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ON LOCAL AND GLOBAL PROPERTIES OF CONVEX SETS AND HYPERSURFACES

Abstract

In the first chapters, there is obtaimed a generalization of a
theorem of Tietze characterizing convex sets by local properties. This
result is used in the second chapter to prove the main result: Let S
be a (sufficiently smooth) isometric immersion of a complete nsdimensional

: : A e : oAe AL : s
Riemannian manifold in a Euclidean space H with the intrinsic

property that the second fundamental form of S is semi-definite at

every point and definite at some point. Then S is the boundary of a

convex body (although if Mn is not complete, S meed not even be locally

convex) .

The third chapter deals with a number of topics. Examples are
given to show that theorems of Hilbert and Weyl, concerning extrema of
principle ' curvatures or of mean and Gauss curvatures at non-umbilic

points, are false without suitable smoothness assumptions.
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INTRCDUCTION

Each of the three chapters of this dissertation deals with a conneetion
between local and global properties of a class of subsets of a topological
vector space. In Chapters II and III the subsets are hypersurfaces in
Euclidean space, but in Chapter I subsets of more general spaces are con-
sidered. While the results of the first chapter are of interest by them-
selves, they were developed primarily for use in the second chapter. The
last chapter is logically independent of the other two.

The main results of Chapter I, Local characterizations of convexity,

are two theorems which show that under certain conditions the global pro=
perty of the convexity of a set can be deduced from a local property.
These results generalize a theorem of Tietze [25]. One of the theorems

of the first chapter is applied in Chapter II, On hypersurfaces with a

semi-definite second fundamental form. Here, it is shown that if an

n-dimensional manifold is immersed in Euclidean (n + 1)-space, the local
property (which is independent of the immersion) that the second fundamentsl
form be semi-definite suffices in certain situations to prove that the
immersion is the boundary (or part of the boundary) of a convex set. The
main theorem asserts roughly that if a hypersurface with this local Pro= -
perty is complete, then it bounds an (n + 1)-dimensional convex body. This
theorem is of the same type as a classical theorem of Hadamard [7T] dealing
with compact surfaces of positive curvature and its generalizations due to
Stoker [23], Van Heijenoort [26], and Chern and Lashof [3].

Chapter III, Maximum principles for partial differential operators and

their applications in the theory12£ surfaces, falls into two parts as the

s




title suggests. The first part is concerned with theorems on the validity
of weak maximum principles for a non-hyperbolic partial differential opera-
tor. These results generalize some of the theorems of an earlier work of

Hartman and the author [8] and at the same time the proofs are simpler

than the proofs of the corresponding theorems of [8]. Several counter=-

examples are given to show that in some cases a non-hyperbolic partial
differential operator need not have a weak maximum principle.

The second part of Chapter IIT is concerned with the applicaticn of
maximum principles to uniqueness theorems in the theory of surfaces. The
possibility of sharpening some of the results of this type due to Aleksandrov
[1] is discussed. Finally, some counter-examples are given which show

777 that an older method-based -en the -extrema of curvatures cannot be as effec
tive in proving sharp results on the uniqueness of surfaces as are the

methods employing maximum principles.




Chapter 1. Lotal characterization of convexity

1. Stetement of the theorems. Tietze [25]1 proved that a local

condition, "Konvexheit im kleinen" is sufficiemt for a closed, connected
subset of the Euclidean space E' to be convex. Schoenberg [21] showed
~that Tietze's theorem remains valid if E' is replaced by any real or
complex normed vector space. Moreover, by tombining the arguments of
Tietze and Schoenberg, it can be shown that the theorem is correct in
even more general spaces, cf. [21, . 56, ExX. 2. « I Chis chapler,
theorems of a similar kind are proved in which '"Konvexheit im kleinen"
is replaced by a weaker condition called "almost convexity".

For the rest of this chapter the term topological vector space should

be understood to mean a real, complete, locally convex, Hausdorff, topo-

logical vector space. The convex closure of a subset S of a topologicd

vector space will mean the smallest closed convex set containing S. A

subset S of a topological vector space will be called almost convex if

every point x in S has a neighborhood Ug such that each component of
U? MN S is convex. Almost convexity is a weaker condition than "Konvex-
heit im kleinen" which requires that Ui(ﬂ S itself be convex. A point

X in S is called an extremal point of S if there do not exist peoints x

i
and X, in S, dIstinct from x, such that x = kxl o (l = A)x. for some Aos
&
0O< X < L.
The main results of this chapter are the two theorems below.

Theorem I.l. ILet S be a connected, compact, and almost convex sub-

of a topological vector space. Then S is convex.
T

I.2. ILet C'be an open convex subset of a locally compact
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topological vector space. ILet S be a connected almost convex subset of

C which is closed in C. Then S is convex.

Since almost convexity is weaker than "Konvexheit im kleinen',
Theorem I.l generalizes the results which can be obtained by Tietze's
and Schoenberg's arguments for the case of compact sets in the class of
vector spaces considered. For non-compact sets it will remain open
whether the restriction that the space be locally compact is essential
in Theorem I.2. It would be desirable to remove this restriction, because
it is not clear, for instance, that a closed, bounded and almost convex
subset of Hilbert space need be convex. The set C is included in the
statement of Theorem I.2 to facilitate its application in Chapter II.
Usually, one would be interested in the case where C is the whole space.

2. A lemma. The proofs of the theorem below depend on the follow-
ing lemma, which is probably known.

Lemma T.1. Let W,X,Y be closed, non-void subsets of a Hausdorff

space. Suppose W |J X |J Y is connected, W is compact, and X () Y is empty.

Then there(ii a connected subset ££ W which intersects both X and Y.

Proof. Let U denote the union of all of the components of W which
intersect X and V the union of those which intersect Y. Then W =U |J V
and the conclusion of the theorem is equivalent to the assertion that U () V
is non=-void.

If U () V is void, at least one of the sets U,V is not closed, for

otherwise W | J X |J Y is not connected. Suppose V is not closed and let

X, be apoint in V' '= V C Uy If N is a neighborhood of x., let Y(N)

1 10

denote the intersection of Y with the union of all of the components of

V which intersect N. Y(N) is a subset of V() Y. Let B denote the




5
collection of sets Y(N) obtained as N runs over a fundamerntal system of
neighborhoods of X B is a filter-base since Y(N) is mever empty and
Y(l\'l'l N N2) C_Y(I\Tl) N Y(i\lé)a Since (V J V') () Y is-compact, there
exists a filter contaiming B and having a Iimitx, in GINEH e

Now a comtradictionto U (| V = Oy X € Wi X, € V, will be obtained
by proving that X and. X, are in the same-component of V {J V' and
hence inthe same componment of W. ~If X and x2 are not connected in
V {J V', there are disjoinmt open sets Ui'and Ué containing Xy
respectively such that V (} e c Ui ) Ué; 3 S 1 g 101, Corollary

and x
2

1.5 It is clear from the definitions of x

<. amd X, that there is a
1 2

connected subget of V which intersects Ui ard Uéo This is impossible

because Ui grid Ué are open and disjoint. This shows that *q and X must
be connected in V |J V' and in W, which proves the lemma.

5. Proof of Theorem I.l. For each x in S, let U? be a fixed

neighborhood such that all components of E&,r] S5 are convex. Suppose
that x and y, x % ¥, are arbitrary points of S. Let f).denote the

collection of subsets S1 of S with the properties: (i) Sl containg

x and y, (ii) S, is compact, (iii) S, is connected, (iv) for every

S

point z in Sl’ all of the components of Slfw Uz are comvex. Then (2

) & o - o o a5 P ° 2
is not empty since S itself is ln*&lo The collectlon.fz.cantalns 8

minimal elemernts, that is, an element S such that SO does not contain

0
any other element afszqproperly; This assertion follows from Zorn's
: . L f)f ! : 2 ey : : :
lemma, since if A/ is a subcollection of \ Zwhich is linearly ordered

.x.
by set inclusion, the intersection of all of the-elements of‘()_ 18 dm

Let T denote the cvonvex closure of amimimal set Soo T is compact;

cf, [2], p. 81, corollarie. If T is the segment xy, the proof is complete.
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Otherwise, T contains an extremal point z distinct from x amd y, by the
Krein-Milman theorem; cf. [2], p. 8k. Sy contains z; cf. [2], p. 84, pro-
position 4. The neighborhood Ui contains a convex neighborhood N of z,
which comtains neither x nor y. Let U denote the convex closure of

T = N. Tt follows that U does not comtain z; cf. [2], p. 84, proposition
Lo et W = 54 (\ U. Then x and y are not in the same component of V,
because a component of V containing x and y would be an element of lil
and this is impossible by the minimality of SO and V”%; Soo Let X and

Y be disjoint closed sets such that x ¢ Xand ye Yand V=X U Y. Let
W= 84 (} N. Then 8y = WUZXU Y., Lemma T.1 shows that W contains a
component Q which intersects both X and Y. @ is convex, sime N is con=
vex and N C::Uzo Hence Q (1 U CVv =x U Y is convex, hence connected,
and intersects X and Y. But this is impossible because X and Y are

closed and disjoint. This completes the proof of Theorem I.1.

