 16 Ibs. per square inch, roughly.
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EXAMPLES XIV.

[Unless otherwise stated, the following data will be assumed :—height
of mercurial barometer, 30 in., or 76 cm.; height of water
barometer, 34 ft. ; specific gravity of mercury, 13-6.]

1. A flask when empty weighs 120 gm., when full of air it weighs
121-3 gm., and when full of water, 1120 gm. Calculate the density
of the air.

Explain whether it is or is not necessary to take account of
the weight of air displaced.

2. With the barometer at 760 mm., the mass of a litre of air is
1-2 gm., and of a litre of hydrogen '089 gm. The material of a
balloon weighs 50 kilog. : what must be its volume in order that it
may just rise when filled with hydrogen? Explain carefully how
you obtain your result.

3. If the atmospheric pressure is 15 lbs. per square inch and the
diameters of a pair of Magdeburg Hemispheres are 7 ins., find the
force required to pull them asunder.

4. Show that the thrust of the atmosphere on either of the Magde-
burg Hemispheres is half the ¢“whole pressure’’ on the hemisphere.

5. Describe an experiment to prove that the pressure of the atmo-
sphere is measured by the height of a barometer column.

6. Explain the construction of a baromseter, what it measures, and

how it measures it.
Need the bore of a barometer tube be uniform? Give reasons
for your answer.

7. If the atmospheric pressure at the surface of the earth be
14} Ibs. per square inch, find the height of the water barometer in

feet.

8. Calculate the air pressures when the mercurial barometer stands
at 27 ins. and at 305 ins., assuming that a cubic foot of water weighs
62-5 Ibs.
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9. If the height of the water barometer is 34 ft., and that ?f the
mercurial barometer is 30 ins., show that the specific gravity of
mercury is 13-6.

10. Tf the specific gravity of mercury be 13-5 and that of glycerine
be 1-255, what reading of a mercurial barometer corresponds to a
reading of 320 ins. on a glycerine barometer ?

11. Translate pressure measured in terms of the height of a baro-
meter mercury column (say, either 27 ins. or 60 cm.) into absolute
(i.e., dynamical) units of pressure.

12. Find the absolute pressure on a bottle of air immersed in sea
water to a depth of 50 metres, the density of sea water being 1-027,
and the value of g being 980 (cm./sec.?), and compare this pressure
with that of the atmosphere, the barometer standing at 76 cm.

13. If the diameters of the two branches of a siphon barometer are
equal, show how to graduate (i.) the upper, (ii.) the lower, branch to
indicate inches of barometric height.

14. The section of the closed limb of a siphon barometer is to that
of the open limb as 3 to 17. The mercury rises 1-275 ins. in the
closed branch. What change takes place in the mercury of an
ordinary barometer ?

15. A siphon barometer is so constructed that the long closed tube
has an internal sectional area equal to L sq. in., while the short open
tube has an internal sectional area equal to } sq. in. Find what fall
will take place in the long tube of this barometer when the true
pressure of the air falls 1 in.

16. What would be the height of a column of air of uniform density
1'2 oz. per cubic foot which would produce a pressure equal to that
of the atmosphere ?

17. A body floats in water contained in a vessel placed under an
exhausted receiver with half its volume immersed. Air is Hhen
forced into the receiver till its density is 80 times that of air ab
atmospheric pressure. Show that the volume immersed in water
will then be four-ninths of the whole volume, assuming the specific
gravity of air at atmospheric pressure to be -00125.



CHAPTER XV.

BOYLE’S LAW.

150. From the fundamental properties by which gases
are defined it appears that the volume of a given quantity
of gas becomes less as the pressure to which it is subjected
becomes greater, and wice wersd. The relation which
exists between the volume and pressure of a gas at any
given temperature was discovered by Robert Boyle, of
Lismore, Ireland (1662), and by Mariotte, in France
(1679). This relation, which is known in England as
Boyle’s Law, and in France as Mariotte’s Law, is usually
stated thus:

151. BOYLE'S LAW.— The volume of a given
mass of gas is inversely proportional to the pressure
when the temperature is kept constant.

Thus, let » be the pressure of a gas occupying the volume v ;

Then at pressure 2p the volume of the gas will be 3o,

1
2] 5 ?p 2 ) ”» 37y
9 2 P ” ” ’ vy
” 2] pin ” 7 2 70,

and 8o on. Since
o= 2xtv=3pxLv=4px2 = plnxww,
it follows that

The product of the pressure into the volume of @ given mass
of gas at constant temperature is constant.

For let v be the volume of the gas when the pressure
is p, V its volume when the pressure is P, the tempera-
ture being the same in both cases. Boyle’s Law states
that P, p are inversely proportional to V, v, that is,
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or, clearing of fractions, we may state Boyle’s Law in.

symbols thus,
PV =PV seviiriieienreranennnnns (1):
The following alternative statement of Boyle’s Law is
important :
152, The pressure in a given kind of gas at a
given temperature is proportional to its density.

For, if m be the mass of the gas, d, D its densities when
its volumes are v, V, then, by § 14,

p=" g=1

v’ v
whence, by Boyle’s Law,
1 m»
P_V_V_D
p 1T m @
v v
or P:p=D:d ..ciovrrrinnn. (2).

Nore.—This last relation is true whether the mass of gas is the same or
different in the two cases, provided that it is the same kind of gas at the
same temperature.

Ezamples.—(1) A mass of air at atmospheric pressure occupies
44 cub. ins. To find the pressure when the volume is reduced to
24 cub. ins., taking an atmosphere as 15 Ibs. per square inch.

Let p be the required pressure in pounds per square inch. Then,
by Boyle’s Law, P x24 =44 x 15, )

= “rlp HTX5 = 27%1bs. per square inch.

(2) To compare the weights of a cubic foot of air when the baro-
meter stands at 29 and 30 ins.

Since the densities are proportional to the pressures, and these are
proportional to the heights of the barometer, the required weights are
in the proportion of 29 : 30.

(3) A vessel containing 2 litres of air at a pressure of 1 atmosphere
is put into communication with another vessel containing 8 litres of
air at a pressure of 3 atmospheres. To find the subsequent pressure
of the air in the two vessels.

If the pressurein each mass of air were changed to 1 atmosphere, the
air in the firstvessel would occupy 2 x § litres = 1 litre, and that in
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the second 8 x 3 litres = 9 litres. The total mass of air would there-
fore occupy 10 litres at atmospheric pressure. But it has to occupy
2 +3 litres = 5 litres (the sum_of the volumes of the vessels). Since
the volume is thus halved ; the pressure is doubled, therefore the
required pressure is 2 atmospheres.

_(4) A bubble of air rises from the bottom of a lake, and its
d%atxietf:khas doubled when it reaches the surface. To find the depth
of the lake.

The volume of a sphere is proportional to the cube of its diameter
[.r vol. = 4mr8 = L (diam.)¥].
.*. vol. at surface = 8 times vol. at bottom.
Therefore, by Boyle’s Law,
pressure at surface = 1 pressure at bottom,
pressure at bottom = 8 atmospheres.

Now, taking the height of the water barometer as 34 ft., the pressure
increases 1 atmosphere for every 34 ft. descended. But the difference
of pressure at the top and bottom is 8 —1, or 7 atmospheres.

required depth of lake = 34 x 7 = 238 ft.

153. To verify Boyle’s Law experi-
mentally for pressures greater than
that of the atmosphere.— A piece of
apparatus called Boyle’s Tube is generally
used (Fig.57). This is a U-tube with very
unequal branches, the longer arm being
sometimes ag much as 6 ft. long. A scale of
inches or millimetres is attached to each
branch. A little mercury is poured into
the bend until it reaches the point marked
zero on the two scales. The air in either
branch being at atmospheric pressure, the
shorter branch is now closed with a tightly
fitting screw cap, the length of the enclosed
column of air being measured on the scale.
More mercury is then poured into the long
branch, and, as its level rises, the increase
of pressure diminishes the volume of the
air in the closed branch. By measuring
the length of the column of enclosed air
and the difference of level of the mercury in
the two branches, the pressure and volume
of this air can be found, and, by making a
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number of such experiments, the relation connecting them
may be verified.

Thus, suppose the mercury poured in until thelength of the air column
AP (Fig. 58) is half what it was when the end A was closed. Then
0'Q— OP, the difference of height of the mercury in the two branches,
will be observed to be equal to the height of the mercurial barometer
(about 30 ins.).

Now the pressure due to this column of mercury is
equal to 1 atmosphere. But the surface @ is at
atmospheric pressure. Hence the total pressure of
the air at P is 2 atmospheres, or double what it
wasg originally.

Hence, if the wolume of the wiv be halved, the
pressure s doubled.

D

Again, when the air in the short branch occupies
one-third of its original volume, 0’'Q—O0P, the
difference of level will be observed to be fwice the
height of the mercurial barometer. This column
produces a pressure of 2 atmospheres, and the
surface () is at atmospheric pressure; hence the
total pressure at P is 3 atmospheres.

-————..._.._._..__ﬁ

Hence, if the wvolume be reduced to one-third, the
pressure is trebled, and so on. Fig. 58.

Thus Boyle’s Law is verified.

ZExample.—The shorter branch of Boyle’s tube is closed when it
contains a column of air 10 cm. long. To find how much mercury
must be poured into the longer branch to raise the level in the
shorter branch by 2 cm., the height of the barometer being 76 cm.

The length of the air column is reduced from 10 to 8 cm. Hence
its new volume is ¢ of its original volume.

.*. the pressure is 2 atmosphere.

. . the difference of level in the two branches corresponds to a
pressure of 1 atmosphere, and is therefore 76 x § cm. = 19 cm.

But the level in the shorter branch has risen 2 cm.
.. the level in the longer branch must have risen 19 4+ 2 cm. = 21 cm.

. . the quantity of mercury poured in must be sufficient to fill
21 + 2 cm. or 23 cm.
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. 154. To verify Boyle’s Law for pressures less
than that of the atmosphere.—The most convenient
apparatus consists of a glass tube rather over A
30 ins. long furnished with a screw-cap 4
(Fig. 59) and a cylindrical jar of the same
height filled with mercury. The tube is
lowered into the jar of mercury, leaving a
length AQ projecting, and the upper end 4
is closed with the cap, the air thus enclosed
in the tube being at atmospheric pressure.
The length AQ 1s measured on a scale of
inches or millimetres which may conveniently
be engraved on the tube. On the tube being
raised, the mercury rises above the outside
level, as at P, but the reduction of pressure
causes the air column to expand from A0
to AP and occupy a greater length of tube
than before. By measuring the heights AP,
PQ, the volume and pressure of the enclosed
air can be found and the relation connecting =
them verified. Fig. 59,

Thus,when the air column AP occupies double its original length A0,
the height of the mercury column P is observed to be 3 H, where H
is the height of the mercurial barometer. Hence the difference of the
pressures at P, ( is 3 an atmosphere, and therefore the pressure at
P is 1-1 atmosphere, or 3 an atmosphere, or half the original
pressure of the air.’

Hence, if the volume be doubled, the pressure is halved, in accordance
with Boyle’s Law.

‘When the air column AP occupies three times its original length,
Boyle’s Law requires that the pressure at P = % atmosphere, whence
the difference of pressures at P, § = % atmosphere and therefore

PQ = 2H.

In actual experiments the height PQ is then observed to be exactly
2H, thus confirming Boyle’s Law.

Similarly, when AP = 440, Boyle's Law requires that PQ = £H,
and this also is confirmed by observation.

Tn like manner, Boyle’s Law may be verified for any pressures less
than that of the atmosphere.
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155, To verify Boyle’s Law for any gas it is only
necessary to substitute that gas for air in the closed end
of the U tube of § 153, or in the barometer tube of § 154.

*156, Effect of Temperature,—Charles’ Law.—In the above
experiments, care must be taken to keep the temperature of the gas constant.
For this reason it is sometimes a good plan to keep the U-tube or the
mercury jar immersed in a large vessel of water which is constantly
stirred so as to maintain a uniform temperature.

A rise of temperature will cause a gas to expand even if its pressure
is unaltered. The relation established by experiment between the
volume and temperature at constant pressure is known as Charles’
Law, and may be conveniently stated thus—

When the pressure of a gas is kept constant, the
volume is proportional to 273+4%, wheve ¢ is the Centi-
grade temperature.

Combining this with Boyle's Law, it may be shown that, if the pressure, volume,
and Centigrade temperature of a gas change from p, », ¢ to P, V, T, then

Py _ PV & ﬂ=273+t
21346 273+T PV 273+T

The quantity 273+t is called the absolute temperature; the temperature
—278° C. being called the absolute zero.*

Hence the product of the pressure and volume of a given mass of gas is proportional
to the absolute temperature.

#157. Limits of Boyle’s Liaw.—From experiments such as
those described above, Boyle’s Law may be proved to be a wvery
approxzimate statement of the relation between the pressure and the
volume of air or other gases when the pressure is not very great. But
more accurate observations show that in no gas is the pressure exzactly
proportional to the density.

The divergence from Boyle’s Law in most gases is too small to be
of any practical importance, and is therefore commonly neglected
except when the pressure approaches the amount required to cause
liquefaction. When, however, air is satwrated with the vapour of
water, an increase of pressure produces condensation, and Boyle’s
Law no longer holds good.

A perfect gas is defined as an ideal substance which always obeys
Boyle’s Law. Like a perfect fluid, no such substance really exists.

In numerical calculations and problems, 1t is always
assumed, that gases obey Boyle’s Law and that their tempera-
tures remain constant unless the contrary is specified.

* For further defails, see Stewart’s T'ext-Book of Heat, Chap, V.
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158. Application of Boyle’s Law to the faulty
Barometer. — When a little air has got into the end of a
barometer tube it expands and depresses the mercury.
As the mercury rises and falls this air obeys Boyle’s Law,
and hence the relation between the readings and those of
a perfect barometer may be found, as in the following
example, which may be taken as typical.

Ezample.—A faulty barometer reads 28 ins. and 30 ins. when a true
barometer reads 285 ins. and 31 ins. respectively. To find (i.) the
whole length of the tube of the faulty barometer, (ii.) the true read-
ing when the faulty barometer stands at 29 ins.

(i.) Let 7 be the length of the tube. Then at the first observation,
the air in the upper end occupies a space /— 28 ins., and is under a
pressure 283 —28 ins. of mercury (the difference of height of the two
barometers). At the second the air occupies I— 30 ins., under pressure
31—30 ins. Therefore, by Boyle’s Law (PV = pv),

(7—28) x } = (1—30) x 1, whence ! = 32 ins.

(ii.) Hence at the first observation, the air occupied 32—28 ins. at a
pressure of }in. When the faulty barometer reads 29 ins., this air
occupies 32 —29 ins. ; therefore, if p be its pressure in inches, Boyle’s
Law gives

»x3=1%x4, whence p = 2.

Therefore the true barometer feading is 2in. higher, or 292 ins.

159. Determination of Heights by the Barometer.—
Since the pressure of the atmosphere is due to the weight
of the superincumbent air, it increases with the depth, as
is evident from Chap. X. When therefore we ascend a
few hundred feet, the weight of the column of air tra-
versed makes a perceptible difference in the pressure and
the barometer reading is perceptibly lower at the top
than at the bottom of the column. If, then, we know the
difference of atmospheric pressure at the top and bottom
of a mountain, and also the density of the air, we can find
the height of the mountain.

Conversely, to find the density of atmospheric air, it is only necessary
to observe the difference of pressure at the top and bottom of a tower
or hill whose height is known. [This is an alternative to the
method of § 130.]
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Fzample.—To find the height of a hill if the baromgter rea.d]':ngs at
the top and bottom differ by - in., the densities of air and
mercury being 001 and 13-6.

Here density of mercury = 13,600 x density of air.

Hence difference of pressure due to ‘1 in. of mercury = pressure
due to a column of air of 13,600 x -1 ins.

height of hill = 1360 ins. = 113 ft.

160. Since, by Boyle’s Law, the density of air is pro-
portional to its pressure, this density decreases as we
ascend, and hence the reduction of pressure is not strictly
proportional to the height risen unless this height be
small.

Thus, when we ascend 1000 ft., the pressure, and therefore the
density, of the air decreases. The density of the second 1000 ft. is
therefore less than that of the first; therefore the reduction of pressure
in the second 1000 £t. is also less than in the first 1000 ft. Hence, if
a barometer is carried up 2000 ft., the mercury falls less than twice as
much as in the first 1000 ft. Similarly for each rise of 100 ft., the
fall of the barometer is rather less than for the preceding 100 ft.

[Since the density of the air depends also on the temperature, this also must be
observed in determining heights by the barometer ; unless the temperature of the
air column is the same throughout, the caleulation is one of considerable difficulty.

#161. Specific Gravities of Grases.—The specific gravity of a gas
is independent of the pressure, provided that the standard substance is
another gas at the sume pressure. 'Thus, if a cubic foot of air and a
cubic foot of hydrogen at the same pressure are weighed, and if the
pressure is then doubled, the volumes of air and hydrogen will each
be % cub. ft., and will therefore be equal. Hence the ratio of the
weights of equal volumes of two gases is independent of the pressure
provided that this is the same for both gases.

