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ABSTRACT 
CD8+ T cells activated in the presence of IL-6 and TGF-β secrete IL-17, and are known 

as Tc17 cells. In mice, adoptive T cell immunotherapy for cancer results in tumor 

regression and long term survival.  In previous work, it was shown that efficacy of Tc17 

cell adoptive immunotherapy correlates with Tc17 conversion from IL-17 to IFN-γ 

production (plasticity).   In these studies, we sought to understand the factors that 

determine Tc17 plasticity, the requirements for Tc17 plasticity, and the role of Tc17 

plasticity in an effective anti-tumor response.  To investigate Tc17 plasticity in vitro, we 

first sorted Tc17 cells to obtain pure IL-17+IFN-γ- cells.  Purified Tc17 cultured with IL-

2 or IL-12 resulted in conversion to an IFN-γ secreting phenotype.  Correspondingly, IL-

2 and IL-12 also increased expression of the T cell transcription factor T-bet.   To 

understand the factors important for Tc17 plasticity in vivo, we adoptively transferred 

antigen-specific Tc17 cells, then specifically activated them using a modified vaccina 

virus that expresses their cognate antigen.  Tc17 activation in a pro-inflammatory 

environment resulted in conversion to IFN-γ secretion.  In addition, vaccinia infection 

increased the expression of T-bet in Tc17 cells.  Based on our in vitro data, we tested 

whether IL-2 or IL-12 were required for Tc17 plasticity in vivo, and found that neither 

were absolutely required.  However, Tc17 conversion required the presence of T-bet.  

Consistent with those results, we found expression of T-bet was absolutely required for 

Tc17 adoptive immunotherapy in cancer models.  Taken together, these data provide new 

insight into the plasticity of Tc17, which are becoming more prominent in the fields of 

autoimmunity and tumor immunology. 
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Immune Activation and CD8+ T cells 

When the body encounters a pathogen such as influenza, the immune system 

fights the pathogen.  The innate immune system recognizes the pathogen and alerts the 

adaptive immune system.  The adaptive immune system consists of two arms, cellular 

and humoral immunity.  B cells are the main components of humoral immunity, and their 

main function is to secrete proteins known as antibodies that help eliminate the pathogen.  

The second arm is cellular immunity, which consists of T cells.  T cells are a critical 

component of an effective immune response, more specifically CD8+ T cells.  CD8+ T 

cells play an important role during the elimination of intracellular pathogens, such as 

viruses and some bacteria1.  The activation and differentiation of naïve CD8+ T cells is a 

complex process and can be divided into different phases. 

During the acute phase of an infection, a naïve CD8+ T cell encounters its 

cognate antigen in the context of co-stimulatory molecules and an inflammatory milieu.  

After the initial encounter, a CD8+ T cell enters the expansion phase of the infection, 

undergoing rapid proliferation and differentiation into a cytotoxic T lymphocyte (CTL)2.  

The primary function of a CTL is to secrete cytotoxic factors in order to kill and 

eliminate a target cell.  When a cell in the body becomes infected with a foreign 

pathogen, a CTL can find and remove the cell.  This process helps to stop the spread of 

the pathogen to the rest of the body.  The granular cytotoxic molecule perforin is critical 

during a CD8+ T cell response against lymphocytic choriomeningitis virus (LCMV) and 

Listeria monocytogenes (LM)3, 4.  Another important CTL cytotoxic molecule used 

against pathogens is granzyme B 5.  This cytotoxic function peaks around day 7 of an 

infection6.  In addition to cytotoxicity, a CTL secretes the pro-inflammatory cytokines 
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interferon-gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α).  After the expansion 

phase of the infection, CD8+ T cells enter the contraction phase, during which only a 

small percentage (~5-10%) of the activated CD8+ T cells will survive7, 8.  The cells that 

survive constitute the pool of functional memory CD8+ T cells. 

 

CD8+ T cell Memory 

Immunologic memory is an important aspect of the immune system, because it 

allows for a quicker response upon secondary encounter to the same foreign antigen.  

CD8+ T cells persist for several months after an infection, and maintain cytotoxic 

function.  These memory CD8+ T cells protect a mouse against a secondary infection8, 9.  

A memory CD8+ T cell can expand and produce cytotoxic molecules more rapidly than a 

naïve CD8+ T cell10.  There are specific characteristics to distinguish CD8+ T cells being 

activated during the acute and expansion phases of an infection from those that survive 

and become memory cells.  Interleukin-7 receptor alpha (IL-7Rα or CD127) is an 

important receptor on naïve and memory CD8+ T cells.  While IL-7 and its receptor 

CD127 are not required for CD8+ T cells expansion, they are very important for memory 

formation11.  During the acute phase of an infection, CD127 can be down-regulated on 

naive CD8+ T cells. When this happens, cells up-regulate the effector molecule killer cell 

lectin-like receptor G-1 (KLRG-1)12.  These CD127lowKLRG-1high cells are also known as 

short-lived effector cells (SLECs).  SLECs are a subset of CD8+ T cells shown to be 

terminally differentiated and critical for killing infected cells during an infection.  On the 

other hand, memory precursor effector cells (MPECs) do not lose CD127 expression or 
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up-regulate KLRG-1.  Cells that maintain high CD127 expression will become part of the 

memory pool of CD8+ T cells during the contraction phase10, 13.  

 

Common Gamma Chain Cytokines and Receptors 

CD127 belongs to the common gamma chain receptor family. There are several 

other important CD8+ T cell common gamma chain receptors including IL-2 receptor 

alpha (CD25), IL-2 receptor beta (CD122), and IL-2 receptor gamma (CD132).  These 

receptors interact with the T cell cytokine IL-2, which is an important cytokine during all 

phases of an infection.  IL-2 receptor signaling promotes both CD8+ T cell growth and 

differentiation.  The receptors CD122 and CD132 are constitutively expressed on naïve 

CD8+ T cells and necessary for IL-2 signal transduction.  Conversely, CD25 is induced 

on naïve CD8+ T cells upon activation.  The trimeric high affinity IL-2 receptor (IL-

2Rαβγ) is formed after CD25 up-regulation.  This trimeric receptor increases affinity for 

IL-2 by 103 to 104 fold, which is required for physiologic IL-2 signaling in mice14.  IL-2 

can be secreted by CD8+ T cells or other lymphocytes.  The ability of a CD8+ T cell to 

secrete IL-2 is dependent on both the initial TCR stimulation and co-stimulation.  More 

specifically, either increasing TCR stimulation or CD28 co-stimulation or both will 

increase IL-2 secretion15, 16.  IL-2 helps CD8+ T cells after the initial antigen encounter, 

by promoting antigen-independent proliferation and expansion8.  Intriguingly, the level of 

IL-2 secreted in the environmental milieu affects CD8+ T cell effector functions.  In vitro 

activated CD8+ T cells in the presence of low levels of IL-2 have decreased cytotoxic 

activity.  In addition, when CD8+ T cells are activated during LCMV infection without 



5 
 

IL-2 receptor signaling, they express less KLRG-1 and maintain higher CD127 

expression17.   IL-2 plays an important role to promote CD8+ T cell memory formation.  

During an LCMV infection, CD8+ T cells separate into two different types of 

cells.  Cells expressing low levels of CD25 are less sensitive to IL-2 and maintain higher 

CD127 expression.  Conversely, cells that maintain high CD25 expression proliferate 

more rapidly, exhibit better effector function and are more terminally differentiated18.  

There is contradictory evidence about the requirement of IL-2 during CD8+ T cell 

expansion and memory formation in vivo.  During the acute and expansion phases of 

either an LCMV or vesicular stomatitis virus (VSV) infection, CD8+ T cells proliferate in 

the absence of IL-2.  While it is not critical for expansion, IL-2 is still important during 

the priming of a CD8+ T cell.  During priming, IL-2 will program a CD8+ T cell to 

become a memory cell.  In other words, IL-2 signaling during priming is required for a 

robust secondary response to infection16, 19.  Another group showed IL-2 is important for 

proliferation and short-lived (SLEC) formation, whereas memory cell (MPEC) formation 

was completely intact13.  As mentioned previously, the availability of IL-2 in the 

microenvironment is important.  When there are high levels of IL-2, cells will up-regulate 

CD25 and down-regulate CD127, which leads to an increase in effector cells rather than 

memory cells.  In addition, CD127 down-regulation is determined by the amount of IL-2 

present during activation17. The receptor CD122 is also important during activation and 

memory formation. 

 During the course of an infection, a CD8+ T cell will lose CD25 expression and 

express more CD12220.  CD122 expression promotes functional memory formation, 

because with CD215, it forms the IL-15 receptor complex21.  IL-15 is a cytokine that 



6 
 

plays a critical role during CD8+ T cell memory development.  The CD8+ T cell memory 

compartment is greatly reduced in IL-15R knockout (KO) mice.  In addition, memory 

CD8+ T cells with high CD122 expression are dependent on IL-15 for both proliferation 

and survival7, 22-24.  IL-15 is an important cytokine for effector memory survival, because 

of the loss of CD127 expression25.  Many of the mechanisms described above are 

controlled by two CD8+ T cell transcription factors, T-bet and eomesodermin. 

 

CD8+ T cell Transcription Factors 

The T-box transcription factor T-bet, encoded by tbx21, is referred to as the 

“master regulator” of CD8+ T cell differentiation.  The transcription factor 

eomesodermin (eomes) is another CD8+ T cell transcription factor, more important 

during memory formation.  Both eomes and T-bet control the transcription of numerous 

CTL effector molecules such as IFN-γ, granzyme B and the homing receptor CXCR326, 

27.  CD8+ T cells that do not express T-bet secrete fewer effector cytokines and have 

diminished cytotoxicity against LCMV infection28. Conversely, in the absence of T-bet, 

CD8+ T cells can protect against LM infection29.  The pro-inflammatory cytokine IL-12 

is an important driver of T-bet up-regulation during the initial CD8+ T cell antigen 

encounter.  IL-12 actually represses eomes expression while increasing T-bet 

expression30.  T-bet is associated with CD8+ T cells responding during the acute phase of 

an infection, whereas eomes is expressed after T-bet and increases over time in CD8+ T 

cells2, 31.  T-bet will be discussed further in Chapter 7.  Even though eomes is associated 

with memory formation, mutations present in both T-bet and eomes of these leads to a 
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void in the CD8+ T cell memory response against LCMV26.  The characteristics 

described above are important for the basic function of a CD8+ T cell, but recent 

literature has shed light on other potential roles/functions of CD8+ T cells.          

    

IL-17 Secreting T cells and Tumor Immunity 

Helper T cells are also known as CD4+ T cells, and consist of different subsets 

including Th1, Th2, Th17 and Th22.  Similarly, CD8+ T cells can be divided into 

different subsets. CD8+ T cells can be activated and skewed to secrete IL-4 (Tc2) or IL-

22 (Tc22)32-34.  More interestingly, like CD4+ T cells that secrete IL-17 (Th17), CD8+ T 

cells can secrete IL-17 (Tc17).  One study showed CD8+ T cells co-cultured with 

bacterial exposed dendritic cells secrete IL-1735.  Another study showed CD8+ T cells 

without functional T-bet expression have an unusual inclination to secrete IL-17 during 

viral infection36.  Unlike traditional killer CD8+ T cells, there is contradicting data on 

Tc17 cell cytotoxicity33, 37-39.  If a Tc17 cell cannot kill, IL-17 secretion must be 

important for an effective anti-tumor response.     

The role of IL-17 in the context of the tumor microenvironment is controversial.  

There is evidence to show IL-17 is pro-tumorigenic and increases tumor growth.  One 

study showed IL-23, which is an important cytokine in the activation of IL-17 secreting T 

cells, was increased in the tumor microenvironment and promote tumor growth40.  IL-17 

secreting T cells are increased in the tumor microenvironment of numerous mouse and 

human cancers, perhaps contributing to tumor pathogenesis41.  Alternatively, studies have 
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shown adoptively transferred Th17 cells to slow or inhibit the growth of melanoma 

tumors42, 43.   

Similar to Th17 cells, the purpose and role of Tc17 cells in the tumor 

microenvironment is controversial.  In a mouse model of chemical carcinogenesis, a 

subset of CD8+ T cells, so called “T-pro”, emerged.  These T-pro cells secreted IL-17, 

expressed high levels of the transcription factor high retinoic acid-related orphan receptor 

(RORγT) and were non-cytotoxic.  T-pro cells were associated with malignant 

progression44.  There is an association between increased percentages of Tc17 cells in 

tumor tissue and tumor progression in patients with hepatocellular carcinoma45.  In 

gastric cancer patients, higher percentages of Tc17 cells not only correlate with tumor 

progression but also promote myeloid derived suppressor cell formation46.  Conversely, 

Tc17 adoptive immunotherapy in mouse tumor models has shown promising results.  In 

these studies, Tc17 adoptive T cell therapy led to tumor regression in both flank and lung 

melanoma models47-49.  Tc17 cells can be found in other diseases and disease models, 

where the role is not completely understood.     

 

Tc17 Cells 

The role of Tc17 cells has yet to be determined, but there is evidence to support a 

similar role to Th17 cells.  In the absence of CD4+ T cells, CD8+ T cells secrete IL-17 in 

response to fungal infection in mice, as a compensatory response50, 51.  Tc17 cells are 

depleted in both monkeys and humans infected with the immunodeficiency virus 

(SIV/HIV), suggesting an important role for these during infection52-54.  In a model of 
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atopic dermatitis, when mice were depleted of CD4+ T cells, CD8+ T cells secreted IL-

17 in the skin, again suggesting a compensatory role55.  Interestingly, this phenomenon 

was also shown in a mouse model of colitis.  In the absence of major histocompatibility 

complex (MHC) II, mice infected with bacteria had increased percentages of endogenous 

Tc17 cells in the colon56.  In a mouse model of brain inflammation known as 

experimental autoimmune encephalomyelitis (EAE), Tc17 cells were found in both the 

draining lymph node and central nervous system (CNS)57.  In several human autoimmune 

diseases including psoriasis, rheumatoid arthritis, multiple sclerosis and lupus, Tc17 cells 

are located in both the peripheral blood mononuclear cells (PBMC) and tissue34, 58-62.  

Infectious viral mouse models also show a small percentage of endogenous Tc17 cells63, 

64.  One issue with studying Tc17 cells is they are usually a very small percentage of the 

total CD8+ T cell compartment, which limits the characterization of these cells.   