L. Proof of Theorem I.2. First it will be shown that there is a

sequence Dl’D29°°° of convex, compact subsets of C such that

oo
g k) D and D C Interior D
e n

g je B T2 s

It can be supposed that C contains the origin. Let D be a compact
neighborhood of the origin and let A > 1 be a real number such that

Q C D C Aq, where Q is an open convex neighborhood of the origin.

i o=

Denote by D _ ;, B = 2,3,... the convex closure of the set A"D N (1 = 1/n)c.

The sets Dn are compact, since they are closed subsets of A'D.  The re-

maining assertions about the sets Dn follow from the relations

L n Lf R T o
D . gfE-kTq (YHr~er/n)c C I e

Let Sn = Dn () S. Each set Sn is compact, hence by Theorem I.l each

component of S 1s convex. To prove Theorem I.2, it therefore suffices




to show that S in comnnected (hence comvex) for n = 1,2,...
Suppose Sm is not connected for som® m. Tt can be supposed that
Sl is not commected. Suppose Sl

non-void closed sets. Then it follows that 82 has a decomposition

= L B, where A, and B, are disjoint

it

B =, \U B,, where A, C Ay, By C By, amd A, and B, are closed and
disjoint. Otherwise there is a component R of 82 which intersects Al

and By, and since R and D, are convex, R ) Dy (@ 8, is convex, hence

i

connected., This conmtradicts the definition of Al and Bl“ Therefore

there exist closed sets AlBAE,,ov and Bl,Bg,cu. such that Ah i An 412

ENGE n=1,2,... and A | B = 0.

n+l’ {oe} (o]
e 1 = U A and B = U B . Then S = A U B where A and B

n=1 n=1
are disjoint and non-void. A and B are closed, because if, for example,

% B B, wEEihl e & Bk for some k > 1. ° Hence, X € Interior (D ) and

K

therefore x is mot in the closure of A = k) Ako This shows that
Tl
A and B are closed, hence S is not comnmected, contrary to hypothesis.

This completes the proof.

5. A weaker form of local convexity. There is a notion of loeal

convexify‘which 1s still weaker than zlmost convexity. Call a subsetvS
of a topological vector space semi-convex if each point x of S has a
neighborhood Ug such that the component of'qxfw S containing x is con-
vex. The proofs of the theorems zbove fail if semi-convexity replaces
almost convexity. Nevertheless, it is possible that the theorems remain
correct. For the case of subsets of the plane E2, a8 proof will be
sketched, but the general case will remain undecided.

Theorem I.5. Iet S be a commected, closed, semi-convex subset of

e

e ammo

Egﬁ Then S is convex.




This theorem is a corollary of the following:

Theorem (Straus and Valentine [24]). ILet S be & closed, connected

subset of Em(n > 2). Suppose that each point of S is contained in a uni-

que maximal convex subset of S of dimension greater than n = 2. Then S
IS CenveX.

Incidentally, the proof given by Straus and Valentine of this theorem
appears to require that S be strongly connected, that is that for every
pailr of points in S, there is a compact connected set containing both
points. However, that the theorem is valid as stated may be seen by an
argument similar to that used above to prove Theorem I.2.

Theorem I.3 follows from the theorem of Straus and Valentine because,
under the conditions of Theorem I.3, each point x of S must be in a unie
que maximal convex subset of dimension ome or two. To show this, let Sx

in S denote the union of all subsets of x which are starlike
with respect to x. By the hypothesis of semi-convexity, each set SX
contains a convex subset containing x, which can be assumed to be of
dimension one or two because S is connected. The proof is completed
by showing that Sx itself is convex. This can be done by an argument’

similar to Tietze's in [25], Section k; cf. [2], p. 56, Example 22-b,




Chapter II. On surfaces with a semi-definite second fundamental form

i Preltminaries. A Riemannian menifold is said to be of elass

C” (k >1) If it is of class C as a differemtisble manifold and in

any coordingte system the components of the metric tensor are functions

k = 1 oy ; g . by
of class C . Unless the contrary is stated 3 manifold will mean

a manifold without a boundary. ILet Ml and Mé be mgrifolds of class

Ck and of dimensions ml and m2 (ml <*m2) respectively. Ml will be said

to be Cm=immersedi(m.§ k) in.Mé if there is a single=valued map F : Ml e-Mé

of class Om and of rank m, at every point of Ml" Such an immersion

will be called isometric if Ml and M, are Riemannian manifolds and the
Eanamer eSS —— 1 C_

metric induced on the imsge F(Mi) as a subset of Mé is the same as the

metric induced locally from the metric of'Mlo If the map ¥ is one=to-one,

IMl will be said to be C -imbedded in M,. If the map F is one-to-one and
2 R i e e =

open, that is, if the image of every open subset of Ml is an open subset

of F(M, ), the imbedding will be said to be ovpen. In this case. M. and
Lo — 7wl

F(Ml) are homeomorphic., In the special case in which M, is of dimension

B

mand M, = , the image F(M,) under an immersion will be called an

m=hypersurface, or ifm = 2, a

The first part of this chapter is concerned with the properties of

ying the hypothesis below which will be denoted by

~

hypersurfaces S satisf
(A):

(1) S is an open n + 1 (n > 2) times differentiable n-hypersurface
Imbedded

(11) S is oriented and the second fundamental form of S is semie

definite at every point.




5 ; g : b de L
More precisely, (1) means that S is a commected subset of E- 5

and if x is any point on S there is an n + 1 times differentiable homeo-
3l n 7 LW D
morphism x = X(n) from the n-cell gju Sl RO S R T é}
1=
to a subset of S comtaining x. Furthermore, the n(n + 1) matrix whose

il
i=th row is Xi :¢9X/2h is required to be of rank n at every point,

The unit normal to 8 at X(u) will be denocted by N(u) =md the second

fundamental form of S by =dX.dN = hijdulduJ, Of course, N(u) and hij

are only determined up to multiplication by -1; however, this ambiguity
is unimportant because in (ii) it is-permissible for the second funda-
mental form to be elther non-negative or non=positive semi-definite.

In fact, much of the Investigation cemters about the fact that, whereas
the second fundamental form of a hypersurface satisfying (A) can change

-

type locally (cf. the example =after Theorem II.5 in Section below)5 GHds

"in the large' under certain conditions. The main result

cannot hzppen
below, Theorem II.5, iz a variant of Stoker's [23] theorem on the nature
of a complete surface of positive curvature. Stoker's result is in turn
an extengicn of Hadamard's theorem [7] that a closed surface with posi-
tive curvature is an ovaloid.

If S satisfies (A), S is the union of three disjoint sets H+)HO’ and
H , where HO is the subset of S where hij =0 Feriall 4,0, 1< 4, <n
and H+[ﬂm] is the subs ‘ where =dX.dN is non=negative [non=positive ]

semi-definite.

2. Surfaces of the form z = z(x). In this section let x = (Xl,,.,,xn)

and let points of E T 1 nave the coordinates Gl = (Xlgoaa,xn,z)a Sup-

satisfies (A), and is given in the form z = z(x)

pose S ig in EP‘+'1,

for x in a domain D. Let D+)DO,D“, denote respectively the orthogonal




projections of the sets H+)Hoﬂﬂm9 of S on the hyperplane z = 0., The
Tirst lemma is a corollary of & theorem of Sard [2g s ef, Sien [22].

Lemms II.l. ILet S satisfy (A) and be defined by a function

L Al 5 ) i
z =2z(x) for x = (x ,...,X ) in a convex x domsin D. Then if U is &

e, e e

component of D., z(x) is linear on U.

6) ——
Proof. The vector grad z Es(zl(x),ooo,zn(x)) is of class C".
Since the second partial derivatives of 2z satisfy Zij(x) = 0 for

1<i, j<nand x in U, grad z is constant om U by [20], Theorem

") on U and let F(x) =

6.1, p. 888. Suppose grad z Es(al,g.o,a
n

Z(x) = > a’x". The first partial derivatives of F are identically
il = L
zero on U, hence by a theorem of A. P. Morse [14], p. 68, F is constant
on U. Thig proves that z is linear on U.
Remark. It is only for the purpose of obtaining this lemma that
: SR 24 s o T 1 T 2 5
S 1s assumed to be of class rather than of class ¢~ in (A). Note

also that the semi-definiteness of =dX.dN is not used in the proof .