[By Charles’ Law, the ratio of the weights of equal volumes of two gases at
the same temperature and pressure may be shown to be independent also of the
temperature. ]
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SuMMARY.

1. Boyle’s Law (or Mariotte’s Law).—The volume of a given mass of

a given gas at constant temperature is inversely proportional to the
pressure.

Hence the density of a given gas at comstant temperature is
proportional to the pressure.

Taking the kind of gas and the temperature to be the same in the
two cases considered, we have

PV =g susvtina (1) and Plp=Djd........ 2),
where the mass of gas must be kept the same in (1), but not neces-
sarily in (2).
[* The relations are also written thus (where o« means “wvaries as™):—

pv = const., pm—%, p =dxconst., po«d

2. If the temperature varies, Charles’ Law asserts that » is proportional to
273+, with p constant, and therefore generally

py/PV = (273+1)/278+T) or pv « 273+t
where ¥ T are Centigrade temperatures,
273+¢, 273+ T are  absolute temperatures.]

3. For pressures greater than an atmosphere, Boyls’s Law is verified
by means of Boyle's Tube of § 153 (U-tube with air or gas in shorter
closed branch).

4. For pressures less than an atmosphere, a barometer tube and jar
of mercury are used (see § 154).

5. The air in a faulty barometer obeys Boyle’s Law.

6. Heights may be measured by the barometer if the densities of the
intervening strata of air be known.

EXAMPLES XV.
[The data given on page 149 are assumed. ]
1. A wide-mouthed bottle full of air is closed with a well-ground
glass stopper, 5 cm. in diameter, when the barometer stands at
772 mm. What weight must the stopper have in order that it may

be just blown out if the barometer goes down to 730, the temperature
remaining the same ?

9. Tn a tube of uniform bore a quantity of air is enclosed. What
will be the length of this columh of air under a pressure of 3 atmo-
spheres, and what under a pressure of } atmosphere, its length under
the pressure of a single atmosphere being 12 ins. ?

3. If a vessel of 3 cub. ft. capacity, containing air at a pressure
of 2 atmospheres, is put into communication with a vessel of
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18 cub. ft. capacity, containing air abt a pressure of atmosphere,
what will be the pressure of the air in the two vessels? State the
principle or law on which the solution of this question depends.

4. What do you know about the density of gases in relation to
temperature and pressure? Describe experiments which show that
the density of « gas at constant temperature is proportional to its
pressure.

5. A Mariotte’s tube has a uniform section of 1 sq. in., and is
graduated in inches; 6 cub. ins. are enclosed in the shorter (closed)
limb, when the mercury is at the same level in both tubes. What
volume of mercury must be poured into the longer limb in order to
compress the air into 2 ins. ?

6. Mercury is poured into a uniform bent tube, open at both ends,
and having its two branches vertical. One end is closed, its height
above the mercury being 4 ins. How much mercury must be poured into
the open end so that the mercury may rise 1 in. in the closed branch ?

7. The height of the column of mercury in the open branch of an
eudiometer is 12 ins. above that of the column in the closed branch,
and the air in the closed branch occupies a length of 4 ins. How
much mercury must be poured into the open branch in order to
compress the air to half its volume ?

8. A uniform tube closed at top, open at bottom, is plunged into
mercury, so that it contains 25 c.c. of gas at atmospheric pressure of
76 cm. ; the tube is now raised until the gas occupies 50 c.c. How
much has it been raised ?

9. A straight uniform tube closed at one end, whose length is 2,
has the open end just immersed in = basin of mercury. If the tube
contain a quantity of air which under atmospheric pressure would
occupy a length of the tube equal to 4%, show that the mercury will
rise in the tube to a height equal to 34, % being the height of the
mercurial barometer at the time of the experiment.

10. A cylindrical vessel, closed at one end only, is 20 cm. tall, and
its open end is immersed in mercury until the interior level is 5 cm.
below that of the general level of the liquid outside. The barometric
height being 75 cm., calculate how far the mercury has risen into the
vessel, or how deep the lip of the vessel has been submerged,



BOYLE'S LAW. 161

11. A bubble of air whose volume is 004 c.c. is dislodged from
the bottqm of a lake 51 ft. deep, and rises to the surface. What is
its volume when it reaches the surface ?

12. A bubble of air whose volume is ‘0004 cub. in. is formed at
the bottom of a pond 17 ft. deep. What will be its volume when it
reaches the surface ?

13. A bubble of air ;% in. in diameter starts from the bottom of
the Atlantic at a depth of 2 miles. Find its size on reaching the
surface.

14. A bubble of air whose volume is '0028 cub. in. is formed at
the bottom of a pond; on reaching the surface its volume is
+004 cub. in. "What is the depth of the pond ?

15. Why does a small weight of air introduced into the upper part
of the tube depress the mercury considerably, whereas a small piece
of iron floating on the mercury does not depress it ?

16. A mercury barometer, whose cross- section is 1 sq. cm., stands
at 76 em., and the length of the vacuum above the column of mercury
is 3 em. How much air at ordinary atmospheric pressure must be
introduced into the tube in order to depress the mercury 16 cm. ?

17. The readings of a true barometer and of a barometer which
contains a small quantity of air in the upper portion of the tube are
respectively 30 and 28 ins. When both barometers are placed under
the receiver of an air-pump from which the air is partially exhausted,
the readings are observed to be 15 and 14°6 ins. respectively. Show
that the length of the tube of the faulty barometer, measured from
the surface of the mercury in the basin, is 31-35 ins.

18. When the reading of the true barometer is 30 ins., the reading
of a barometer the tube of which contains « small quantity of air,
and whose height above the surface of the mercury in which it is
immersed is 31% ins., is 28 ins. If the reading of the true barometer
fall to 29 ins., show that the reading of the faulty barometer will be
27% ins.

19. A barometer reads 30 ins. at the base of a tower, and 298 ins.
at the top, 180 ft. above. Find the average mass of a cubic foot of
air in the tower, taking the specific gravity of mercury as 13-5, and
the mass of a cubic foot of water as 624 Ibs.

HYDRO. M
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20. Find the height between two stations, having given the
following data :—
Density of mercury, 13'6 gm. per cubic centimetre ;
Mean density of air between the two stations, ‘00121 gm. per
cubic centimentre ;
Height of barometer at lower station, 785 mm. ;
Height of barometer at upper station, 630 mm.

21. A balloon is filled with a gas whose specific gravity is one-tenth
of that of air at the pressure of 760 mm. of mercury at 0°C. Compare
the lifting power of the balloon in air when the height of the
barometer is 750 mm. with its lifting power when the barometer
stands at 760 mm. The temperature in both cases is 0°C., and the
volume of the balloon is supposed to remain unaltered.

22. If a body be suspended by an elastic string, explain how the
length of the string will be affected by a rise in the barometer.

23. A cube floats in distilled water under the pressure of the
atmosphere with four-fifths of its volume immersed and with two of
its faces horizontal. When it is placed under a condenser where the
pressure is that of 10 atmospheres, find the alteration in the depth
of immersion (the specific gravity of air at the atmospheric pressure
being -0013).

#24. State the law connecting the pressurz, volume, and absolute
temperature of a gas.

A mass of air under a given pressure occupies 24 cub. ins. at
the temperature of 39°C. If the pressure be diminished in the
ratio of 3 : 4, and the temperature raised to 78°C., show that
the volume of the air will be 36 cub. ins.

#25. A mass of air under given pressure occupies 44 cub. ins. at a
temperature of 13°C. If the volume of the air be reduced to
24 cub. ins., and the temperature raised to 39°C., show that the
pressure will be doubled.

26. A retort of 8 litres capacity, and with its open end submerged
3-4 cm. below the surface of water in a trough, is seen to be
completely full of air on « certain day. Next day the mercury
barometer is observed to have fallen from 76 to 74 cm., without any
change of temperature. Iow much of the air originally in the
retort has by that time bubbled out?
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'EXAMINATION PAPER VII.

1. Describe the mercurial barometer, and show that it measures
accurately the pressure of the atmosphere.

2. A bottle when full of air weighs 3-544 gm., when full of water
it weighs 103425 gm., and when full of alcohol (specific gravity
= -835) it weighs 86-925 gm. Calculate the specific gravity of air.

3. A barometer reads 761 mm. at the base of a tower, and 754 mm.
at the top, 75 metres above. Find the average mass of a cubic metre
of air in the tower, taking the specific gravity of mercury as 13-5.

4. Enunciate Boyle’s Law.

5. If the specific gravity of air is -001, calculate the weight of the.
air that escapes from a room 20 ft. long, 25 ft. wide, and 10 ft. high,
on the barometer falling from 31 ins. to 30 ins.

6. 100 cub. ins. of air, at a pressure of 15 lbs. to the square inch,
are pumped into a-chamber already containing 50 cub. ins. of air at
a pressure of 10 1bs. to the square inch. What is the pressure of the
mixture ?

7. Explain the use and action of the vent-peg.

8. A bubble of air, ;1; cub. in., rises from the bottom of a lake at a
point where it is 200 ft. deep. On reaching the surface, its volume
is *35147 cub. in. Find the specific gravity of the water of the lake.

9. A mercurial barometer 34 ins. long stands at 30 ins. ; ; cub. in,
of external air is introduced, and the mercury drops 4 ins. What is

the sectional area of the barometer ?

10. In a siphon barometer the sectional area of the open end is
2% times that of the closed end. A fall of jin. takes place in it,
‘What fall occurs at the same time in an ordinary barometer?



CHAPTER XVIL

SIMPLER PNEUMATIC APPLIANCES.

We shall now describe certain simple apparatus
depending on the principles proved in the foregoing
chapters, leaving more complicated contrivances, such as
pumps, to be treated in the two following chapters.

162. Hare’s Hydrometer is a kind of inverted U tube
for comparing the specific gravities of
two liquids. The lower ends of the two
branches are immersed in the liquids, and
part of the air is drawn out of the upper
part of the tube by means of an air pump
or otherwise. The atmospheric pressure
outside the tubes causes the liquids to rise
to heights which are inversely proportional
to their densities.

For, if w, W be the specific weights of the liquid
columns AP, B(), we have
pressure of atmosphere — pressure in tube PCQ

=w.AP = W.BQ;
AP :BQ = W : w.

Hence by measuring AP, BQ the specific gravities of
the liquids may be compared.

163. The Siphon is a bent tube with unequal arms
used for drawing off liquid from vessels or reservoirs
which have no outlet at the bottom.

To explain its action, suppose that the siphon has been
filled with liquid, both ends A, D having been temporarily
closed with plugs, and that the shorter arm has been
lowered into a vessel of the same liquid as in Fig. 61.
Now let the end A be opened, the end D being still closed.
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Then, if the height PB is less than the height to which
the liquid would ascend in a barometer, the pressure of
the atmosphere on the surface P will prevent a vacuum
from forming in the tube, which will therefore remain
filled with liquid.

And if ( be taken on the longer arm on the level of the
surface at P, then (by connecting @ with P by a zigzag or
horizontal and vertical lines) we may show that the pres-
sure at § is equal to that at P, 4.e.,, to the atmospheric
pressure. The pressure inside the tube at D is therefore
greater than outside by the amount due to the column @D,
and this excess of pressure tends to force the plug out.

Fig. 61.

If, therefore, the plug be removed, the liquid will flow
out at D. And, since no vacuum is formed in the tube,
the pressure of the atmosphere at P will cause fresh
liquid to rise in the tube at A, thus producing a con-
tinuous stream.

Ezample.—To examine the effect of making holes in the siphon at
different points.

When the end D is closed, the pressure in the tube at any point H
in the part PBC(Q above the horizontal line PQ is less than the atmo-
spheric pressure. Hence, if a hole be made at H, air will enter and
£ill the bend and will stop the working of the siphon.

If, however, a hole be made at K below (), the remaining portion
above K will still form a siphon through which liquid will continue to
flow, just as it would do if the portion DK were altogether removed.

[Nore.—Experiment shows that in this case bubbles of air are sucked in at K
and carried down the tube KD with the liquid. If the arm QD is sufficiently lorg,
it is found that the same thing may happen if a sufficiently small hole is made
above Q, provided that the siphon is in full working at the time
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164. Open-tube Manometers.—Any instrument used
for measuring pressures of gases or vapours is called a
manometer or pressure-gauge.

Such a gauge may be used to measure the pressure of the steam in
the boiler of a steam engine, the pressure of the air still left in the
receiver of an air pump, and so on.

In the gauges now to be described, differences of pres-
sure are measured by the height of a column of mercury
(or other fluid), just in the same way that the mercury
column of the barometer measures the pressure of the
atmosphere.

165. The barometer gaunge (Fig. 62) is a flask filled
with mercury from the bottom of which rises a long glass
tube having a scale of inches or millimetres attached.

To measure pressures greater than an atmosphere, the upper end of the
tube is left open to the air, and the flask communicates with the air
or steam whose pressure is required. This pressure forces up a
column of mercury into the tube whose height QP measures the
amount by which the required pressure exceeds that of the atmosphere.

To measure pressures less than an atmosphere, the flask is open to
the air and the upper end of the tube communicates with the receiver.
The height QP to which the mercury rises in the tube now measures
the amount by which the pressure in the receiver is less than that of
the atmosphere. TFor a perfect vacuum the height of the mercury
‘column is equal to that of the barometer.

Ezample.—If the barometer stands at 30 ims. when the barometer
gauge is at 24 ins.,* to find the pressure in the receiver.

The pressure is that due to 30—24, or 6 ins. of mercury, and is
therefore 4%; or -2 of an atmosphere ;

i.e., 15x *2,7or 3 lbs. per square inch approximately.

166. The siphon gauge is a glass U-tube about half
full with mercury or any other convenient liquid. If one
branch be connected with a receiver or vessel containing
gas, the other being left open to the air, the mercury will
fall in the branch having the greater pressure aud rise in
the other, the difference of level §P measuring the differ-
ence of pressure in the branches (Fig. 63).

* This is sometimes expressed by saying that the rcceiver has **a vacuwm of
‘24 ins.”
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If the arms are of equal section, and the mercury rises & in. in one
it will fall § in. in the other, indicating « difference of pressure of
1 i

A

B 0 P A
i T —5
= i 2 3 <
Fig. 63. Fig. 64.

167. The vacuum gauge of an air pump differs from the
siphon gauge just described ((Fig. 63) in having no air in the end A
of the tube which is closed. At a certain stage of the exhaustion the
mercury falls and leaves « vacuum in this end, and its difference of
level in the two branches measures the pressure of the vesidual air in
the receiver. 'When the vacuum is perfect, the mercury stands at the
same level in both branches.

168. Compressed-air manometers.—The condenser
gange is a narrow glass tube 4B (Fig. 64) whose closed
end contains some air separated off by the drop of mer-
cury P. By Boyle’s Law, the length AP is inversely
proportional to the pressure; hence by measuring AP the
pressure of any gas connected with the end B can be found.

Thus, if 0 be the position of the drop when the air is at atmo-

spheric pressure, then, under pressures of 2, 3, 4 atmospheres, the
distances of the drop from A are 340, A0, +A0, respectively.

169. Another form of closed-tube manometer is a
siphon manometer like that represented in Fig. 63, but with
the end 4 closed and containing air instead of being open.

When the end B is exposed to pressure greater than
that of the atmosphere, the mercury falls at () and rises
at P, and by reading off its height on a scale the required
pressure at § may be found.

By Boyle’s Law the pressure at P is inversely proportional to 4P,
and the diffevence of pressures at P,  is proportional to the height
QP. The sum of these quantities gives the pressure at {.
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170. The Diving-bell is a large bell-shaped, or nearly
cylindrical, vessel, of iromn, open at
the bottom, and containing a plat-
form and seats for the persons inside.
It is lowered into the water by a
chain, and is of sufficient weight to
sink even when filled with air. As
the bell descends, the pressure of
the water increases and compresses
the air in the interior. Hence, to
prevent water from rising into the
bell, and also to enable the workmen
to breathe, a constant supply of
atmospheric air is pumped into the
bell through a tube from the sur-

Air
Tuse

Fig. 65.
face by means of a condensing pump (Chap. XVIIL),

the superfluous air overflowing and bubbling out round
the bottom.

The pressure of the air inside the bell exceeds the atmospheric pres-
sure by the amount due to a column of water whose height is the
depth of the surface of the water in the bell below the surface of the
water outside.

The pull on the chain is the excess of the weight of the bell and its
contained air over the weight of the water displaced ; the weight of
the air may generally be neglected.

Lzamples. — (1) An iron diving-bell weighs 6 tons, and holds
200 cub. ft. of air. To find the tension on the supporting chain when
the bell is completely immersed in sea-water and kept full of air
(specific gravity of iron = 7-2, of sea water 1:024),

‘Weight of a cubic foot of sea-water = 1024 oz. = 64 1bs.
*. weight of water displaced by air inside = 64 x 200 = 12800 lbs.
o - " iron of bell = 6 x 1024 +7-2 tons,
1911 Ibs. (to nearest 1b.);
total weight of water displaced = 14,711 lbs.
But weight of bell = 6% 2240 = 13,440 lbs.
tension of chain 1271 Ibs.

I

(2) If a bell whose internal capacity is 200 cub. ft. is lowered in a
river till its base is 20 ft. below the surface, to find how many cubic
feet of air at atmospheric pressure must be pumped in to prevent the
water from rising inside.
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Let » be the volume which the air filling the bell would occupy
when at atmospheric pressure.