Tc17 Induction 

CD8+ T cells can be skewed ex vivo to produce IL-17 under specific conditions in 

large numbers.  Several groups have shown in vitro generated Tc17 cells can mimic 

natural Tc17 cells by secreting large percentages of IL-17 and very little IFN-γ.  They 

also express RORγT and low levels of the T-bet and eomes33, 37, 48, 65.  RORγT is the key 

transcription factor that influences the production of IL-17 in Th17 cells66.  The details of 

CD8+ T cell skewing to an IL-17 secreting phenotype will be discussed further in 

Chapter 3.  The influence of various cytokines and transcription factors during activation 

of Tc17 cells has been studied.  When IFN-γ KO CD8+ T cells are activated, they secrete 

more IL-17 than IFN-γ wild type (WT) CD8+ T cells37, 64, 67.  Suppressor of cytokine 
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signaling (SOCS) 3 inhibits Tc17 differentiation by inhibiting the critical modulator of 

IL-17 secretion, signal transducer and activator of transcription (STAT) 368.  Similarly, 

activated interferon regulatory factor 3 (IRF3) KO CD8+ T cells secreted more IL-17 

than the WT counterpart, showing a role of IRF3 in modulating Tc17 differentiation69.  In 

Th17 cells, IL-2 restricts Th17 development through the STAT5 signaling pathway70.  

Some studies examined molecules required for Tc17 development, including IRF4.  IRF4 

KO CD8+ T cells are unable to skew to Tc17, showing the requirement for IRF4 in Tc17 

differentiation71.  These data address the requirements and role of specific factors during 

Tc17 induction, but not the function of Tc17 cells in vivo. 

Tc17 Cell Adoptive Transfer Models 

The function of Tc17 cells has been investigated through the use of animal 

models.  One question is whether Tc17 cells could be important during an infection, other 

than compensation in the absence of CD4+ T cells.  In a model of viral infection, in vitro 

generated Tc17 cells were adoptively transferred into mice infected with influenza.  The 

adoptively transferred cells showed a protective advantage against lethal influenza 

infection.  There was a reduction in this protective effect if IFN-γ KO Tc17 cells were 

adoptively transferred63.  During a vaccinia infection, adoptively transferred Tc17 cells 

are able to promote viral clearance similarly to Tc1 cells64.  As previously mentioned, 

natural Tc17 cells are present in multiple human autoimmune diseases, and they are often 

associated with inflammation and pathogenicity.  In a self-antigen model where 

hemagglutinin (HA) is expressed in the lung, adoptively transferred antigen specific Tc17 

cells caused lung pathology.  This is in contrast to adoptively transferred IL-12 activated 

CD8+ T cells (Tc1), which were significantly less pathogenic33. In a murine model of 
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diabetes, using the ectopic expression of OVA in the pancreatic islet cells, adoptively 

transferring antigen-specific Tc17 cells previously activated in the presence of IL-6 and 

TGF-β did not result in pancreatic pathogenicity.  This was in contrast to IL-23-activated 

Tc17 cells, which were diabetogenic upon adoptive transfer37.  In a different diabetic 

model, where HA antigen is expressed in the pancreatic islet cells, adoptively transferred 

antigen specific Tc17 cells were non-pathogenic.  Interestingly, upon simultaneous 

transfer with Th1 cells, Tc17 became pathogenic, causing hyperglycemia and death in the 

mice65.   

As previously mentioned, Tc17 adoptive T cell therapy in tumor models has 

shown promising results.  In two separate studies, antigen-specific Tc17 cells were 

adoptively transferred into mice bearing B16 tumor in the flank.  In one of the studies, 

adoptive transfer with Tc17 cells led to a superior anti-tumor response when compared to 

transfer with non-polarized CD8+ T cells48.  In the other study, even though Tc17 cells 

caused tumor regression, adoptive transfer with Tc1 cells showed a superior anti-tumor 

response compared to Tc17 cells47.  Tc17 cells have an anti-tumor response when 

adoptively transferred into mice bearing metastatic melanoma, where B16 is administered 

intravenously and forms lung metastases.  Similar to other studies, adoptive transfer with 

Tc1 cells led to a superior response compared to Tc17 cells.  Surprisingly, this was not 

seen when the tumor cells did not express the IFN-γ receptor.  In the absence of the IFN-

γR on the tumor, Tc17 cells provided a better anti-tumor response than adoptively 

transferring Tc1 cells49.  In one flank tumor study, adoptively transferred IFN-γ KO or 

TNF-α KO Tc17 cells had a weaker anti-tumor response compared to IFN-γ WT or TNF-

α WT Tc17 cells47.  This was also seen in an infection model, where adoptively 
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transferred IFN-γ KO Tc17 cells were unable to protect mice against lethal influenza 

infection63.  IFN-γ secretion seems to be important for an effective Tc17 anti-tumor 

response. 

Adoptively transferred Tc17 cells expressing both IL-17 and IFN-γ had a superior 

anti-tumor response compared to Tc17 cells expressing IL-17 alone in mice bearing 

lymphoma in the flank38.  There is contradicting evidence on the importance of Tc17 

cells switching from IL-17 to an IFN-γ production in the context of an effective anti-

tumor response47-49.  Tc17 cells can produce IFN-γ in the context of both infection and 

autoimmunity.  These topics will be discussed further in chapter 5.  This conversion also 

occurs in Th17 cells, and is also known as cellular plasticity. 

T Cell Plasticity 

 Th17 plasticity has been shown in B16 tumor models.  When Th17 cells were 

adoptively transferred into B16 tumor bearing mice, they switch to produce IFN-γ.  

Interestingly, Th17 cells that could not produce IFN-γ did not promote an effective anti-

tumor response72.  Th17 plasticity has also been shown in specific autoimmune mouse 

models.  The role of conversion is still controversial in autoimmune pathogenicity.  In 

one study, Th17 cells that were unable to produce IFN-γ did not affect EAE pathogenesis.  

A different study showed Th17 cells that could not produce IFN-γ actually ameliorated 

EAE pathogenesis73-75.  In an autoimmune diabetes model, only IFN-γ producing Th17 

cells conferred diabetic pathogenesis76.  Previously activated Th17 cells cultured in vitro 

in the presence of pro-inflammatory cytokines can be re-programmed to secrete IFN-γ77.  

Similarly to Th17 cells, Tc17 cells cultured in the presence of pro-inflammatory 
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cytokines have been shown to re-program and secrete IFN-γ in vitro.  This was also 

dependent on specific transcription factors38, 64, 68.  In vitro plasticity of Tc17 cells will be 

discussed further in Chapter 4.   

 The factors that affect Tc17 cell plasticity remain unclear.  IL-12 has been shown 

to be an important player in Tc17 plasticity, but perhaps there are other cytokines or 

factors that can influence Tc17 plasticity.  Gamma chain cytokines and receptors play an 

important role during CD8+ T cell immunity to infection, but the role of gamma chain 

cytokines in Tc17 plasticity has yet to be elucidated.  Transcription factors are required 

for Th17 plasticity, but the requirements for Tc17 plasticity are still unknown.  In 

addition, Th17 plasticity is a critical component in both autoimmune pathogenecity and 

anti-tumor response.  The role of Tc17 plasticity during an anti-tumor response is still 

unknown.  In the following study, we sought to characterize factors that drive Tc17 

plasticity, define the requirements for Tc17 plasticity and determine the role of Tc17 

plasticity in effective anti-tumor immunity.  
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Mice 

C57BL/6 (WT) and C57BL/6-Tg (CAG-OVA) 916Jen/J mice were purchased from 

Jackson Laboratories. B6-LY5.2/Cr mice were purchased from NCI Fredrick 

Laboratories.  OT-1/RAG KO transgenic mice on a C57BL/6 (H-2b) background were 

originally obtained from Dr. H. Levitsky (Johns Hopkins University).  These mice 

express a transgenic TCR Vβ2 and Vβ5 specific for the SIINFEKL peptide of OVA in 

the context of MHC Class I.  Homozygous IL-2 KO and T-bet KO were purchased from 

Jackson Laboratories and bred onto the OT-1/RAG KO background.  OT-1, 

cytokine/transcription factor-deficient mice were selected from the F2 generation.   OT-

1/IL-12Rβ1 transgenic mice were kindly provided by J. Harty (U Iowa).   

Flow Cytometry  

Monoclonal antibodies with the following specificities were used in this study: CD8 

(5H10 & 53-6.7; Life Technologies), CD25 (7D4 & PC61.5; eBioscience), CD44 (IM7; 

eBioscience), CD45.2 (104; Biolegend), CD62L (MEL-14; Biolegend), CD122 (TM-b1; 

Biolegend), CD127 (A7R34; Biolegend), eomesodermin (Dan11mag; eBioscience), IL-

17a (TC11-18H10.1; Biolegend), IFN-γ (XMG1.2; Biolegend), KLRG-1 (2F1; 

eBioscience), Live/Dead Fixable (Invitrogen), RORγT (B2D; eBioscience), T-bet 

(eBio4B10), Thy1.1 (OX-7; BD Pharmingen).  To analyze the cytokine production and 

transcription factors of cells for in vitro studies, cells were stimulated with PMA (phorbol 

12-myristate 13-acetate; 50 ng/mL; Sigma) and ionomycin (0.5 ug/mL; Sigma) for 4 

hours.  For analysis of the cytokine production and transcription factors of adoptively 

transferred cells, cells were stimulated with pOVA (10 ug/mL) for 4 hours.  Protein 
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transport inhibitor cocktail was added during all stimulations (eBioscience).  Cells were 

not stimulated for extracellular staining analysis.  Samples were acquired on a BD LSR 

flow cytometer (BD Biosciences) and FlowJo software (Tree Star) was used for data 

analysis.    

Differentiation of CD8+ T cells 

OT-1+/RAG KO spleen and lymph node cells were collected, pooled and activated with 

pOVA (1 ug/mL) and cultured for 5 days in the presence of mIL-1β (20 ng/mL; 

Shenandoah Biotechnology, Inc), mIL-6 (20 ng/mL; Shenandoah Biotechnology, Inc), 

mIL-23 (20 ng/ML, eBioscience), hTGF-β1 (5 ng/mL; Shenandoah Biotechnology, Inc), 

anti-mouse IL-4 antibody (10 ug/mL; 11B11; NCI), anti-mouse IFN-γ antibody (10 

ug/mL; XMG1.2; BioXCell) and anti-mouse CD28 antibody (1 ug/mL; 37.51) for the 

generation of Tc17 cells.  OT-1+/RAG KO spleen and lymph node cells were pooled and 

activated with pOVA (1 ng/mL) and cultured for 4 days in the presence of mIL-2 (1 

ng/mL; Peprotech), hIL-12 (10 ng/mL; Peprotech), anti-mouse IL-4 antibody (10 ug/mL; 

11B11; NCI) and anti-mouse CD28 antibody (1 ug/mL; 37.51).  In reactivation cultures, 

differentiated Tc17 cells were sorted on day 5 and then cultured in the presence of mIL-2 

(20 ng/mL), mIL-7 (20 ng/mL), mIL-12 (10 ng/mL), or mIL-15 (20 ng/mL).  The sorted 

cells were also cultured with soluble anti-CD28 (1 ug/mL) and the previous mentioned 

cytokines on anti-CD3 (2 ug/mL) coated plates. Sorted Tc17 cells were cultured for 4 

days and then analyzed for cytokine production, transcription factor expression and cell 

surface receptor expression. 
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Tc17 Sorting 

After in vitro polarization and re-stimulation with PMA (100 ng/mL) and ionomycin (1 

ug/mL) for 2 h, IL-17 or IFN-γ-secreting CD8+ T cells were stained with bi-specific 

CD45/cytokine mAbs according to the manufacturer’s protocol (Miltenyi Biotec) and 

then sorted using a BD FACSAria instrument.  7-AAD was utilized to exclude dead cells 

and CD8+ T cells were sorted to >97% pure IL-17+IFN-γ- cells.   

Quantitative Real-Time Polymerase Chain Reaction (qPCR) 

mRNA was extracted from T cells with TRIzol Reagent (Life Technologies) and the 

TRIzol RNA Isolation protocol.  cDNA was synthesized with a RNA to cDNA EcoDry 

Premix kit (Clontech).  All primers were purchased from Life Technologies-Applied 

Biosystems; reactions were performed in triplicate using an Applied Biosystems 

StepOnePlus Instrument.   

Recombinant Vaccinia Virus 

A recombinant vaccinia virus (VV) encoding full-length ovalbumin (OVA) was provided 

by Dr. D. Pardoll. VV-OVA was propagated in TK- cells, purified from cell lysates by 

sucrose banding, titered by plaque assay and stored at a concentration of 1x108 PFU/mL 

in a -80°C freezer.  VV-OVA was thawed on ice and diluted in PBS to 1x106 PFU per 

mouse in a volume of 200 uL.  This was co-administered with Tc cells by retro-orbital 

injection. 
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Adoptive Cell Transfers 

For adoptive transfer experiments, 1x106 - 2x106 in vitro generated Tc17 cells were 

adoptively transferred into CAG-OVA, RAG KO or CD45.1+ mice in 200 uL PBS via 

retro-orbital injection.  Cells were harvested 3 days later from CAG-OVA mice or 7 days 

later from RAG KO or CD45.1+ mice.  For infection models, 1x106 PFU recombinant 

VV-OVA was adoptively transferred with 1-2x106 in vitro generated Tc17 cells into 

CD45.1+, C57B/6 or IL-2 KO/RAG KO mice.  These injections were in 200 uL PBS via 

retro-orbital injection.  Cells were harvested 7 days later.   

Isolation of Tissue Lymphocytes 

Spleen, lymph node, lung and liver lymphocytes were isolated as followed: all tissues 

were harvested and single cells suspensions were obtained by mechanical disruption.  

Liver lymphocytes were re-suspended in a Percoll Plus (GE Healthcare) gradient.  The 

lymphocyte buffy coat was removed and washed in PBS.  For cytokine and transcription 

factor intra cellular staining (ICS), cells were stimulated with pOVA (10 ug/mL) for 4 

hours.  Protein transport inhibitor cocktail was added during all stimulations 

(eBioscience).  Cells were not stimulated for extracellular staining analysis.    

In Vivo Killing Assay 

5x105 Tc1 and Tc17 cells were injected into CD45.1+ recipients without VV-OVA or 

1x104-2x105 cells were injected into CD45.1+ recipients infected with VV-OVA.  Five 

days after Tc cell injection, recipient mice were injected with 5.5x106 SIINFEKL-pulsed 

splenic cells stained with 5 uM CFSE, and 4.5x106 non-pulsed splenic cells stained with 
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0.5 uM CFSE.  Eighteen hours later, spleen cells were harvested and the ratio of live 

CFSEhi to CFSElo cells was determined using flow cytometry.   

