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ABSTRACT 

Proper tissue development requires strict coordination of proliferation, growth and 

differentiation. This is particularly true for the auditory sensory epithelium, where 

deviations from the normal spatial and temporal pattern of auditory progenitor cell 

(prosensory cell) proliferation and differentiation result in abnormal cellular organization 

and thus auditory dysfunction. The molecular mechanisms involved in the timing and 

coordination of auditory prosensory proliferation and differentiation are poorly 

understood. Here we identify the RNA-binding protein LIN28B as a critical regulator of 

developmental timing in the murine cochlea.  We show that Lin28b and its opposing let-7 

miRNAs are differentially expressed in the auditory sensory lineage, with Lin28b being 

highly expressed in undifferentiated prosensory cells and let-7 miRNAs being highly 

expressed in their progeny – hair cells (HCs) and supporting cells (SCs). Using recently 

developed transgenic mouse models for LIN28B and let-7g, we demonstrate that 

prolonged LIN28B expression delays prosensory cell cycle withdrawal and 

differentiation, resulting in HC and SC patterning and maturation defects. Surprisingly, 

let-7g overexpression, although capable of inducing premature prosensory cell cycle exit, 

failed to induce premature HC differentiation, suggesting that LIN28B’s functional role 

in the timing of differentiation utilizes let-7 independent mechanisms. Lastly, we 

demonstrate that overexpressing LIN28B or let-7g in the postnatal cochlea alters the 

capacity for HC production in response to Notch inhibition; LIN28B has a positive effect 

on SC plasticity, while let-7 antagonizes the capacity for SC trans-differentiation. 

Thesis Advisor: Angelika Doetzlhofer, Ph.D. 

Thesis Reader: Mollie K. Meffert, M.D., Ph.D 
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“If you wish to make an apple pie from scratch, you must first invent the universe.” 

– Carl Sagan 

 

 

 

The ability to sense and react to the environment is essential for living organisms 

to survive. Animals have developed a range of mechanisms for sensory perception, the 

capacity of which differ between species, and in humans include the sense of vision, 

hearing, taste, olfaction, and touch. These senses allow us to perceive everything from the 

safety of our surroundings (is an imminent threat present?) to the nuances of our culture – 

including art, music, and gourmet food. Each of the five major senses are mediated by a 

dedicated sensory organ that processes environmental stimuli into neural code. The 

mechanism used by sensory tissues to convert information from the outside world into 

signals understood by the brain has long been of interest to the scientific community. 

More recent areas of study focus on the molecular and genetic mechanisms that underlie 

development of these sensory tissues. While the specific genes and molecules involved in 

these processes may vary between tissues, the overarching questions remain the same – 

How is sensory cell fate specified? How are functional circuits between the sensory organ 

and brain assembled? How can a mature sensory tissue regenerate/repair itself? Study of 

the sensory organs has revealed many insights into how cohesive biological systems are 

formed and maintained. 

Spoken language is one of the fundamental abilities separating humans from non-

human species. While many animals use sound to communicate, humans are thought to 
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be unique in the complexity of information that is shared through speech. Tragically, 

despite our dependence on aural communication, hearing loss remains the most prevalent 

neurosensory disorder. It is estimated that over 10% of the US population suffers from 

some form of hearing difficulty, including nearly half of adults over the age of 65 

(NIDCD: http://www.nidcd.nih.gov/health/statistics/pages/quick.aspx). Hearing aids and 

cochlear implants are able to provide at least partial hearing restoration, but lack in their 

ability to fully recapitulate “normal” sound perception. Instead, it is widely agreed that 

“the world’s best hearing aid” will utilize molecular and genetic mechanisms to guide 

regeneration of the specialized cells whose loss causes hearing impairment (Groves, 

2010; Kopecky and Fritzsch, 2012; Puligilla and Kelley, 2009). Before therapies 

targeting gene expression can be developed, however, the molecular mechanisms that 

underlie the generation of these sensory cells must first be understood. In recent years 

scientists have identified several factors involved in this process, but much remains to be 

uncovered. 

 In this dissertation, I describe my thesis work characterizing the role of the 

Lin28b/let-7 microRNA (miRNA) axis in guiding the development of the mammalian 

auditory sensory organ, the cochlea. Our findings indicate that the RNA-binding protein 

Lin28b coordinates the precise timing of key developmental processes – progenitor cell 

terminal mitosis and the onset of differentiation – through two distinct mechanisms. 

Additionally, we show that shifting the expression of Lin28b or let-7 in the postnatal 

cochlea can significantly alter the capacity for supporting cell conversion, revealing this 

axis as a promising target for future hair cell regeneration therapies.  
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The auditory system: structure and organization 

 The mammalian auditory system is a multifaceted structure that converts sound 

wave-induced vibrations of the atmosphere into neural code. From the pinna to the inner 

ear, each component of this system has evolved to aid in this transduction (Fig. 1.1 A). 

The outer ear pinna serves to collect incoming sound waves and direct them into the 

auditory canal. This results in vibration of the tympanic membrane (ear drum) and 

movement of the 3 middle ear ossicle bones. The third middle ear bone, the stapes, is 

coupled to the outer membrane of the fluid-filled cochlear duct (the oval window). 

Movement of the stapes causes fluid movement within the cochlear duct displacing the 

basilar membrane that houses the auditory sensory epithelium. The auditory sensory 

epithelium contains the mechanosensory hair cells (HCs) critical for sound perception 

(Fig. 1.1 B, C). There are two types of HCs; inner hair cells (IHCs) are the primary 

sensory receptor cells, while outer hair cells (OHCs) act as cochlear amplifiers, mediating 

the sensitivity of the auditory epithelium. Vibration of the auditory epithelium causes 

deflection of stereocilia bundles located on the apical surface of the HCs (Fig. 1.1 B). 

This deflection opens mechanically activated ion channels, leading to HC depolarization 

and neurotransmitter release. Neurotransmitter release from IHCs stimulates the afferent 

auditory neurons that comprise the statoacoustic nerve and mediate communication 

between the inner ear and the brain. Thus, the auditory system is able to seamlessly 

translate environmental stimuli into neural code. 

 Stereotyped organization of the auditory sensory epithelium is essential for proper 

sound transduction, and deviations in its distinct cytoarchitecture lead to sensorineural 

hearing loss. HCs are precisely arranged such that a single row of IHCs and three rows of 
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OHCs run along the entire length of the cochlear duct (Fig. 1.1 B, C). The physical 

characteristics of the basilar membrane (i.e. thickness, rigidity) differ along the cochlear 

duct causing the auditory epithelium to be frequency tuned. Low frequency, low-energy 

sound waves are only able to vibrate the wider, more flexible apical (distal) end of the 

cochlea, stimulating HCs in this region; while high frequency, high-energy sound waves 

can vibrate the stiffer and narrower basal (proximal) end of the cochlea. This 

phenomenon is known as tonotopy and results in a frequency map that begins with HC 

stimulation in the auditory periphery and is maintained throughout the central auditory 

processing centers in the brain. 

 Lying below and intercalating the HC layer are the supporting cells (SCs; Fig. 1.1 

C). These glial-like cells are responsible for maintaining both the structure and 

homeostasis of the auditory epithelium. At least 4 different subtypes of SCs exist in the 

cochlea including the phalangeal cells (i), which flank the IHCs and mark the border of 

the greater epithelial ridge on the medial side; the inner and outer pillar cells (p), which 

form the walls of a fluid-filled tunnel that separates the IHC and OHC domains; the 

Deiter’s cells (d), which surround the OHCs, separating them from one another; and 

finally the Hensen’s cells (h), which are found lateral to the 3rd row of OHCs and mark 

the start of the lesser epithelial ridge. Together, HCs and SCs comprise the auditory 

sensory epithelium.  

 

Developmental timing of the auditory sensory epithelium 

Formation of the auditory epithelium requires strict coordination of proliferation, 

cell cycle exit, and differentiation. Each of these steps must occur in the correct order and 
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at precisely the right time in order to achieve proper epithelial patterning. Even slight 

shifts in timing can have catastrophic effects on sensory cell formation and arrangement, 

leading to impaired auditory transduction. HCs and SCs differentiate from a common 

pool of progenitor cells within the embryonic cochlear duct, and over the past several 

decades key regulators of their differentiation have begun to be identified. Still, the 

molecular mechanisms that time and coordinate cochlear development remain poorly 

understood. 

The entire inner ear, including the auditory (cochlear) and vestibular organs and 

their innervating neurons, arises from the otic placode, which forms as an ectodermal 

thickening near the hindbrain at embryonic day 8.5 (E8.5) in mice. This placode 

invaginates to form the spherical, fluid-filled otocycst (E9.5), which continues to morph 

and elongate so that a rudimentary cochlear duct can be identified by E12.5 (Kelley, 

2006; Ohyama et al., 2007). Running along the length of this developing cochlear duct is 

a specified prosensory patch that contains all of the progenitor cells from which the 

cochlear HCs and SCs will differentiate. This prosensory progenitor cell pool is defined 

by expression of the high mobility group (HMG)-box transcription factor Sox2 (Fig. 1.2), 

which is required for both prosensory domain specification and subsequent HC 

differentiation (Dabdoub et al., 2008; Kiernan et al., 2005b).  

The prosensory progenitor population is highly proliferative until E12.5, when 

progenitor cells in the cochlear apex begin to undergo terminal mitosis (Ruben, 1967). 

This cell cycle withdrawal (CCW) is mediated by expression of the cyclin-dependent 

kinase inhibitor p27kip1, which is upregulated in an apical-to-basal wave of expression 

over the following two days (Fig. 1.2) (Chen and Segil, 1999b; Lee et al., 2006). At 
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E14.5, soon after the basal progenitors have exited the cell cycle, HC differentiation 

begins in the mid-basal portion of the cochlea. This process is mediated by expression of 

the bHLH transcription factor Atoh1, which is both necessary (Bermingham et al., 1999a) 

and sufficient (Zheng and Gao, 2000) for the differentiation of HCs. Strikingly, 

differentiation proceeds in the opposite direction from progenitor CCW, progressing from 

base-to-apex (Fig. 1.2). Due to these opposing waves of CCW and differentiation, post-

mitotic prosensory progenitor cells are held in an undifferentiated state for vastly 

differing lengths of time depending on their basal-to-apical location. Basal progenitors 

differentiate within hours of exiting the cell cycle, while the most apical progenitors 

remain post-mitotic and undifferentiated for several days.  

This temporal separation between CCW and differentiation in the cochlear 

epithelium is in stark contrast to other neuronal structures, such as the retina and cortex, 

where these two processes are intimately linked (Cepko, 2014; Costa and Muller, 2014; 

Livesey and Cepko, 2001; McConnell and Kaznowski, 1991). Indeed, Atoh1 and p27kip1 

loss-of-function studies confirm that these processes are largely uncoupled within the 

developing cochlear epithelium. CCW occurs normally in Atoh1 null mice (Chen et al., 

2002a), and the onset of differentiation is unaffected by the absence of p27kip1 expression 

(Chen and Segil, 1999b). This specific temporal coordination is thought to assure the 

precise morphogenic patterning of the cochlear epithelium that is critical to its proper 

functioning. For instance, as a result of prolonged proliferation, supernumerary HCs and 

SCs are prevalent throughout the auditory epithelium of p27kip1 null mice, leading to 

severe hearing impairments (Chen and Segil, 1999b).  
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Recently, two signaling pathways have been shown to play a role in regulating the 

temporal separation between CCW and differentiation in the cochlea. The insulin-like 

growth factor (Igf) signaling cascade acts via the phosphatidylinositol 3-kinase 

(PI3K)/Akt pathway to coordinate the timing of developmental events occurring after 

prosensory cell terminal mitosis (Okano et al., 2011). In mice lacking the Igf1 receptor 

(Igf1r-/-), prosensory domain formation and p27kip1 expression proceed normally; however, 

the onset of Atoh1 expression is significantly delayed, leading to defects in HC and SC 

formation/maturation and subsequent irregularities in cellular patterning. Strikingly, 

while Igf1r knockout does not alter the timing of CCW, the authors observed a significant 

decrease in the rate of progenitor cell proliferation, resulting in significantly shorter 

cochlear ducts.  

The morphogen Sonic Hedgehog (Shh) also plays an instructive role in timing 

cochlear development. Results from several recent studies suggest that Shh, expressed by 

the developing spiral ganglion, promotes cochlear outgrowth and inhibits HC 

differentiation. As the cochlear duct develops and elongates, Shh is downregulated in a 

basal-to-apical gradient, so that its expression is limited to the apical portion of the spiral 

ganglion by E14.5 (Bok et al., 2013; Driver et al., 2008; Liu et al., 2010). This shift in 

Shh expression corresponds to the stages during which prosensory cells transition from 

proliferative progenitors to differentiating HCs and SCs.  Disruption of Shh signaling, 

either genetically (Bok et al., 2013; Tateya et al., 2013) or pharmacologically (Benito-

Gonzalez and Doetzlhofer, 2014), causes precocious HC differentiation, and in extreme 

cases even reverses the basal-to-apical gradient of HC differentiation, effectively 

eliminating the delay between CCW and the onset of differentiation (Bok et al., 2013). In 
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these experiments, premature progenitor CCW was also observed, suggesting a broad 

role for Shh in coordinating this developmental transition. The mechanisms by which Shh 

regulates CCW are not known; however, recent evidence from our own lab, suggests that 

Shh acts via the HES-related transcriptional repressors, Hey1 and Hey2, to inhibit Atoh1 

expression and time the onset of HC differentiation (Benito-Gonzalez and Doetzlhofer, 

2014). 

 

Heterochronic genes and developmental timing 

 Due to their morphological complexity and the frequent overlap of developmental 

events, vertebrates, as a whole, are not the ideal model in which to study developmental 

timing (Moss, 2007). Instead, simpler model organisms, such as the roundworm 

Caenorhabditis (C.) elegans, have traditionally been used to study heterochrony. Because 

of its organismal simplicity and stereotyped differentiation, the lineages of individual 

blast (precursor) cells can be easily followed in developing larvae, making C. elegans an 

ideal system for identifying genes whose mutation disrupts the normal progression of 

development. These so-called “heterochronic genes” can be broadly characterized into 

two classes; those whose mutation results in a “precocious” phenotype or the skipping of 

developmental events; and those whose mutation results in a “retarded” phenotype, or the 

repetition of developmental events (Ambros and Horvitz, 1984; Moss, 2007).  Using 

phenotypic and molecular analysis of C. elegans larvae, an entire network of 

heterochronic genes has been characterized. In general, two families of heterochronic 

microRNAs (miRNA) act to regulate the expression of multiple heterochronic protein 

coding genes, which include transcription factors, RNA-binding proteins, and ubiquitin 
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ligases, among others. Together, these “precocious” and “retarded” heterochronic genes 

comprise bistable switches whose shift in expression mediate developmental stage 

progression (Nimmo and Slack, 2009). Many of the heterochronic genes are 

evolutionarily conserved, and study of their mammalian homologs has reveled their broad 

role in regulating stem cell development, organismal growth, and tumorigenesis as well 

(Huang, 2012; Nimmo and Slack, 2009; Shyh-Chang and Daley, 2013). 

