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Abstract

Nitu Kitchloo generalized equivariant K-theory to include non-compact Kac-Moody groups, calling

the new theory Dominant K-theory. For a non-compact Kac-Moody group there are no non-trivial

finite dimensional dominant representations, so there is no notion of a augmentation ideal, and the

spaces we can work with have to have compact isotropy groups. To resolve these we complete locally,

at the compact subgroups. We show that there is a 1 dimensional representation in the dominant

representation ring such that when inverted we recover the regular representation ring. This shows

that if H is a compact subgroup of a Kac-Moody group K(A), the completion of the Dominant

K-theory of a H-space X is identical to the equivariant K-theory completed at the augmentation

ideal. This is the local information. To glue this together we find a new spectrum whose cohomology

theory is isomorphic toK∗(X×KEK). This enables us to use computeK∗(X×KEK) using a skeletal

filtration as we now know the E1 page of this spectral sequence is formed out of known algebras.
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1

Introduction

K-theory was originally defined by Michael Atiyah and Friedrich Hirzebruch in 1959 using work on

sheaves by Alexander Grothendieck. Atyiah and Hirzebruch used Grothendieck’s construction to

vector bundles over topological spaces instead of sheaves over an algebraic variety. A vector bundle,

V , over topological space, X, is a collection of vector spaces attached at each point that varies

continuously. To get the K-theory of a space X, we consider the category of all vector bundles over

X which has an algebraic operation of direct sum. Two bundles can be added together by taking the

cartisian product of the vector spaces over each point of X. Then, we formally invert the direct sum

operation in the following way. Instead of considering just bundles, V we consider pairs of bundles

where one is considered to be “negative”, V −W . Then, we identify all virtual bundles of the form

V − V with 0. This process gives us the K-theory of X, K∗(X). K-theory was one of the main

inspirations for generalized cohomology theories which is at the heart of modern algebraic topology.

Later on Grahm Segal produced a variant of K-theory where he considered spaces that have a

group action G × X → X, and made the vector bundles over these G-spaces respect this action.

This produced a much richer equivariant K-theory, K∗
G(X). For equivariant K-theory Atiyah and

Segal proved the following theorem:

Theorem 1.0.1 (Atiyah-Segal Completion Theorem [2]). Let G be a compact Lie group. The

projection X × EG→ X induces an isomorphism:

K∗
G(X)∧IG

∼= K∗
G(X × EG)

Where IG is the augmentation ideal of the representation ring of G.
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The augmentation ideal IG, is the kernel of the map from the representation ring of G, RG, to Z

that sends a representation to its dimension. This theorem provides a simpler way to compute the

K-theory of the classifying space of G-bundles, K∗(BG); just take X to be a point and work with

the simpler algebraic completion. However the group G needs to be compact for technical reasons.

In 2009 Nitu Kitchloo generalized equivariant K-theory of spaces with a Lie group action to

dominantK-theory where the groups were now allowed to be infinite dimensional Kac-Moody groups

[11]. Compact Lie groups are classified by a Cartan matrix A. A matrix is a Cartan matrix if it

satisfies four conditions. From such a matrix we can construct a Lie group. However, one of the

conditions only exists to ensure that the Lie groups is finite dimensional. If we relax this one condition

the matrix is called a generalized Cartan matrix, and we can still construct a group K(A) from a

given generalized Cartan matrices. These could be infinite dimensional and thus non-compact. For

this work K(A) will be an arbitrary Kac-Moody group, usually non-compact and abbreviated K.

The notation used for this dominant K-theory on a space X is K∗
K(X).

In Kitchloo’s generalization there are two important restrictions. We must restrict ourselves to

K(A)-spaces whose isotropy groups are all compact, called proper spaces. Secondly, the spectrum

representing dominant K-theory, KU is built out of only a subset of all irreducible representations

of K that are called dominant. This enables us to use the well understood dominant representation

theory of Kac-Moody groups that strongly resembles the classical representation theory of Lie groups.

These restrictions only matter when K is non-compact. When K is compact, dominant K-theory is

equivariant to classical equivariant K-theory as all representations are dominant and all K-spaces

are proper. The aim of this work is to generalize the Atiyah-Segal completion theorem of equivariant

K-theory to dominant K-theory.

For non-compact Kac-Moody groups there are no non-trivial finite dimensional dominant rep-

resentations. This means that there is no dimension map on the representations of K(A), and no

augmentation ideal to complete at. However, one could ask if there could be a completion with

respect to a different ideal that gives a similar result. We will show that such a completion is

impossible for dominant K-theory.

Our notion of completion will be of a more geometric flavor. We will use the long running theme

in mathematics of gluing together local information to form the global information. Each proper

K-space M can be given a K-CW structure. In other words we can build M up from orbit spaces

of the form K ∧H Sn. We know that K∗
K(K ∧H Sn) is a subring of the classical representation ring

RH , called the dominant representation ring DRH . At each orbit, i.e. K ∧H Sn we show that this

can be completed, and it’s completion is isomorphic to the completion of RH .
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Theorem 3. There is an isomorphism

(DRH)∧I∩DRH
∼= RH

∧
I ,

where I is the augmentation ideal of RH .

To show that this local information glues together in a well-defined way (that it does not depend

on out choice of K-CW complex for M), we’ll find a new spectrum to represent completion and a

map to it from the spectrum for dominant K-theory. Specifically we show the following result:

Theorem 3.2.1. There is a space F(H) and a K-equivariant map c : F(H)→F(H), such that

KK(M)
c−→ [M,F(H)]K ∼= K(M ×K EK)

and F(H) is non-equivariantly homotopic to F(H). Furthermore, the map c lifts to a map of spectra

c : KU→KU and fits into the following diagram, where the bottom sequence is short exact:

K∗
K(M)

0 lim←−
1

n
K∗

K(M ×K∗n) K∗(M ×K EK) lim←−n
K∗

K(M ×K∗n) 0

c

The space F(H) is the space of Fredholm operator and is the space that KU is built out of.

Using the spectrum KU with a K-CW structure gives us a spectral sequence that computes the

global object from the local data,

Es,∗
1 =


i

(RHi,s
)∧I [β

±]⇒ K∗
K(M ×K EK), (1.0.1)

where Ms/Ms−1 =


iK ∧Hi
Ss and {Ms}∞s=0 is a K-CW filtration of M .
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2

Background

2.1 Background: Equivariant K-theory

This section is a short account of equivariant K-theory and leads up to the Atiyah-Segal completion

theorem. This document assumes that the reader is familiar with K-theory. As a reference we give

the excellent book by Atiyah [3] for details on K-theory. We also assume that the reader understands

the representation theory of Lie groups. A good reference for this is Bröcker and tom Dieck’s book

[5].

2.1.1 Definition of Equivariant K-theory

The original definition of K-theory of a space X is the Grothendiek construction on the category of

isomorphism classes of complex vector bundles over X under direct sum. This construction is not

used to define dominant K-theory, so we will give a quick overview of how to use Fredholm operators

to define a representing object for equivariant K-theory.

Let G be a Lie group, g its Lie algebra. We choose a Hilbert space H called a universe.

H =

λ

C∞ ⊗ Vλ,

where the sum is taken over all irreducible representations of G, Vλ, indexed by their heighest

weights, λ. To each Vλ we can associate a G-invariant inner product and the inner product on H

is constructed from these. H is maximal as for any representation we have H ⊕ V ∼= H. From

the theorem of Peter and Weyl we know H ∼= L2(G) for a compact group G, where L2(G) are L2

functions on G. A linear operator f : H → H is Fredholm if its kernel and cokernel are finite
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dimensional. Let F(H) be the set of Fredholm operators on H. To each Fredholm operator we can

associate an index:

index(f) = dim(ker(f))− dim(coker(f)).

