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Abstract 

Environmental cues produce rapid transitions in gene expression to 

support growth and cellular plasticity through incompletely understood 

mechanisms.  Brain-derived neurotrophic factor (BDNF) is a signaling molecule 

involved in development and plasticity that is dysregulated in numerous 

neurologic diseases. Prior work from our laboratory demonstrated that BDNF 

signaling confers translational specificity by regulating microRNA biogenesis, in 

part through induction of Lin28a protein. Lin28 RNA-binding proteins have 

evolutionarily-conserved roles in posttranscriptional coordination of pro-growth 

gene expression, but Lin28 is traditionally considered to be absent from 

terminally-differentiated cells, and signaling pathways allowing stimulus-

dependent induction of Lin28 remain uncharacterized.  The first portion of my 

dissertation focuses on elucidating a novel mechanism allowing rapid Lin28a 

induction in mature neurons. We find that Lin28a protein undergoes rapid basal 

turnover in hippocampal neurons, and is stabilized by BDNF-dependent 

activation of mitogen-activated protein kinase (MAPK). MAPK-mediated 

phosphorylation of the miRNA-processing factor, HIV TAR-RNA-binding protein 

(TRBP), promotes binding and stabilization of Lin28a, but not Lin28b, with 

accompanying reduction in Lin28-targeted miRNAs (Let-7 miRNAs). Further, 

phospho-TRBP recapitulates BDNF-induced neuronal dendritic spine growth, in a 

Lin28a-dependent manner.  Finally, we demonstrate MAPK-dependent induction 

of TRBP and Lin28a downstream of diverse growth factors in multiple primary 



	 iii 

cell types, supporting a broad role for this newly described pathway in cellular 

trophic responses. 

 Our finding of Lin28a regulation by phospho-TRBP in neuronal cells leads 

to the second portion of my dissertation, investigating the possibility that TRBP 

and Lin28a are dysregulated in a human tumor disorder, Neurofibromatosis Type 

2 (NF2). We demonstrate that loss of Merlin protein in NF2 results in elevated 

TRBP, phospho-TRBP, and Lin28a proteins, and reduced Let-7 miRNAs. 

Additionally, ongoing studies suggest that abnormal tumor cell growth in NF2 is 

related to Lin28a overexpression, paving the way for potential research regarding 

novel therapeutics for NF2. Collectively, the work presented in my dissertation 

uncovers a previously unrecognized mechanism for induction of Lin28a that is 

conserved in both acute (trophic) and chronic (tumor) settings. This molecular 

mechanism underlying Lin28a stabilization has implications for understanding 

regulation and misregulation of translational specificity in synaptic responses, 

and in tumor and stem cell biology, where Lin28a is constitutively elevated. 

 

Advisor: Mollie K. Meffert, M.D., Ph.D 
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Chapter 1: Introduction 

 

Gene expression regulation in synaptic plasticity 

The precise complement of neuronal proteins is fundamentally important 

in shaping neural function and activity, and ultimately determines synaptic 

response. It has long been appreciated that novel and specific gene expression 

is required for the endurance of synaptic changes and memory consolidation 

(Gal-Ben-Ari et al., 2012; Pfeiffer and Huber, 2006). Environmental stimuli lead to 

neuronal activity that can cause enduring changes in the strength of synapses by 

inducing changes in gene expression. This phenomenon is termed long-term 

synaptic plasticity, and is considered the cellular correlate of learning and 

memory. In order to better understand mechanisms underlying synaptic plasticity, 

molecules contributing to transcriptional specificity, including transcription factors 

and chromatin modifications, have been widely investigated in past years.  

However, high-throughput approaches in recent years have shown that the 

cellular transcriptome correlates only moderately with the proteome (Foss et al., 

2011; Ideker et al., 2001; Schwanhausser et al., 2011; Tian et al., 2004). 

Additionally, genetic variants regulating transcription are suggested to be distinct 

from those regulating protein synthesis (Foss et al., 2011). These studies reveal 

that the expression of most proteins is predominantly controlled post-

transcriptionally, and underscore the differential genetic control of regulation by 

transcription versus translation, highlighting the importance of understanding 

mechanisms for regulation at the level of translation. 
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Dysregulated translation is associated with a range of cognitive and 

neurologic conditions including autism spectrum disorders and 

neurodegenerative diseases (Bassell and Warren, 2008; Gehrke et al., 2010; 

Krauss et al., 2013; Liu-Yesucevitz et al., 2011; Ramaswami et al., 2013; Wang 

et al., 2007). Changes in RNA granule accumulation linked to disrupted local 

translation in neurons is observed in Fragile X Syndrome (FXS), Amyotrophic 

Lateral Sclerosis (ALS), and Frontotemporal Dementia (FTD), among others (Liu-

Yesucevitz et al., 2011; Ramaswami et al., 2013; Wang et al., 2007). 

Additionally, polyglutamine repeat expansions in conditions such as Huntington’s 

Disease (HD) are thought to bind to regulatory complexes and increase neuronal 

translation (Krauss et al., 2013). However, the current lack of knowledge 

regarding control points in protein synthesis significantly impairs our ability to 

decipher dysregulation in disease. Thus, elucidating how neurons control 

translational specificity may reveal novel targets for therapeutic approaches.   

 

BDNF signaling regulates synaptic plasticity 

Growth factors refer to a naturally occurring class of secreted proteins that 

generally exert their effects by supporting cellular survival, proliferation, and 

healing. Brain-derived neurotrophic factor (BDNF) belongs to the neurotrophin 

family of growth factors, and influences specifically the growth and survival of 

neurons in the central and peripheral nervous systems. BDNF expression is 

detectable in all brain regions, with the highest BDNF mRNA levels generally 

observed in the cerebral cortex and hippocampus, where it is characterized as a 
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critical regulator of learning and memory (Conner et al., 1997; Wetmore et al., 

1990). BDNF signaling is crucial in early development where it plays significant 

roles in neuronal progenitor proliferation and differentiation, cell survival, the 

outgrowth of neuronal processes, and both the formation and pruning of synaptic 

connections. Mice homozygous for loss of BDNF (BDNF knockout) often die 

postnatally, and surviving mice show significant nervous system dysfunction 

(Ernfors et al., 1995; Jones et al., 1994; Patterson et al., 1996). Additionally, 

throughout adulthood, secretion of BDNF in response to neuronal activity 

functions to promote synaptic strengthening and enhance learning and memory, 

as well as to provide general trophic support for neuronal health and survival. 

These critical roles mean that abnormal BDNF signaling is closely associated 

with a range of mental health disorders, including autism spectrum disorder, 

depression, schizophrenia, bipolar disorder, and anxiety disorders, as well as 

neurodegenerative diseases, including Alzheimer’s Disease and Parkinson’s 

Disease (Andero and Ressler, 2012; McAllister et al., 1999; Muglia et al., 2003; 

Nagahara and Tuszynski, 2011; Santos et al., 2010; Tyler et al., 2002; Zuccato 

and Cattaneo, 2009). 

 BDNF protein is observed in the synaptic compartment, and is thought to 

be stored and released both pre-synaptically from dendritic sites, as well as post-

synaptically in an autocrine manner (Andreska et al., 2014; Hartmann et al., 

2001; Matsuda et al., 2009). Upon secretion, BDNF interacts with the high affinity 

tropomyosin-related kinase B (TrkB) tyrosine kinase receptor to activate multiple 

intracellular signaling cascades, including the MAPK, mTOR, and PLCγ 
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pathways.  Signaling downstream of TrkB receptors mediates the trophic effects 

of BDNF on neurons and synaptic connections, and blocking the BDNF/TrkB 

interaction leads to significant impairments in synaptic plasticity and learning (Lai 

et al., 2012; Takei et al., 2001; Tanaka et al., 2008).   

Enduring effects of BDNF on growth and plasticity require changes in 

gene expression, and BDNF has been shown to regulate both transcription and 

translation. Through the activation of select transcription factors such as serum 

response factor (SRF), nuclear factor kappa B (NF-κB), and cAMP response 

element binding protein (CREB), BDNF is known to upregulate trophic targets at 

the level of transcription (Finkbeiner et al., 1997; Kajiya et al., 2009; Kalita et al., 

2006; Riccio et al., 2006). However, as discussed, the level of a transcribed 

mRNA does not necessarily correlate with its translation, and in fact expression 

levels of many proteins are predominantly controlled post-transcriptionally (Foss 

et al., 2011; Ideker et al., 2001; Schwanhausser et al., 2011; Tian et al., 2004). 

Given the dramatic role that BDNF plays in neuronal health, survival, and 

plasticity, understanding how BDNF signaling can generate trophic programs of 

gene expression at a post-transcriptional level has the potential to reveal critical 

regulatory points in both normal and abnormal brain function. 

 

Physiological effects of post-transcriptional regulation by BDNF 

Alterations in neuronal structure, such as dendritic outgrowth and spine 

maturation, are major physiological components of enduring plasticity that have 

been shown to require BDNF-dependent changes in protein synthesis (Jaworski 
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et al., 2005; Tanaka et al., 2008).  In a translation-dependent manner, BDNF 

signals through TrkB receptors to enhance dendritic complexity and branching in 

both hippocampal and cortical neurons (Cheung et al., 2007; Horch and Katz, 

2002; Jaworski et al., 2005; Je et al., 2009a; Lazo et al., 2013; Takemoto-Kimura 

et al., 2007; Tanaka et al., 2008).  BDNF release can act to enhance dendritic 

arborization of both itself (in an autocine fashion), or a closely neighboring 

neuron, through signaling pathways downstream of TrkB receptor binding.  

Accordingly, pyramidal neurons lacking TrkB receptors have significantly reduced 

pyramidal dendritic arbors (Horch and Katz, 2002; Xu et al., 2000). This ability of 

BDNF to increase dendritic arborization has been clearly linked to its regulation 

of translation. For example, Jaworski et al. (2005) demonstrated that enhanced 

dendritic complexity in response to BDNF expression was dependent on the 

mTOR signaling pathway, and could be blocked by inhibiting translation initiation.   

Additionally, Huang et al. (2012) showed that inhibition of specific microRNAs, 

and thus increased translation of their target mRNAs, is required for BDNF-

mediated induction of dendritic arborization.  

BDNF is also a well-characterized regulator of spine dynamics, and can 

induce changes in dendritic spine size and number. In cultured hippocampal 

neurons, BDNF has been shown to robustly increase spine density on the apical 

dendrite of pyramidal neurons in a MAPK/ERK-dependent manner (Alonso et al., 

2004; Tyler and Pozzo-Miller, 2003; Tyler and Pozzo-Miller, 2001). Again, the 

effect of BDNF on spine plasticity is dependent on its regulation of protein-

synthesis. In general, activity-induced upregulation of dedritic spines can be 
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blocked by treating cultured neurons with the drug anisomycin, an inhibitor of 

protein synthesis (Fifkova et al., 1982; Srivastava et al., 2012). More directly, 

long-term increases in hippocampal spine density mediated by BDNF have been 

shown to require new translation utilizing a system that allows inducible cell-

autonomous inactivation of protein synthesis (Je et al., 2009a). Collectively, this 

research indicates that posttranscriptional regulation of gene expression by 

BDNF can induce structural changes in both synaptic and dendritic morphology 

that participate in plastic responses. 

 Consistent with the idea of synaptic plasticity as a cellular readout of 

learning and memory, the requirement for BDNF in tests of hippocampal-

dependent learning and memory is well established (Heldt et al., 2007; Pardon, 

2010; Tyler et al., 2002). The hippocampus is thought to be a major locus of 

memory consolidation, and requires novel protein synthesis for this function, 

because in-vivo hippocampal injection of protein synthesis inhibitors prevents 

hippocampal-dependent memory formation (Power et al., 2006; Tronel et al., 

2005). While few studies have directly attempted to link BDNF function with the 

required novel translation in hippocampal-based learning, recent research has 

shown that LTM in the hippocampus requires multiple cycles of translation that 

occur following learning paradigms, and that BDNF is elevated concurrent with 

the initiation of these cycles (Bekinschtein et al., 2007). Additionally, inhibition of 

BDNF prevented LTM formation in the same timecourse as intrahippocampal 

anisomycin injection (Bekinschtein et al., 2007). These findings are consistent 

overall with a role for BDNF in translation-dependent changes of neuronal and 
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synaptic function that are associated with learning and memory consolidation, 

and underscore the importance of understanding mechanisms of translation 

regulation by BDNF.  

 

BDNF regulates the specificity of translation 

Long-lasting synaptic changes underlying learning and memory result 

from initial, rapid changes in gene expression following neuronal activity. 

Effective activity-dependent regulation of neuronal gene expression requires that 

the appropriate proteins be simultaneously regulated to accurately enhance or 

reduce synaptic response. Thus, it seems likely that rapid changes in the 

proteome following activity necessitate altered translation of discrete groups of 

specific genes, rather than increased translation of all mRNAs globally, many of 

which may be involved in conflicting cellular responses. While past research has 

defined multiple mechanisms underlying specificity of gene expression at the 

level of transcription (Jenuwein and Allis, 2001; Smith and Matthews, 2016), 

mechanisms allowing for translational specificity are less well delineated. 

However, BDNF has been shown to effectively promote synapse growth and 

plasticity by coordinating a synaptic response that involves a specific increase in 

translation of plasticity-related proteins. Despite the ability of BDNF to affect 

general translational machinery and total cellular translation (Gingras et al., 1999, 

2004; Huang et al., 2012; Inamura et al., 2005; Kanhema et al., 2006; Takei et 

al., 2001; Takei et al., 2009), the modest increase in global translation that is 

observed in response to BDNF has actually been attributed to a robust effect on 
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the translation a relatively small number of specific transcripts (Huang et al., 

2012; Schratt et al., 2004). Using a candidate-based approach, several initial 

studies demonstrated that BDNF increases the translation of plasticity-related 

proteins, such as CamKIIα, Arc, and glutamate receptor subunits (Aakalu et al., 

2001; Jourdi et al., 2009; Kanhema et al., 2006; Kelleher et al., 2004; Takei et al., 

2004; Yin et al., 2002). In contrast, BDNF has been observed to decrease 

translation of certain mRNAs, such as potassium channels and co-transporters 

(Raab-Graham et al., 2006; Rivera et al., 2002). Radiolabelled synapses 

stimulated with BDNF and subjected to 2D electrophoresis also revealed a robust 

increase in a very specific set of proteins, while some proteins were decreased, 

and the majority were unchanged (Yin et al., 2002). 

 The development of high-throughput techniques enabled an appreciation 

of the truly impressive extent to which BDNF mediates target specificity. In an 

exciting study from the Greenberg lab (Schratt et al., 2004), the authors used 

polysome profiling to show that only roughly 4% of transcripts present in neurons 

underwent increased translation in response to BDNF, and that these increases 

were sensitive to mTOR signaling. Additionally, multidimensional protein 

identification technology (MudPIT) demonstrated that a brief, 30-minute BDNF 

stimulation of isolated synapses was sufficient to selectively increase proteins 

involved in synaptic vesicle formation and trafficking, translation, and synaptic 

components, while translation of other pools of mRNAs was decreased or, 

predominantly, unaltered (Liao et al., 2007). Similarly, gel based proteome 

profiling revealed that a long-term (12 hour) BDNF stimulation could increase 
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levels of a number of proteins involved in cellular metabolism and proliferation, 

while again most protein levels were decreased or unchanged (Manadas et al., 

2009). The authors reported that BDNF was capable of affecting both the mRNA 

and protein levels of its targets, but that these changes were not always 

correlated, supporting post-transcriptional roles for BDNF in regulating de novo 

protein synthesis or protein stability (Manadas et al., 2009). 

If BDNF in fact leads to increased translation of only 4% of transcribed 

mRNAs, how does it act to achieve such a remarkable degree of translational 

specificity? One well-established method of achieving selective translation is 

through RNA-binding proteins, which play important roles in post-transcriptional 

regulation of mRNAs by enhancing or repressing the translation of certain 

mRNAs. MicroRNAs (miRNAs), which inhibit translation of specific mRNA 

targets, represent another cellular method of post-transcriptional regulation of 

specificity in protein synthesis. Several different RNA-binding proteins have been 

observed both to be present at synapses, and to regulate the translation of major 

targets of BDNF (Bhakar et al., 2012; Huang et al., 2002; Huang et al., 2012; 

Napoli et al., 2008; Wu et al., 1998). However, a more direct link is documented 

between BDNF signaling and regulation of miRNA expression. 

 

Post-transcriptional regulation by micoRNA-mediated repression 

Although miRNA-mediated regulation of protein synthesis was only 

relatively recently discovered (Lee et al., 1993), in the past 20 years many 

ground-breaking studies have demonstrated the importance of miRNA function in 
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all cell types. MiRNAs are short (20-24 nucleotide), non-coding RNA molecules 

that are endogenously expressed. They are able to recognize and bind partially 

complementary sites in their target mRNAs, causing translational suppression 

and/or degradation of these targets. Precursor miRNAs undergo several well-

established processing steps to produce functional mature miRNAs. The 

canonical miRNA biogenesis pathway starts with transcription of a larger 

precursor miRNA (pri-miRNA) in the nucleus, where it is processed into a pre-

miRNA stem-loop structure (of ~70 nucleotides) by the enzyme Drosha. This pre-

miRNA hairpin is then exported into the cytoplasm, where it undergoes a second 

processing step by the RNaseIII enzyme Dicer and its binding partner Tar-RNA 

Binding Protein (TRBP) into a mature miRNA duplex. Regulation of either of 

these processing steps can dramatically affect the levels of functional mature 

miRNAs, and thus the expression of their mRNA targets.  

MiRNA function in the brain has been shown to be crucial for normal 

neuronal development and plasticity in both mammalian and non-mammalian 

species (Giraldez et al., 2005; Krichevsky et al., 2003; Sempere et al., 2004; 

Smalheiser and Lugli, 2009). Given that a single miRNA can potentially regulate 

expression of an entire suite of proteins, miRNAs are attractive candidates for 

coordinating complex responses such as neuronal development, plasticity and 

synaptic remodeling at a post-transcriptional level. Interestingly, in comparison to 

other cell types, neuronal miRNAs have been shown to undergo dramatically 

accelerated activity-dependent turnover (Krol et al., 2010), which could enhance 
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their contribution to rapid, dynamic changes in neuronal gene expression 

following activity. 

There is strong evidence for the presence of both miRNAs and miRNA 

processing machinery at the synapse (Ashraf et al., 2006; Huang et al., 2012; 

Lugli et al., 2012; Schratt et al., 2006; Wayman et al., 2008), further supporting a 

potential role for miRNAs in synaptic plasticity.  The miRNA processing enzyme 

Dicer has been found to be present and active in synaptosomes, and there is 

additional evidence for enrichment of both precursor (pre-miRNAs) and mature 

miRNAs at synapses (Lugli et al., 2005; Lugli et al., 2008). Enrichment of mature 

miRNAs has been correlated with the presence of the corresponding pre-miRNA, 

again suggesting that miRNA processing might happen locally at the synapse 

(Lugli et al., 2008).  

  

BDNF regulates miRNA biogenesis through the Lin28/Let-7 axis 

Given that microRNA-mediated regulation has the ability to affect a wide 

range of downstream targets, recent emphasis has been placed on elucidating 

regulators of miRNAs themselves. Initial studies addressing the potential for 

individual miRNA regulation by BNDF demonstrated that BDNF signaling leads to 

changes in function or levels of single miRNAs involved in structural components 

of plasticity, including spine size and dendritic outgrowth (Dajas-Bailador et al., 

2012; Fiore et al., 2009; Kawashima et al., 2010; Schratt et al., 2004; Schratt et 

al., 2006; Vessey et al., 2010; Vo et al., 2005; Wayman et al., 2008). However, 

recent work from our laboratory (Huang et al., 2012) has shown that BDNF can 
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also act upstream of miRNA processing to coordinately regulate the biogenesis 

of miRNAs globally. Briefly, BDNF stimulation of cultured hippocampal neurons 

elevates both Dicer and TRBP proteins in a rapid, transcription-independent 

manner, which enhances pre-miRNA processing and is associated with a 

concurrent increase in many mature miRNAs (Fig. 1.1). This finding initially 

appears somewhat counterintuitive, given that a global increase in miRNA 

biogenesis would suggest a global decrease rather than increase in translation. 

However, we also observed that BDNF selectively decreases the processing of a 

specific class of miRNAs – abundantly comprised of the Let-7 miRNA family - 

that are inhibited by an RNA-binding protein called Lin28 (Fig. 1.1). Let-7 

miRNAs repress a range of pro-growth mRNAs, including various examples that 

are known to be crucial for synaptic function, such as CamKIIα and GluA1 

(Huang et al., 2012).  

Vertebrates express two functionally redundant homologous forms of 

Lin28, Lin28a and Lin28b, which possess highly similar coding regions that share 

~80% sequence identity (Heo et al., 2009; Piskounova et al., 2011) (Fig. 1.2). 