 The striking temporal separation of CCW and differentiation in the developing 

auditory epithelium makes the mammalian cochlea an ideal system for the study of 

vertebrate heterochrony. As described above, this system is especially sensitive to 

changes in developmental progression and even slight shifts in timing can result in 

substantial disruptions to its stereotyped epithelial morphology. Intriguingly, we recently 

found that cochlear prosensory cells express several heterochronic genes and miRNAs, 

leading us to hypothesize that this evolutionarily conserved pathway plays an essential 

role in coordinating the timing of prosensory cell differentiation.  

 

The Lin28b/let-7 axis 

 Perhaps the best-characterized heterochronic relationship involves the let-7 family 

of miRNAs and the RNA-binding protein LIN28. In developing C. elegans, lin28 

mutation results in a “precocious” phenotype – accelerated differentiation of larval stem 

cells (Ambros and Horvitz, 1984). Subsequent studies in a range of organisms and model 

systems have revealed this highly conserved RNA-binding protein to be a critical 

regulator of stemness, organismal growth, metabolism, tumorigenesis and tissue repair 

(Nimmo and Slack, 2009; Shyh-Chang and Daley, 2013). In mammals there are two 
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homologs of the C. elegans lin28 gene, Lin28a and Lin28b, which share 77% identity at 

the protein level (Guo et al., 2006). Both LIN28A and LIN28B proteins contain two types 

of RNA-binding motifs: a cold shock domain (CSD) and a pair of retroviral-type CCHC 

zinc knuckles (Moss and Tang, 2003), which mediates their pleiotropic role in 

development and disease (Huang, 2012). LIN28A/B were initially thought to enhance 

pluripotency primarily by inhibiting biogenesis of the let-7 family of miRNAs; however, 

growing evidence suggests that they can directly target and regulate the translation of 

select protein-coding mRNAs as well (Fig. 1.3). 

 The miRNA let-7 was also first identified in a screen for C. elegans heterochronic 

genes. Mutation of let-7 leads to a “retarded” phenotype, resulting in delayed larval stem 

cell differentiation (Reinhart et al., 2000). Fortuitously, let-7 and lin-4 (another 

heterochronic gene) were the first ever identified miRNAs. Their discovery has 

subsequently led to a “small RNA revolution”, and the realization that all eukaryotes 

produce short RNA sequences (miRNAs, piRNAs, siRNAs) that act as key regulators of 

gene expression (Nimmo and Slack, 2009).   

In general, miRNAs modulate gene expression by inhibiting the translation and/or 

promoting the degradation of their target mRNAs. In particular, let-7 miRNAs regulate 

differentiation by targeting many cell cycle and growth-associated genes (Nimmo and 

Slack, 2009; Rehfeld et al., 2015). In the absence of LIN28A/B expression, let-7 miRNA 

transcripts undergo two processing steps to generate a mature let-7 miRNA. The RNA 

polymerase II transcribed primary let-7 transcript (pri-let-7) is cleaved by the 

Drosha/DGCR8 microprocessor complex, generating a ~70 nucleotide precursor let-7 

miRNA hairpin (pre-let-7). This pre-let-7 is then transported to the cytoplasm where it is 
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further processed by the RNase Dicer, to generate a mature ~22 nucleotide miRNA 

duplex. One strand of this duplex is incorporated into the Argonaute-containing miRNA-

induced silencing complex (miRISC), which targets and represses the expression of 

mRNAs that possess sequences (typically within the 3’ untranslated region) 

complementary to the mature let-7 miRNA. Many of these mRNAs include regulators of 

growth and proliferation (e.g. Hmga2, Igf2bps, Myc, Ras, Ccnd1), and their repression by 

let-7 promotes terminal differentiation. 

LIN28A/B is able to promote growth and proliferation, in part, by inhibiting the 

biogenesis of the let-7 miRNAs. When LIN28A/B are expressed, these proteins recognize 

and bind a specific GGAG motif in the terminal loop of pri- and pre-let-7 transcripts, 

preventing their processing by the RNases Drosha and Dicer, respectively (Huang, 2012; 

Nimmo and Slack, 2009; Rehfeld et al., 2015). Importantly, let-7 miRNAs are able to 

modulate the expression of Lin28a/b as well, since these genes possess multiple let-7 

binding sites within the 3’UTRs of their mRNAs. Thus, a double negative feedback loop 

exists between Lin28a/b and the let-7 family of miRNAs that acts to regulate the capacity 

for growth/self-renewal versus differentiation (Fig. 1.3) (Rybak et al., 2008).  

There is emerging evidence for a critical role of the Lin28/let-7 axis in controlling 

developmental timing and differentiation during neurogenesis (Rehfeld et al., 2015), and 

recent experiments in retinal explants provide compelling evidence that Lin28b and its 

opposing miRNAs, let-7, mir-9, and mir-125, regulate the developmental timing of 

retinal neurogenesis (La Torre et al., 2013). Given these findings, we hypothesized that 

the Lin28b/let-7 axis plays an essential role in regulating the transition of cochlear 

prosensory cells from proliferative progenitors to differentiated sensory cells (Fig. 1.4). 
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Using recently developed iLIN28B and iLet-7g transgenic mouse lines (Zhu et al., 

2011b), we found that Lin28b functions as a developmental timer in the murine cochlea 

through both let-7 dependent and independent mechanisms. Furthermore, we found that 

by altering the expression of the Lin28b/let-7 axis in the postnatal cochlea, we could 

modify the capacity for SCs to trans-differentiate into HCs in the absence of Notch 

signaling. Our findings suggest that this axis plays a key role in driving prosensory cell 

differentiation and maintaining SC plasticity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	
   14 

Figure 1.1: Anatomy of the mammalian auditory system. (A) Overview of the human 

auditory system. The outer ear is comprised of the pinna and ear canal and is bounded on 

its medial end by the tympanic membrane. The middle ear is an air-filled space 

containing the three auditory ossicles. The third ossicle, the stapes, is couple to the outer 

membrane of the fluid-filled cochlear duct, the oval window. (B, C) Running along the 

length of the cochlear duct is the auditory epithelium. (B) A top down view of the 

auditory epithelium shows the stereocilia bundles (Phalloidin+, grey) that are found on 

the apical hair cell surface. One row of inner hair cells (ihc) and three rows of outer hair 

cells (ohc) run the entire length of the cochlear duct. (C) A cross-section through the 

auditory epithelium reveals the multiple supporting cell subtypes (SOX2/P27+, blue and 

green) that surround the inner and outer hair cells (MYO6+, white). Abbreviations: i – 

phalangeal cell, p – pillar cell, d – Deiter’s cell, h – Hensen’s cell. 
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Figure 1.2: Schematic of prosensory cell cycle withdrawal and the onset of hair cell 

differentiation. Hair cells and supporting cells differentiate from a common pool of 

prosensory progenitor cells that is defined by expression of the transcription factor Sox2 

(left panel, green). By E13.5, about half of these prosensory cells have withdrawn from 

the cell cycle, driven by the expression of the cyclin-dependent kinase inhibitor p27 

(center panel, red). At E14.5, hair cell differentiation begins in the mid-basal cochlea, 

when the transcription after Atoh1begings to be expressed (right panel, green). 
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Figure 1.3: Lin28b acts through let-7 dependent and independent mechanisms to 

regulate developmental timing. The Lin28 genes share a mutually antagonistic 

relationship with the let-7 family of miRNAs. In the absence of Lin28a/b expression, the 

let-7 miRNAs downregulate the expression of multiple growth and proliferation 

associated genes, including Lin28a/b. When LIN28A/B is expressed, these proteins 

inhibit the biogenesis of mature let-7 transcript, relieving the repressing of these growth-

related genes. LIN28A/B can also directly target certain mRNA transcripts and enhance 

their expression by promoting mRNA translation. 
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Figure 1.4: Hypothesized role of the Lin28b/let-7 axis in the developing cochlear 

epithelium. Based on Lin28b’s proven role in promoting proliferation and stemness in 

other systems and its expression in undifferentiated cochlear prosensory cells, we 

hypothesized that Lin28b acts to maintain these cells in an undifferentiated state. 

Furthermore, we expected that Lin28’s downregulation and let-7’s upregulation would 

regulate the timing of prosensory cell cycle withdrawal and subsequent differentiation. 
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Chapter 2 

  

Lin28b regulates developmental timing within the mammalian cochlear 

epithelium through both let-7 dependent and independent mechanisms 
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INTRODUCTION 
 

Over the past several years, key regulators of cochlear prosensory cell 

proliferation and differentiation have been identified (Raft and Groves, 2014; Schimmang 

and Pirvola, 2013). For instance, P27/Kip1 (CDKN1B), a cyclin-dependent kinase 

inhibitor, controls prosensory cell cycle withdrawal (Chen and Segil, 1999a), whereas 

ATOH1, a bHLH transcriptional activator, controls HC and SC differentiation 

(Bermingham et al., 1999b; Woods et al., 2004). Atoh1 and p27/Kip1 loss-of-function 

studies indicate that prosensory cell cycle exit and differentiation occur independently 

from each other (Chen et al., 2002b; Chen and Segil, 1999a); however, the molecular 

mechanisms coordinating the timing of these processes remain unknown.  

Using microarray-based transcriptional profiling we recently identified Lin28b 

mRNA to be highly expressed in prosensory cells. Lin28 genes encode for evolutionarily 

highly conserved RNA binding proteins (Moss and Tang, 2003) known to regulate larval 

developmental timing (heterochrony) in C. elegans (Ambros and Horvitz, 1984).  In 

humans and mice Lin28a and its homolog Lin28b are critical regulators of stemness, 

organismal growth, metabolism, tumorigenesis and tissue repair (Shyh-Chang and Daley, 

2013). LIN28A and LIN28B proteins promote a stem cell/progenitor-like state through 

two distinct mechanisms. First, LIN28 proteins bind to and stabilize mRNAs encoding 

for cell cycle regulators and growth stimulating genes, leading to increases in their 

protein abundance (Graf et al., 2013; Hafner et al., 2013; Polesskaya et al., 2007; Xu et 

al., 2009). Second, LIN28 proteins block let-7 microRNA (miRNA) biogenesis (Heo et 

al., 2008; Newman et al., 2008; Rybak et al., 2008; Viswanathan et al., 2008). Mature 

miRNAs are small non-coding RNAs that interact with their targets by partial base 
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pairing with complementary sequences commonly found within the 3’ untranslated 

region (3’ UTR) of the target mRNA.  In the majority of cases, miRNA binding inhibits 

translation and/or destabilizes the target mRNA (Shenoy and Blelloch, 2014). Similar to 

lin-28, let-7 was initially identified in C. elegans as a heterochronic gene (Ambros and 

Horvitz, 1984; Reinhart et al., 2000). Let-7 miRNAs inhibit stem cell/ progenitor cell 

proliferation and promote differentiation by targeting cell cycle and growth-associated 

genes (Johnson et al., 2005; Lee and Dutta, 2007; Lin et al., 2007).  The Lin28 genes 

possess multiple let-7 binding sites in their 3’UTR and are subject to negative regulation 

by let-7 miRNAs, establishing a double negative feedback loop (Rybak et al., 2008). 

There is emerging evidence for a critical role of the Lin28/let-7 axis in controlling self-

renewal, lineage commitment and differentiation during neurogenesis (Rehfeld et al., 

2014). For instance, experiments in retinal explants provide compelling evidence that 

Lin28b and its antagonistic miRNAs, let-7, mir-9, and mir-125, regulate the 

developmental timing of retinal neurogenesis (La Torre et al., 2013). Here, utilizing 

recently developed iLIN28B and ilet-7g transgenic mouse lines (Zhu et al., 2011a), we 

show that Lin28b functions as a developmental timer in the murine cochlea through both 

let-7 dependent and independent mechanisms.  
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RESULTS 

Lin28b and let-7 miRNAs are differentially expressed in the auditory sensory lineage.  

To characterize the spatial and temporal expression pattern of the Lin28b/let-7 

axis during cochlear differentiation, a series of RNA in situ hybridization (ISH) and 

qPCR experiments were performed. In addition to Lin28b, we characterized the 

expression of the high mobility group transcription factor Hmga2, which has been shown 

to promote organismal growth and stemness in other systems (Nishino et al., 2008; Zhou 

et al., 1995). Similar to Lin28b, both human and murine Hmga2 harbor let-7 binding sites 

in their 3’UTRs and are negatively regulated by the let-7 miRNAs (Lee and Dutta, 2007; 

Lin et al., 2007; Mayr et al., 2007; Schulman et al., 2008). In the mammalian cochlea, 

prosensory differentiation follows a steep basal-to-apical gradient, whereby mid-basally 

located HCs differentiate prior to more apically located HCs. Our analysis revealed that 

both Lin28b and Hmga2 transcripts are expressed in prosensory progenitor cells but are 

rapidly down-regulated in a basal-to-apical fashion upon the onset of HCs differentiation 

(Fig. 2.1 A-I’). At E13.0, Lin28b and Hmga2 were co-expressed with Sox2 in prosensory 

cells (Fig. 2.1 A-C) (Kiernan et al., 2005c). At E14.5, following the onset of Atoh1 

expression in nascent HCs, Lin28b and Hmga2 transcript expression was reduced in the 

differentiating cochlear base and mid turn (Fig. 2.1 D-F). At the peak of HC 

differentiation (E16.5), Lin28b and Hmga2 expression was only maintained in the most 

apical segment of the cochlear duct, which had not yet differentiated (Fig. 2.1 G-I’). 

 Quantification by qPCR and western blot revealed that this more than 4-fold 

down-regulation in Lin28b transcript expression (Fig. 2.1 J, K) correlated with a nearly 5-

fold reduction in LIN28B protein levels between E13 and E16 (Fig. 2.1 L, M). In 
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addition to Lin28b and Hmga2, we quantified the expression of the Lin28b paralog 

Lin28a as well as Lin41. Lin41 encodes for an E3 ubiquitin ligase-like protein that, 

similar to Lin28b, shares a mutually antagonistic relationship with the let-7 miRNAs and 

has been shown to regulate progenitor differentiation in other systems (Ecsedi and 

Grosshans, 2013). Like Lin28b and Hmga2, Lin28a and Lin41 were rapidly 

downregulated in the differentiating cochlear epithelium (Fig. 2.1 J, K); however, the 

expression of each of these genes was significantly lower than that of Lin28b, -

approximately 225x and 45x lower at E13.5, respectively (Fig. 2.1K). 

The dramatic decline in LIN28B levels in the differentiating cochlea strongly 

correlated with a rise in let-7 miRNA expression. The murine let-7 family is comprised of 

nine mature let-7 miRNA species (let-7a, let-7b, let-7c, let-7d, let-7e, let-7f, let-7g, let-7i 

and mir-98) (Thornton and Gregory, 2012). Our qPCR analysis revealed that eight out of 

nine let-7 miRNA species were expressed in the early postnatal auditory sensory 

epithelium and that with the exception of let-7i, showed a rapid rise in mature let-7 

transcript expression with the advancement of cochlear differentiation and maturation 

(Fig. 2.2 G, H). Our analysis also revealed a steady increase in the levels of mir-125b 

during cochlear differentiation (Fig. 2.2 G, H). Mir-125b and mir-125a, vertebrate 

homolog’s of the C. elegans heterochronic gene lin-4 (Lagos-Quintana et al., 2002), are 

critical regulators of Lin28a/b expression (Wu and Belasco, 2005).  ISH-based analysis 

using locked nucleic acid (LNA) probes revealed high expression of let-7f and let-7c in 

early postnatal cochlear and vestibular HCs and cells of the cochlear and vestibular 

ganglion.  In contrast to mir-183, whose expression was confined to HCs and spiral 

ganglion cells (Sacheli et al., 2009; Weston et al., 2006), let-7f and let-7c were also 
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expressed in SCs and non-sensory epithelial cells of the greater epithelial ridge (Fig. 2.2 

A-F). In summary, our expression analysis revealed reciprocal expression of Lin28b and 

mature let-7 miRNAs in the developing cochlea, with Lin28b being highly expressed in 

undifferentiated prosensory cells, and mature let-7 miRNA species being highly 

expressed in terminally differentiated HCs and SCs. 