However, as the Fredholm operators are meant to encapsulate information about the vector bundles

and not just vector spaces, we will instead use the topological index:

index(f) = ker(f)− coker(f).

This index maps to the category of isomorphism classes of complex vector spaces with direct sum

formally inverted which is isomorphic to Z. With more work that is omitted, this index can be

extended to topological spaces and produces the isomorphism

[X,F(H)] index−−−→ K0(X).

From this we can see that F(H) is the classifying space of K-theory. This is no different from the

standard index as we have not imposed any action of G on F(H). We can give F(H) a G-action by

(g · f)(x) = g(f(g−1x)).

We would like this to be a representing object for equivariant K-theory, but the action is not

continuous in the standard norm topology. One can fix this in a few ways. Atiyah and Segal restrict

F(H) to a subspace

FG−cts(H) = {u ∈ F(H)|g →→ gug−1is continuous},

with a similar condition on FG−cts(H) . Here, the group action is continuous and FG−cts(H) does

form a representing object for equivariant K-theory. Please see the appendix of “Twisted K-theory”

for details [1]. We will refer to FG−cts(H) as F(H) for the rest of the work as there is no need for the

full space of Fredholm operators anywhere. We may then define equivariant K-theory for a G-space,

X, to be the homotopy classes of G-equivariant maps X → F(H) or K0
G = [X,F(H)]G. As H is

maximal, i.e. H = H⊗H, it satisfies Bott periodicity and we may define a naive (indexed over a trivial

universe) G-spectrum where the even objects are K2n = F(H) and the odd are K2n+1 = ΩF(H).
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So

K2n
G (X) = [X,F(H)]G & K2n+1

G (X) = [X,ΩF(H)]G.

This is a G-equivariant cohomology theory, K∗
G, on G-spaces. There are better constructions that

produce genuine G-spectra, but as these do not apply to dominant K-theory we will not cover them.

2.1.2 Equivariant K-theory of a point

Arguably the most important space to ask about when dealing with a new cohomology theory is

the point. In the case of equivariant K-theory this turns out to be the representation ring of the

underlying group RG. This is well know and easy to prove from the construction of equivariant

K-theory using vector bundles [20]. The easy way to see this, for our definition that uses Fredholm

operators, is to recall that [pt,F(H)]G will be the path connected components of the G fixed points

of the Fredholm operators, F(H)G = {f |g · f = f}. The fixed points are the operators H f−→ H that

are G-equivariant. The kernel and cokernel of equivariant Fredholm operators are G-representations,

so the index map’s codomain is isomorphism classes of complex representations of G with direct sum

formally inverted, also known as RG. Therefore

K∗
G(pt) = RG[β

±1].

Similarly, we can show that for any G-space X with trivial action we have:

K0
G(X) = K0(X)⊗RG.

2.1.3 Equivariant K-theory of a free G-space

A large class of interesting examples of G-spaces have a free G-action. If X has a free G-action, then

K∗
G(X) = K∗(X/G). Again, this is easy to see when we use the bundle construction of equivariant

K-theory [20], but we are using the Fredholm operator model. Later on, we prove that there is a

map K∗
G(X)→ K∗(X ×G EG) (3.2.1). The proof that we present is for dominant K-theory (which

will be defined later) but it applies equally well to equivariant K-theory. As X is a free G-space then

X ×G EG is a trivial EG-bundle over X/G. Therefore as EG is contractible, K∗
G(X) = K∗(X/G).

6



2.1.4 Equivariant K-theory of an orbit G/H

Now that we know the equivariant K-theory of G-spaces with either a free or trivial G-action we turn

our attention to those whose isotropy groups are between the trivial subgroup and the full group.

The simplest of which are the orbit spaces G/H, for some H ⊂ G. However, to compute K∗
G(G/H)

we will use a much stronger result as it is relevant later. If H is a subgroup of G then there is a

functor G×H : H − top→ G− top, where H − top is the category of H-spaces and G− top is the

category of G-spaces. G×H is a right adjoint to the forgetful functor U : G− top→ H − top. As

we are working in the category of compact Lie groups, we have that every irreducible representation

of H occurs as a subrepresentation of some representation of G. One way to see this is given a H

representation there is a way to induce a G-representation. See [21] for details. This implies that

HH = UHG, where HH is the universe for H, and similarly for G and U is the forgetful functor.

This lifts to the Fredholm operators, F(HH) ∼= UF(HG), and the spectra that define equivariant

K-theory for the respective groups giving us:

Lemma 2.1.1. Suppose X is a H space, H ⊂ G then:

K∗
H(X) = K∗

G(X ∧H G+).

This gives us K∗
G(G/H) = K∗

G(pt ∧H G+) = K∗
H(pt) = RH [β±1].

2.1.5 The Augmentation Ideal

The projection map G → pt induces the map K∗
G(pt) → K∗

G(G) ∼= K∗(pt). This can be simplified

to the dimension map RG → Z, which sends each irreducible representation in RG to its dimension

in Z. The augmentation ideal is the kernel of this map, thus we have a short exact sequence:

0→ IG → RG → Z→ 0.

Note that,

Lemma 2.1.2. If G is a Lie group and T is a maximal torus of G and i : T → G is the inclusion

then:

IG = i∗(IT ).

Proof. We know that the map RG → RT induced by inclusion is injective. We also know that RG →

RW
T is an isomorphism where W is the Weil group associated to G and T . As RW

T ’s augmentation
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ideal is clearly the pullback of the augmentation ideal of RT we are done.

We need the following result for the proof of the completion theorem. If we have a subgroup

H ⊂ G then we can always pull the augmentation ideal of H to the representation ring RG, however

it need not be the augmentation ideal of G.

Corollary 2.1.2.1. If H is a subgroup of G such that H contains some maximal torus of G then

IG = i∗(IH) where i is the inclusion map of H into G.

Proof. We know that e→ H
i−→ G induces a factorization of the dimension map RG → RH → Z, so

i∗(IH) ⊂ IG. Let T be maximal in both H and G. Then the map RG → RT factors through the

map RH → RT . By the previous lemma, both of the augmentation ideals for H and G are obtained

by pulling the augmentation ideal of T back through these maps. So i∗(IH) = IG as it has to be

maximal.

2.2 The Atiyah-Segal Completion Theorem

Theorem 2.2.1 (Atiyah-Segal Completion Theorem). Let G be a compact Lie group. The projection

X × EG→ X induces an isomorphism:

K∗
G(X)∧IG(X) ∼= K∗

G(X × EG).

The proof follows a bootstrap style argument. We first deal with the case where G is a torus,

then we use that to prove the result for G = U(n) for some n. Now using the fact that every compact

Lie group G has a faithful unitary representation G→ U(n) we can finally show the complete result.

Before we begin the proof, we review algebraic completion and Milnor’s join model for EG.

2.2.1 Algebraic Completion

Let R be a ring and I an ideal in R. We may endow R with the “I-adic topology”. For a subset

U ⊂ R such that 0 ∈ U , U is open if U ⊂ Ij for some j. A sequence {aj}∞j=0 is Cauchy in this

topology if for all r there is an N such that for all n,m > N we have an−am ∈ Ir. The completion,

R∧
I is topologically defined to be the space of all the Cauchy sequences modulo the following relation.

Let {aj}∞j=0 and {bj}∞j=0 be two Cauchy sequences, we identify them if for all r there is an N such

that for all n > N we have an − bn ∈ Ir. In other words an + Ir = bn + Ir. So we can think of an

Cauchy sequence as an element of


R/In such that an+ In = an+1+ In (also known as coherent).

8



This motivates the following definition of the I-adic completion of R:

R∧
I = lim←−R/In.