However, Lin28a exists primarily in the cytoplasm where it inhibits pre- to mature 

Let-7 miRNA processing, while Lin28b exists primarily in the nucleus where it 

inhibits pri- to pre-Let-7 processing (Piskounova et al., 2011). Though both forms 

of Lin28 were previously considered to be transcriptionally silenced in 

differentiated cell types such as neurons, we found that Lin28a protein, but not 

Lin28b, was substantially elevated by BDNF in a rapid, transcription-independent 

manner, and that this accounted for the specific decrease in mature Let-7 miRNA 
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expression following BDNF stimulation (Huang et al., 2012). Let-7 miRNAs are 

particularly abundant in the brain (Lagos-Quintana et al., 2002; Wienholds et al., 

2005; Wulczyn et al., 2007), and make up at least 50% of miRNAs present in 

mature neurons (Juhila et al., 2011; Shinohara et al., 2011). Thus, Lin28a 

elevation resulting in reduced Let-7 miRNA-mediated repression could account 

for the mRNA targets that are selectively affected by the global increase in 

translation caused by BDNF. Accordingly, our laboratory demonstrated that 

expression of a mutant Let-7 miRNA construct that was unable to be inhibited by 

Lin28 protein resulted in loss of specificity for targets upregulated by BDNF 

(Huang et al., 2012).  

Taken together, this research suggests that BDNF positively regulates 

global miRNA biogenesis by upregulating Dicer and TRBP proteins, and 

negatively regulates Let-7 miRNA biogenesis specifically by increasing Lin28a 

protein. In this way, BDNF increases miRNA-mediated repression globally while 

selectively relieving translational repression of Let-7 miRNA targets. Increased 

miRNA biogenesis via the Dicer/TRBP arm of this hypothesis may account for 

the transcripts that have been shown to undergo decreased translation in 

response to BDNF (Raab-Graham et al., 2006; Rivera et al., 2002), and indeed 

knockdown of Dicer protein in cell culture prevented a BDNF-mediated decrease 

in such targets (Huang et al., 2012). In contrast, BDNF leads to increased 

translation of specific pro-growth mRNAs that harbor Let-7 miRNA binding sites 

by increasing Lin28a protein levels and thus inhibiting Let-7 miRNA processing. 

Knockdown of Lin28a prevented a BDNF-mediated increase in many important 
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Let-7 containing targets, such as CamKIIα, that are known to contribute to the 

synaptic and cognitive effects of BDNF (Huang et al., 2012). Similarly, 

expression of a mutant Lin28-resistant Let-7 miRNA in hippocampal neurons 

prevented BDNF from enhancing dendritic arborization (Huang et al., 2012), 

suggesting that the ability of BDNF to inhibit Let-7 miRNAs through Lin28 

induction is required for physiological readouts of BDNF signaling. 

 

Characterization of the Lin28/Let-7 axis in growth and development 

Lin28 is a pro-growth pluripotency factor that is highly expressed in stem 

cells and many cancer cells, and is downregulated during development (Moss et 

al., 1997; Olde Loohuis et al., 2012). It was discovered in C. elegans as a 

heterochronic gene important in developmental timing (Moss et al., 1997), and 

was subsequently shown to be both conserved and similarly temporally regulated 

in other model organisms (Moss and Tang, 2003a). In recent years, Lin28 protein 

has been suggested to bind to conserved sequences in certain mRNAs, 

subsequently regulating their translation. Specifically, Lin28 is demonstrated to 

directly increase synthesis of RNA binding proteins, and to inhibit translation of 

mRNAs targeted to the endoplasmic reticulum (Cho et al., 2012; Wilbert et al., 

2012). Additionally, Lin28 may bind to specific DNA promoter regions, and thus 

regulate gene expression through transcription as well as translation (Zeng et al., 

2016). However, Lin28 is thought to exert its proliferative effects primarily through 

well-documented negative regulation of Let-7 microRNA biogenesis (Heo et al., 
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2008; Heo et al., 2009; Moss et al., 1997; Nam et al., 2011; Viswanathan et al., 

2008).  

Because they inhibit translation of a range of important pro-growth 

proteins, the Let-7 miRNAs exhibit an expression pattern directly opposite to that 

of Lin28 – they are virtually absent from stem cells, and are substantially 

upregulated across development (Moss et al., 1997; Olde Loohuis et al., 2012). 

This opposing expression of Lin28 and the Let-7 miRNAs occurs through a 

negative feedback mechanism. Lin28 binds and remodels the terminal loop of the 

pre-Let-7 miRNA via its cold shock domain, which then allows the Lin28 zinc 

knuckle domain to bind to a conserved ‘GGAG’ motif in the terminal loop of the 

pre-Let-7 (Mayr et al., 2012; Nam et al., 2011). Lin28 binding to the ‘GGAG’ motif 

recruits a terminal uridylase such as TUT4 or TUT7 (Heo et al., 2009; Thornton 

et al., 2012), resulting in poly-uridylation and subsequent degradation or 

inhibition of the pre-Let-7 (Heo et al., 2008; Heo et al., 2009; Nam et al., 2011). 

Thus, Lin28 protein is able to prevent Let-7 miRNA maturation prior to 

Dicer/TRBP processing. Conversely, mature Let-7 miRNAs can inhibit translation 

of Lin28 mRNA through Let-7 miRNA binding-sites in the Lin28 3’ UTR (Huang et 

al., 2012; Rybak et al., 2008). 

 Just as Lin28 enhances cellular division and pluripotency through its 

inhibition of Let-7 miRNAs, Let-7 miRNAs function to control differentiation and 

cell cycle termination by inhibiting translation of growth-related genes. For 

example, hypodermal blast cells of C.elegans Let-7 mutants fail to appropriately 

exit the cell cycle during development (Reinhart et al., 2000). Let-7 miRNAs are 
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grouped as a family not only because they share the Lin28-targeted ‘GGAG’ 

motif, but also because they exhibit identical ‘seed’ sequence regions 

(nucleotides 2-8 of the mature miRNA 5’ end). The seed sequence is important in 

generating target recognition, suggesting that each Let-7 miRNA family member 

inhibits an overlapping (though not identical) group of targets (Lim et al., 2003b), 

generally functioning to provide a regulatory stop on growth and pluripotency.  

 

Lin28 regulation in mammalian systems 

Though the Lin28/Let-7 axis was initially and predominately characterized 

in C. elegans, it is known to be highly evolutionarily conserved, from zebrafish to 

rodent to human (Moss and Tang, 2003a; Pasquinelli et al., 2000; Viswanathan 

et al., 2008). As the importance of this axis as a regulator of growth and plasticity 

has begun to be appreciated, a range of research has been directed towards 

understand the role of Lin28 in mammalian tissues. In particular, Lin28a is one of 

a cocktail of four factors used to re-program differentiated mammalian cells into 

stem cells (Yu et al., 2007), and expression of Lin28a is one of the best 

predictors of successful iPSC reprogramming (Buganim et al., 2012). 

Additionally, Lin28 has been shown to promote insulin sensitivity and glucose 

uptake through Let-7 miRNA reduction, leading to resistance towards high fat 

diet-induced diabetes in mice (Zhu et al., 2011). Also in mice, Lin28 

overexpression in adults enhances tissue recovery and regeneration (Shyh-

Chang et al., 2013). GWAS studies in humans have linked genetic variations in 

the Lin28 locus to differences in height and sexual maturation (Ong et al., 2009; 
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Tommiska et al., 2011). In addition, due to the pro-growth nature of Lin28 

function, at least 15% of human cancers are associated with elevations in Lin28 

upstream of Let-7 miRNA reductions (Wang et al., 2012). Because the Let-7 

miRNAs function as a group to inhibit expression of pro-growth genes, it is 

unsurprising that they are downregulated in a range of cancers, and are referred 

to a ‘tumor-suppressor’ miRNAs. For example, Let-7 miRNAs are globally 

decreased in human lung cancer tissues, and their reduction is associated with 

poor clinical outcome (Calin et al., 2004; Takamizawa et al., 2004; Yanaihara et 

al., 2006; Yu et al., 2008). Because of this, cancer treatment therapies involving 

the use of Let-7 microRNA mimics are currently in development (Dai et al., 2015; 

Kasinski et al., 2015; Liu et al., 2014; Wang et al., 2012). 

Though Lin28 protein has been demonstrated to play a critical role in 

cellular growth and survival, and to be potentially pathogenic when dysregulated, 

mechanisms allowing for control of Lin28 expression have not been well 

characterized. In mammalian embryonic stem cells, transcription of Lin28a is 

regulated by Oct4, Sox2, Nanog, and TCF3 (Marson et al., 2008). Additionally, 

the transcription factors c-Myc and NF-κB are capable of transactivating Lin28b 

in cancer cells (Chang et al., 2009; Iliopoulos et al., 2009). However, the only 

signaling mechanism previously known to regulate the Lin28/Let-7 axis involves 

nuclear receptors in C. elegans and Drosophila Melanogaster that transmit 

steroid hormone signals to increase Let-7 transcription (Chawla and Sokol, 2012; 

Hammell et al., 2009). Work from our laboratory showing rapid, transcription-

independent induction of Lin28a protein by BDNF (Huang et al., 2012) was not 
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only the first demonstration of a signal-dependent mechanism for Lin28 induction 

in mammalian cells, it was also the first demonstration of Lin28a expression and 

function in differentiated neurons. These findings gave us the opportunity both to 

further elucidate molecular regulation of gene target specificity downstream of 

BDNF signaling, and to achieve an understanding of mechanisms underlying 

Lin28 induction.  

The majority of my dissertation aims to uncover mechanisms of Lin28a 

induction downstream of trophic signaling, as will be described in Chapter 2. The 

work in Chapter 2 lead us to the hypothesis that a pathway controlling Lin28a 

might be mysregulated in a human tumor disorder, Neurofibromatosis Type 2, 

which is the focus of Chapter 3. Together, we hope that this work will lead to a 

better appreciation of mechanisms underlying Lin28 regulation, which could be 

important in increasing understanding of and therapeutic approaches for both 

diseases and disorders associated with dysregulated BDNF signaling, as well as 

those resulting from abnormal expression of Lin28a. 

 

 

Note: As part of my dissertation, I have worked in collaboration with several other 

lab members whose research contributed importantly to our understanding of 

Lin28 regulation. Experiments performed by these collaborators are referenced in 

each figure legend, where appropriate. I contributed intellectually to all aspects of 

the research presented in this document.  
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Figures and legends 

Figure 1.1: BDNF generates target specificity by regulating miRNA 

biogenesis 

BDNF leads to positive regulation of miRNA biogenesis, and enhanced 

abundance of non-Let-7 family miRNAs, as a result of BDNF-induced increases 

in the miRNA processing proteins Dicer and TRBP (left side of panel). This 

explains why some mRNAs are excluded from translation in response to BDNF. 

Negative regulation of miRNA biogenesis occurs through BDNF-induced 

upregulation of the RNA-binding protein Lin28a, which blocks the processing of 

the Let-7 family of miRNAs specifically (right side of panel). This allows increased 

selective translation of Let-7 miRNA targets, which mediate a cellular pro-growth 

response to BDNF. 

 

Figure 1.1 

     Huang et al., 2012      
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Figure 1.2: Lin28a and Lin28b share significant sequence homology 

 The vertebrate paralogs Lin28a and Lin28b both repress production of 

Let-7 miRNAs and were traditionally thought to be functionally redundant. The 

protein coding regions (coding DNA sequence, CDS) of Lin28a and Lin28b are 

highly homologous, sharing ~80% sequence identity. The Lin28b CDS, however, 

contains two nuclear localization signals not found in Lin28a, and thus Lin28b is 

localized to the nucleus while Lin28a is predominantly cytoplasmic (Piskounova 

et al., 2011). Additionally, the 3’ untranslated region (UTR) of Lin28b is roughly 

twice the size of the Lin28a 3’ UTR, suggestive of increased translational control. 

 

Figure 1.2 
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Chapter 2: A rapid induction mechanism for Lin28a in trophic 

responses 

 

Background 

The cellular complement of proteins instructs cell identity, structure, and 

function.  Mechanisms to rapidly tailor cellular protein composition in reaction to 

external trophic cues facilitate effective physiological responses supporting 

survival, growth, and plasticity.  The heterochronic Lin28 RNA-binding proteins, 

first discovered in C.elegans, have evolutionarily-conserved roles as 

determinants of transitions in biological growth (Buganim et al., 2012; Shyh-

Chang et al., 2013; Viswanathan et al., 2009; Zhu et al., 2010), but 

understanding their regulation by environmental stimuli has remained a 

challenge.  Lin28 proteins coordinate selective protein synthesis from suites of 

genes that control cellular and organismal growth, in part through a mutually 

antagonistic relationship with the Let-7 family of microRNAs (miRNAs).  Lin28 

has recently been found to exert widespread effects on mammalian growth and 

development, including governing body size, reproductive maturation, 

metabolism, tissue regeneration, and cellular reprogramming (Buganim et al., 

2012; Shyh-Chang et al., 2013; Zhu et al., 2010).  Elevated Lin28 expression is a 

common oncogenic feature associated with advanced malignancy in humans 

(Chang et al., 2013; Mao et al., 2013; Urbach et al., 2014; Viswanathan et al., 

2009), and implicated in highly prevalent and age-related diseases such as 
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insulin-insensitivity and type II diabetes (Frost and Olson, 2011; Perez et al., 

2013; Zhu et al., 2010; Zhu et al., 2011).   

 Despite understanding of the Lin28/Let-7 pathway as a key regulator of 

growth-related genes, mechanisms by which stimuli might target Lin28 for 

biological responses are lacking.  Lin28 levels are high in progenitor cells and 

gradually decline during development to negligible levels in differentiated cells, 

leading to assumptions of protracted Lin28 regulatory mechanisms.  However, a 

prior observation from our laboratory (Huang et al., 2012) of rapid Lin28a 

upregulation in fully-differentiated neurons by a growth factor, BDNF, presented 

an opportunity to uncover cellular signaling pathways controlling Lin28.  In this 

study, we demonstrate that Lin28a undergoes rapid transcription-independent 

induction by protein stabilization in complex with a previously unknown binding-

partner, TRBP.  BDNF induces MAPK-dependent TRBP phosphorylation, which 

both protects TRBP from proteasomal degradation and enhances TRBP binding 

to Lin28a.  Lin28b, a paralog of Lin28a, does not associate with TRBP and is not 

induced by TRBP phosphorylation, exposing a mechanism for distinct stimulus-

responsive regulation of Lin28a and Lin28b.  Further, our data show that this 

rapid Lin28a induction pathway is broadly employed downstream of multiple 

trophic factors in diverse primary cells.  These studies identify TRBP 

phosphorylation downstream of activated MAPK, and concomitant Lin28a 

stabilization, as a central mediator in neuronal pro-growth responses to BDNF, 

highlighting an unappreciated post-transcriptional induction mechanism for the 

pluripotency-associated Lin28/Let-7 pathway in rapid trophic responses. 
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Results 

Rapid posttranscriptional induction of Lin28a, but not Lin28b 

 To address the regulatory mechanisms supporting stimulus-dependent 

Lin28a induction, we first evaluated the possibilities of altered Lin28a 

transcription, translation and protein stability.  Primary murine hippocampal 

neurons stimulated with BDNF in the presence or absence of the transcription 

inhibitor, Actinomycin-D, showed no significant difference in the rate or amplitude 

of rapid Lin28a protein induction (Fig. 2.1a). Lin28a protein is 

posttranscriptionally induced 2-2.5 fold by BDNF over this timecourse, a 

magnitude shown to be sufficient to mediate physiological effects of BDNF on 

neuronal growth and protein synthesis (Huang et al., 2012; Kanhema et al., 

2006; Kelleher et al., 2004).  A band near the predicted molecular weight of 

Lin28a protein (25 kD) typically predominates in undifferentiated cells (e.g. 

embryonic stem cells and cell lines), while in differentiated primary cells we 

detect endogenous Lin28a protein as a predominant band or bands near 37 kD, 

as previously reported (Huang et al., 2012; Moss and Tang, 2003; Nowak et al., 

2014; Seggerson et al., 2002) and validated by knockdown (Supplementary Fig. 

1a).  This banding pattern is observed using multiple antibodies raised against 

distinct Lin28a epitopes (Supplementary Fig. 1a), and has been attributed to 

posttranslational modification and alternative splicing of Lin28a (Seggerson et al., 

2002).  

Concordant with the Actinomycin-D results, quantitative real-time PCR 

(qRT-PCR) demonstrated that Lin28a mRNA levels were also not significantly 



	

	 24 

altered in a two-hour timecourse following BDNF stimulation without transcription 

inhibition (Fig. 2.1b).  These results indicated that post-transcriptional 

mechanisms likely mediate rapid upregulation of Lin28a protein. The 

untranslated regions (UTRs) of mRNAs can regulate mRNA stability, localization, 

and translation efficiency.  To examine a potential role for the Lin28a mRNA 

UTRs in conferring rapid Lin28a induction by BDNF, we next compared the 

induction of endogenous Lin28a to that of a FLAG-tagged Lin28a (FL-Lin28a) 

construct lacking the Lin28a UTRs.  Rapid induction kinetics of endogenous 

Lin28a and FL-Lin28a were indistinguishable in a timecourse from 5 to 60 

minutes following neuronal BDNF stimulation (Fig. 2.1c).   

 Most vertebrates possess two Lin28 paralogs, Lin28a and Lin28b, both of 

which can reduce mature Let-7 miRNA levels by inhibiting distinct steps in Let-7 

miRNA biogenesis (Piskounova et al., 2011) to influence mRNA translation.  In 

contrast to Lin28a, protein levels of endogenous Lin28b or a FLAG-tagged 

Lin28b (FL-Lin28b) lacking the Lin28b UTRs did not undergo BDNF-dependent 

induction over a similar time course (Fig. 2.1d and Fig. 2.2b).  Though both 

Lin28a and Lin28b can shuttle between nucleus and cytoplasm, Lin28a is 

localized predominantly to the cytoplasm, whereas Lin28b is believed to be 

primarily nuclear.  We tested the possibility that nuclear localization of Lin28b 

prevents its induction by BDNF, using a Lin28b construct in which mutation of 

both nuclear localization sequences (FL-Lin28bΔNLS; gift of R.Gregory) results 

in a predominantly cytoplasmic localization (Piskounova et al., 2011).  No BDNF-
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responsive induction was observed in protein levels of FL-Lin28bΔNLS in 

hippocampal neurons (Fig. 2.1d and Fig. 2.2b).   

 The lack of a requirement for the Lin28a UTRs in BDNF-dependent 

induction suggested direct regulation at the level of the Lin28a protein.  To test 

this, we examined the effects of BDNF on Lin28a protein stability by radiolabel 

([35S]Cys/Met) pulse chase analysis.  Hippocampal neurons were incubated with 

BDNF only during the chase period in order to exclude effects on radiolabel 

incorporation due to altered translation.  The median half-life of mammalian 

proteins has been estimated to be forty-six hours (Schwanhausser et al., 2011). 

We observed that Lin28a protein undergoes fast turnover under basal conditions, 

with levels of Lin28a signal reduced to 48.2% ± 7.6% in 30 minutes.  In contrast, 

no significant loss of Lin28a was observed over 3 hours in the presence of BDNF 

(Fig. 2.1e).  BDNF, and excitatory neuronal activity, is generally reported to 

increase ubiquitin/proteasome-mediated turnover of cellular proteins ((Bingol and 

Schuman, 2006; Ehlers, 2003; Jia et al., 2008; Lin et al., 2011), but see (Santos 

et al., 2015)).  However, taken together, these results indicate that rapid 

induction of Lin28a protein levels by BDNF is due to enhanced Lin28a protein 

stability.   

 

MAPK-mediated TRBP phosphorylation promotes induction of Lin28a, but 

not Lin28b 

 We noted that the timecourse of Lin28a protein induction paralleled our 

previous observations of rapid BDNF-induced activation of extracellular signal-
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regulated protein kinase (Erk) and phosphorylation of TRBP (Huang et al., 2012), 

which is a cofactor and binding partner of the miRNA-processing enzyme, Dicer.  

TRBP is reported to stabilize Dicer protein through co-association, and Erk-

dependent phosphorylation of TRBP can induce both TRBP and Dicer protein 

levels ((Chendrimada et al., 2005; Haase et al., 2005; Melo et al., 2009; Paroo et 

al., 2009), but see (Kim et al., 2014)).  To examine whether Erk activity also 

participates in rapid induction of Lin28a protein, we tested the effects of the 

MEK/Erk inhibitor, U0126, on BDNF-dependent induction of Lin28a in neurons.  