Theorem II.l. Assume (A) ard suppose that, in the B o space

i n - 1L n
(X ,.00,% ,2), 8 can be represented in the form z = z(x ,...,x ), where

z is defined on a convex x-domain D. Let T be a component of the set

ez SRSy —

D+‘(££ D ) and let U be a component of D - T. Then U is convex.

Progf. Let Ué denote any component of D - T and Ué” the boundary
of Jée Then Ué*!ﬂ D is a subset of’DOo Since D is homeomorphic to
&n, Ua“ () D is connected. This assertion follows from Theorem 14.5,
P. 12k, and the remark on P. 137 in Newman [16], which show that each
component of D = T contains only one component of T' N B = (D= E)X 0k
hence U' N D = (D - T)'N U, is connected.

By Lemma IT.1, there is a linear function of X, say 'z =%(x,a), sueh




(1) —z(x,=) E'Z(X)g“zj(x,a) = zi(X) e k(S D@ Dys
Furthermore,
(2) zij(x,a) = zij(x) = Qe U e DG B, T 1]

Define the function w = w(x) in D by
(%) wi(x) = alx)l if xc Tand wie) = zlze) 1t x e u,-
It is clear that W is defined and of slass C2 on D because of
(2). In view of (3) and T C D , w also satisfies
(4) the matrix (wij) is nonenegative definite.

Let V_ denote the convex hull of U  and let J(x;a) = wix) -~ zlx,a)
on D. It will first be shown that
(5) J(x,2) = 0 on v,
J(x,a) is a convex function of x because of (4), hence (1)-(%) imply
that J(x,a) > 0 for all x in D. On the other hand, by a theorem of
Caratheodory (cf. [5], p. 35) if x ¢ Va’ X = j?j xixi where ZZ-Xi =

z i = UL
8 >0, and x, € U for i = 1,2,...,n. The convexity of J(x,a) shows

n :
that J(x,a) < > li(xi,a) = 0 because J(x,a) = 0 on U,. This proves

ST

(5).
Now it will be shown that
/, | o s 2 A )
65 Wiy = OonV_ forl<i, J<n.
Clearly, because of (4) and zij(xja) = 0, (6) follows if it is verified
that
& 7- o 1 . B £
(7) ajjkxja) OonV, for1<Jgn.
If the dimension of V_ is n, i.e., if V_ has interior points, (7) follows
from (5).

Suppose that the dimension of Va is less than n, then Ué has no

interior points and Ué = Ué“ (\ Do 1In this case (2) and (3) show that




it

(6) and (7) hold for x in U,- Let x be apoint of V_. Then, as in the
IL .
proet of (5), x = :Zj AMx. for x, in U and suitable A.. Let A be a
= i it a il
real number, A the n-vector whose Jj=th component is A and other com-

ponents are 0. Put

F(a) = kl(J(xi + A a) e J(x + A a)).
al 1

2 n : :
Since x + AY = :Zj xl(xi +2%) and J(x,a) is convex, F(A) is defined
i=1
for small |A| and satisfies F(A) > 0. By (5), F(0) = O so that F has

& minimum at A = O. Therefore,

17 i
F"(0) = A (Jjj(xi,a) - Jjj(x,a)) > 0.

n :
Ak o . T
Hence, Jjj(xgd) < ;z;. A Jjj<xi’a) = 0, because x, is in U_ and (7)

holds for x, in U_. Moi the other hamd, Jjj(xga) > 0 because of (4)
and zjj(xﬂa) = 0. This proves (7), hence (6).

The conclusion of the theorem now follows. For if x is in Ty Ghen
wij(x) # 0 for some pair i,j. Hence (6) shows that V_ does not intersect
T. Therefore Ué = Va and Ué is convex.

Corollary II.l. Let S,EE as in Theorem II.l. Then the components

of Dy, D, U D,, and Dy \UJ D_ are convex.
Proof. Let § Sag be the compoments of D, and ETabE the components
of D -8 . Let Ube a component of Dy UD and v = () giéb <SRG Taﬁ} :
Clearly, U C V. It will be shewn that U = V.
By Theorem II.1, each set Tab is convex. Hence V is convex and
therefore connected. Since V C D0 U DE it ol owsehat s Vi@ S =
proves V = U and U is convex. This completes the proof of the assertion

"l ) .
about DO \U D_. The assertions about DO and DO U D+_are proved simi

ol e




i 2

3. Surfaces satisfying (A). In what follows E t L gs the space

of points X '= (Xlgoo,,xn +'l)a The requirement that S be-defined by a

function x = Z(legov,xn) will be dropped. A subset C of E° o

will be valled a-bounding set for a surface S if S C C and

S -u8t("C. ,In particular, if the set S' - § is empty, & h

bounding set for S.

Theorem II.2. Assume (A). Let U be a Tompoment of H,. Suppose

that S 1s openly imbedded and has a convex boumding set. Then U is cons

B

VeEXo,

i n + l)

Proof., Iet y = (y 5000 o “be amy point of S. The openness

[ 2L A L
(o ehx

of the imbedding implies that an x = ) coordinate system

can be chosen such that all poimts on S near y, say all points on S in

the n-cell S(y) E‘X 2 ]xl - yl[ ) e e = l,.na,n.+-lj?, can be

n + L A 1L

represented in the form x z(x ,0,.,xn). Corollary II.l shows

that each component of the orthogonal projection of U (N S(y) onto the
hyperplane X" R O is convex. Lemma ITI.l shows that every component
of UN S(y) lies on a hyperplane, hence every component of U () S(y) is
convex. This shows that the set U is almost convex in the sense of

Chapter I. Consequently, Theorem I.2 shows that U itself is convex.

Corollary II.2. Under the hypotheses of Theorem II.2, the normal

N is constant (N = N(U)) on U, and U lies in a hyperplane orthogonal to
N(U).
This corollary is a consequence of the proof of Theorem II.2.

Lemms, IT.2. Let D be a compact, convex -body in B (n > 2

Suppose C 1s a closed, convex subset of D and C' (1 D' is convex.

Then D = C is arcwise connected.




The proof of this lemma is simple amd will be omitted.

Let P be a hyperplane in E +—l“ A surtaeesbiwill e said 4o ap-
proach P from one side if there is an open half space P+Abounded lgf7 i&
and such that S C P+) S' = SC P,.and for-every € >.0 the-sets of points
on S at a distance greater than € from P is bounded. In particular,

P+_will be a bounding set for S.

Theorem II.3. Assume (4). Suppose S Egjopenly imbedded,.ii

homeomorphic to En, and approaches‘i hyperplane P from one side. Then

one of the sets Hng;1i§ empty.

It can be supposed that P is the hyperplane % Ea O and that S

n -+ I >

lies in the half space x O, If the theorem is false, there are

points x in H#’and X in H . Then there is some component U of HO

==

+
such that X+<and x are in different components of S - U, of. [16],

p. 123, Theorem 14.3, and p. 137. By Theorem II.2, U is convex.
Let y be an arc on S connecting x+‘to X , and let € satisfy

0< e <min E:Xn e ¢

X = (Xl,GOq,xn +l) = 7j$o Suppose Y is the

hyperplane comtaining U and orthogonal to the surface normal N(U) in

U. Introduce new coordinates (yl,.,o,yn,z) Ny 2 in B such

that Y is the hyperplane z = 0. Let Ué be the intersection of U with
the half space & i = €. Jince Ué is compact and convex, there is

a compact n-dimensional convex subset V of Y such that Ué is in the
interior (as a subset of Y) of V and S can be represented in the (v,2)
coordinate system by z = z(y) for (y,0) € V. Finally, let W =

V() g;:z % it = 2’6;5 and let Sebe the subset of S represented in the

(v,2) coordinates by z = z(y) for (y,0) € W. W is clearly convex, com-

pact, and n-dimensional.
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W - Ue is not connected. For let Xy denote the first point of y

not in the component of S ~ U comtalning x + and let X, denocte the last

point on y not in the component of S - U comtaining x . By the choice

of e, Ué contains Xy and X5 and the (n + 1)st coordinates of these

points are greater than €. Henge there are points x5 and X), of

S = Ué which preceed Xy and follow xg'respectively on y. X, and Xh

<

and x

cannot be conmected in S€ - Ue’ since If this were possible X,

would be connected in S = U. It follows that W = Ue is not connected.

On the other hand, Ué‘ n w' U, N gjx > S 0 ej? is convex.

Henceé with the identification D = W and C = Ué, Lemma II.2 shows that
W - Ué is connected. This contradiction completes the proof.
4y, TLemmas. This section is devoted to some results which will be

needed in the proof of Theorem ITI.5.

Lemma IT.3. Let X be a locally compact metric space and F a local

homeomorphism from X to a topological space Y. Suppose M is a compact

subset of X such that F is restricted to M is a homeomorphism. Then

comtice

there is a relatively compact open set O containing M such that F

restricted to O is a homeomorphism.