 

LIN28B overexpression delays prosensory cell differentiation.  

 Based on the opposing expression pattern of Lin28b and let-7 miRNAs in the 

differentiating murine cochlea, and the known heterochronic function of this axis in C. 

elegans larval development (Ambros and Horvitz, 1984), we hypothesized that Lin28b 

might be functioning as an intrinsic regulator of developmental timing in the mammalian 

cochlea. In order to address the function of the Lin28b/let-7 axis in the murine cochlea, 

we made use of the iLIN28B transgenic mouse line (Zhu et al., 2011a). In this mouse line, 

a flag-tagged human LIN28B transgene is under the control of a tetracycline-responsive 

promoter element (TRE). When combined with a ubiquitous (Rosa26) or inner ear-

specific (Pax2) reverse tetracycline transactivator (rtTA) transgene, doxycycline (dox) 

administration resulted in robust LIN28B overexpression within the developing cochlear 

duct (Fig. 2.3 A-E). In addition, due to Lin28b’s inhibitory function on let-7 miRNA 

biogenesis, LIN28B overexpression resulted in more than an 80% reduction in mature let-

7 miRNA expression within the developing cochleae of iLIN28B transgenic embryos (Fig. 

2.3 F). 

To determine if LIN28B overexpression might inhibit or delay prosensory cell 

differentiation, HC-specific Atoh1/nEGFP reporter expression was used to monitored HC 
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differentiation in E13.0 LIN28B overexpressing (Rosa26-M2 rtTA tg/+; iLIN28B tg/+; 

Atoh1/nEGFP tg/+) and non-transgenic littermate control (Rosa26-M2 rtTA tg/+; 

Atoh1/nEGFP tg/+) cochlear explants over three days (Fig. 2.4 A-J). HC differentiation 

follows a steep basal-to-apical gradient and a less steep medial-to-lateral gradient, 

causing basally located HCs to differentiate prior to more apically located HCs and 

medial IHCs to differentiate prior to more lateral OHCs (Chen et al., 2002b; Sher, 1971). 

After 16 hours in vitro (HIV), a stripe of GFP+ IHCs was visible in the cochlear base of 

control explants (Fig. 2.4 B, J). In contrast, LIN28B overexpressing cochlear explants 

remained undifferentiated after 16 HIV (Fig. 2.4 C, J). 16 hours later (32 HIV), IHCs in 

LIN28B overexpressing cochlear cultures became apparent (Fig. 2.4 E, J) and over the 

next 32 hours, HC differentiation progressed at a similar rate in control and LIN28B 

overexpressing cultures (Fig. 2.4 J). Consistent with the observed delay in HC 

differentiation in vitro, both IHC and OHC differentiation was less advanced in acutely 

isolated E15.5 LIN28B overexpressing cochlear tissue compared to control (Fig. 2.4 T).  

To rule out that the observed delay in cochlear HC differentiation was due to a 

more general developmental delay, an inner ear-specific overexpression approach was 

employed (Fig. 2.3 C-E) and the basal-to-apical extent of HC differentiation was 

analyzed using the HC-specific protein myosin VI (MYO6)(Avraham et al., 1995). Our 

analysis revealed that similar to global overexpression, selective, inner ear-specific 

LIN28B overexpression delayed auditory HC differentiation. In E15.5 non-transgenic 

control animals (Pax2-Cre tg/+; rtTA tg/+) MYO6+ IHCs were present throughout 

nearly the entire length of the cochlear duct (Fig. 2.4 L, N, P, U) and MYO6+ OHCs 

were already evident in the cochlear base (Fig. 2.4 L, N, U). In contrast, cochlear tissue 
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from Pax2-iLIN28B transgenic littermates (Pax2-Cre tg/+; rtTA tg/+; iLIN28B tg/+) 

contained no MYO6+ OHCs yet (Fig. 2.4 M, O, U) and MYO6+ IHCs were not found as 

far apically as in control cochlear tissue (Fig. 2.4 M, O, Q, U).   

To determine the time window of this LIN28B-driven differentiation delay, we 

next acutely overexpressed LIN28B. Timed mated females were put on dox feed 

beginning at E12.5 and cochlear explant cultures were obtained 12 hours later, at E13.0 

(Fig. 2.5 B). Overexpression of the iLIN28B construct takes approximately 24 hours (Fig. 

2.5 A), indicating that LIN28B was still being upregulated when these cultures were 

begun. Because of this, LIN28B overexpression was not yet adequate to delay the onset of 

HC differentiation in the cochlear base; however, a significant delay in apical HC 

differentiation was observed after 48 hours (Fig. 2.5 C). This observation was 

recapitulated with lentiviral-mediated overexpression of murine Lin28b as well (Fig. 2.5 

D-H).  

 

LIN28B overexpression results in a delay in prosensory cell cycle exit.  

We next assayed the effects of LIN28B overexpression on prosensory cell 

proliferation. Lin28b functions as an oncogene in many tumors (Molenaar et al., 2012; 

Urbach et al., 2014; Viswanathan et al., 2009); however, little is known about Lin28b’s 

role in controlling cell proliferation during normal development. In the mammalian 

cochlea, prosensory cells withdraw from the cell cycle in a striking apical-to-basal 

gradient. Murine prosensory cells exit the cell cycle within a 48-hour time window, with 

apical prosensory cells exiting the cell cycle as early as E12.5 and the most basal 

progenitors exiting as late as E14.5 (Lee et al., 2006; Ruben, 1967). To determine 
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whether higher than normal LIN28B protein levels might delay prosensory cell cycle exit, 

a series of EdU pulse chase experiments were performed and EdU incorporation in 

differentiated HCs and SCs was analyzed at E18.5. Cytoplasmic myosin VII a (MYO7A) 

staining was used to identify HCs and nuclear p27/Kip1 and SOX2 staining were used to 

identify SCs (Chen and Segil, 1999a; Hasson et al., 1997). In the first set of experiments 

timed mated dams received a single injection of EdU at E13.5, the peak of cell cycle 

withdrawal. These experiments revealed that at stage E13.5 basally located HC and SC 

precursors in both control and LIN28B over-expressing cochlea were actively dividing 

and incorporated EdU at a similar rate (Fig. 2.6 A-D, N). However, whereas in control 

cochlear tissue HC and SC precursors located further apically had largely withdrawn 

from the cell cycle, in the LIN28B over-expressing cochleae HC and SC precursors 

continued to proliferate and incorporate EdU at a significantly higher rate than controls 

(Fig. 2.6 E-L, N). To determine whether the altered pattern of HC and SC precursor 

proliferation was due to a delay in the initial onset of cell cycle withdrawal, a single 

injection of EdU was administered at E12.5 and EdU incorporation in apically located 

HCs was analyzed at E18.5. Our analysis revealed that at E12.5 the majority of apical 

prosensory cells were actively cycling in LIN28B overexpressing cochleae, whereas in 

control cochleae, prosensory cells had started to withdraw from the cell cycle (Fig. 2.6 

M). Consistent with a shift in timing rather than a permanent derailment of prosensory 

cell cycle withdrawal, EdU injections for three consecutive days beginning at E14.5, only 

labeled basally located HCs in LIN28B overexpressing cochleae. No EdU labeled cells 

were observed within the auditory sensory epithelium further apically, indicating that 

once post-mitotic, HC and SC precursors permanently withdrew from the cell cycle in the 
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LIN28B overexpressing cochlea (Fig. 2.6 O-Q). Furthermore, no proliferation was 

detected in either control or iLIN28B sensory epithelia at E15.5 (Fig. 2.7 A, B). 

  At E18.5, HC differentiation and patterning is largely complete in the murine 

cochlea. In non-transgenic littermate control cochleae, the typical stereotyped pattern of 

one row of IHCs and three rows of OHCs (Fig. 2.6 A, E, I, P) resting on a single layer of 

SCs (Fig. 2.6 C, G, K, P) was observed throughout the length of the cochlear duct. In 

contrast, the stereotyped organization of HCs and SCs was disrupted in the cochlear base 

of E18.5 Pax2-iLIN28B transgenic embryos. Ectopic IHCs were frequently observed in 

the basal segment of the LIN28B overexpressing cochleae (Control = 1.6 ± 0.5 ectopic 

IHCs per 1mm, iLIN28B = 14.7 ± 4.6 ectopic IHCs per 1mm, n = 5 animals/group, p = 

0.045; Fig. 2.6 B; Fig. 2.7 F). In addition, OHCs were frequently missing, resulting in 

patches of sensory epithelium containing only two rows of OHCs (Control = 0.7 ± 0.7 

missing OHCs per 1mm, iLIN28B = 34 ± 9 missing OHCs per 1 mm, n = 5 animals/ 

group, p = 0.02; Fig. 2.6 B; Fig. 2.7 G). These HC patterning defects were mostly 

confined to the cochlear base; cellular patterning of the auditory sensory epithelium in 

more apical segments of the LIN28B overexpressing cochleae was largely normal (Fig. 

2.6 F, J; Fig. 2.7 F, G).  Interestingly, despite prolonged proliferation of both HC and SC 

precursors, only the number of SCs was increased in the iLIN28B cochleae (Fig. 2.6 R; 

Fig. 2.7 D, E). SCs were more densely packed, and in contrast to the single SC layer in 

control cochleae (Fig. 2.6 C, G, K, P), SCs were frequently found stacked on top of each 

other within LIN28B overexpressing cochleae (Fig. 2.6 D, H, L, Q). In addition to the 

observed cellular patterning defects, maturation of HCs and SCs was delayed in iLIN28B 

cochleae as evidenced by delayed down-regulation of the prosensory marker SOX2 in 
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HCs (Fig. 2.6 P, Q) and delayed up-regulation of the SC-specific marker S100 (Fig. 2.7 H, 

I). 

What is the molecular basis of the LIN28B-mediated delay in prosensory cell 

cycle withdrawal and differentiation? One possible mechanism is that the up-regulation 

of let-7 target genes due to lower than normal let-7 levels alters the timing of prosensory 

proliferation and differentiation. Recent studies have revealed a critical role for the let-7 

targets Igf2bp1 (Imp1), Hmga2 and Lin41 (Trim71) in neuronal stem cell/ progenitor cell 

maintenance (Nishino et al., 2008; Nishino et al., 2013; Schulman et al., 2008). Our 

analysis of let-7 target gene expression revealed that LIN28B overexpression significantly 

increased transcript levels of Igf2bp1, Lin41 and Hmga2 (Fig. 2.6 S). Furthermore, 

LIN28B overexpression significantly increased the expression of the let-7 targets N-Myc 

(Mycn) and Cyclin D1 (Ccnd1) (Buechner et al., 2011; Zhao et al., 2010), which have 

been shown to positively regulate prosensory cell proliferation in the murine cochleae 

and vestibular organs (Dominguez-Frutos et al., 2011; Kopecky et al., 2011b; Laine et al., 

2010) (Fig. 2.6 S).  

 

Let-7 overexpression results in premature progenitor cell cycle exit but does not 

cause precocious differentiation.  

To test whether LIN28B regulates prosensory proliferation and differentiation via 

a let-7-dependent mechanism, we made use of transgenic mice that express a Lin28a/b-

resistant form of let-7g under the control of a tetracycline response element (Fig. 2.8 A) 

(Zhu et al., 2011a). When combined with either a ubiquitous or inner ear-specific rtTA, 

dox administration induced a more than 15 fold increase in let-7g miRNA expression 
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within the developing cochlear duct (Fig. 2.8 B). Let-7g overexpression significantly 

reduced Hmga2 mRNA (Fig. 2.8 D; Fig. 2.9 E, F) and LIN28B protein levels (Fig. 2.8 C, 

D).  To determine whether higher than normal let-7 levels might cause precocious 

prosensory cell cycle withdrawal, dox-fed timed-mated dams received a single injection 

of EdU at E13.5 and EdU incorporation within Pax2-ilet-7 transgenic and control 

embryos was analyzed 24 hours later (Fig. 2.8 F). Our EdU incorporation analysis 

revealed a dramatic decrease in the number of proliferating SOX2+ prosensory cells 

within ilet-7 transgenic cochleae (Fig. 2.8 G-I). In let-7g overexpressing cochleae less 

than 5% of basally located prosensory cells incorporated EdU compared to more than 

30% in control (Fig. 2.8 I). In addition, global (Rosa26-ilet-7) as well as inner ear 

specific (Pax2-ilet-7) let-7 overexpression caused defects in cochlear outgrowth, and at 

E18.5 let-7 overexpressing cochleae were 40% shorter than controls (Fig. 2.9 C, K). 

Likely due to the premature prosensory cell cycle withdrawal, both IHC and OHC density, 

as well as total HC number was significantly reduced (Fig. 2.9 L, M). Moreover, the 3rd 

row of OHCs was frequently missing in the ilet-7 cochleae (Fig. 2.9 I, J, N).  Surprisingly, 

the timing of HC differentiation appeared to be unaffected by let-7 overexpression. At 

E14.5, both Rosa26-ilet-7 cochleae and non-transgenic littermate control cochleae had a 

similar extent of HC differentiation along the length of the cochlear duct. Atoh1/nEGFP 

positive IHCs were observed only within the basal half of the cochlear duct; the apical 

half remained undifferentiated (Fig. 2.9 A-D). Similarly, no difference in HC-specific 

Atoh1 mRNA expression was observed in E14.5 Pax2-ilet-7 transgenic cochlear tissue 

compared to non-transgenic littermate controls (Fig. 2.9 G, H). In summary, our analysis 

suggests that the Lin28b/let-7 circuit controls the timing of prosensory cell cycle 
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withdrawal in the developing cochlea. However, in contrast to LIN28B overexpression, 

let-7g overexpression had little effect on the timing of HC differentiation, suggesting that 

Lin28b utilizes a distinct, let-7-independent mechanism in regulating the timing of HC 

differentiation. Alternatively, it is possible that let-7 overexpression alone is insufficient 

to induce HC differentiation and that additional signaling factors are necessary to mediate 

this effect. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	
   35 

DISCUSSION 

Regulation of Lin28b/let-7 expression in the developing cochlea 

The differentiating inner ear cochlea expresses hundreds of miRNA species and 

RNA binding proteins, indicating that post-transcriptional regulation is likely to play an 

important role in controlling the dynamics of cochlear development. Here we have 

demonstrated that the RNA-binding protein LIN28B is a critical component of a timing 

mechanism that regulates both prosensory cell cycle withdrawal and differentiation in the 

murine cochlea. We have found that the evolutionary conserved LIN28B/let-7 circuit is 

active in the developing cochlear epithelium. Lin28b is specifically expressed in 

prosensory progenitors and is rapidly down-regulated upon differentiation, whereas levels 

of mature let-7 miRNAs rise during prosensory differentiation and are highly expressed 

in early postnatal HCs and SCs. LIN28B inhibits mature let-7 miRNA processing, and 

likely serves a critical role in let-7’s post-transcriptional regulation within the developing 

cochlea. Despite the mutually antagonistic relationship between Lin28b and the let-7s; 

however, it is unlikely that the initial down-regulation of Lin28b is mediated by the let-7s, 

since these miRNAs are only upregulated after Lin28b down-regulation. Instead, we 

hypothesize that mir-125b mediates Lin28b’s down-regulation. Similar to the let-7 

miRNAs, mir-125b targets the expression of Lin28b; however, unlike the let-7 miRNAs, 

Lin28b and mir-125b do not share a mutually antagonistic relationship, and LIN28B is 

unable to regulate mir-125b’s expression (Rybak et al., 2008; Wu and Belasco, 2005; 

Wulczyn et al., 2007). Here we show that mir-125b is highly expressed in the 

undifferentiated (E13) cochlear epithelium and continues to be upregulated during 

differentiation. Previous studies have found that mir-125 starts to be expressed prior to 
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let-7 miRNAs in the embryonic mouse (Schulman et al., 2005), indicating that this 

regulatory mechanism, that is highly prevalent during C. elegans development, is likely 

to be evolutionarily conserved (Nimmo and Slack, 2009). Further experiments are needed 

to determine the effects of mir-125b gain or loss of function on cochlear epithelial 

development.  