The pressure of atmosphere = that due to 34 ft. of water,
55 5 inside bell = 'y 34 +20 ft. ,,
The volume actually occupied by the air = 200 cub. ft.
Therefore by Boyle’s Law,
v x 34 = 200 x 54 ;
v = 200 x 5434 = 318 cub. ft. nearly.

Hence 318 —200, or 118 cub. ft. of air at atmospheric pressure must
be pumped in.

(3) A bottle full of air is inverted and lowered in water to a depth
of 51 ft. To find how much water has entered the bottle.

Here the pressure increases 1 atmosphere for 34 ft., or 1% atmo-
spheres for 51 ft. descended. Therefore the pressure at 51 ff. depth
is 2% or § times that at the surface. Hence, by Boyle’s Law, the
volume of the air is 2 its volume at the surface. Therefore the water
enters till it fills the remaining 2 of the volume of the bottle.

(4) A cylindrical diving-bell 9 ft. high is lowered into a lake until
the top of the bell is 11 ft. below the surface. If no air is pumped
in, to find how high the water rises in the interior.

Let # ft. be the height still occupied by air (40, Fig. 65).

Then the depth PO = (11 +4) ft.

The pressure at @ is therefore that due to a head of water of

(34 +11 +2) #. = (45 +4) ft.
But the air originally occupied a length of 9 ft. under a pressure
of 34 ft. head of water. Therefore, by Boyle’s Law,
Bdx 9 = (d5+a)x7;
'+ 452—216 = 0.
Solving this quadratic equation by factorizing or otherwise, we have
(z+561) (x—6) =0
z = —51 or 6.

Now the length occupied by air cannot be a minus quantity ;
# = 6; and the water rises in the bell through 9—6 or 3 ft.

(5) To find the effect of making a hole in the side of a diving-bell.

If the hole is above the surface of the water in the bell, the
pressure inside the bell will be rather greater than the pressure of the
water outside the hole. Therefore air will escape through the hole
and water will rise in the bell until it reaches the level of the hole.
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(6) To examine whether the tension of the chain increases or
decreases as the bell descends.

(i.) If no air is pumped in, the air inside will become compressed
and will displace less water ; hence the tension will increase.

(ii.) Tf more air is pumped in to keep the bell full, the weight of
this air will increase, and the tension will increase somewhat, but
much less than before.

171. Caissons.—Where masonry has to be built under
water (as, for example, in laying the foundations for the
Forth Bridge), a great portion of the work has to be
carried on in caissons, or large cylindrical cases of metal,
sunk to the bottom of the water and filled with compressed
air at the same pressure as the water outside.

In entering or leaving a caisson, the workmen have to pass through
an “air-lock,” « small chamber with a door at each end opening

towards the caisson. Without such a lock the air would all escape
from the caisson.

Ezample.—An empty bottle is uncorked and again corked inside a
caisson, and then removed from the caisson. What happens ?

Since the bottle originally contained air at atmospheric pressure,
on uncorking in the caisson air rushes in till its pressure is the same
as in the caisson. When the bottle is removed from the caisson, the
pressure of the enclosed air is greater than the atmospheric pressure,
and therefore it tends to blow the cork out.

SUMMARY.
1. Hare's Hydrometer is an inverted U-tube.

2. The siphon will draw liquid from a vessel provided that—
(i.) The outlet is below the liquid surface in the vessel ;
(ii.) The greatest height above the surface in the vessel < the
barometric height of the liguid.
3. The principal kinds of manometer are—
(i.) The barometer gauges ;
(ii.) The siphon,open-tube, vacuum, and compressed-air ganges;
(iii.) The condenser gauge.
4. The diving-bell.—Problems on this generally depend on applying
Boyle’s Law to the air inside the bell, and noting that the total
pressure is that due to a head of water extending from the surface of

the water inside the bell to a point above the surface equal to the
height of the water barometer.
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EXAMPLES XVI.

[Height of water barometer = 34 ft. Specific gravity
of mercury = 13+6.]

1. What is the limit to the height over which « water siphon can
-act when the barometer stands at 30:25 ins. ?

2. A bubble of air is inserted into w siphon while it is working.
What effect does it have ?

3. A siphon is filled with watér and inverted into a vessel of liquid
-of specific gravity 1-6. What is the condition that the liquid may
flow through the siphon ?

4, If the mercury in a siphon manometer be of specific gravity
13+3, find in lbs. per sq. in. the difference of pressure which will give
.a difference of level of § ins. in the two branches.

5. What would have to be the height of a mercurial open - tube
manometer adapted for measuring pressures up to 10 atmospheres ?

6. A barometer in u diving-bell indicates a pressure of 383 insx.,
whereas at the surface of the water it indicates a pressure of 30 ins.,
of mercury. ‘What is the depth of the diving-bell ?

7. A diving-bell whose capacity is 500 cub. ft. is lowered in water
until its mouth is at a depth of 51 ft. below the surface. Iow much
.air at ordinary atmospheric pressure must be pumped in so that all
the water may be expelled ?

8. A diving-bell of 200 cub. ft. capacity is lowered in fresh water,
.and air is pumped in so as to keep the water completely out. What
depth has it reached when 600 cub. ft. of air has been pumped in ?

9. What depth is reached in Question 5 if the bell is lowered in
the sea instead of fresh water?

10. The top of a cylindrical diving-bell, whose volume is 200 cub. ft.
.and height 8 ft., is at a depth of 60 ft. below the surface of the
water. How much air at ordinary atmospheric pressure must be
pumped in to keep the bell full of air ?
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11. A small bottle, the capacity of which is 10 c.c., is carried mouth
downwards to the bottom of « pond 8} ft. deep. How much water
will have entered the bottle when it reaches the bottom ?

12. Tf the density of the air in u closed vessel be double that of
atmospheric air, and the vessel be lowered into a lake, explain what
will happen if a hole be made in the bottom of the vessel when its
‘depth is (i.) less than, (ii.) equal to, (iii.) greater than 34 ft.

13. A diving-bell is lowered into the sea until the surface of the
water inside is at a depth of 20 ft. 'What proportion of its volume is
oceupied by air, the specific gravity of sea-water being 1025 ?

14. A deep-sea sounding apparatus has been invented, consisting of
a glass tube 3 ft. long, open at the bottom and closed at the top, and
weighted so that it sinks in a vertical position. It is let down to the
bottom, and the length of the inside of the tube, which has been
wetted, is afterwards measured. If this length is 35 ins., find the
depth of the sea, the (sea-) water barometer standing at 32 ft.

15. A diving-bell 8 ft. high is lowered in water until its top is
60 ft. below the surface. What depth of water will have entered
the bell ?

16. A diving-bell is lowered in a lake until two-thirds of it is
filled with water. Show that, if ¢ be the depth of the top of the bell
below the surface, the height of the bell is 3 (24 —d), where % is the
height of the water barometer.

17. A diving-bell is lowered first in water and afterwards to the
same depth as before in « fluid of less specific gravity than water.
‘Does the water or the other fluid rise higher in the bell? In which
case is the tension of the chain greater? Give your reasons in each
case.

18. Describe an arrangement by means of which people could pass
in and out of a caisson filled with compressed air without allowing
more than a small fraction of the air to escape. Why would it be
necessary to have small air valves which could be opened at either
-end of the air-lock besides the large doors ¥



CHAPTER XVII.

WATER PUMPS.

In the present chapter we shall describe the action of
different kinds of pumps used for raising water. Most of
these pumps depend on the principle that the pressure
of the atmosphere is capable of supporting any column
of water whose height does not exceed the height of the
water barometer.

172. The Common Pump consists of a barrel or
cylinder connected with the
well or source of water by a
pipe which opens into its lower
end, and is covered by a valve or
lid U opening upwards.

In the barrel is a closely fitting
piston or plug P which can be
raised or lowered by means of
the rod. This piston also contains
an opening which is covered by
a valve / opening upwards.

The top of the barrel is gener-
ally furnished with a spout G,
and the plston rod is workecl by
the lever or ¢ pump handle” L.

To EXPLAIN THE ACTION OF THE PUMP, let us start with
the barrel full of water and the piston at the bottom of

the cylinder.
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In the up-stroke (Fig. 66) the valve V remains closed,
and the pressure below the piston is reduced, and the
atmospheric pressure acting on the surface of the water
in the well forces water up the pipe which lifts the
valve U and enters the barrel. At the same time the
water above the piston is raised to the level of the spout,
and runs out.

In the down-stroke (Fig. 67) the valve U closes, and the
water lifts the valve I/ and passes from the lower to the
upper side of the piston P.

In the next up-stroke this water is raised to the spout,
while a fresh supply of water runs into the barrel through
the valve U.

Tig. 66. TFig. 67.

Ezamples.— (1) To find the force required to 1ift the piston (neglect-
ing the weight of the piston), if its sectional area is 100 sq. cm. and
the spout is 10 metres above the water-surface in the well.

Let z cm. be the depth of the piston below the spout, % ¢cm. the
height of the water barometer. Then the pressures above and below the
piston are due to heads of water of heights

(h+a) and {h—(1000—g)} cm.,
respectively. Therefore their difference is that due to a head

of 1000 cm. (the total height of the column, as we should expect).
Hence

diff. of pressures on two sides of the piston = 1000 gm. per sq. em.
Also area of piston = 100 sq. em. ;
resultant force on piston = 1000 x 100 gm. = 100 kilog.



WATER PUMPS. 175

[Notice that the force depends only on the total height of the
column to be raised and the area of the piston, and not on the position
of the piston in the stroke. ]

(2) If the spout is 10 ft. above the water surface, and 5 Ibs. of
water are delivered at each stroke, to find the work done in the
up-stroke.

Let the length of the stroke be 7 ft., and let the sectional area of
the piston be 4 sq. ft.

The difference of pressures on the two sides of the piston
= that due to a head of 10 ft. of water
= 10,000 oz. per square foot
= 10,000/16 Ibs. per square foot ;
resultant thrust on piston = 10,000 x 4/16 1bs. ;
work done in up-stroke = 10,000 x 4716 ft.-1bs.
Now Al = volume of water raised to spout in cubic feet ;
100047 = weight of water raised in ounces,
and 100047/16 = weight of water raised in pounds
5 Ibs. (by data) ;
work done in up-stroke = 5 x 10 ft.-1bs. = 50 ft.-Ibs.

This is the work required to raise the 5 lbs. of water through the
total height of 10 ft.

Hence the work done by the pump is the same as if the water were
lifted directly up from the bottom of the well fo the spout. This is in
accordance with the Principle of Conservation of Energy.

Il

178. Limits to the action of the common pump.—
Since the water below the piston is raised from below by
the pressure of the atmosphere, it follows that the height
of the piston above the surface of the water must never exceed
the height of the water barometer (about 34 ft.) Otherwise
a vacuum will be formed in the barrel, and water will
cease to flow in.*

If the weight of the lower valve U be taken into account, the limit
to the height of the piston will have to be rather less than 34 ft. in
order that the water may lif¢ this valve.

If the pump is used for raising any other liquid, the greatest
height is, of course, the height of a barometer of ¢that liquid; e.g.,
mercury could only be drawn up 30 ins. with a pump.

* If during a portion of the stroke the piston is less than 84 ft. above the water
level, water will then enter the barrel ; but the portion of the stroke in which the
piston rises «bove that height will be useless.
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174. Action of the pump at first starting.—When
a pump is first placed in water, the pipe and barrel are
full of air, which must be pumped out before the water
will rise into the barrel.

Suppose the piston at the lowest point of the cylinder.

In the first up-stroke, the air in the pipe expands and part of it
rushes through the valve U into the barrel, while the reduction of
pressure allows a column of water to rise up into the pipe.

In the first down-stroke, the valve U closes, and as soon as the air
in the barrel has got compressed to atmospheric pressure it begins to
escape through V.

In the next up-stroke, the air in the pipe again expands through the
valve U into the cylinder, and the reduction of pressure allows the
water to rise still further in the pipe. This process continues till
the water at last reaches the barrel, when the continuous action as a
water-pump begins, and a volume of water equal to that of the
barrel is raised at each stroke.

Ezamples.—(1) If the lower valve is 17 ft. above the water, to find
the volume of the -barrel if the water just reaches it in the first
stroke.

The water barometer being 34 ft. high, the pressure of the air
inside the pump when the water reaches the valve is that due to
34 —17 ft., or 1 atmosphere. Therefore the volume of the air is double
of what it was at the beginning of the stroke, and the volume of the
barrel must be double that of the pipe.

(2) If the barrel is 11 ins. long, and its bottom 21 ft. above the
surface of the water, and if the section of the pipe is - of that of
the barrel, to find the height of the water at the end of the first
stroke, given the height of the water barometer = 32 ft.

Let @ ft. be the required height of the water.

Before the up-stroke, the air occupies 21 ft. of pipe under a pres-
sure of 32 ft. of water.

After the up-stroke, the air occupies (21—w) ft. of pipe plus the
volume of the barrel, under a pressure of (32 —2) ft. of water.

Also the volume of the barrel is 4+ times the volume of an equal
length of pipe, and is therefore equal to that of Lt 3 ft. of pipe,
d.c., 71t. of pipe. Tence the air occupies a total volume equal to
(21— +17) ft., or (28—x) £t. of pipe. Therefore, by Boyle’s Law,

201 x 32 = (28 —z) (32—2) ; 22— 602+ 224 = 0
(—56) (x—4) =0 .. ® = 56, or4.

Now the water evidently cannot rise 56 ft., therefore = 4, and

the water rises 4 ft.
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175. Clearance.—When the piston does not descend quite to the
bottom of the barrel, the space left below it is called the clearance.

Ezample.—(1) If the length of the stroke is 12 ins. and the clear-
ance is § ins., to find the greatest height to which the water will rise.

If the valve U remains closed, the air, which at the beginning of
the up-stroke occupied 5 ins., at atmospheric pressure, will at the
end of the stroke occupy 17 ins., and its pressure will therefore be
3 atmosphere. Hence, in order to lift the lower valve, the pressure
on the underside must exceed £~ atmosphere, i.c., that due to 10 ft.
head of water. Therefore the water cannot rise more than 34 —10 ft.,
or 24 £t. If then the height of the lower valve exceed 24 f., the
pump will never fill with water, although if once started it would
work continuously. . '

[In such cases, the proper way to start the pump is to pour water
into the clearance, and this is called priming the pump.]

176. The Lift Pump is a modification of the common
pump, adapted for raising water to a cistern
at any desired height above the barrel.

The top of the barrel, instead of being
open, is covered with a lid in which the
piston-rod passes through a tight-fitting
collar €. From this 1id rises a pipe K con-
ducting the water to the required height.
The bottom of this pipe is sometimes fur-
nished with a third valve W opening
upwards.

In the up-stroke (Fig. 68), the water above the
piston is 4fted up into the pipe K through the valve
W, and the atmospheric pressure in the well forces

water through the valve U into the barrel below
the piston.

In the down-stroke, the water-in the barrel passes through the
valve V, just as'in the common pump.

The valve W is unnecessary, for the lower valve U is sufficient to
keep the water from flowing back.

There is no limit to the height to which water can be lifted
above the piston, but, as in the common pump, the column
below the piston cannot exceed the height of a barometer
of the liquid that is being pumped.

HYDRO. N
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The force on the piston-rod in the up-stroke may be .foum_l &:hllz
§ 172, Ex. 1. The difference of pressures on the two gides 18 tha
due to the head of water extending from the surface in the well up
to the outlet.

177. The Forcing Pump has already been mentioned
in connexion with the Bramah Press. It
differs from the common pump in having
no aperture in the piston P, but instead
of this a pipe K containing a valve F
opening outwards conducts the water
from the barrel to any desired height.

GBRRA

In the up-stroke (see right-hand barrel
in Fig. 70) the valve F closes, and water
enters the barrel through the valve U, as
in the common pump.

In the down-stroke (Fig. 69) this water
is forced out again through the valve F Fig. 69.
and up the pipe K.

Asg in the lift pump, water may be forced up to any
height above the piston, but it cannot be raised from a
greater depth below the piston than about 34 ft.

Ezample.—The area of the piston of the forcing pump being
90 sq. in., find the force on the piston-rod necessary to raise water
from a well 20 ft. deep and force it up to a cistern 30 ft. high.

In the up-stroke the piston supports the column leading from the
well, and in the down-stroke it supports the column leading up to the
cigtern. Therefore the difference of pressure on the two faces of
the piston (the upper face being under atmospheric pressure) is
20 x 1000 oz. per sq. 1t. in the up-stroke and 30 x 1000 oz. per sq. ft.
in the down-stroke ;

force required to raise piston = 20 x 1000 x 90/144 oz.
= 12,500 oz. = 781% lbs. ;

force required to lower piston = 30 x 1000 x 90/144 oz.
= 18,760 oz. = 1171 lbs. 14 oz.
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178. The “ Manual” Fire Engine consists of two
forcing pumps worked by alternately raising and lowering
the two handles of a double lever HL (Fig. 70), so that as
one piston descends the other ascends, and water is forced
out at each stroke.