Let us complete R[x] at the ideal I = ⟨x⟩. The easiest way to think of this is via coherent

sequences in


R[x]/Ir. Take ar + Ir ∈ R[x]/Ir, it can be written


i<r bi,rx
i + Ir. This has to

map to ar−1 + Ir−1, so: 
i<r

bi,rx
i + Ir−1 =


i<r−1

bi,r−1x
i + Ir−1.

so bi,r = bi,r−1 for i < r − 1. Let R[[x]]→ R[x]/In be

∞
i=1

cix
i →→

n−1
i=1

cix
i + In.

This clearly extends to a map R[[x]] → R[x]∧I . It is easy to see that there is an inverse and

R[[x]] ∼= R[x]∧I . The same argument works for R[x1, . . . , xn] with the ideal I = ⟨x1, . . . , xn⟩, giving

us R[[x1, . . . , xn]] ∼= R[x1, . . . xn]
∧
I . This computation allows us to make use of the following theorem

from [7].

Theorem 2.2.2. Let R be a ring and I be an ideal generated by the elements a1, . . . an. Then

R∧
I
∼= R[[x1, . . . xn]]/⟨x1 − a1, . . . , xn − an⟩.

The classic example of completion is the p-adics, Z∧
p = Z∧

pZ. From Theorem 2.2.2 they should be

thought of as power series in p.

Another use of Theorem 2.2.2 is the computation of the completion at the augmentation ideal of

the representation ring associated to the rotation group. Let T be the rotation group. From basic

representation theory RT = Z[x−1, x]. The augmentation ideal is I = ⟨x− 1⟩. So, from the theorem

we have:

RT
∧
I = Z[x−1, x][[y]]/⟨y − (x− 1)⟩.

Let t = x− 1 then,

RT
∧
I = Z[(t+ 1)−1, t][[y]]/⟨y − t⟩ = Z[[t]]. (2.2.1)

We can drop (t+ 1)−1 from the last term as it is invertible in Z[[t]].
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2.2.2 Milnor’s Model for EG

Any space that is contractible and has a free G action is a model for EG, the total space of the

universal principal bundle, but the proof of the completion theorem uses is Milnor’s join model. His

original paper has more details, see [16]. Given any two spaces X and Y we may produce a new

space called the join of X and Y :

X ∗ Y =
X × [0, 1]× Y

∼
,

where (x, 0, y1) ∼ (x, 0, y2), for all yi ∈ Y and (x1, 1, y) ∼ (x2, 1, y), for all xi ∈ X. Notice that

the map X ↩→ X ∗ Y is null homotopic. To see this, pick a y0 ∈ Y . We may factor the inclusion

X → X ∗ Y by X ∗ y0 ∼= Cone(X), which is contactable. We may iterate this join to define the join

of n spaces. An iterated n-join of a single space X∗n is n-connected, and the limit of the iterated

joins is aspherical.

Now, letG be a compact Lie group. We may write an element ofG∗(k+1) as (g0, t1, g1, . . . , tk, gk+1)

and let the G action be the obvious diagonal action. When we take the direct limit lim−→G∗n, we see

that it is aspherical and has a free G-action, so it is a model for EG [17]. The nice part of this

construction, is that we can cover G∗n with n contractible open sets.

2.2.3 Atiyah and Segal’s Completion Theorem

A priori there is no connection between the completion of equivariant K-theory at the augmentation

ideal of G and K∗
G(X × EG). To obtain this map we have to connect the pro-groups associated to

the two sides, {K∗
G(X)/InGK

∗
G(X)} and {K∗

G(X×G∗n)}. A priori we do not know that lim←−{K
∗
G(X×

G∗n)} is K∗
G(X × EG), there could be a lim←−

1 term, but in the course of the proof we will see that

the system is Mittag-Leffer and this lim←−
1 is 0.

As G∗n/G is covered by n contractible sets, the map K∗
G(pt)→ K∗

G(G
∗n) = K∗(G∗n/G) factors

through RG → RG/I
n
G. For a G-space X we can use this factorization and the naturality of the

external product to factor K∗
G(X)→ K∗

G(X ×G∗n) through K∗
G(X)/InGK

∗
G(X) giving us the map

K∗
G(X)/InGK

∗
G(X)

αn−−→ K∗
G(X ×G∗n)

for each n. In the limit we get the map K∗
G(X)∧IG → K∗(X ×G EG) and the main theorem from [2]

is that this map is an isomorphism. As a corollary to this we get that K∗
G(X × G∗n) satisfies the

Mittag-Leffler condition.
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The proof produces maps βn such that there exists a k and the following commutes:

K∗
G(X)/In+k

G K∗
G(X) K∗

G(X ×G∗(n+k))

...
...

K∗
G(X)/InGK

∗
G(X) K∗

G(X ×G∗n)

βn

We first produce these maps for the circle geoup then bootstrap up from the circle group to tori to

the unitary group to the arbitrary one.

Step 1: The case of the circle group.

Lemma 2.2.3. Let G be a compact Lie group and, X a compact G-space such that K∗
G(X) is finite

over RG. Let θ : G→ T be a homomorphism by which G acts on ET then the homomorphisms

α : K∗
G(X)/InTK

∗
G(X)→ K∗

G(X × T ∗n)

is an isomorphism of pro-rings.

This is the only part of the bootstrap where βn is produced. One should think of θ as a character

of G. The proof relies on the identification T ∗n ∼= S2n−1. Recall that the augmentation ideal for T

is generated by ζ = 1−ρ, where ρ is the standard representation of T . This can be used to generate

a short exact sequence

0→ K/ζnK → K∗
G(X × S2n−1)→ ζnK → 0,

where K = K∗
G(X) and ζnK = {x ∈ K|ζnx = 0}. We have the following commutative diagram:

0 K/In+k
T K K∗

G(X × S2n+2k−1) ζn+kK 0

0 K/Int K K∗
G(X × S∗n) ζnK 0

βn
ζk

As K is finitely generated over the Noetherian ring RG the chain on the right hand side is eventually

constant and there is a ζk that annihilates ζn+kK for any k. A diagram chase proves the existence

of βn.

Step 2: When G is a torus Tn.

Here we induct on n to generalize the above theorem to tori. G will now have an action on

11



ETn induced by θ : G → Tn and we will show αn : K/ImTnK ∼= K∗
G(X × ETn). To do so we have

to change our model for ETn from Milnor’s join model with system {(Tn)∗m} to the equivalent

ET ×ETn−1 with cofinal system {T ∗p × (Tn−1)q}. This can be done in general, any system whose

direct limit is EG and whose spaces are compact is isomorphic to Milnor’s system. In this case the

system {T ∗p × (Tn−1)q} comes with maps

αpq : K/(ap + bq)K → K∗
G(X × T ∗p × (T ∗(n−1))q),

where a and b are the ideals in ITn generated by IT and IT (n−1) respectively. The pro-rings

{K/ImTnK} and {K/(ap + bq)K} are isomorphic, so we can just show that the latter is isomor-

phic to K∗
G(X × ETn) instead. We have K/(ap + bq)K ∼= K ⊗R R/ap ⊗R R/bq and we can factor

αpq as

K ⊗R R/ap ⊗R R/bq → K∗
G(X × T ∗p)⊗R R/bq → K∗

G(X × T ∗p × (T ∗(n−1))q).

By the inductive assumption and the base case this produces an isomorphism of pro-objects [2].

Step 3: When G=U(n).