Interestingly, Erk inhibition eliminated Lin28a induction by BDNF and also caused 

a modest reduction in basal Lin28a protein levels (Fig. 2.3a), consistent with 

known low-level basal BDNF signaling in neurons (Jia et al., 2008; McAllister et 

al., 1997).  As anticipated, U0126 also prevented BDNF-dependent elevation of 

TRBP and Dicer protein levels (Fig. 2.3a).  These results suggested that TRBP 

phosphorylation might underlie a requirement for Erk activity in post-translational 

Lin28a induction by BDNF.  To directly test a requirement for TRBP in Lin28a 

induction, we used lentiviral-mediated knockdown (KD) of TRBP in hippocampal 

neurons, which prevented BDNF-mediated induction of both Lin28a and Dicer 

proteins (Fig. 2.3b).  TRBP-deficiency also produced a modest but significant 

reduction in the low basal levels of Lin28a (Fig. 2.3b).  In contrast, Dicer KD did 

not alter basal Lin28a protein levels in hippocampal neurons (Fig. 2.4a).  We 

conclude that both MEK/Erk activity and TRBP are required for BDNF-mediated 

Lin28a induction. 
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 We next investigated the mechanism by which TRBP might upregulate 

Lin28a protein, and the role of TRBP phosphorylation in this process.  Mass 

spectrometry analysis has shown TRBP phosphorylation at four serine residues 

(142,152,283,286)(Paroo et al., 2009), two of which are potential consensus Erk 

phosphorylation sites.  Expression of either wildtype (TRBPWT) or phospho-

mimic (TRBPSΔD), but not phospho-mutant TRBP (TRBPSΔA) (gift of Z.Paroo 

(Paroo et al., 2009)), in HEK293T cells was capable of significantly elevating 

levels of Lin28a protein expressed from a construct lacking the Lin28a UTRs (FL-

Lin28a), showing that these effects require only the Lin28a protein coding region 

(Fig. 2.3c).  In contrast, levels of Lin28b protein were not altered by expression of 

TRBP constructs, even when Lin28b was localized to the cytoplasm through 

mutation of its nuclear-localization sequences (FL-Lin28bΔNLS)(Fig. 2.3c).  A 

dose-titration of the TRBP constructs revealed that, at equivalent protein levels, 

phospho-mimic TRBP consistently produced significantly greater elevation of 

Lin28a protein than either wildtype or phospho-mutant TRBP (Fig. 2.3d).    

 If BDNF signaled through phosphorylation of TRBP to rapidly induce 

Lin28a, we anticipated that phospho-mimic TRBP expression might similarly 

induce Lin28a, while phospho-mutant TRBP might inhibit induction.  To test this 

prediction, we compared elevation of Lin28a by BDNF in neurons subjected to 

lentiviral-mediated expression of equivalent levels of wild-type, phospho-mimic 

and phospho-mutant TRBP, under control of a neuron-specific synapsin 

promoter.  In neurons expressing wildtype TRBP, BDNF was still able to 

upregulate Lin28a protein levels; however, phospho-mimic TRBP expression 
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elevated basal Lin28a levels and occluded further induction by BDNF (Fig. 2.3e 

and Fig. 2.4b).  BDNF-dependent induction of Lin28a could still be observed in 

neurons expressing phospho-mutant TRBP in the presence of endogenous 

TRBP (non-target shRNA), but this was eliminated by concomitant KD of 

endogenous TRBP (TRBPshRNA)(Fig. 2.3e and Fig. 2.4c,d).  We conclude that 

TRBP deficient in serine sites for Erk phosphorylation does not support BDNF-

induction of Lin28a.  Neuronal expression of phospho-mimic TRBP also 

mimicked a downstream effect of elevated Lin28a, by lowering levels of Lin28-

targeted miRNAs (e.g. Let-7 family members)(Fig. 2.3f) and occluding further 

reduction by BDNF.  These results indicate that TRBP phosphorylation is 

necessary and sufficient to functionally upregulate Lin28a, and they link BDNF-

induced TRBP phosphorylation to rapid post-transcriptional changes in the Let-7 

family miRNAs that govern synthesis of many pro-growth proteins.  BDNF also 

enhances Dicer levels through phosphorylation and stabilization of TRBP (Huang 

et al., 2012), leading to increased biogenesis of many miRNAs not targeted by 

Lin28.  As expected, a Dicer-dependent but non-Lin28 targeted control miRNA 

(miR-132) underwent BDNF-mediated induction that was mimicked and occluded 

by neuronal expression of phospho-mimic TRBP (Fig. 2.3f).  

 

TRBP phosphorylation reduces its polyubiquitination 

Our results implicated Erk-mediated TRBP phosphorylation and the concomitant 

increase in total TRBP protein as a critical signaling event producing rapid Lin28a 

induction (Fig. 2.3a-e). Previous reports using cell lines indicated that 
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phosphorylation might enhance TRBP stability (Paroo et al., 2009), and that 

TRBP was subject to cell-density dependent turnover by the 26S proteasome 

during a prolonged 15 hour timecourse (Lee et al., 2006). To examine the 

possibility that BDNF-induced TRBP phosphorylation might alter its proteasomal 

regulation, we first evaluated whether TRBP was subject to rapid proteasome-

dependent turnover in primary cells.  Brief inhibition of 26S proteasomal activity 

(MG132, 60 min) in hippocampal neurons resulted in the accumulation of high 

molecular weight forms of TRBP, which suggested basal ubiquitin-mediated 

turnover (Fig. 2.5a).  To investigate regulation of TRBP stability by 

phosphorylation, we next evaluated wildtype, phospho-mimic, and phospho-

mutant forms of TRBP for K48-linked ubiquitination, which is associated with 

proteasomal degradation. Stringent IP of FL-TRBP, FL-TRBPSΔD, or FL-

TRBPSΔA from HEK293T cells co-expressing an HA-tagged ubiquitin mutant 

exclusive for K48-linkages (HA-K48-Ubiquitin, other lysines mutated to 

arginines)(Lim et al., 2005) showed a ladder of anti-HA immunoreactivity 

associated with wildtype and phospho-mutant TRPB, consistent with 

polyubiquitination.  Quantification normalized to the amount of IPd TRBP 

construct showed that K48-linked ubiquitin association with phospho-mutant 

TRBP was significantly elevated relative to wildtype TRBP.  In contrast, K48-

linked ubiquitin laddering associated with phospho-mimic TRBP was reduced by 

nearly 5 fold relative to phospho-mutant TRBP and was also significantly reduced 

relative to wildtype TRPB (Fig. 2.5b).  Stringency of the IP was validated by 

demonstrating loss of TRBP association with a Dicer-containing complex under 
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these high salt and detergent IP conditions (Fig. 2.5b).  These results are 

consistent with phosphorylation of TRBP regulating the process of TRBP 

ubiquitination and proteasomal degradation. To understand how this regulation 

might occur, we considered the known binding interactions of TRBP. 

 The third double-stranded RNA binding domain of TRBP does not bind 

RNA but is instead thought to mediate protein-protein interactions with binding 

partners such as Dicer (Haase et al., 2005) and a tumor-suppressor protein, 

Merlin (Lee et al., 2004). Merlin binding to TRBP facilitates ubiquitination and 

proteasomal degradation of TRBP (Lee et al., 2006).  We hypothesized that 

Merlin might exert its anti-proliferative effect by controlling protein levels of TRBP 

and, consequently, levels of Lin28a.  Accordingly, we asked whether Merlin 

played a role in BDNF-mediated regulation of TRBP phosphorylation and 

abundance.  While treatment of neurons with BDNF did not alter the total levels 

of Merlin protein (Fig. 2.6a), pull-down assays showed that HA-tagged Merlin 

(Zhao et al., 2007) expressed in HEK293T cells exhibited a co-association with 

wildtype TRBP (FL-TRBP) that was robustly enhanced with phospho-mutant 

TRBP and greatly reduced with phospho-mimic TRBP (Fig. 2.5c).  This result 

suggests that phosphorylation of TRBP might inhibit TRBP binding to Merlin, a 

mechanism that could underlie the reduced ubiquitination and enhanced stability 

of phosphorylated TRBP and, in turn, mediate enhanced stability of Lin28a. 
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TRBP is a binding partner of Lin28a 

 While precise roles of TRBP in RNA processing are incompletely 

delineated, TRBP has been shown to regulate the biogenesis of miRNAs and to 

assist in generating the small RNA-induced silencing complex (RISC) by 

stabilizing associations with Dicer-containing complexes (Chendrimada et al., 

2005; Daniels et al., 2009; Fukunaga et al., 2012; Paroo et al., 2009; Wilson et 

al., 2015).  To further elucidate the role of TRBP, and in particular phospho-

TRBP, in Lin28a induction, we asked whether TRBP might also stabilize Lin28a 

through direct co-association using recombinant TRBP and Lin28a proteins 

expressed and purified from bacteria.  Purified Lin28a protein bound to a pull-

down of purified GST-TRBP protein, but not to GST alone (Fig. 2.7a and Fig. 

2.8a), demonstrating direct protein-protein interaction between Lin28a and 

TRBP.  Lin28a protein showed significantly increased binding to phospho-mimic 

TRBP protein (GST-TRBPΔD) compared to wildtype TRBP protein (Fig. 2.7a).  

This result is consistent with our intracellular expression titration (Fig. 2.3d), and 

indicates that TRBP phosphorylation may stabilize Lin28a both through 

increased stability of TRBP itself, and also by increasing binding affinity for 

Lin28a. We next tested whether endogenous Lin28 associates with TRBP-

containing protein complexes in HEK293T cells, which we found express Lin28a 

at a molecular weight of ~25kD (Fig. S4b), although a previous study suggested 

that HEK293T cells may lack Lin28a expression (Heo et al., 2012). Endogenous 

Lin28a and Dicer both co-immunoprecipitated (co-IPd) with FLAG-tagged TRBP 

(FL-TRBP) and not with control IgG in HEK293T cells, and the reverse 
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association of endogenous TRBP and Dicer with IPd FLAG-tagged Lin28 (FL-

Lin28a) was also observed (Fig. 2.7b,c).  The lysate input control, GAPDH, was 

not co-IPd.  Since TRBP expression did not induce the Lin28a paralog, Lin28b, 

(Fig. 2.3c), we tested whether this might be due to an inability of Lin28b to 

associate with complexes containing TRBP and Dicer.  IP of FLAG-tagged 

Lin28b (FL-Lin28b) or cytoplasmic Lin28b (FL-Lin28bΔNLS) did not demonstrate 

association with endogenous Dicer or TRBP (Fig. 2.7d,e), and provided 

additional corroboration of the specificity of the FL-Lin28a IP.  Specific co-

association of FL-TRBP with myc-tagged Lin28a (myc-Lin28a) and endogenous 

Dicer, but not with myc-Lin28bΔNLS, was also observed (Fig. 2.8c).  These 

results highlight a critical node of differential regulation by TRBP between the 

mammalian Lin28 paralogs. 

 We next used a sequential co-IP strategy to distinguish whether Lin28a 

can exist in a single complex with both TRBP and Dicer, or whether the observed 

co-IP might reflect separate complexes of Lin28a with either TRBP or Dicer.  

Lysates from HEK293T cells co-expressing myc-TRBP and FL-Lin28a were 

subjected to initial IP for the myc epitope, followed by elution and secondary IP of 

eluents for the FLAG epitope (Fig. 2.7f and Fig. 2.8d).  Immunoblot of eluents 

from secondary FLAG IP showed that Lin28a and Dicer were both associated 

with the TRBP-containing complex, indicating that these components can reside 

in a single complex (Fig. 2.7f).  While previous RISC characterizations show that 

RNAse treatment reduces but does not eliminate TRBP association with Dicer 

(Daniels et al., 2009; Haase et al., 2005), we observed a striking reduction in the 
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co-association of cellular Lin28a with TRBP and Dicer by RNAseA (Fig. 2.8e). 

Intracellular associations between RNA-binding proteins are often enhanced by 

cooperative complexes with RNA and other proteins, which can facilitate 

interaction at low intracellular concentrations.  The high conservation of RNA-

binding domains between Lin28a and Lin28b (Mayr et al., 2012), and the failure 

of Lin28b to co-associate with TRBP (Fig. 4d,e and Supplementary Fig. 4c), 

suggests that RNA-binding is not the sole mechanism of intracellular Lin28a and 

TRBP interaction. Taken together, our results are consistent with direct 

interactions of TRBP and Lin28a (observed with recombinant, purified proteins in 

vitro) that are facilitated at intracellular protein concentrations by the presence of 

RNA. 

 

TRBP phosphorylation downstream of BDNF promotes Lin28a co-

association 

 Our results indicated that expression of phospho-mimic, but not phospho-

mutant TRBP, significantly elevated total Lin28a levels (Fig. 2.3c,d), and that 

Lin28a has increased apparent binding affinity for phospho-TRBP (Fig. 2.7a).  

Based on these observations, we suspected that phosphorylation of TRBP might 

convey signal-induced Lin28a regulation, and that intracellular Lin28a might also 

preferentially co-associate with phospho-mimic TRBP.  IP of lysates from 

HEK293T cells co-expressing myc-Lin28a with FL-tagged wildtype, phospho-

mimic, or phospho-mutant TRBP, revealed robust association of Lin28a with 

phospho-mimic TRBP, which was enhanced relative to wildtype TRBP, and 
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reduced association of Lin28a with phospho-mutant TRBP (Fig. 2.7g).  

Overexpression of Lin28a was employed in these experiments to minimize 

possible artifacts resulting from differential induction of total Lin28a levels 

amongst the TRBP constructs.  FL-TRBP constructs were transfected at levels 

designed to achieve approximately equal expression, and quantitation of co-

associated Lin28a was normalized to IPd FL-TRBP level for each construct. 

 We next tested whether Lin28a might undergo enhanced association with 

phosphorylated TRBP as the physiological mechanism for Lin28a induction in 

neurons responding to BDNF.  Depletion IP in neurons with lentiviral-mediated 

expression of FL-Lin28a under control of the neuron-specific synapsin promoter, 

revealed that BDNF significantly enhanced the association of FL-Lin28a with 

endogenous total TRBP, phospho-TRBP, and Dicer, as well as producing the 

expected elevation in total levels of all three proteins (Fig. 2.7h, depleted lysates 

Fig. 2.8f).  Phospho-TRBP was detected using a phospho-specific TRBP 

polyclonal antibody we developed against an amino-terminal perfect Erk 

phosphorylation consensus site located adjacent to a putative Erk docking site in 

TRBP (Fig. 2.8g); we observe loss of antibody signal in lysates from Erk-inhibited 

cells (by U0126, Fig. 2.8h) and increased antibody signal in lysates from BDNF-

stimulated neurons (Fig. 2.8i).  While our data indicate that phospho-TRBP can 

function as a hub for parallel regulation of both Lin28a and Dicer, Dicer might 

also be regulated distinctly from Lin28a potentially through additional known 

Dicer partner proteins (Lee et al., 2013; Pepin et al., 2012; Rybak-Wolf et al., 

2014; Wilson et al., 2015).  Collectively, these data establish a context in which a 
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stimulus, BDNF, employs TRBP phosphorylation as a central molecular 

mechanism coordinating induction of both Lin28a and Dicer, which together 

produce gene-target specification in protein synthesis (Huang et al., 2012; Ruiz 

et al., 2014).   

 

Phospho-TRBP requires Lin28a to regulate dendritic spine growth 

 BDNF-regulated protein synthesis plays a prominent role in enduring 

neuronal plasticity in part by regulating structural changes involved in synaptic 

response. Our laboratory has previously demonstrated that BDNF-mediated 

dendritic outgrowth in immature hippocampal neurons requires inhibition of Let-7 

miRNAs through Lin28a induction (Huang et al., 2012). We now also observe 

that Lin28a overexpression in young (DIV 7) hippocampal neurons mimics 

increased dendritic arborization following BDNF, and occludes further response 

to BDNF (Appendix A.1-A.3). Similarly, BDNF regulates synaptic plasticity of 

terminally-differentiated excitatory neurons in part by promoting the growth of 

dendritic spines, which are the primary sites of excitatory synaptic contacts 

(Alonso et al., 2004; Je et al., 2009a, b; Tanaka et al., 2008).  We used this 

informative biological readout to test whether a pro-growth response to BDNF 

requires phospho-TRBP mediated induction of Lin28a.  We initially assessed the 

effect of phospho-TRBP on dendritic spine growth by comparing the density and 

volumes of dendritic spines in vehicle- or BDNF-stimulated hippocampal 

pyramidal neurons (DIV 17 - 19) expressing either phospho-mimic TRBP, or an 

empty vector control.  Hippocampal pyramidal neurons expressing empty vector 
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exhibited robust BDNF-induced elevations in both dendritic spine density 

(increased by 140.6%, Fig. 2.9a,b) and dendritic spine head volume (increased 

by 78.2%, Fig. 2.9c,d), results consistent with previously observed effects of 

BDNF on the enhancement of excitatory synaptic function (Lauterborn et al., 

2007; Tanaka et al., 2008).  In contrast, in the absence of BDNF (vehicle 

condition), neurons expressing phospho-mimic TRBP showed increases in 

dendritic spine density and spine head volume that mimicked BDNF-mediated 

elevations and occluded further induction by BDNF (Fig. 2.9a-d).   

 We hypothesized that phospho-TRBP might support dendritic spine 

growth by producing a pro-growth program of protein synthesis through elevated 

Lin28a, which could relieve Let-7 miRNA-mediated repression of pro-growth 

mRNAs (Huang et al., 2012).  Accordingly, we next directly tested the role of 

Lin28a in the promotion of dendritic spine growth by phospho-mimic TRBP.  

Knockdown of Lin28a through RNAi, but not expression of a control hairpin (non-

target shRNA), prevented the induction of elevated dendritic spine density and 

spine head volume by phospho-TRBP (Fig. 2.9e-h). The effects of phospho-

TRBP on spine density and volume were rescued by expression of an shRNA-

resistant Lin28a construct (FL-Lin28a*) in the presence of Lin28a shRNA (Fig. 

2.9e-h and Fig. 2.10a), supporting specificity of the requirement for Lin28a.  

Neurons expressing control non-target shRNA displayed increased dendritic 

spine growth in response to phospho-TRBP, similarly to wildtype neurons that 

were not expressing shRNA (Fig. 2.9f and 2.9h, compared to 2.9b and 2.9d).  

These experiments place Lin28a as an essential downstream mediator of 
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phospho-TRBP in a physiological growth response, which is consistent with our 

data showing BDNF-induction of a Lin28a-stabilizing complex through TRBP 

phosphorylation.  We conclude that TRBP phosphorylation, and subsequent 

Lin28a protein stabilization, displays an essential function in neurotrophin-

induced structural plasticity of terminally differentiated neurons. 

 

MAPK-dependent Lin28a induction is a shared feature in trophic responses 

 Our data collectively implicated Erk-mediated TRBP phosphorylation and 

the concomitant increase in total TRBP protein as a critical signaling event 

capable of producing rapid Lin28a induction to generate a pro-growth program.   

The observation that phospho-TRBP could induce Lin28a protein not only in 

neurons but also in a HEK293T cell line (Figs. 2c, 2d, and 2e), suggested the 

possibility for broader use of this regulatory pathway in trophic responses.  Since 

MAPK activation is a common feature of growth factor signaling cascades, we 

initially investigated whether MAPK pathway activation was sufficient to induce 

Lin28a.  Expression of a constitutively active MEK construct (HA-CAMAPKK) 

(Mansour et al., 1994) in HEK293T cells induced both TRBP and Lin28a proteins 

(Fig. 2.11a), consistent with potential for MAPK pathway activation to control 

TRBP and Lin28a protein regulation more widely.  We next tested whether 

MAPK-mediated TRBP phosphorylation might serve as a gateway to dynamic 

receptor-mediated regulation of Lin28a in a variety of cell types.  Stimulation of 

primary murine cultures of dorsal root ganglion (DRG) neurons with nerve growth 

factor (NGF), cortical glia with glial-derived neurotrophic factor (GDNF), and 
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peritoneal macrophages with mouse macrophage colony stimulating factor (mM-

CSF) all resulted in TRBP and Lin28a protein induction (Figs. 2.11b-d and Figs. 

2.12a-c).  As in hippocampal neurons, Lin28a protein in these primary cells 

migrates as a predominant band near 37 kD (Fig. 2.12d), as has been previously 

reported particularly in differentiated cells (Moss and Tang, 2003; Nowak et al., 

2014; Seggerson et al., 2002).  In each cell type, TRBP and Lin28 induction by 

growth factor were blocked by treatment with the MEK/Erk inhibitor U0126 (Figs. 

2.11b-d and Fig. 2.12a-c).  These results are consistent with TRBP 

phosphorylation, downstream of MAPK activation, serving as a general 

regulatory hub for Lin28a stabilization and subsequent pro-growth effects.  Our 

findings lead us to propose a model in which BDNF-mediated phosphorylation of 

TRBP reduces its association with Merlin, leading to decreased proteasomal 

degradation of TRBP and allowing enhanced levels of a phospho-TRBP and 

Lin28a protein complex (Fig. 2.13), which can also include Dicer.  We conclude 

that TRBP phosphorylation is a previously unrecognized mechanism for rapid 

post-translational induction of Lin28a protein and downstream control of miRNA 

biogenesis, which has biological relevance in acute growth factor-mediated 

responses. 