Adoptive T cell Immunotherapy Model 

For tumor challenge, female CD45.1 mice received a subcutaneous injection of 1.6x105 

B16F10-OVA melanoma cells.  On day 14, mice with palpable, established tumors (100-

250 mm3 respectively) received a retro-orbital injection of 5x106 in vitro generated Tbet 

WT or Tbet KO Tc17 cells with or without VV-OVA.  Control groups received VV-

OVA alone or no treatment.  Tumor volume was calculated by using the following 

formula: tumor volume (mm3) = (length) x (width)2x0.5.  Mice with tumor volumes that 

equaled or exceeded 1500 mm3 were humanely sacrificed.         

Isolation of Tumor-Infiltrating Lymphocytes (TIL) 

Individual subcutaneous tumors were harvested from mice and wet weights measured. 

Single cells suspensions were obtained by mechanical disruption.  Tumor cells were 

washed 3-4 times in PBS followed by re-suspension in a Percoll Plus (GE Healthcare) 

gradient.  The lymphocyte buffy coat was removed and washed in PBS.  For cytokine and 

transcription factor intra cellular staining (ICS), cells were stimulated with pOVA (10 

ug/mL) for 4 hours.  Protein transport inhibitor cocktail was added during all stimulations 

(eBioscience).  Cells were not stimulated for extracellular staining analysis.    

Statistical Analysis 

Statistical significance was calculated by unpaired Student’s t test with Prism software.  

All p values <0.05 were considered significant. 
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CHAPTER 3 

PHENOTYPE OF IN VITRO GENERATED TC17 CELLS 
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INTRODUCTION 

As mentioned in Chapter 1, similar to the Th17 subset, CD8+ T cells secrete IL-

17 in different diseases.  However, their usual small numbers preclude extensive 

phenotyping and functional analyses.  In order to circumvent this issue, the skewing 

conditions to promote CD8+ T cell secretion of IL-17 have been studied33, 37, 63.  Similar 

to Th17 cell skewing, TGF-β and IL-6 are critical for Tc17 differentiation.  IL-1β and IL-

23 are dispensible, but do increase IL-17 secretion. It is critical to block IFN-γ during 

initial activation to shift the production from IFN-γ towards IL-17 secretion.  Normally 

during CD8+ T cell activation, IL-2 is added to promote proliferation and growth, but it 

has been shown that IL-2 actually inhibits IL-17 production33, 37, 63.  If CD8+ T cells are 

activated under optimal conditions, they can secrete upwards of 90% IL-17 with very 

little IFN-γ production.  In this chapter we examined characteristics of in vitro generated 

Tc17 cells.  In order to define these characteristics, we skewed CD8+ T cells under IL-17 

promoting conditions in vitro.  We hypothesized we would obtain high percentages of 

Tc17 cells.     

The expression profile of Tc17 cell transcription factors has been studied by using 

qPCR, Tc17 cells express much higher levels of RORγT compared to a Tc1 cell.  

Interestingly, T-bet is expressed slightly less or equivocally between Tc17 cells and Tc1 

cells33, 48, 68.  We wanted to investigate the protein expression of transcription factors in 

Tc17 cells by flow cytometry.  We hypothesized, similar to the expression of mRNA 

transcripts, Tc17 cells analyzed by flow cytometry would express high percentages of 

RORγT protein.  Additionally, we hypothesized Tc17 cells would express very little T-
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bet or eomes protein.  In order to do this we skewed CD8+ T cell and stained for RORγT, 

T-bet and eomes.     

The expression of cell surface receptors on Tc17 cells has not been studied 

extensively, but similarly to Th17 cells, Tc17 cells up-regulate the IL-23 receptor and 

CCR6 during activation.  Additionally, the IL-12 receptor is expressed on Tc17 cells but 

less than Tc1 cells33, 37.  We wanted to determine the expression of the common gamma 

chain receptors on Tc17 cells.  We hypothesized they would express CD127, but not the 

high affinity IL-2 receptor.  In order to do this we skewed CD8+ T cells towards IL-17 

secretion and stained CD25, CD122 and CD127.    

As mentioned in Chapter 1, one of the important characteristics of a Tc17 cell is 

their decreased cytotoxic activity compared to Tc1 cell or CTL.  The ability of Tc17 cells 

to kill in vitro and in vivo remains controversial63, 64, 78.  We sought to determine the 

cytotoxicity of the Tc17 cells we generated in vitro.  In order to do this we used an in vivo 

killing assay to compare the specific lysis of in vitro generated Tc17 cells compared with 

in vitro generated Tc1 cells.   
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RESULTS 

Cytokine Profile of Skewed Tc17 Cells 

To investigate the characteristics of in vitro generated Tc17 cells, we activated OT-1 

CD8+ T cells under IL-17 polarizing conditions.  We verified the cytokine production by 

flow cytometry and found the activation to yield >90% IL-17+IFN-γ- Tc17 cells (Figure 

3-1).   

In vitro Generated Tc17 Cells have an Activated Phenotype 

To determine the expression of the common gamma chain receptors on the Tc17 cells we 

stained CD25, CD122 and CD127.  We found after activation Tc17 cells maintained 

CD127 expression.  Tc17 cells had increased CD25 expression similarly to Tc1 generated 

OT-1 cells.  Tc17 cells expressed significantly less CD122 than Tc1 cells (Figure 3-2).  

We next studied whether this receptor expression mirrored the transcriptional level by 

qPCR.  We found CD25 was similar to protein expression on the RNA transcript level, 

but there was no difference between the CD122 RNA levels of Tc1 and Tc17 cells.  Tc17 

cells had significantly more CD127 and CCR7 transcript than Tc1 cells, again suggesting 

a more memory phenotype.  The RNA transcript levels of the IL-12 receptor was not 

different between Tc1 and Tc17 cells, but Tc17 cells expressed more CCR6, a common 

receptor found on Th17 cells.  In addition, Tc17 cells express less CXCR3 than Tc1 cells, 

a common receptor found on Th1 cells (Figure 3-3).   
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In Vitro Generated Tc17 Cells are RORγThi , Tbetlo and  Minimally Cytotoxic 

In order to further characterize the Tc17 cells, we examined the expression of 

transcription factors profile in activated T cells.  We performed qPCR analysis and found 

that Tc17 cells had significantly more RORγT transcript and less T-bet transcript 

compared toTc1 cells, which was confirmed on the protein level by flow cytometry.  

Tc17 cells down-regulated eomes on the transcriptional level significantly more than Tc1 

cells, again shown on the protein level (Figures 3-4).  To determine Tc17 cytotoxicity, we 

performed an in vivo killing assay and showed Tc17 cells can kill, but significantly less 

than Tc1 cells (Figure 3-5).   
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SUMMARY 

We polarized naïve CD8+ T cells in vitro to secrete >90% IL-17 with very little IFN-γ 

secretion.  In addition, Tc17 cells expressed the traditional Th17 transcription factor 

RORγT, and had very low expression of the Th1 transcription factors T-bet and Eomes.  

This suggests Tc17 cells could have a long-term memory phenotype26.  Both Tc1 and 

Tc17 cells expressed CD44 and CD25 upon activation, but did not lose CD127 

expression.  This suggests a predilection toward a memory phenotype10. High CD25 

expression suggests Tc17 cells have an activated phenotype, which may plan an 

important role in their plasticity.  Interestingly, Tc17 cells expressed significantly less  

CD122 as compared to Tc1 cells, suggesting a diminished high affinity IL-2 receptor 

signaling complex15.  This was not reflected on the RNA level, suggesting post-

translational control of CD122 expression.  Both Tc1 and Tc17 cells expressed the IL-12 

receptor transcript, suggesting the Tc17 skewing conditions did not alter CD8+ T cell 

affinity for IL-12.  We saw Tc17 cells kill significantly less than Tc1 cells, suggesting 

they are not as effective at normal CTL functions.   
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Figure 3 - 1: Flow Cytometry, Cytokine Profile of Tc17 Cells 

 

 

 

 

 

 

 

 

 

 

 

 

OT-1+/RAG KO spleen and lymph node cells were collected, pooled and activated 
with OVA peptide and cultured for 5 days in the presence of mIL-1β, mIL-6, mIL-
23, hTGF−β1, anti-mouse IL-4 antibody, anti-mouse IFN-γ antibody and anti-
mouse CD28 antibody.  For analysis of cytokine production, cells were stimulated 
with PMA and ionomycin.  Protein transport inhibitor cocktail was added during 
stimulation.  Cytokine staining was analyzed using intracellular staining and flow 
cytometry.     
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Figure 3 – 2: Flow Cytometry, Receptor Profile of In Vitro Activated CD8+ T cells             

 

 

 

 

 

 

 

 

 

OT-1+/RAG KO spleen and lymph node cells were collected, pooled and activated 
with OVA peptide and cultured for 5 days in the presence of mIL-1β, mIL-6, mIL-
23, hTGF-β1, anti-mouse IL-4 antibody, anti-mouse IFN-γ antibody and anti-
mouse CD28 antibody.  Receptors were analyzed using extracellular staining and 
flow cytometry.  The values represent the means +/- SEM (n=2). *p<0.05 
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Figure 3 – 3: qPCR, Receptor Profile of in vitro Activated CD8+ T cells           

 

 

 

 

 

 

 

OT-1+/RAG KO spleen and lymph node cells were collected, pooled and activated 
with OVA peptide and cultured for 5 days in the presence of mIL-1β, mIL-6, mIL-
23, hTGF−β1, anti-mouse IL-4 antibody, anti-mouse IFN-γ antibody and anti-
mouse CD28 antibody.   mRNA was extracted from T cells and cDNA synthesized.  
qPCR was performed in triplicate. The values represent the means +/- SEM (n=3). 
*p<0.05, **p<.01, ***p<.001  
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Figure 3 – 4: Transcription Factor Profile of In Vitro Activated CD8+ T cells             

 

 

 

 

 

OT-1+/RAG KO spleen and lymph node cells were collected, pooled and activated 
with OVA peptide and cultured for 5 days in the presence of mIL-1β, mIL-6, mIL-
23, hTGF-β1, anti-mouse IL-4 antibody, anti-mouse IFN-γ antibody and anti-mouse 
CD28 antibody.  For analysis of transcription factors, cells were stimulated with 
PMA and ionomycin.  Protein transport inhibitor cocktail was added during 
stimulation.  Transcription factor staining was analyzed using intracellular staining 
and flow cytometry.  mRNA was extracted from T cells and cDNA synthesized.  
qPCR was performed in triplicate. The values represent the means +/- SEM (n=2). 
*p<0.05, **p<.01, ***p<.001 
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Figure 3 – 5: In vivo Killing Assay Comparing In Vitro Activated CD8+ T cells             

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In vitro generated Tc1 and Tc17 cells were prepared and 5x105 cells were injected 
into CD45.1+ recipients without VV-OVA.  Five days after Tc cell injection, 
recipient mice were injected with 5.5x106 SIINFEKL-pulsed splenic cells stained 
with 5 uM CFSE, and 4.5x106 non-pulsed splenic cells stained with 0.5 uM CFSE.  
Eighteen hours later, spleen cells were harvested and ratio of live CFSEhi to CFSElo 
cells was determined using flow cytometry. ***p<.001 
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CHAPTER 4 

TC17 PLASTICITY IN VITRO 
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INTRODUCTION 

One of the important characteristics of both Th17 and Tc17 cells is the capacity to 

switch from IL-17 to IFN-γ secretion.  This is in stark contrast to Th1 and Tc1 cells, 

which do not switch from IFN-γ to IL-17 production.  Previously activated Th17 cells 

cultured in the presence of the pro-inflammatory cytokines IL-12 or IL-23 can be re-

programmed to secrete IFN-γ.  This plasticity is dependent on STAT4, which is an 

important transcription factor for IFN-γ secretion77.  Similarly to Th17 cells, Tc17 cells 

cultured in the presence of IL-12 secrete IFN-γ in vitro64, 68.  This was dependent on 

STAT4, as well, as T-bet.  IFN-γ secretion by Tc17 cells was concomitant to increased 

expression of T-bet but not RORγT which remained unchanged.  Interestingly, previously 

skewed Tc17 cells re-cultured in the presence of IL-2 did not switch their phenotype38. 

In this chapter we addressed the factors that affect Tc17 plasticity in vitro.  We 

sought to investigate Tc17 plasticity using a homogenous population of Tc17 cells.  It 

was important to ensure Tc17 cells that switched from IL-17 to IFN-γ secretion came 

from a population of only IL-17 secreting cells.  In order to do this we sorted Tc17 cells 

to obtain a pure IL-17+IFN-γ- population.   

Although IL-12 affects plasticity, we investigated other factors that could affect 

conversion64, 68.  In Chapter 2, we showed Tc17 cells express CD25, CD127 but down-

regulated CD122 and CD215.  We hypothesized IL-2 and IL-7 would cause Tc17 cells to 

secrete IFN-γ, but IL-15 would not.   In Chapter 2 we also demonstrated Tc17 cells 

expressed the IL-12 receptor.  We hypothesized IL-12 would affect Tc17 plasticity.  In 

order to test this we cultured sorted Tc17 cells in IL-2, IL-7, IL-12 and IL-15 and stained 
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for cytokines.  When Tc17 cells are adoptively transferred into mice bearing their cognate 

antigen, they convert to an IFN-γ secretion phenotype48, 64.  We examined at the role of 

the T cell Receptor (TCR) stimulation in Tc17 plasticity.  We hypothesized TCR 

stimulation would affect Tc17 plasticity.  In order to do this we cultured sorted Tc17 cells 

with CD3 and CD28 and stained for cytokines.   

 The gamma chain receptor expression of Tc17 upon conversion has not been 

shown.  We hypothesized Tc17 cells would maintain CD127 expression upon conversion 

with cytokines, but lose CD127 expression in the presence of TCR stimulation.  We also 

hypothesized Tc17 cells would express the high affinity IL-2 receptor upon conversion in 

vitro.  In order to test these hypotheses we cultured sorted Tc17 cells with specific 

cytokines and TCR stimulation and stained for CD25, CD122 and CD127.   