The inclusion of the maximal torus T , j : T → U induces a map j∗ : K∗
U (X)→ K∗

T (X). Atiyah

and Segal use an earlier paper of Atiyah’s [4] to produce a map j∗ : K∗
T (X)→ K∗

U (X) . We obtain

that in the case of unitary groups αn is an isomorphism when ηn is:

K∗
U (X)/In+k

U K∗
U (X) K∗

U (X × U∗(n+k))

K∗
T (X)/InUK

∗
T (X) K∗

T (X × U∗n)

j∗ j∗j∗ j∗ (2.2.2)

The topology induced by IU on RT is equivilant to the one induced by IT . This follows since IU ⊂ IT

and there is a k such that IkT ⊂ IU . As EU is also a universal space for T and U∗n is a cofinal

system of compact T spaces. Therefore the bottom of the diagram 2.2.2 produces the isomorphism

of pro-groups α : {K/ImT K} ∼= {K∗
T (X × T ∗n)}.

Step 4: The general case.

Let G embed in U and let G act on U via this embedding, thus we have K∗
U (X×GU) ∼= K∗

G(X).

As (X×GU)×U∗n = U×G(X×U∗n) we can completeKG with respect to U instead of G. Therefore,

we have that αn : K∗
G(X)/ImU K∗

G(X) ∼= K∗
G(X×U∗n) is an isomorphism of pro-objects. U∗n is cofinal

with compact G-spaces we get the statement of the theorem, thereforeK∗
G(X×U∗n) ∼= K∗

G(X×G∗n).
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We also have K∗
G(X)/ImU K∗

G(X) ∼= K∗
G(X)/ImG K∗

G(X) as the topologies induced by IU and IG

coincide [21].

2.2.4 The Milnor Sequence

So we have shown that K∗
G(X)∧I = lim←−n

K∗(X ×G∗n), to relate it to K∗(X ×G EG) we need to use

the Milnor lim←−
1 sequence. We have:

0→ lim←−
1
nK

∗(X ×G∗n)→ K∗(X ×G EG)→ lim←−
n

K∗(X ×G∗n)→ 0.

We know that lim←−n
K∗(X×G∗n) satisfies the Mittag-Leffer condition because the systemK∗(X×

G∗n) is isomorphic toK∗
G(X)/K∗

G(X)InG, which is eventually constant [2]. Therefore it has lim←−
1

n
K∗(X×

G∗n) = 0 and the completion theorem holds. In our generalization this will not hold, we will still

have to consider the lim←−
1 in this exact sequence.

2.3 Kac-Moody Groups and Representation Theory

In the study of compact semi-simple Lie groups we classify their semi-simple Lie algebras by the

Cartan matrix [5] [8].

Definition 1. A Cartan matrix is a matrix such that

1. aii = 2

2. aij ≤ 0 for i ̸= j

3. If aij = 0 then aji = 0

4. aijaji < 4

If we have such a matrix we can construct a compact Lie group. This construction first uses

Serre’s theorem to construct a Lie algebra. Then we exponentiate the resulting algebra to form a

compact Lie group. However there is one condition we impose on Cartan matrices that ensures that

the associated algebra is finite dimensional and serves no purpose in the construction of the algebra.

A generalized Cartan matrix satisfies only the first 3 properties. The Serre relations still construct

an algebra and we can study it as Victor Kac and Robert Moody did in the late sixties [18][9].

Exponentiating the group is no longer possible, but we can use an alternate method to construct the

group associated to a Kac-Moody algebra. This is family of non-compact groups that behave like
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the compact the semi-simple Lie groups. Most of the following details come from Kumar’s excellent

“Kac-Moddy Groups and their Flag Variety” [14].

2.3.1 Kac-Moody Algebras

To construct a Kac-Moody algebra for a given n×n generalized Cartan matrix A we first construct

what will be its Cartan subalgebra. A realization of A is a space h of dimension 2n−Rank(A) along

with elements {α1, α2, . . . , αn} ⊂ h∗ and {α∨
1 α

∨
2 , . . . , α

∨
n} ⊂ h such that

αi(α
∨
j ) = aij .

This realization is unique up to isomorphism. Let I = {1, 2, . . . n} be the indexing set for A. It should

be thought of as indexing the roots and coroots of our realization. Also, the parabolic subgroups

and other structures are built off of the subsets of the indexing set so we will need to refer to it

often.

Generating the Algebra

Next, create the free Lie algebra over C on the symbols ei and fi for i ∈ I and h with the Serre

relations:

1. [h, h] = 0,

2. [h, ei] = αi(h)ei and [h, fi] = −αi(h)fi,

3. [ei, fj ] = δijα
∨
i ,

4. ad(ei)
1−aij (ej) = 0 for i ̸= j

5. ad(fi)
1−aij (fj) = 0 for i ̸= j

The resulting algebra is called g(A). Usually the Cartan matrix is clear from the context so we

just say g. The resulting algebra has a triangular decomposition. Let n be the subalgebra generated

by the eis, n
− the subalgebra generated by the fis, we have that g = h ⊕ n ⊕ n−. We also have a

root lattice Q =


i∈I Zαi ⊂ h∗, with a subset ∆ = {α ∈ Q|gα ̸= 0} called the roots. As before

the positive roots, ∆+ are those whose coefficients are positive. As in the finite dimensional case,

n =


α∈∆+ gα. The Borel subalgebra is b = h+ n.
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Useful Subalgebra

To each J ⊂ I we may associate several subalgebras. Let

∆J = ∆ ∩

j∈J

Zαj .

Then gJ = h⊕


α∈∆Y
gα. In this subalgebra there is a subalgebra isomorphic to g(AJ), where AJ

is obtained from A by removing all columns and rows not in J . We say that J is of finite type if

AJ is a classical Cartan matrix. Note that {i} is always of finite type as A{i} = [2]. The parabolic

subalgebra is pJ = gJ ⊕ uJ , where uJ =


α∈∆+\∆+
J
. uJ is also a subalgebra, called the nil-radical

of pJ .

The Weyl Group

The Weyl group, W associated to g is generated by si : h
∗ → h∗ where

si(λ) = λ− λ(α∨
i )αi.

The Weyl group also acts on h

si(h) = h− αi(h)α
∨
i .

It is interesting to note is that not all roots are in the orbit of the αis under the action of the Weyl

group, unlike the classical case. We define a root α to be real if there exists a αi and a w ∈W such

that w(αi) = α, and imaginary otherwise. The dimension of the weight space for imaginary roots

may not be 1 and is in general unknown.

For an element w ∈ W we say its length is the smallest l such that w = si1si2 . . . sil and often

denoted by l(w). The interplay of the length of a Weyl group element and its action on the roots is

powerful. The following lemma from [14] is very useful later on.

Lemma 2.3.1. If l(wsi) ≥ l(w) then w(αi) ∈ ∆+

Proof. We will induct on l(w). When l(w) = 0, w = Id and αi ∈ ∆+. If l(w) > 0 find a sj such

that l(wsj) = l(w) − 1. We have that si ̸= sj , let WJ be the subgroup of W generated by si and

sj . Clearly for any r ∈ WJ l(r) ≥ lJ(r). Chose an x such that l(x) + lJ(x
−1w) = l(w) and l(x)

is at a minimum. It can be shown that l(xsi) ≥ l(x) and l(xsj) ≥ l(x). As l(x) ≤ l(w), by the

inductive assumption, we have x(αi), x(αj) ∈ ∆+. Now consider y = x−1w, as l(wsi) ≥ l(w) we

15



have l(ysi) ≥ l(y). We can compute that y(si) = pαi + qαj for p, q ≥ 0. So,

w(αi) = x(y(αi)) = x(pαi + qαj) ∈ ∆+.

Knowing the action of an element of the Weyl group on the root elements is particularly useful

when dealing with parabolic subalgebras. If we have a parabolic algebra gJ its Weyl subgroup is

the group generated by sj for j ∈ J and call it WJ . It is often useful to deal with the cosets of

W/WJ through representatives so we define W ′
J to be the collection of the shortest elements from

each coset:

W ′
J = {w ∈W |l(w) ≤ l(wsj)forj ∈ J}.