The proof of this lemma is easy and will be omitted.

Lemma II.%4. Let S be an n-hypersurface of class Cl.

(1) Then if S is openly imbedded, E* ' © - § has at most two com-

e

ponents .

(ii) If S is homeomorphic to Ee and is a closed subset of 7 F l,

then E A S has at least two components.

Proof. Suppose that S is openly imbedded. Tt is easy to verify

that this implies that for every point x of S, there is meighborhood B




of x suchthat B - S is homeomorphic—to a solid open sphere with its
equitorial plane removed.

To verify (1) let D ,D,,... be“the compomemts of E- L e
Let Ti be the subset of S consisting of Iimit points of Di“ Clearly
Ti is closed in S. By the remark at the begimming of the proof, Ti
must also be open in S. Since S 1s connected each”Tiwmust be either
empty or all of S. It follows from the remark at the beginning of
the proof that each poimt of S is in =t most two of the sets Ti,
hence there are at most two non-empty sets Tia This shows that
there are at most two non-empty sets Die This proves (i).

To verify (ii), suppose that S is homeomorphic to E' and is a
closed subset of E +'lo If S is a hyperplane it is obvious that S
separates B +'l, e o E Rl S has at least two components. The
proof can therefore be completed by verifying the following proposition.

A closed subset 81'22 E B separates EIl +'1 3£ some subset 82

of E° T homeomorphic to S, separates TR

To verify this proposition, let Sl and 82 be homeomorphic closed

subsets of En'+ - and suppose 82 separates B +‘la Let B Tk be

compactified in the usual way by adding the point « and let Si* and

82* denote the images of Sl and 82 in B Ui U g“ﬂ% respectively,

where « will be considered a point of Si* GINT Si is unbounded. Clearly

S.% and S.* are homeomorphic and compact. S & separates En e U 3
2 2

1
i oAe L

because S, separates E o This implies that Sl* separates

2
B + 1 U gooz ety L] p 101, Corollary 3), hence Sl separates

e +'lo This completes the-proof of (ii).

Coroligeye 1. SO [leCUS 2312 hypersurface of class Cl openly
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imbedded In B +-lo Suppose S is homeomorphic to B andxgpproachésii

hyperplane P from one side. Let P+_d€note the—open half space contain-

e

ing S. Then P+ - S has exactly two components armd every point of S is

& boundary point of both components.

)
Proof. Suppose B, = zjx e Of'o Theproof is completed

by applying Lemma II.4 to the image of S under the homeomorphism

b n n 4+ 1, +
X = (Xlgonojxn +l)-—> (xlﬂooagxnglog %t l) of P _to i l, noting
because S is closed in P+) the dmage of S will be closed in En i lo

Theorem II.L4. Assume (A). Suppose S-openly  imbedded, 1s homeomor-

phic to En5 and approaches a hyperplane P from one side. Then S is

the part of the boundary of a bounded convex body lying on one side

of P.

Proof., Let P+ denote the open halfsspace containing S and let
D, and D2 denote the two components of PJr - S which exist by Corollary
ITZ.4, These components can be distinguished by the fact that the unit
normal N is directed toward one of them, say Dly at every point of S.
By Theorem II.3, it can be supposed that the set H+'is empty. Then
the set Dl is loeally convex, i1.e., every point of Dl’ is at the center
of a solid sphere B such ‘that leﬂ B is a subset of a hemisphere in B,
This assertion is obvious for points of Dl“ which are on P. For other
points of Dl“9 it follows from the nonpositiveness of -dX .dN. A
theorem of E. Schmidt (cf. [26], p. 241) shows that D, is convex.
Finally by an argument given by Van Heijenoxt ([26], p. 231), it can be
shown that Dl is bounded. Since S8 C Dlg and approaches P from one side,
this completes the proof.

5. The main theorem. A Riemannisn manifold becomes a metric space




ALy
if the distance between two points is defimed to be the greatest l&wer
bound of the lengths of the arcs connecting them. A manifold is said
to be complete if the metric space obtained imthis way is complete.
There are a number of equivalent defimitions of completeness, cf. [15].

A 4e d

The image of a complete n-manifold igsometrically immersed in E is

called & complete n-hypersurface.

The mzin theorem is of the same type as a theorem of Stoker [23],
which has been generalized by Van Heljenoort [26] (and which, in turn,
is a generalization of a classical theorem of Hadamard [T]).

Theorem II.5. Let~the hypersurface S be a c -l (n >2) immer-

sion of a complete Riemannian manifold M in i +'lo Suppose that the

second fundamental form of S is semi-definite at every point of S and

o e

is definite at some point of S. Then the immersion is an imbedding,

I s q I
S bounds a convex body, and is homeomorphic to either S~ or Eno

As usual, s" denotes the surface of the unit sphere = ln PP lu

The requirement that the second fundamental form of S be semi-
definite (or definite) depends only onM and not on the imbedding,
In fact, if local coordinates are chosen such that the second funda-
mental form is diagonalized at a point, it is clear that the products

h are the components R, ... of the Riemann-Christoffel tensor.

Joohlu Judes Qo 8
i 1L
Theorem II.5 neither contains nor is contained in the theorems
of Stoker and Van Heijjenoort. It faills to comtain their theorems
because of its stricter smoothness requirements. Theorem II.5 does
not follow from Van Heyenoort's theorem becsuse the local condition

that -dX.dN be semi-definite does not dmply that S is locally con-

vex, for logtanee, a eylinder meed not be convex. A less srivial
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example is given by the 2-dimensional surface in the (xgygz) space E5

defined by z = XB(l - ygj for -o < x < 4w, yg < 3. ‘This surface has

a semi-definite second fundamemtal form, and in fact the form is posi=
tive definite for x > 0 and megative definite for x < 0. The surface
is not locally convex along x = 0. It follows from Theorem 1) . Glazng
no neighborhood of the origin on this surface can be a part of com-
plete surface of class C5 with non-negative Gaussian curvature.

Aside from smoothness assumptions, the relstion of Theorem 1ES
to known results is as follows: Hadamard's result [ Berehe S eene
responds to the case where M is compact, n = 2, and the second funda-
mental form is definite (instead of semi~definite). Chern and Lashof:
ol oD 69 Theorem 4, generalize Hadamsrd's result to the case where
the secomd fundamental form is semi-definite. Stoker's theorem [23 ]
generalizes Hadamard's result in another direction by removing the
restriction that M is compact but retaining the assumption that the
second fundamental form is definite. Fimnally, Van Heijenoort [26]
considers all n > 2 and non-compact hypersurfaces, but replaces the
assumption that the second fundsmental form is semi=definite (and
definite at some point) by a local convexity condition. Theorem ITI.5
contains all of these results when sufficient smoothness is assumed.

Van HelJjenoart gives examples which illustrate the role of the
hypotheses that 8 is complete and that the second fundamental form
of 'S is definite at one point.

In ~the proof of Theorem II.5 and of Femma II.% below the immer-

sion map will be dencted by F, F ¢ M =>S. If A is a subset of M,

F/A and F(A) will denote respectively the map F restricted to A and
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image of A in 8§ under F. Our proof uses some of the devices of Stoker
and Van Heijenoort. However, with the two exceptions noted below a com-
plete proof which is independent of their papers is given.

6. é lemma. The proof of Theorem II.5 depends on the Tollowing
lemms,.

Lemma TI.5. Agsume the conditions of Theorem II.5. Suppose that

an open non-void subset N Ef M is given with-properties that (1) F/ NO

0
is a homeomorphism, (ii) F(NO) is the part of the boundary of a bounded

convex body in an open half-space determined by & hyperplane P. Then

there is a closed subset N of M such that, (a) D Nos (b) F/N is a

homeomorphism, (c) the

closure of the part of the boundary of a bounded convex body in an open

half-space determined by a hyperplane parallel to P; in the latter case,

the normal to F(N) is parallel to the normal to P at some point of ‘F(N').

Proof. Suppose P = {X c gL OE F(NO) @ gx it g o},
n e

and F(I\TO) has x z . as a supporting hyperplane.: Let z > 0 and let

0

N(z) dencte an open subset of M (if one exists) satisfying (i) N(z) O Ny
(i1) the map F/N(z) is topological, (iii) there is a compact convex
body B(z) which has X e 2 e z as a supporting hyperplane and is such
that P(N(%)) is the part C(2z) of the boundary B'(z) in the half-space

xn L < 0. Such a set exists for some 'z because NO itself satisfies

these conditions.

The notation N(z), B(z), C(z) is Jjustified by the fact that these
sets are uniquely determined by z if they exist. This assertion is an
immediate consequence of the following simple topological proposition,

which will be used again in Section 7 below.
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(*¥) ILet 0, and O, be open subsets of & topological space. Sup-

5 3 = 3 « 2 S - S o
pose 0; (1 O, #0, 0, | O, =0, amd O, is comected. Then O} C O,.