We then sought to investigate the transcription factor expression of Tc17 cells 

upon conversion.  We hypothesized Tc17 cells would lose RORγT expression and have 

increased T-bet and eomes expression upon conversion.  In order to test this hypothesis 

we cultured sorted Tc17 cells with specific cytokines and TCR stimulation and stained 

for T-bet, RORγT and eomes.   
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RESULTS 

Tc17 Post-Sort Purity 

In order to perform these studies, we chose to start with an absolutely pure IL-17+IFN-γ- 

population of cells.  In order to test this we sorted the in vitro generated Tc17 cells using 

a cytokine capture assay, where the cells are not permeabilized and can be used for 

further studies (Figure 4-1).  We determined Tc17 cells can be sorted to a >98% pure IL-

17+IFN-γ- population. 

 IL-2, IL-7 and IL-12 Determine Tc17 Conversion in vitro 

Based on the data in Figures 3-2 and 3-3, we hypothesized common gamma chain 

cytokines would play a critical role in Tc17 plasticity.  To test this hypothesis, sorted 

Tc17 cells were cultured in specific cytokines in the absence of TCR stimulation.  We 

found IL-2 and IL-7 but not IL-15 drove pure Tc17 cells to produce IFN-γ.  This result 

was obtained in the absence of any further TCR stimulation.  In addition, IL-12 by itself 

drove Tc17 plasticity (Figure 4-2).   

Conversion does not Dictate Receptor Expression 

We sought to determine the expression of gamma chain receptors of cultured Tc17 cells.  

In order to do this, we cultured sorted Tc17 cells with specific cytokines without TCR 

stimulation.  Tc17 cells cultured with IL-15 were in a more quiescent state, and lost the 

expression of the high affinity IL-2 receptor.  In the presence of IL-2, Tc17 cells 

maintained CD25 expression and had a significant increase in CD127 expression as 

compared to sorted Tc17 cells.  In contrast, IL-7, IL-12 and IL-15 all led to a significant 



35 
 

decrease in CD25 expression.  Tc17 cells cultured in the presence of IL-7 caused a 

significant decrease of CD127 as compared to sorted Tc17 cells, suggesting a more 

terminal effector state (Figure 4-3)  

Conversion is Associated with T-bet Expression 

Next we determined the transcription factor expression of the cultured Tc17 cells.  In 

order to do this we cultured sorted Tc17 cells without TCR stimulation in the presence of 

specific cytokines.  In the presence of IL-2 or IL-7, even though the cells secreted IFN-γ,  

RORγT expression did not change.  Oppositely, Tc17 cells cultured with IL-12 had 

decreased RORγT expression.  Eomes was not affected by conversion.   Most 

interestingly, conversion was associated with increased T-bet expression, which is a 

major transcription factor for IFN-γ (Figure 4-4). 

TCR Stimulation Determines Tc17 Cell Conversion in vitro 

In order to further understand the requirements for plasticity in vitro, we sought to 

combine TCR stimulation with specific cytokines.  In order to do this, we again chose to 

start with an absolutely pure IL-17+IFN-γ- population of cells (>98% pure).  Sorted Tc17 

cells were cultured in the presence of plate bound CD3 and soluble CD28 in combination 

with or without only those cytokines we know to drive conversion.  In the presence of 

TCR stimulation alone, Tc17 cells secreted very little IFN-γ.  However, the addition of 

IL-2, IL-7 or IL-12 drove Tc17 cells to produce IFN-γ.  The effect was only minimally 

synergistic and, similar to results we showed in Figure 4-2, IL-12 had the biggest effect 

on Tc17 conversion (Figure 4-5). 
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Conversion with TCR Stimulation does not Dictate Receptor Expression 

Next we examined the role of TCR stimulation and cytokine addition on the expression 

of common gamma chain receptors.   In order to do this we cultured sorted Tc17 cells 

with CD3 and CD28 in combination with specific cytokines.  Compared to sorted Tc17 

cells, Tc17 cells cultured with TCR stimulation alone or in combination with IL-12 had 

decreased CD25 and CD122, but increased CD127 expression.  Contrarily, addition of 

IL-2 with TCR stimulation did not significantly change any of the receptors.  Similar to 

results seen in Figure 4-3, TCR stimulation in the presence of IL-7 led to decreased 

CD127 expression (Figure 4-6).   

Conversion with TCR Stimulation is Associated with T-bet Expression 

We next investigated the transcription factor expression in these TCR stimulated cells.  In 

order to do this we cultured sorted Tc17 cells with CD3 and CD28 in combination with 

specific cytokines.    TCR stimulation alone increased T-bet expression of Tc17 cells, as 

well as, TCR stimulation in combination with IL-2, IL-7 and IL-12.  Tc17 cells cultured 

in presence of IL-12 and TCR stimulation had decreased RORγT expression  similar to 

results shown in Figure 4-4.  Additionally, there was no effect on eomes during 

conversion (Figure 4-7).   
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SUMMARY 

The cytokine capture assay is a valuable tool to purify IL-17+IFN-γ- Tc17 cells 

for further investigation in vitro.  Sorted Tc17 cells cultured in the presence of IL-2, IL-7 

or IL-12 produced IFN-γ.  IL-12 being the most potent driver of conversion, with the 

greatest percentage of an IFN-γ single positive population.  From Chapter 3, we know 

Tc17 cells expressed CD25, CD127 and the IL-12 receptor.  This expression was 

important for Tc17 cell conversion in vitro.  In addition, skewed Tc17 cells had decreased 

expression of the IL-15 receptor, predicting IL-15 would not be important for Tc17 

conversion.  Finally, TCR stimulation was minimally important for Tc17 conversion.  

This suggests the functional plasticity of Tc17 was driven by cytokines and the 

equivalent cytokine receptor expression of these cells.   

Sorted Tc17 cells stimulated with TCR alone or TCR with IL-12 had decreased 

CD25 and CD122 expression compared to sorted Tc17, but increased CD127 expression.  

This suggests a Tc17 cells stimulated with TCR have a long lived memory phenotype. In 

the presence of IL-2, Tc17 cells maintained CD25 expression but had increased CD127 

expression.  This was in comparison to sorted Tc17 cells, suggesting a maintained 

activated state, with potential for long lived memory.  Contrarily, addition of IL-2 with 

TCR stimulation did not significantly change any of the receptors, suggesting a continued 

activated state or terminal effector differentiation.   We found IL-7 with or without TCR 

stimulation decreased CD127 expression, suggesting a more terminal effector 

phenotype10, 18.   
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Tc17 cells expressed T-bet during conversion, which was seen most prominently 

in the presence of IL-12.  Interestingly, Tc17 cells lost RORγT expression when cultured 

with IL-12.  Conversely, Tc17 cells cultured with IL-2 and IL-7 did not lose RORγT 

expression.  This suggests IL-12 is the only cytokine able to affect transcription factor 

plasticity of Tc17 cells.  All of these data suggest the mechanism of conversion could be 

potentiated through T-bet expression. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



39 
 

Figure 4-1: Tc17 Sorting 

 

 

 

 

 

 

 

 

 

 

 

After in vitro polarization and re-stimulation with PMA and ionomycin for 2 
hours, IL-17 or IFN-γ-secreting CD8+ T cells were stained with bi-specific 
CD45/cytokine mAbs and then sorted to >97% purity.  7-AAD was utilized to 
exclude dead cells and CD8+ T cells were sorted on IL-17+IFN-γ- cells.   
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Figure 4-2: In vitro Conversion with Specific Cytokines 

 

 

 

 

 

Tc17 cells were sorted on day 5 and then cultured with mIL-2, mIL-7, mIL-
12, or mIL-15 for 4 days.  For analysis of cytokine production, cells were 
stimulated with PMA and ionomycin.  Protein transport inhibitor cocktail 
was added during stimulation.  Cytokine staining was analyzed using 
intracellular staining and flow cytometry           
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Figure 4-3: Receptor Profile of Cultured Tc17 Cells 

 

 

 

         

Tc17 cells were sorted on day 5 and then cultured with mIL-2, mIL-7, mIL-12, or 
mIL-15 for 4 days.  Receptors were analyzed using extracellular staining and flow 
cytometry.  The values represent the means +/- SEM (n=2). *p<0.05           
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Figure 4-4: Transcription Factor Profile of Cultured Tc17 cells 

 

 

 

 

 

 

 

 

 

 

Tc17 cells were sorted on day 5 and then cultured with mIL-2, mIL-7, mIL-12, or 
mIL-15 for 4 days.  For analysis of transcription factors, cells were stimulated with 
PMA and ionomycin.  Protein transport inhibitor cocktail was added during 
stimulation.  Transcription factor staining was analyzed using intracellular staining 
and flow cytometry.   
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Figure 4-5: In Vitro Conversion with TCR Stimulation 

 

 

 

 

 

 

Tc17 cells were sorted on day 5 and then cultured on anti-CD3 coated plates with 
soluble anti-CD28 in the presence of mIL-2, mIL-7, mIL-12, or mIL-15 for 4 
days.  For analysis of cytokine production, cells were stimulated with PMA and 
ionomycin.  Protein transport inhibitor cocktail was added during stimulation.  
Cytokine staining was analyzed using intracellular staining and flow cytometry.          
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Figure 4-6: Receptor Profile of TCR Stimulated Tc17 Cells 

 

 

 

 

 

 

 

 

Tc17 cells were sorted on day 5 and then cultured on anti-CD3 coated plates with 
soluble anti-CD28 in the presence of mIL-2, mIL-7, mIL-12, or mIL-15 for 4 days.  
Receptors were analyzed using extracellular staining and flow cytometry.  The 
values represent the means +/- SEM (n=2). *p<0.05, **p<.01   
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Figure 4-7: Transcription Factor Profile of TCR Stimulated Tc17 Cells 

 

 

 

 

 

 

 

 

Tc17 cells were sorted on day 5 and then cultured on plate bound anti-CD3 with 
soluble anti-CD28 in the presence of mIL-2, mIL-7, mIL-12, or mIL-15 for 4 days.  
For analysis of transcription factors, cells were stimulated with PMA and ionomycin.  
Protein transport inhibitor cocktail was added during stimulation.  Transcription 
factor staining was analyzed using intracellular staining and flow cytometry.   
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CHAPTER 5 

TC17 PLASTICITY IN VIVO 
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INTRODUCTION 

In this chapter we examined Tc17 plasticity in vivo.  In Chapter 4, we 

demonstrated sorted Tc17 cells cultured with IL-15 did not convert in vitro.  We sought 

to look at the stability of these cells in vivo.  We hypothesized Tc17 cells would retain IL-

17 production and not produce IFN-γ in the absence of any stimulation.  To test this 

hypothesis we adoptively transferred Tc17 cells into mice in the absence of cytokine or 

antigen stimulation.  Adoptively transferred Tc17 cells switch from IL-17 to IFN-γ 

secretion in the presence of VV-OVA64.  We next sought to verify whether inflammation 

triggers the conversion of Tc17 cells64. In Chapter 4, we showed sorted Tc17 cells 

cultured with the pro-inflammatory cytokines IL-2 or IL-12 converted in vitro.  We 

hypothesized inflammation would drive conversion to IFN-γ secretion in vivo.   

Tc17 plasticity also occurs in mouse self-antigen models.  Normally when a 

CD8+ T cell encounters a self antigen without inflammation it is tolerized and loses its 

ability to produce cytokines79.  In a diabetes model where self antigen is expressed on 

pancreatic islet cells, one group showed Tc17 cells co-transferred with Th1 cells did not 

lose cytokine production.  Conversely, the Tc17 cells started to produce IFN-γ65.  We 

showed antigen-specific Tc17 cells adoptively transferred into mice expressing self-

antigen in the lung switched to an IFN-γ secreting phenotype33.  The role of self antigen 

recognition on Tc17 conversion remains unclear33, 37, 65.  We hypothesized Tc17 cells 

exposed to self antigen in the absence of inflammation would convert to IFN-γ secretion   

To test this hypothesis we adoptively transferred Tc17 cells into OVA-transgenic mice 
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that express OVA antigen throughout the entire body.  After adoptive transfer into these 

specific microenvironments, we stained for cytokine expression.  

Based on the data from Chapter 4, we found IL-7 drove Tc17 cells to secrete IFN-

γ in vitro.  Therefore, we hypothesized Tc17 cells would convert in a V(D)J 

recombination activation gene (RAG-1) KO mouse.  RAG KO mice lack any adaptive 

immune system, and have an abundance of IL-7 and IL-15.  As mentioned in Chapter 1, 

adoptively transferred cells undergo homeostatic proliferation in this type of 

microenvironment80.  To test this hypothesis we adoptively transferred Tc17 cells into 

RAG KO mice, and looked at the cytokine expression after adoptive transfer.  

The nature of the receptors expressed by Tc17 cells after adoptive transfer is 

expected to influence their in vivo conversion to IFN-γ secreting cells.  Tc17 cells can 

exhibit a memory precursor phenotype, and maintain high percentages of CD127hiKLRG-

1low populations after anti-tumor responses48, 49.  Many of the common gamma chain 

cytokine receptors have never been studied on adoptively transferred Tc17 cells. In 

Chapter 4 we showed Tc17 cells that did not convert lost CD25 expression and had 

increased CD127 expression.  We hypothesized Tc17 cells adoptively transferred into 

mice without stimulation would also lose CD25 expression.  In Chapter 4, we 

demonstrated Tc17 cells expressed CD25 in the presence of both IL-2 and IL-2 with TCR 

stimulation.  We hypothesized the high affinity IL-2 receptor complex would be 

associated with conversion in the presence of inflammation (VV-OVA).  We found Tc17 

cells lost CD127 expression in the presence of IL-7 in Chapter 4.  We hypothesized Tc17 

cells would lose CD127 expression in RAG KO mice.  To investigate these questions we 

adoptively transferred Tc17 cells into mice without stimulation, mice infected with VV-



49 
 

OVA, RAG KO mice and CAG-OVA mice.  We stained CD25, CD122 and CD127 after 

adoptive transfer.   

The transcription factor expression of Tc17 cells is well established, but not the 

expression after adoptive transfer33, 63.  In Chapter 4, we showed Tc17 cells express T-bet 

upon conversion in vitro.  In addition, Tc17 cells lost RORγT in the presence of IL-12 but 

not under any other conditions.  We hypothesized Tc17 cells adoptively transferred in the 

absence of stimulation would maintain the same transcription factor expression as before 

transfer.  We also hypothesized Tc17 cells adoptively transferred in the presence of 

inflammation or in self-antigen would express T-bet and lose RORγT expression. 

Additionally, we predicted Tc17 cells adoptively transferred into RAG KO mice would 

express T-bet but not lose RORγT expression.  In order to test these hypotheses we 

adoptively transferred Tc17 cells into mice without stimulation, mice infected with VV-

OVA, RAG KO mice and CAG-OVA mice.  We stained T-bet, eomes and RORγT after 

adoptive transfer.   