There is also the Bruhat-Chevalley partial order. This can be thought of a a refinement of

the length and is useful for defining an equivariant CW -structure on the Kac Moody group. For

v, w ∈W , we say v ≤ w if there exists t1, . . . , tp ∈ T := {vsiv−1|v ∈W, i ∈ I} such that

1. v = tp . . . t1w and

2. l(tj . . . t1w) ≤ l(tj−1 . . . t1w) for all j.

Dominant Chamber

Let hR be the real form of h, i.e. h = hR ⊗C, see Definition 1.4.1 in [14] for a complete description.

We define the dominant Chamber of h∗R to be DR = {λ|λ(α∨
i ) ≥ 0}. In the compact case this is a a

fundamental domain of the Weyl group’s action on hR but may not be in general. Usually we will

refer to it just as D, suppressing the real form of the Cartan matrix. The Tits cone C is the orbit

of D under the action of the Weyl group, C = ⋓w∈WwDR. In the non-compact infinite dimensional

case this is a strict subset of h, but the Tits cone is all of h in the compact finite dimensional case.

The following alternate characterization, also from Kumar [14], is very useful later on.

Proposition 1.

C = {λ ∈ h∗R|⟨λ, α∨⟩ < 0, only for finitely many α ∈ ∆∨+}.

Again we relate a property of the Weyl group action to a property that can be verified by its

action on a few elements of of ∆∨+
.
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An example T ⋉ L̃SU(2).

For an illustrative example we can construct the algebra associated to the generalized Cartan matrix

A =

 2 −2

−2 2

. This is the generalized Cartan matrix for the affine Lie algebra associated to sl2(C).

We are considering only the algebra, not the group. The group is the affine loop group on SL2(C),

T ⋉ L̃SU(2). We refer the reader to Pressley and Segal’s “Loop Groups” for details [19]. The

notation, and the choices involved, are borrowed from them and [12]. The affine Lie algebra can be

expressed as C⟨h⟩ ⊕ C⟨d⟩ ⊕ su2[z, z
−1], with bracket given by [f, g](z) = [f(z), g(z)] + kRes⟨f, dg⟩

and [d, f ] = z df
dz .

First, we construct the realization. Let h have for a basis h, k, d and let h∗ have the basis where

Λ, δ are dual to k and d, and α such that α(h) = 2 and α(k) = α(d) = 0. We can choose α1 = α

and α2 = δ − α. There are other choices, but the resulting realizations for different sets of choices

will all be isomorphic. As αi(α
∨
1 + α∨

2 ) = ai1 + ai2 = 0 for i = 1, 2 and k is the only element in the

kernel of both chosen αis, we have that α2 = k− h. If h was 2-dimensional it would not be possible

to choose linearly independent αis such that they share a kernel.

From here we need to construct n and n−. Note that n only depends on the one relation

ad(ei)
1−aij (ej) = 0 for i ̸= j. The details of constructing n through just this relation are technical

and we omit them. The root system ∆ is illustrated by figure 2.1. Each node is a root. Note, all

the roots lie on the α-δ plane.

The dominant chamber is a little different from what we would expect. One of the walls is given

by the δ-Λ plane and the other is the plane spanned by δ and 1
2α+ Λ. The Tits cone is formed by

{aα+ bδ + cΛ|c > 0}.

2.3.2 Representation Theory

The representation theory of Kac-Moody algebras is similar to the finite dimensional case, after

some restrictions. We cannot work with all representations, as there are some that do no lift to

group representations and some that cannot be classified. We restrict our view to the dominant

representations.

Dominant Weights and Verma Modules

The dominant weights of K(A) are:

D = {λ ∈ h∗|⟨λ, α∨
i ⟩ ∈ Z+ for all i ∈ I}.
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α1

α2

...
...
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...
...

...

α

δ

Λ

Figure 2.1: Root Diagram associated to T ⋉ L̃SU(2). The grey triangle is the dominant chamber
intersected with the α-Λ plane.

To each λ ∈ D we may associate an irreducible representation L(λ), called an irreducible dominant

representation. We will construct L(λ) using Verma modules. Recall the universal enveloping algebra

for a Lie algebra is U(g) = T (g)/ ∼ where g ⊗ h− h⊗ g ∼ [g, h] and T (g) is the tensor algebra.

Let Mλ = U(g) ⊗U(b) Cλ. By the Poincare-Birkoff-Whit theorem this is isomorphic as a vector

space to U(n−1)⊗Cλ and has basis fr1
1 . . . frn

n ⊗ 1λ. Mλ is a g-module with highest weight λ. It is,

however, not irreducible, and is not closed under the Weyl group action. Let M1
λ be generated by

f
1+λ(α∨

i )
i ⊗ 1λ. It is the maximal proper submodule of Mλ and thus L(λ) = Mλ/M

1
λ is irreducible.

A way to show that these are the correct generators is to consider the following: f
1+λ(α∨

i )
i ⊗ 1λ has

weight λ− (λ(α∨
i ) + 1)αi. We have

si(λ− (λ(α∨
i ) + 1)αi) = λ+ αi,

which has higher weight than λ. However, λ is the highest weight, the action of the Weyl group on

L(λ) would not be closed if λ− (λ(α∨
i ) + 1)αi ∈ L(λ).

2.3.3 The Group Structure K(A)

Given a Kac-Moody algebra g(A) we can construct a group G(A). However, it is not as straight

forward as in the finite dimensional case.

A map T : V → V is locally finite if for all v ∈ V there is a finite dimensional T -invariant

subspace W and v ∈ W . T : V → V is locally nilpotent if it is also nilpotent. If T is locally finite
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then it is possible to define exp(T ) =
∞

n=0
Tn

n! .

A representation V of a Kac-Moody algebra is integrable if ei and fi act locally nilpotent on V ,

for all i ∈ I. These are the representations that can be lifted to the group. While there are more

representations of the Kac-Moody group than the integrable ones, these are the representations that

are easily studied. Also, the space of all integrable representations is exactly the space of dominant

representations.

The Standard Parabolic Groups Pi

As n is a nilpotent algebra, by Theorem 4.4.19 from [14] we may exponentiate it to obtain a group

U . Recall that n =


α∈∆+ gα. Let J ⊂ I be of finite type. The parabolic algebra pJ has two

components the nil-radical uJ which is locally nilpotent and gJ which is finite dimensional. Let GJ

be the complex Lie group associated to gJ and let exp(uJ) = UJ . The action of gJ on uJ lifts to

and action of GJ on UJ . We define the standard parabolic group to be:

PJ = UJ ⋉ GJ .

Let B = P∅, we have B ⊂ PJ for all J . The last two ingredients in building a Tits system, aside

from the actual group, are the maximal torus and the normalizer. Let T = HomZ(hZ,C∗). We may

define a normalizer N to be an extension of the Weyl group by the torus:

0→ T → N →W → 0,

such that N ∩ Pi = T ∪ siT . Then G is the colimit of the system (N,P{i})i∈I .

The group G we have constructed is the complex form of the Kac-Moody group. To form the

real form, K we have to have an involution on G. The algebra g carries an anti-linear involution ω

where ω(h) = h̄, ω(ei) = −f̄i and ω(fi) = −ēi. This lifts to an involution of G, let K = Gω, the fixed

points of G under ω.
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2.4 Dominant K-theory

2.4.1 Representing Space

Let H be the completed sum of infinitely many copies of each irreducible dominant representation.

We call H the dominant universe.

H =
̂
λ∈D

C∞ ⊗ L(λ).