179. Air-Vessel.— The action of the pumps is not
perfectly continuous, because the pistons momentarily stop
when their motions are reversed. In order to produce
a continuous jet of water from the hose, the pumps
communicate with an air-vessel A (Fig. 70). This is

Fig. 71.

a large metal dome partly filled with air. When the
pistons are moving most rapidly, water is delivered into
the air-vessel faster than it can escape; hence it rises
in the dome and compresses the air. When the action of
the pumps stops for an instant, the air again expands and
forces water out of the hose §.

180. The Steam Fire Engine is a double-action forcing pump
furnished with an air-vessel A (Fig. 71). The piston is driven back-
wards and forwards by steam-power, and water enters the barrel on
the two sides of the piston, alternately. Each end is furnished with
separate valves, and forms a complete pump, one or other of these
pumps producing a discharge at each stroke of the piston.

The arrangement of Fig. 71 is used in most steam pumps. The barrel is usually
horizontal.
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SUMMARY.
1. The different forms of water prmps are—
(i.) The common pump
(1i.) The lift pump ;
(iti.) The forcing pump, with second valve at side of barrel.
2. The fire engine consists of two forcing pumps, or a double forcing
pump, with an air-vessel to produce continuous stream.
3. The condition that the pump may work continuously is that
height of piston above water surface < height of water barometer.
But water may be lifted or forced to any height.

with valve in piston ;

4. The force on the piston rod = wAh, where 4 = area of piston,
k = height of column raised, w = specific weight of water.

EXAMPLES XVII.

1. Describe and explain the action of the common suction pump.
‘Why will it not work equally well at the top of a high mountain ?

2. One foot of the length of the barrel of a suction pump holds
8 1bs. of water. At each stroke the piston works through 3 ins.
The spout is 24 ft. above the surface of the water in the well. How
many ft.-lbs. of work are done per stroke ?

3. What is the greatest length of the suction tube of a pump used
for raising sea-water, the height of the mercury barometer being
30 ins.? (Specific gravity of sea-water = 1-028.)

4. A tank on the sea-shore is filled by the tide with sea-water
whose specific gravity is 1:025. It is desired to empty it at low tide
by means of a common pump whose lower valve is on the same level
ag the top of the tank. Find the greatest depth which the tank can

have, so that this may be possible, when the water barometer stands
at 34 ft. 2ins.

5. If the water barometer stand at 33 ft. 8 ins., and if a common
pump is to be used to raise petroleum from an oil-well, find the
greatest height at which the lower valve of the pump can be placed
above the surface of the oil in the well. (The specific gravity of
petroleum is -8.)

6. In the common pump, if the barrel is 18 ins. in length and its
bottom 21 £t. above the surface of the water, and if the section of
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the pipe is 3; of that of the barrel, find the height of the water in
the pipe at the end of the first stroke; given the height of the water-
barometer = 32 ft.

7. The height of the lower valve of a common pump above the
surface of the water to be raised is 10 ft., and the cross-section of
the barrel is five times that of the pipe. What must be the length
of the stroke in order that the water may rise to the lower valve at
the end of the first stroke (the water barometer standing at 84 ft.)? '

8. If the pump in the last question be used for raising sea-water
of specific gravity 1025, will the stroke be shorter or longer, and by
how much ?

9. If the fixed valve of the common pump be 29 ft. above the
surface of the water, and the piston, the entire length of whose stroke
is 6 ins., is, when at the lowest point of its stroke, 4 ins. from the
fixed valve, find whether the water will reach the pump-barrel, the
height of the water barometer being 32 ft.

10. I the plunger of the force-pump has a cross-section of
8 sq. ins. and works 50 ft. below the cistern, what thrust is required
to force it down P

11. In the common pump, why is the lower tube narrower than the
upper ? What are the forces acting on the piston when the pump is
in action ?

12. How would you arrange s pump so that the work done in
lifting the weight of the piston and its connecting rod should not be
wasted ?

13. What additional apparatus is necessary to make the supply of
water continuous instead of being intermittent ?

14. Tf the piston only traverses the upper half of the pump-barrel,
find the greatest height to which the water will rise, the pump being
originally full of air.
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EXAMINATION PAPER VIIL

1. Explain the action of the siphon. Why cannot it be used to
carry water over a mountain P

2. What will be the effect on the working of a siphon if a hole be
made (i.) at the highest point, (ii.) at a point above the surface in
the longer branch ?

3. A vessel containing water is to be emptied by means of a siphon
which is filled with a liquid of specific gravity ‘8. Find the minimum
length of the longer arm when the length of the shorter is 5 ft.,
in order that the siphon may work.

4. Describe some simple form of gauge which would enable you to
measure the. pressure at which gas is supplied, and explain the
principle upon which it is constructed.

5. Describe the construction and use of the diving-bell, and show
how to find the tension of the supporting rope when the bell is full
of air at any given depth.

6. What will happen if, when the bell is totally immersed, a small
aperture is made in the vertical side of the bell above the surface of
the water inside ?

7. What volume of air must be introduced into a cylindrical
diving-bell to keep the water outside from entering it if the bell has
an internal section of 15 sq. ft. and an internal height of 10 ft., and
the top of the bell is immersed to a depth of 90 ft. in fresh water?

8. What will be the effect of inverting a siphon full of air and
placing it under the rim of a diving-bell with the shorter arm
projecting upwards into the air in the bell ?

9. Describe and explain the action of the common pump. What is
meant by the term ** clearance *’ P

10. One foot length of the barrel of a pump holds 15 lbs. of water H
at each stroke the piston works through 3 ins., and the spout is
20 ft. above the water in the well. How much work is done per
stroke P



CHAPTER XVIII,

ATR PUMPS.

181. The pumps used for compressing or rarefying air
are almost identical in construction with the water pumps
described in the last chapter, which they also closely
resemble in principle.

Any of these pumps may be (and often are) called air pumps.
But, in general, the term air pump means a pump for exhausting air
(§ 186). A pump for compressing air is called a condenser, and has
many important uses, such as for supplying air to a diving-bell or
caisson (§§ 170, 171), inflating the pneumatic tires of a bicycle,
filling the reservoirs and pipes of the Westinghouse Brake (§ 195),
making aerated waters, &c.

Fig. 72. Fig. 73. Fig. 74.

182. The Condenser or Condensing Pumyp consists of
a barrel B, traversed by a piston P, and communicating at
one end with the vessel A, into which air is to be
compressed.

This vessel is called the recetver, and is shown only in
Fig. 74.

Both the piston and the end of the barrel contain
valves I/, F opening from the outside air fowards the
receiver.

In the backward stroke (i.e., when the piston P is being
pulled back, Fig. 72), the valve F is closed by the pressure
in the receiver, while air at atmospheric pressure passes
through the valve I to the front of the piston and fills
the barrel.
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In the beginning of the forward stroke (Fig. 73) bot'h
valves V, F remain closed, and the air inside the ba.,rrel is
compressed until its pressure just equals that in the
receiver.®

In the remainder of the forward stroke (Fig. 74), the
valve F opens, and air is forced through it into the
receiver.

In what follows, the backward and forward strokes of
the piston of a pump are together considered as con-
stituting one complete stroke of the pump.

B //— B Jl"
v v
SC5F = _F —
P b P ‘\\
= ~
Fig. 72. Fig. 73. Fig. 74.

Ezamples.—(1) The volume of the receiver is 80 cub. ins., and that
of the barrel 20 cub. ins. Find how many strokes must be made
before the pressure of the air in the receiver is 3 atmospheres.

By Boyle’s Law, the density in the receiver is three times the
dentity of atmospheric air. Hence the air in the receiver would
occupy 240 cub. ins. at atmospheric pressure ;

160 cub. ins. of air have been forced in.

But at each back-stroke 20 cub. ins. of air enter the barrel, and
are forced into the receiver at the forward stroke ;

number of complete strokes = 160/20 = §.

(2) To find when the valve in the barrel opens in the next forward
stroke (see Fix. 1).

The valve F opens when the air in the barrel has a pressure of
3 atmospheres, that is, when it occupies ome-third its original
volume, or the piston has traversed two-thirds the length of the
barrel.

* Bxcept in the first stroke, when the air in the receiver is at atmospheric
pressure and F opens at once
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183. To find the density and pressure in the
receiver after n complete strokes.

Let 4 be the volume of the receiver, B that of the
barrel, D the density of atmospheric air, d the density in
the receiver after » strokes.

Then the receiver originally contained a mass of air AD

At each backward stroke a volume B of air at atmo-
spheric density D enters the barrel. At the forward
stroke this air enters the receiver. Hence, after n com-
plete strokes,

mass of air in receiver = (4 +n»B) D.
But its volume = 4 ;

its density a = At B p _ (1+n_B)1) o (D).
A A
This relation is independent of the law connecting the pressure and
density. If, however, these follow Boyle’s Law, we have also

pressure in receiver = (1+n—§-) atmospheres.

184. Limits to the action.—In obtaining (1), we have supposed
that all the air which enters the barrel is forced into the receiver in
the forward stroke. In such cases, there is no limit to the pressure
which can be produced in the receiver.

In actual pumps, however, the action is limited by the existence
of a clearance, or residual space, left between the valve F and the
piston, after the latter has been pushed as far forward as it will go.

Ezamjle.—The volume of the barrel is 20 cub. ins., and the
clearance 1 cub. in.; to find the greatest pressure that can be
produced.

If the air in the barrel is all forced down into the clearance, its
greatest pressure will be 20 +% or 40 atmospheres. Hence the pres-
sure in the receiver can never be greater than 40 atmospheres, for
otherwise the valve F would not open.

185. Difference between the condensing and the air
pump.—In the condensing pump, a quantity of air whose volume is
that of the barrel is forced into the receiver at each stroke, and the
density of this air is always that of the outside air. Consequently, the
mass of the air forced in at each stroke is constant. But in the air
pump, though the same volume of air is extracted at each stroke, its
density diminishes with each stroke, and therefore the mass of the air
extracted also diminishes.
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186. The Air Pump.—If we suppose a common pump
(§ 172) used for pumping out air instead of water, we
shall have an air pump. The vessel to be exhausted of
air is called the receiver (4, Figs. 76, 77), and the pump
itself consists essentially of a cylinder B traversed by a
piston P, both containing valves opening outwards from
the receiver.

These valves must be light enough to yield to a very slight excess of
pressure on their lower side ; hence the valves used in a water pump
would be far too heavy.

To DESCRIBE ITS ACTION, suppose the piston at the
bottom of the barrel.

Fig. 74. Fig. 75. Fig. 76.

In the up-stroke (Fig. 74) the valve V closes, and the
air in the receiver and tube lifts the valve U, and part of
it passes into the barrel. At the end of the up-stroke the
barrel is therefore filled with air at the same pressure,
and therefore also at the same density, as the air left
in the receiver.

In the first part of the down-stroke (Fig. 75) the valve U
closes, and the valve V also remains closed, while the air
beneath the piston is compressed until its pressure equals that
of the atmosphere.®

In the remainder of the down-stroke (Fig. 76) the piston-

valve V opens and allows the air to escape from beneath
the piston.

* In consequence of the compressibility of the air, the piston-valve V does not
open at once, as it would do if the barrel contained water. The present action also
takes place in a water pump before the water reaches the barrel,
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187. Hawksbee’s Air Pump (sometimes called the
double-barrelled air pump) is provided with two barrels
instead of one, and the pistons are worked up and down
by means of what is called a rack and pinion (Fig. 77),
so that, as the handle A is moved to and fro, one piston
rises as the other falls. @ is a mercurial vacuum gauge

(see § 167).

Avpvanraces.—This arrangement possesses two advantages :

1st.—The air is exhausted twice as quickly as with a single barrel.

2nd.—During the up-stroke and the first part of the down-stroke,
the pressure in the barrel is less than the pressure of the atmosphere.
This excess of pressure on the upper side of the piston makes the
single-barrelled pump hard to work. In the double-barrelled pump
the resultant thrust of the air on the descending piston assists in
pulling the other piston up.

N
!

/

i|1 |

i

Ezample.—If the volumes of the barrel and receiver are equal,
to find the pressure left in the receiver after 5 complete strokes.

In the first up-stroke, half the air from the receiver enters the
barrel and half is left behind ; therefore, by Boyle’s Law,

pressure in receiver after the stroke = % atmosphere.
In the second stroke, half the remaining air passes into the barrel ;
pressure in receiver after 2 strokes = } x 3 = } atmosphere.

Similarly, at each complete stroke, the quantity of air in the
receiver, and therefore also the pressure, is reduced by one-half.

Hence, evidently, pressure of air left after 5 complete strokes
=%ix3ixixixd = (3)® = 44 atmosphere.

Taking an atmosphere ag 15 Ibs. per square inch,
the required pressure = 73 oz. per &qg. in.
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188. To find the density and pressure of the air
left in the receiver after n strokes.

Let 4 be the volume of the receiver and connecting-
pipe, B that of the barrel. Let D be the density of the
atmospheric air originally in the receiver. Let d, d,, ... d,
be the densities of the air left after 1, 2, ... n strokes
respectively.

After the first up-stroke, the air originally in the
receiver expands from volume A to volume A4+ B.
Hence, since its mass is unaltered, its densities are
connected by the relation

d,(A+B) = DA4;
A
=D —.
! A+B
During the down-stroke the air left in the receiver
remains at the same density d;, unaltered, but in the next
up-stroke it again expands in volume from A4 to 4 +B.
Hence, for its subsequent density, we have

dy(A+B) =d, 4;
A A 2
d =d =] ( .
2 'A+B A+B>
At the third stroke the air left in the receiver again
expands in volume from 4 to 4+ B, and therefore
d,(A+B) = d, 45
A 4\
g = o =D :
“=h g B (A + B)
Proceeding in this way, it is obvious that the density
of the air is reduced at each up-stroke in the ratio of
A to A+ B, and therefore after » strokes it is given by

dy=D (MLB) ............ ).

This is true independently of the law connecting the pressure and
density. If, however, Boyle’s Law be assumed, we have

pressure in receiver after » strokes

A n
(A—-l-B ) atmospheres,
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[This result might be obtained without first finding the density by
following the method of Ex. 1 below.]

Examples.—(1) The volumes of the barrel and receiver are 25 and
75 cub. ins. ; to find the pressure of the air left after 3 strokes.

In the first up-stroke, 75 cub. ins. of air at atmospheric pressure
expand till they fill the receiver and barrel, i.e., 100 cub. ins. ;

pressure after the stroke = 73; = # atmosphere.

In each succeeding up-stroke, the air remaining in the receiver
expands from 75 to 100 cub. ins., and its pressure is therefore reduced
to 2 what it was before;

pressure after 3 strokes = $x £ x £ = ($)® = 2Z atmosphere.

(2) The volume of the barrel being two-fifths that of the receiver,
to find how many strokes are required to reduce the density to less
than one-third the original density.

Here _B=%A; —é—=i=5.

Now (3) =2, (3) 1B, 1 (o) 1
7 497 37 \17 343 © 37 \ 7 2401 ~ 3°

Hence 4 strokes are required.

189. Limits to Bxhaustion.—The fraction {4/(4+B)}" can,

by taking » sufficiently large, be made as small as we please ; hence,
theoretically, we could attain any required degree of exhaustion short
of a perfect vacuum if we were only to work the pump long enough.
But in an actual pump the degree of exhaustion falls short of that
given by (1), owing to the following causes :—

(i.) The clearance.—Even when the piston is pushed ¢ full home,”
there must be a little space or elearamce between the two valves.
If we go on pumping long enough, we shall at last arrive at a limit
beyond which the valves mever open, and the air between them
alternately expands into the barrel and is forced back into the
clearance.

(ii.) The weight of the valves.—The pressure in the receiver can
never become less than the amount necessary to lift the lower valve;
when this is attained, further exhaustion is impossible.

In order to reduce the weight of the valves as much as possible,
they are sometimes made of a very thin film of gutta percha or oiled
silk overlying very small air holes in the piston and cylinder, respect-
ively.
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190. Smeaton’s Air Pump (Fig. 78) is identical in
the arrangement of its parts with the lift pump of
Chap. XVII. It differs from the common
air pump in having the barrel closed by a
lid in which the piston-rod passes through
a tight-fitting collar, and this lid has a
small hole covered by a valve W opening
into the air.

TaE Acrion is as follows :—

In the wup-stroke, air from the receiver enters
through the valve V. .4t jfirst, the valve W remains
closed, until the air above the piston is compressed to
atmospheric pressure ; subsequently, W opens and this air escapes.

In the down-stroke, the piston-valve V opens at once and air passes
from the under to the upper side of the piston.

TrE apvantaess of Smeaton’s Pump are as follows :—

(i.) The difficulty of working is far less than in an ordinary single-
barrelled pump, because in the greater portion of the complete stroke
the pressure on top of the piston is less than atmospheric pressure.

(ii.) The action is much less limited by the clearance at the bottom
of the barrel, the valve V opening more readily owing to the reduction
of pressure above it.

In a modified form, the air from the receiver enters the side of the barrel
at X, and, as the piston descends below X, this air flows straight on to its upper
side without having to lift the weight of any valves.