Cytotoxicity is an important characteristic of a CTL.  Tc17 cells converted in the 

presence of vaccinia acquire cytotoxic potential.  This was shown by sorting Tc17 cells 

directly ex vivo and performing an in vitro killing assay64.  Another group showed Tc17 

cells converted in vitro with IL-12 were more cytotoxic than the non-converted 

counterparts38.  In Chapter 3, we showed Tc17 cells killed significantly less than Tc1 

cells in vivo.  We hypothesized Tc17 cells adoptively transferred into VV-OVA mice 

would be cytotoxic in an in vivo killing assay, but less so than Tc1 cells.  To test this 
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hypothesis we used an in vivo killing assay to compare Tc17 cells to not only Tc1 cells 

but also naïve cells adoptively transferred into mice infected with VV-OVA64.        
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RESULTS 

Inflammation Determines Tc17 Conversion in vivo 

In Chapters 3 and 4 we showed IL-2 and IL-12 drove conversion of Tc17 cells in vitro, so 

decided to look at conversion in an inflammatory microenvironment. We used the pro-

inflammatory pathogen VV-OVA.  We found after adoptive transfer into mice infected 

with VV-OVA, Tc17 cells switched from IL-17 to IFN-γ secretion.  We observed this 

conversion in all organs of the mouse, the strongest conversion being in the liver.  In 

contrast, we also adoptively transferred Tc17 cells into mice without cytokine or TCR 

stimulation.  We found Tc17 cells maintain IL-17 secretion in this microenvironment 

(Figure 5-1).  The conversion in mice infected with VV-OVA was observed whether or 

not the cells were sorted to >98% purity.  This would suggest the IFN-γ population does 

not expand from the existing population but from the IL-17 population.   We used un-

sorted cells in all further in vivo experiments (Figure 5-2).   

Neither Homeostatic Proliferation Conditions nor Self-Antigen Determine 

Conversion in vivo 

We next sought to understand the role of other in vivo microenvironments on Tc17 

plasticity.  The data in Chapter 3 suggested a role for IL-7 in conversion, so we examined 

the conversion of Tc17 cells in homeostatic proliferation conditions.  When adoptively 

transferred into RAG KO mice, homeostatic proliferation did not drive Tc17 cells toward 

IFN-γ secretion.  Interestingly, the spleen and liver appeared to be the best 

microenvironments to maintain IL-17 secretion in a RAG KO host.  We also examined 

conversion of Tc17 cells adoptively transferred into mACT-OVA (CAG-OVA), which 
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express OVA ubiquitously throughout the mouse.  We found Tc17 cells do not convert, 

but begin to lose IL-17 secretion in all organs in the presence of self-antigen (Figure 5-3).  

Host Microenvironment Affects Receptor Expression in vivo 

In order to understand the mechanism of conversion, we examined the expression of 

common gamma chain cytokine receptors on adoptively transferred Tc17 cells in vivo.  In 

order to do this we adoptively transferred Tc17 cells into mice without antigen, mice 

infected with VV-OVA, RAG KO mice and CAG-OVA mice.  We stained receptors on 

adoptively transferred Tc17 cells from the spleen.  Compared to Tc17 cells from VV-

OVA infected mice, cells without any antigen stimulation have decreased CD122 

expression and increased CD127 expression.  Conversely, even though homeostatic 

proliferation did not impact Tc17 plasticity, it did affect receptor expression.  Tc17 cells 

transferred into Rag KO mice had an increase in CD25 and CD122 expression, but lower 

CD127 expression compared to converted Tc17 cells.  In a tolerogenic environment, 

Tc17 cells had decreased CD127 and CD122 expression (Figure 5-4 and 5-5).  In 

addition, we sought to understand the memory phenotype of these adoptively transferred 

cells.  We found Tc17 cells adoptively transferred into RAG KO mice were 

CD127highKLRG-1high, whereas self-antigen led to an early effector phenotype or a 

CD127lowKLRG-1low population.  With or without antigen stimulation, Tc17 cells 

maintained a memory precursor phenotype (Figure 5-5). 

Converted Tc17 Cells Express T-bet and lose RORγT in vivo 

In order to further understand the mechanism of conversion, we examined the expression 

of transcription factors of Tc17 cells after adoptive transfer.  In order to do this we 
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adoptively transferred Tc17 cells into mice without antigen, mice infected with VV-

OVA, RAG KO mice and CAG-OVA mice.  We determined Tc17 cells adoptively 

transferred into mice without any stimulation did not express T-bet or eomes, and 

maintained expression of RORγT.  Similar to the cytokine profile, Tc17 cells lost 

expression of all transcription factors in the presence of self-antigen.  In a homeostatic 

proliferation environment, Tc17 cells had increased T-bet expression, which was not 

mirrored by IFN-γ secretion.  Interestingly, converted Tc17 cells had increased T-bet 

expression and lost RORγT expression, a result corroborated by our previous in vitro data 

(Figure 5-6).   

Converted Tc17 Cells can Lyse Targets as Effectively as Tc1 Cells 

We next sought to understand the Tc17 function upon conversion.  In order to do this, we 

performed an in vivo killing assay.  We adoptively transferred naïve CD8+ T cells into 

mice without VV-OVA as a negative control and mice infected with VV-OVA as a 

positive control.  We also adoptively transferred Tc1 and Tc17 cells into mice infected 

with VV-OVA.  We found smaller numbers of Tc17 cells (1x104) had significantly lower 

specific lysis than transferring larger numbers of Tc17 cells (2x105).  This was compared 

to naïve CD8+ T cells activated in mice infected with VV-OVA.  Tc17 cells, even upon 

conversion, were significantly less efficient at killing as naïve CD8+ T cells.  

Intriguingly, Tc1 cells are not significantly better at killing than converted Tc17 cells 

(Figure 5-7). 
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  SUMMARY 

Tc17 plasticity occurred in mice infected with VV-OVA in vivo.  Unexpectedly, 

Tc17 cells did not convert under homeostatic proliferation.  This suggests the role of 

antigen stimulation in combination with a specific cytokine milieu is important to 

promote conversion in vivo.  Tc17 cells did not convert, but began to lose IL-17 secretion 

in all organs in the presence of self-antigen, suggesting Tc17 cells can be tolerized.   

Compared to converted Tc17 cells, cells without any antigen stimulation have 

decreased CD122 expression and increased CD127 expression, suggesting a long-term 

memory phenotype.  Tc17 cells transferred into Rag KO mice have increased expression 

of CD25 and CD122, but decreased expression of CD127, suggesting they were 

terminally differentiated state.  In a tolerogenic environment, Tc17 cells lost both CD127 

and CD122 expression, suggesting a terminal effector state. Tc17 cells maintained 

CD127 expression and did not readily express KLRG-1, suggesting a more memory 

precursor phenotype even during a VV-OVA infection.   

We found Tc17 cells adoptively transferred into mice infected with VV-OVA 

expressed T-bet and lost RORγT.  This was similar to observations made in Chapter 4, 

again suggesting the mechanism of conversion could be potentiated through T-bet 

expression.  In a homeostatic proliferation environment, Tc17 cells had a slight increase 

in T-bet expression, suggesting a minor acquisition of an effector phenotype.  Tc17 cells 

adoptively transferred into self antigen bearing mice did not express any of the 

transcription factors, suggesting a tolerized state.   
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Tc17 cells acquired killing abilities upon conversion, suggesting conversion 

controls Tc17 effector function.  Although there was a significant difference between 

Tc17 cells and naive CD8+ T cells adoptively transferred into mice infected with VV-

OVA.  This suggests Tc17 cells are not efficient killers even upon conversion compared 

to newly activated CD8+ T cell.  Converted Tc17 cells were not significantly different 

than Tc1 cells.   
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Figure 5-1: Adoptive Transfer with or without VV-OVA 

 

 

 

1-2x106 in vitro generated Tc17 cells were adoptively transferred into 
CD45.1+ recipients with or without VV-OVA. 5 days later, respectively, 
organs were harvested.  For analysis of cytokine production, cells were 
stimulated with OVA peptide.  Protein transport inhibitor cocktail was 
added during stimulation.  Cytokine staining was analyzed using 
intracellular staining and flow cytometry.     
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Figure 5-2: Adoptive Transfer of Sorted Cells with VV-OVA 

 

 

 

 

 

 

 

 

In vitro generated Tc17 cells were sorted and 2x105 cells were adoptively 
transferred into CD45.1+ recipients with VV-OVA. 7 days later organs were 
harvested.  For analysis of cytokine production, cells were stimulated with 
OVA peptide.  Protein transport inhibitor cocktail was added during 
stimulation.  Cytokine staining was analyzed using intracellular staining and 
flow cytometry.     
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Figure 5-3: Adoptive Transfer into RAG KO and CAG-OVA Mice 

 

 

 

 

 

1-2x106 in vitro generated Tc17 cells were adoptively transferred into CAG-
OVA or RAG-KO recipients. 3 or 7 days later, respectively, organs were 
harvested.  For analysis of cytokine production, cells were stimulated with 
OVA peptide.  Protein transport inhibitor cocktail was added during 
stimulation.  Cytokine staining was analyzed using intracellular staining and 
flow cytometry.     
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Figure 5-4:  Receptor Profile of Adoptively Transferred Tc17 Cells 

 

 

 

1-2x106 in vitro generated Tc17 cells were adoptively transferred into CAG-OVA, 
RAG KO or CD45.1+ recipients. 3 or 7 days later, respectively, organs were 
harvested.  Receptors were analyzed using extracellular staining and flow cytometry. 
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Figure 5-5: Relative MFI Differences of Receptors and Memory Phenotype of 

Adoptively Transferred Cells  

 

 

 

 

 

 

 

1-2x106 in vitro generated Tc17 cells were adoptively transferred into CAG-
OVA, RAG KO or CD45.1+ recipients. 3 or 7 days later, respectively, organs 
were harvested.  Receptors were analyzed using extracellular staining and flow 
cytometry.  The values represent the means +/- SEM (n=4).  *p<0.05, **p<.01, 
***p<.001             
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Figure 5-6: Transcription Factor Profile of Adoptively Transferred Tc17 Cells  

 

 

 

 

 

 

 

1-2x106 in vitro generated Tc17 cells were adoptively transferred into CAG-OVA, 
RAG-KO or CD45.1+ recipients. 3 or 7 days later, respectively, organs were 
harvested.  For analysis of transcription factors, cells were stimulated with OVA 
peptide.  Protein transport inhibitor cocktail was added during stimulation.  
Transcription factor staining was analyzed using intracellular staining and flow 
cytometry.   
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Figure 5-7: In Vivo CTL Assay of Converted Tc17 Cells 

 

 

 

 

 

 

 

 

 

 

1x104 or 2x105 naïve CD8+ T cells were injected into CD45.1+ recipients 
with or without VV-OVA. In addition, 1 x 104 or 2 x 105 in vitro generated 
Tc1 and Tc17 cells were prepared and injected into CD45.1+ recipients with 
VV-OVA.  Five days after Tc cell injection, recipient mice were injected 
with 5.5 x 106 OVA-pulsed splenic cells stained with 5 uM CFSE, and 4.5 x 
106 non-pulsed splenic cells stained with 0.5 uM CFSE.  Eighteen hours later, 
spleen cells were harvested and ratio of live CFSEhi to CFSElo cells was 
determined using flow cytometry.  The values represent the means +/- SEM 
(n=4-8).  *p<0.05, ***p<.001               
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CHAPTER 6 

REQUIREMENTS FOR TC17 CONVERSION IN VIVO 
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INTRODUCTION 

 The requirements for T cell conversion in vivo have not been studied extensively.  As 

mentioned in Chapter 4, IL-12 can be a potent driver of both Th17 and Tc17 conversion 

in vitro38, 64, 77.  IL-12 is an important pro-inflammatory cytokine produced mainly by 

phagocytic cells such as macrophages and neutrophils.  The IL-12 receptor is composed 

of two different subunits, IL-12Rβ1 and IL-12Rβ2.  The IL-23 receptor shares the IL-

12Rβ1 subunit with the IL-12 receptor.  IL-12 is important during an infection, because it 

causes natural killer cells and T cells to secrete IFN-γ.  IL-12 is required for resistance to 

some bacteria and parasitic infections81.  Conversely, IL-12 is not required during some 

Th1 responses82.  In Chapter 4, we demonstrated IL-2 drove conversion of Tc17 cells in 

vitro.  We discussed in Chapter 1 the importance of IL-2 during CD8+ T cell activation. 

Autocrine IL-2 is required for an effective CD8+ memory response to infection83.   

 In this chapter, we sought to understand the requirements for Tc17 conversion from 

IL-17 to IFN-γ secretion in vivo.  In Chapter 4, we demonstrated IL-2 drove Tc17 

conversion in vitro.  We hypothesized autocrine or exocrine IL-2 would be required for 

conversion to an IFN-γ secreting phenotype in vivo.  In order to test the requirement for 

exocrine IL-2 during conversion, Tc17 cells were adoptively transferred into IL-2 KO 

mice infected with VV-OVA.  In order to test the requirement for autocrine IL-2 during 

conversion, we adoptively transferred IL-2 KO Tc17 cells into mice infected with VV-

OVA.  Finally, we adoptively transferred IL-2 KO Tc17 cells into IL-2 KO mice to 

understand conversion in the complete absence of IL-2.  We looked at cytokine 

expression after adoptive transfer.  
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 In Chapter 4, we demonstrated IL-12 drove Tc17 conversion in vitro.  We 

hypothesized that similar to IL-2, Tc17 cells would not convert in the absence of IL-12.  

In order to test this hypothesis we adoptively transferred IL-12Rβ1 KO CD8+ T cells into 

mice infected with VV-OVA, and looked at cytokine expression after adoptive transfer.   

  We also wanted to look at the transcription factor expression in the absence of IL-2 

or IL-12.  In Chapter 3, we showed sorted Tc17 cells cultured with IL-2 or IL-12 

expressed T-bet.  In Chapter 4, we showed adoptively transferred Tc17 cells expressed T-

bet upon conversion in vivo.  We hypothesized if IL-2 or IL-12 increases T-bet 

expression, Tc17 cells adoptively transferred into mice infected with VV-OVA in the 

absence of IL-2 or IL-12 would not be able to express T-bet.  We also hypothesized Tc17 

cells would maintain RORγT expression in the absence of IL-2 or IL-12. Essentially, 

without IL-2 or the IL-12 receptor, Tc17 cells transferred into VV-OVA infected mice 

would act similarly to transfer into mice without stimulation.  In order to test these 

hypotheses, we adoptively transferred IL-2 KO Tc17 cells into IL-2 competent or IL-2 

KO mice infected with VV-OVA, and stained for T-bet, RORγT and eomes. We also 

adoptively transferred IL-12Rβ1 KO CD8+ T cells into mice infected with VV-OVA and 

stained for T-bet, RORγT and eomes.  