Let F(H) be the Fredholm operators on H, using the same definition as the compact case. For

each proper K-space (those with compact isotropy groups) we may define the dominant K-theory to

be

K0
K(X) = [X,F(H)]K,

K1
K(X) = [X,ΩF(H)]K,

As H is maximal, there is a Bott periodicity theorem, so the above is enough to define the theory.

2.4.2 Dominant K-theory of a Compact Subgroup

For each subgroup H ⊂ K we may define the dominant K-theory for that subgroup. Let X be a

H-space. We may define the dominant K-theory of X with respect to the Cartan matrix A to be:

AK∗
H(X) = KK(X ∧H K+).

This will depend on H and its inclusion into K. If A is compact the two functors, AKH and KH ,

are isomorphic. However as the Tits chamber of a Kac-Moody group is a strict subset of the Cartan

subalgebra, for some H there are representations of H that do not occur as subrepresentations of

H. Therefore if H be a compact Lie group, then H is a subspace of HH , a universe for H and unlike

the compact case, H ̸= HH . Let M(H) be a H-invariant summand in HH such that H⊕M(H) is

H stable. Then there is a map

St : F(H)⊕F(M(H))→ F(HH).

Let MH be the cohomology theory represented by F(M(H)). Then we have a map St : AK∗
H(X)⊕

MH(X)→ K∗
H(X).

If we take X to be S0 and ignore MH then we get the map AK∗
H(S0)→ RH [β±] where RH is the
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right hand side is the representation theory of H. The left hand side is described by the following

definition and lemma.

Definition 2. ADRH is the representation subring of RH generated by representations which occur

as subrepresentaions of K, i.e., V ∈ DRH if and only if there exists a λ ∈ D such that V ⊂ (L(λ))|H .

As we will be working with the parabolic subgroups, instead of writing DRKJ (A) and AK∗
KJ (A)

we will be writing DRJ and AK∗
J respectively.

Lemma 2.4.1. Given a proper orbit Y = K+ ∧H S0 for some compact Lie group H ⊂ K, the is a

map

K∗
K(Y )⊕MH(Y ) = AK∗

H(S0)⊕MH(Y )→ K∗
H(S0) = RH [β±]

Furthermore, the image of K∗
K(Y ) is DRH [β±].

Proof. See claim 4.6. [11]
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3

Results

Given a proper K-space M , we can ask what it would mean to “complete” K∗
K(M). Unlike the

classical case there is no obvious candidate with respect to which to complete. Initially, we would

like to have a topology on K∗
K(M), say T such that the completion with respect to that topology

gives us an isomorphism K∗
K(M)∧T

∼= K∗(M×KEK). To see why this cannot work we can take M to

be the classifying space of proper K-actions. This is also often called EK, and, up to homotopy, is

defined to be a K-CW complex such that all isotropy groups are compact and for H ⊂ K is compact

the fixed point space, EKH , is weakly contractible [15]. EK is a terminal object in the category of

proper K-spaces. From [11] theorem 2.4, we know that

X(A) = hocolimJ∈S(A)K/KJ ,

where S(A) is the poset category under inclusion of subsets J ⊂ I such that KJ(A) is of finite

type, is the classifying space of proper K(A) actions. In [11] Nitu Kitchloo calculated that if K is

of compact type, then K̃∗
K(X(A)) ∼= R∅

T [β
±1] with R∅

T concentrated entirely in degree n, where A is

of rank n+1. In this case, K̃∗
K(X(A)) is the kernel of an restriction map induced by an inclusion of

K/T into X(A). By degree considerations, the multiplicative structure on K̃∗
K(X(A)) is trivial. If we

took our topology to be induced from an ideal in R∅
T then it would be discrete. Therefore K̃∗

K(X(A))

is already complete. However, K̃∗
K(X(A)) ̸∼= K∗(X(A) ×K EK) so completion with respect to an

ideal will not produce a similar result to the completion theorem.

Given a proper finite K-CW complex X we can use the spectral sequence arising from the skeletal
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filtration to compute K∗
K(X) from its cells and gluing maps.

Es,t
1 = Ks+t

K (Xs, Xs−1)⇒ Ks+t
K (X). (3.0.1)

As all the cells of a proper K space have compact isotropy groups are thus of the form Y = K+ ∧H

Sn we know each cell’s dominant K-theory, K∗
K(Y ) = DRH [β±1], with DRH shifted to lie in

degree n. These individual cells can be completed with respect to their dimension maps. The

purpose of the local completion section is to prove that the completion of DRH is equal to the

completion of the classical representation ring, RH at it’s augmentation ideal. We will find a 1

dimensional representation σ ∈ DRH such that when inverted we recover the representation ring,

i.e. DRH [σ−1] = RH , and use this result to show:

Theorem 3. There is an isomorphism

(DRH)∧I∩DRH
∼= RH

∧
I ,

where I is the augmentation ideal of RH .

As each (Xs, Xs−1) is just a wedge of orbit spaces, K ∧Hi
Ss we can use Theorem 3 to create a

new spectral sequence whose first page is:

Es,∗
1 =


i

(RHi,s)
∧
I [β

±], (3.0.2)

where (Xs, Xs−1) =


i(K ∧Hi,s Ss) and the differentials come from the gluing maps as in 3.0.1.

However, this spectral sequence a priori is dependent on the choice of K-CW structure we have

for X. Different K-CW structures will produce different spectral sequences that may converge

to different groups. We would like 3.0.2 to be well defined on proper K-spaces and converge to

K∗(X ×K EK). This leads to the main result of this work.

Theorem 3.2.1. There is a space F(H) and a K-equivariant map c : F(H)→F(H), such that

KK(M)
c−→ [M,F(H)]K ∼= K(M ×K EK)

and F(H) is non-equivariantly homotopic to F(H). Furthermore the map c lifts to a map of spectra,
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c : KU→KU and fits into the following diagram, where the bottom sequence is short exact:

K∗
K(M)

0 lim←−
1

n
K∗

K(M ×K∗n) K∗(M ×K EK) lim←−n
K∗

K(M ×K∗n) 0

c

As F(H) is the model for our K-equivariant periodic K-theory spectrum KU, we’ll see from the

proof that there exists another K-equivariant periodic spectrum, KU modeled on F(H) and the map

c lifts to these spectra. This gives us that the spectral sequence arising from a skeletal filtration from

some K-CW model of X whose first page is 3.0.2 is well defined and converges to K∗(X ×K EK).

3.1 Completion of DRH

We will start with a compact parabolic subgroup as it is much easier to work with and as, by

the below proposition, all compact subgroups are conjugate to a subgroup of a compact parabolic

subgroup. It will be easy to generalize from the parabolic subgroup case to arbitrary compact

subgroups.

Proposition 2. H is conjugate to a subgroup of KJ for some J of finite type.

Proof. Consider the proper space K/H, there is a unique up to K-homotopy map

f : K/H → X(A).

The isotropy groups of X(A) are exactly conjugates of KJ for J of finite type.

H = K[e]H ⊂ Kf([e]H) ⊂ g−1KJg.

3.1.1 Completion of DRJ for a Compact Parabolic Subgroup

We will start with a diagram to illustrate the proof. See figure 3.1 for the the orbit of the dominant

chamber under the action of the Weyl group for T⋉L̃SU(2). The dark gray chamber is the dominant

chamber, the light gray is the Tits cone. Note that the Tits cone does not cover the whole space.

Only weights in the top half of the plane will occur in the representations of the Kac-Moody group,

so only weights in the top half of the plane will occur in the dominant representation rings of the

24



subgroups. However, the parabolic groups have representations with weights in the lower half of

the plane. If we take the parabolic group generated by J = {1}, we can chose a dominant integral

weight such that α1(σJ) = 0 and α2(σJ) = 1. This will project to the marked point σJ . If we

subtract this element from the integral weights that occur in the dominant representations we can

obtain all the weights. We can accomplish this in DRJ by inverting the representation associated

to σ1, which happens to be 1-dimensional.