191. Tate’s Air Pump (Fig. 79) has two pistons P,
attached to the piston-rod at a distance apart of rather
less than half the length of the barrel. The air from
the receiver enters at the middle of the barrel at Y,
and valves F, G open outwards at both ends.
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TeE AcrioN is as follows :—

In the forward stroke, represented in Fig. 79, the air in @@ is first
compressed to atmospheric pressure and then forced out through G.
At the same time a vacuum is formed in FP, and when the piston P
has just passed beyond VY, air from the receiver rushes into this
vacuum,

In the backward stroke this air is forced out through F, and a vacuum
is formed in QG which receives air when the piston  has passed
beyond Y.

THE ADVANTAGES are as follows :—
(i.) Double action with a single barrel.

(ii.) No valves have to be lifted by the pressure of the air in the
receiver ; consequently a much better vacuum is obtainable.

[It is only after the wir has been compressed at the ends of the barrel that its
pressure has to lift the valves F, G.]

*192. Sprengel’s Air Pump (Fig. 80), although
called a ““ pump,”” has no pistons or valves. The
funnel A4 contains mercury, and as this falls down
the tube AB air from the receiver enters at P and
is carried down in bubbles alternating with columns
of mercury.

The air bubbles escape into the atmosphere at the
surface of the cup B.

On turning off the tap H, mercury again rises
from B and prevents the reflux of air, its height
measuring the degree of exhaustion as in a barometer
gauge.

There is no limit to the exhaustion, short of a
perfect vacuum, provided that the tube PB exceeds
the height of the mercurial barometer.

193. The ejector of a Vacuum Brake is Fie. 80.
similar in principle to Sprengel’s Pump, but a power- °
ful jet of steam from the locomotive boiler replaces .
the mercury column. This jet rushing through the tube, as in
Fig. 81 (p. 192), carries with it the air from the brakes, producing
a very fair vacuum.

194. The Vacuum Brake.— By means of this apparatus the
ressure of the atmosphere is made to apply the brakes simultaneously
o the wheels of all the carriages in a railway train. The brakes on
each carriage are connected by levers with a piston P working in a
large cylinder (Fig. 81). A pipe running along the whole train
connects these cylinders with the engine.
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When the train is running, the ejector on the engine exhausts the air

2]
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on both sides of the piston P by means of the ball-valve V. The
piston P remains at the bottom of the cylinder, and the brakes are off.

To stop the train, air is readmitted by the train pipe to the under
gide of the piston P, but the ball-valve V closes and prevents its
passing to the upper side. Hence the pressure of the air lifts the
piston and applies the brakes.

195. The Westinghouse Brake is worked by compressed air.
Each carriage is provided with a receiver B (Figs. 82, 83), a brake
cylinder B and large piston H, and a ¢“¢riple valve’” F consisting of
a small piston () and slide-valve 8.

Fig. 83.

When the train is running (Fig. 82), air is forced into the train pipe
by a condensing pump on the engine, and it lifts the gmall piston @
and enters the receiver R. Any air in the brake cylinder B can
escape through the slide-valve §, and the brakes are off,

To stop the train (Fig. 83), air is allowed to escape from the train
pipe. The excess of pressure in R depresses the piston 0 and valve 8
Compressed air now rushes from R into the brake cylinder B pusheé
out the piston P, and applies the brakes. ’

[The actual working apparatus contains many additional complications.)
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SUMMARY.

1. With the condensing pump, the density after » strokes

= —4%721? x (density of atmospheric air).

2. With the air pump, the density after n strokes
= ( ﬁ)n x (density of atmospheric air).
In each case, 4 = volume of barrel, B = volume of receiver.

3. The different air pumps can be clagsified thus :
(@) Mechanical air pumps, with pistons and valves—
(i.) The common air pump, single barrelled ;
(ii.) Hawksbee’s, double barrelled ;
(iii.) Smeaton’s ;
(@iv.) Tate’s, double acting, with single barrel.
(6) Air pumps worked by a stream of fluid—
(i.) Sprengel’s mercurial pump ;
(ii.) The ejector (steam).

*4. The Vacuwn Brake is applied by atmospheric pressure on piston
in a vacuum chamber, while the Westinghouse Brake is applied by
compressed air entering brake cylinder on reduction of pressure.

EXAMPLES XVIII.

1. The volume of the receiver in a condensing air pump being
8 times that of the barrel, after how many strokes will the density of
the air in the receiver be twice that of the external air?

2. The volumes of the receiver and barrel of a condenser are in
the ratio of 5 to 1; find the density of the air in the receiver after
3 complete strokes.

3. The receiver of a condenser is 9 times as large as the barrel;
how many strokes must be made before the density of the air in the
receiver is 4 times that of the external air?

4. Describe the common air pump, and state the principal causes
which limit the action of a pump of this construction.
HYDRO. 0
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5. The volume of the receiver in an exhausting air pump being
8 times that of the barrel, after how many strokes will the density of
the air in the receiver be half that of the external air?

6. The volumes of the receiver and barrel of an exhausting air
pump are in the ratio of 6 to 1; find the density of the air in the
receiver afteér 4 complete strokes.

7. The volume of the receiver of an exhausting air pump being
9 times that of the barrel, how many strokes must be made before
the density of the air in the receiver is one-third that of the external
air?

8. If the receiver of a Tate’s air pump holds 90 grs. of air at the
ordinary pressure, and the piston-barrel 10 grs., what weight of air
will be left in the receiver after 4 complete strokes of the piston ?

9. In one exhausting air pump the volume of the barrel is one-
tenth of that of the receiver, and in another it is one-fifth of it.
Show that the densities of the air in the two receivers after 3 ascents
of the pistons are as 123 : 115

10. The con*ents of the receiver of an exhausting air pump is
6 times that of the barrel. Find the elastic force of the air in the
receiver at the end of the eighth stroke of the piston, when the
atmospheric pressure ig 15 Ibs. to the square inch.

11. Supposing the receiver of an air pump to be made of such a form
that a mercury barometer can be placed inside, and its volume to be
8 times that of the barrel, how far will the mercury have fallen-at
the end of the second and third strokes, the height of the mercury
being originally 729 mm. ?

12. If the volume of the space between the bottom of the pump-
barrel and the lower surface of the piston when the latter is at -the
end of its downward stroke be *01 cub. in., and the volume of the
pump-barrel be 15 cub. ins., find the pressure of the air in the receiver
when the greatest exhaustion has taken place, the height of the
barometer being 30 ins., and the pump being supposed in other
respects perfect.
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1. If the volume of the barrel of an air pump is 4 cub. ins., and
there is a clearance of Z; cub. in. at the bottom, find the pressure in
the receiver when the pump ceases to act.

14, If the receiver of an air pump is connected with both a
barometer gauge and a siphon gauge whose closed end is empty,
show that the sum of the heights of the mercury columns in the two
gauges is equal to the height of the barometer.

15. Why is Hawksbee’s air pump made with two barrels, and
Smeaton’s with only one?
Show that the expression for the density after n strokes is the
same whether the common air pump or Smeaton’s is used.

16. A Cartesian diver consists of an indiarubber figure containing
air, and loaded so as to just rise to the surface in water. When
placed in the receiver of a condenser, the diver sinks. Why is this?

17. The area of the piston of a vacuum brake is 200 sq. ins. Find
the maximum force which it is capable of exerting when the
barometer stands at 294 ins. Is it easier (theoretically) to stop the
train when the barometer is high or low ?

18. Explain what happens when some of the carriages of w train
fitted with the Westinghouse brake become detached owing to the
couplings breaking.
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EXAMINATION PAPER IX.

1. Describe an apparatus suitable for inflating the pneumatic tires
of a bicyele.

2. The volume of a receiver of an air condenser is six times that of
the barrel. After how many strokes will the density of the air in the
receiver be five times that of the external air?

3. Describe Hawksbee’s air pump, and explain the advantage
gained by the use of two pistons.

4. Find the pressure of the air in the receiver of an air pump after
7 strokes.

5. If the pressure is reduced to %+ of the atmospheric pressure in
6 strokes, to what will it be reduced in 9 strokes ?

6. How may the degree of exhaustion of the receiver of an air
pump be determined by a body floating in water within the receiver ?

7. If the barometer stands at 29+6 ins., what will the mercurial
gauge of an air pump read when the quantity of air withdrawn is
6 times as much as the quantity left in the receiver ?

8. Describe the action of an ordinary pair of bellows. How can a
continuous blast of air be obtained as in the forge bellows ?

9. A siphon is made to transfer mercury from one vessel to another,
the whole being under a bell jar. When the air is exhausted to
one-third of its original density, the siphon ceases to act. TFind the
height of its highest point above the mercury in the lower vessel
when this occurs.

10, Describe and explain the action of the Vacuum Brake.



RESULTS IN MENSURATION.

The following facts in Solid Geometry and Mensuration are
agsumed. The references given below are to the articles in Briggs
and Edmondson’s Mensuration, where the reader will find the pro-
perties in question fully proved. Proofs of them are also given in
most elementary treatises on Solid Geometry., The resuits alone need
be remembered :—

(1) The area of a triangle
= % (base) x (altitude). (§45.)

(2) The area of a trapezoid (i.c. a quadrilateral with two
sides parallel) = (its height) x (3 swm of parallel sides). (§ 49.)

(3) The length of the circumference of a circle of radius »

= m x (diameter)

= 27r; (§67.)
where the Greek letter = (* pi”) stands for a certain ‘‘incommensur-
able” number (that is, » number which cannot be expressed as an
exact arithmetical fraction), whose value lies between 3:141592 and
8:141593. The following approximate values should be remembered
and used, unless otherwise stated.

T = 2_72, for all rough calculations;

w = 31416, more approximately.

(4) The area of the circle

= _;_ (radius) x (circumterence)

™, (3 58.)

It
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(5) The volume of a pyramid
= ..:];'_ (height) x (area of base)

_1 105.
= _3_ ’LA, (§ )

the height 7 being the perpendicular from the vertex on the plane of
the base, and 4 the area of the base.

(6) The area of the curved surface of a cylinder, whose
height is # and the radius of whose base is r,

= (height) x (cireumference of base)
= 2mrh., (§115.)

(7) The volume of the cylinder
= (height) x (area of base)
= mwrh. (§ 1186.)

(8) The area of the curved surface of a right circular
cone, whose height is 7 and the radius of whose base is »,

= _;_ (circumference of base) x (length of slant side)
= ar N (2422 ; (§117.)

a slant side being a line drawn from the vertex to a point in the
circumference of the base.

(9) The volume of the cone
= % (vol. of eylinder of same base and height)

- % p—e (§118.)

(10) The area of the surface of a sphere of radius »
= & times area of cirele of same radius
= 4mr, (§ 126.)

(11) The volume of the sphere
= %. (radius) x (surface)

= -:—171-3. (8§ 127, 128.)
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ANSWERS.

Exameres 1. (Pace 14.)

6L. 4. 303
Exameres II. (Pacms 21, 22.)
(i.) 5000 oz., 5120 oz. (ii.) 120,000 oz., 122,880 oz.
(iii.) 40-92 oz., 41°9 oz.
{i.) 20 gm., 272 gm. (ii.) 59% gm., 812 %
(iil.) 20954 gm., 284955 gm.
101-28. 4. 100. 5, 49:26,0r 1-88 : 1. 6, 450.

(i.) 656% Ibs.  (ii.) 6-57 oz.  (iii.) 324 oz. (iv.) 835 Ibs.
(v.) 19-35gm. (vi.) 920 kilog. (vii.) 13,600gm. (viii.) 102-4kilog.
(i) 1-728. (il.) 1-32740. (iii.) *8. (iv.) 132 (v.) 4°16. (vi.) 1°6.
2+5. 11. 96: 1.

Unit of wt. = 5o Wt. of unit vol. of standard substance. 18, Yes.

Examveres ITT.  (Pacms 30, 31.)
25, 2, 8:96 oz. 3. 8. 5. 1-0689. 6, 3 :1 by vol.

lds+1(dy+dy). 8. 164 ce. 9. 12. 10, 72 to 17 by vol.
20°45 gm. zine, 79°55 gm. copper. 12. 3 of heavier, 5 of lighter.
1'24 and 1. 14. {v,(s5;—5) +v2(s9—9)} [ 5.

6 and 2. 1%7. The volumes are equal.

Exavvarion Parer I. (Pace 32.)

See §§ 3, 5, 7. 2. See §§ 12, 16. 3. 1000. 4, 4000 lbs.
See § 22. 6. 20. 7. 4-264.

(7, + Wg)/r(ﬁ + @). 9. 82  10. 2724 oz., nearly.

5 8y
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Exawerns IV. (Paems 37, 38.)

1. 2:84, 3. 2:046. 4. 7-03i. 5. -04.
6. 1'38. 7. 7-692. 8. 2°5. 9, 4-08 gm.
10. 028 8q. om. 11, 154 fh, 4in., nearly. 12. (B—w) [(4d—w).

Exaverrs V. (Paess 44, 45.)

3. 2:56231. 4. 11529 0z. 5. 21°6in. side. 6. ‘8. 7. 1'8.
8. 7-31. 9. 2} cub. ft. 10. 2:975, 4°76 gm. 11, -25.
12. 2 13. 3642 c.c., 7-55. 14. 1-729.  16. 85 sec.

5

Exavination Parer II.  (PAeE 46.)

1. 56. 2. 270_Ooz.percu.ft. 3. 3cm. 4. See §§30-32. 5. See § 35.
6. '72. 7.26. 8.2. 9, ‘001293, 14-46. 10. See §§ 38, 39.

Exaveres VI. (Paces 54-56.)

1. 21. 2. 11-36. 3. 108% oz. 4, 2+4.
‘B, 8, 3456 cub.in. 6, 260 gm. 7. 9:6 gm. 8. ‘1935,
9, -1935. 10. 111-6 gm. 11. 2 cub. in.; 7-523 oz.
12. -7846. 13. -803. 14. 6-158, -842. 15. 1-841.

16, 85, 85. 1%.1-5. 18, -94  19. 192, 72, 20. -848.
21. 50 gm.  22. 453125, 23, 2080 gr. 24. -865. 25, 75.
26. 192 1bs. 2%, 5. 29, 1:00352. 80. 100 c.c.

Exameres VII.. (Pacms 65-67.)

1. 18 :19. 2, 10 oz. 3. % oz. 4, 25, 5. 14 gm.
6. 2:84. 7. 26, 9. 1:03.  10. 7iZ or 73863 c.c.
11, 190 :191. 12. 22. 183. 3456, 3-142, 2-88 cub. in. 14, 1.

120 +6e 1ba—4d
s 7’ 11
sponding to specific gravities 1 and -8.
16. 1'728. 1%7. 7. 18.6%0z 19, I'4cm. 20, 3} ft.; £.

, where @ and & are the readings corre-

Examwarion Paper ITI.  (Page 68.)

1. See § 44. 2. 7'5. 3. 6. 4. 96. 5, See § 48.
8. 3-6. 7. See § 69. 8. See §§ 54-58. 9. 3'5. 10. -9.
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Exaweres VIII. (Pace 80.)
864 :25 or 34'66 1 1. 2, (i) 81:80. (iL) 1:9. (iil.) 400 : 23.
(i) 84560. (i) 69120. (iii.) 833. (iv.) 7293.
(i) 1080.  (ii.) 1,030,000. (iii.) 1030. (iv.) 101,043.
983,430. 6. 172,800 lbs. per sq. in. 7. 64 1bs,
100 gm., 100 gm., 120 gm., 48 gm. ; -0048, 0048, 004, -01.

Exawerms TX. (Paems 88, 89.)
1274 1bs. per sq. cm., 17§ tons, 5712. 2. 14,400 1bs.

- 123 1bs. 4. 7:1. 5.10sg.in. 7. 2688 Ibs. per sq. in.

38,880. 9. 44 Ibs. 10. 1504 tons weight.

4
Examnarron Parer IV. (Pace 90.)

See §§ 68, 69. 2. 7185 dynes per sq. cm., nearly,
See §§ 73, 79. 4. 92 oz. 5. See § 87. 6. 192 Ibs.
See § 82. 8. 5 tons. 9. 100 Ibs. 10. 80 : 1.

Exampres X. (Pacms 105, 106.)

1138, 2. -434,
(i.) 13-021 Ibs. per sg. in. (i) 24% Ibs. per sq. in.
(iii.) 102-4 kilog. per sq. em. (iv.) 1-0336 kilog. per sq. cm.
On the sp. weight of the fluid. 5. 250 Ibs. per sq. ft., 1250 lbs.

. The thrusts on the bases are 84373 Ibs., 13,000 Ibs., 21,437 1bs.

425 Ths. per sq. in. 8. 73 ft. 9. 4'4 in., nearly.

144

. 22} fathoms, allowing for atm. pressure. 11, 3201bs. 12.2 : 1.

. P+ zsw, where w is weight of unit volume of standard substance.
260 cwt. 1%. 567 lbs. per sq. in.
1188-48 1bs. per sq. in. 20. 98 ft.
14-7 Tbs. per sq. in. 22, 15 lbs. per rq. in.

Exaneres XTI, (Paems 111, 112.)

10-8; Ibs. per sq. in. 3. 311 Ibs. 4. 252 lbs.

. ““Whole pressure ”’ = 65-12 kilog. ; thrust on base = 23-408 kilog.

4 ins. water, 5 ins. oil. %7, See § 112. 8. 6ins. 9. 8% oz.