 

Discussion 

 The conserved importance of Lin28 proteins in processes of growth and 

development has led to their widespread study in diverse organisms.  A post-

translational control mechanism enabling elevation of Lin28a may not have been 



	

	 39 

previously recognized because the understanding that Lin28a can undergo rapid 

stimulus-dependent induction is relatively recent (Huang et al., 2012; Ruiz et al., 

2014; Shyh-Chang and Daley, 2013).  Genetic studies in C.elegans, where Lin28 

was first discovered, have reported that Lin28 levels decline during development 

as a result of miRNA-mediated repression (Morita and Han, 2006; Shyh-Chang 

and Daley, 2013), and changes in transcription have been associated with 

altered mammalian Lin28 levels during differentiation and in tumors (Chang et 

al., 2009; Iliopoulos et al., 2009; Marson et al., 2008; Shyh-Chang and Daley, 

2013).  In addition to development, Lin28 protein levels are also altered in a 

variety of biological contexts including oncogenesis, injury, and in cellular 

reprogramming to generate pluripotent stem cells (Buganim et al., 2012; 

Ramachandran et al., 2010; Rehfeld et al., 2015; Viswanathan et al., 2009). The 

potential broader significance of phospho-TRBP as a Lin28a regulatory linchpin 

in contexts apart from BDNF-dependent signaling is underscored by our finding 

that upregulation of phospho-ERK and TRBP downstream of diverse growth 

factor receptors in multiple cell types is also accompanied by Lin28a protein 

induction. 

 The vertebrate paralogs Lin28a and Lin28b arose through gene 

duplication, and their distinct and overlapping roles remain incompletely 

understood.  Lin28a and Lin28b proteins share similar, although not identical, 

expression patterns and a high degree of sequence identity (66% in mice, 73% in 

humans)(Balzer et al., 2010).  Both Lin28 paralogs can lower mature Let-7 

miRNA levels to de-repress growth-related transcripts, but the extent of 
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redundancy in their net effects on gene expression and biological responses is 

not yet clear.  Our finding of differential stabilization of Lin28a, but not Lin28b, 

through protein association with phospho-TRBP reveals a mechanistic difference 

in regulation that may have physiological relevance in growth and cellular self-

renewal, and is also intriguing in light of literature reporting discrete oncogenic 

roles of Lin28a and Lin28b in different tumor settings (Thornton and Gregory, 

2012).    

 Post-transcriptional regulation of gene expression is currently understood 

to substantially, if not predominantly, control the cellular abundance of proteins, 

but knowledge of regulatory mechanisms operating at this level to drive growth 

responses is relatively limited.  Here, we define a post-translational MAPK/Erk 

and TRBP-dependent Lin28a induction mechanism downstream of growth factor 

signaling that provides dynamic receptor-mediated regulation of Lin28a capable 

of producing rapid transitions in growth, development and pluripotency. Previous 

work indicating that mitogenic signaling in tumor cell lines also depends upon 

TRBP phosphorylation is consistent with this pathway as a determinant of Lin28a 

function in broader biological contexts (Paroo et al., 2009).  Our data also 

highlight the unexpected co-regulation of core factors in small RNA biogenesis as 

a molecular event underlying pro-growth protein synthesis. Improved 

understanding of Lin28 regulatory mechanisms may provide insight to 

dysregulated growth control by the Lin28/Let-7 pathway and opportunities for 

therapeutic manipulation in human disease and stem cell biology. 
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Figures and Legends 

Figure 2.1: BDNF post-translationally induces Lin28a protein, but not 

paralog Lin28b, through protein stabilization  

(a) (Top) Quantification and (bottom) representative immunoblot of Lin28a 

protein levels in lysates from hippocampal neurons subjected to BDNF 

stimulation with or without transcription blockade (Actinomycin-D) for the 

indicated times, normalized to GAPDH. (b) Quantification of Lin28a mRNA level 

by individual TaqMan qRT-PCR reaction normalized to β-tubulin III mRNA in 

hippocampal neurons subjected to BDNF for the indicated times. (c) (Top) 

Quantification and (bottom) representative immunoblots of levels of endogenous 

Lin28a and expressed FL-Lin28a in lysates from hippocampal neurons subjected 

to BDNF stimulation in the presence of Actinomycin-D for the indicated times, 

normalized to HSC70.  We note that FL-Lin28a migrates as a single band near 

25 kD, consistent with the possibility that the higher apparent molecular weight of 

endogenous Lin28a in neurons results from alternative splicing, 

posttranscriptional modification, or a combination of the two (Seggerson et al., 

2002). (d) Protein levels of endogenous Lin28b and expressed FL-Lin28b or FL-

Lin28bΔNLS, normalized to GAPDH, quantified from immunoblot of lysates from 

hippocampal neurons subjected to BDNF stimulation in the presence of 

transcription blockade (Actinomycin-D). (a-d) Data plotted relative to 0 min BDNF 

(set as 1.0). (e) IPd [35S]Cys/Met-labeled myc-Lin28a protein was assessed 

following a chase timecourse in the presence of vehicle (growth media) or BDNF 

(added following removal of [35S]Cys/Met label). (Left) Representative 
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radiograph. (Right) Quantification of percent remaining 35S-labeled myc-Lin28a 

protein at specified chase timepoints. N=3-8 independent experiments for all 

panels. *p < 0.05 by t test for all experiments. All error bars represent SEM. 

 

Experiments in 2.1a-c were performed by Claudia Ruiz and were also presented 

in her thesis. 
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Figure 2.1 
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Figure 2.2: Immunoblots for Lin28a and Lin28b proteins 

(a) Immunoblots using two antibodies directed towards two different Lin28a 

eptiopes (Cell Signaling A177 and Lifespan LS-C165782 now LS-B11566), and 

one towards Lin28b, in lysates from hippocampal neurons infected with two 

different shRNAs targeting Lin28a compared to a non-target shRNA (NTshRNA, 

control).  At the titers tested, Lin28a shRNA #1 reduces Lin28a protein detection 

by 84% (Cell Signaling) and 62% (Lifespan), but does not alterLin28b detection. 

Lin28a shRNA #2 reduces Lin28a protein detection by 88% (Cell Signaling) and 

85% (Lifespan), but does not alter Lin28b detection. Endogenous Lin28a protein 

is detected by immunobot in differentiated neurons as a predominant singlet or 

doublet band near 37 kD (Cell Signaling A177 and Lifespan LC-C165782); a 

band near the predicted molecular weight of Lin28a (25 kD) is also detected by 

LC-C165782. These Lin28a-immunoreactive bands are each sensitive to Lin28a 

knockdown, and have been previously observed in differentiated cells	(Huang et 

al., 2012; Moss and Tang, 2003; Nowak et al., 2014; Seggerson et al., 2002). 

Lin28a protein bands near 37 kD have been previously reported to be reflective 

of post-translational modification and alternative splicing	 (Seggerson et al., 

2002). (b) Representative immunoblot from Fig. 2.1b of (top left) endogenous 

Lin28b protein, (top right) FL-Lin28b protein, or (bottom) FL-Lin28bΔNLS protein 

in hippocampal neurons undergoing a BDNF timecourse. N=3-4 independent 

experiments per panel. 
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Figure 2.2 
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Figure 2.3:  TRBP phosphorylation by BDNF regulates Lin28a induction 

(a) (Left) Representative immunoblot and (right) Quantified Lin28a protein levels 

normalized to HSC70 from immunoblot of lysates from hippocampal neurons 

treated with vehicle (DMSO) or Erk 1/2 inhibitor U0126 for 30 min prior to 

addition of BDNF.  Erk 1/2 inhibition prevents Lin28a induction by BDNF (#p < 

0.01, ANOVA) and decreases basal Lin28a protein levels (*p < 0.05, t test). (b) 

(Left) Representative immunoblot and (right) quantified Lin28a protein levels, 

normalized to GAPDH, from immunoblot of lysates from hippocampal neurons 

treated with non-target shRNA (control) or TRBPshRNA, in the presence or 

absence of BDNF. Loss of TRBP precludes Lin28a induction by BDNF compared 

to control condition (p < 0.01, ANOVA).  TRBP KD also caused a small but 

significant decrease in basal Lin28a protein levels (*p < 0.01, t test). (c) (Left) 

Representative immunoblots and (right) quantification of FL-Lin28 levels in 

lysates from HEK 293T cells expressing FL-Lin28a, Fl-Lin28b, and FL- 

Lin28bΔNLS in the presence of FL-TRBPWT, SΔA, or SΔD, or PCDNA3.1 

(control).  Protein levels are normalized to GAPDH; plotted relative to PCDNA3.1 

condition (set as 1.0). *p < 0.05 by t test. (d) Scatter plot shows FL-Lin28a 

protein levels relative to titrated FL-TRBPWT, SΔA, or SΔD constructs, quantified 

from FLAG immunoblots of HEK 293T cell lysates and normalized to GAPDH. 

FL-Lin28a protein levels were positively correlated with increasing expression of 

all TRBP constructs, but phosphorylation status of TRBP had a significant effect 

(F(2,17)=47.98 p<.0001, ANCOVA), such that TRBPSΔD caused the greatest 

increase in FL-Lin28a (M=2.65) compared to TRBPWT (M=1.73) and TRBPSΔA 
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(M=1.20). (e) Hippocampal neurons co-expressing lentiviral FL-Lin28a and either 

FL-TRBPWT, SΔD, or shRNA-resistant SΔA (SΔA*) were treated with vehicle 

(growth media) or BDNF (60 min). In the FL-TRBPSΔA* condition, neurons were 

treated with either non-target control shRNA (NTshRNA) or shRNA targeting 

endogenous TRBP (TRBPshRNA). Graph shows quantification of FL-Lin28a 

protein levels normalized to HSC70, plotted relative to effect of FL-TRBPWT in 

vehicle condition, set as 1.0 (*p < 0.05, ANOVA).  Immunoblots available in 

Figure 2b-c. (a-e) N=3-16 independent experiments for each panel. (f) 

Quantification of miRNA levels by individual TaqMan qRT-PCR reactions 

following 0 min or 60 minute BDNF treatment in neurons expressing control virus 

or TRBPSΔD. miRNA levels were normalized to U6 snRNA and plotted relative to 

each vehicle-stimulated control virus condition, set as 1.0 (*p < 0.05, ANOVA). 

N=7-24 replicates. All error bars represent SEM.  

 

Figure 2.3e was performed by Claudia Ruiz and was also published in her thesis.
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Figure 2.3 
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Figure 2.4: Knockdown of TRBP, but not Dicer, reduces Lin28a 

(a) (Left) Representative immunoblot and (right) quantification of Dicer and 

Lin28a protein levels in hippocampal neurons expressing control shRNA 

(NTshRNA) or shRNA targeting Dicer (Dicer shRNA). (b) Representative 

immunoblot from Figure 2e showing FL-Lin28a protein levels in hippocampal 

neurons co-expressing WT or ΔD TRBP, in the presence or absence of BDNF. 

(c) Representative immunoblot from Figure 2e showing FL-Lin28a protein levels 

in hippocampal neurons co-expressing shRNA-resistant TRBPSΔA (FL-

TRBPSΔA*), in the presence or absence of BDNF.  Neurons were additionally 

treated with either non-target control shRNA (NTshRNA) or shRNA targeting 

endogenous TRBP (TRBPshRNA). Technical replicate samples were run on two 

separate gels to allow blotting for both FL-tagged and endogenous TRBP. (d) 

Quantification of Lin28a, TRBP, and FL-TRBPSΔA* protein levels from lysates 

from hippocampal neurons under non-target shRNA (NTshRNA, control) or 

TRBP knockdown (TRBPshRNA) conditions, normalized to loading control 

(HSC70) and plotted relative to NTshRNA condition, set as 1.0. Error bars 

represent SEM. *p < 0.05 by unpaired Student’s t test.  N=3-16 independent 

experiments per panel. 

 

Figure 2.4b was performed by Claudia Ruiz and was also published in her thesis. 
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Figure 2.4 
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Figure 2.5: TRBP Phosphorylation reduces Merlin binding and TRBP 

polyubiquitination 

(a) (Left) Representative immunoblot and (right) High-molecular weight (HMW) 

TRBP protein levels, quantified from immunoblot of lysates from hippocampal 

neurons treated with vehicle (DMSO) or MG132 (60 min); normalized to GAPDH 

and plotted relative to vehicle alone (set as 1.0). (b-c) Lysates from HEK 293T 

cells co-expressing FL-TRBPWT, SΔA, SΔD, or PCDNA3.1 alone (control) with 

either (b) HA-K48 ubiquitin or (c) HA-Merlin were IPd with anti-FLAG antibody, 

followed by immunoblot with anti-FLAG and anti-HA antibodies. (b and c, left) 

Representative immunoblots. (b and c, right) Quantification of co-associated (b) 

HA-K48 ubiquitin and (c) HA-Merlin protein normalized to the amount of IPd FL-

TRBP for each construct, and plotted relative to FL-TRBPWT condition (set as 

1.0). *p < 0.05 by t test for all experiments. All error bars represent SEM. N=3-8 

independent experiments for each panel. 
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Figure 2.5 
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Figure 2.6: BDNF does not regulate Merlin protein levels 

(a) Merlin protein levels in lysates from hippocampal neurons treated with vehicle 

(growth media) or BDNF (60 min). (Left) Representative immunoblot and (right) 

quantification of Merlin protein, normalized to GAPDH and plotted relative to 

vehicle (set as 1.0). Error bars represent SEM. N=8 independent experiments per 

panel. 

 

Figure 2.6 
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Figure 2.7: TRBP and Lin28a co-association is enhanced by TRBP 

phosphorylation  

(a) (Left) Representative immunoblot and (right) Densitometric quantification of 

purified Lin28a protein co-associated with purified GST-TRBP, normalized to 

amount of TRBP pulled-down and plotted relative to GST-TRBPWT (set as 1.0). 

A lower band in the GST-TRBP conditions that migrates similarly to GST alone is 

thought to reflect partial cleavage of the GST tag through a protease site 

between GST and TRBP.  Uncropped blots in Fig 2.8a. (b-e) Lysates from HEK 

293T cells expressing (b) FL-TRBPWT, (c) FL-Lin28a, (d) FL-Lin28b, and (e) FL-

Lin28bΔNLS were IPd with anti-FLAG or control rabbit (rIgG) or mouse (mIgG) 

IgG antibodies.  Representative immunoblots (b-e) show IPd proteins and co-IPd 

endogenous proteins. (f) Sequential IP of HEK293T cells lysates, involving initial 

IP for myc-TRBP followed by subsequent IP for FLAG-Lin28a. Flowchart and 

experimental details shown in Fig S4. (g) (Left) Representative immunoblot and 

(right) quantification of lysates from HEK 293T cells co-expressing FL-TRBPWT, 

SΔA, SΔD, or PCDNA3.1 alone (control) and myc-Lin28a, and IPd with anti-

FLAG antibody. Myc-Lin28a was overexpressed to avoid differential effects of the 

FL-TRBP constructs on total Lin28a levels. Co-IPd myc-Lin28a was normalized 

to IPd FL-TRBP for each construct, and plotted relative to FL-TRBPWT condition 

(set as 1.0). (h) Lysates from hippocampal neurons expressing FL-Lin28a and 

treated with either vehicle (growth media) or BDNF (90 min) were IPd with anti-

FLAG or control mIgG antibody. (Left) Representative immunoblot. (Right) 

Quantification of co-IPd TRBP and Dicer proteins plotted relative to vehicle 
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alone, set as 1.0. *p < 0.05 by t test for all experiments. All error bars represent 

SEM. N=3-5 independent experiments for each panel. 

	

Figure 2.7 
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Figure 2.8: BDNF-induced TRBP phosphorylation regulates binding to 

Lin28a, but not Lin28b 

(a) Uncropped blots of (left) purified GST-TRBP and GST alone (control) pull-

downs and (right) co-associated Lin28a from Fig. 2.5a. (b) Lin28a immunoblot 

using antibody from Novus (NBP-149537) to detect Lin28a protein in lysates from 

HEK 293T cells infected with two different shRNAs targeting Lin28a compared to 

a non-target shRNA (NTshRNA, control). Lin28a shRNA #3 reduces Lin28a 

protein detection by 86%. Lin28a shRNA #2 reduces Lin28a protein detection by 

76%. (c) Representative immunoblot of lysates from HEK 293T cells co-

expressing FL-TRBPWT and either myc-Lin28a or myc-Lin28bΔNLS. Lysates 

were IPd with anti-FLAG antibody, followed by immunoblot with anti-FLAG, anti-

myc, and anti-Dicer antibodies. (d) Sequential IP flowchart. HEK293T cells were 

transfected with either FL-Lin28a and myc-TRBP constructs together (left side), 

or FL-Lin28a alone as a control (right side). Input samples from both transfection 

conditions were saved for immunoblot (indicated by side arrows). Each 

transfection condition underwent sequential IP (indicated by straight arrows). 

Initial myc IP was followed by elution with a myc peptide competitive inhibitor and 

subsequent FLAG IP. Final eluents were boiled at 95o C and subjected to 

immunoblot along with input samples. (e) Lysates from HEK293T cells 

expressing FL-Lin28a were treated with or without RNAseA and IPd with anti-

FLAG or control mouse IgG (mIgG) antibody. (Left) Representative immunoblot. 

(Right) Densitometric quantification of co-IPd proteins normalized to input and 

plotted relative to no RNAse condition (set as 1.0). (f) Depletion of lentiviral FL-
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Lin28a following neuronal IP was verified by running cleared lysate samples 

taken from the remaining neuronal cell lysate after tumbling with FLAG antibody-

bound G-sepharose beads. FL-Lin28a signal is detectable in input samples prior 

to FLAG IP, but not in cleared lysate samples. (g) Mass spectrometry has 

demonstrated TRBP phosphoryation at serine residues 142, 152, 283, and 286. 

An antibody was developed in our lab towards phosphorylation at S152 (red), a 

perfect Erk phosphorylation consensus site. (h) Assay of phospho-TRBP 

antibody reactivity with U0126-treated lysates. HEK293T cells were incubated 

with either vehicle (DMSO) or MAPK inhibitor U0126 for 48 hours, followed by 

immunoblot with anti-phospho-TRBP antibody. (i) Immunoblot of TRBP and 

phospho-TRBP protein levels in lysates from hippocampal neurons treated with 

vehicle (growth media) or BDNF (60 min). Error bars represent SEM. *p < 0.05 

by unpaired Student’s t test.  N=3-6 independent experiments per panel. 
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Figure 2.8 
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Figure 2.9: TRBP phosphorylation downstream of BDNF regulates neuronal 

dendritic spine growth through Lin28a 

(a-d) Hippocampal neurons transfected with either empty vector or TRBPSΔD 

were treated with vehicle (growth media) or BDNF (12hr). (e-h) Hippocampal 

neurons were transfected with either empty vector (control) or TRBPSΔD in the 

context of expression of either non-target control shRNA (NT shRNA), Lin28a 

shRNA, or Lin28a shRNA plus an shRNA-resistant FL-Lin28a construct (FL-

Lin28a*). (a and e) Representative confocal projections of hippocampal 

pyramidal dendrites. Scale bar, 10 µm. (b and f) Quantification of dendritic spine 

density. (c and g) Representative confocal images of hippocampal dendritic 

spines. Scale bar, 1.0 µm. (d and h) Quantification of average dendritic spine 

volume. *p < 0.001, t test. N=10-18 dendritic segments and 4-11 independent 

neurons for each panel. All error bars represent SEM. 

 

Experiments in 2.9a-d were performed by Claudia Ruiz. Experiments in 2.9e-h 

were performed by Claudia Ruiz and Daniel Pham, and will also be published in 

Daniel Pham’s thesis. 
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Figure 2.9 
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2.10: Validation of shRNA-resistant Lin28a construct 

(a) Representative immunoblot of HEK293T cells co-transfected with either FL-

Lin28a or shRNA-resistant Lin28a (FL-Lin28a*), alongside either non-target 

shRNA (NTshRNA, control) or Lin28a shRNA#1. N=4 independent experiments.  

 

Figure 2.10 
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2.11: MAPK pathway activation by diverse growth factors induces TRBP 

and Lin28a proteins in multiple cell types 

 (a) (Left) Representative immunoblot and (right) quantification of immunoblots 

from HEK 293T cell lysates transfected with empty vector (control) or 

constitutively active MEK (HA-CAMAPKK), normalized to HSC70 and plotted 

relative to empty vector (set as 1.0). (b) Dorsal root ganglion neurons (DRGs), 

(c) cortical glia, and (d) peritoneal macrophages were stimulated with (b) Nerve 

growth factor (NGF), (c) Glial-derived neurotrophic factor (GDNF), or (d) 

macrophage colony stimulated factor (mM-CSF) for 90 min following a 30 min 

pretreatment with either DMSO (control) or pharmacological Erk inhibitor U0126. 

(b-d) (Left) Representative immunoblots. (Right) Densitometric quantification of 

immunoblots from cell lysates, normalized to (b-c) HSC70 or (d) β-Actin and 

plotted relative to no growth factor following DMSO (set as 1.0). (b-d) Uncropped 

immunoblots of Lin28a protein shown in Fig. 2.12a-c. All error bars represent 

SEM. *p < 0.05 by t test for all experiments. N=3-10 independent experiments for 

each panel. 

 

Figure 2.11a was performed by Megha Subramanian and will also be published 

in her thesis. 
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Figure 2.11 
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Figure 2.12: Lin28a immunoblotting in primary cell types 

 (a-c) Uncropped immunoblots from Fig. 2.11 of Lin28a protein using Lin28a 

Novus antibody in lysates from (a) DRG neurons (Fig. 2.11b), (b) glial cells (Fig. 