 

Lin28b acts through a let-7 dependent mechanism to time prosensory cell cycle 

withdrawal but not differentiation 

The regulatory functions of the RNA binding protein LIN28B and its opposing 

let-7 miRNAs have been extensively studied in stem cells, tumor models and adult 

tissues; however, little is known about their function during embryonic development. 

Here we provide evidence that the LIN28B/let-7 circuit is critical for the proper timing of 

prosensory cell cycle exit in the murine cochlea. We show that higher than normal 

LIN28B protein levels delayed the onset of prosensory cell cycle exit, whereas increased 

let-7 levels resulted in premature cell cycle exit. The opposing effects of LIN28B and let-

7g overexpression suggest that relative LIN28B/let-7 levels set the timing of prosensory 

cell cycle withdrawal in the murine cochlea. Furthermore, our finding that let-7g is 

sufficient to induce premature cell cycle withdrawal, suggests that LIN28B times 

prosensory cell cycle exit, at least in part, by repressing let-7 biogenesis.  Interestingly, 

even though both global as well as cochlear-specific LIN28B overexpression was 

sufficient to delay the onset of HC differentiation, similar let-7g overexpression strategies 

failed to induce premature HC differentiation. This is in stark contrast to let-7’s 

differentiation-promoting function in other tissues. For example, overexpression of let-7 
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in neuronal progenitors not only inhibits proliferation, but induces premature neuronal 

differentiation as well (Nishino et al., 2008; Nishino et al., 2013; Schwamborn et al., 

2009; Zhao et al., 2010; Zhao et al., 2013). How can this be explained? In many tissues, 

including the developing brain, timing of differentiation is tightly linked to timing of 

progenitor cell cycle exit.  However, in the murine cochlea the developmental timing of 

these processes is largely uncoupled (Chen et al., 2002b; Chen and Segil, 1999a). This 

difference is illustrated by the divergent behavior of the let-7 target Mycn within different 

tissue models. Similar to let-7 overexpression, loss of Mycn causes premature prosensory 

cell cycle withdrawal without altering the timing of HC differentiation within the 

developing cochlea (Dominguez-Frutos et al., 2011; Kopecky et al., 2011a).  In contrast, 

brain-specific deletion of Mycn results in both premature progenitor cell cycle exit and 

premature neuronal differentiation (Knoepfler et al., 2002). Of course, it is also possible 

that let-7g overexpression and Mycn knockdown fail to induce premature HC 

differentiation due to the absence of critical inductive cues or the presence of inhibitory 

signals. For instance, we have found that either the inhibition of Shh signaling or the 

activation of TGFβ (activin) signaling is sufficient to induce premature HC 

differentiation (Benito-Gonzalez and Doeztlhofer, 2014 and unpublished). Further 

experiments are needed to understand the influence of these signaling pathways on let-7 

function within the developing cochlea. 

 

Let-7 independent functions of LIN28B 

It is becoming increasingly clear that LIN28 proteins can function in a let-7 

independent manner (Balzer et al., 2010; Nowak et al., 2014) and several recent genome 
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wide studies have revealed that LIN28A and LIN28B can directly alter the protein 

abundance of hundreds of their mRNA targets through transcript stabilization and/or 

modulation of translational efficiency (Cho et al., 2012; Graf et al., 2013; Hafner et al., 

2013; Peng et al., 2011; Wilbert et al., 2012). Consistent with an important role in gene 

regulation, among the top LIN28B targets are RNA binding proteins, transcriptional 

regulators and RNA splicing factors (Hafner et al., 2013; Wilbert et al., 2012). We find 

this to be true in the embryonic cochlea as well. Recent microarray experiments 

comparing the gene expression profiles of iLIN28B versus control cochlea epithelia 

revealed that a number of genes, including morphogens, morphogen effectors, 

transcription factors, and RNA binding proteins, were differentially expressed upon 

LIN28B overexpression in the differentiating (E15.5) cochlear epithelium (Appendix A). 

While there were a number of let-7 target genes on this list, there were also many genes 

that lacked putative let-7 binding sites as well.  

One particularly interesting LIN28B target identified by our microarray was the 

TGF-β/BMP antagonist Follistatin (Fst). Fst is expressed in an apical-to-basal gradient 

within the developing cochlear epithelium and has been proposed, along with a cluster of 

other genes, to help establish apical versus basal identity (Son et al., 2015; Son et al., 

2012). We have found Fst to be significantly upregulated in iLIN28B cochlear epithelia 

(Appendix A). Similar to LIN28B overexpression, FST overexpression delays both cell 

cycle withdrawal and the onset of HC differentiation (A. Benito-Gonzalez, unpublished). 

We are currently working to determine whether LIN28B directly interacts with Fst or if 

indirect mechanisms mediate its enhanced expression. 
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We have also begun to try and identify upstream regulators of Lin28b expression 

during cochlear development. One potential candidate is the morphogen Shh, which has 

previously been shown to play an essential role in timing the onset of HC differentiation 

(Benito-Gonzalez and Doetzlhofer, 2014; Bok et al., 2013). We, and others, have shown 

that Shh overexpression inhibits the onset of HC differentiation, while blocking this 

pathway, for instance with the antagonist cyclopamine, accelerates HC differentiation 

(Benito-Gonzalez and Doetzlhofer, 2014). Intriguingly, we have observed that exogenous 

Shh treatment significantly upregulates Lin28b and Hmga2 transcript expression (A. 

Benito-Gonzalez, unpublished) and we are currently investigating this link between the 

Shh pathway and the Lin28b/let-7 axis. 

 It is widely believed that spiral ganglion-derived Shh is responsible for timing the 

onset of HC differentiation; however, this morphogen is also expressed by the developing 

notochord and floor plate, and this earlier expressed source of Shh appears to play an 

essential role in establishing apical versus basal identity in the developing cochlear duct. 

Constitutive Shh activity confuses regional identity in the developing cochlear epithelium, 

expanding the expression domain of apical genes and inhibiting the expression of basal 

genes. Among these apical genes is Fst, and notochord/floor plate derived Shh appears to 

be essential in establishing the apical-to-basal gradient of Fst expression (Son et al., 

2015). A direct link between Fst and Shh has yet to be established, and we hypothesize 

that Lin28b may mediate this interaction. Similar to Fst, there appears to be an apical-to-

basal gradient of Lin28b expression in the undifferentiated cochlear epithelium, with 

Lin28b expression appearing higher in the cochlear apex than base by in situ 

hybridization. Furthermore, given the similar effects of SHH, LIN28B, and FST 
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overexpression on HC differentiation, it seems likely that these are components of a 

common pathway. Experiments confirming this link are ongoing.  

In summary, we have demonstrated that the Lin28b/let-7 miRNA axis is active 

within the developing cochlea and plays a key role in coordinating the timing of 

progenitor cell cycle withdrawal and the onset of differentiation. Interestingly, LIN28B 

appears to act through both let-7-dependent and -independent mechanisms in 

coordinating these processes. Studies investigating the let-7-independent function of 

LIN28B are ongoing. 
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MATERIALS AND METHODS 

Mouse Breeding and Genotyping: All experiments and procedures were approved by the 

Johns Hopkins University Institutional Animal Care and Use Committees protocol, and 

all experiments and procedures adhered to National Institutes of Health-approved 

standards. The Atoh1/nEGFP transgenic line was obtained from Jane Johnson (University 

of Texas Southwestern Medical Center, Dallas) (Lumpkin et al., 2003). The iLIN28B and 

ilet-7g transgenic lines were obtained from George Q. Daley (Children’s Hospital 

Boston)(Zhu et al., 2011a). The Pax2-Cre line was obtained from Andrew Groves 

(Baylor College, Houston) (Ohyama and Groves, 2004). The M2-rtTA (stock #006965) 

and rtTA-EGFP (stock #005572) lines were purchased from Jackson Laboratories (Bar 

Harbor, ME). Mice were genotyped by PCR (see table below). Mice of both sexes were 

used in this study. All mouse lines were maintained on a mixed background of C57BL/6 

and CD-1. To induce iLIN28B expression, doxycycline (dox) was delivered to time-

mated females via ad libitum access to feed containing 2 grams of doxycycline per 

kilogram feed (Bioserv #F3893) starting at E8.5 and continuing until the embryonic 

tissue was harvested. To induce Rosa26-iLet-7 expression, dox treatment was begun at 

E11.5. To induce Pax26-iLet-7 expression, dox treatment was begun at E9.5. Embryonic 

development was considered as E0.5 on the day a mating plug was observed. Littermates 

expressing only the M2-rtTA or rtTA-EGFP transgene were used as controls.  
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Mouse Line Primer Name Primer Sequence 
Col1A1 (iLIN28B, 
iLet-7) ColfrtA GCA CAG CAT TGC GGA CAT GC 

  ColfrtB CCC TCC ATG TGT GAC CAA GG 
  ColfrtC GCA GAA GCG CGG CCG TCT GG 
M2-rtTA rtTA A GCG AAG AGT TTG TCC TCA ACC 
  rtTA B AAA GTC GCT CTG AGT TGT TAT 
  rtTA C GGA GCG GGA GAA ATG GAT ATG 
rtTA-EGFP rtTA mutant - F GAG TTC TCT GCT GCC TCC TG 
  rtTA mutant - R AAG ACC GCG AAG AGT TTG TC 
  rtTA wild type - F CGT GAT CTG CAA CTC CAG TC 
  rtTA wild type - R GGA GCG GGA GAA ATG GAT ATG 
Pax2-Cre Cre - Forward AAC ATG CTT CAT CGT CGG TCC GGG CTG C 
  Cre - Reverse GAC GGA AAT CCA TCG CTC GAC CAG TTT A 
Atoh1/nEGFP GFP - Forward CGA AGG CTA CGT CCA GGA GCG CAC CAT 

 GFP - Reverse  GCA CGG GGC CGT CGC CGA TGG GGG TGT 
TCT GC 

 

 

Tissue isolation: Embryos were removed from timed-mated females and staged using the 

EMAP eMouse Atlas Project Theiler staging criteria (http://www.emouseatlas.org). Inner 

ears were collected and dissected in HBSS (Life Technologies).  To free the cochlear 

epithelium (E13-E16), the vestibular portion of the inner ear was removed and the 

remaining cochlear portion was incubated in calcium-magnesium-free PBS (Life 

Technologies) containing dispase (1mg/ml; Life Technologies) and collagenase (1mg/ml; 

Worthington) for 8 minutes then placed in DMEM-F12 (Life Technologies) containing 

10% FBS for 30 minutes, the cochlear duct was then freed from surrounding 

mesenchyme by manual dissection with 30-gauge needles. To obtain cochlear sensory 

epithelia of stages E18 and older, the cochlear capsule and the spiral ganglion were 

removed prior to dispase/collagenase treatment.      
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RNA Extraction and Quantitative PCR: Total RNA including mature miRNAs was 

extracted from cochlea epithelia samples using the miRNeasy Micro Kit (QIAGEN). For 

mRNA expression analysis, mRNA was reverse transcribed into cDNA using the iScript 

cDNA synthesis kit (Bio-Rad). SYBR Green based qPCR was performed using Fast 

SYBR® Green Master Mix reagent (Applied Biosystems, Life Technologies #4385612) 

and gene-specific primers. For miRNA expression analysis, pre-designed TaqMan 

Assays (Applied Biosystems, Life Technologies) were used according to manufacturer’s 

instructions for two-step RT-qPCR.  qPCR reactions were carried out in triplicate using a 

StepOne Plus Real-Time PCR System (Applied Biosystems, Life Technologies). Relative 

gene expression was analyzed using the ΔΔCT method (Schmittgen and Livak, 2008). 

The ribosomal gene Rpl19 was used as an endogenous reference gene for SYBR Green-

based assays, and the snoRNA U6 was used as an endogenous reference gene for 

TaqMan-based miRNA measurements.  

 

Protocol 1: Total RNA Extraction (miRNEasy Micro Kit – Qiagen) 

1. Add 700ul QIAzol Lysis Reagent to sample and pipette to homogenize 

• At this step you can freeze at -80°, defrosting can be done in the 37° water 

bath 

2. Incubate at RT for 5 min 

3. Add 140ul chloroform and cap securely, shake vigorously for 15sec 

4. Incubate at RT for 2-3min 

5. Centrifuge for 15min at 12,000xg at 4°  
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6. Transfer upper aqueous phase (clear liquid at top) to a new tube and add 1.5 

volumes (usualy ~525ul) of 100% ethanol and mix by pipetting 

• Avoid transferring the interphase, this is where the protein is (can be saved 

for protein extraction) 

7. Pipette up to 700ul of the sample, including and precipitate that may have formed 

into an RNeasy mini or micro column. Centrifuge at >8000xg for 15s at room 

temperature. Discard flow-through. 

8. Repeat step 7 until the entire sample is loaded onto the column. 

9. Add 350ul of buffer RWT to the column and spin at >8000xg for 15s. Discard 

flow through. 

10. Combine 10ul of DNase with 70ul of buffer RDD and add all 80ul to the center of 

column (make sure to pipette directly onto membrane and not onto the sides of the 

column). Allow column to sit at RT for 15min. 

11. Add 350ul of buffer RWT to the column and spin at >8000xg for 15s. Discard 

flow through. 

12. Pipette 500ul Buffer RPE and spin at >8000xg for 15s. Discard flow through. 

13. Pipette 500ul Buffer RPE and spin at >8000xg for 2 min. Discard flow through. 

14. Can add third wash with either RPE or 80% ethanol if you are concerned with 

230/260 ratio (will make sure all extra salts are gone) 

15. Place column in a new 2 mL collection tube and centrifuge for 1 min at full speed 

without the lid to completely dry column membrane. 