202

ANSWERS.

Exaveres XII. (Paces 121-123.)

1. 1250 lbs., 1312% Ibs. 2,.1:4. 3.3:2.
4. 22 kilog. 5. No. 6. 703,125. 7. 5-441 tons.
8. 4473 tons, nearly. 9. 2500 oz., 3000 oz., 3500 oz.
10. 32,2662 tons, 484,000 tons.  11. 1043 oz., 1662 oz., 229% oz.
12. 311 Ibs.
13. % h— —26— ch+ % , where 4 is the given depth and 5 the length

14.
le.
20.

Kok

o

©CoORN

13.
17.

19.
23.
27.
31.

32.

of the other edge.
3 and 7 ofthe wt.of waterin hemisphere,respectively. 15, 21:820z.
21°82 oz. 17. w (a2 +agzg+...). 19. 1183 Ibs.
932 tons. 21. 43%% 1bs., 9227 Ibs. 22. Half-way down.

567

Exanwarion Parer V.  (Pace 124.)

. See §§ 78, 91. 2. See § 92. 8. 7500, 3,584,000, approx..
. See § 97. 5. See §§ 116, 117.

. 40732 oz., 42525 oz. 7. 27,623 tons, nearly.

. Thrust on top face = 159¢ Ibs., on bottom face = 2653 1bs.,

on each side face = 2121 Ibs.
2525 1bs. 10. See § 101.

Exaweres XTII. (Paces 131-135.)

V7 (1—s); increased. 3. V(s—1); increased.

. 5162; lead; 2 of weight of lead. 5. 31 gm. .
. 125 gm. 7. 46 1bs. 8, 216 cub. in., 108 cub. in.
. 137 : 134, 10. 2131-3 gm. 11. Edge = 28'8 in.

s area immersed. 14. 74 oz. hearly. 15, 2677.
The wood will rise, as it now displaces oil instead of air.

. Volumes 10 : 3 ; weights 440 : 171.

3 parts in oil, 1 part in mercury. 22, -72.

6-25 cm. 24, 25 cm. 25. 1:2. 26. } vol.

3-71. 29. 815 nearly.  30. # in ether, 3 in water.

The scale-pan on which the vessel is placed will go down, for the
level of the water is raised, and consequently the pressure
on the base is increased.

262:66 grs. 33. 500 c.c., 500-25 c.c., nearly.



ANSWERS. 203

Exawinationy Parer VI. (Pace 136.)

1. See § 115. 2. 5004/3 oz. 3. 4'62 kilog., 3+542 kilog.
4. 664 gm., 25564 gm. 5, 50336 gm. ; 14'3 gm. per sq. cm.
6. See § 120. 7. 5. 8. 200 c.e. 9. 9. 10. 152 gm.

Exameres XIV. (Paces 149, 150.)

1. -0013; No. 2, 45,004°5 litres. 3. 1155 Ibs. 6. No.
7. 33'4Q8 .ft. 8. 13-281 and 15-003 1bs. per sq. in.
10. 29-7481 in.
11. 425 poundals per sq. in., 800,496 dynes per sq. cm.
12. 6,045,228 dynes per sq. cm. ; 6 : 1 nearly.

14, 1} in. rise. 15, 2 in. 16. 5-366 miles.
Exaweres XV. (Pagms 159-162.)
1. 1-122 kilog. 2. 41in., 36 in. 8. 1 atmosphere.
5. 68 in. 6. Enough to fill 12 in. of tube.
7. Enough to fill 46 in. of tube. 8. 63 cm. if section be 1 8g. cm.
10. The mercury riges 11 cm. 11. 01 c.c.
12, -0006 cub. in.  13. -163 cub. in. 14, 14%ft. 16. 4c.c.
19. 078 Ib. 20, 1742 metres, nearly, 21, 337 : 342.

22, Density of air increases, weight of the body in air decreases,
the string contracts.

23. '0024 less of its edge immersed. 26. 355
ExavinatioNn Parer VII. (Pace 163.)
1, See § 135. 2. -00119. 3. 1260 gm.
4. See § 151. 5. 10 Ibs. 12 oz. 6. 40 Ibs. to the sq. in.
8. 1-025. 9. & sq. in. 10. -65 in.
Exaneres XVI. (Paems 171, 172.)
1. 34-283 ft.

3. The highest point must be less than 211 ft. above the level of
the liguid in the vessel.

4. 322 Ibs. per sq. in. 5. 25 ft. 6. 9:63 ft.
7. 750 cub. ft. 8. 102 ft. 9, 99-61 ft.
10. 400 cub. ft. 11. 2 c.c.
12. (i) Air rushes out. (ii.) No change.  (iii.) Water rushes in.
13. 55 14. 1120 ft. 15. 5-19 ft.

17. In water; in the latter case.
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Exaurrrg XVII. (Pacms 180, 181).

1. The atmospheric pressure, forcing the water up, is less.

2. 48 ft.-1bs. 3. 33-074 ft. 4. 33ft. 4in. 5, 42 ft. 1in.
G. 4 ft. 7. 2ft 10in. 8. 22 fb. 9. No.
10. 173-611bs. 18. An air-vessel; see § 179. 14. 17 ft.

Exavanation Parer VIIL. (Pace 182.)

1. See § 163 ; the vertical height of the highest point of the siphon
above the level of the water must be less than the height of
the water barometer.

2. (i.) and (ii.) The liquid in the two branches flows in opposite
directions from the point at which the hole is made; the
siphon empties itself and ceases to work.

‘3. 5 ft. 4. See §§ 164-169. 5. See § 170.

6. Air will eseape through the hole, and water will rise in the bell
to the level of the hole. 7. 4413 cub. ft.

8. Air will escape through the siphon and water will rise in the bell.

9. See §§ 172-175. 10. 75 ft.-Ibs.

Exavperes XVIII. (Pagms 193-195.)

1. 8. 2, 1'6. 3. 27. 5. 6. 6. -5398. 7 11
8. About 59 grs. 10. 4:37 lbs. per sq. in. 11, 153 mm.; 217 mm.
12. -02 in. of mercury. 18. ‘15 in. of mercury.

16. The increase of pressure diminishes the volume of the air in the
diver, and therefore the weight of the fluid displaced dimi-
nishes ; the diver therefore sinks.

17, 2902 1Ibs. When the barometer is high.

Exawvation Parer IX. (Paee 196.)

1. See § 182. 2, 24. 3. See { 187. 4. See { 188. 5, Y.

6. The body sinks in the water as the air is exhausted; if the
volume of the body (e.g., a vertical cylinder) be graduated,
the density of the air it displaces can be calculated from the
respective volumes immersed in water and air.

7. 4+23 in, 9. 10 in, 10. See § 194.



INDEX.

i
P

TR PUMP, Condensing .....eecveerrrrrrererssesesseessssseesoons. 185

. , Exhausting.... ... 186

o , Hawksbee’s.... 187

. , Smeaton’s .. .. 190

5 B 1< RRR————— s 190

5 5 OPIENEEIE: s vesposnpemiisirermmas s TS 25 191

33 ; Clearance .. . 177, 189

Ameroid DATOIEEEOr sousmesssesss i ysmers s i oy sy s s wao fo sy ses 145

Archimedes; Prineiple of  «sscessmasesomsssmmsansiessssmvess 35, 40

Atmosphere, Pressure of . 140, 145, 147

ANVCIUGE PLOSSUTO a5 o sigenan ah s 68 5335545 8o SwdREBAT U 0w saw s 116, 117

ALTLOON  wconaoimismnssnsssammssaiamb i Susaissies woss 139

Barometer ..........oocoeeeinn .. 141-148

Barometer, Water and glycerine ...........ccoeceveiivinniiniiinciinnines 142

'y I8 - 5151 o To) L T .. 144

'y , Aneroid ..... ... 145

. ; Corrections ..........cocoveeeennns 146

- , Determination of heights by.. ... 187
Beaumé’s hydrometer........coveveviiiiieiniiiiiiicra 63
Boyle’s Law....cc..covnune .. 151-1567
Brake, Vacuum .... B A R R A A R A 191

s5r 3 VOB OTIRB i urnscsseratacsres massamsoisrin sk i sreos s se s e 192
Bramah press ........... .. 81-87
BUOFRIET sans 6 sensumpn s s vssssas s o s s g 39

 ATSSONS: ovvysussssnsssss s sgasvsrvsess svo s s grsvsvesoys seassssyssseses 170

Ceritre of Prossure’ «.vevpvmomssniresesssvsionssmsssvesstsssessviy sone 119
Clearance in air pump .. .. 177, 189
CONBRION.  1ovnssuiianis s sxsniusises s TH505 1S FHEREEREEE Aea s Tsvasanss 14
Common pump (water) .................... e 178
Condensing air pump, or Condenser .......... wo 188
Conditions of equilibrium of a floating body . 126
Corrections for barometer ...............cceennen. 146
'DENSITY ..................................... . 16
- 5 compared with specific gravity ... s 1

OFEIE suescovomumpemsansmmmsosen ... 138

Determination of heights ....
Diving Dell ...ciiveaieiimmeninreriiiaie i 168



206 INDLX.

PAGE
ENGLISH system of units .............. F OIS 1, 15
TRE ENGINE .. iiiitiiiiiiiiiiiiiiiiirnerieeaeensreesiinssenenisannens 179

Floating body .....ccoevvnieniininninninnieniins 40
Floating body, Conditions of equilibrium of . ... 126
Fluid, Definition of ...ccoeeoviveiiiniiienninnnn. s A

»» , Fundamental Property of ......c.coooriiiiiiiiiiiiiiniininn. 70

yy DEBBRIIEE cwoeq mommommmmsnsransmrmenssmsm sy SEATaTis 69-77, 91-95

, Laws of .. .70, 74, 77, 91, 92

Force, TS OF woeeeeeevsooreseessee oo oot s e st an et nereen 5
Forcing pump ......ccoccevevevvienennnennn. .. 178
Fundamental law of Hydrostatics .. S
% property of a fluid ......ccovvniiiiiiiiii e 70

HARE 8 hydPometar : sams sismtemmanmmmmnmsn srnsssmn o «ox 164
Hawksbee’s air pump .....ccceveeveiiniiiiinniiiiiiceneeeeeennenes 187
Heavy lignids  .......cccc... 91-103
Heights, Determination of..........ovvvuiiiiiniiiinieieeneereeesiinnesans 157
Hydranlic Tift .....oooioiiiiiiiiiiiii e 102
e e .. 81-87
Hyd:cometm Beaumé’s and Twaddell’s .........c.ccvvvvruiiiiennnnnn, 63
’ , Common ......cooevveienne o
o Hare < p— e 1064
’y Nlcholsou 8 .. .67
Slkes’ ........... 64
Hydrostatlc balance ........... .. 41
, Useof ......... ..o 47
Hydrostatlcs Fundamental 1aw Of ...oo.o.oooosoosemsees oo w
IMMERSED DOAIBE: wvvus s smyns wm5iren T804 15575 7585 mmmpmstmsms s 41
ACTOMETER ..ovsmmsrscrvonsinssissvissiivn i semomssnsmmssmmssss v 64
Laws of fluid pressure . ... 70, 74, 77, 91, 92
LieVEl, WAL couswucnmsnsamssmssss ov sy asss s¥88505 5 nmmmm e e o en s 99
Lift, Hydrau.hc . .. 102
5y PUMP cereeinininn .
L quida, Nonmising 1o 107
Lo, BDAGABES e 11
Liquid, Heavy ....... T T 91-103
» 5 Specific gravity of . 50, 58, 61

» » Surface horizontal................... S 13, 96



INDEX. 207

MAGDEBURG herispheres’ suprsssrsmmirapssrep i i 140
Manometers ..........ccceunens %
Matter, Three states of ..

Metric system of units 3, 15
Mixtures, Specific gravity of .....civeciriiinmmnieinimnninminesisiis 23-29
) "
NICHOLSON S hydrometer ......coccoviiviiiiiiiniiiieiiiiiiniiaen. 87
PASCAL B T Wi siemionsn omm wt e s T TS A S T s s BN 74
vases . ... 100

Perfect ﬂmds ........ e 12
Prneumatics defined ......oceuviiviiniiiiiiiiniiiiiiiei e aane 137

Pressure, Fluid .
2 ] Ir- 3 ]:'Ja’ws Of e
ss » Transmission of ..

... 69-77, 91-95
70 74 77, 91, 92
4

5y, AvVerage............ .76, 116

- I e T e e e e e ey 117

5 5 Centre of ........ e 119

T p R e e e e e 119

- of atmosphere .........coocevinviinnnn, .. 140, 145

- , Effect on liquids of ..oevvvevenieniiniinnnnnees 147

- proportlonal to denslty ........................... 152

sy, Boyle’slaw ............. .. 151-157
Prineiple of ArChITOAON Ly cxpsumsmmgmnesmms sonssemrssioss sressssmames 40
Pumps, Waterand air' ...emessmssmmimsesssspos . 173, 183
JAFETYVAIRE oo comnmonsmsmmsmummsemmonssisn T P 86
Sikes’ hydrometer .. .. 64
SIPROR: o crmrmmrmmmmamermmmmnns ... 164
Smeaton’s air PUMP ...ovvvviiviiiinniiii 190
‘Specific gravity ; introductory . 18-20
23 ,, of mixtures ......... L 23-29

- g3 DY TOSEEMIOTABII s oo warn on snmissinswmissmisaimress snid s 33

5 5 DOBEIB assmvsmmasamn s oo s s 33

%5 ,, of solid.......... . 35, 47, 51 59

5 53 oy BEHEBOHA. opemaspemmmsmmsmsmmes s 48, 60

v s 9y Hquid ... 50, 68, 61

v WOHTHE s e s s s s 17
Sprengel’s air pump o 191
Bteam hammer ...cooscsssisnpsvsesvises wer 88
Submerged body, Equilibrium of.. 126
Suspended body, Equilibrium of.. wee T,
Surfaceof liguid-horizontal ... smovsssomsars v e 13, 96
TATE’S GAY PUINI s o e o O AT RO R R E s AR ST B 190

Thrusts on areas ........ o
Thrusts, Resultant, on bodies....i.eireressisserrseininceiiiremnsanin, 125
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Torricelli, experiment, &c
Transmission of pressure ..

True weight of a body ..... .
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- level .....coeuuen. .. 99
»  pump, Common..... 173
b »  Fire engine.. .. 179
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2 THE UNIVERSITY TUIORIAL SERIES.

The Wniversity Tutorial Series.

General Editor: WILLIAM Brices, M.A., LL.B., F.C.S.,, F.R.AS.
Classical Editor: B. J. HAYES, M.A.

The object of the UNIVERSITY TUTORIAL SERIES is to provide
candidates for examinations and learners generally with text-books
which shall convey in the simplest form sound instruction in accord-
ance with the latest results of scholarship and scientilic research.
Important points are fully and clearly treated, and care has been
taken not to introduce details which are likely to perplex the be-
ginner,

The Publisher will be happy to entertain applications from School-

masters for specimen copies of any of the books mentioned in this
List.

SOME PRESS OPINIONS.

“The special use of such manuals as those published by the University Corre=
spondence College is that they help the student to systematise his knowledwre, and
also indicate clearly and definitely the plan to be pursued.”—Journal of Education.

“This series of educational works, now almost forming a scholastic library in
itself.”—Educational Review.

“The more we sece of these excellent manuals the more highly do we think of
them.”’—Schoolmaster.

“We have often had occasion to spealk in terms of high praise of the University
Correspondence College Tutorial Secries.”—JBoard Teacher.

“ As near perfection as can be desired.”—Teachers’ Aid.

“This valuable library.”—=Schoo! Board Chronicle.

“This excellent and widcly appreciated series.”’—Freeman’s Journal.

“The notes have the merit of brevity and practical directness.”’—Guardian.

¢ As usual with the series, little is omitted that might have found a place i
books, and no point seems unbroached.”—Educational Zimes. placein tha

“The work of men who have proved themselves to be possessed of it
qualifications necessary.”’—=School Guardian. B of thie spectal

“ By this time every one knows the material and uniform excellence of this
series.”’—Practical Leacher.

“The evident care, the clearly poncei.ved plan, the genuine scholarshi , and the
general excellence of flha productlmil'shmh!:hli]s series, give them, for the special
purpose they are intended to accomplish, high claims to commendation— i
the commendation of diligent use.”’—FEducational News, especially

“This useful series of text-books.”—Nature.

“ Has done excellent work in promoting higher education.”—Morning fust,



THE UNIVERSITY TUTORIAL SERIES. 3

Tatin and Greck Classics.

(See also page 4.)

Caesar.—Gallic War, Book I. By A. H. Arrcrorr, M.A. Oson., nnd
F. G. Prarstowr, M.A. Camb. 1s. 6d.
“A clearly printed text, a good introduction, an excellent set of notes, and an

historical and geographical index, make up a very good cdition at a very small
price.”—1he Schoolmaster.

Cicero.—De Amicitia. By A. II. Arrcrorr, M.A. Oson., and W.F.
Masox, M.A. Lond. 1s. Gd.
Cicero.—De Senectute. DBy the same Editors. 1s. 6d.

“The notes, although full, are simple.”—Educational Times.