To verify (*), note that 0, N 04 = Omeans that 0, - O, is open.

Then, the three conditions 0, f] 0, # 0, O, is commected, and o

(Ol(] qa) U (Ol - 02)'Imply that Ol = Cb is empty, i.e., Ol C ng

The uniqueness of N(z) follows from (*),for if N(z.) and N(ZE)

o
both satisfy (1), (i1), (iii) Tor z, < Z, N(zl) @ N(ZE) follows
from (*) by identifying N(Zi) with Oi fort i =Rl It perLicular,
if 2, =z, N(Zl) 2)°

Let z*, 0 < z*¥ < = denote the least upper bound of the % values

such that the set N(z) satisfying (i), (ii), (iii) exists. Tet N =
L}iﬁ(z) U <'Z¥E B the closure of LJ%;B(Z) i B z*ﬁ

and C; = UE_C(Z) 2 0 e “z*_?.. Clearly if N(z) exists, C(z) =

o (A e "< z¢. This shows that F/N, is a homeomorphism

is the part of the

and C, = F(Nl), Also, B is a convex body and C,

1
n + 1 <

boundary of B in the half-space x Zr. “Imparciedlar, it

z¥ = o, Cl is the boundary of B.

In case z¥ = w, the proof is complete because F(Nl) =0 =
is the boundary of a convex body. Hence Nl iscomplete and N =

In case z*¥ < w, an argument of Van Heignoort ([26], p. 229 and
the remark on p. 241) which we shall not repeat shows that F/Nl can be
extended to a homeomorphism from N = Nl U Nl' oite Ch = Cl U Cl’a
Let D be the set B () g&.: T +'l':wzf§ . Diis g convex set of
dimension smaller than n + 1. If thedimension of D is less th#n n,

then C = B' and the proof is complete in this case also.

The proof is now complete except in the case where z* < « and the




dimension of D is n. It can be shown by a simple argument that D is
bounded; cf. [26], p. 231.

It remains to verify the part of the conclusion of Lemma II.5

t 14

beginning "in the latter case ... If m is a point of M and z(m) is

the (n + 1)st coordinste of F(m), the gradient, graduz = (Zlgzgﬁ,ﬂo,zn)
can be defined in terms of local coordinates (ulﬁn,,,un) @ Ml I0E

MO denotes the subset of N, whose F-image is on the supporting hyper-

plane xn Tl 7 then zrad 'z = 0'on M .. Bub grad 'z # O at any point

Fioy 0
: : ; 1o o L
.f:aJ_ = —_ o= =
of Nl MO’ Tors S oradey, 0 at a point m, € Ni MO’ X 7(ml)

< z¥ would be a supporting hyperplane for B at F(ml), which is im-
possible.

The assertion to be verified can now be stated as follows
(1) Dreades =R 08 a6 seme Dol Htor
This will be proved by showing that the falsity of (1) implies that
there exists a set W, N C W C M, such that the hypersurface F(W)

satisfies the hypotheses of Theorem II.4 with respect to the hyper-

T L = z¥ + B for some & > 0. The conclusion of Theorem

plane xn
II.4 will then contradict the definition of the set N, hence it will
follow that (1) must be true.

Suppose that (1) is false. Consider the system of ordinary dif-
ferential squations

(2) dui/d.t = gi‘j Qz/guj (gkigz/&)uk 7z é’u‘l)"lg e e

where u = (ulyeua,un) are local parameters on M and the matrix

(g79(u)) is the inverse of the metric tensor (gij(u)} of M relative to

the u coordinate system. The right side of (2) is defined in a

vieinity of any point of N' if (1) is false. (2) are the differential




equations for the orthogonal trajectories toz = const..
Locally unique solutions exist through every point uo of the para-
meter space. In particular, suppose uo correspords to a point po on

N'. Let u(t,u.) be the solution of (2) through Uy and let p(t,u ) be

o

does not depend on the

o

the image of u(t ,u,) in M. The arc p(t,u

i) )
local coordinates. The compactness of N' and the falsity of (1)

imply that there is a® > 0 such that‘p(t,po) exists for all t

0<t <B =md all Py € N°. Fhe meprp i @51 X NP> M is eontinucus
by a standard theorem on the behavior of solutions of differential equa-
tions. Let Q denote the image of [0,6] X N' in M. It can be assumed
that ® is so small that if V = Q U N, then F/V is a homeomorphism.

This is a consequence of Lemma II.3.

Themspp : [0,8]X N' > Q is one to one. To see this, suppose

that p(tlypl) ='p(t2,p2) for some (ti,“_pi) e @ O S =] o e

Ctl’pl) # (teﬁpz)‘ Then P, = P, is impossible because dz/dt = 1

along a solution of (2). Therefore Py % Dy Let‘t3 denote the small-

est t value such that p(t ) lies oun the arep(t,p.). It follows

5751 2
from dz/dt = 1 along a solution of (2) that-p(tB,pl) = p(tB,pg), but

pﬁUpﬂ %p@i%)f@?@it <t5, This contradicts the local unique-
ness of solutions of (l), which proves that p is one to one.

The map p is a homeomorphism, being a one to one continuous map
of the compact Hausdorff space [0,6] X N' to Q. It follows that Q is
homeomorphic to the closure of the region between two concentric
n-spheres. Since Q [ N =N', V= q |J N is homeomorphic to a closed

n cell. Iet W be the imterior of V. W is homeomorphic to E' as is

its image F(W).




i)
The Telation“dzfﬂt =1 alorng a solution of (2)”an&'thE“&efinition

TR e e

of W shows that F(W) approaches the hyperplame x
half-space x + 4 < z¥% + &. This shows that F(W) satisfies the hypotheses
of Theorem IT.4 as asserted. This completes the proof of Lemma IT.5.

7. Proof of Theorem IT.5. Note that a set fulfilling the condi-

tions required of N, im Temma II.H exists. This follows easily from

0
the assumption that -dX.dN is definite at some point of S. For some

particular choice of such a set N,, let R denote the set N of 'the con-

O’
clusion of Lemma II.5. If F(R) is the boundary of a convex body, R,
the isometric image of F(R) is a complete manifold. Since a complete
manifold cannot be extended, this proves R = M, and the proof of the
theorem is complete in this case.

In the remaining case, F(R) is part of the boundary of a compact
convex body which will be denoted by K. In the notation established
in the proof of Liemma II.5, F(R) is the part of K in the half-space
X" e < z*. Let D denote as above the convex set K r)érx 5 xn =k = zj}
and note that D' = F(R').” If‘grad =z = 0 on all of R*, let ml be any
point of R'. Otherwise let'ml beaspeintieis RS suichitlat Y grad iz =10

ERG WL 4 10PAY [SREENEE % 0 at some point of R' in every neighborhood of ml.
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It can be supposed that x = Yo is @ supporting hyperplame for D at

m 5 and D C:.{? s %" E'y%)gg K has supporting hyperplanes X = yq

n
= N .
and X Yo where Yy = o < 95
Apply Lemma IT.5 again, taking as Nb the part of R which maps
into x < Yo If the set F(N) of the conclusion of Lemma II.5 is the
boundary of a convex body, the proof can be completed as before.

Therefore suppose F(N) is the part of a compact convex body in xn < y*.
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Clearly y* = yo, B raet = yo because the normal to F(NO) is not
parallel to the ¥ -axis at any point of F(N') because of Vp > Yy
Let Q(y*) dencte the set of poimts-p in the imbterior of R such
that F(p) € gzc: %t < y*;?. Then @(y*) CI'Nl = interior ¥; in

particular, m 1is an interior poimt of N because of y* > yO° This

1l
assertion follows from the proposition (¥) of Section 6 by taking 0, =

Q(y*) and 0, = Nj.
Now it will be shown that grad z = 0 everywhere on R'. Other=-

wise, the definition of m =mdm € Nl imply That there is a point

i It

)

such that“z(mB) > z¥, But this is impossible beecause x

T R (\“Nl where grad z # 0. Hence there is a point m5 € Nl
T ] L
is a supporting hyperplane for B at F(ml)° This proves grad z = O
everywheré on R

Tt follows that grad y = 0 on N' if y = g(p) denotes the n-th
coordinate “of F(p).