 Finally, we were interested to know if the absence of either IL-2 or IL-12 would 

change the expression of common gamma chain receptors.  In Chapter 4, we showed 

sorted Tc17 cells cultured with IL-2 expressed similar levels of CD25 and CD127 

compared to sorted Tc17 cells.  Conversely, we showed sorted Tc17 cells cultured with 

IL-12 expressed less CD25 and more CD127 compared to sorted Tc17 cells.  We 
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hypothesized in the absence of either IL-2 or IL-12, adoptively transferred Tc17 cells in 

mice with VV-OVA infection would act similarly to transfer into mice without infection.  

Without IL-2 or the IL-12 receptor, they would not convert and therefore would express 

more CD127 and less CD122 than IL-2 or IL-12 competent Tc17 cells.  In order to test 

this hypothesis, we adoptively transferred IL-2 KO Tc17 cells into IL-2 competent or IL-

2 KO mice infected with VV-OVA.  We also adoptively transferred IL-12Rβ1 KO CD8+ 

T cells into mice infected with VV-OVA.  We stained CD25, CD122 and CD127 after 

adoptive transfer.     
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RESULTS 

Exocrine IL-2 is not required for Tc17 Conversion in vivo 

To understand the requirement of exocrine IL-2 in Tc17 conversion, we crossed IL-2 KO 

mice onto the RAG KO background.  Next, we adoptively transferred IL-2 WT Tc17 

cells into IL-2 KO/RAG KO recipients into mice infected with VV-OVA.  We harvested 

splenocytes from the IL-2KO/RAG KO mice and found Tc17 cells adoptively transferred 

in the absence of IL-2 lost IL-17 production and secreted IFN-γ, although not as strongly 

as seen in IL-2 competent hosts.  This showed exocrine IL-2 is not required for 

conversion in vivo (Figure 6-1).   

Role of Exocrine IL-2 on Tc17 Cell Transcription Factor Expression in vivo 

We next hypothesized if Tc17 cells converted without exogenous IL-2, the transcription 

factor profile would be similar to Tc17 cells converted with exogenous IL-2.  To test this 

hypothesis we adoptively transferred IL-2 WT Tc17 cells into IL-2 KO/RAG KO 

recipients infected with VV-OVA.  We found IL-2 WT Tc17 cells adoptively transferred 

into IL-2 KO recipients have increased T-bet expression and decreased RORγT 

expression.  This was similar to adoptive transfer of Tc17 cells into IL-2 competent 

recipients.  Tc17 cells adoptively transferred into mice without exogenous IL-2 express 

more eomes compared to adoptive transfer into mice with exogenous IL-2.  The 

difference in eomes expression did not impact IL-17 or IFN-γ production, suggesting 

eomes is not as important for Tc17 plasticity (Figure 6-2).   
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Autocrine IL-2 is not required for Tc17 Conversion in vivo 

Next we sought to examine the requirement of autocrine IL-2 for Tc17 conversion in 

vivo.  To test this we crossed IL-2 KO mice onto the OT-1/RAG KO background.  We 

tested the ability of IL-2 KO OT-1 CD8+ T cells to be skewed under IL-17 polarizing 

conditions.  We found IL-2 KO CD8+ T cells robustly skewed to an IL-17 secreting 

phenotype.  IL-2 KO Tc17 cells actually express less IFN-γ than the IL-2 competent 

counterpart (Figure 5C).  We then adoptively transferred IL-2 KO Tc17 cells into mice 

infected with  VV-OVA.  IL-2 KO Tc17 cells converted, losing IL-17 expression and 

secreting IFN-γ.  This was similar to adoptive transfer of IL-2 competent Tc17 cells.  We 

then adoptively transferred IL-2 KO Tc17 cells into IL-2 KO recipients infected with 

VV-OVA.  We found Tc17 cells adoptively transferred in the absence of both autocrine 

and exocrine IL-2 did not convert as well as Tc17 cells in the presence of IL-2.  These 

cells had decreased IL-17, but lacked equivalent IFN-γ production compared to adoptive 

transfer into IL-2 competent recipients (Figure 6-3).   

Role of Autocrine IL-2 on Tc17 Cell Transcription Factor Expression 

We then investigated the role of autocrine IL-2 on the expression of transcription factors 

and hypothesized if Tc17 cells converted without autocrine IL-2, the transcription factor 

profile would be similar to Tc17 cells converted with autocrine IL-2.  To assess this 

hypothesis we adoptively transferred IL-2 KO Tc17 cells into mice with VV-OVA 

infection. Similar to IL-2 competent Tc17 cells, IL-2 KO Tc17 cells adoptively 

transferred into an IL-2 competent host had increased T-bet expression and decreased 

RORγT expression.  IL-2 KO Tc17 cells expressed more eomes than IL-2 WT cells, but 
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that did not impact IL-17 or IFN-γ expression.  We sought to determine the transcription 

factor expression in the absolute absence of IL-2.  To do this we adoptively transferred 

IL-2 KO Tc17 cells into IL-2 KO recipients.  IL-2 KO Tc17 cells adoptively transferred 

into an IL-2 KO host expressed less T-bet and more RORγT than IL-2 KO Tc17 cells 

transferred into an IL-2 competent host.  IL-2 KO Tc17 cells transferred into an IL-2 KO 

host expressed much high percentages of eomes than those transferred in the presence of 

IL-2, suggesting a role for IL-2 signaling in eomes expression (Figure 6-2 and 6-4). 

Role of IL-2 on Tc17 Cell Receptor Expression 

We next wanted to understand the expression of common gamma chain receptors in the 

absence of IL-2.  We found all of the adoptively transferred Tc17 groups had 

significantly less CD122 and CD127.  WT or IL-2 KO Tc17 cells adoptively transferred 

into IL-2 KO hosts had significantly more CD25 expression.  IL-2 KO Tc17 cells 

adoptively transferred into IL-2 competent hosts had a higher percentage of SLECs 

(Figure 6-5).   

 IL-12 Receptor Signaling is not required for Tc17 Conversion in vivo  

In Chapter 4 we demonstrated IL-12 drove Tc17 conversion in vitro.  Therefore, we 

hypothesized IL-12 signaling would be a requirement for conversion in vivo.  In order to 

test this hypothesis we skewed OT-1/IL-12Rβ1 KO cells under IL-17 polarizing 

conditions.  We found IL-12Rβ1 KO cells skewed to a >80% IL-17+IFN-γ- cell 

population.  We next adoptively transferred IL-12Rβ1 KO Tc17 cells into mice infected 

with VV-OVA.  We found the IL-12Rβ1 was not required for Tc17 conversion in vivo. 
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IL-12Rβ1 KO Tc17 cells lost IL-17 secretion and started secreting IFN-γ as robustly as 

cells that could signal through the IL-12 receptor (Figure 6-6). 

Role of the IL-12 Receptor on Tc17 Cell Transcription Factor Expression in vivo 

To determine if there were any differences between the transcription factor profile of WT 

Tc17 cells and IL-12 receptor KO Tc17 cells adoptively transferred into virally infected 

mice, we adoptively transferred IL-12Rβ1 KO Tc17 cells into mice infected with VV-

OVA.  Similar to IL-12Rβ1 competent Tc17 cells, IL-12Rβ1 KO Tc17 cells had 

increased T-bet expression and decreased RORγT expression.  Similar to IL-2 KO Tc17 

cells, IL-12Rβ1 KO Tc17 cells expressed more eomes than the WT counterpart (Figure 

6-2 and 6-7).     

Role of the IL-12 Receptor on Tc17 Cell Receptor Expression 

To investigate the gamma chain receptor expression of IL-12 receptor KO Tc17 cells 

upon conversion, we adoptively transferred IL-12Rβ1 KO cells into VV-OVA infected 

mice.  In the absence of IL-12Rβ1, Tc17 cells adoptively transferred into infected mice 

had significantly less CD25 and CD127.  CD122 expression was not significantly 

different between WT and KO IL-12Rβ1 Tc17 cells. IL-12Rβ1 KO Tc17 cells had a 

higher percentage of SLEC’s, suggesting a more effector phenotype (Figure 6-8) 
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SUMMARY 

Neither IL-2 or IL-12 were required to switch Tc17 cells from IL-17 to IFN-γ 

secretion in vivo. In the absence of IL-2, Tc17 cells had significantly less CD122 and 

CD127, suggesting a more short-term effector phenotype.  Furthermore, in the absence of 

IL-12, Tc17 cells expressed higher CD25 and lower CD127, suggesting a more short-

term effector phenotype.  This was not reflected by a dramatic increase in SLECs, so the 

role of gamma chain receptors during conversion is still unclear.   

In the absence of autocrine or exocrine IL-2, Tc17 cells expressed T-bet and lost 

RORγT expression.  Conversely, in the complete absence of IL-2, Tc17 cells expressed 

less IFN-γ and T-bet.  This suggests IL-2 is sufficient and important for Tc17 plasticity, 

but not absolutely required.  In the absence of the IL-12 receptor, Tc17 cells expressed T-

bet and lost RORγT expression.  Similar to IL-2, while IL-12 was sufficient to drive 

conversion in vitro, it is not required in vivo.    
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Figure 6-1: Role of Exocrine IL-2 in Tc17 Conversion (Cytokine Profile) 

 

 

 

 

 

 

 

 

1x106 in vitro generated IL-2 WT Tc17 cells were adoptively transferred into 
CD45.1+ or IL-2 KO/RAG KO recipients with VV-OVA. 7 days later organs 
were harvested.  For analysis of cytokine production, cells were stimulated 
with OVA peptide.  Protein transport inhibitor cocktail was added during 
stimulation.  Cytokine staining was analyzed using intracellular staining and 
flow cytometry.     
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Figure 6-2: Role of Exocrine IL-2 in Tc17 Conversion (Transcription Factor Profile) 

 

 

 

 

1x106 in vitro generated IL-2 WT Tc17 cells were adoptively transferred into 
CD45.1+ or IL-2 KO/RAG KO recipients with VV-OVA. 7 days later organs were 
harvested.  For analysis of transcription factors, cells were stimulated with OVA 
peptide.  Protein transport inhibitor cocktail was added during stimulation.  
Transcription factor staining was analyzed using intracellular staining and flow 
cytometry.     
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Figure 6-3: Role of Autocrine IL-2 in Tc17 Conversion (Cytokine Profile)  

 

 

 

 

 

 

 

 

1x106 in vitro generated IL-2 KO Tc17 cells were adoptively transferred into 
CD45.1+ or IL-2 KO/RAG KO recipients with VV-OVA. 7 days later organs 
were harvested.  For analysis of cytokines, cells were stimulated with OVA 
peptide.  Protein transport inhibitor cocktail was added during stimulation.  
Cytokine staining was analyzed using intracellular staining and flow 
cytometry.     
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Figure 6-4: Role of Autocrine IL-2 in Tc17 Conversion (Transcription Factor 

Profile) 

 

 

 

 

1x106 in vitro generated IL-2 KO Tc17 cells were adoptively transferred into 
CD45.1+ or IL-2 KO/RAG KO recipients with VV-OVA. 7 days later organs 
were harvested.  For analysis of transcription factors, cells were stimulated 
with OVA peptide.  Protein transport inhibitor cocktail was added during 
stimulation.  Transcription factor staining was analyzed using intracellular 
staining and flow cytometry.     
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Figure 6-5: Role of Exocrine and Autocrine IL-2 in Tc17 Conversion (Receptor 

Profile) 

 

 

 

1x106 in vitro generated WT or IL-2 KO Tc17 cells were adoptively 
transferred into CD45.1+ or IL-2 KO/RAG KO Recipients. 7 days later, 
respectively, organs were harvested.  Receptors were analyzed using 
extracellular staining and flow cytometry.  The values represent the means +/- 
SEM (n=4). *p<0.05, **p<.01, ***p<.001             
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Figure 6-6: Role of IL-12 in Tc17 Conversion (Cytokine Profile) 

 

 

 

 

 

 

1x106 in vitro generated WT or IL-12Rβ1 KO Tc17 cells were 
adoptively transferred into CD45.1+ or C57B/6 recipients with VV-
OVA. 7 days later organs were harvested.  For analysis of cytokine 
production, cells were stimulated with OVA peptide.  Protein transport 
inhibitor cocktail was added during stimulation.  Cytokine staining was 
analyzed using intracellular staining and flow cytometry.     
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Figure 6-7: Role of IL-12 in Tc17 Conversion (Transcription Factor Profile) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1x106 in vitro generated IL-12Rβ1 KO Tc17 cells were adoptively 
transferred into C57B/6 recipients with VV-OVA. 7 days later 
organs were harvested.  For analysis of transcription factor 
expression, cells were stimulated with OVA peptide.  Protein 
transport inhibitor cocktail was added during stimulation.  
Transcription factor staining was analyzed using intracellular 
staining and flow cytometry.     
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Figure 6-8: Role of IL-12 in Tc17 Conversion (Receptors Profile) 

 

 

 

 

 

 

 

1x106 in vitro generated WT or IL-12Rβ1 KO Tc17 cells were adoptively 
transferred into CD45.1+ or C57B/6 Recipients. 7 days later, respectively, organs 
were harvested.  Receptors were analyzed using extracellular staining and flow 
cytometry.  The values represent the means +/- SEM (n=4). *p<0.05, ***p<.001            
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CHAPTER 7 

DEFINING THE MOLECULE REQUIRED FOR  

TC17 CONVERSION IN VIVO 
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INTRODUCTION 

As mentioned in Chapter 1, the T-box transcription factor T-bet, encoded by 

tbx21, is referred to as the “master regulator” of CD8+ T cell differentiation.  T-bet 

controls the transcription of numerous CTL effector molecules such as IFN-γ and 

granzyme B26, 27.  T-bet plays an important role during T cell induction. T-bet KO CD8+ 

T cells activated under IL-17 promoting conditions secrete more IL-17 than T-bet 

competent CD8+ T cells37, 64, 84.  During LCMV infection, T-bet KO CD8+ T cells 

secrete IL-17 as opposed to the normal IFN-γ secretion36.  As discussed in Chapter 1, T-

bet KO Th17 cells do not promote an effective anti-tumor response.  T-bet KO Th17 cells 

are unable to convert from IL-17 to IFN-γ secretion.  T-bet controls the plasticity of the 

Th17 cells and subsequently the anti-tumor response72.  This phenomenon also occurs in 

autoimmune models.  In one study, adoptively transferred T-bet KO Th17 cells did not 

affect EAE pathogenesis.  Conversely, a different study showed adoptively transferred T-

bet KO Th17 cells actually improved EAE pathogenesis73, 75. 