2.11c), and (c) macrophages (Fig. 2.11d). Cells were treated with vehicle (growth 

media) or (a) NGF, (b) GDNF, or (c) mM-CSF following a 30 min pretreatment 

with either DMSO or pharmacological Erk inhibitor, U0126. (d) Lin28a 

immunoblot using Novus antibody (NBP-149537) to detect Lin28a protein in 

lysates from neurons infected with two different shRNAs targeting Lin28a 

compared to a non-target shRNA (NTshRNA, control). Lin28a shRNA #1 reduces 

Lin28a protein detection by 86%. Lin28a shRNA #2 reduces Lin28a protein 

detection by 75%.   
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Figure 2.12 
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Figure 2.13: Model - Growth factor-mediated TRBP phosphorylation rapidly 

stabilizes Lin28a protein 

Graphical model. Left panel: At baseline, TRBP undergoes polyubiquitination and 

degradation facilitated by Merlin protein. Lin28a protein levels are negligible as it 

undergoes rapid turnover. Right panel: Growth factor binding to Trk receptors 

leads to activation of Erk1/2 signaling and subsequent TRBP phosphorylation, 

which stabilizes TRBP and enhances the TRBP/Lin28a protein complex, 

elevating Lin28a protein levels. Downstream inhibition of Let-7 miRNAs facilitates 

protein synthesis of pro-growth mRNAs. Bottom panel: TRBP phosphorylation 

exerts Lin28a-dependent pro-growth effects on spine dynamics.  
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Figure 2.13 
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Methods 

Primary cell culture and stimulation 

Animal procedures conformed to care guidelines approved by the Institutional 

Animal Care and Use Committee.  

Stimulation:  BDNF (Santa Cruz, SC-4554), NGF (Millipore, #01-125), and 

GDNF (Sigma, SRP3200) were applied to a final concentration of 100 ng/ml; 

mM-CSF (Cell Signaling, #5228) to a final concentration of 50ng/ml; U0126 (Cell 

Signaling, 99035) to a final concentration of 30 µM (hippocampal neurons) or 10 

µM (DRGs, glia, and macrophages); MG132 (Sigma C2211) to a final 

concentration of 10 mM.  

Hippocampal neurons: Dissociated hippocampal cultures were prepared from 

postnatal day 0 (P0) mice as previously described(Meffert et al., 2003), and were 

maintained in Neurobasal A medium (Gibco, 10888) with B27 Supplement (Gibco 

17504-44) and glutamine. On DIV 14-19, hippocampal cultures were changed 

into Serum Reduced Media (NBA + 0.5% B27 + glutamine) for 2 hours prior to 

stimulation, followed by preincubation with Actinomycin-D (Life Technologies, 

A7592) at a final concentration of 0.5 mg/ml for 10min if required.  

Dorsal Root Ganglion:  Acutely dissociated DRG neurons from 4-week old mice 

were cultured as previously described(Li et al., 2014).  After trituration and 

centrifugation, cells were resuspended in DH10, plated in 24-well plates with 

poly-L-lysine, and cultured at 37°C for 24 hours with nerve growth factor (25 

ng/ml) and glial cell-derived neurotrophic factor (50 ng/ml). After 24 hours, cells 

were changed into DMEM + 10% FBS + 1% glutamine. 48 hours after plating 
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(DIV 2), cells were changed into serum starvation media (1% FBS) for 2 hours 

prior to stimulation. 

Cortical glia: Dissociated cortical cultures were prepared from postnatal day 0 

(P0) mice as previously described(Meffert et al., 2003), plated onto 10cm tissue 

culture dishes, and maintained in DMEM + 10% FBS + 1% glutamine. Dishes 

were rinsed 24 hours after plating and passaged 48 hours after plating. Surviving 

cells are a mixed glial population. Cells were used within 4 passages and were 

changed into serum starvation media (1% FBS) for 2 hours prior to stimulation. 

Peritoneal Macrophages:  Mice (12-20 weeks old) were euthanized and 

peritoneal cells were harvested in RPMI media with 10% FBS as previously 

described (Link et al., 2010).  Cells were plated on 24-well plates and rinsed 1 

hour later with fresh media. Adherent cells are >99% macrophages. 24 hours 

after plating (DIV 1), cells were changed into serum starvation media (1% FBS) 

for 2 hours prior to stimulation. 

 

Plasmids 

The following plasmids were obtained as generous gifts: Wildtype (WT) TRBP, 

phospho-mutant (SΔA) TRBP, and phospho-mimic (SΔD) TRBP (from Dr. Zain 

Paroo); Flag-Lin28a (from Dr. Yinqun Huang); HA-Ubiquitin K48 (from Dr. Ted 

Dawson); FL-Lin28bΔNLS mutant (from Dr. Richard Gregory); HA-CAMAPKK 

(pMCL-HA-MAPKK1-R4F[(Δ31-51)S218E/S222D] from Dr. Natalie Ahn, Addgene 

plasmid # 40810)((Mansour et al., 1994)); HA-Merlin (from Dr. Kunliang Guan, 

Addgene plasmid # 32836((Zhao et al., 2007)). GST-TRBPWT and GST-
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TRBPSΔD were subcloned using the pGEX-6P-1 vector. MBP-Lin28a was 

subcloned using the pMAL-c5X vector. Myc-Lin28a was subcloned using myc-

pcDNA3.1. Fl-Lin28a, FL-Lin28b, FL-Lin28bΔNLS, FL-TRBPWT, FL-TRBPSΔA, 

and FL-TRBPSΔD were all subcloned into the synapsin promoter driven lentiviral 

vector FSW.  Quikchange site-directed mutagenesis of a single base pair was 

used to generate a silent mutation for shRNA-resistant TRBPSΔA (FL-

TRBPSΔA*). Sequence for FSW-TRBPSΔA* following quikchange: 

GGCAATGAGGTGGAGCCCGATGATGACCACTTC. The shRNA-resistant 

Lin28a construct (FL-Lin28a*) was generated by introducing three silent 

mutations into the cDNA sequence that is targeted by Lin28a shRNA. 

Mutagenesis was performed using the Quikchange method. The sequence for 

FL-Lin28a* following quickchange was 

CTGCCACCCCAGCCCAAAAAATGTCACTTCTGC CAGAGC. 

 

Transduction 

Lentiviral-mediated delivery of FL-Lin28a, Myc-Lin28a, FL-Lin28b, FL-

Li28bΔNLS, FL-TRBPWT, FL-TRBPSΔD, FL-TRBPSΔA, or FL-TRBPSΔA* was 

used to achieve expression of tagged proteins in hippocampal cultures for 

biochemical analysis at a multiplicity of infection (MOI) of 5-10, 2 - 4.5 days 

before harvest, depending on required expression level.  Lentiviral stocks were 

prepared and lentiviral knockdown carried out as previously described (Huang et 

al., 2012; Meffert et al., 2003). Knockdown for biochemical analysis used 

lentiviral-mediated delivery of non-target shRNA (Sigma, SHC002), shRNA 
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targeting TRBP (Thermo Scientific TRCN0000102563), or shRNA targeting 

Lin28a (Thermo Scientific TRCN0000102576 (Lin28a shRNA#1) and 

TRCN0000102577 (Lin28a shRNA#2)) to infect hippocampal cultures at an MOI 

of 5–10, 4-5 days before harvest. 24 hours prior to imaging experiments, neurons 

were transiently transfected with PCDNA3.1 or TRBPSΔD, non-target shRNA or 

Lin28a shRNA#1, and PCDNA3.1 or FL-Lin28a* using Lipofectamine 2000 

according to the manufacturer’s instructions (Invitrogen).  HEK 293T cells were 

infected with lentivirus expressing non-target shRNA, Lin28a shRNA#2, or 

Lin28a shRNA#3 (TRCN0000021802) 96 hours prior to harvest for biochemical 

analysis of knockdown. Expression of all tagged constructs in HEK 293T cells 

was achieved by calcium phosphate transfection. 

 

Immunoblotting 

Primary cultures of mouse hippocampal neurons, DRG neurons, cortical glia, 

peritoneal macrophages, or cultured HEK293T cells were washed 2 times in cold 

PBS with MgCl2 (0.9 mM) and harvested on ice with lysis buffer (50 mM Hepes, 

150 mM NaCl, 10% Glycerol, 1 mM EDTA, 1% Triton-X-100, 0.2% SDS) plus 

freshly added protease inhibitor cocktail (Roche), phosphatase inhibitors (sodium 

orthovanadate 0.2 mM, sodium pyrophosphate 1 mM), and NEM (50 mM; Sigma 

04260).  Lysates were rotated for 10 min at 4°C, then centrifuged at 12,000 x g 

for 15 min. Protein concentration in supernatant was determined by Bicinchoninic 

acid (BCA) assay and equal protein amounts resolved on SDS-PAGE gels and 

electrotransferred to PVDF membrane. Membrane was blocked with 5% BSA in 
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Tris-buffered saline tween 20 (TBST 0.1%) for 2-4 hours and probed with primary 

antibodies: Lin28a (Cell Signaling A177, Lifespan LS-C165782, or Novus NBP-

149537), FLAG (M2 Sigma F3165 or Sigma F7425), HA  (Invitrogen 71-5500), 

GAPDH (Millipore 6C5), TRBP (Abcam ab72110 or Pierce LF-MA0209), Dicer 

(Sigma SAB4200087 or Santa Cruz sc-30226), Lin28b (Cell Signaling 5422), c-

Myc (Sigma M4439 or Sigma C3956), HSC70 (Santa Cruz sc-7298), NF2/Merlin 

(abcam ab88957), β-Actin (Cell Signaling 4967).  

 

Purification and pull-down of recombinant bacterial proteins 

GST-TRBPWT, GST-TRBPSΔD, and GST alone in the PGEX-6P-1 vector were 

expressed in BL21 bacteria (Agilent Technologies, #230132) and purified as 

described in Pedersen et al, 2015(Pedersen et al., 2015). Bacteria were grown in 

LB-amp until OD600=0.75 after which 1mM IPTG was applied for 3 hrs at 30°C to 

induce protein expression. Cultures were centrifuged at 4,000 x g for 20 min at 

4°C and lysed in phosphate-buffered saline (PBS) pH=7.8 with lysozyme 

(0.5mg/ml) for 30 min, followed by sonication 5 times with 20-s pulses at 20% 

amplitude. 1% Triton-X was added, and lysates were centrifuged at 4000 x g for 

30 min at 4°C. RnaseA was added to lysates to a final concentration of 20µg/ml. 

Lysates were applied to 500µl bed volume of glutathione sepharose beads (GE 

Healthcare, #17-5132-01) and rotated at 4°C overnight. Beads were then added 

to a poly-prep column and washed, and GST-fusion proteins were eluted with 

glutathione elution buffer (50mM Tris HCL, pH=7.5, 10mM glutathione). MBP-

Lin28a in the pMAL-c5X vector was expressed in BL21 bacteria and purified as 
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described, but rotated with amylose resin (NEB, #E80215). Lin28a was cleaved 

from the amylose-bound MBP tag with factor Xa protease (NEB, #P8010). 

Purified protein concentrations were determined by Bradford Protein 

Assay, and equivalent amounts of GST-TRBPWT, GST-TRBPSΔD, and GST 

alone were re-bound to glutathione sepharose beads by rotation at 4°C for 2 

hours. Equal amounts of purified Lin28a protein were added to each sepharose-

bound GST construct and rotated at 4°C for 2 hours. Beads were washed in cold 

PBS, pH=7.8, followed by boiling in sample buffer at 95oC for 10 minutes to elute. 

Eluents were subjected to SDS-PAGE electrophoresis and immunoblotting. 

 

Immunopurification 

The following antibody and peptide reagents were used for immunopurification 

(IP): FLAG (M2 Sigma F3165 or Sigma F7425), 3X FLAG peptide (Sigma 

F4799), 1X FLAG peptide (Sigma F3290), c-Myc (Sigma M4439), c-Myc peptide 

(Sigma M2435), Control Mouse IgG (Santa Cruz sc-2025), Control Rabbit IgG 

(Santa Cruz sc-2027). 

Co-Immunoprecipitation: 

coIP lysis buffer: 100 mM KCl, 4 mM MgCl2, 10 mM HEPES (pH 7.3), 50 µM 

ZnCl, 0.5% NP-40, protease inhibitor cocktail (Roche), phosphatase inhibitor 

(sodium orthovanadate 0.2 mM, sodium pyrophosphate 1 mM), 50 mM NEM.  

coIP wash buffer: 150 mM NaCl, 1 mM MgCl2, 50 mM HEPES (pH=7.8), 50 µM 

ZnCl, 0.05% NP-40: protease inhibitor cocktail (Roche), phosphatase inhibitor 

(sodium orthovanadate 0.2 mM, sodium pyrophosphate 1 mM), 50 mM NEM. 
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Binding partners of TRBP and Lin28a proteins were isolated through IP of FL-

TRBP or FL-Lin28a. Protein G-sepharose beads were coated with anti-FLAG 

antibody or control isotype-specific antibody in coIP wash buffer overnight after 

blocking with coIP wash buffer plus 5% BSA for 1 hour. Antibody amount was 

estimated as 1 µg antibody per 100 µg protein lysate in order to deplete the IPd 

protein. HEK293T cells: 1-2 days prior to transfection, cells were plated into 

either 24 well plates or 10cm dishes. Cells were transfected with appropriate 

constructs at ∼70% confluency for 48 hours. Media was changed 8 hours post-

transfection. Primary hippocampal cultures: Neurons (DIV 12-13) were infected 

with lentivirus expressing FL-Lin28a under the synapsin promoter for 86 hours.  

Cultures were then incubated in serum-reduced medium (0.5% B27 supplement) 

for 2 hours, followed by bath application of vehicle (neuronal growth media) or 

BDNF (100 ng/ml) for 60-90 min. All cell types: Cell lysates were harvested in 

coIP lysis buffer with freshly added 1mM DTT and RNAsin (Promega, 0.5 

units/ml). Lysates were centrifuged (13,000xg, 15 min) and the supernatants pre-

cleared by 30-min incubation with recombinant protein G-sepharose beads pre-

washed in coIP wash buffer. Input samples (5-10% of IPd protein) were saved for 

immunoblot analysis. For IP, equal amounts of lysate protein (0.5 – 2mg, 

determined by Bradford protein assay) were incubated with antibody-coated 

beads and tumbled for 3-4 hours at 4oC, followed by 3 washes in coIP wash 

buffer and 1 wash in coIP wash buffer without protease and phosphatase 

inhibitors. Elutions from the washed beads were performed using a FLAG 
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peptide competitive inhibitor (Sigma, F4799 or F3290) diluted in coIP wash buffer 

without protease and phosphatase inhibitors, and samples were subjected to 

SDS-PAGE electrophoresis and immunoblotting.  

Sequential IP: 

HEK293T cells were transfected with either myc-TRBPWT and FL-Lin28a or FL-

Lin28a alone (control) for 48 hours. Protein G-sepharose beads were bound to 

anti-FLAG or anti-c-Myc antibodies, and cells from both conditions were lysed 

and subjected to IP as previously described in “Co-Immunoprecipitation” using 

anti-c-Myc conjugated G-sepharose beads. Elutions from the washed beads 

were performed using a myc peptide competitive inhibitor (Sigma M2435). 

Eluents then underwent a second IP using anti-FLAG conjugated beads.  

Following the second IP, washed beads were incubated in sample buffer at 95oC 

for 10 min, eluents resolved by SDS-PAGE electrophoresis, and immunoblotted. 

Co-Immunoprecipitation with RNase: 

HEK293T cells were transfected with FL-Lin28a for 48 hours, then lysed and 

subjected to IP as described in “Co-Immunoprecipitation”. During the IP tumbling 

step, lysates were incubated with either RNAsin (Promega, 0.5 units/ml) to 

maximize RNA stability, or RNaseA (200 µg/ml) to inhibit RNA.  

FL-TRBP limiting immunoprecipitation: 

Protein G-sepharose beads were coated with anti-FLAG antibody in intentionally 

limiting amounts, estimated at about 1 µg antibody per 400 µg protein lysate. 

Cells were then lysed and subjected to IP as previously described in “Co-

Immunoprecipitation”. Limiting antibody allowed for equal pull-down of each FL-
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TRBP mutant construct - which express at highly different levels - in order to 

allow visual appreciation and more accurate quantification of TRBP-associated 

proteins.  

Stringent immunoprecipitation (for ubiquitination assessment): 

Stringent lysis buffer: 100mM KCl, 10 mM HEPES (pH=7.3), 4 mM MgCl2, 50 µM 

ZnCl2, 1% Triton-X, 0.25% SDS, 50 µM PR-619, protease inhibitor cocktail 

(Roche), phosphatase inhibitor (sodium orthovanadate 0.2 mM, sodium 

pyrophosphate 1 mM), 50 mM NEM. 

Stringent wash buffer: 1M NaCl, 1 mM MgCl2, 50 mM HEPES (pH=7.8), 50 µM 

ZnCl2, 20% Glycerol, 1% NP40, 0.1% SDS, protease inhibitor cocktail (Roche), 

phosphatase inhibitor (sodium orthovanadate 0.2mM, sodium pyrophosphate 

1mM), 50 mM NEM. 

 

FLAG antibody coating of protein G-sepharose beads was carried out as 

previously described in “Co-Immunoprecipitation”. HEK293T cells were 

transfected with HA-K48 specific ubiquitin and either PCDNA3.1, FL-TRBPWT, 

FL-TRBPΔA, or FL-TRBPΔD constructs. Cells underwent bath application of the 

deubiquitinase inhibitor PR-619 (10µM; LifeSensors SI9619) for 1 hour prior to 

harvest. Cell lysates were harvested in stringent IP lysis buffer with freshly added 

1mM DTT, and underwent centrifugation, pre-clearing, and BCA. Equal amounts 

of protein (1.5-2mg) were incubated with antibody-coated beads and tumbled for 

4 hours at 4oC, followed by washing with stringent wash buffer. The washed 
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beads were incubated in sample buffer at 95oC for 10 minutes and subjected to 

SDS-PAGE electrophoresis and immunoblotting. 

 

35S pulse chase 

Cultured hippocampal neurons were infected at DIV 12-14 with lentiviral myc-

Lin28a for 72 hours. Following viral-mediated expression, neurons were pre-

incubated in media containing reduced serum as previously described, followed 

by 2 washes and 10 min incubation with methionine- and cysteine-free DMEM 

(Mediatech, Inc.). 35S labeling was performed in the same methionine- and 

cysteine-free DMEM with the addition of 35S-methionine/cysteine (35S Met/Cys 

EasyTag Mix, Perkin Elmer) to a final concentration of 100 mCi/ml for 3 hours. 

Following the 3 hour labeling period, 35S-methionine/cysteine containing media 

was washed out and replaced with normal serum-reduced media (NBA + 0.5% 

B27 + glutamine), after which neurons were subjected to either vehicle (neuronal 

growth media) or BDNF bath application, as previously described, for a 

designated period lasting 30-180 minutes. Cells were washed and lysed with 

stringent IP lysis buffer. As described in “Co-Immunoprecipitation” and “Stringent 

Immunoprecipitation”, Lysates were processed for IP and stringent IP was 

performed using anti-myc coated protein G-sepharose beads. The washed IP 

beads were incubated in sample buffer at 95oC for 10 minutes and subjected to 

SDS-PAGE electrophoresis. Radioactive signal of IPd myc-Lin28a was quantified 

using a Typhoon phosphoimager (Molecular Devices). Myc-Lin28a protein 

expression and IP was verified via immunoblot. 
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Imaging and quantification: 

For live cell imaging, confocal images of hippocampal pyramidal neurons 

(determined by morphology) were acquired using a 40x (whole cell) or a 100x 

(dendrite) objective on a Yokogawa spinning disk system (Cell Observer, Carl 

Zeiss) at 37°C. Laser power and exposure time were adjusted to minimize 

photobleaching and avoid saturation. All experiments were from a minimum of 3 

independent cultures, no more than 4 neurons per dish, and no more than 3 

dendritic segments per neuron. Z-stacks containing the entire neuron or process 

of interest were analyzed using Imaris 7.6.5 (Bitplane).   

 

Dendritic spine analysis 

Neuronal cultures were randomly assigned to treatment conditions and the 

experimenter was blinded during data acquisition and analysis. 3D 

reconstructions of hippocampal neurons were analyzed with Filament Tracer 

(Imaris 7.6.5 Bitplane, Inc.). Dendritic segments were traced and volume 

rendered using automatic thresholds and dendritic protrusions 0.4-2.0µm in 

length with or without a spine head were assigned as spines. Tertiary dendritic 

branch segments were chosen for spine density analysis.   For each dendritic 

segment a manual spine count was conducted in Imaris Surpass mode. Dendritic 

spine density was calculated by counting the number of spines per 10 microns of 

dendritic length. The dendrite length was measured using Filament Tracer and 

each spine was marked using Spots (Imaris 7.6.5 Bitplane, Inc.).  Dendritic 
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protrusion length was measured using Measurement Points. Individual dendritic 

spine length was manually marked from its point of insertion in the dendritic shaft 

to the distal tip of the spine. Spine volume was measured by manually tracing 3D 

images of dendritic spines using Filament Tracer’s AutoDepth feature. An 

accurate 3D model of dendritic spines was generated using the diameter 

function, which calculates the correct diameter and represents the complete 

morphology of the selected spine based on the 3-D image. Imaris 

MeasurementPro provided spine volume measurements. 