16. Transfer column to a 1.5 mL collection tube. If using a mini column elute with 

30-50ul of RNase-free water. If using a micro column elute with 15ul RNase-free 
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water. To elute, pipette water directly onto the column membrane (not the walls) 

and spin for 1 min at >8000xg 

 

Protocol 2: SybrGreen RT-qPCR 

1. cDNA Synthesis (BioRad iScript cDNA Synthesis Kit) 

 1x Master Mix 
5x iScript RT Buffer 4µl 
RNA x µl (75ng min; 600-800ng ideal; 1µg max) 
iScript RT Enzyme 1µl 
dH2O To 20µl 

 
Cycling parameters: 25°C – 5 min; 42°C – 30 min; 85°C – 5 min; 4°C – ∞ 

2. Dilute primers to 3µM (working mix) by combining 6µl of forward and reverse 

stock (100µM) with 188µl dH2O 

• Pipette 2µl primer mix per well 

3. Make sample and negative control master mixes 

cDNA Mix 1x Master Mix 
cDNA x µl (0.1-0.5µl) 
SybrGreen 10µl 
dH2O To 18µl 

 

Negative Control Mix 1x Master Mix 
SybrGreen 10µl 
dH2O 8µl 

 

• Pipette 18µl 
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Gene Forward Primer Reverse Primer 
Atoh1 ATG CAC GGG CTG AAC CA TCG TTG TTG AAG GAC GGG ATA 
Ccnd1 TCC GCA AGC ATG CAC AGA GGT GGG TTG GAA ATG AAC TTC A 
Hmga2 CCC AAA GGC AGC AAA AAC AA CCA ATG GTC TCT GCT TTC TTC TG 
Igf2bp1 GGA GCA GAC CAG GCA AGC TA GGG CAT GGT TCT CCA GTT GA 
Lin28a TCC AAA GGA GAC AGG TGC TAC A TTG CAT TCC TTG GCA TGA TG 
Lin28b CAG ACA GGT CAC CCC AAG AAG TTT TGC TCT CCT ATT GCT GCA A 

LIN28B AAA GGG AAG ACA CTA CAG AAA 
AGA AAA GAT GAT CAA GGC CAC CAC AGT 

Lin41 AGG TGG CCT CTT TCA CTG TCA ATC AGG TCA CCT CCC GAA TG 
Mycn TCT AAC AAC AAG GCG GTA ACC A GCC CAG AGC GGA GGT CTT 
Rpl19 GGT CTG GTT GGA TCC CAA TG CCC GGG AAT GGA CAG TCA 

 

Protocol 3: Taqman RT-qPCR 

Step 1: Reverse Transcription 

 1x Master Mix 
10mM dNTPs with dTTP  1.5µl 
Reverse Transcriptase (200U/µl) 0.25µl 
M-MLV 5x Buffer 3µl 
Rnase Inhibitor (40U/µl) 0.1µl 
Nuclease Free H2O 2.15µl 
Total 7µ l 

 

Per Reaction Combine: 7µl master mix with 5µl RNA (RNA diluted to 2ng/µl) and 3µl 

of 5x RT primers (ie: Let7-c, Let7-f, or U6 primers) 

Cycling Parameters: 16°C – 30 min; 42°C – 30 min; 85°C – 5 min; 4°C – ∞ 

Store at -20°C if not using immediately 
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Step 2: TaqMan qPCR Reaction 

Reactions should be run in triplicate with 20µl per reaction 

 1x Reaction 3x Reaction 
TaqMan small RNA Assay (20x) 1µl 3.6µl 
Product from RT reaction 1.33µl 4.80µl 
TaqMan Universal PCR Master Mix (2x) 10µl 36µl 
Nuclease Free Water 7.67µl 27.6µl 
Total 20µ l 72µ l 

 

Cycling Parameters:  95°C – 10 min; 40 Cycles: 95°C – 15 sec; 60°C – 60 sec 

Ordering Information: 
M-MLV Reverse Transcriptase (Promega #M1701) 
GeneAmp dNTPs (Applied Biosystems #N808-0007) 
RNase Inhibitor (NEB #M0307S) 
Taqman Universal PCR Master Mix (Applied Biosystems/Roche #4304437) 

 

miRNA Assay ID (Life Tech) 

U6 snRNA 001973 
hsa-let-7a 000377 
hsa-let-7b 000378 
hsa-let-7c 000379 
hsa-let-7d 002283 
hsa-let-7e 002406 
hsa-let-7f 000382 
hsa-let-7g 002282 
hsa-let-7i 002221 
miR-98 000577 
miR-125a 002198 
miR-125b 000449 
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Immunoblotting: Cochlear epithelia were placed in lysis buffer (50mM HEPES, 150mM 

NaCl, 1mM EDTA, 10% glycerol, 1% tritonX-100, 0.2% SDS, pH7.9) supplemented 

with fresh Complete Protease Inhibitor (Roche). Equal amounts of cochlear lysate were 

resolved on NuPAGE 4-12% Bis-Tris Gels (Novex, Life Technologies) and transferred to 

PVDF membrane by electrophoresis. Membranes were blocked in 10% BSA in TBST 

and immunoblotted: rabbit anti-Lin28b 1:1000 (Cell Signaling #5422), mouse anti-β-

actin 1:3000 (Ambion #AM4302), rabbit anti-Flag 1:1000 (Cell Signaling #2368). HRP-

conjugated secondary antibodies from Jackson ImmunoResearch were used at a 

concentration of 1:7500 (goat anti-rabbit IgG #111-035-003; sheep anti-mouse IgG #515-

035-003). Signal was revealed using a Western Lightening-ECL kit (Perkin Elmer) 

according to manufacturer’s instructions. 

 

Protocol 4: Western Blotting 

Step 1: Tissue Collection 

1. Dissect tissue of interest and keep on ice to avoid protein degradation 

2. If tissue is not being used that day, snap freeze using liquid nitrogen or dry ice 

and store at -80°C 

3. Prepare Lysis Buffer and supplement with Roche Complete Protease Inhibitor just 

prior to lysis 

• Lysis Buffer (Meffert Lab Recipe): 50mM HEPES, 150mM NaCl, 

1mM EDTA, 10% glycerol, 1% tritonX-100, 0.2% SDS, pH7.9 – store 

at RT 



	
   49 

•  1 Roche Complete Mini Tablet in 2 mL gives 25x stock – aliquot and 

store in -20°C freezer 

4. Lyse tissue in appropriate amount of lysis buffer 

• e.g. 3 embryonic cochlea in 50µl buffer 

5. Homogenize tissue using pipette, needle, or pestle 

6. Rotate sample (end over end) at 4°C for 15 min 

7. Spin sample at 13,000 RPM for 15 min at 4°C and collect supernatant  

• Protein concentration can be determine using Bradford Assay or 

Coomasi gel 

8. Add NuPage denaturing agent (10x) and NuPage LDS sample dye (4x) to sample 

• Can run up to 20µl of sample per well 

9. If boiling is necessary, heat sample to 85°C for 5 min prior to loading gel 

Step 2: Electrophoresis 

1. Prepare 800 mL of NuPage MES SDS running buffer from 20x stock  

• Take 200 mL of 1x buffer and add 500µl of antioxidant 

2. Snap together gel box and gel. Add running buffer w/ antioxidant to center 

portion and the remaining running buffer w/o additive to the outer portion 

3. Load first well with 10µl of ladder 

4. Load up to 20µl of sample per well 

5. Run gel at 200V for 40 min 
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Step 3: Transfer 

Transfer Buffer (Reed Lab Recipe) 1 Liter 
Tris Base 5.82 g 
Glycine 2.93 g 
MeOH 200 mL 
SDS 0.375 g 
dH2O Up to 1 liter 

 

1. Once gel has finished running, crack case and soak gel in transfer buffer for 20 

min with shaking at RT 

2. Meanwhile, cut appropriate size piece of PVDF membrane (e.g. 8cm x 8cm) and 

activate in MeOH for 1 min 

• After activation, soak PVDF membrane in transfer buffer until gel is 

done soaking (10-15 min) 

3. Prepare appropriate size pieces of blotting pad (2) and Watman paper (x2) and 

wet with transfer buffer 

4. Build “transfer sandwich” (bottom to top) 

• 1 piece blotting pad 

• 1 piece Watman paper 

• PVDF membrane 

• Protein gel 

• 1 piece Watman paper 

• 1 piece blotting pad 

5. Make sure sandwich is sufficiently wetted with transfer buffer and use falcon tube 

to role out any bubbles 
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6. Place sandwich in Semidry Transfer Apparatus (BioRad, belongs to Reed Lab) 

and run at 15V for 15 min 

7. When run is finished carefully take apart sandwich and remove PVDF membrane 

using forceps 

Step 4: Blotting 

All steps done with shaking 

1. Wash membrane 3x 5 min in TBST at RT 

2. Block for 1 hour in 5% BSA in TBST (0.5g BSA in 10mL TBST) at RT 

3. Dilute 1° antibody in 10 mL 5% BSA and incubate membrane overnight at 4°C 

• 1° antibody can be saved and reused! 

4. Wash membrane 3x 5 min in TBST at RT 

5. Dilute HRP conjugated 2° antibody 1:7,500 in TBST  and incubate membrane 

2hrs at RT 

6. Wash membrane 3x 5 min in TBST at RT 

7. Develop blot in Western Lightening ECL solution 

• Mix 2 solutions 1:1 (e.g. 2 mL each) 

• Pipette onto membrane and allow to penetrate for 1 min 

• Wrap in saran wrap or other clear plastic and place in developing 

cassette 
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In Situ Hybridization and Immunostaining: Embryo heads (E11-E16) or inner ears (E18 

and older) were fixed in 4% paraformaldehyde in PBS overnight at 4°C then cryo-

protected through sucrose gradient: 10% sucrose 30 minutes at RT, 15% sucrose 1hr at 

RT, 50:50 30% sucrose:OCT overnight at 4°C. Prior to cryo-sectioning samples were 

submerged in OCT (Tissue-Tek, Sakura) and flash frozen. 14µM sections were collected 

on SuperFrost Plus slides (Fisher). pBluescript II (Stratagene) and pGem-T easy 

(Promega) vectors containing mouse Atoh1, Sox2, Lin28b, and Hmga2 cDNA were used 

as templates to synthesize digoxigenin-labeled antisense RNA probes according to the 

manufacturer’s specifications (Roche). Custom-made 5’ digoxygenin -labeled locked 

nucleic acid probes (miRCURY LNA™) from Exiqon were used for let-7f and let-7c ISH. 

Probes were detected with the anti-DIG-AP (alkaline phosphatase conjugated) antibody 

(Roche) and the color reactions were developed using BM Purple AP Substrate (Roche).  

 

Protocol 5: mRNA I In Situ Hybridization Probe Production 

Step 1: Extract genes from plasmid vector by PCR 

 Master Mix 
Nuclease Free H2O 76.5µl 
10x NEB Buffer 10µl 
dNTP (10mM) 2µl 
T7 Primer (10µM) 5µl 
SP6 or T3 Primer (10µM) 5µl 
NEB Taq 0.5µl 
Total 100µ l 
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Cycling Parameters:  95°C – 1 min; 35 Cycles: 95° – 30 sec; 55° – 30 sec; 72° – 1 min; 

then 72°C – 7 min; 4°C – ∞ 

Step 2: In vitro transcription 

 Master Mix 
5x transcription buffer 10µl 
Linear DNA Template 1-2µg 
100mM DTT  2.5µl 
RNase Inhibitor (40U/µl) 2.5µl 
DIG RNA labeling mix 5µl 
T3 or SP6 or T7 RNA polymerase 2.5µl 
Nuclease Free H2O Up to 50µl 

 

1. Incubate 2 hours at 37ºC 

2. Add 1µl RNase-Free DNase and incubate 30 min at 37ºC 

3. To precipitate RNA add 100µl TE Buffer, 10µl 4M LiCl, 300µl 100% EtOH to 

probe, mix, and store at -20ºC  

4. To use RNA probe: spin at max speed (13000) refrigerated (8ºC) for 30 min 

5. Re-suspend pellet in 40µl DEPC H2O or TE Buffer 

6. Store at -20ºC 

 

Protocol 6: mRNA In Situ Hybridization 

Day 1 (RNase Free!): 

1. 15 min in 100% MeOH at -20ºC 

2. Rinse in autoclaved H2O 



	
   54 

3. 30 min air dry 

4. Bake 20 min at 54ºC 

5. 10 min in 4% PFA/PBS 

6. Rinse in 1x PTw 

• 50 mL 10x PBS 

• 5 mL 10% Tween-20 

• Up to 500 mL autoclaved H2O 

7. 5 min x 2 in PTw 

8. ProK solution for 3 min 

• 2.5 mL 1x PBS 

• 12.5 µl ProK 

• Up to 50 mL autoclaved H2O 

9. Rinse in 1x PTw 

10. 5 min x 2 in PTw 

11. Rinse in autoclaved H2O 

12. 15 min Acetylation (TEA) 

• 1 mL TEA 

• 250 µl acetic anhydride 

• Up to 50 mL autoclaved H2O 

13. Rinse in 1x PTw 

14. 5 min x 2 in PTw 

15. Rinse in autoclaved H2O 

16. 30 min to 1 h air dry 
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17. Hybridize in probe O/N at 68ºC 

• Combine 20 mL Hybridization Buffer with 40µl probe (~1µg/mL) 

o Hybridization Buffer (50 mL) 

! 25 mL Formamide 

! 12.5 mL 20x SSC 

! 0.5 mL 10% Tween-20 

! 0.5 mL 10% CHAPS 

! 0.5 mL 0.5M EDTA 

! 125 µl tRNA (20 mg/mL) 

! 0.005g Heparin 

! Up to 50 mL autoclaved H2O  

Day 2: 

1. 10 min in 0.2x SSC at 68ºC 

2. 25 min in 0.2x SSC at 68ºC 

3. 25 min in 0.2x SSC at 68ºC 

4. 5 min TBST at RT x 2 

• 25 mL 10x TBS 

• 25 mL 10% Tween-20 

• 0.1g Levamisole 

• Up to 250 mL autoclaved H2O 

5. Block 1 hour in 10% goat serum in TBST 

6. Dilute anti-DIG-AP antibody 1:2000 in blocking buffer and incubate 2 hrs at RT 
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7. Rinse in TBST 

8. 5 min TBST at RT x 3 

9. 15 min in NTMT x 2 

• 2 mL 2.5M NaCl 

• 10 mL 100mM Tris (pH 9.5) 

• 250µl 2M MgCl2 

• 500µl 10% Tween-20 

• Up to 50 mL autoclaved H2O 

10. Develop in BM Purple O/N at RT 

11. Rinse in PBS and H2O to stop reaction and mount in Fluoromount G 

 

Protocol 7: miRNA In Situ Hybridization  

Step 1: Tissue Preparation 

1. Briefly fix tissue in 4% PFA in DEPC PBS at RT 

• Postnatal inner ears: 15 min 

• Embryonic heads: 30 min 

2. Cryopreserve tissue 

• 10% sucrose 30 min at RT 

• 15% sucrose 1 hour at RT 

• 1:1 30% sucrose:OCT at 4ºC O/N 

3. Place tissue in fresh OCT in mold, orient, and freeze in liquid nitrogen 

4. Collect 14 µm sections at -15-20ºC 
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5. Allow sections to dry 30 min – 3 hours at RT (no longer), use immediately or 

store at -80ºC 

• When defrosting sections allow to dry at RT for 30 min 

Day 1 (RNase Free!): 

1. Bake slides at 52ºC 10-30min 

2. Fix slides 10 min in 4% DEPC PFA 

3. Wash 3x 3 min in DEPC PBS 

4. Acetylate 10 min 

• 5 mL triethanolamine (TEA) 

• 1.25 mL acetic anhydride 

• Up to 250 mL DEPC H2O  

5. Wash 1x 5 min in DEPC PBS 

6. Proteinase K treatment 10 min at 37ºC 

• 250 mL DEPC PBS + 1 µl proK stock (20 mg/mL) 