...
...

σJ

−σJ

α1

α

Λ

Figure 3.1: The Tits cone and dominant chamber for T ⋉ L̃SU(2). Only the Λ-α plane is shown
to emphasize that the Tits cone only covers half of the space. The weights that occur in dominant
representations are black, the rest are gray.

Lemma 3.1.1. There exists L a 1-dimensional representation of KJ such that

DRJ [L
±1] = RKJ

,

where the DRJ is the dominant representation ring associated to KJ ⊂ K.

First we prove some intermediate steps. Let D be the dominant chamber for our Kac-Moody

algebra. As we are dealing with parabolic groups they have maximal rank and have the same

Cartan subalgebra as the Kac-Moody algebra, so they all share the dominant chamber. Let DJ be

the following set

DJ = {λ ∈ h∗|⟨λ, α∨
i ⟩ ∈ Z+ for all i ∈ J}

Clearly D ⊂ DJ . Also for the torus, D∅, is the complete integral lattice. The following lemma

relates the dominant chamber with the parabolic group’s dominant chamber through the Weyl group.

Recall that W ′
J is a set of shortest length representatives for W/WJ and C is the Tits cone, the orbit

25



of the dominant chamber under the action of W .

Proposition 3. The set DJ ∩ C can be characterized in the following way


w∈W ′

J

w−1D = DJ ∩ C.

Proof. Let λ ∈ DJ ∩C. Then there is a w ∈W and λ′ ∈ D such that w−1λ′ = λ. We need to show

that w ∈W ′
J . Suppose ⟨λ, α∨

j ⟩ = 0 for some j ∈ J . λ is fixed under the action of rj . Let λ = w−1λ′

as above. Then ⟨λ′, wrjα
∨⟩ = ⟨λ′, wα∨⟩. Without loss of generality we may assume l(w) ≤ l(wrj).

By lemma 1.3.13 in Kummar’s book [14] wαj ∈ ∆+.

Suppose ⟨λ, α∨
j ⟩ > 0 for some j ∈ J . Then for w, λ′ as above, we have 0 < ⟨λ′, wα∨

j ⟩. Therefore

wαj ∈ ∆+ and by 2.3.1 we have l(wrj) ≥ l(w).

Putting two and two together, if we have λ ∈ DJ ∩ C we can choose a w ∈ W ′
J and a λ′ ∈ D

such that w−1λ′ = λ

The following argument is a bit clearer than the proof, but only works for the weights on the

interior of the dominant chamber, not those on the walls of the dominant chamber. Consider λ such

that ⟨λ, α∨
j ⟩ > 0 for all j ∈ J . Then

0 < ⟨w−1λ′, α∨⟩ = ⟨λ′, wα∨⟩, ∀α ∈ ∆+
J .

If wα∨ ∈ ∆+ for all α ∈ ∆+
J we are done, w ∈W ′

J

If there is an α ∈ ∆+
J such that wα ̸∈ ∆+ then wα ∈ ∆− (by triangle decomposition), therefore

⟨λ′, wα∨⟩ ≤ 0, and ⟨λ′, wα∨⟩ = 0. This is a contradiction, so w ∈W ′
J

The next proposition tells us how we can use W ′
J to tell us about the decomposition of a g

representation into gJ representations.

Proposition 4. Given a g representation L(λ) with highest weight λ then as a gJ representation

we have w−1(λ) is a highest weight of L(λ) for w ∈W ′
J

Proof. Consider u ∈ L(λ)w−1(λ) ̸= 0 and n ∈ n+J with weight α ∈ ∆+
J . Suppose nu ̸= 0, ie is not a

highest weight over gJ . nu has weight w−1(λ)+α. w(nu) ̸= 0 with weight λ+w(α). As w(α) ∈ ∆+,

this is a higher weight than λ. This is a contradiction.

This means that every element of DJ ∩C is a gJ highest weight of an KJ -irreducible component

of some irreducible representation of K. Therefore DRJ may be identified the representation ring

generated by irreducible highest weight representations with highest weight in DJ ∩ C.

26



The next proposition gives us a weight such that we can use to recover DJ from DJ ∩C. It will

also happen to produce a 1 dimensional representation of KJ .

Proposition 5. There is a σJ ∈ DJ such that:

DJ = DJ ∩ C − Z⟨σJ⟩

Proof. By 1 we can rewrite the Tits cone as such:

C = {λ ∈ h∗R|⟨λ, α∨⟩ < 0, only for finitely many α ∈ ∆∨+}

Consider σJ such that ⟨σ,α
∨
i ⟩ = 1 for i ∈ I − J , ⟨σJ , α

∨
i ⟩ = 0 for i ∈ J . σJ is not unique. For

α ∈ ∆+ − ∆+
J , ⟨−σJ , α

∨⟩ < 0, so −σJ ∈ DJ − C. Let λ ∈ DJ and let c = maxi∈I−J{−⟨λ, α∨
i ⟩}.

Then λ+ cσJ ∈ D. Therefore

DJ = D − Z⟨σJ⟩.

Now that all the pieces are in place we can resume the proof of Lemma 3.1.1. All we need to

show is that the σJ produces a 1 dimensional representation.

Proof of Lemma 3.1.1. The representation associated to σJ is one dimensional as σJ is fixed by WJ

and the first map in the following exact sequence misses exactly ±σJ


j∈J

MJ(rj ∗ (±σJ))→MJ(±σJ)→ LJ(±σJ)→ 0.

Therefore L = LJ(±σJ) lifts to a 1-dimensional representation of KJ and

DRJ [L
±1] = R(KJ).

3.1.2 Completion of DRH for any Compact Subgroup

We get the completion of DRH as a corollary of the following theorem. From it and its corollary we

can clearly see the relationship between the dominant representation ring, DRH , and the represen-

tation ring of H. The idea of the proof is to lift the 1 dimensional representation, LJ from KJ to H
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then showing that it is the desired representation.

Theorem 3.1.2. Let H ⊂ K be a compact subgroup. There exists L a 1-dimensional representation

of H such that

DRH [L−1] = RH ,

where the DRH is the dominant representation ring associated to H ⊂ K. L is well defined up to a

unit.

Proof. Without loss of generality, we may assume H ⊂ KJ when considering the representation

rings. Let i : H → KJ be the inclusion. Also, it is obvious that every irreducible representation

V of H such that V ∈ DRH occurs as a summand of i∗(W ) for some W ∈ DRJ . This is because

restriction to H from K factors through i∗.

Let LJ be the same 1-dimensional representation as in the lemma above. Let V be any repre-

sentation of H, it is easy to show (use Segal’s induction) there is an W ∈ RH such that V ⊂ i∗W .

M ⊗ L−m
J ∈ R(KJ) be an irreducible representation where M ∈ DRJ and m ∈ Z+. Restriction

respects tensor products so

i∗(M ⊗ Lm
J ) = i∗(M)⊗ i∗(LJ)

−m.

Let W ∈ RH irreducible, such that W ⊂ i∗(M)⊗ i∗(LJ)
−m. Then W ⊗ i∗(LJ)

m ⊂ i∗(M) ∈ DRH ,

therefore DRH [i∗(LJ)
−1] ∼= RH . For brevity in the rest of the proof we will suppress the pullback,

i∗.

Now, to show that L is well-defined up to a unit in DRH . Let J1, J2 ⊂ I such that H ⊂

KJ1(A),KJ2(A). Then DRH [L−1
J1

] = RH = DRH [L−1
J2

].