The results above show that y* = Ipe For suppose y* > Yoe Then
there is a point m in the interior of R such that X = Yo is a sup=
porting hyperplane to K at F(m). But Q(y*) C N, shows that m is in
Ni and x° = Y5 is a supporting plane to B at F(m), which contradicts
vE > Yoo Also y* < s is impossible because Q(y*)' contains no points
where grad y = 0 if y* < Tp- This is a comtradiction because N' N Q(y*)'
is obviously non-void. This proves y* = Yse

Now it is elesrthet B = K. Iet™M, =N U R. Then F(M ) = B'.

i
For, on the vne hard, F(Ml) C B' is clear. On the other hand, suppose

1)

n+ 1
)

bl (xl,oo.,x € B' and x ¢ F(R). Then x is interior to D and

£ < Y- Hence x e B') Zx S ygg C F(N) which proves F(Ml) = B
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M, is the union of the three disjoint sets ¥ () R, N - R, R - N, and F

T
5

is one-to-one on each of these. Simce F(N .|, R) C gzc s < u*,

Xn<y‘*§,F(N-R)C{x: xn:y*,xn+l<z*j amd F(R - N) C

gKX S % = v, = Bt z*j?, F is one-to-one on Ml' This proves

M1 = M and the proof of the theorem is complete.

8. Applications. First, note that a slightly stronger version of

Theorem IT.5 has actually been proved. For, the assumption that the

isometry F is of eclass Cn = was only used to prove that F(M) is of

class Cn +>l. It would have been sufficient to assume that the iso-

metry is of class & and F(M) is of class C° B e differentiable
manifold,
In view of this remark, the proof of Theorem II.5 has the follow-

ing corollary.

ool ary, koo Let'SleE‘g Cz”nxhypersurface wirich bounds‘g
T s

convex body in B +'lo Let 82 be an n-=hypersurface of class C
ahoap L

which is a 02 isometricimmersion of Sl in E . Then S, bounds
— _— et : 2

a convex*bodyjig En 7 lq

The statement of Corollary II.5 has meaning even if 82 and the
isometry are only comtinuous. This raises the questions: For which
ks, 1 <k<n + 1 is Corvllary II.5 eorrect if 82 is of class Ck rather
than of class Cn +'l? For which k, 0O< k' <n + 1 is Corollary II.5
gorrect if 52 is of class Ck and the isometry is of class Cl? The
analogous question: is false if"82 and the isometry are only continu-
ous, since, for example, a cap can be cut from a sphere, inverted
and replaced. It seems likely that Theorem II.5 and Corellary T1.5

are correect if Ck replaces o i for k > 2. On the other hand, the
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possibility that the statements become false for k = 1 is suggested by
the results of Kuiper [13] which show that if n = 2 imbeddings of class
Cl can have surprising properties.

Corollary II.5 can be used to show that in the statements of some
theorems, the requirement that g smooth surface be convex is super-
fluous. This point will be illustrazted by a rigidity theorem of
Pogorelov (cf. [18]).

Rigidity Theorem. Let Sl'be a 2=dimensional surface which

bounds a convex body in E5c Suppose S. has a spherical image 2.

15

Then, if S, is a convex syrface isvmetric to S

5 S, 1s congruent

122
to Sl'

it Sl and S

gre required to be of class C2 and Ca'respectively

2

and the isometry is of class Ce, it is not necessary to assume that

82 is convex or even without self-imtersections because these pro-

perties follow from Corollary II.D.




Chapter TITI. Maximum principles for partial differential
operators and their applications in the
theory of surfaces

1. Introduction. Let A, B, C, D, and E-be defined on an (x,y)

domain T with boundary T'. The partial differential operator
m Iz=Az__+2Bz +Cz + Dz + Ez
XX Xy vy X y

will be said to have a weak maximum-principle if

(2) max 7z = Tm?? mZ=Em

holds for every function z =%z(x,y) which is continuous on T |J T' and
is of class 02 on T and satisfies

(3) Lz >0

o) Yk

The first-three sections of this chapter are concerned with the
proofs of some wezk maximum principles which generalize some of the
theorems proved by Hartman and the author in [8]. The method used
here will differ from that employed in [8] in the respect that maxi-
mum principles will be proved somewhat more directly and consequently
no analogue of the main local Theorem T, p. 219 in [8] will be ob-
tained or needed. The maximum principles-proved here differ from
those of [8]mainly in that here the coefficients of the operator
L will be permitted to be discontinuous. In Section 4, some examples
are given to demonstrate the need for some of the hypotheses made on
‘the operator L.

In Section 5, it is shown thatoperators with discontinuous
coefficients can arise in a rather natural way. The-possibility of
sharpening some of A. D. Aleksandrov's results in the theory of sur-

faces is also discussed. The remaining two sections are devoted to
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theorems of Hilbert and Weyl on the extrema of the curvatures of a sur-
face which have been used to obtain unigueness theorems in the theory
of surfaces. Examples are given to show that Hilbert's and Weyl's
theorems fail to hold for surfaces which are mot sufficiently smooth.
This indicates that maximum-principles can give sharper results in
the theory of surfaces than can be obtained by consideration of the
extrema of the curvatures of a surface.

2., Preliminaries. ILet L be an operator of the form (1). A vec-

tor (x',y') #-(0,0) will be said to be in a characteristic direction

at a point (x,y) of T |J T' if there is a sequence of points ér(xn,ynlg

alyan U \) Y sivicin. (eiEns

(L) 1im (x 3yh) = (= 7 as n > o,

2

n
(5) lim [C(xn,yn)x‘ - 2B(Xn,yh)x'y’ +-A(xn,yh)y'2] = 0as n->w,
The following conditions (i)-(iii) on the (x,y) set T and real
valued functions A, B, C, D, and E will be used below and will be re-

ferred to as hypothesis (H)..
(1) T is = bounded domain with boundary T',
(ii) ‘&, B, C, D, B satisfy
(6) 1.u.b. (|al,[B],{c],|p|,|B]) Q@<= onT
for some constant Q,
(7) ac - B > o,
(8) A>0 and C>0,
(1ii) &bt every point of T there is a vector which is not in a
charscteristic -direction.
Remark. A definition of a characteristic direction wihich is equi-

valent to the one given, provided (6) holds, is obtained if (5) above is




replaced by

2 2
s 1 1 - { = e
1im [C(xn,yn)xn - 2B(x o5 )x e +—C(xn,yn)yn ] =0as n-~>

where (xl',yl'), (x2',yé'),q,. is any sequence of vectors satisfying

limA(xn',yn’ = (el e l) as n ~> =,

The equivalence of the two definition follows easily from (6), and

will be used several times below.

A point (x,y) of 1 iz called elllptic or parabolic aecordinz 5

there does not or does exist a vector in a characteristic direction at
(x,y). DNote that, since A, B, C are not assumed to be continuous, the
condition AC - B2 > 0 is necessary but mot sufficient for a point to be
ellbpties.

The proofs of the maximum principles depend on & number of simple
lemmas .

Lemma IIT.1l. Assume (H). ~Suppose (Xo,yo)<i§‘§ point ofT U T*

and that (x',y') is not in a characteristic direction at (xo,y'o)e Then

there is a positive constamt & such that if (x,y) is a point of T U T

satisfying (x - XO)2 + (y - yo)2 < 8 and the vector (% h £ (0,0)

satisfies (:? - x')2 +~(? - yi)2 < &, then

c(x,7)% © - 2B(x,9)%p + A7 ° 25

The proof of Lemma ITI.1 follows dimmediately from the Remark fol-
lowing the statement of the hypothesis (H).

Thefollowing remark, which is a corollary of Lemma IIT.1l, justi=-
fies the defimition givern of an "elliptic point.”

Remark., Assume (H) amd let (x ) be an elliptic point. Then

F0dp
there i1s a neighborhood of <X0’y0)<i£ which LAEE strongly elliptic.

The last statement means that (6) holds and there is a constant § > 0




such that
2 2 2 2
Ax,y)7 "+ 2 B(x3)F7 +clxyly T 28(2° +7°)
holds for arbitrary (’? ,? ) if (x;7) s = point of T satisfying
2 2
(x - %)% + {7 - 7,)" <5

Lemms, TIT.2. Assume (H) o HebES _°_o_§ a compact subset 2{ T U T

and suppose there is a continuous vector function (x'(x,y), y'(x,¥))

defined on S such that for all (x,y) in 8 the vector (x'(x,y),

y'(x,y)) # 0 is not in acharacteristic direction at (x,y). Then

there is an amalytic vector function (? sy )s %‘ (x,3)) defined on

S with the same properties.

Proof. For every n = 1,2,... there exist polynomials ?n(x,y),

7 n(%5¥) satisfying (?n(xm - x'(x,y)f + el y'(x,9))° < 1/n

on S. If n is large enough, for all (x,y) in S, the vector (? n(x:,y),
?n(x,y)) is not in a characteristic direction at (x,y). This agser-
tion is proved by a simple argument which employs only the compactness
of S and the definition of a characteristic direction. Thus, for some
large n, the vector (g n(x,y), ? n(x,y)) has the properties asserted
for (f (x9), 72 &5))

Lemmz TITT.3, Assume (H). Letz(x J=mam let R be a closed

ol

disk in T with (xo,yo) on its boundeary. Supposez <m in the interior

of R. Then (x ) is a parabolic point and a tangent vector to R at

O’ yO Do

(Xo,yo) is in a characteristic direction.