7. Wash 3x 3 min in DEPC PBS 

8. Pre-hybridize 1-8 hours at RT in hybridization buffer 

Hybridization Buffer Approx. 18 mL 
Formamide 10 mL 
20x SSC 5 mL 
Yeast tRNA (20 mg/mL stock)  250 µl 
Salmon Sperm DNA (10 mg/mL)* 1 mL 
10% CHAPS 500 µl 
20% Tween-20 100 µl 
Autoclaved H2O 1.15 mL 

 

*Deactivate salmon sperm DNA by heating to 95ºC for 5 min 
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9. Prepare LNA probes 

• Dilute LNA miRNA probe to 2pmol/µl stock 

o https://www.exiqon.com/oligo-tools 

• Add 1.5µl probe to 20µl of hyb. buffer and denature at 80ºC for 5 min, 

then place immediately on ice 

• Add 130µl of hyb. buffer to denatured probe and add 150µl diluted 

probe per slide 

• To prevent drying, gently coverslip slides and place in chamber 

humidified with 5xSSC/50% formamide)  

10. Hybridize slides overnight at 52ºC 

•  Hybridization Temperature = Probe Tm - 30ºC 

Day 2: Low Stringency Washes 

Pre-warm solutions in incubator or water bath 

1. Float off coverslips in 2x SSC at 50ºC 

2. Wash 3x 10 min in Buffer B1 at 37ºC 

• 20 mL 1M Tris (pH 7.5) 

• 12 mL 2.5M NaCl 

• 218 mL H2O 

3. Equilibrate in Buffer B1 10 min at RT 

4. Block 1 hour at RT in Buffer B1 + 10% goat serum 

5. Dilute anti-DIG antibody (Roche) 1:2000 in Buffer B1 and incubate O/N at 4ºC 

Day 2: High Stringency Washes 
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Pre-warm solutions in incubator or water bath 

1. Float off coverslips in 2x SSC at 50ºC 

2. Wash in HSW for 30 min at 50ºC 

• 150 mL formamaide 

• 30 mL 20x SSC 

• 120 mL H2O 

6. Wash 3x 10 min in Buffer B1 at 37ºC 

• 20 mL 1M Tris (pH 7.5) 

• 12 mL 2.5M NaCl 

• 218 mL H2O 

7. Wash in HSW for 30 min at 50ºC 

8. Wash in 2x SSC for 15 min at 37ºC 

9. Equilibrate in Buffer B1 10 min at RT 

10. Block 1 hour at RT in Buffer B1 + 10% goat serum 

11. Dilute anti-DIG antibody (Roche) 1:2000 in Buffer B1 and incubate O/N at 4ºC 

Day 3: 

1. Wash slides 3x 5 min in Buffer B1 at RT 

2. Equilibrate 15 min in Buffer B3 

• 20 mL 1M Tris (pH 9.5) 

• 8 mL 2.5 M NaCl 

• 5 mL 2M MgCl 

• 167 mL H2O 
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3. Develop slides at RT in humidified chamber with BM Purple (Roche) for 1 to 4 

nights or until sufficient signal is achieved.  

4. Rinse in PBS and H2O to stop reaction and mount in Fluoromount G 

5’ DIG LNA Probes (Exiqon) 

miRNA Product Number 

hsa-let-7a 18000-01 
hsa-let-7b 38001-01 
hsa-let-7c 38002-01 
hsa-let-7f 18005-01 
hsa-let-7g 38503-01 
hsa-miR-125a-5p 38521-01 
hsa-miR-125b 18022-01 
hsa-miR-183 38490-01 
scramble-miR 99004-01 

 

Immuno-staining was performed according to the manufacture’s specifications. Primary 

antibodies: rabbit anti-myosin VI (1:1000, Proteus #25-6791), rabbit anti-myosin VIIa 

(1:500, Proteus #25-6790), goat anti-SOX2 (1:500, Santa Cruz #sc-17320), mouse anti-

p27/Kip1 (1:200, NeoMarkers/Thermo #MS-256-P1), rabbit anti-S100 (1:500, Abcam 

#ab868), and rabbit anti-dsRed (1:500 Clontech #632496). Alex Fluor (488, 546, and 

633) labeled secondary antibodies were used to visualize staining (1:1000, Molecular 

Probes/ Life Technologies). Stereocilia were visualized with fluorescently labeled 

phalloidin (1:500, Molecular Probes/ Life Technologies). For anti-p27/Kip1 immuno-

staining, sections underwent antigen retrieval by boiling in 1x Dako Ready-to-Use Target 

Retrieval Solution (Dako #S1700) in a 95°C water bath for 20 min, followed by a 45 min 

cooling incubation at RT.  
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Hair Cell Differentiation Assay: E13.5 undifferentiated Atoh1/nEGFP cochlear epithelia, 

spiral ganglion, and surrounding mesenchyme were cultured on SPI black membranes 

(SPI Supplies, Structure Probe) in DMEM-F12 (Life Technologies) containing 1x N2 

supplement (Life Technologies), 5 ng/mL EGF (Sigma), 2.5 ng/mL FGF (Sigma), 100 

U/mL penicillin/streptomycin (Sigma) and 10µg/mL doxycycline (Sigma). Cultures were 

grown in a 5% CO2/20% O2 humidified incubator. To monitor HC differentiation, native 

nuclear GFP expression (Atoh1/nEGFP) was imaged every 8-12 hours for three days 

using fluorescent stereomicroscopy (Leica). Length of the GFP+ HC stripe was 

quantified using ImageJ64 software (NIH). 

Proliferation Assay: EdU (5-ethynyl-2’-deoxyuridine, Life Technologies) was 

reconstituted in PBS and administered at 50 µg per gram body weight to time-mated 

females by intraperitoneal injection. Click-iT Alexa Fluor 546 Kit (Life Technologies) 

was used to detect incorporated EdU according to the manufacturer’s specifications. 

MYO7A and SOX2 immunostaining labeled HCs and SCs. Cochleae were divided into 

three equal portions (base, mid, apex) and high-power confocal (Zeiss) z-stack images (4 

images per region, representing approximately 700 microns) were taken through the HC 

and SC layers within each of these regions. The percentage of HCs and SCs that had 

incorporated EdU was manually quantified within Photoshop and ImageJ.  

Cochlear Length and Cell Patterning Analysis: Cochlear surface whole mounts were 

prepared from E18.5 iLIN28B and non-transgenic littermate embryos and immuno-

stained for MYO7A and SOX2. Low power fluorescent images of the HC layer were 

assembled in Photoshop CS5 (Adobe) and the length of the entire cochlear sensory 

epithelium was measured in ImageJ64 (NIH). For cell density and patterning analysis, 
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cochleae were divided into three equal portions (base, mid, apex) and high-power 

confocal (Zeiss) z-stack images (4 images per region, representing approximately 700 

microns) were taken through the HC and SC layers within each of these regions. Images 

then were manually quantified within Photoshop and ImageJ.  

Lentiviral Expression System: Control and experimental constructs (mCherry vs. 

Lin28bF2AmCherry) were maintained in FUW lentiviral-vector backbone. Multi-step 

PCR was used to link full-length murine Lin28b ORF to a mCherry reporter via a F2A 

linker sequence (Klump et al., 2001) High titer lentiviral stocks were prepared as 

previously described (Lois et al., 2002). Undifferentiated Atoh1/nEGFP cochlear 

epithelial explants were incubated in a 1:1 mix of lentivirus and culture media at room 

temperature for 2-hours prior to plating. Cultures were maintained as described above.  

Statistical Analysis: Values are presented as mean ± standard error (SEM), n = animals 

per group. All results were confirmed by at least two separate experiments. Two-tailed 

Student's t-tests were used to determine confidence interval. P-values ≤ 0.05 were 

considered significant. P-values > 0.05 were considered not significant.  
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Figure 2.1: Multiple Heterochronic genes are expressed in the developing cochlear 

epithelium and are rapidly downregulated during differentiation. (A-I’) In situ 

hybridization (ISH) based analysis of Lin28b and Hmga2 expression prior to (A-C) and 

during cochlear differentiation (D-I’). Sox2 (A) marks prosensory cells, Atoh1 (D, G, G’) 

marks HCs. Brackets (A-C) indicate the prosensory domain. Arrows (E, H) indicate 

Lin28b expression within the developing spiral ganglion. High power images of the 

apical turn of G-I are shown in (‘). Scale bar, 100 µm. (J, K) RT-qPCR analysis of 

heterochronic gene expression within the cochlear epithelium prior to (E13.5), during 

(E16.5), and following (P2) differentiation. Rpl19 was used as an endogenous reference 

gene. Data in (J) are mean ± SEM. (L, M) LIN28B protein quantification within the 

cochlea epithelium at stages acutely surrounding the onset of HC differentiation.  
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Figure 2.2: Let-7 miRNAs are upregulated in the differentiating cochlea. (A-F) ISH 

based analysis of let-7c and let-7f expression within the early postnatal (P3) cochlea (A-

C) and vestibular crista (D-F). Mir-183 (A, D) marks cochlear and vestibular HCs. 

Arrowheads and lines (A-C) indicate cochlear IHCs and OHCs. Scale bar, 50 µm. (G, H) 

RT-qPCR analysis of mature let-7 miRNA expression within the cochlear epithelium 

prior to (E13), during (E18) and following (P2) differentiation. The snoRNA U6 was 

used as an endogenous control. Data in (G) are mean ± SEM. 
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Figure 2.3: LIN28B overexpression in the embryonic cochlea. (A) The iLIN28B 

transgene, containing flag-tagged human LIN28B ORF driven by the tetracycline 

inducible promoter and the M2 reverse tetracycline transactivator (rtTA) transgene under 

control of the ubiquitously expressed Rosa26 promoter were combined to drive global 

LIN28B expression (Rosa26-iLIN28B). (B) Doxycycline (dox) was administered to timed 

mated females by ad libitum access to feed containing 2 g dox/kg feed beginning at E8.5. 

This resulted in robust flag-tagged LIN28B protein overexpression within differentiated 

(E18) Rosa26-iLIN28B inner ears but not non-transgenic littermate controls. (C-E) Inner 

ear-specific overexpression of LIN28B was achieved using a trigenic approach. This rtTA 

line contained a floxed stop cassette between the Rosa26 promoter and the rtTA. 

Crossing in Pax2-driven CRE recombinase confined LIN28B overexpression to the 

Pax2+ cells of the cochlear epithelium and spiral ganglion (Pax2-iLIN28B). (D) Dox 

administration beginning at E8.5 resulted in human LIN28B overexpression within 

differentiating (E15.5) Pax2-iLIN28B cochlear epithelia but not non-transgenic littermate 

controls. Endogenous mouse Lin28b protein expression was seen in both transgenic and 

non-transgenic epithelia. (E) ISH based analysis of LIN28B expression in E18.5 control 

and Pax2-iLIN28B cochleae. Dox administration was begun at E8.5. Numbers mark the 

basal (1), mid (2), and apical (3) cochlear turns. Arrow points to LIN28B expression 

within the spiral ganglion. Scale bar, 100 µm. (F) RT-qPCR analysis of mature let-7 

miRNA expression in E14.5 control (grey) and Pax2-iLIN28B (red) cochlear epithelia. 

The snoRNA U6 was used as an endogenous control. Data are mean ± SEM (n = 3-5, 

*p<0.05). 
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Figure 2.4: LIN28B overexpression delays auditory HC differentiation. (A) HC 

differentiation was monitored in control and Rosa26-iLIN28B cochlear explants, stage 

E13.0, over 3 days. (B-I) Atoh1/nEGFP reporter expression (EGFP, green) marks nascent 

HCs. Asterisks indicate EGFP expression within HCs of the vestibular sacculus. Scale 

bar, 200 µm.  (J) Length of the EGFP+ HC stripe was used to quantify the extent of HC 

differentiation in control versus Rosa26-iLIN28B cochlear cultures. Data expressed as 

mean ± SEM (n = 5 animals per group, *p<0.05). (K) HC differentiation was analyzed in 

acutely isolated E15.5 iLIN28b and control cochlear ducts. (L, M) Low-powered images 

of E15.5 control and Pax2-iLIN28B cochlear ducts labeled with MYO6 (white). Red 

arrowheads indicate the IHC domain and yellow arrowheads indicate the OHC domain. 

Scale bar, 200 µm.  (N-S) Cross-sections through the basal, mid, and apical turns of 

control and Pax2-iLIN28B cochleae labeled with MYO6 (red) and p27/Kip1 (green). 

Scale bar, 50 µm. (T, U) Analysis of acutely isolated E15.5 cochlear ducts (as 

demonstrated in L, M) from both the global Rosa26-iLIN28B line and inner ear-specific 

Pax2-iLIN28B line compared to their non-transgenic littermates (control). Data expressed 

as mean ± SEM (n = 3-7 animals per group, *p<0.05, n.s. – not significant). 
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Figure 2.5: Acute LIN28B overexpression delays auditory HC differentiation. (A-C) 

Acute overexpression of iLIN28B slows the progression of HC differentiation. (A) 

LIN28B is overexpressed within the developing cochlea epithelium after 24 hours of dox 

administration. Dox-containing feed was given to timed-pregnant females beginning at 

E12.5. E13.5 control and iLIN28B cochlea epithelia were collected for analysis 24 hours 

later. (B) To monitor HC differentiation in vitro, LIN28B overexpression was induced at 

E12.5 and control and Rosa26-iLIN28B cochlear explants were cultured 12 hours later in 

dox-containing media. HC differentiation was monitored over the following 4 days using 

HC-specific Atoh1/nEGFP (EGFP) reporter expression. (C) Length of the EGFP+ HC 

stripe was used to quantify the extent of HC differentiation in control versus Rosa26-

iLIN28B cochlear cultures. The grey box indicates the estimated time-point at which 

LIN28B overexpression reached a biologically relevant level. Data expressed as mean ± 

SEM (n = 7-13, *p<0.01). (D-H) Lentiviral-driven overexpression of murine Lin28b 

delays HC differentiation. (D) Schematic of the experimental lentiviral construct, which 

contained ubiquitin promoter-driven murine Lin28b ORF linked to a mCherry reporter 

via an F2A linker sequence. The control lentiviral vector contained only mCherry. (E) 

E13.5 Atoh1/nEGFP cochlear explants were infected with either Lin28b or mCherry 

(control) lentivirus. HC differentiation (EGFP) and lentiviral driven protein expression 

(mCherry) were monitored over the following 3 days. (F) Western blot analysis of E13.5 

cochlea explants infected with Lin28b or control lentivirus and cultured for 2 days. 

Treatment with control virus does not impede the downregulation of LIN28B during HC 

differentiation. (G) When infected with mCherry-containing lentivirus, 60-75% of HCs 

(MYO6+, green) expressed the fluorescent protein (red) within 48 hours. (H) Length of 
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the Atoh1/nEGFP HC stripe was used to quantify the extent of HC differentiation in 

control virus versus Lin28b virus-treated cultures. The grey box indicates the estimated 

time-point at which the lentiviral-driven Lin28b overexpression reached a biologically 

relevant level. Data expressed as mean ± SEM (n = 4, *p<0.05). 
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Figure 2.6: LIN28B overexpression delays progenitor cell cycle withdrawal and 

causes mis-patterning of the auditory sensory epithelium. (A-L) EdU incorporation 

(red) in HCs (MYO7a, blue) and SCs (SOX2, green) was analyzed at 18.5 following a 

single EdU pulse at E13.5. Shown are whole mount preparations of basal, mid, and apical 

cochlear segments from control and Pax2-iLIN28B inner ears. Yellow asterisks mark 

ectopic IHCs and dashes indicate missing OHCs. Scale bar, 50 µm. (M-O) Quantification 

of HC-specific EdU incorporation in E18.5 control (grey) and iLIN28B (red) cochlear 

tissue following a single EdU pulse at E12.5 (M), a single EdU pulse at E13.5 (N), or 

once daily EdU pulses from E14.5 through E17.5 (O). Data expressed as mean ± SEM (n 

= 2, *p<0.05). (P, Q) Cross-sections of E18.5 control and Pax2-iLIN28B cochleae.  EdU 

(red) was given once daily from E14.5 through E17.5. HCs are marked by MYO7A 

(white) and SC subtypes are marked by P27 (green) and SOX2 (blue) immuno-staining. 