In this chapter, we sought to find the absolute requirement for Tc17 conversion in 

vivo.  In Chapters 4-6, we showed an association between T-bet expression and IFN-γ 

production in vitro and in vivo.  While T-bet is required for the functional plasticity of 

Th17 cells, we sought to understand the role of T-bet in Tc17 plasticity72-75.  We 

hypothesized T-bet would be required for conversion in vivo.  In order to investigate this 

hypothesis, we adoptively transferred T-bet KO CD8+ T cells into mice infected with 

VV-OVA and looked at IL-17 and IFN-γ secretion.   
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We also sought to determine the transcription factor expression in the absence of 

T-bet.  In Chapters 4-6, we demonstrated robust conversion both in vitro and in vivo was 

associated with loss of RORγT.  Therefore, we hypothesized Tc17 cells unable to convert 

in the absence of T-bet would maintain RORγT expression.  In addition, the only time we 

saw eomes expression was during conversion in VV-OVA infected mice.  If T-bet is 

required for conversion and may influence eomes expression, we predicted T-bet KO 

Tc17 cells would express less eomes than T-bet competent Tc17 cells.  In order to test 

these hypotheses, we adoptively transferred T-bet KO CD8+ T cells into mice infected 

with VV-OVA.  We stained T-bet, RORγT and eomes after adoptive transfer. 

Finally, we wanted to investigate the gamma chain receptor expression of T-bet 

KO Tc17 cells after adoptive transfer into VV-OVA infected mice.  In Chapter 5, we 

showed the gamma chain cytokine receptor expression of Tc17 cells adoptively 

transferred into mice without stimulation.  We hypothesized T-bet KO Tc17 cells 

adoptively transferred into mice infected with VV-OVA would act similarly to WT Tc17 

cells adoptively transferred into mice without stimulation; T-bet KO Tc17 cells would 

express less CD122, more CD25 and similar CD127.  In order to test this hypothesis we 

adoptively transferred T-bet KO CD8+ T cells into mice infected with VV-OVA.  We 

stained CD25, CD122 and CD127 after adoptive transfer.            
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RESULTS 

T-bet is required for Tc17 Conversion In Vivo 

To test the requirement for T-bet, we bred T-bet KO mice onto the OT-1/RAG KO 

background.  We first cultured T-bet KO Tc17 cells under Tc17 polarizing conditions in 

vitro.  We obtained a >98% IL-17+IFN-γ- population without sorting, which 

demonstrated the negative role of T-bet during Tc17 induction.  Next we adoptively 

transferred T-bet KO Tc17 cells into mice infected with VV-OVA.  We harvested 

splenocytes and found T-bet KO Tc17 cells could not convert in vivo.  T-bet KO Tc17 

cells did not secrete any IFN-γ, and maintained expression of IL-17 in the liver and 

spleen.  Interestingly, T-bet KO Tc17 cells produced less IL-17 in the lymph nodes and 

lung.  This did not correlate with increased IFN-γ secretion, just loss of IL-17.  T-bet may 

affect IL-17 secretion in certain tissues (Figure 7-1).  These data show the important role 

of T-bet during Tc17 conversion in vivo.     

T-bet KO Tc17 Cells do not lose RORγT Expression in an Inflammatory Milieu 

We next wanted to understand the expression of RORγT and eomes in T-bet KO Tc17 

cells in an inflammatory milieu.  In order to do this we adoptively transferred T-bet KO 

Tc17 cells into mice infected with VV-OVA.  We harvested splenocytes and found T-bet 

KO Tc17 cells do not lose RORγT expression in an inflammatory milieu.  This could 

contribute to the inability of these cells to expression IFN-γ in vivo.  As confirmation, we 

showed T-bet KO Tc17 cells do not express T-bet.  We found T-bet KO Tc17 cells 

express very little eomes in VV-OVA infected mice, suggesting the importance of T-bet 

for eomes up-regulation (Figure 7-2).  
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Role of T-bet on Receptor Expression of Tc17 Cells in vivo 

We next sought to determine the expression of common gamma chain cytokine receptors 

on T-bet KO Tc17 cells in an inflammatory milieu, so we adoptively transferred T-bet 

KO Tc17 cells into mice infected with VV-OVA.  We found they express significantly 

less CD122 than T-bet competent Tc17 cells.  T-bet KO Tc17 cells also express 

significantly more CD25 than T-bet competent Tc17 cells.  Furthermore, we found T-bet 

KO Tc17 cells have a lower percentage of SLEC’s as compared to T-bet competent Tc17 

cells in an inflammatory milieu, suggesting the important of T-bet for an effective 

effector response (Figure 7-3).   
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SUMMARY 

These data show T-bet is required for conversion of Tc17 cells in vivo.  We found T-bet 

KO Tc17 cells do not lose RORγT expression even with a strong inflammatory milieu 

provided by VV-OVA.  This suggests in the absence of T-bet, the Tc17 transcriptional 

program is very stable.  In addition, after adoptive transfer, T-bet KO Tc17 cells express 

less eomes as compared to T-bet WT Tc17 cells.  This suggests T-bet controls expression 

of eomes in Tc17 cells.  We found T-bet KO Tc17 cells have significantly less CD122 

expression than T-bet WT Tc17 cells, suggesting a potential role for the high affinity IL-

2 receptor during conversion.  We also found T-bet KO Tc17 cells do not express KLRG-

1 in the spleen as compared to T-bet WT Tc17 cells.  This suggests T-bet drives the 

expression of KLRG-1 in Tc17 cells and acquisition of an effector phenotype. 
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Figure 7-1: Role of T-bet in Tc17 Conversion (Cytokine Profile) 

 

 

 

 

 

 

 

 

1x106 in vitro generated WT or T-bet KO Tc17 cells were adoptively transferred 
into CD45.1+ recipients with VV-OVA. 7 days later organs were harvested.  For 
analysis of cytokine production, cells were stimulated with OVA peptide.  
Protein transport inhibitor cocktail was added during stimulation.  Cytokine 
staining was analyzed using intracellular staining and flow cytometry     
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Figure 7-2: Role of T-bet in Tc17 Conversion (Transcription Factor Profile) 

 

 

 

 

 

 

 

 

1x106 in vitro generated WT or T-bet KO Tc17 cells were adoptively transferred 
into CD45.1+ recipients with VV-OVA. 7 days later organs were harvested.  For 
analysis of transcription factor expression, cells were stimulated with OVA 
peptide.  Protein transport inhibitor cocktail was added during stimulation.  
Transcription factor staining was analyzed using intracellular staining and flow 
cytometry     
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Figure 7-3: Role of T-bet in Tc17 Conversion (Receptor Profile) 

 

 

 

 

 

 

1x106 in vitro generated WT or T-bet KO Tc17 cells were adoptively transferred 
into CD45.1+ recipients with VV-OVA. 7 days later, organs were harvested.  
Receptors were analyzed using extracellular staining and flow cytometry.  The 
values represent the means +/- SEM (n=4). **p<.01, ***p<.001             
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CHAPTER 8 

ROLE OF TC17 PLASTICITY IN ANTI-TUMOR IMMUNITY 
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INTRODUCTION 

As referenced in Chapter 1, adoptively transferred antigen-specific Tc17 cells 

promote tumor regression in both flank and lung tumors38, 47, 48.  This anti-tumor response 

was associated with Tc17 plasticity in flank tumor bearing mice, but not lung bearing 

mice tumor47-49.  Tc17 cells converted with IL-12 prior to adoptive transfer have a better 

anti-tumor effect than un-converted Tc17 cells38.  As discussed in previous chapters, T-

bet KO Th17 cells could not promote an effective anti-tumor response.  These T-bet KO 

Th17 cells were unable to convert from IL-17 to IFN-γ secretion.  T-bet controlled the 

plasticity of the Th17 cells and subsequently the anti-tumor response72.   

 In this chapter, we sought to understand if T-bet is required for an effective Tc17 

cell anti-tumor response.  Tc17 cells can promote an anti-tumor response, but the 

requirement for conversion during this response has never been investigated47-49.  In 

Chapter 7, we showed T-bet was required for conversion in vivo.  We hypothesized T-bet 

competent Tc17 cells would promote tumor regression, but T-bet KO Tc17 cells would 

be equivalent to untreated mice. In order to test this hypothesis we adoptively transferred 

T-bet WT and T-bet KO Tc17 cells into tumor-bearing mice and monitored tumor 

growth.   

There is contradicting evidence on the role of vaccination in conjunction with 

Tc17 cell adoptive immunotherapy47-49.  In Chapters 5-7, we showed VV-OVA drove 

conversion of adoptively transferred Tc17 cells.  We hypothesized VV-OVA in 

combination with adoptively transferred Tc17 cells, would positively affect the anti-

tumor response.  In Chapter 7, we demonstrated T-bet was required for Tc17 plasticity in 
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mice infected with VV-OVA.  We hypothesized VV-OVA would not affect the anti-

tumor response of adoptively transferred T-bet KO Tc17 cells.  In order to test these 

hypotheses we adoptively transferred T-bet KO and T-bet WT Tc17 cells with or without 

VV-OVA and monitored tumor growth.   

The transcription factor expression of adoptively transferred cells after an anti-

tumor response has never been investigated.  In Chapter 5-7, we showed adoptively 

transferred Tc17 cells express T-bet and convert in mice infected with VV-OVA, but 

Tc17 cells do not express T-bet or convert without VV-OVA infection.  We hypothesized 

adoptively transferred Tc17 cells would express T-bet in tumor-bearing mice infected 

with VV-OVA.  Conversely, we hypothesize Tc17 cells adoptively transferred into 

tumor-bearing mice without vaccine will not express T-bet or convert from IL-17 to IFN-

γ secretion.  Additionally, T-bet expression would be associated with an effective anti-

tumor response, as well as, loss of RORγT. In order to test these hypotheses we 

adoptively transferred Tc17 cells into tumor-bearing mice with or without VV-OVA 

infection and looked for transcription factor expression after transfer.          

In Chapter 7, we showed T-bet KO Tc17 cells did not lose RORγT expression.  

We hypothesized T-bet KO Tc17 cells adoptively transferred into tumor bearing mice 

would also not lose RORγT expression.  In Chapter 7, adoptively transferred T-bet KO 

Tc17 cells expressed less eomes than T-bet competent Tc17 cells.  We hypothesized this 

would also occur in tumor-bearing mice. In order to test these hypotheses we adoptively 

transferred T-bet KO and T-bet WT Tc17 cells with or without VV-OVA and looked for 

transcription factor expression.         
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Expression of gamma chain receptors on adoptively transferred Tc17 cells in 

tumor bearing mice has not been thoroughly investigated48.  In Chapter 5, we showed 

Tc17 cells adoptively transferred into mice without stimulation expressed more CD127 

and less CD122 than Tc17 cells adoptively transferred into mice infected with VV-OVA.  

We hypothesized Tc17 cells adoptively transferred into tumor-bearing mice without VV-

OVA infection would behave similarly expressing more CD127 and less CD122 than 

transfer with VV-OVA. Additionally, Tc17 cells adoptively transferred into tumor-

bearing mice with VV-OVA infection would express more CD122 and have a larger pool 

of SLECs compared to cells adoptively transferred without VV-OVA infection. In order 

to test these hypotheses we adoptively transferred Tc17 cells into tumor-bearing mice 

with or without VV-OVA infection and looked at the expression of gamma chain 

receptors.            

In Chapter 7, we showed T-bet KO Tc17 cells expressed more CD127 and less 

CD122 than T-bet competent Tc17 cells in mice infected with VV-OVA.  T-bet KO Tc17 

cells also did not express KLRG-1 or become SLECs as compared to T-bet competent 

Tc17 cells.  We hypothesized T-bet KO Tc17 cells adoptively transferred into tumor-

bearing mice would not become SLECs and express more CD127 than T-bet competent 

cells.  We also hypothesized adoptive transfer with or without VV-OVA infection would 

not change the phenotype.  In order to test these hypotheses we adoptively transferred 

Tc17 cells into tumor-bearing mice with or without VV-OVA infection, and looked at 

CD25, CD122 and CD127 expression on adoptively transferred cells.  
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RESULTS 

T-bet is required for Effective Tc17 Anti-Tumor Immunity 

To test the requirement for T-bet expression during Tc17 cell adoptive immunotherapy, 

we implanted wild type mice with B16F10-OVA melanoma.  When the mice had 

established, vascularized tumors, we adoptively transferred WT or T-bet KO Tc17 cells 

with or without VV-OVA infection.  Additionally, we administered VV-OVA alone 

without T cells as a negative control.  We found adoptive transfer of WT Tc17 cells but 

not T-bet KO Tc17 cells mice showed improved survival.  The most profound anti-tumor 

response was shown with WT Tc17 cell in combination with VV-OVA treatment.  

Established melanoma tumors, some as large as 1200 mm3, regressed upon adoptive T 

cell therapy.  A couple mice that received T-bet KO Tc17 cells in combination with VV-

OVA infection had tumor regression, but relapsed after several days.  VV-OVA treatment 

alone was similar to untreated tumors (Figures 8-1 and 8-2). 

Tumors Treated with Tc17 Cells have Significantly Smaller Tumors than Untreated 

Tumors 

We next sought to examine the effect of treatment on the size of tumors ex vivo.  In order 

to do this, we harvested tumors 7 days after treatment.  We measured tumor wet weights 

and found tumors treated with WT Tc17 cells and VV-OVA were significantly smaller 

than tumors treated with T-bet KO Tc17 cells and VV-OVA.  Untreated tumors were 

significantly greater than tumors treated with Tc17 cells and VV-OVA (Figure 8-3). 
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Homing of Tc17 Cells to Tissue of Tumor-Bearing Mice   

We next determined if the deficiency in an effective anti-tumor response was because T-

bet KO Tc17 cells could not infiltrate the DLN or tumor.  In order to do this we harvested 

cells from the spleen, draining lymph node and tumors and looked for the adoptively 

transferred population. We found there was not a significant difference between the 

percentages of adoptively transferred WT or T-bet KO Tc17 cells with VV-OVA 

infection in the DLN.  Interestingly, there were a significantly higher percentage of T-bet 

KO Tc17 cells in the tumor (Figure 8-4). 