Proof. The assertion that (xo,y ) is a parabolic point is a con-

0
sequence of the remark following Lemmsa IIT.l and the strong maximum
principle for strongly elliptic operators; cf. [10]. The assertion

concerning the tangent to R at (xo,yO) can be proved as Lemma 1, [8],
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P. 219, by amodification of the arguments of E. Hopf [iO] and Nirenberg
[17].
The Iast lemma is @ special case of a theorem of Khmke [12 1, Batw i
PN,

Lemms, TTT.k4. Suppose““tha‘t“the"fun“cti'on”"fi(x,y), g{i(x,y) G=r5 )

are of class o= (x> 1) on a simply comnected (x,y)=domain U amd satisfy

(10) £ = f >0

18 = 108

Then if S 1s a bounded subdamein of U whose closure lies in U, there

are functions U(x,y), V(X,Y) which are of class Ck on S, satisfy

(11) f,(x,7)U, + 81(x,y>uy =@
(12) £, (x,5)V, +'82(X,Y)Vy =0
(13) 2 (UVY Fl=,7) = NS, 30

on S, amd the tramsformation (x,y) = (U,V) maps S onto its (U,V)-image

in a one-to=one manner.

5. "Maximum principles. The first theorem to be proved is

Theorem ITI.l. Assume (H) and suppose that some Pixed vector

((x",y') 1s not in a characteristic direction at any point of T. Then

L has a weak maximum principle on T,

Proof. It can be supposed that (x',y') = (1,0). Suppose the
theorem is false and that all points of T U Tt where 2= m are in T.
Let Yo be the smallest number such that the line y= Yo contains a

point (x ) where z =m. Then there is a small closed disk R in T

0°Yo
tangent toy = ‘VO at '(Xo,yo) amd in the half-plane y § yo. R will con-
tain no points where Z =m other than (Xo,yo). Tiemma, ITI.5 implies

that the tangent to R at (XO,yO) 1s in a characteristic direction, but

this contradicts (x',y') = (1,0).




Gz

CoroIthry TIT.1, Assume (). —Tet S be @ subdomein of T such that

at  every point (x,y) of the closure of S there is a vector (? e

which depends on (x,y) amd is mot-in a characteristic direction. Then

there is an € > 0 such that L has a wesk maximum principle on any sub-

domain E_f S with diameter less than €.

Proof. By Lemma II.l, each point (x )of 8 |J 8' has a neighbor-

0’70

)2 < d(x ) in which some fixed non-trivial

hood (x - XO)E +(y - v

0 0’70

vector is not in a characteristic direction. The union of all such
neighborhoods covers S \J S'. Let € be a Lebesgue number for the cover-
ing. Then for every subdomain U of S of diameter less than €, there is
8 vector nmot in a charactei'.:'istic direction at any point of U. Theorem
ITI.1 shows that L has a weak maximum principle on U, which conpletes
the preof.

Corollary IIT.1l can be used to obtain strong maximum principles of
the type found in [8], Section 9, for operators with discontinuous
coeffictents; ef. [8], Seetion 10.

Theorem ITI.2. Assume (H). Suppose that T is simply connected

gnd that there exist continuous functions ? Cxyy); ? (x,y) defined on

T and such that, for every (x,y) in T, the vector (? (x50, ? (=)}

1s not a characteristic direction at (x,y). Then L has a weak maximum

primeiple.

Proof. Tt is clearly sufficient to-prove that 1L has a weak maxi-
mum principle on each bounded subdomain S of T such that the closure of
S is in T, ILet S be such a domain. Lemms IIT.2 shows that it can be

S 2
supposed that ?(X,y) and %(X,y) are smooth, say, of class C~ on the

closure of a simply connected domain U containing the closure of S.
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Apply Lemma III.%, taking fl iy = g and —f2 = +gl = % This gives
a one-to-one Cg—transformation with non-vanishing Jacobian of S onto
a (u,v)-domain S*. Equation (11) becomes
% (x,3)u, +7 (x,3)U, = 0

which implies that
(1) (U, 0) = Mx,9)(7 5= F)
with A comtinuous and non-zero on S since # (U,V)/7 (x,y) # 0. After
the transformation (x,y) * (u,v), Lz becomes
(14) L¥z = A%z + 2B¥z _ + C¥z__ + D¥z_ +F*z_,

vu uv \a u v
wleret S tor i nstance

2 2

(15) A¥(u,v) = Alx,3)U,° + 2B(x,y)UXUy + C(xsy)Uy }

Since (}7 37() is not in a characteristic direction, (13) and (15) imply

(16) A%(u,v) = xe(x,y)(A?g 3 2]3;?? v 0?2) S @

Now it will be verified that the vector (0,1) is not in a char-
acteristic direction at any point (u,v) of S* with respect to L¥.
Otherwise, there is a sequence of points (ul,vl), (uQ’VE)’ AT s
satisfying
) lim (un,vn) = (uo,vo) € S%¥ as n—>w
and
(18) 19m a*(w_,v. ) = 0 -as n -,

" n
If (x,¥,) is the point of S corresponding to (u ,v ), (16) shows that
(18) and (17) are equivalent respectively to
(19) lim(xn,yn) = (XO’yO) cEc N SR
and
Paso L T N
(20) Lim A (A7 ° - 2Bn?z n?n + szn ) =0 as n >,

where the subscript n on a function means that the argument of the




-

function is (Xn’yn)“ By the remark gt the end of Section 2 and KE(X s

070
(19) and (20) show that the vector (;?(XCPyO)’iV(XO’yO)) is in a char-

acteristic direction at (xo,yo)° This contradiction proves the asser-
tion that (O,l) is not a characteristic direction at any point of S*.

Let V be a domain with its closure in S, and let V* be the image
of V in S*¥., The operator L* then satisfies the hypotheses of Theorem
ITT.1 on V¥, hence L* has a weak maximum principle on V¥. This shows
that L has a weak maximum principle on V, hence on S and on T. This
completes the proof of Theorem III.3.

L. Counterexamples. Let Ll denote the operator

.2 i 2 !
LlZ~— Yy ZXX - 2xyzxy -+ X Zyy - XZX - yzy°

If T is the domain 1 < XE +~y2 < 2, all of the hypotheses of Theorem
ITI.2 are satisfied except the hypothesis that T is simply connected.

However, L. does not have a weak maximum principle on T. For if

gl
Ol i 2 AL 2 2
f =f(t) is a function of class C* for 1 <t <2, then z= £(x~ + y)

satisfies le = 0 on T and 1t is clear that f can be chosen such that

m%x zZ > m%§ 2. This shows that the hypothesgis that T is simply connected

is essential in Theorem IIT.2.
In the operator

ey 2 29¢(.
r=u( + Pz, +2),

let g = g(t) be a continuous function on 0< t < 1 satisfying g(l) = 0,

o) =e iR G v
Lz e

Lz = il 2 5 o

L,z aopy b S Bl el

and let T be the domain x2 +—y2'< 2., Then Lz satisfies all of the
hypotheses of Theorem III.2 except the hypothesis that there is a

continuous vector function (¥ (x,y) Xx,y)) such that for every
J 3 b
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oleRtein ((og ) Thel E (? (x,y),i?(x,y)) is mot in a characteristic direction

at (x,y). Lz fails to satisfy this hypothesis in spite of the fact that
it is possible to find a neighborhood of every point of T U Tt in
which continuous vector functions of the required type do exist. Lz

fails to have a weak maximum principle, for let

0 itap x2 + y2 < I

Z(X3Y> =
2 )
f(x2 +y2) S +y2§2
where T is of class C- and satisfies £(1) =<£'(1) =+F"(1) = 0. Again
it is clear that f can be chosen such that max z < max z.
[J'_'ll T

5.  Remarks on the application of the maximum principles. The

purpose of this section is to motivate the introduction of some of the
hypotheses of the theorems in Section 3.
Let Ll,.aa,LN be a finite set of operators of the form

Liz = Aizxx 5 2BizXy i Cizyy +—DizX +-Eizy
with continuous coefficients defined on the (X,y) domain T. Suppose
the conditions

Aici - Bi2 >0 and Ai 5 >0
hold everywhere in T for i = 1,2,...,N. If z is a function which is
defined and continuoué on T L) S and s ofieless 02 anl b, diew ko= k(x,y,z)
denote the smallest integer such that

=L e L]

holds at (x,y). Then the operator L = L is easily seen to satisfy the
hypothesis (H) on T, hence the maximum principles of Section 3 can be

applied to L. Thus operators with discontinuous coefficients arise -in

a.rather natural way from operators with continuous coefficients.