Horace.—O0des, Books I.—III. DBy A.H, ALLCROFT, M.A. Oxon., and
B. J. HaYES, M.A. Lond. and Camb. 1s. 6d. each.

# Notes which leave no difficulty unesplained.”—The Schoolmaster.

“The Notes (on Book III.) are full and good, and nothing more can well be
demanded of them.”—Journal of Education.

Livy.—Book I. By A.H.ALLCROFT, M.A. Oxon., and W. . Masoxr
M.A. Lond. ZThird Edition. 2s. 6d.

“The notes are concise, dwelling much on grammatical points and dealing with
questionsof history and archieolog, ymnzlmplcbut interesting fashion. "— Education.
Vergil.—Aeneid, Book I. DBy A. H. ALLcrorT, M.A. Osxon., and

W. F. Masox, M.A. Lond. 1s. 6d.

ZXenophon.—Anabasis, Book I. By A. H. Arrcrorr, M.A. Oxon.,
and F. L. D. RicomarpsoN, B.A. Lond. 1ls. 6d.
“The notes are all that could be desired.””—Schoolmaster.

The above editions of LATIN and GREEE CLASSICS are on the
following plan:—

A short INTRODUCTION gives an account of the Author and his
chief works, the circumstances under which he wrote, and his style,
dialect, and metre, where these call for notice. :

The TEXT is based on the latest and best editions, and is clearly
printed in large type.

The distinctive feature of the NoTES is the omission of parallel

assages and controversinl discussions of difliculties, and stress "3
Fud on all the important points of grammar and subject-matter.
Information as to persons and places montioned is grouped together
in an HISTORICAL AND GEOGRAPIICAL INDEX; by this means the
expense of procuring a Classical Dictionary is rendered unnecessary.

The works in the Matriculation serics have been edited with a
view to meeting the wants of beginners, while the Graduation series
furnishes suitably annotated editions for the more advanced student.
A complete list is given overleaf.


file://-/vrote

THE UNIVERSITY TUTORIAL SERIES.

Eoitions of Latin and Greeh Classics.

- The following editions are now ready, with the exception of those
marked * (in the press), and those marked t (in preparation).

M’A TRICULATION SERIES.

OAESAR—Gallic War, Bk. 1
CAESAR—Gallic War, Bk. 6
CAEsAR—Gallic War, Bk. 6
CAESAR—Gallic War, Bk. 7
CAEsAR—Gallic War, Bk.7, .
Ch. 1-68
C1cERO—De Amicitia ....
CIcERO—De Senectute ...,
*CroEro—In Catilinam, Bk. 8
CICERO—Pro Archia
C1CERO—Pro Balbo
TEURIPIDES—Andromache
Homer—Iliad, Bk. 6
HoMER—Odyssey, Bk. 17..
HoRACE—Odes, Bk. 1 ...,
HoraCE—Odes, Bk. 2 ...,
HorACE—Odes, Bk. 3 ...,
Horace—Odes, Bk. 4
Lrvy—Bk. 1

..... seresos
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Lrivy—Bk. 21 .....
#Ovip—Heroides 1, 2, 3, 5,

7, 12
Ovip—Metamorphoses, Bk.11
Ovip—Tristia, Bk. 1

Ovip—Tristia, Bk. 3...... -

Sarrusr—Catiline :
SoPHOCLES—Antigone ....
VERGIL—Aeneid, Bk.1...,
VERGIL—Aeneid, Bk. 3....
VERGIL—Aeneid, Bk.
VERGIL—Aeneid, Bk.
VERGIL—Aeneid, Bk.
VERGIL—Aeneid, Bk.9....
VERGIL—Aeneid, Bk. 10 ..
XENOPHON—Anabasis, Bk.1
XENOPHON—Hellenica, 3.,
XENoPHON—Hellenica, 4..

H O~ W,;

GRADUATION SERIES.

AESCHYLUS — Prometheus
Vinctus
ARISTOPHANES—Plutus ..
CIicERO—Ad Atticum, Bk. 4
O1cERO—De Finibus, Bk. 1
FC1cER0—De Finibus, Bk.2
+C10ERO—Pro Milone
C1cErRO—Pro Plancio
HEroDOTUS—Bk. 6
HrropOTUS—Bk. 8
HomER—Odyssey, Bks. 9,10
HomER—Odyssey, Bks.11,12
HoMER—Odyssey,Bks.13,14
HoRrACE—Epistles
+HORACE—Epodes . .,.....
HozrAcE—Satires

DPHCOMMMWNLOWWNNNN
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JUVENAL—Satires, 1, 8, 4..
JUVENAL—Satires, 8, 10, 13
Livy—Bk. 3
Livy—Bk. 5 ............
OviD—Fasti, Bks. 3, 4 ..,.
PrATo—Phaedo ..........
tSOPHOCLES—Ajax
SorHOCLES—E]ectra
TACITUS—Annals, Bk. 1 ,,
TACITUS—Amnnals, Bk. 2 ..
Tacrrus—Histories, Bk. 1..
TrEUCYDIDES—Bk. 7

L2 i,
#*XENOPHON — Oeconomicus
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THE UNIVERSITY TUTORIAL SERIES.

Vocabulaties and Test Papers.

The VOCABULARY contains, arranged in the order of the Text,
words with which the learner is likely to be unacquainted.
principal parts of verbs are given, and (when there is any difficulty
about it) the parsing of the word as it occurs in the Text. Thé
Vocabulary is interleaved with writing paper.

The

Two series of TEST PAPERS are, as a rule, provided, of which the
first and easier series is devoted entirely to translation, accidence, and
very elementary points of Syntax; the second, which is intended for
use the last time the book is read through; deals with more advanced

points.

ACTS OF THE APOSTLES ..
AESCHYLUS — Prometheus

CAESAR—Gallic War,
OAEsAR—Gallic War,
Carsar—Gallic War,
CAEsSAR—Gallic War,
CIcERO—De Amicitia
C1cERO—De Senectute ....

1CIcERO—In Catilinam, Bk. 3
CICERO—Pro Archia
CIcERO—Pro Balbo . ....
CICERO—Pro Cluentio......
+CICERO—Pro Milone......
C10ERO—Pro Plancio
EurreipEs—Ion
HERODOTUS—BEk. 6...
HeroDOTUS—Bk. 8........
Homer—Iliad, Bk. 6
HoMER—Odyssey, Bk. 17 ..
HorACE—Epistles
HorACE—Odes, Bks. 1-4, each
HoRACE—Satires
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Livy—Bk. 21
Ovip—Fasti, Bks. 3and 4..
*Qvip—Heroides, 1, 2, 3, 5,
7, 12
OvID—Metamorphoses, Bk
11
Ovrp—Tristia, Bk. 1
Ovip—Tristia, Bk. 3
SarrusT—Catiline
SoPHOCLES—Antigone
SorHOCLES—Electra
TAcITUS—Annals, Bk. 1....
Tacrrus—Histories, Bk. 1.,
VER6IL—Aeneid, Bk. 1....
VERGIL—Aeneid, Bk.
VERGIL—Aeneid, Bk.
VERGIL—Aeneid, Bk.
VERGIL—Aencid, Bk. 7....
VERGIL—Aeneid, Bks. 9 10
VERGIL—Georgics, Bks. 1, 2
XENOPHON—Anabasis, Bk. 1
XEeNoPHON — Cyropaedeia,
Bks. 1 and 5, each ....
+XEN0PHON, Oeconomicus, .
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6 TITE UNITVERSITY TUTORIAL SERIES.

Aatin and Greek.

GRAMMARS AND READERS.

Greek Reader, The Tutorial, or PROOEMIA GRAECA. By A. WaAUGH
Youna, M.A. Lond., Gold Medallist in Classics. 2s. 6d.

Higher Greek Reader: A Course of 132 Extracts from the best writers,
in Three Parts, with an Appendix containing the Greek Unseens
set at B.A. Lond. 1877—1893. 3s. 6d.

The Tutorial Latin Grammar., By B. J. Haves, M.A. Lond. and
Camb., and W. F. Masodr, M.A. Lond. Second Edition. 3s. 6d.
¢« Practical experience in tenci:ing and thorough familiarity with details are
plainly recognisable in this new Latin Grammar.. Great pains have been taken to
bring distinctly before the mind all those main points which are of fundamental
smportance and require firm fixture in the memory, and the illustrative examples
have been gathered with much care from the classics most usually read for examina-
tions. Though full, it is not overcrowded with minutie.”—ZEducational News.
“Jt is accurate and full without being overloaded with detail, and varieties of
type are used with such effect as to minimise the worl of the learner. Tested in re-
spect of any of the crucial points, it comes well out of the ordeal.”—Schoolmaster.

The Preceptors’ Latin Course. [In preparation.

Latin Composition and Syntax, With copious EXERCISES. By A. H.
ALLCROFT, M.A. Oxon., and J. H. HayDpoN, M.A. Camb. and
Lond. Third Edition. 2s. 6d.

The more advanced portions of the book-work are denoted by an
asterisk, and the relative importance of rules and exceptions is shown
by variety of type. Each Exercise is divided into three sections of
progressive difficulty.

“This useful little book.”’—Journal of Education.

“This is one of the best manuals on the above subject that we have met with for
some time. Simplicity of statement and arrangement: apt examples illustrating
each rule; exceptions to these adroitly stated just atthe proper place and time, are
among some of the striking characteristics of this excellent book. Every advantage
too has been taken of printing and type, to bring the leading statements prominently
‘before the eye and mind of the reader. It will not only serve as an admirable class-
book, but from its table of contents and its copious index will prove to the private
student an excellent reference book as well.”’—The Schoolimaster.

‘“The clearness and concise accuracy of this book throughout are truly remark-
able.”"—Education.

“The arrangement and order arc exceedingly good.”—School DBoard Chronicle.

The Tutorial Latin Reader. 1s. 6d. With VOCABULARY. 2s. 6d.
‘A soundly practical work.”—The Guardian.
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1Lty UNIVERSITY TUTORIAL SERIES. 7

Roman and Grecian Mistory.

The Tutorial History of Rome. (To A.D.14.) By A. H. ALLCROFT,
M.A. Oxon., and W. ¥. Masodr, M.A. Loxp. With Maps. 3s. 6d.

“Tt is well and clearly written.”’—Saturday Review.

A History of Rome from B.C. 31 to A.D. 96: The Early Principate.
By A. 1. ALLCROFI‘ M.A. Oxon., and J. H. Haypox, M.A.
Camb. and Lond. . 6d.

¢ Accurate, and in accordance with the authorities.”’—Journal of Education.

“Tt is deserving of the highest praise. All that the student can require for his
examination is supplied in scholarly shape, and in so clear a manner that the task
of the learner is made comparatively easy.”—Literary World.

A Longer History of Rome. The following volumes are ready or in
preparation :—

1. History of Rome, B.C. 287-202: The Struggle for Empire. By
W, F. Masod; M.A. Lond. 4s. 6d.

2. History of Rome, B.C. 202-133: Rome under the Oligarchs. By
A. H. ALrcrorr, M.A. Oxon., and W. F. Masonm, M.A. Lond.
4s. Gd.

3. History of Rome, B.C.133-78. By W. F. Masod, M.A. Lond.

[Ln preparation.

4. History of Rome, B.C, 78-31: The Making of the Monarchy.

By A. H. ALLCROFT, M. A. Oxon. 4s. 6d.

5. History of Rome, B.C. 31 to A.D. 96. (Sce above.)

A History of Greece. To be completed in Six Volumes :—

1. Early Grecian History. A Sketch of the Historic Period, and
its Literature, to 495 B.c. By A. H. ALLCROFT, DL A. Oxon. -
and W. I'. Masoy, M.A. Lond. 3s. 6d.

“For those who require a knowledge of the period no better book could be

recomunended.”—Educationad Times.

2. Vol. I1. will cover the period 495-431 B.C.

3, 4. History of Greece, B.C. 431-371. By A. H. ATLCROFT, M.A.
Oxon. O6s 6d. [Ln preparation.

5. History of Greece, B.C. 871-323: The Decline of Hellas. By
A. H. ArtLcroFT, M.A. Oxon. 4s. 6d.

6. History of Sicily, B.C. 490-289, from the Tyranny of Gelon to
the Death of Agathocles, with a History of Literature. By
A H ALLCBOFI MA Oxon and W. F. Mason, M.A. Lond.
3s. 6d.

4“YWe can bear high testimony to its merits.”’—Schoolmaster.
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French.

The Tutorial French Accidence, By ERNEST WEEELEY, M.A. Lond.
3s. 6d.

“The essentials of the accidence of the French Language are skilfully exhibited
in carefully condensed synoptic sections.”—Educational News.

« A most practical and able compilation.” —Public Opinion. )

«The manual is an excellent one—clear, well-arranged, and if not quite exhaus-
tive, at least very fairly complete.”’—Glasgow Herald. s
¢ A simply expounded and serviceable handbook.”—Scotsman.

The Tutorial French Syntax. 3s. 6d. [In preparation.
The Preceptors’ French Course. [ I preparation.
The Preceptors’ French Reader. With Vocabulary. 1Is. 6d.

[In preparation.

French Prose Reader. Edited by S. BArLET, B. & Sc., Examiner
in French to the College of Preceptors, and W. F. MAsoM.
M.A. Lond. With VOCABULARY. Second Edition. 2s. 6d.
“The book is very well adapted to the purpose for which it is intended.”—
Schoolmaster.
¢ Admirably chosen extracts. They are so selected as to be thoroughly interesting
and at the same time thoroughly illustrative of all that is best in French literature.”
-Sehool Board Chronicle.
Advanced French Reader:. Containing passages in prose and verse
’ representative of all the modern Authors. Edited by S. BARLET,
B. &s Sc., Examiner in French to the College of Preceptors, and
‘W. F. MasoM, M.A. Lond. 3s. 6d.

“Chosen from a large range of good modern authors, the book provides excellent
practice in ¢ Unseens.””’—The Schoolmaster.

English history.

The Tutorial History of England. By C. S. FEARENSIDE, M.A.
Oxon. [In preparation.
The Intermediate Text-Book of English History: a Longer History

of England. By C. S. FEARENSIDE, M.A. Oxon., and A.
JoENSON EvANS, M.A. Camb. With Maps and Plans.

VoruME 1., to 1485. [In preparation.
Vorume IT., 1485 to 1603. 5s. 6d.
VorunME III., 1603 to 1714. [In the press.

VoruMmE IV., 1685 to 1801. 4s. 6d.

“ The results of extensive reading seem to have been photo hed upon a sm:
plate, so that nothing of the eflect of the larger scene is lco.ut..”g—-m mchemB Monch;].l

“ His genealogical tables and his plans of the great batties are very well done, as
also are the brief biographical sketches which come in an appendix af the end.”’—
Literary Opinion.

“TItislively; it is exact; the style is vigorous and has plenty of swing; the f
are NUMerous, but well balanced and admirably arramged.})’—ﬁucatinn.g |



THE UNIVERSITY TUTORIAL SERIES. 9

English Language and Litevature.

The English Langunage: Its History and Structure. By W. H. Low,
M.A. Lond. Second Edition. 3s. 6d.

CoNTENTS :—The Relation of English to other Languages—Survey
2 of the Chief Changes that have taken place in the Language—
Sources of our Vocabulary—The Alphabet and the Sounds of
English—Grimm’s Law—Gradation and Mutation—Trans-
osition, Assimilation, Addition and Disappearance of Sounds in
nglish—Introductory Remarks on Grammar—The Parts of
Speech, ete.—Syntax—Parsing and Analysis—Metre—Examina-

tion Questions.

« A clear workmanlile history of the English language done on sound principles.”
—Saturday Review.

«The author deals very fully with the source and growth of the language. The
parts of speech are dealt with historically as well as grammatically. The work is
scholarly and accurate.””—Schoolmaster.

~ «The history of the language and etymology are both well and fully treated.”—
Teachers' Monthly. ’

« Aptly and cleverly written.”—7Teachers’ Adid.

“The arrangement of the book is devised in the manner most suited to the
student’s convenience, and most calculated to impress his memory.”—Lyceum.

«Tt is in the best sense a scientific treatise. There is not a superfluous sentence.”
—Educational News.

The Intermediate Text-Book of English Literature. By W. H. Low,
M.A. Lond.

VoruMe I., to 1568. 3s. 6d. [In preparation.
Vorume IT., 1558 to 1660. 3s. 6d.
VoruMe II1., 1660 to 1798. 3s. 6d.

Vols. II. and TII., bound together, 5s. 6d.

- # Really judicious in the selection of the details given.”—Saturday Review.

“Designed on a thoroughly sound principle. Facts, dates, and representative
quotationsare plentiful. The critical extracts are judiciously chosen, and Mr. Low’s
own writing is clear, effective for its purpose, and evidently the result of thorough
¥mnowledge and a very considerable ability to choose between good and bad.”—
National Observer.

& Tt affords another example of the author’s comprehensive grasp of his subject,
combined with a true teacher’s power of using such judicious condensation that the
more salient points are brought clearly into view.”—Teachers’ Monthly.

“Mr. Low has succeeded in giving a very readable and lucid account of the
literature of the time.”—Literary World.

“Mr. Low’s book forms a serviceable student’s digest of an important period in
our literature.”’—Schoolmaster.