Scale bar, 50 µm. Asterisk (Q) marks an ectopic SC disrupting the bi-layered patterning 

of the cochlear epithelia in an iLIN28B cochlea. (R) Quantification of HC and SC sub-

types per cochlear cross-section in control (grey) and iLIN28B (red) cochleae. Data 

expressed as mean ± SEM (n = 3 animals per group (5 cross sections per animal), 

*p<0.05). (S) RT-qPCR expression analysis of let-7 target genes associated with growth 

and proliferation in E14.5 control (grey) and iLIN28B (red) cochlear epithelia.  Data 

expressed as mean ± SEM (n = 3, *p<0.05). Abbreviations: i – phalangeal cell, p – pillar 

cell, d – Deiter’s cell, h – Hensen’s cell. 
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Figure 2.7: LIN28B overexpression delays progenitor cell cycle withdrawal and 

causes mis-patterning of the auditory sensory epithelium. (A-B) Cross-sections of 

E15.5 control and Pax2-iLIN28B cochleae. A single EdU pulse was given 3 hours prior to 

collecting. No EdU incorporation (red) was observed within the sensory domain 

(p27/Kip1, green) of control and iLIN28B cochleae. Scale bar, 50 µm.  (C) Length 

measurements of E18.5 control (grey) and Pax2-iLIN28B (red) cochlear ducts. Data 

expressed as mean ± SEM (n = 14, n.s. – not significant) (D-E) Quantification of IHC 

(D) and OHC (E) density within control (grey) and Pax2-iLIN28B cochlear epithelia. 

Data expressed as mean ± SEM (n = 5, *p<0.04). (F) Quantification of ectopic IHCs 

within the base, mid, and apex of control (grey) and Pax2-iLIN28B (red) cochlear 

epithelia. Data expressed as mean ± SEM (n = 5, p<0.05). (G) Quantification of missing 

OHCs within the base, mid, and apex of control (grey) and Pax2-iLIN28B (red) cochlear 

epithelia. Data expressed as mean ± SEM (n = 5, p<0.03).  (H-I) Cross-sections through 

the mid-basal turn of E18.5 control and Pax2-iLIN28B cochlea. HCs are marked by 

Atoh1/nEGFP expression (green) and SCs are marked by S100 (red) and SOX2 (blue) 

immuno-staining. Scale bar, 50 µm.   

 

 



	
   77 

 



	
   78 

Figure 2.8: Let-7 overexpression accelerates progenitor cell cycle withdrawal. (A) 

Schematic of the iLet-7g construct, which expresses a LIN28A/B-resistant form of let-7g 

driven by a tetracycline inducible promoter (tetO) within the Col1A1 locus (Zhu et al., 

2011a). (B) RT-qPCR analysis showing that mature let-7g is specifically overexpressed 

within the cochlear epithelium of iLet-7g transgenic mice after doxycycline treatment. 

(C-E) Let-7 targets are downregulated at the transcript or protein level following iLet-7 

overexpression (C-D) LIN28B protein levels in E13.5 control and iLet-7 cochlear 

epithelia. Data expressed as mean ± SEM (n = 2, *p<0.05).  (E) Relative Lin28b and 

Hmga2 transcript expression within E13.5 control (grey) and iLet-7 (green) cochlear 

epithelia. Data expressed as mean ± SEM (n = 3, *p<0.05). (F-H’) Schematic and 

analysis of EdU pulse chase experiment. (G-H’) Cross-sections of E14.5 control and 

Pax2 iLet-7 cochleae. A single EdU pulse was given at E13.5 and EdU incorporation 

(green) within SOX2+ (red) prosensory progenitor cells was analyzed after 24 hours. 

High power images of the basal turn are shown in (‘). Scale bar, 50 µm. (I) 

Quantification of EdU incorporation (G-H’). Data expressed as mean ± SEM (n = 2, 

*p<0.05). 
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Figure 2.9: Let-7 overexpression does not accelerate progenitor differentiation. (A-

B) Bright field and green fluorescence image overlays of acutely isolated E14.5 control 

and Rosa26 iLet-7 cochlear ducts. Atoh1/nEGFP reporter (EGFP, green) marks nascent 

HCs. Asterisks denote EGFP expression within HCs of the vestibular sacculus. Scale bar, 

200 µm.  (C-D) Analysis of E14.5 control and iLet-7 cochlear ducts shown in A-B. Data 

expressed as mean ± SEM (n = 4, *p<0.05). (E-H) ISH based analysis of Hmga2 (E, F) 

and Atoh1 (G, H) expression in E14.5 Pax2 iLet-7 and control cochlear tissue. Scale bar, 

50 µm. (I, J) HC phenotype in E18.5 control and Pax2 iLet-7 cochlear whole mounts. 

HCs are marked by phalloidin (green). Shown is the basal turn. Arrowheads indicate IHC 

domain, brackets indicate OHC domain, and yellow dashes indicate missing OHCs. Scale 

bar, 50 µm. (K-N) Quantification of cochlear duct length (K) HC density (L, M) and 

missing OHCs (N) in E18.5 iLet-7 (green) and control (grey) cochlear epithelia. Data 

expressed as mean ± SEM (n = 3, *p<0.05). 
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Chapter 3 

 

Manipulation of the Lin28b/let-7 axis modulates the capacity for 

supporting cell-to-hair cell conversion 
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INTRODUCTION 

Unlike sensory cells of the olfactory and lingual epithelia, which undergo constant 

turnover throughout life, sensory cells of the mammalian auditory epithelium are only 

produced during embryonic development. The adult auditory epithelium is remarkably 

quiescent and lacks the ability to regenerate damaged HCs. Consequently, in mammals 

the effects of otoxic injury (e.g. traumatic noise exposure and treatment with certain 

antibiotics or chemotherapeutics) are irreversible and lead to sensorineural hearing loss. 

Remarkably, this quiescence is not universal throughout the vertebrate lineage. Many 

species, including cartilaginous fish, reptiles, amphibians, and birds, are able to 

regenerate HCs, both as a part of normal cell maintenance and in response to trauma 

(Groves, 2010; Groves et al., 2013).  

In non-mammalian vertebrates, HC loss triggers the de-differentiation of nearby 

SCs, which are able to replace lost HCs through two distinct mechanisms. First, SCs can 

trans-differentiate into HCs without re-entering the cell cycle. These SCs down-regulate 

their SC-specific genetic program and up-regulate HC-specific genes to directly switch 

their fate (Cafaro et al., 2007; Roberson et al., 2004; Stone and Cotanche, 2007). Several 

days after injury, HC regeneration switches to a mitotic process. De-differentiated SCs 

re-enter the cell cycle, generating precursors that give rise to both HCs and SCs (Corwin 

and Cotanche, 1988; Ryals and Rubel, 1988; Stone and Cotanche, 2007). It is not known 

why mammalian SCs lack the capacity to de-differentiate and regenerate HCs; however, 

this loss is generally associated with the epithelial specializations required for high 

frequency hearing (e.g. the development of distinct HC and SC subtypes and the resulting 

morphological complexity) (Groves, 2010).  
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Intriguingly, recent studies suggest that under certain permissive conditions 

mammalian SCs can function as progenitors and give rise to HCs. For instance, cultured 

SCs, purified from the early postnatal mouse cochleae, are able to generate Atoh1+ HCs 

through both mitotic and non-mitotic mechanisms. In these experiments, regenerative 

capacity was tightly correlated with the ability to down-regulate expression of the cell 

cycle dependent kinase inhibitor p27Kip1. However, this capacity quickly declined over 

the first postnatal week and the ability for SCs to generate new HCs was completely lost 

by the second week of life (White et al., 2006). 

Disruption of the Notch signaling pathway has also been found to stimulate 

mammalian HC regeneration. During embryonic development, activation of the Notch 

signaling cascade within a subset of prosensory progenitors restricts these cells to a SC 

fate (Brooker et al., 2006; Kiernan et al., 2005a; Lanford et al., 1999). However, 

differentiated SCs retain the capacity to become HCs, and pharmacological inhibition of 

Notch signaling results in the generation of new HCs primarily through direct trans-

differentiation (Doetzlhofer et al., 2009; Korrapati et al., 2013a; Mizutari et al., 2013a; 

Yamamoto et al., 2006).  There is also an age-dependent decline in the ability for Notch 

inhibition to stimulate SC-to-HC conversion, and in the adult cochlea only apically 

located SCs respond to Notch inhibition to infrequently generate HCs (Mizutari et al., 

2013a).  

It is not known why older mammalian SCs lose the capacity to generate HCs, but 

this association between juvenility and tissue repair is a common phenomena that is 

widespread across many species (Poss, 2010). Recently, two studies have suggested that 

Lin28a/b re-expression can counteract the age-related decline in cellular regeneration. In 
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both cases, let-7 repression was necessary to mediate this effect, although let-7 repression 

alone was not sufficient to enhance tissue repair (Shyh-Chang et al., 2013; Yuan et al., 

2012). Intriguingly, let-7 miRNAs are highly expressed in the adult newt inner ear, and 

become significantly downregulated during HC regeneration (Tsonis et al., 2007).  Is let-

7 downregulation essential for SC de-differentiation and does the Lin28b/let-7 axis 

mediate the regenerative capacity of the postnatal inner ear? To test this we 

overexpressed LIN28B or let-7 and measured the capacity for HC generation in the 

absence of Notch signaling. We found that LIN28B overexpression significantly 

enhanced SC conversion, while let-7 overexpression significantly impaired it. Future 

cochlear regeneration therapies will require a strict balance of SC de-differentiation, 

proliferation, and HC generation to successfully recapitulate a functional auditory 

epithelium. Our results indicate that manipulation of the Lin28b/let-7 axis could help to 

achieve this equilibrium. 
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RESULTS 

LIN28B re-expression promotes SC conversion in the absence of Notch signaling.  

To determine whether LIN28B re-expression might enhance SC plasticity, 

LIN28B was re-expressed in the late embryonic cochlea and the ability of SCs to generate 

new HCs in the absence of Notch signaling was analyzed in early postnatal (P2) cochlear 

explant cultures (Fig. 3.1 A). To block Notch signaling, explants were treated with the γ- 

secretase inhibitor DAPT, which broadly inhibits γ- secretase activity preventing 

cleavage of the Notch intracellular domain (NICD). Our analysis was limited to the 

cochlear mid-base where early postnatal SCs only infrequently convert to HCs in 

response to Notch inhibition (Doetzlhofer et al., 2009).  In contrast to early embryonic 

LIN28B induction, late embryonic LIN28B induction did not alter the number or 

organization of HCs and SCs (Fig. 3.1 B-E; Control 50.8 ± 1.5 HCs/100µm and 55.1 ± 

1.1 outer SCs/100µm, iLIN28B 51.5 ± 1.0 HCs/100µm and 54.9 ± 1.2 outer SCs/100µm, 

n = 2 per group). No difference in the number of HCs was observed in untreated control 

and LIN28B overexpressing cochlear explants after 3 days in culture (Fig. 3.1 F, G, L). 

Treatment with the γ- secretase inhibitor DAPT for 3 days significantly increased the 

number of MYO7A and Atoh1/nEGFP positive HCs in both control and iLIN28B 

explants (Fig. 3.1 H-L); however, LIN28B overexpressing explants generated 

significantly more new HCs than controls (Fig. 3.1 L, M). Interestingly, these newly 

generated HCs largely lacked EdU incorporation, suggesting that they originated from 

post-mitotic cells. Taken together, our findings suggest that LIN28B re-expression 

increased the frequency of direct SC-to-HC conversion in response to γ- secretase 

inhibition. 
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Let-7 overexpression antagonizes SC conversion in the absence of Notch signaling.  

 We next set out to determine whether let-7 downregulation was necessary for SC-

to-HC conversion. Let-7 overexpression was induced in the late embryonic cochlea 

(E17.5) and HC generation in the absence of γ- secretase activity was measured in early 

postnatal (P2) cochlear explant cultures (Fig. 3.2 A). This time we limited our analysis to 

the cochlear mid-apex where early postnatal SCs readily convert to HCs when Notch 

signaling is inhibited (Doetzlhofer et al., 2009). Let-7 overexpression in the late 

embryonic cochlea did not alter the number or organization of HCs and SCs (Fig. 3.2 B-

E; Control 58.4 ± 1.9 HCs/100µm and 60.2 ± 1.1 outer SCs/100µm, iLet-7 56.1 ± 1.4 

HCs/100µm and 57.5 ± 1.6 outer SCs/100µm, n = 2 per group) and no difference in the 

number of HCs was observed in untreated control and let-7 overexpressing cochlear 

explants after 3 days in culture (Fig. 3.2 F, G, J). Strikingly, we found that let-7 

overexpression significantly decreased the number of MYO7A and Atoh1/nEGFP 

positive HCs that were generated following DAPT treatment (Fig. 3.2 H-K). While 

control explant cultures had a 96% increase in HCs following Notch inhibition, iLet-7 

cultures had only a 30% increase in HCs (Fig. 3.2 K; n = 4 Control, 5 iLet-7, p < 0.005). 

Thus, our findings suggest that let-7 downregulation is necessary for SC-to-HC 

conversion and that let-7 overexpression significantly antagonizes this process. 
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DISCUSSION 

HC loss is among the leading causes of human deafness, since in contrast to non-

mammalian vertebrates mammals are unable to regenerate damaged HCs. Thus, 

uncovering mechanisms that promote HC regeneration/repair within the mammalian 

inner ear remains a major focus within the auditory research community. For non-

mammalian vertebrates, SCs are the main source of post-embryonic HC production and 

HC replenishment after trauma (Burns and Corwin, 2013). Strikingly, mammalian SCs 

can generate HCs under certain permissive conditions, such as Notch inhibition or Wnt 

over-stimulation, but this ability rapidly declines during the first week of life (Chai et al., 

2012; Korrapati et al., 2013b; Mizutari et al., 2013b; Shi et al., 2013).  

Here, we show that LIN28B re-activation in the early postnatal murine cochlea 

enhances the generation of new HCs in response to Notch inhibition, whereas let-7 

overexpression represses this ability. The vast majority of newly generated HCs in our 

LIN28B paradigm were generated by a non-mitotic process, suggesting that this increase 

in newly generated HCs was due to an increased number of SCs that converted into HCs 

in response to Notch inhibition. How does LIN28B re-expression alter the response of 

SCs? A recent study showed that LIN28A re-activation in adult mice boosts tissue repair 

by reprogramming cellular metabolism (Shyh-Chang et al., 2013) and it is possible that 

enhancement of oxidative SC metabolism had a positive effect on the ability of SCs to 

switch cell fate and convert into HCs. Alternatively, it is possible that LIN28B re-

expression altered the differentiation state of SCs. For instance, in zebrafish, Lin28 

becomes reactivated in Müller glia after damage and promotes Müller glia de-

differentiation and subsequent retina regeneration, at least in part by decreasing let-7 
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miRNA levels (Ramachandran et al., 2010). Indeed, let-7 downregulation was found to 

be necessary but not sufficient to promote cellular regeneration in multiple models of 

murine tissue repair (Shyh-Chang et al., 2013) and let-7 miRNAs become significantly 

downregulated in the adult newt inner ear during HC regeneration (Tsonis et al., 2007). 