 

RNA analysis 

Total RNA from primary cultures of mouse hippocampal neurons was isolated in 

Tri-Reagent (Molecular Research Center, Inc.) according to the manufacturer’s 

protocol. Cultures were homogenized in Tri-Reagent directly. RNA pellets were 

air-dried and resuspended in nuclease-free water. RNA concentration and quality 

were assayed by spectrophotometric measurements at optical density (OD) 

260/280/230 nm. Reverse transcription of Lin28a mRNA was completed using 

2µg total RNA with the TaqMan High Capacity RNA to cDNA Kit (Applied 

Biosystems, 4387406). The following reverse transcription program was used: 1) 

37oC incubation for 60 minutes, 2) 95oC inactivation for 5 minutes. Products of 

RT reaction were then assayed via qPCR using TaqMan mRNA qPCR probes: 

Lin28a (Applied Biosystems, Mm00524077_m1), β-tubulin 3 (Applied 

Biosystems, Mm00727586_s1), and GAPDH (Applied Biosystems, 

Mm99999915_g1). The qPCR program used was the following: 1) 95oC denature 
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for 15 seconds, 2) 60oC reanneal and extension for 60 seconds, 3) repeat of 

steps 1 and 2 for 40 cycles. For individual microRNA abundance assays (Applied 

Biosystems), 20 ng of total isolated RNA was prepared for reverse transcription 

with stem-looped primers specific for individual mature miRNAs in a final volume 

of 15 µl according to manufacturer’s protocol: 1) 4oC for 5 min, 16oC for 30 min, 

2) 42oC for 30 min, 3) 85oC for 5 min, and subjected to TaqMan MicroRNA 

Assays (Applied Biosystems) for Let-7a (assay ID: 000377), Let-7c (000379), 

Let-7f (000382), miR-132 (000457). The abundance of U6 snRNA  (002282) and 

sno234 (001234) in each sample was used as an internal control to normalize all 

miRNA species. RT-qPCR was performed using a Stratagene Mx3000P machine 

and software. Quantification was carried out using the standard-curve method 

and no preamplification. RQ was calculated as 2-ΔCtBDNF / 2-ΔCtmock where ΔCt = 

(cycle threshold for miRNA of interest) – (cycle threshold for reference control). 

 

	
Statistical analysis 

Two-tailed unpaired student’s t tests were used with α=0.05. Where specified, 

statistical analysis included one-way ANOVA for independent samples with a 

Bonferroni-Holm post hoc test, α=0.05. Statistical significance between 

scatterplot conditions was determined using one-way ANCOVA for independent 

samples. 
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Chapter 3: Regulation of the Lin28/Let-7 axis in 

Neurofibromatosis Type 2  

 

Background 

Neurofibromatosis is an inherited autosomal dominant disorder affecting 

growth of nerve tissue that leads to tumorigenesis. The course of the disease is 

typically characterized by recurring neurofibroma and schwannoma tumors of the 

nervous system, skin, and internal organs, which are often benign but may 

become malignant. Neurofibromatosis Type 1 (NF1) is a relatively common 

disorder, while Neurofibromatosis Type 2 (NF2) is less common - with a 

prevalence of about 1 in 40,000 - but typically more debilitating (Evans et al., 

1992; Spyra et al., 2015). Neurofibromatosis Type 1 and 2 occur as a result of 

mutations in the NF1 and NF2 genes, respectively.   

Neurofibromatosis Type 2 is caused by autosomal dominant mutations in 

the NF2 gene, located on chromosome 22, which lead to loss of function of NF2 

protein (more commonly called Merlin). Mutations are typically splice site 

mutations, missense mutations, large deletions, or truncating mutations, of which 

truncating mutations cause the most severe phenotypes (Evans et al., 1998; 

Ruttledge et al., 1996). NF2 patients may inherit a mutated copy of the NF2 

gene, although more than 50% carry de novo germline mutations (Evans et al., 

1992). Interestingly, it seems that cells harboring one mutated copy of the NF2 

gene acquire postzygotic mutations in the other NF2 allele through unknown 

mechanisms, in a cell type specific manner, leading to mosaicism (Evans et al., 
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1998; Kluwe et al., 2003; Kluwe and Mautner, 1998; Moyhuddin et al., 2003). 

This causes loss of heterozygosity in specific tissues, and is thought to result in 

NF2 tumorigenesis.  Accordingly, analysis of tumor tissue from patients with NF2 

indicates loss of function mutations in both NF2 genes, whereas other tissues 

may be heterozygous or genetically normal (Evans et al., 1998; Kluwe et al., 

2003; Kluwe and Mautner, 1998; Seizinger et al., 1986; Spyra et al., 2015). 

Schwann cells, the predominant glial population of the peripheral nervous 

system, serve to myelinate peripheral axons, and for unknown reasons are 

particularly sensitive to acquisition of the second-hit NF2 mutations that result in 

loss of heterozygosity and tumor formation. Thus, the hallmark of 

Neurofibromatosis Type 2 is non-malignant bilateral vestibular schwannoma 

tumors occurring predominantly on the 8th cranial nerve (Evans et al., 1992; 

Kluwe et al., 2003; Spyra et al., 2015). However, patients may develop several 

other tumors types as well, such as cranial and spinal meningiomas, and skin 

tumors (Evans et al., 1992). Although the majority of schwannoma tumors are 

non-malignant, their presence and growth commonly cause such debilitating 

physical issues as deafness, muscle wasting, tinnitus, and imbalance, and in late 

stages are also associated with seizures, blindness, vertigo, paralysis, and 

shortened lifespan (Evans et al., 1992; Mautner et al., 1996; Parry et al., 1994; 

Vakharia et al., 2012). There is a push for therapeutic development, but current 

treatment options are limited to invasive brain surgery, which not uncommonly 

must be repeated due to recurrence, and carries with it a high risk of injury or 

morbidity due to the location of the tumors (Blakeley et al., 2012). 
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Though mutations in the NF2 gene/Merlin protein have been characterized 

in relation to Neurofibromatosis Type 2, they are also observed in a range of 

other cancer types, including breast cancer, malignant mesothelioma, and 

glioblastoma (Arakawa et al., 1994; Cheng et al., 1999; Guerrero et al., 2015). 

However, despite the fact that Merlin protein is a known, potent, tumor-

suppressor, its mechanistic role in preventing tumor formation has remained 

elusive, hindering development of potential pharmacological treatment strategies. 

As was previously noted in Chapter 2, Merlin protein is thought to mediate 

polyubiquitination and degradation of TRBP through co-association (Lee et al., 

2004; Lee et al., 2006). My work in Chapter 2 indicates that Merlin protein may 

preferentially cause ubiquitin-mediated turnover of un-phosphorylated TRBP, 

potentially preventing TRBP phosphorylation and stabilization. Since the absence 

of Merlin might be expected to cause reduced TRBP polyubiquitination (and, 

therefore, enhanced levels of TRBP and phospho-TRBP), we considered the 

scenario that Lin28a protein could be abnormally stabilized and therefore 

elevated in NF2 tumors as well. Indeed, a recent study broadly linked Merlin 

protein function to regulation of tumor-suppressor Let-7 miRNAs (Hikasa et al., 

2016). This chapter of my thesis work focuses on elucidating whether loss of 

normal Merlin protein function in Neurofibromatosis Type 2 may be associated 

with disrupted baseline control of TRBP and, subsequently, Lin28a protein levels 

(Fig 3.1). Because Lin28 elevation and Let-7 miRNA inhibition have known roles 

in oncogenesis (Viswanathan et al., 2009; Wang et al., 2012), we hypothesized 
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that misregulation of Lin28a could be one explanation for tumor formation in the 

molecular setting of Neurofibromatosis Type 2.  

 

Results 

Loss of Merlin in Neurofibromatosis tumors is associated with elevated 

phospho-TRBP and Lin28a 

To determine whether loss of Merlin protein in Neurofibromatosis Type 2 

might result in elevated TRBP and Lin28a proteins, we first were interested in 

comparing protein levels in lysates harvested from primary NF2 tumors with 

those from samples not harboring mutations in Merlin. Dr. Alan Belzberg from the 

Johns Hopkins Neurosurgery Department kindly donated primary human 

schwannoma tumor tissue from 3 patients with Neurofibromatosis Type 1 (3 

samples total) and 6 patients with Neurofibromatosis Type 2 (7 samples total), 

with the generous consent of the patients. Although Neurofibromatosis Type 2 is 

specifically associated with mutations in NF2/Merlin, both tumor types 

demonstrated absence of normal Merlin protein compared to untransformed 

human Schwann cells (Fig. 3.2a,b). While this finding prevented us from using 

NF1 tumors as a control for loss of Merlin in NF2, it is interesting to consider that 

tumorigenesis in NF1 may be related to alterations in Merlin protein as well. 

Using instead normal, untransformed human Schwann cells as a control, lysates 

from NF2 tumors showed robust elevations in Lin28a concomitant with elevations 

in TRBP, phospho-TRBP, and Dicer proteins (Fig. 3.2b), providing initial support 

for our hypothesis that Merlin acts as a tumor suppressor in part through control 



	

	 85 

of TRBP and Lin28a. NF1 tumors may contain elevated Lin28a, TRBP, and 

phospho-TRBP compared to normal Schwann cells as well (Fig. 3.2a,b), again 

raising the possibility that tumorigenesis in NF1 and NF2 could occur through 

overlapping mechanisms. Interestingly, Dicer protein was lower in NF1 than NF2 

tumors (Fig. 3.2a,b), though the significance of this finding requires further 

investigation. 

Immortalized mutant NF2 cell lines derived from schwannomas of patients 

with Neurofibromatosis Type 2 are often used for molecular and biochemical 

studies of tumorigenesis in NF2. One such common example is the HEI193 line 

(Hung et al., 2002). We used HEI193 cells (obtained from Dr. Lim), which are 

characterized as homozygous for loss of NF2 and Merlin protein, compared to 

normal cultured human Schwann cells. Immunoblots of protein lysates confirmed 

that Merlin protein is absent in HEI193 cells, and that Lin28a, TRBP, and 

phospho-TRBP are dramatically elevated (Fig. 3.2c), as we previously observed 

in human tumor samples. If Lin28a were elevated in HEI193 cells relative to 

normal Schwann cells, we hypothesized that Let-7 miRNAs might be lower, due 

to enhanced repression by Lin28a. Quantitative real-time RT-PCR suggests that 

Let-7a and Let-7g miRNAs are significantly lower in the HEI193 tumor cells 

compared to untransformed Schwann cells, consistent with our finding of 

elevated Lin28a (Fig. 3.2d). These data suggest that the HEI193 cell line is likely 

an acceptable representation of the molecular changes we observed in primary 

NF2 tumor cells, and further demonstrate misregulation of the Lin28/Let-7 axis 

following loss of Merlin. 
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Loss of Merlin protein directly regulates Lin28a through TRBP 

Our findings suggested a correlation between loss of Merlin protein and 

elevations in TRBP and Lin28a in primary tumors, but we were next interested in 

determining whether loss of Merlin was causative in producing Lin28a elevations. 

To first examine whether Merlin is capable of directly regulating TRBP and 

Lin28a proteins (e.g. keeping them at a low, baseline level) in normal Schwann 

cells, we performed lentiviral shRNA knockdown of Merlin protein in primary 

cultured human Schwann cells. In response to shRNA-mediated reductions in 

Merlin protein, we saw significant elevations in TRBP, phospho-TRBP, and 

Lin28a proteins (Fig 3.3a), consistent with the possibility that Merlin protein 

controls levels of TRBP and Lin28a. In order to demonstrate directly that loss of 

Merlin protein leads to TRBP and Lin28a elevations in NF2 tumor cells, we re-

introduced Merlin protein into HEI193 cells using lentivirus to generate low-level 

sustained expression in the majority of cells. We find that re-introduction of Merlin 

to these cells by exogenous expression (a lentiviral-mediated rescue for 4 days) 

causes significant reductions in TRBP, phospho-TRBP, and Lin28a proteins, 

again supporting a model in which loss of Merlin in Neurofibromatosis Type 2 

results in induction of TRBP and Lin28a proteins (Fig. 3.3b). Interestingly, while 

Merlin re-introduction may rescue TRBP expression to lower levels similar to 

those observed in untransformed Schwann cells, rescue of Lin28a back to basal 

levels is only partial. This could be due to long-term feedback regulation, 

whereby elevated Lin28a leads to decreased Let-7 miRNAs, which in turn allows 
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for increased Lin28a translation. Assaying the effects of longer-term Merlin 

reintroduction on Let-7 and Lin28a levels could be used to test this possibility. 

According to our model, we hypothesize that loss of Merlin protein results 

in elevated TRBP and Lin28a by reducing TRBP polyubiquitination and thereby 

increasing TRBP stability, which we observed in Chapter 2 is capable of 

subsequently stabilizing Lin28a. In order to determine whether TRBP regulates 

Lin28a in the setting of NF2 tumors, we performed shRNA-mediated knockdown 

of TRBP protein in HEI193 cells using a lentiviral shRNA construct targeting 

TRBP. We see that the reduction in TRBP protein levels following TRBP 

knockdown is associated with significant reductions in Lin28a (Fig. 3.3c), 

suggesting that TRBP still mediates Lin28a induction even in a chronic context of 

long-term dysregulation by loss of Merlin. 

 

Lin28a expression controls growth of Neurofibromatosis Type 2 tumor 

cells 

 Given that elevated Lin28a in NF2 tumor cells is associated, as expected, 

with reduced Let-7 miRNAs, we hypothesized that Lin28a overexpression in NF2 

tumor cells is causal to their accelerated growth and division. Let-7 miRNAs 

normally inhibit translation of genes involved in cell cycle exit, as well as invasive 

oncogenic factors such as Ras and c-myc (He et al., 2010; Reinhart et al., 2000). 

Thus, reducing Lin28a protein in NF2 tumor cells might be expected to slow their 

rate of division. To initially test this hypothesis, we treated HEI193 cells with 

either one of two different shRNAs targeting Lin28a or non-target shRNA 
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(control) and measured 5-bromo-2’-deoxyuridine (BrdU) incorporation. Because 

Neurofibromatosis tumor cells are not typically invasive or malignant, measuring 

tumor growth by rate of cell division is an accepted approach in the field 

(Agnihotri et al., 2014; Sher et al., 2012). We find that cell division is dramatically 

reduced in cells treated with Lin28a shRNA compared to cells treated with non-

target shRNA (Fig. 3.4a-d). In the absence of Lin28a, there are fewer total cells 

(measured by DAPI staining)(Fig. 3.4b), compared between dishes in which cells 

were initially plated at equivalent densities. There are also significantly fewer 

BrdU-positive nuclei, such that the ratio of BrdU-positive nuclei to total nuclei is 

significantly reduced in the Lin28a shRNA condition (Fig. 3.4c,d). Reduced 

Lin28a protein expression in the Lin28a shRNA conditions was confirmed by 

immunoblot (Fig. 3.4e). These findings suggest that Lin28a protein plays an 

important role in growth rate of NF2 tumors. 

 

Discussion 

 Disruption of the Lin28/Let-7 axis has been repeatedly linked to cancer 

formation and progression through downstream induction of pro-growth 

oncogenes (He et al., 2010; Viswanathan et al., 2009; Wang et al., 2012). 

However, neither Lin28a nor the Let-7 miRNAs have been previously studied in 

direct relation to Neurofibromatosis disorders. Here, following hypotheses based 

on mechanistic findings of the phospho-TRBP/Lin28a/Let-7 regulation delineated 

in Chapter 2, we propose that loss of Merlin function in NF2 leads directly to 

induction of Lin28a, downstream of phospho-TRBP. Given the lack of clarity in 
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the literature currently regarding the mechanism by which Merlin functions as a 

tumor suppressor, this model may provide novel insight into control of cellular 

growth by Merlin through the Lin28/Let-7 axis. 

 Although Lin28a dysregulation has not before been linked to NF2, a recent 

paper suggested that Merlin protein may positively regulate processing of Let-7 

miRNAs by negatively regulating Lin28b function during contact inhibition in 

HeLa cells (Hikasa et al., 2016). The authors confirmed this mechanism in a lung 

cancer cell line with mutant Merlin, though they did not address NF2 (or NF1) 

tumors. Additionally, the authors did not examine Lin28a levels in their HeLa cell 

system, so that it remains unclear to what extent the observed changes in HeLa 

cell Let-7 miRNAs following loss of Merlin are due to regulation of Lin28a 

compared to Lin28b. Similarly, in our model we cannot currently rule out the 

possibility that Lin28b plays a role in altering Let-7 miRNAs in NF2 tumor cells as 

well. Causality is difficult to tease apart, because reduced Let-7 miRNAs, as a 

result of changes in Lin28a or Lin28b, may subsequently lead to elevated Lin28a 

and Lin28b translation, due to Let-7 miRNA sites in their 3’ UTRs (Rybak et al., 

2008). Future experiments could be aimed at examining the effects of 

knockdown or overexpression of Merlin on Lin28a and Lin28b constructs that 

express the Lin28 protein coding regions only. Regardless, these findings raise 

the interesting possibility that mutations in the NF2 gene could inhibit Let-7 

processing through downstream regulation of both Lin28a and Lin28b.  

Growth and division of NF2 tumor cells appears to depend on Lin28a 

expression, suggesting the possibility that uncontrolled cell division in NF2 
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tumors could be due to a Lin28-mediated decrease in Let-7 miRNAs. Future 

experiments will test the possibility that expression of a Lin28-resistant Let-7 

construct might similarly prevent NF2 tumor cell growth. Further, in vivo effects of 

manipulating the Lin28/Let-7 axis will be investigated by monitoring growth of 

flank-injected tumor cells in NU/NU mice following either shRNA-mediated 

Lin28a knockdown or Let-7 miRNA overexpression. These studies are of 

particular interest given the current development of Let-7 miRNA mimics as 

therapeutics in human cancer (Dai et al., 2015; Kasinski et al., 2015; Liu et al., 

2014; Wang et al., 2012). If loss of Merlin leading to cancer growth could be 

prevented by exogenous upregulation of Let-7 miRNAs, these findings have the 

potential to lead to the generation of Let-7-related therapies for NF2.  

 Given that mutations in the NF2 gene are associated with tumorigenesis 

broadly, observation of misregulated Lin28a and Let-7 miRNAs in NF2 may also 

have widespread implications for other tumor disorders. Merlin is mutated in 

breast cancer, glioblastoma, and meningioma, among others (Arakawa et al., 

1994; Cheng et al., 1999; Guerrero et al., 2015), and our studies suggest that 

normal Merlin protein is lacking from NF1 tumor tissue as well. NF1 results from 

mutations in chromosome 17 and is theoretically independent from mutations to 

the NF2 gene; however, given that NF2 patients exhibit loss of heterozygosity 

and occasionally acquire mutations in both copies of the gene postzygotically 

(Evans et al., 1998; Kluwe et al., 2003; Kluwe and Mautner, 1998; Moyhuddin et 

al., 2003), the location of the NF2 gene must be particularly susceptible to 

acquired mutations, which is perhaps further catalyzed in NF1. NF1 has been 
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more widely studied than NF2, and is an autism spectrum disorder as well as a 

tumor disorder (Mbarek et al., 1999). It is exciting to consider that possible 

therapeutics targeting the Lin28/Let-7 axis aimed towards treatment of NF2 could 

also be applicable for the variety of other conditions resulting from inactivated 

Merlin. 
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Figures and Legends 

Figure 3.1: Model - Possible induction of TRBP and Lin28a in 

Neurofibromatosis Type 2 

Graphical model. Left panel: In normal cells, Merlin protein catalyzes 

polyubiquitination and degradation of TRBP, resulting in controlled low basal 

levels of TRBP, Dicer, and Lin28a. Right panel: In Neurofibromatosis Type 2, 

loss of Merlin protein function results in elevated TRBP and phospho-TRBP, 

leading to enhanced binding and stabilization of Dicer and Lin28a and 

subsequent tumorigenesis.  