DRH RH

DRH [L−1
J2

]

ι

LJ1
gets sent to a unit in RH , so it must get sent to a unit in DRH [L−1

J2
], all units in DRH [L−1

J2
]

are of the form ηL−1
J2

, where η ∈ DRH is a unit. Therefore LJ1
= ηLJ2

.

Now that we have this representation we can show that the completion of DRH and RH at the

augmentation ideal of both results in isomorphic algebras. It’s quite simple to show 3 from here.

Proof. For ease of notation let ID = I ∩DRH . I will show that DRH/InD
∼= RH/In.
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Consider, in DRH/InD,

(L− 1)n = Ln − nLn−1 + · · ·+ (−1)n = 0 mod InD

L((−1)n+1(Ln−1 − nLn−2 + · · ·+ (−1)n−1n)) = 1 mod InD.

So L maps to a unit under the projection map. We have shown that RH = DRH [L±1], so this map

factors through RH by universality.

DRH RH

DRH/InD

υn

Since υn(L
−1) = (−1)n+1(Ln−1 − nLn−2 + · · · + (−1)n−1n) has virtual dimension 1. We have

for V ∈ I, that V = V̂ L−k for some V̂ ∈ DRH and k ∈ N. V̂ has to have virtual dimension 0, so

V̂ ∈ ID. So, we have

RH/In = DRH [L−1]/In = (DRH/InD)[L−1] = DRH/InD.

3.2 Completion of KK

The last step is constructing the object that represents completion. In this section we construct a

spectrum KU to represent geometric completion. This is the spectrum that we use to show that the

spectral sequence 3.0.2 is well-defined and converges to the correct object.

3.2.1 Completion of K∗
K

To produce a map of K-theories c : K∗
K(M)→ K(M×KEK) we use a much stronger result. Here, we

produce a universal object and map which realize completion. We essentially use the contractability

of the unitary group on a separable Hilbert space that was first shown by Nicolaas Kuiper to remove

the action of K on F(H) [13].

Theorem 3.2.1. There is a space F(H) and a K-equivariant map c : F(H)→F(H), such that

KK(M)
c−→ [M,F(H)]K ∼= K(M ×K EK)
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and F(H) is non-equivariantly homotopic to F(H). The map c extends to a map of K-theories:

K∗
K(M)

c−→ K∗(M ×K EK).

Furthermore the map c fits into the following diagram, where the bottom sequence is short exact:

K∗
K(M)

0 lim←−
1

n
K∗

K(M ×K∗n) K∗(M ×K EK) lim←−n
K∗

K(M ×K∗n) 0

c

Theorem 3.2.2. There is a space F(H) and a K-equivariant map c : F(H)→F(H), such that

K2k
K (M)

c−→ [M,F(H)]K ∼= K(M ×K EK),

and F(H) is non-equivariantly homotopic to F(H).

Proof. We will produce an equivariant map F(H) × EK c′−→ F(H)♯, where we regard F(H)♯ to be

the same underlying space as F(H), but with a trivial K-action. As H is constructed to be a faithful

unitary representation of K, the representation map is an embedding K → U(H). We will use U

to refer to U(H) to simplify the notation. From the representation map we have an induced map

EK → EU , this allows us to construct the following two maps:

F(H)× EK proj−−−→ F(H)×K EK → F(H)×K EU .

Now we may mod out by the larger group U , giving us a map F(H) × EK → F(H) ×U EU . The

F(H)×U EU on the right hand side has a trivial K-action. As U is contractible BU is contractible.

Thus, the fibration F(H) → F(H)×U EU → BU gives us a homotopy equivariance between F(H)

and F(H) ×U EU . However, this is not an K-equivariant homotopy equivilance with the standard

action on F(H). If we regard both sides as having trivial K-action then it is an K-equivariant

homotopy equivariance. Thus we have the desired map, F(H) × EK c′−→ F(H)♯. We may adjoint

c′ over, F(H) c−→ Hom(EK,F(H)♯) sending f →→ gf such that gf (e) = c′(f, e). Let F(H) =

Hom(EK,F(H)♯). As EK is non-equivariantly contractible, this is non-equivariantly homotopic to

F(H)♯. It is fairly easy to see that [M,F(H)]K ∼= K(M ×K EK):

[M,Hom(EK,F(H)♯)]K ∼= [M × EK,F(H)♯]K ∼= [M ×K EK,F(H)♯].
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To extend it to K∗
K(M)

c−→ K∗(M ×K EK), we just need to produce a map c : ΩF(H) → ΩF(H).

This follows from the same argument as above.

Corollary 3.2.2.1. There is a diagram, where the bottom sequence is short exact.

K∗
K(M)

0 lim←−
1

n
K∗

K(M ×K∗n) K∗(M ×K EK) lim←−n
K∗

K(M ×K∗n) 0

c (3.2.1)

The short exact sequence on the bottom is the same that occurs in Atiyah and Segal’s proof of

the completion theorem. However, they show if G is compact then lim←−n
K∗

G(M ×G∗n) satisfies the

Mittag-Leffler condition as it is isomorphic to the algebraic completion, lim←−n
K∗

G(M)/KG(M) · InG,

which is Mittag-Leffer. So, in the compact case lim←−
1 K∗

G(M ×G∗n) is 0. We can not do better than

3.2.1 because there is no candidate for an algebraic completion of KK(M) to compare lim←−n
KK(M ×

K∗n) against. It still needs to be shown that lim←−
1

n
KK(M ×K∗n) is nontrivial in some case.

3.3 Future Directions

To show that the term lim←−
1

n
KK(M ×K∗n) in 3.2.1 is non-trivial we need to find an example. In our

case the simplest choice to use for M is X(A), the classifying space of proper K-actions. We need

to show that the map,

K∗(X(A)×K EK)→ lim←−
n

K∗
K(X(A)×K∗n),

is not an isomorphism. As X(A) ×K EK ∼= BK, this will also result in a computation of K∗(BK).

The obvious choice for K is some rank 2 Kac-Moody group, say the affine loop group on SU(2). An

alternate description of X(A) is as the topological Tits building,

X(A) =
K/T × |S(A)|

∼
,

where (gT, x) ∼ (hT, y) if x = y ∈ ∆J and g = hmodKJ . In the case of a rank 2 Kac-Moody group

this gives X(A) a simple K-CW structure with which to compute with. An alternative approach is

using the fact that BK ∼= hocolim|S(A)|BKJ , so we could use the homotopy colimit spectral sequence

to compute K∗(BK). The next step would be to compute some of lim←−n
KK(X(A)×K∗n).

Another direction to go is to attempt to produce another way of computing K∗(X(A)×K EK),
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Lemma 3.3.1. For a proper K space M ,

hocolimS(A)(M ×KJ
EK) = M ×K EK.

Proof.

M ×KJ
EK = hocolimS (M × EK)×K (K/KJ).

Then as taking the product of K/KJ with M ×EK and quotienting by K are both left adjoints we

have:

hocolimS (M × EK)×K (K/KJ) = (M × EK)×K (hocolimS K/KJ).

The last term, hocolimS K/KJ , is the topological Tits building and is contractible [6],[10]. So we

have

(M × EK)×K (hocolimS K/KJ) ∼= (M × EK)×K (∗) ∼= M ×K EK.

As shown in section 3.1 we can compute AKJ(M ×EK) for each compact J ⊂ I. We can set up

the homotopy colimit spectral sequence from this information. It converges and we have:

p

lim
S(A)

AK∗
J(M)∧IJ ⇒ K∗(M ×K EK).

This is an alternate method of computing the completion of Dominant K-theory.
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[5] Theodor Bröcker and Tammo tom Dieck. Representations of Compact Lie Groups. Springer-

Verlag, New York, 1985.

[6] Carles Broto and Nitu Kitchloo. Classifying spaces of kač-moody groups. Mathematische
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