Anti-Tumor Immunity Correlates with Tc17 Cell Conversion  

To test the cytokine phenotype of the adoptively transferred cells we stimulated cells 

from all organs and analyzed the cytokine profile.  WT Tc17 cells adoptively transferred 

with VV-OVA converted to an IFN-γ secreting phenotype more efficiently in both the 

spleen and DLN than Tc17 cells without VV-OVA.  WT Tc17 cells that migrated to the 

tumor secreted very little IFN-γ, even with VV-OVA.  Conversely, as was seen in 

Chapter 7, T-bet KO Tc17 cells did not convert in the spleen, DLN or tumor.  This was 

with or without VV-OVA treatment.  T-bet KO Tc17 cells also did not lose IL-17 

expression (Figure 8-5).   

Anti-Tumor Immunity is Associated with T-bet Expression of Adoptively 

Transferred Tc17 cells  

We next hypothesized T-bet expression in adoptively transferred Tc17 cells would be 

important in conversion and an effective anti-tumor response.  We found WT Tc17 cells 

adoptively transferred with VV-OVA expressed T-bet and had lower RORγT expression 
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than WT Tc17 cells without VV-OVA in the DLN and TIL.  Interestingly, the difference 

in transcription factor expression is less in the TIL between WT Tc17 cells with or 

without VV-OVA.  As expected, T-bet KO Tc17 cells maintained RORγT expression in 

all organs (Figures 8-6, 8-7 and 8-8).     

Role of T-bet on Receptor Expression of Tc17 Cells in Tumor-Bearing Mice 

Next we characterized the expression of gamma chain receptors on the adoptively 

transferred cells populations.  We hypothesized the receptors would be different between 

WT versus T-bet KO Tc17 cells during the anti-tumor response.  Similar to what we 

showed in Chapter 7, we found T-bet KO Tc17 cells have significantly less CD122 

expression as compared to WT mice, and significantly more CD25 expression in the 

DLN and spleen.  This was independent of combination with VV-OVA infection.  

However, this difference was lost in the TIL (Figures 8-9 and 8-10).  Furthermore, 

similar to Chapter 7, we found T-bet KO Tc17 cells have a lower percentage of SLEC’s 

as compared to T-bet competent Tc17 cells in an inflammatory milieu (Figure 8-11).   
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SUMMARY 

T-bet and IFN-γ expression in Tc17 cells are critical for tumor regression.  This suggests 

the importance of functional plasticity during an anti-tumor response.  We found in the 

absence of VV-OVA there was only a small survival advantage.  Conversely, Tc17 cells 

adoptively transferred with VV-OVA promoted tumor regression and increased survival, 

thus proving Tc17 conversion was required to mediate anti-tumor immunity.  T-bet KO 

Tc17 cells were detected in the draining lymph node and in the tumor.  This finding 

demonstrated that although T bet KO Tc17 cells trafficked to the tumor, their inability to 

produce IFN- γ  was detrimental to their anti-tumor functions.  We found T-bet KO Tc17 

cells maintained RORγT expression, suggesting this is an important mechanism for 

functional plasticity.  In addition, the efficiency of the anti-tumor function was dependent 

on the level of T-bet expression because the VV-OVA injection in mice receiving Tc17 

led to higher T-bet expression, and enhanced tumor regression.  Our data demonstrate T-

bet is the mastermind transcriptional factor driving Tc17 plasticity and subsequently anti-

tumor immunity.   
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Figure 8-1: Tumor Growth Curves 

 

 

 

 

 

 

 

 

 

1.6x105 B16F10-OVA melanoma cells were injected into CD45.1+ recipients.  On 
day 14, mice with palpable, established tumors received an adoptive transfer of 
5x106 in vitro generated WT or T-bet KO Tc17 cells.  This was with or without 
VV-OVA.  Control groups received VV-OVA alone or no treatment.  Tumor 
volume was calculated by using the following formula: tumor volume (mm3) = 
(length) x (width)2 x 0.5. The values represent the means +/- SEM (n=8-10).            
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Figure 8-2: Spaghetti Plots 

 

 

 

 

1.6x105 B16F10-OVA melanoma cells were injected into CD45.1+ recipients.  On 
day 14, mice with palpable, established tumors received an adoptive transfer of 
5x106 in vitro generated WT or T-bet KO Tc17 cells.  This was with or without 
VV-OVA.  Control groups received VV-OVA alone or no treatment.  Tumor 
volume was calculated by using the following formula: tumor volume (mm3) = 
(length) x (width)2 x 0.5.   
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Figure 8-3: Tumor Sizes and Wet Weights 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.6x105 B16F10-OVA melanoma cells were injected into CD45.1+ recipients.  
On day 14, mice with palpable, established tumors received an adoptive transfer 
of 5x106 in vitro generated WT or T-bet KO Tc17 cells.  This was with or 
without VV-OVA.  Control groups received VV-OVA alone or no treatment.  
Tumors were harvested and wet weights measured.  The values represent the 
means +/- SEM (n=4).  *p<0.05, **p<.01              
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Figure 8-4: Cell Percentages of Adoptively Transferred from Tumor Bearing Mice  

     

 

 

 

 

 

 

 

 

 

 

1.6x105 B16F10-OVA melanoma cells were injected into CD45.1+ recipients.  
On day 14, mice with palpable, established tumors received an adoptive transfer 
of 5x106 in vitro generated WT or T-bet KO Tc17 cells.  This was with or 
without VV-OVA.  Control groups received VV-OVA alone or no treatment.  7 
days later, organs were harvested.  The values represent the means +/- SEM 
(n=4). *p<0.05              
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Figure 8-5: Cytokine Profile of Adoptively Transferred Tc17 Cells from Tumor-
Bearing Mice 

 

 

 

 

 

 

 

1.6x105 B16F10-OVA melanoma cells were injected into CD45.1+ recipients.  
On day 14, mice with palpable, established tumors received an adoptive transfer 
of 5x106 in vitro generated WT or T-bet KO Tc17 cells.  This was with or 
without VV-OVA.  Control groups received VV-OVA alone or no treatment.  7 
days later organs were harvested.  For analysis of cytokine production, cells 
were stimulated with OVA peptide.  Protein transport inhibitor cocktail was 
added during stimulation.  Cytokine staining was analyzed using intracellular 
staining and flow cytometry.     
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Figure 8-6: Transcription Factor Profile of Adoptively Transferred Tc17 Cells from 
Tumor-Bearing Mice (DLN) 

 

 

 

 

 

 

1.6x105 B16F10-OVA melanoma cells were injected into CD45.1+ recipients.  
On day 14, mice with palpable, established tumors received an adoptive transfer 
of 5x106 in vitro generated WT or T-bet KO Tc17 cells.  This was with or 
without VV-OVA.  Control groups received VV-OVA alone or no treatment.  7 
days later organs were harvested.  For analysis of transcription factors, cells 
were stimulated with OVA peptide.  Protein transport inhibitor cocktail was 
added during stimulation.  Transcription factor staining was analyzed using 
intracellular staining and flow cytometry.     
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Figure 8-7: Transcription Factor Profile of Adoptively Transferred Tc17 Cells from 
Tumor-Bearing Mice (TIL) 

 

 

 

 

 

 

 

1.6x105 B16F10-OVA melanoma cells were injected into CD45.1+ recipients.  
On day 14, mice with palpable, established tumors received an adoptive transfer 
of 5x106 in vitro generated WT or T-bet KO Tc17 cells.  This was with or 
without VV-OVA.  Control groups received VV-OVA alone or no treatment.  7 
days later organs were harvested.  For analysis of transcription factors, cells 
were stimulated with OVA peptide.  Protein transport inhibitor cocktail was 
added during stimulation.  Transcription factor staining was analyzed using 
intracellular staining and flow cytometry.     
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Figure 8-8: Transcription Factor Profile of Adoptively Transferred Tc17 Cells from 
Tumor-Bearing Mice (Spleen) 

 

 

 

 

 

 

 

 

 

 

 

 

1.6x105 B16F10-OVA melanoma cells were injected into CD45.1+ recipients.  
On day 14, mice with palpable, established tumors received an adoptive transfer 
of 5x106 in vitro generated WT or T-bet KO Tc17 cells.  This was with or 
without VV-OVA.  Control groups received VV-OVA alone or no treatment.  7 
days later organs were harvested.  For analysis of transcription factors, cells 
were stimulated with OVA peptide.  Protein transport inhibitor cocktail was 
added during stimulation.  Transcription factor staining was analyzed using 
intracellular staining and flow cytometry.     
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Figure 8-9: Receptor Profile of Adoptively Transferred Tc17 Cells from Tumor-
Bearing Mice 

 

 

 

 

 

 

1.6x105 B16F10-OVA melanoma cells were injected into CD45.1+ recipients.  
On day 14, mice with palpable, established tumors received an adoptive 
transfer of 5x106 in vitro generated WT or T-bet KO Tc17 cells.  This was 
with or without VV-OVA.  Control groups received VV-OVA alone or no 
treatment.  7 days later organs were harvested.  Cell surface receptor staining 
was analyzed using intracellular staining and flow cytometry.     
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Figure 8-10: Relative Receptor MFIs of Adoptively Transferred Tc17 Cells from 
Tumor-Bearing Mice 

 

 

 

 

 

 

1.6x105 B16F10-OVA melanoma cells were injected into CD45.1+ recipients.  
On day 14, mice with palpable, established tumors received an adoptive transfer 
of 5x106 in vitro generated WT or T-bet KO Tc17 cells.  This was with or 
without VV-OVA.  Control groups received VV-OVA alone or no treatment.  7 
days later organs were harvested.  Cell surface receptor staining was analyzed 
using intracellular staining and flow cytometry.  The values represent the means 
+/- SEM (n=4). *p<0.05, **p<.01, ***p<.001                 
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Figure 8-11: Memory Phenotype of Adoptively Transferred Tc17 Cells from 
Tumor-Bearing Mice 

 

 

 

 

 

 

 

 

1.6x105 B16F10-OVA melanoma cells were injected into CD45.1+ recipients.  
On day 14, mice with palpable, established tumors received an adoptive transfer 
of 5x106 in vitro generated WT or T-bet KO Tc17 cells.  This was with or 
without VV-OVA.  Control groups received VV-OVA alone or no treatment.  7 
days later organs were harvested.  Cell surface receptor staining was analyzed 
using intracellular staining and flow cytometry.  
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Normally, CD8+ T cells are cytotoxic and produce IFN-γ.  Under certain 

conditions CD8+ T cells secrete IL-17 and have poor cytotoxicity.  Tc17 cells can switch 

from producing IL-17 to IFN-γ, a termed known as plasticity.  IL-12 is a cytokine that 

affects Tc17 plasticity; VV-OVA and autoimmunity also affect Tc17 plasticity33, 38, 64.  

Other factors that could affect Tc17 plasticity are not well characterized.  In order to 

characterize potential factors in vitro, we utilized a sorting technique to obtain a pure 

population of Tc17 cells.  Similar to published data, we showed sorted Tc17 cells 

cultured in IL-12 switched from IL-17 to IFN-γ secretion in vitro.  We also demonstrated 

IL-2 and IL-7 as factors that affect Tc17 plasticity in vitro, which is contrary to 

previously published data where IL-2 was not sufficient for Tc17 plasticity in vitro38.  

The role of TCR stimulation on Tc17 plasticity in vitro is not well characterized.  We 

determined TCR stimulation had a minimal effect on Tc17 plasticity compared to IL-2, 

IL-7 or IL-12.  These data suggest cytokines, but not TCR stimulation, are important 

factors for Tc17 plasticity in vitro. 

Tc17 cells express RORγT and very low levels of T-bet33, 64. We were interested 

to know the transcription factor expression of Tc17 cells upon conversion in vitro.   Tc17 

cells cultured in IL-12 expressed T-bet and lost of RORγT expression, which is contrary 

to published literature showing RORγT expression did not go down upon conversion38.  

We also determined the transcription factor expression of Tc17 cells upon conversion in 

vivo.  Tc17 cells adoptively transferred into mice infected with VV-OVA up-regulated T-

bet and lost RORγT expression, which is similar to previously published data64. 
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The requirements for Tc17 plasticity are not well characterized.  Based on our in 

vitro data we investigated the role of IL-2 or the IL-12 receptor in Tc17 plasticity.  We 

determined neither IL-2 nor IL-12 receptor signaling to be required for conversion in 

vivo.  This suggests that both cytokines are sufficient but not necessary for conversion, 

and there is a different molecule required for Tc17 plasticity.  In the absence of IL-2 or 

the IL-12 receptor, T-bet was still strongly expressed and RORγT expression lost.  This 

suggests T-bet is the master regulator of conversion rather than one single cytokine or 

signal.  We showed in several chapters T-bet was expressed upon conversion both in 

vitro and in vivo.  We determined T-bet to be the molecule necessary for Tc17 conversion 

in an inflammatory milieu.  We found T-bet KO Tc17 cells did not lose IL-17 secretion 

in the presence of VV-OVA.   

In several studies, Tc17 cells were used as an adoptive immunotherapy47, 48.  The 

requirement for conversion for an anti-tumor response is not well defined.  We 

determined conversion was required for an effective immune response. This suggests in 

the B16 model, Tc17 that only secrete IL-17 are not sufficient for an anti-tumor response.  

Conversely, it was Tc17 cells that became IFN-γ secretors which promoted effective anti-

tumor responses.  In addition, we showed Tc17 cells adoptively transferred without 

Vaccinia-OVA did not exhibit an effective tumor response when compared to Tc17 cells 

transferred with Vaccinia-OVA.  This is different than what has been published in the 

literature, where Tc17 cell transfer alone was sufficient for an anti-tumor response47.   

As mentioned in chapter 1, Tc17 cells are negatively associated with human 

autoimmune diseases and cancer34, 45, 46, 58-62, 85, 86.  These data provide valuable 

information to define factors that could affect human Tc17 cell conversion.  These factors 
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could lead to treatments that reverse negative outcomes in patients.  The use of Tc17 cells 

in adoptive immunotherapy has tremendous promise.  The requirement for conversion for 

an effective anti-tumor response was not well characterized.  We think it is critical to 

understand this in order to move forward with Tc17 cells as an immunotherapeutic 

option.  Tc17 cells could be detrimental to a patient if they do not convert to IFN-γ 

secretion, because they could promote greater inflammation and potential tumor 

progression. These data have important implications for clinical scenarios such as cancer 

treatment as well as other disease treatments in the future.  
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