Similarly, we found that maintained let-7 expression significantly antagonized SC-to-HC 

conversion in the absence of Notch signaling, suggesting that let-7 downregulation is 

necessary for cochlear SC de-differentiation in the murine cochlea.  

We have found that let-7 miRNAs are rapidly upregulated during differentiation 

of the murine cochlear epithelium and are highly expressed in early postnatal HCs and 

SCs. Could the let-7 miRNAs contribute to the developmental decline in SC regenerative 

capacity? Previous findings suggest that let-7 expression increases during maturation of 

the postnatal cochlea (Weston et al., 2006), although further experiments are needed to 

link this expression to the decline in regenerative capacity. Our preliminary data suggests 

that LIN28B overexpression, which significantly represses let-7 expression, can enhance 

SC-to-HC conversion in the absence of Notch signaling during the second postnatal week 

of life. Future experiments will address how long this effect persists and whether SC-to-

HC conversion can be stimulated in vivo.  
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MATERIALS AND METHODS 

Mouse Breeding and Genotyping: For details on transgenic lines and genotyping see 

Chapter 2. To induce iLIN28B expression, doxycycline (dox) was delivered to time-

mated females via ad libitum access to feed containing 2 grams of doxycycline per 

kilogram feed (Bioserv #F3893) starting at E15.5 and continuing until harvesting. To 

induce iLet-7 expression, dox treatment was begun at E17.5. Embryonic development 

was considered as E0.5 on the day a mating plug was observed. Littermates expressing 

only the M2-rtTA transgene were used as controls.  

Hair cell generation Assay: P2 cochlear surface preparations were cultured on SPI black 

membranes (SPI Supplies, Structure Probe) in DMEM-F12 (Life Technologies) 

containing 1x N2 supplement (Life Technologies), 5 ng/mL EGF (Sigma), 2.5 ng/mL 

FGF (Sigma), 100 U/mL penicillin (Sigma) and 10µg/mL doxycycline (Sigma).  

Experimental cultures were treated with 10 µM DAPT (γ-secretase inhibitor IX, N-[N-

(3,5-Difluorophenacetyl-L-alanyl)]-S-phenylglycine t-Butyl Ester, Calbiochem-EMD 

Biosciences) to block Notch signaling. Control cultures received DMSO (0.04%). Media 

was refreshed once at 24h and cultures were fixed at 72h. To monitor proliferation, 

explants were grown in the presence of 3µM EdU. For HC quantification, cochlear 

explant cultures were sub-divided in to four parts: apex (0 - 1500 µM); mid apex (1500 - 

3000 µM); mid base (3000 - 4500 µM); base (4500-5500). A sampling (4 per region) of 

high-power confocal z-stack images were taken through the HC and SC layers within 

these regions and HC density and proliferation were manually quantified using Imaris 

software (Bitplane) and ImageJ. HCs were identified by MYO7A and Atoh1/nEGFP co-

expression (See Chapter 2 for details of immunostaining protocol). 
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Figure 3.1: LIN28B re-expression promotes supporting cell conversion in the 

absence of Notch signaling. (A) Schematic of HC proliferation assay. LIN28B 

overexpression was induced at E15.5 and iLIN28B and control cochlear explants were 

cultured in the presence of DAPT or DMSO starting at P2. SC-to-HC conversion was 

quantified after 3 DIV. (B-E) Late embryonic induction (E15.5) of the iLIN28B transgene 

does not impact HC or SC patterning and number. Shown are acutely isolated cochlea 

whole mounts from P2 control and Rosa26 iLIN28B animals. HCs are marked by 

Atoh1/nEGFP (green, B, C) and MYO7A (red, B, C) and SCs are marked by SOX2 (blue, 

D, E) Scale bar, 50 µm. (F-K) LIN28B overexpression promotes SC-to-HC conversion in 

the absence of Notch signaling. Shown are mid-basal segments of P2 control and 

iLIN28B cochlear explants after 3 days of DMSO (F, G) or DAPT (H-K) treatment. HCs 

are marked by Atoh1/nEGFP (green) and MYO7A (red) and SCs are marked by SOX2 

(blue). Scale bar, 50 µm. (L, M) Quantification of F-K. Data expressed as mean ± SEM 

(n = 3, *p<0.03).  
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Figure 3.2: Let-7 overexpression antagonizes supporting cell conversion in the 

absence of Notch signaling. (A) Schematic of HC proliferation assay. Let-7 

overexpression was induced at E17.5 and iLet-7 and control cochlear explants were 

cultured in the presence of DAPT or DMSO starting at P2. SC-to-HC conversion was 

quantified after 3 DIV. (B-E) Late embryonic induction (E17.5) of the iLet-7 transgene 

does not impact HC or SC patterning and number. Shown are acutely isolated cochlea 

whole mounts from P2 control and iLet-7 animals. HCs are marked by MYO7A (red, B, 

C) and SCs are marked by SOX2 (blue, D, E) Scale bar, 50 µm. (F-I) Let-7 

overexpression significantly antagonizes SC-to-HC conversion in the absence of Notch 

signaling. Shown are mid-apical segments of P2 control and iLet-7 cochlear explants 

after 3 days of DMSO (F, G) or DAPT (H, I) treatment. HCs are marked by 

Atoh1/nEGFP (green) and MYO7A (red). Scale bar, 50 µm. (J, K) Quantification of F-I. 

Data expressed as mean ± SEM (n = 4-5 per group, *p≤0.02).  
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APPENDIX A: 

 

Identification of LIN28B’s mRNA targets in the differentiating  

cochlear epithelium 
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Several recent genome wide studies have revealed that LIN28A and LIN28B can 

directly alter the protein abundance of their mRNA targets through transcript stabilization 

and/or modulation of translational efficiency (Cho et al., 2012; Graf et al., 2013; Hafner 

et al., 2013; Peng et al., 2011; Wilbert et al., 2012). In order to identify these potential 

targets in the differentiating cochlea, we chose to characterize the gene expression profile 

of Pax2-iLIN28B overexpressing cochlear epithelia versus non-transgenic littermate 

controls. Because LIN28B is an RNA-binding protein, we reasoned that at least some of 

its effects would be reflected at the transcript level.  

 Our microarray study revealed a number of interesting transcript changes in 

response to LIN28B overexpression (Tables 1 and 2). While several let-7 target genes 

appeared on this list, there were also a number of genes lacking putative let-7 binding 

sites that may be direct targets of LIN28B. Among these genes are several morphogens 

and morphogen effectors, transcription factors, and RNA binding proteins. Functional 

analysis of gene pathways suggests that these altered transcripts are linked to many key 

processes including cellular assembly, protein synthesis, metabolism, and cell survival, 

among others (Table 3). qRT-PCR validation of out microarray hits is still underway, but 

so far many of the transcript changes appear to be upheld (Fig. A.1). In the future, we 

plan to use immunoprecipitation followed by qRT-PCR to determine whether LIN28B 

directly interacts with any of our candidate mRNAs.  
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EXPERIMENTAL DESIGN 

Microarray Analysis: Timed pregnant females were administered dox feed (2 grams of 

doxycycline per kilogram feed) beginning at E11.5 and cochlea epithelia were obtained 

from E15.5 Pax2-iLIN28B (iLIN28B tg/+; rtTA-EGFP tg/+; Pax2-Cre tg/+) and non-

transgenic control (rtTA-EGFP tg/+; Pax2-Cre tg/+) littermates. Total RNA was 

extracted using the miRNEasy Micro Kit (Qiagen) and submitted to the JHMI High 

Throughput Biology Deep Sequencing & Microarray Core (www.microarray.jhmi.edu) 

for profiling. Microarray experiments were performed on three biological replicate RNA 

samples for each condition (Pax2-iLIN28B versus control).  Total RNA was labeled using 

Ambion® Expression WT kit (Life Technologies). Labeled RNA was hybridized onto 

GeneChip® Mouse Exon 1.0 ST Arrays (Affymetrix) and chips were scanned and 

analyzed according to manufactures instructions. GeneChip Expression Affymetrix CEL 

files were extracted and their data normalized with the Partek GS 6.6 platform (Partek 

Inc.)  Partek's extended meta-probe set was used with RMA normalization to create 

quantile-normalized log2 transcript signal values, which were used in subsequent 

ANOVA analyses. Reported here are transcripts that were more than 3 standard 

deviations up or down regulated with at least 12 total probes per gene. p-values ≤ 0.07 

were considered significant. 

Quantitative PCR Validation: Timed pregnant females were administered dox feed 

beginning at E8.5 and cochlea epithelia were obtained from E14.5 Rosa26-iLIN28B 

(iLIN28B tg/+; M2-rtTA tg/+) and non-transgenic control (M2-rtTA tg/+) littermates. 

Total RNA was extracted using the miRNEasy Micro Kit (Qiagen) and cDNA was 

reverse transcribed using the iScript cDNA synthesis kit (Bio-Rad). SYBR Green based 
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qPCR was performed using Fast SYBR® Green Master Mix reagent (Applied 

Biosystems, Life Technologies) and gene-specific primers. The ribosomal gene Rpl19 

was used as an endogenous reference gene. Relative gene expression was analyzed using 

the ΔΔCT method (Schmittgen and Livak, 2008).  

Gene Forward Primer Reverse Primer 
Rpl19 GGT CTG GTT GGA TCC CAA TG CCC GGG AAT GGA CAG TCA 
Igf2bp1 GGA GCA GAC CAG GCA AGC TA GGG CAT GGT TCT CCA GTT GA 
Trim10 GGC TCC TGA CGG ATA TCA GAA G CGG GTT TCC GGC ACT TT 
Shisa7 GATGTAGTGTCGCAGAGCGG CTTGGGGCTGTTGACGTTGT 
Fst GAA AAC CTA CCG CAA CGA ATG TCC GGC TGC TCT TTG CAT 

Camk4 TGT TAA AGA AAA CAG TGG ACA 
AGA AGA GGT GTG AGA GAC GCA GGA GAA 

Npy AGGTAACAAGCGAATGGGGC GATGTAGTGTCGCAGAGCGG 
Fabp7 GGA AGG TGG CAA AGT GGT GAT TGG AAA TTG ATC TCT GTG TTC TTG A 
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Table 1: Transcripts upregulated by more than 3 standard deviations 
 

SD  
iLIN28B 

vs. 
Control 

Log2(FC) 

Unique Gene 
Symbol 

(updated) 
Gene AccID 

iLIN28B 
vs. 

Cont 
(p-val) 

Mean 
iLIN28B 

Mean 
Control 

iLIN28B 
vs. Cont 
paired 
(ratio) 

> +6σ Penk NM_001002927 0.004 8.62 7.41 2.31 
+6σ Igf2bp1 NM_009951 0.0001 9.94 9.01 1.90 
+6σ Trim10 NM_011280 0.026 7.57 6.70 1.82 
+6σ Zfp808 NM_001039239 0.013 8.24 7.49 1.69 
+6σ Shisa7 NM_172737 0.039 7.42 6.84 1.50 
+6σ Slc4a1 NM_011403 0.061 8.89 8.35 1.45 
+6σ Fst NM_008046 0.008 9.21 8.70 1.43 
+6σ 5730507C01Rik BC150925 0.022 8.75 8.24 1.43 
+6σ Foxp2 NM_053242 0.002 7.71 7.22 1.40 

 
 
 
 
Table 2: Transcripts downregulated by more than 3 standard deviations 
 

SD  
iLIN28B 

vs. 
Control 

Log2(FC) 

Unique Gene 
Symbol 

(updated) 
Gene AccID 

iLIN28B 
vs. 

Cont 
(p-val) 

Mean 
iLIN28B 

Mean 
Control 

iLIN28B 
vs. Cont 
paired 
(ratio) 

-6σ Cd300lh NM_199201 0.013 8.58 9.58 0.50 
-6σ Gm11711 NM_001101657 0.010 8.55 9.51 0.51 
-6σ Spp1 NM_009263 0.032 6.41 7.28 0.55 
-6σ Cdhr1 NM_130878 0.069 6.63 7.44 0.57 
-6σ Gm11711 NM_001101657 0.006 8.53 9.35 0.57 
-6σ Nhlh1 NM_010916 0.050 6.53 7.31 0.58 
-6σ Camk4 NM_009793 0.051 7.11 7.85 0.60 
-6σ Npy NM_023456 0.032 9.05 9.73 0.62 
-6σ Calb1 NM_009788 0.022 7.44 8.11 0.63 
-6σ Gpr64 NM_178712 0.060 7.87 8.52 0.64 
-6σ Fabp7 NM_021272 0.027 8.69 9.34 0.64 
-6σ Islr2 NM_001161536 0.008 6.54 7.17 0.64 
-6σ Kcnip4 NM_030265 0.003 5.47 6.06 0.67 
-6σ Slc44a5 NM_001081263 0.004 6.54 7.10 0.67 
-6σ Necab1 NM_178617 0.047 6.70 7.25 0.68 
-6σ Maob NM_172778 0.008 7.39 7.94 0.68 
-6σ Kcnh5 NM_172805 0.001 6.13 6.65 0.70 
-6σ Cckar NM_009827 0.066 6.68 7.17 0.71 
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Table 3: Gene pathway categories and functional annotations 
 

Categories 
Diseases or 
Functions 
Annotation 

p-Value 

   Cellular Assembly and Organization, 
Cellular Function and Maintenance, 
Nervous System Development and 
Function 

Quantity of axons 2.10E-04 

   Neurological Disease, Psychological 
Disorders Tauopathy 5.56E-04 

   Endocrine System Disorders, 
Gastrointestinal Disease, Metabolic 
Disease 

Diabetes mellitus 7.91E-04 

   Protein Synthesis Synthesis of protein 1.37E-03 
   Metabolic Disease, Neurological 
Disease, Psychological Disorders Alzheimer's disease 1.44E-03 

   Nervous System Development and 
Function, Tissue Development 

Accumulation of 
neurons 1.45E-03 

   Lipid Metabolism, Small Molecule 
Biochemistry 

Redistribution of 
glycolipid 1.52E-03 

   Cell Morphology, Cellular Assembly 
and Organization, Nervous System 
Development and Function 

Size of axons 1.52E-03 

   Cell Death and Survival, Nervous 
System Development and Function 

Survival of sensory 
neurons 1.79E-03 

   Cell Morphology, Cellular Assembly 
and Organization, Cellular 
Development, Cellular Function and 
Maintenance, Nervous System 
Development and Function, Tissue 
Development 

Axonogenesis 1.81E-03 
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Figure A.1: qRT-PCR validation of the iLIN28B microarray.  Gene hits from the 

iLIN28B microarray were validated using SYBR Green-based qRT-PCR with gene 

specific primers in E14.5 control (grey) and iLIN28B (red) cochlear epithelia.  Data 

expressed as mean ± SEM (n = 4, *p<0.05).  
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