“The style is terse and pointed. The representative quotations are aptly and
judiciously chosen. The criticisms are well grounded, clearly expressed and
modestly presented.”—Morning Post.

A Middle English Reader. By S. J. EVANS, M.A. Lond.
[ preparation.



10 IIIE UNIVERSITY TUTORIAL SERIELS.

English Classics.

Addison.—Essays on Milton, Notes on. By W. H. Low, ML.A. 2s.

Aelfric’s Homilies, Glossary to, in order of the Text. By A.J. WYATT,
M.A. Lond., and H. H. JomysoN, B.A. Lond. 2s. 6d.

Chaucer.—Prologue, Knight's Tale. Edited by A.J. Wyarr, M.A.
Lond. 2s. 6d. [Zn the press.

Dryden. —Essay on Dramatic Poesy. Edited by W. H. Low, M.A.
* Lond. Trxrand NOTES. 3s. 6d. Or separately, 2s. each.

Goldsmith.—Poems. Edited by AUSTIN DoBsoN. 2s. 6d.

Havelok the Dane. A Close TRANSLATION, preceded by the Addi-
tional Notes and Corrections issued in Prof. Skeat’s New Edition.
Dy A. J. Wxarr, M.A. Lond. 3s.

Wilton.—Samson Agonistes. Edited by A. J. WyaTr, M.A. Lond.
2s. 6d.
A capital Introduction. The notes are excellent.”—Educational Times.

Milton.—Sonnets, Edited by W. F. Masor, M.A. Lond. Seond
LEdition. 1s. 6d.

Saxon Chronmicle, The, from 800-1001 A.D. A TRANSLATION. By
W. H. Low, M.A. Lond. 3s.

SBhakespeare.—Henry VIII. With INTRODUCTION and NOTES by
W. H. Low, M.A. Lond. Second Edition. 2s.

Shakespeare,—Richard II. Edited by Prof. W. J. RoLFE. (Harper
Bros., New York.) 2s.

Shakespeare.—Twelfth Night. Edited by Prof. W. J. RoLFE. (Harper
Bros., New York.) 2s.
Sheridan.—The Rivals. Edited by W. H. Low, M.A. Lond. 1s.

‘A fully annotated edition . . complete and thoroughly workmanlike.”—
Education.

Bpenser’'s Shepherd’s Calender, Notes on, with an INTRODUCTION.
By A. J. WyATr, M.A. Lond. 2s.
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Mental and Moral Science.

Ethics, Manual of. By J. S. MACEENzIE, M.A., Fellow of Trinity
College, Cambridge, Examiner in the University of Aberdecn.
Second Edition. 6s. 6d.

“In writing this book Mr. Mackenzie has produced an earnest and striking con=
tribution to the ethical literature of the time.”—Mind.
““This excellent manual.”’—International Journal of Ethics.

“Mr. Mackenzie may be congratulated on having presented a tﬁorougfﬂy good
an4d helpful guide to this attractive, yet elusive and difficult, subject.”’—Schoolmaster,

It is a most admirable student’s manual.”’—Teachers’ Monthly.

““Nr. Mackenzie's book is as nearly perfect as it could be. It covers the whole
fleld, and for perspicuity and thoroughness leaves nothing to be desired. The pupil
who masters it will find himself equipped with a sound grasp of the subject such-ag
no one book with which we are acquainted has hitherto been equal to supplying.
l;l'Vot 'Illxle least recommendation is the really interesting style of the work.,”—Literary

orld.

“Written with lucidity and an obvious mastery of the whole bearing of the subject.”
—Standard.

‘* No one can doubt either the author’s talent or his information. The ground of
ethical science is covered by his treatment completely, sensibly; and in many respects
brilliantly.””—2Manchester Guardian.

‘“For a practical aid to the student it is very admirably adapted. It is able, clear,
and acute, Thearrangement of the book is excellent.”’—Newcastle Daily Chronicle.
Logic, A Manual of. By J. WELTON, M.A. Lond. 2 vols. Vol. L.,

10s. 6d. [ Vol. II. in preparatiosn.

Ttis book embraces the entire London B.A. and B.Sc. Syllabus,
and renders unnecessary the purchase of the numerous books hitherto
used. The relative importance of the sections is denoted by variety of
type, and a minimum course of reading is thus indicated.

Vol. I. contains the whole of Deductive Logic, except Fallacies,
which will be treated, with Inductive Fallacies; in Vol. TI.

“ A clear and compendious summary of the views of various thinlkers on important
and doubtful points.”—Journal of Education.

# A very good book . . . not likely to be superseded for a long time to come.”—
Educational Review.

“{nusually complete and reliable. The arrangement of divisions and subdivisions
is excellent, and cannot but greatly facilitate the study of the subject by the diligent
student.”’—Schoolmaster.

“The manual may be safely recommended.” —Educational Times.

«Undoubtedly excellent.””—Board Teacher.
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(Matbematics and (Dechanics.

Algebra, The Intermediate Text-Book of. [ Shortly.

Astronomy, Elementary Mathematical. By C. W. C. BArLow, M.A.
Lond. and Camb., B.Sc. Lond., and G. H. BRYAN, M.A. Camb.,
Fellow of 8t. Peter’s College. Second Edition, with ANSWERS.
8s. 6d.

“Probably within the limits of the volume no better description of the methods by
which the marvellous structure of scientific astronomy has been built up could have
been given.”—Atheneum.

“Sure to find favour with students of astronomy.”—=Nature.

““This book supplies a distinct want. The diagrams are clear, the style of writing
lucid, and the mathematical knowledge required but small.”—Zeachers’ Monthly.

““Completely successful.”’—Literary World.

‘“One noticeable feature of the book is that the more important theorems are care-
fully illustrated by worked out numerical examples, and are so well arranged and
ﬂga.:ly _written that the volume ought to serve as a good text-book.”’—Bombay

vertiser.

““A careful examination has led to the verdict that the book is the best of its kind.
It is accurate and well arranged, and in every respect meets the requirements for
which it has been designed.”—Practical Teacher.

“It is an admirable text-book.”’—School Guardian.

¢“It will carry a student a long way in the sound study of astronomy.”—National
Observer.

Coordinate Geometry: The Right Line and Circle. By WILLIAﬁ
Briees, M.A., LL.B., F.R.A.S,, and G. H. BRYAN, M.A. Second
Edition. 3s. 6d.

‘It is thoroughly sound throughout, and indeed deals with some difficult points
with a clearness and accuracy thathasnot, we believe, been surpassed.”’—ZEducation.

“‘An admirable attempt on the part of its authors to realize the position of the
average learner, and to provide for the wants of the private student. . . . Frequent
exercises and examination papers have been interspersed, and different sizes of type
%d intelligently drawn figures will afford great assistance in revision.”’— Educational

mes.

“Thoroughly practical and helpful.”’—Schoolmaster.

‘“‘Thoroughly sound and deals clearly and accurately with difficult points.”’—The
Indian Engineer.

¢“Another of the excellent books published by the University Correspond
College Press. The arrangement of matter and the copious explnf;\szltions itp\vtl:tlul?l()}:
hard to surpass. It is the best book we have seen on the subject.”’—Board Teacher.

“The authors have had exceptional opportunities of appreciating the difficulties
of beginners, and they have succeeded in producing a work whici will be found
especially useful.”—English Mechanie,
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Matbematics and Mechanics—eontinued.

'Coordinate Geometry, Worked Examples in: A Graduated Course on
the Right Line and Circle. 2s. 6d.

References are made to the book-work of Coordinate Geometry.

Dynamics, Text-Book of. By Wrirriam Briees, M.A., LL.B.,
F.R.A8., and G. H. BRYAN, M.A. 2s.

Geometry of Similar Figures and the Plane. (Euclid VI. and XI.)
‘With numerous Deductions worked and unworked.  3s. 6d.

[Shorely.
Hydrostatics, An Elementary Text-Book of. By WILLIAM BRIGES,
M.A.,, LL.B., F.R.A.S,, and G. H. BRYAN, M.A. [Shortly.

Mechanics and Hydrostatics, Worked Examples in: A Graduated

Course on the London Matriculation Syllabus. 1s. 6d.

‘“Will prove itself a valuable aid. Not only are the worked examples well graded,
but in many cases explanatory paragraphs give useful hints as to processes. The
book has our warm approbation.”’—~Schoolmaster.

Mensuration and Spherical Geometry: Being Mensuration of the
Simpler Figures and the Geometrical Properties of the Sphere.
By WiLLiaM Brieas, M.A.,LL.B.,F.R.A.8.,and T.W. EDMOND-
80N, B.A. Lond. and Camb. 3s. 6d.

“Although intended to meet the requirements of candidates for particular
examinations, this book may be used generally with safety. The chief feature in it
appears to be the inclusion of proofs of aﬁ’ formule presented. It is thus far
more than a mere collection of rules and examples,”’—Educational Times,

“The book comes from the hands of experts; we can think of nothing better
qualified to enable the student to master this branch of the syllabus, and what is
more important still, to promote a correct style in his mathematical manipulations.”
—~8choolmaster,

Mensuration of the Simpler Figures. By WILLIAM Brieas, M.A,,
F.R.A.S., and T. W. EDMONDSON, B.A. Lond. and Camb. 2s. 6d.

Statics, Text-Book of. By WILLIAM Bricas, M.A., LL.B., F.R.A.8.
and G. H. BRYAN, M.A. 1s. 6d.

Trigonometry, The Tutorial. [In preparation.
Trigonometry, Synopsis of Elementary. Interleaved. 1s. 6d.
‘ ¢ An admirable little handbook.”’—ZLycewm.

“For its purpose no better book could be recommended.”—ZLducational News.

“Pithy definitions, numerous formules, and terse explanatory notes.”—School=_
master.

“The facts could hardly be better given.”’—Freeman’s Journal.
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Heiences.

Analysis of a Simple Salt. With a Selection of Model Analyses. By
Wirriay DBurices, M.A., LL.B., F.C.S,, and R. W. SIJ;\}'AM:,
D.Sc. Lond. Third Edition, with TABLES OF ANALYSTS (on linen).

2s. 6d.

“Tikely to prove a useful and trustworthy assistance to those for whom it is
especially intended.”—Nulure.

“Every help that ean be given, short of oral instruction and demonstration, is
here siven; and not only will the private student find this a welcome aid, but the
class-master will be glad of the help furnished by Messrs. Lriggs aud Stewart, whosg
names are a guarantee of accurate information.”—Lducation.

“Tts treatment of the subject in hand is very thorough, and the method is on
sound lines.”—S8choolmaster.

“The selection of model analyses is an excellent feature.””—Educational Times.
Elementary Qualitative Analysis. DBy the same Authors. 1s. 6d.
Biology, Text-Book of. By II. G. WeLLs, B.Sc. Lond., I'.Z.S.,I".C.P.

With an INTRODUCTION by Prof. G. B. IlowEs, F.L.S., ¥.Z.8.
Parr I., Vertebrates. Second Edition. 6s. 6d.
PART II., Invertebrates and Plants.  6s. 6d.
“The Texi-Book of Biology is a most useful addition to the series already issued}

it is well arranged, and contains the matter necessary for an elementary course o.
vertebrate zoology in a concise and logical order.”—Journal of Lducation.

“?Mr. Wells® practical experience shows itself on every page; his descriptions are
511'1_01~t, lucid, and to the point, We can confidently recommend it.,”’—ZLducational

mes,

“The numerous drawings, the well arranged tables, and the careful descriptions
will be of the utmost value to the student.”—Schoolmaster.

“NMr. Wells deals with everything he ought to deal with, and touches nothing that
he ought not to touch. For the higher forms of Modern Side we commend this text~
book without reserve; for the special student of biology we urge its use with enthu-
siasm.”—Educational Review.

Chemistry, Synopsis of Non-Metallic. With an Appendix on Calcula-
tions. By WILLIAM Brices, M.A., LL.B., F.C.S. Interleaved.
1s. 6d.

“The notes arc very clear, and just the thing to assist in the revision of the
subject.”—Literary Opinion.

“Arranged in a very clear and handy form.”—Journal of Education.

Heat and Light, Elementary Text-Book of. By R. W. STEWART,
D.Sc. Lond. Second Edition. 3s. 6d.

““A student of ordinary ability who works carcfully through this book need not
fear the examination.”’—Z'he Schoolmaster,

“It will be found an admirable text-book,”—Educational News.

“A well-printed and well-illustrated book. It strikes u. ide.”
—Practical Teacher. #oe s rnstwertly gulde:

“ A welcome addition to a nseful series.””—School! Guardian,
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Sciences—continued.

Magnetism and Electricity, Elementary Text Book of: DBeing an
Alridgment of the Zext-Dook of Magnetism and Electricity, with
143 Diagrams and numerous Questions. By R. W. STEWART,
D.Sc. Lond. 3s. 6d.

“Plain and intelligible. It isa capital example of what a good Text-book should
be."—Educational XNews.

Wil prove to be particularly helpful to students in general.”’—Science and Art.

“We can heartily recommend it to all who need a text-book.”’—ZLyceum.

“This is an admirable volume. . . . A very good point is the number of worked~
out examples.”— Teachers’ onthly.

“Lenves little to be desired.”— Educational Times.

“ Another of his excellent text-books.””—Nature.

THE TUTORIAL PHYSICS.

I. Sound, Text-Book of. By L. CatcmrooL, B.Sc. Lond. 3s. 6d.

II. Heat, Text-Book of. With 81 Diagrams and numerous Calculations.
By R. W. Srewart, D.Sc. Lond. Second Edilion. 3s. 6d.

*Clear, concise, well arranged and well illustrated, and, as far as we have tested,
accurate.”—Journal of Lducation.

“Distinguished by accurate scientific knowledge and lucid -explanations.”—
Educational Times,

“The principles of the subject are clearly set forth, and are exemplified by care-
fully chosen examples.”—O0uxford Magazine.

III. Light, Text-Book of (uniform with the Zext-Book of Ieat). With
111 Diagrams and numerous Calculations. DBy R. W. STEWART,
D.Sc. Lond. Second Edition. 3s. 6d.

“The diagrams are neat and accurate, the printing excellent, and the arrangement
of the matter clear and precise.”—DPractical Teacher.

“The volumes (Light and ITeat) will be found well adapted for general use by those
students who have already mastered the first principles of physics. The subjects are
treated both mathematically and experimentally, and the most important theorems
are illustrated by diagrams and figures.”’—School Guardian.

IV. Magnetism and Electricity, Text-Book of. With 159 Diagrams.
By R. W. StEwWART, D.Sc. Lond. Second Edition. 5s. 6d.

“Will be found suitable for gencral use as an introduction to the study of elee-
trical science.”—Iron.

“It is thoroughly well done.””—Schonlmaster.

“The author has been very successful in making portigns .of the work nof
ordinarily regarded as elementary appear to be so by his simple exposition of
them.”—Zeachers’ Alonthly.
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Directories.

Matriculation Directory, with Full Answers to the Exammat{on
Papers. (No. X VIL. will be published during the fortnight following
the Examination of January 1895.) Nos. IV., VL, VIL, IX., Xy
XI., XII., XIIT., XIV., XV, and XVI. 1Is. each, net.

Intermediate Arts Directory, with Full Answers to the Examination
Papers (except in Special Subjects for the Year). (No, VII. will
be published during the fortnight following the Examination of July
1895.) No. II. (1889) to No. VI. (1893), 2s. 6d. each, net.

Inter. Science and Prelim. Sci. Directory, with Full Answers to the
Examination Papers. (No. V. will be published during the fortnight
Sfollowing the Examination of July 1895.) No. I.(1890) to No. IV.
(1893), 2s. 6d. each, net.

B.A. Directory, with Full Answers to the Examination Papers
(except in Special Subjects for the Year.) No. I., 1889; II.,
1890; IIT., 1891. 2s. 6d. each, net. No. IV., 1893 (with Full
Answers to the Papers in Latin, Greek, and Pure Mathematics).
2s. 6d. met. (No. V. will be published in November 1895.)

The UWniversity Correspondent
AND
UNIVERSITY CORRESPONDENCE COLLEGE MAGAZINE.
Issued every Saturday. Price 1d., by Post 13d.; Half-yearly
Subscription, 3s.; Yearly Subscription, 5s. 6d.

THE UNIVERSITY CORRESPONDENT has a wide circulation among
Grammar and Middle Olass Schools, and, as a weekly journal, offers an
excellent medium for Advertisements of POSTS VACANT AND WANTED;
no charge for these is made to Yearly Subscribers.

LEADING FEATURES OF ‘‘THE UNIVERSITY CORRESPONDENT.’
. Fortnightly Prizes of One Guinea.

Frequent Vigilance Prizes (One to Three Guineas).

. Special Prizes (One to Five Guineas).

. Hints and Answers to Students reading for London University.

. Answers to Correspondents on all University Matters.

. Papers set at London Fxaminations.

Full Solutions to Matriculation Papers.

. Pass Lists of London University Examinations.

. Calendar of London University Events.

. Latest University News.

. Test Papers (with Answers) for London Matriculation.

. Articles on Special Subjects for London University Bxaminations.
A Series of Articles on the Universities of the United Kingdom.

. Ladies’ Column.

. Reviews of Current Educational Literature.

. List of Educational Books published during the month.
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