 

Figure 3.1 
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Figure 3.2: Merlin deficiency in Neurofibromatosis is associated with 

elevated phospho-TRBP and Lin28a, and decreased Let-7 miRNAs 

(a) Immunoblot of lysates from NF2-deficient and NF1-deficient tumor cells 

demonstrates similar levels of TRBP and Lin28a proteins, but also similar loss of 

normal Merlin protein. Dicer is elevated in NF2-deficient tumors compared to 

those deficient in NF1. (b) Immunoblot of lysates from NF2/Merlin-deficient 

human Schwannoma tumors demonstrates elevated levels of TRBP, phospho-

TRBP, Lin28a, and Dicer proteins compared to untransformed human Schwann 

cells. # denotes separate NF2-deficient Schwannomas taken from the same 

patient. (c) (Left) Representative immunoblot and (right) quantification of protein 

levels from normal Schwann cell lysates compared to NF2-deficient HEI193 cell 

lysates. Protein levels were normalized to GAPDH and plotted relative to 

Schwann cell protein levels, set as 1.0. (d) Quantification of miRNA levels by 

individual TaqMan qRT-PCR reactions in normal Schwann cells compared to 

NF2-deficient HEI193 cells. miRNA levels were normalized to U6 snRNA and 

plotted relative to Schwann cell miRNA levels, set as 1.0. N=3-7 independent 

experiments for all panels. *p < 0.05 by t test for all experiments. All error bars 

represent SEM. 
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Figure 3.2 
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Figure 3.3: Loss of Merlin protein in Schwann cells causes abnormal 

Lin28a elevation through TRBP 

 (a) (Left) Representative immunoblot and (right) quantification of protein levels in 

lysates from Schwann cells treated with either non-target shRNA (NTshRNA, 

control) or shRNA targeting Merlin. Protein levels are normalized to GAPDH and 

plotted relative to NTshRNA, set as 1.0. (b) (Left) Representative immunoblot 

and (right) quantification of protein levels in lysates from Merlin-deficient HEI193 

cells treated with either empty vector (control) lentivirus, or lentivirus expressing 

Merlin. Protein levels are normalized to HSC70 and plotted relative to empty 

vector, set as 1.0. (c) (Left) Representative immunoblot and (right) quantification 

of protein levels in lysates from HEI193 cells treated with non-target shRNA 

(NTshRNA, control) compared to 10µL or 15µL of shRNA targeting TRBP (TRBP 

shRNA). Protein levels are normalized to HSC70 and plotted relative to non-

target shRNA, set as 1.0. N=4-7 independent experiments for all panels. *p < 

0.05 by t test for all experiments. All error bars represent SEM. 
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Figure 3.3 
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Figure 3.4: Lin28a elevation contributes to Neurofibromatosis Type 2 tumor 

growth 

(a) HEI193 cells were treated with either non-target shRNA (NTshRNA, control), 

or one of two shRNAs targeting separate regions of the Lin28a mRNA (Lin28a 

shRNA #1 and Lin28a shRNA #2).  Cells were incubated with BrdU for 8 hours, 

then fixed and stained for DAPI (blue) and BrdU (green). (b-d) HEI193 cells 

treated with Lin28a shRNA compared to those treated with NTshRNA 

demonstrated (b) fewer total cells, measured via DAPI signal, (c) fewer dividing 

cells, measured via BrdU incorporation, and (d) an overall reduced fraction of 

dividing cells. Results are from 9-12 independent microscopic fields per 

condition, no more than 3 fields per dish. *p < 0.01 by ANOVA for all 

experiments. All error bars represent SEM. (e) Immunoblot for Lin28a protein 

levels in HEI193 cells treated with NTshRNA, Lin28a shRNA#1, or Lin28a 

shRNA #2 demonstrates reduced Lin28a protein expression in the Lin28a 

shRNA#1 condition (68%) and the Lin28a shRNA#2 condition (67%) compared 

to NTshRNA. 
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Figure 3.4 
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Methods 

Immunoblotting 

Cells were washed 2 times in cold PBS with MgCl2 (0.9 mM) and harvested on 

ice with lysis buffer (50 mM Hepes, 150 mM NaCl, 10% Glycerol, 1 mM EDTA, 

1% Triton-X-100, 0.2% SDS) plus freshly added protease inhibitor cocktail 

(Roche), and phosphatase inhibitor cocktail (Sigma P004 and P5726). Lysates 

were rotated for 10 minutes at 4°C, followed by high-speed centrifugation for 15 

minutes at 12,000 X g. Protein concentration in the supernatant was determined 

by Bicinchoninic acid (BCA) assay and equal protein amounts resolved on SDS-

PAGE gels and electrotransferred to PVDF membrane. Membrane was blocked 

with 5% BSA in Tris-buffered saline tween 20 (TBST 0.1%) for 1-3 hrs and 

probed with primary antibodies: Lin28a (Novus NBP-149537), HA (Invitrogen 71-

5500), NF2/Merlin (abcam ab88957), TRBP (Abcam ab72110 or Pierce LF-

MA0209), Dicer (Sigma SAB4200087), GAPDH (Millipore 6C5), phospho-TRBP 

(generated by our laboratory, as described in Chapter 2 Fig. 2.8). 

 

Schwannoma and Schwann cell sample preparation 

Human schwannoma samples from patients with Neurofibromatosis Type 2 

(NF2) and Neurofibromatosis Type 1 (NF1) were collected at the Johns Hopkins 

Peripheral Nerve Surgery Center under Institute Review Board approval 

(A.Belzberg and K.Ostrow) and with the generous consent of the patients. 3 

separate NF1 tumor samples were taken from 3 different patients, and 7 

separate NF2 tumor samples were taken from 6 different patients, all with 
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confirmed mutations in the NF1 or NF2 gene. Tumors were flash frozen on liquid 

nitrogen, crushed, and then rotated in lysis buffer (as previously described) with 

protease and phosphatase inhibitors for 3 hours, followed by high-speed 

centrifugation for 15 minutes (12,000 x g). Supernatant was saved for analysis. 

 

Cell lines 

Human Schwann cells were from (ScienCell #1700), and were cultured in 

Schwann cell medium (ScienCell #1701). The HEI193 cell line was generously 

supplied by Dr. Lim from UCLA, generated and immortalized as previously 

described (Hung et al., 2002). HEI193 cells were cultured in DMEM with 10% 

FBS and 1% glutamine. All cells were harvested as previously described when 

confluent. 

 

Transduction 

Lentiviral-mediated delivery of HA-Merlin (gift from Kunliang Guan, Addgene 

#32836, and cloned into the FUW lentiviral vector) was used to achieve Merlin 

expression in HEI193 cells for biochemical analysis at a multiplicity of infection 

(MOI) of 5-10, 4 days before harvest.  Lentiviral stocks were prepared and 

lentiviral knockdown carried out as previously described (Huang et al., 2012; 

Meffert et al., 2003). Knockdown for biochemical and imaging analysis used 

lentiviral-mediated delivery of non-target shRNA (Sigma, SHC002), shRNA 

targeting TRBP (Thermo Scientific TRCN0000102563), shRNA targeting Lin28a 

(Thermo Scientific TRCN0000102576 (Lin28a shRNA#1) and TRCN0000021802 
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(Lin28a shRNA #2), and shRNA targeting Merlin (TRCN0000039975), 4-5 days 

prior to analysis. 

 

RNA analysis 

Total RNA from primary cultures of mouse hippocampal neurons was isolated in 

Tri-Reagent (Molecular Research Center, Inc.) according to the manufacturer’s 

protocol. Cultures were homogenized in Tri-Reagent directly. RNA pellets were 

air-dried and resuspended in nuclease-free water. RNA concentration and quality 

were assayed by spectrophotometric measurements at optical density (OD) 

260/280/230nm. For individual microRNA abundance assays (Applied 

Biosystems), 20ng of total isolated RNA was prepared for reverse transcription 

with stem-looped primers specific for individual mature miRNAs in a final volume 

of 15µl according to manufacturer’s protocol: 1) 4oC for 5 min, 16oC for 30 min, 2) 

42oC for 30 min, 3) 85oC for 5 min, and subjected to TaqMan MicroRNA Assays 

(Applied Biosystems) for Let-7a (000377), Let-7g (002282), and miR-132 

(000457). The abundance of sno234 (001234) in each sample was used as an 

internal control to normalize all miRNA species. RT-qPCR was performed using a 

Stratagene Mx3000P machine and software. Quantification was carried out using 

the standard-curve method and no preamplification. RQ was calculated as 2-

ΔCtBDNF / 2-ΔCtmock where ΔCt = (cycle threshold for miRNA of interest) – (cycle 

threshold for reference control). 

 

BrdU incorporation assay 
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HEI193 cells were plated and randomly assigned to treatment conditions. The 

experimenter was blinded during data acquisition and analysis. 48 hours after 

plating, dishes were incubated for 24 hours in serum starvation media (0% FBS), 

which was then replaced with full media containing 10µM 5-bromo-2’-

deoxyuridine (BrdU; Sigma, B5002) for 8 hours. After washing with PBS, cells 

were fixed in 4% PFA/4% sucrose/PBS for 40 min, and permeabalized for 40 min 

in 0.2% triton X-100/PBS. Cells were then rinsed in PBS, and incubated in 2M 

HCL for 20 min at 37°C, followed by incubated in 0.1M borate buffer for 5 min, 

twice, to neutralize acid. Cells were blocked in 10% BSA/PBS for 1 hr at room 

temperature, then incubated with anti-BrdU antibody (Sigma, B8434) overnight at 

4°C. The following day, dishes were washed in PBS and incubated with Alexa 

488 secondary antibody for 1 hour at room temperature. During the last wash 

following secondary antibody incubation, DAPI stain (ThermoFisher, D1306) was 

added for 10 minutes. Cells were imaged using a Tokogawa spinning disk 

system (Cell Observer, Carl Zeiss). Confocal images of HEI193 cells were 

acquired using a 25x (for analysis) or 40x (tiled for representative images) 

objective. Laser power and exposure time were adjusted to minimize 

photobleaching and avoid saturation. Blue (DAPI) and green (BrdU) cells were 

manually counted. 

 

Statistical analysis 
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Two-tailed unpaired student’s t tests were used with α=0.05. Where specified, 

statistical analysis included one-way ANOVA for independent samples with a 

Tukey HSD post hoc test, α=0.05.  
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Chapter 4: Conclusions and Perspectives 

The ability of neurons to swiftly and coordinately alter protein expression 

in response to environmental stimuli is key to their individual and collective 

function in synaptic networks. Given that it takes a minimum of 20 - 30 minutes 

for the earliest transcriptional regulation to begin to cause proteome alterations, 

post-transcriptional control of gene expression in the nervous system is likely 

crucial to producing normal neuronal function, but is currently not well 

understood. Previous research from our laboratory demonstrated that BDNF 

confers translational specificity by impacting the miRNA biogenesis pathway in 

part through Lin28a protein induction (Huang et al., 2012). This initial work both 

highlighted the importance of miRNA regulation by Lin28a in BDNF function, and 

suggested that BDNF could be used as a model to understand stimulus-

dependent regulation of post-transcriptional gene target specificity.  

A single miRNA has the potential to affect translation of entire suites of 

mRNAs, and therefore miRNAs and miRNA regulators are attractive candidates 

in coordinating elaborate biological responses. However, the finding that BDNF 

regulates miRNA biogenesis by inducing levels of Lin28a protein was highly 

unexpected, given that Lin28 was previously considered to be transcriptionally 

silenced in mature, terminally-differentiated cells, and only re-upregulated in 

pathological states such as cancer. In the first portion of my dissertation, we 

aimed to unravel the mechanism by which BDNF acts to elevate Lin28a protein 

(but not Lin28b), subsequently decreasing Let-7 miRNAs. We found that, under 

basal conditions, Lin28a protein is present at low but detectable levels in mature 
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hippocampal neurons and is subject to rapid degradation. Exposure to BDNF 

stabilizes Lin28a protein by inducing TRBP phosphorylation downstream of Erk 

kinase. Phospho-TRBP serves as a binding partner for Lin28a, leading to Lin28a 

stabilization, and downstream inhibition of Let-7 miRNA processing. We 

observed that stabilization of Lin28a by phospho-TRBP is required for 

physiological effects of BDNF on spine dynamics. Excitingly, we also saw that 

trophic induction of TRBP and Lin28a downstream of MEK/Erk exists in multiple 

primary cell types in response to various growth factors, both in and outside of 

the nervous system, suggesting that a mechanism for Lin28a regulation 

downstream of Erk-mediated phospho-TRBP could be broadly conserved. 

Experiments performed in the first portion of my dissertation led us to 

uncover the potential for control of Lin28a by Merlin protein, which is mutated in 

the human tumor disorder Neurobromatosis Type 2 (NF2). Based on prior reports 

showing ubiquitination of TRBP by Merlin (Lee et al., 2004; Lee et al., 2006), and 

my own work in Chapter 2 demonstrating a role for Merlin in phosphorylation-

dependent TRBP regulation, we hypothesized that loss of Merlin could lead to 

elevated phospho-TRBP and, consequently, Lin28a.  Although Lin28 is a known 

oncogene and Let-7 miRNAs are considered tumor-suppressors (Wang et al., 

2012), dysregulation of the Lin28/Let-7 axis has not previously been 

characterized in NF2.  In the second portion of my dissertation, we observed that 

loss of Merlin in NF2 tumors causes elevation of TRBP and phospho-TRBP, 

which results in induction of Lin28a and is associated with decreased Let-7 

miRNAs. Excitingly, loss of Lin28a in these tumor cells reduces their rate of 



	

	 106 

growth. Ongoing experiments related to this project will aim to determine whether 

Lin28a exerts its pro-growth effects directly through Let-7 miRNA inhibition in the 

setting of NF2 tumors. This is being tested by expressing either wildtype Let-7 or 

a Lin28-resistant Let-7 miRNA mutant and observing whether rate of tumor cell 

division is similarly slowed. We are also in the process of developing assays to 

examine tumor formation and growth in vivo using immunocompromised mice. 

Flank injection of NF2 tumor cells in NU/NU mice has been previously shown to 

result in observable tumor formation within 7 days (Prabhakar et al., 2010). We 

hope to characterize in vivo growth of NF2 tumors following treatment with 

shRNA targeting Lin28a, or a Lin28-resistant Let-7. If growth of the tumor in vivo 

is slowed by expression of a Let-7 miRNA, this may suggest the exciting potential 

for Let-7 miRNA mimics as therapy in NF2 (Dai et al., 2015; Kasinski et al., 2015; 

Liu et al., 2014; Wang et al., 2012). 

Previous studies investigating mechanisms underlying growth inhibition by 

Merlin have observed that Merlin negatively regulates the MAPK pathway (Jung 

et al., 2005; Lim et al., 2003a).  Our characterization of Lin28a induction in 

trophic responses revealed that Lin28a is stabilized downstream of MEK/Erk-

mediated TRBP phosphorylation. Considered together, these findings raise the 

possibility that loss of Merlin protein in NF2 tumors could elevate TRBP and 

Lin28a both through reduced TRBP polyubiqutiination, as well as through 

enhanced TRBP phosphorylation downstream of Erk activity.  To begin to 

determine whether Erk kinase may regulate TRBP and Lin28a in the context of 

NF2 tumors, we treated tumor cells with two different Erk inhibitors (U0126 and 
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AZD6244) and made initial observations of widespread cell death within 48 

hours. Ongoing experiments will directly measure apoptosis following Erk 

inhibition in vitro to confirm these findings. Erk activation is associated with pro-

growth phenotypes through activation of a range of signaling pathways, and 

therefore overexpression of phospho-mimic TRBP, for example, may help us to 

elucidate whether possible apoptotic phenotypes following Erk inhibition are 

related specifically to regulation of phospho-TRBP/Lin28a versus more general 

effects. Regardless, given that drugs inhibiting Erk are currently approved for 

human use (e.g. Lovastatin), these findings could have exciting implications for 

therapeutic treatment, and will be followed up with Erk inhibition using FDA 

approved pharmaceuticals (e.g. lovastatin) in in vivo models of NF2 tumor 

expression.  Collectively, this work has the potential to demonstrate a crucial role 

for phospho-TRBP-mediated stabilization of Lin28a in tumor cell biology in 

addition to trophic signaling. 

One unexpected observation arising from our characterization of a 

posttranslational mechanism for induction of Lin28a protein in trophic responses 

and tumor cells was the elucidation of differential regulation of Lin28a and 

Lin28b. Organisms such as c. elegans and drosophila melanogaster contain only 

one Lin28 homolog (with sequence identity to Lin28a), but the vertebrate genome 

contains two Lin28 paralogs, a and b (Balzer et al., 2010; Piskounova et al., 

2011). Traditionally, Lin28a and Lin28b are thought to be functionally redundant, 

both serving to inhibit Let-7 miRNA activity. However, the research presented in 

my dissertation demonstrates differential stimulus-specific response of the two 
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paralogs. We see that Lin28a exclusively is upregulated by BDNF, likely because 

Lin28a, but not Lin28b, is a binding partner of phospho-TRBP. This work 

exposes distinct biological roles for Lin28a versus Lin28b, and suggests that they 

may mediate separate aspects of stimulus response. Ongoing work in our 

laboratory is aimed at characterizing a potential role for Lin28b in long-term 

maintenance of plasticity, as opposed to Lin28a, which is rapidly and briefly 

induced by trophic stimuli. Lin28a and Lin28b are both critical players in 

development as well as tumorigenesis, and we anticipate that an increased 

understanding of distinct regulatory mechanisms will have important implications 

for not only trophic signaling and translational specificity, but also for stem cell 

and tumor cell biology as well.  

Generally speaking, knowledge of mechanisms conferring translational 

specificity is particularly crucial in neuronal cell types, because neurons are 

asymmetrical cells with distinct subcellular compartments in which protein 

composition must be selectively regulated in order to achieve appropriate 

function (Holt and Schuman, 2013). Although the experiments performed in my 

dissertation demonstrate trophic Lin28a induction, the methods involve whole-cell 

lysis, and therefore allow for analysis of protein levels on a cell-wide basis only. 

This begs the question of subcellular location of induction of Lin28a by BDNF. 

Does BDNF lead to induction of Lin28a protein throughout the neuron, or in a 

specific region, such as the stimulated synapse? Ongoing research in our 

laboratory attempts to address the question of localized Lin28a protein 

expression both pre and post stimulation, using microfluidic chambers to 



	

	 109 

physically isolate dendrites from the neuronal cell body. These techniques allow 

for the application of BDNF to a single dendritic segment, after which Lin28a 

levels in the stimulated dendrite and dendritic spines can be compared to Lin28a 

in nearby unstimulated dendrites, as well as the cell body.  The elucidation of the 

mechanistic basis for rapid Lin28a induction described in this thesis is now being 

brought to bear on these questions of localized regulation. 

 Regulation of protein synthesis is thought to underlie the enduring 

changes in synaptic activity that are known to require new translation, and 

physiological effects of BDNF that are dependent on novel protein synthesis are 

well-documented. Typical protein synthesis-dependent readouts of BDNF in 

differentiated neurons include increases in dendritic complexity and dendritic 

length, and regulation of dendritic spine volume, number, and density (Jaworski 

et al., 2005; Je et al., 2009a). Additionally, BDNF-dependent protein synthesis 

plays an important role in hippocampal-based learning, and rodents with 

impaired BDNF signaling exhibit a reduced capacity for learning and memory 

(Pardon, 2010; Santos et al., 2010; Tyler et al., 2002).  Our work has 

demonstrated that BDNF relies on Lin28a induction, and subsequent Let-7 

miRNA inhibition, in order to both enhance dendritic arborization in young 

neurons, and modulate spine density and size in mature neurons.  These 

findings suggest the possibility that hippocampal-based learning may be impaired 

in animals lacking Lin28a function.  To test this hypothesis, a transgenic Lin28a 

mouse line from the lab of G. Daley (Zhu et al., 2011), in which exon 2 of 

genomic Lin28a is flanked by LoxP sites (Lin28afl/fl), has been crossed with a 
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CAMKIIα-CreERT2 transgenic line.  This new line will allow us to achieve 

neuronal-specific conditional Lin28a knockout, prior to tasks such as Morris 

Water Maze and contextual fear learning, which are known to require BDNF 

(Minichiello et al., 1999; Tyler et al., 2002).  We anticipate that removing Lin28a 

function will cause transgenic animals to perform poorly on tasks requiring BDNF 

signaling. Additionally, we will examine whether treatment with Let-7 miRNA 

inhibitors (antiMirs, designed with clinical intent) (De Palma and Naldini, 2010; 

Frost and Olson, 2011; Stenvang et al., 2012) has the ability to mimic the effects 

of Lin28a induction on cognitive performance, in settings where either Lin28a or 

BDNF expression is reduced.  Since BDNF signaling is disrupted in numerous 

neurologic and psychiatric disorders, the use of Let-7 antiMiRs has exciting 

potential clinical relevance for cognitive and neurological disease. 

 Dysregulation of both translation and BDNF are directly associated with a 

variety of cognitive diseases and disorders (Bassell and Warren, 2008; Krauss et 

al., 2013; Nagahara and Tuszynski, 2011; Ramaswami et al., 2013; Wang et al., 

2007; Zuccato and Cattaneo, 2009).  Autism spectrum disorders, in particular, 

are linked to both disrupted translation and impaired BDNF signaling (Bassell 

and Warren, 2008; Correia et al., 2010; Darnell et al., 2011; Kelleher and Bear, 

2008). Work from this thesis elucidating the crucial role of the MAPK pathway in 

regulation of Lin28a control of pro-growth translation, allowed our laboratory to 

form hypotheses regarding a potential role for Lin28a in autism.  We hypothesize 

that abnormal translation in autism could result from changes in Lin28a 

expression, leading to altered Let-7 miRNA levels. Specifically, a current project 



	

	 111 

in our laboratory is focused on characterizing misregulated Lin28a expression in 

the autism spectrum disorder Fragile X Syndrome, which is associated with 

hyperactivity, anxiety, attention deficit, and cognitive impairment, and is linked to 

dysregulated translation and abnormal BDNF function (Bassell and Warren, 

2008; Castren and Castren, 2014; Kelleher and Bear, 2008).  Additionally, work 

in my dissertation regarding the role of Lin28a in Neurofibromatosis preliminarily 

indicates that Lin28a could be elevated in NF1, another autism spectrum 

disorder, as well. Current models suggest that autism spectrum disorders may be 

a result of uncontrolled neuronal growth, or loss of synaptic pruning in 

development (Bolton et al., 2001; Courchesne et al., 2011; Tang et al., 2014). 