Suppose that“m(tl,...,tN) is a real-valued furnction witich is in-
creasing in each variable amd satisfies 9(0,0,...,0) < 0. Then maxis

mum principles for the non-linear operator gz = @(le,.ve,L z) can be

N
deduced from the theorems of Section 3. For, 9z 2 0 dmplies Lz > O,
where L = Lk is as in the preceding paragraph. Note that thig is

true even if ® is not differentiable or even continuous.

A. D. Aleisondrev [1] has employed maximum principles for opera-
tors of the form.@(le,..,,LNz) to give a very general and unified
treatment of uniqueness theorems in the theory of surfaces. However,
he requires that 9 not only be increasing in each variable but also
be differentiable. The considerations above suggest that the assump-
tion that © be differentiable may not be essential in his theorems.

(He has formulated some theorems in which calititEiaaatsilEion bl e @ g
omitted, but at the expense of other types of hypothesis.) However,
the maximum principles obtained here are not adequate to generalize,
or even to obtain, Aleksandrov's theorems in this way. Such generali-
zations would require strong rather than weak maximum principles.

To illustrate the possibility of extending Aleksandrov's results
by employing the remarks above we consider the following known Pro=-
position.

(*) Let S be a closed, two-dimensional surface of class c?

with positive Gaussian curvature. Suppose @(tl,t is monotone in-

o)
creasing in both variables, and the mean and Gaussian curvatures H
and K respectively satisfy‘@(HﬁK) =0 on S. Then S is a sphere.

Grotemeyer [6] remarked that (*) is a corollary of a theorem

of Chern [4] if S is of class Cu, Similarily, iFissi o telace Ceg
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(*¥) follows from Pogorelov's sharper version {191 of Chernts result.
Alexandrov's methods are not quite adequate toprove (*) directly be=
cause @ is not assumed to be differemtiable. However, it is easy to
verify that his methods together with the remarks above on maximum
principles “for operators Pz =‘@(L125Léz) are sufficient to-prove (*).

6. The theorems g£ Hilbert and Weyl. Let S be a piece of two-
)

dimensional surface of class C= in B . TIf P is = poimt on S, kl(p)
and ke(p) will denote the principal curvatures of S at p, which are
determined up to a factor + 1. H(p) :“%(kl +~k2) and K(p) = ik

will denote respectively the mean and Gaussian curvatures of S at p.

S will be called locally convex if K > O everywhere on S and S has no

self-intersections. In this case it will be supposed that the normal

1
to 8 is directed in such a way that H > K2 > 0 and kl ~ ké >0. A

functiom £ = f(p) defined on S will be said to have a loeal maximum

[minimum]lgﬁ;go if there is a neighborhood U of ?, such that f(p) < f(po)
[£(p) > f(po)] for all p in U.

This section is concerned with the assertions

(Hn) Let S be a locally convex piece of surface of class ¢ (n =2

Suppose k. has a local maximum and k & local minimum at a point P, on~

2

[N

S. Then in a neighborhood of p. S is a part of the surface of a sphere.
o el Aee S e oL 2 ebole

(Wh) Let S be a locally convex piece of surface of class ¢ (n > 20

Suppose H has a local maximum and K a local minimum at a point b, on S.

Then, in a neighborhood of Pys S is a part of the surface of a sphere.

The assertion (HM) is due to Hilbert [9], Anhang V, p. 238, although
he did not explicitly formulate (Hu)e The proof fails if n < k4 because

the existence and continuity of the second derivatives of kl and k2 are
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used. Weyl proved.(WL) ne2q],sp- 72 et s Chern {51 w287, for Bri-
other proof. Again both proofs fail if n < 4, Actually, (Wh) follows

from (Hn)‘ In fact, if H has maximum and K has a minimum at a point

b
— il +—(H2 - K)? has a maximum and ky = K/kl a mini-

By o2 S, then kl
mum at po. Therefore, a counterexample to (wn) for any n is also a
counterexample to (Hn)‘

Hilbert employed his theorem (Hh) to prove the rigidity of the
sphere, and Chern used (Hh) to prove that all "special" Weingarten
surfaces are spheres. Grotemeyer's corollary to Chern's theorem cited
in Section 5 follows from (Wu) Jjust as Chern's theorem follows from
(Hh)' Both Chern's theorem and Grotemeyer's corollary are now known
to be correct for surfaces of class 02; cf. Pogorelov [19] and Aleksan-
drov [1]. In view of this, it is somewhat surprising that, as will be
shown by the examples in Section 7 below,

(*) the assertions (Hé), (H,), and (W,) are false.

5) 2

It will remain undecided whether or not the assertion (WB) is cor-

rect.

7. Counterexamples. The counterexamples to (H,) and (WE) are

3

both surfaces defined by a function of the form
2 2
(1) z(x,y) = +ax +y - w(x,y,A) + bw(y,x,r)

HoR xg + y2 < ROE, where
2, 2 2.\
w(x,y,A) = 2x (¥ +y)

5 e %y RO,a,b,K are

positive constants which will be specified more precisely later.

is of class 02 if 0< A <3 and of class C

The curvatures of S are given by the formulae
2 2 2 2 2
%g_(l+q)r=2pq3+(l+p)tj/(l%rp +qc)5/

2 eNE

, 2 i
(rt - s7)/(L +p +q°)




and

(3) k k=B 4+ (i - )2

where, as usual, p = 2.5 4= zy, r = ZXX, 5 =2 t =2_ . It follows

easily from (1) - (3) that the curvatures H, K, k

for x2 +-y2 < R02 ikt RO is sufficiently small. In order to determine

whether the functions defined in (2), (3) have maxima or minima at the

12 and k2 are positive

origin, their partial derivatives with‘respect”to/o for small/p > (0
will be calculated, Here, 90,9) are polar coordinates in the (x,y)
plane.

A simple calculation shows that

2a0 cos 8 +-O?92% i3 l), A l)

q=2/03in9 +o§p

2\ 2)\ 20
=23 -p fl(e,x,b), s = ogp IRt E=s =0 fe(e,x,b),
where the estimates hold as;/O'—> ORumttormiy ‘ins6a )b, Fer 0'<'a,b'< \consty
with M fixed. The functions fl and"f2 are the trigonometric polynomials
L 2
fl(e,x,b) =1 + 5Xcosge + 20(A - L)e@ms e -~ brsin (Ll + (- l)cos?e)
(6)
2 v 2 2 . b
fg(e,k,b) = Acos"0(1 + A - 1)sin"6) - b(L + 5rsin"6 + 2a(A - 1)sin'g).
Also, for/D L)

(7) 80 2acos +'O?92k), %0 = 2sin® + Oyf\

-1 2n - 1
(8) 1}0 = -2>>0 fl(e,.x,b), s/o = oyo Gt
It is not difficult to see thaty for/O,;é'.o, (200 =(8)

o %(1;0 + o) + 0(p), o 2(1)0 ago) + 0(p)
=

and for a ije

ha - 1 el
TGOl o(p) + 0 )s ko o=t + 0(©) + O .
1/0 /0+/0+§0 2/0 /o+§p+gp )




%0 - fﬁx . l(fl +-f2) - 099)
(10) = E J"'(fl + afg) + o(/a) - ogom“ B l)
(11) 1p = § lfl + 0pP) + o??“x i)

(12) & -zx/ﬁ” i lf2 + 0(0) + ogﬁm S

To obtain a counterexample to (Wé), e s Mo ediis ered N O SR DRIl

by = TR 0

fl 4-f2 =1 -b >0 -=and fl Sk af2 =1 =ab < 0,

The forms of fl, f2 show timt 1Ff A = A(a,b) 1s sufficiently small, then

(13) £, +f,>0 and f, +af, < Ofor all 6.

It can be supposed that A < 1. Then (9), (10), and (13) show that H
has a relative maximum and K a relative minimum at the origin. A more
detailed computation shows that (13) cannot hold unless A < 3, hence

a counterexample to (W,) cannot be found in this manner.

>

A counterexample to (H5) is obtained by choosing a > 1 and b and

A such that )\ > $-and

(1k4) f, >0 and f, <0 for all 6.
1

Such a choice is possible because if A = % and 3 < b < 2 then i b2 =10
and f, < 2 - b <O0for all 6. Then (11), (12), and (14) show that ky

has a relative maximum and k2 a relative minimum at the origin. This

shows that (H,) is false.

&
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If you have additional information or corrections regarding this mathematician, please use the
update form. To submit students of this mathematician, please use the new data form, noting this
mathematician's MGP ID of 15185 for the advisor ID.

Search About MGP Links FAQs Posters Submit Data Contact

The Mathematics Genealogy Project is in need of funds to help pay for student help and other associated costs. If you would like to
contribute, please donate online using credit card or bank transfer or mail your tax-deductible contribution to:

Mathematics Genealogy Project
Department of Mathematics
North Dakota State University
P. O. Box 6050
Fargo, North Dakota 58108-6050
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