Given the pro-growth function of Lin28a, we anticipate that abnormal Lin28a 

elevation in autism could contribute to these effects.  

Overall, the work performed for my dissertation has characterized a 

previously unappreciated mechanism for regulation of Lin28a protein in the 

nervous system, which ultimately serves to induce selective translation of pro-

growth proteins. We have shown that despite previous assumptions of Lin28a 

silencing during development, it is active and functional in mature hippocampal 

neurons following trophic stimulation. We hypothesize that mature, differentiated 

neurons make use of the Lin28/Let-7 pathway by keeping Lin28a levels low at 

baseline, but producing rapid Lin28a elevation in response to pro-growth trophic 

stimuli, causing transient decreases in Let-7 miRNAs and increased translation of 

genes involved in growth and plasticity. We have demonstrated that phospho-

TRBP serves as a regulatory hub for Lin28a induction, both in the context of 
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rapid trophic responses, and also in the long-term context of a tumor disorder, 

Neurofibromatosis Type 2. Our findings suggest that Lin28a can be regulated by 

various trophic stimuli through phospho-TRBP in mature cells broadly, although 

further research is needed to fully characterize the observed Erk-dependent 

Lin28a inductions in other cell types.  Preliminary data suggests that while Erk 

activation downstream of receptor tyrosine kinase (RTK) signaling mediates 

TRBP/Lin28a induction, activation of other receptor types which also converge 

on the MAPK pathway may not have the same effect. These observations are 

indicative of possible parallel pathways involved in RTK activation that may 

contribute to Lin28a stabilization, and require further study. Additionally, a major 

remaining question is how mature cells maintain low basal levels of Lin28a 

protein – specifically, what mechanisms are in place to produce the rapid 

baseline turnover of Lin28a in hippocampal neurons? Ongoing work in our 

laboratory will attempt to provide insight into basal Lin28a control. Collectively, 

work in my dissertation characterizes a novel mechanism for regulation of Lin28a 

protein in the nervous system, and demonstrates the importance of this 

mechanism in both synaptic plasticity and tumor cell biology. These findings will 

have important implications for those seeking to better understand pro-growth 

outcomes of trophic signaling, as well as those interested in constitutive 

pathogenic elevation of Lin28a. 
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Appendix A 
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A.4: Lin28a mimics and occludes the effects of BDNF on dendritic 

arborization 

(A.1) BDNF-mediated increases in dendritic complexity are mimicked by low-

level overexpression of exogenous Lin28a. In the presence of Lin28a 

overexpression, BDNF has no further effect on dendritic complexity. Dendritic 

complexity is measured by counting the number of dendritic branches at varying 

distances from the cell soma. (A.2) BDNF causes a small but significant increase 

in total dendritic length, mimicked by Lin28a overexpression. Lin28a occluded 

further effects of BDNF on total dendritic length. (A.3) Soma size was unchanged 

between conditions, suggesting that neurons were overall of similar health and 

size following experimental treatments. *p < 0.05 by t test for all experiments. All 

error bars represent SEM. N=9-13 neurons per condition, from at least 3 

separate cultures, no more than 3 neurons per dish. 
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Appendix B  

Extended Experimental Methods 

 

Hippocampal Neuron Dissociation and Culture 

 

Prepare culture dishes:  Incubate overnight with Poly-L-lysine (0.5 mg/ml) in 

sterile 0.1 M Sodium Borate pH 8.4. 

 

Wash dishes 1X with sterile PBS prior to use and allow to dry briefly, store in TC  

incubator. 

Note: If plating into MatTek dishes, wash dishes and allow them to dry 

during papain treatment.  Drying allows plating into the coverslip well 

without spillage into the surrounding dish. 

 

Make a hole in the top of a sterile 75 cm2 culture flask and connect the hole by  

tubing to Oxygen/CO2 (95/5 %)   

 

 

Prepare the following fresh sterile solutions 

 

Trituration Media: 20 ml DMEM 

200 µl BSA (200 mg/ml stock, 2 mg/ml final)  

0.5 ml Pen/Strep/Glucose/Pyruvate 
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200 µl DNAse (5 mg/ml stock, 0.05 mg/ml final) 

 

Centrifugation 5 ml of above Trituration Media 

Media: plus 400 µl BSA (200 mg/ml stock, 16 mg/ml final) 

 -add three drops sterile 0.1 N NaOH, or until media is 

slightly pink 

 

Papain Solution:    1.5 ml HBSS/NaHCO3/EDTA (6.67X stock) 

128 µl cysteine (25 mg/ml stock, .32 mg/ml final) 

0.25 ml Pen/Strep/Glucose/Pyruvate 

8 ml H2O 

 

 Store on Ice  

Immediately prior to use, warm to RT, add 1/2 to flask and gently aerate 

with 95%O2 /5 % CO2; add Papain LATER   

 

Dissection Solution: 2 ml HBSS (10X w/o Ca2+/Mg2+/NaHCO3) 

 200 µl HEPES (1 M stock, 1 mM final) 

 0.5 ml Pen/Strep/Glucose/Pyruvate (40X stock) 

 17.3 ml H2O 
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Dissection / Digestion Procedure 

1) Dissect Hippocampi from P0-P1 mice (use dissecting scope) 

Note: Keep Hippocampi on ice in Dissection solution 

2) When dissection is finished, transfer tissue to aerated flask containing 

Papain solution and add 100 U papain. 

3) Digest for ~ 15 min at RT, depending upon papain age and temperature. 

Monitor by eye watching for feathering of the tissue edges. 

 

Trituration Procedure 

1) Label three 15 ml conicals, #1 - #3 

2) Once digestion is over, move flask to TC hood.  Allow tissue to settle, then  

remove tissue to #1 conical using a 5 ml plastic pipette  

3) Allow tissue to settle and remove as much of the digestion solution as 

possible from above the tissue.  Add 4 ml Trituration Solution with mixing, 

allow tissue to settle, and again remove as much solution as possible from 

over the tissue.  

4) Add 3 ml Trituration Solution and triturate tissue gently up and down ~4 

times with a sterile pasteur pipette, then allow tissue chunks to settle. 

5) Remove solution from the top, which is a single cell suspension, and 

transfer to #2 conical. 

6) Firepolish a sterile pasteur pipette to slightly decreased diameter and 

repeat trituration.  Again add 3 ml Trituration Solution, allow chunks to 

settle, and remove top solution to #2 conical. 
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7) Repeat the above Trituration procedure firepolishing pipettes to 

progressively smaller diameters, until nearly all tissue is homogenized into 

single cell suspension. 

Note: Typically requires 3-4 pipette diameters 

8) Transfer solution from conical #2 to conical #3 using a small bore pasteur 

pipette.  Re-triturate bits at the bottom of #2 if necessary. 

9) Layer 5 ml Centrifugation Solution underneath triturated cells in conical 

#3. Centrifuge to pellet cells for ~10 min at 900 x g, room temperature. 

10)  Remove supernatant and resuspend cell pellet in Growth Media with 

Pen/Strep. Count cells with hemocytometer.  

a. Plate at ~1.1 million cells/ml for wells. Roughly, 550,000 cells/well 

in 24 well plate, plated in 500µl.  

b. Plate at ~2 million cells/ml for matteks. Roughly, ~160,000 

cells/dish in MatTeks. 

11)  Put plated cells in incubator   

12)  The next morning, suck off 1/2 - 2/3 media and replace with fresh media 

without Pen/Strep. 

Note: Cells can be plated in pen/strep/glutamine, but should be 

switched to media WITHOUT pen/strep within ~12 hours. 

 

Growth Media:                    50 ml - 48.5 ml Neurobasal A 

        1 ml B-27 supplement (50X) 

  0.5 ml Pen/Strep/L-Glutamine (100X) OR  0.25  
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 ml L-Glutamine 

    

Note: We have also used glial conditioned media, especially when the B27 is less 

than optimal. 

 

Aliquot Stocks 

B27 supplement (50X) 1 ml eppendorf aliquots, store at - 20°C (Gibco #17504-036) 

 

BSA (200 mg/ml) BSA fraction V,  2 g / 10 ml sterile nanopure H2O 

  Sterile filter, 1 ml eppendorf aliquots, store at - 20°C 

 

Cysteine (25 mg/ml) L-cysteine in sterile nanopure H2O  

Sterile filter, 200 µl aliquots, store at - 20°C 

 

DNAse I (5 mg/ml) 20 mg/ 4ml sterile nanopure H2O 

 Sterile filter 400 µl aliquots, store at - 20°C (Worthington 

#LS002004, Code D, 5mg ~ $25) 

 

Glucose 40 g/ 200 ml sterile nanopure H2O  

 Sterile filter, store at RT 

 

Glutamine (200X)    L-Glutamine (200 mM) (Gibco #25030-032) 
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HBSS (10X) w/o Ca2+/Mg2+/NaHCO3 - 100 ml bottle (Gibco #14180-053) 

 

HBSS (10X) w/o Ca2+/Mg2+, + EDTA, NaHCO3 - 100 ml bottle as above (#14180  

053)  

Add 0.5 mM EDTA final, 0.1 ml of 0.5 M stock 

Add 50 mM NaHCO3 final, 9.6 ml of 524 mM stock 

 

Hepes (1M) pH 7.5  

  

Papain (0.2 units/µl)  Resuspend vial in sterile nanopure H2O at 4°C O/N, sterile 

filter into 15 ml conical, store at 4°C (Worthington 

#LS003119, code PAPL,100mg~$60) 

 

Pen/Strep/Glutamine (100X) 

1:1 mix of  

Penicillin(10000units) - Streptomycin(10000µg) 

(Gibco#15140-031) 

L-Glutamine (200 mM) (Gibco #25030-032) 

Sterile filter, 1 ml eppendorf aliquots, store at - 20°C 

 

Pen/Strep/Pyruvate/Glucose (40X) 

 200 µl Pen/Strep 

 200 µl Glucose (200 mg/ml stock) 
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 400 µl Sodium Pyruvate (100 mM) 

 200 µl sterile nanopure H2O 

 Sterile filter, 1 ml eppendorf aliquots, store at - 20°C 

 

Sodium Pyruvate (100 mM) (Gibco # 11360-070), store at - 4°C 
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Peritoneal Macrophage Harvest and Culture 

 

Growth Media: RMPI with addition of 10% fetal bovine serum, 1% glutamine, and 

1% pen/strep 

 

1) Euthanize adult mouse (12-20 weeks old) in a CO2 chamber, followed by 

cervical dislocation 

2) Disinfect abdominal area with 70% ethanol 

3) Cut and pull apart skin to expose abdominal cavity 

4) Using a 21 gauge needle, inject 10ml ice cold media into abdominal cavity 

Note: Inject media just under the skin into lower left quandrant of 

the abdomen, in order to avoid puncturing major organs. In 

particular, if the intestinal wall is punctured, the abdominal cell 

population will be contaminated. 

5) Shake mouse to allow for distribution of media throughout abdominal 

cavity for 30-60 sec 

6) Using the same 21 gauge needle and syringe, suction media back out of 

abdominal cavity 

Note: When removing cell-containing media, avoid puncturing 

surrounding areas, as you will risk blood cell contamination. 

7) Empty media into a chilled 15ml conical, on ice 

Note: Pour out the cell suspension rather than ejecting through 

needle, in order to avoid shearing the cells. 
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8) Spin cells down at 2,000 x g for 10 min 

9) Suction media off cell pellet, and re-suspend in fresh media 

10)  Count cells using hemocytometer and plate into 24 wells plates 

a. Plate cells at around 600,000 cells/well in 0.5ml/well 

11)  Leave cells in 37°C incubator for 1-2 hours, then wash well 2X with warm 

media. Remaining, adherent cells are 99% macrophages. 
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Processing of Primary Tumor Tissue 

 

Tumor tissue was harvested under Institute Review Board approval at the Johns 

Hopkins Peripheral Nerve Surgery Center under the expertise of Dr. Allen 

Belzberg 

Note: Neurofibromatosis tumor tissue is highly fibrous and difficult to 

digest 

 

Lysis Buffer: 50 mM Hepes, 150 mM NaCl, 10% Glycerol, 1 mM EDTA, 1% 

Triton-X-100, 0.2% SDS 

 

1) Using a sterile blade, cut tumor tissue into ~2cm2 chunks. 

2) Flash-freeze tumor tissue in a liquid nitrogen bath. Ensure samples are 

entirely frozen. 

a. Store unused samples at -80°C. 

3) Chill a clean, sterile metal slab on the liquid nitrogen bath, and cover with 

a sheet of Saran wrap. 

4) Place 1 frozen tissue sample on the metal slab, and crush using a 

hammer.  

Note: Crushing allows for lysis from a mix of cells in all portions of 

the tissue, instead of the outermost layers only  

Note: If sample is fully frozen, when crushed it should become a 

fine powder that can be scraped off of Saran wrap 
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5) Place powdered tissue into a 1.5ml tube containing 300-500µl lysis buffer 

with protease and phosphoatase inhibitors, and rotate at 4°C for 3 hours. 

6) Centrifuge for 15 minutes, 4°C, at 12,000 x g. Save supernatant for 

analysis. 

7) Determine protein concentration of supernatant (BCA), and load equal 

amounts of protein on a polyacrylamide gel to analyze protein levels via 

immunoblot. 
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Purification and pull-down of recombinant bacterial proteins 

Adapted from Pomerantz laboratory protocol 

 

Day 1 

1) Inoculate 10ml LB plus antibiotic with 1 colony from BL21 bacteria 

transformed with plasmid of interest 

Note: Touch pipette tip to colony, then touch tip to 5ml LB/antibiotic 

liquid culture and eject tip in a second 5ml LB/antiobotic liquid 

culture 

 

Day 2 

1) Inoculate 250ml LB/antibiotic with 10ml starter culture from Day 1. Grow at 

37°C 

2) Monitor bacterial growth until OD 600 = 0.75 (logarithmic phase, usually 

about 2 hrs of growth) 

3) Once OD 600=0.75, add IPTG to final concentration of 1mM to induce 

plasmid expression, and grow for 2 - 4 hrs 

4) Cool bacteria quick on ice water bath for 15-25 min 

5) Spin down bacteria at 7700 x g for 10 min at 4°C 

6) Resuspend bacterial pellet in 12.5ml cold PBS, pH=7.4 

Note: At this step, bacterial resuspension can be stored overnight 

at       -20°C to aid lysis. Alternatively, experimenter can proceed 

immediately to the subsequent steps 
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Day 3 

Lysis 

1) Quick thaw bacteria at 37°C  

2) Add bacterial protease inhibitors to recommended concentration, and 

lysozyme to 0.5mg/ml 

3) Incubate 30 min room temp 

4) OPTIONAL: freeze bacteria and thaw at 37°C 2-3X to aid lysis 

5) Sonicate: 20 sec pulses X 5, at 20% amplitude 

6) Add Triton-X to 1% and incubate on ice 0-10 min 

7) Spin 10,000 x g for 10 min at 4°C. Take supernatant for analysis. 

Note: If desired, save supernatant sample for analysis of protein 

expression 

 

Pull-down 

1) Wash about 1200µl 30% bead slurry with PBS, pH=7.4 per sample (about 

400µl bed volume of beads; glutathione sepharose beads for GST binding, 

or amylose resin for MBP binding). Re-suspend beads as 25% slurry in 

PBS, pH=7.4 (e.g. 1200µl PBS to 400µl beads) 

2) Add 12.5ml lysed bacterial supernatant to 1600µl 25% slurry of 

appropriate beads  

3) Rotate beads and supernatant at 4°C for 2hr-overnight 
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Wash and elution 

Column GST tag elution: 

1) Spin down beads at 500 x g for 5 min at 4°C and decant supernatant 

Note: Save supernatant sample for analysis of protein pull-down 

2) Re-suspend beads in small volume PBS, pH=7.4 (around 500µl) and 

apply to Biorad Poly-prep chromatography column 

3) Wash with 8ml PBS, pH=7.4 (20X bead volume) and collect drainage 

Note: Save wash drainage sample to confirm protein is not lost 

4) Elute in 200µl fractions with freshly made 10mM Glutathione in 50mM 

Tris-Cl, pH=7.5 

a. Plug column before addition of each elution fraction, and 

incubate 50-10 min before collecting elution 

b. Add 1µl eluted fraction to 100µl Bradford reagent to preliminarily 

select for concentrated fractions 

Note: Addition of Glutathione to Tris-Cl may significantly lower pH 

and reduce elution efficiency – check pH of elution buffer post 

Glutathione addition 

5) Pool most concentrated fractions (usually 1-3) and subject to dialysis at 

4°C to remove glutathione 

a. Dialysis buffer: 20mM HEPES pH=8.0, 20% glycerol, 0.2 mM 

EDTA, 1mM DTT 

b. Use slide-a-lyze tubes with 20K pore size 

c. Dialyze for 2 hours, change dialysis buffer, then let go overnight 
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6) Quantitate protein concentration by Bradford protein assay 

7) Quick freeze purified proteins, store at -80°C 

 

Xa Protease cleavage elution: 

1) Wash beads 2X in factor Xa reaction buffer (20mM Tris-Cl, 50mM NaCl, 

1mM CaCl2, pH =6.5) 

2) To 400µl bed volume of beads, add 600µl factor Xa reaction buffer with 

0.2U/µl factor Xa. Rotate overnight at 4°C. 

**Concentration of factor Xa and rotation time should be optimized 

3) Collect eluent and add PMSF to final concentration of 0.3mM to stop 

protease activity. Incubate 30 min at 25°C. 

4) Collect eluent and and quantitate protein concentration by Bradford 

protein assay 

5) Quick freeze purified proteins, store at -80°C 

 

Binding assay 

1) Wash 60µl 30% sepharose bead slurry with cold PBS, pH=7.4 and 

resuspend in 20µl to make 50% slurry 

2) Rotate about 50µg of either GST-TRBPWT, GST-TRBPSΔD, or GST 

alone with 40µl 50% sepharose bead slurry, 2hrs-overnight at 4°C 

3) Add about 25µg pure Lin28a protein to bead-bound GST-TRBPWT, GST-

TRBPSΔD, or GST alone (approximately 2X TRBP per 1X Lin28a) 

4) Rotate 2-4hrs, 4°C 
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5) Wash 3X with cold PBS, pH=7.4, by adding 1.5ml to each tube, inverting, 

centrifuging at 200 x g for 30 sec, and suctioning off buffer 

6) Add 60µl PBS with SDS loading buffer to each sample and boil for 8-10 

min to elute. Analyze samples by immunoblot. 
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Lentiviral  Production  Protocol 

 

IMPORTANT:  The biosafety office at your institution must be notified prior to use 

of this system for permission and for further institution-specific instructions.  BL2 

conditions should be used at all times when handling the virus.  If oncogenes or 

potential oncogenes are to be expressed, then BL3 conditions must be used in 

accord with Caltech Biosafety protocols or those of your institution.  Also note 

that MSCV based vectors with amphotropic or pantropic envelopes also require 

BL3 conditions if they express oncogenes or potential oncogenes.  Contaminated 

surfaces must be decontaminated with 1% SDS in 70% ethanol.  Gloves should 

be worn at all times when handling lentiviral preparations, transfected cells or the 

combined transfection reagent and we routinely double-glove when working with 

lentiviral reagents.  Just remember that although this virus has been significantly 

modified for biosafety, it used to be HIV and with a VSVG pseudotype human 

cells can be infected even if they are not dividing.  That said, the following 

modifications have been made to prevent viral replication. 

 1.  Packaging vector lacks both LTRs and has no viral packaging signal  

 (y) 

 2.  The following viral genes have been deleted from the packaging vector:  

 env, tat, rev, vpr, vpu, vif and nef. 

 3.  Rev is supplied in trans on a different vector (RSV-Rev). 

 4.  The vector expressing the packaged viral genome has a self- 

 inactivating LTR (TATA box deletion) and expresses no viral gene  
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 products. 

 5.  Envelope, in this case VSVG, is expressed on a separate vector. 

 

For more information please refer to the following papers. 

 

Packaging vectors (pMDLg/pRRE, CMV-VSVG and RSV-Rev):   

 Dull et al., A Third-Generation Lentivirus Vector with a Conditional   

 Packaging System. J. Virol. 1998 72(11): 8463-8472. 

   

 Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH, Verma IM,  

 Trono D. In vivo gene delivery and stable transduction of nondividing  

 cells by a lentiviral vector. Science. 1996 Apr 12;272(5259):263-7. 

 

Self inactivating LTR: 

  Miyoshi H, Blomer U, Takahashi M, Gage FH, Verma IM. 

  Development of a self-inactivating lentivirus vector. 

  J Virol. 1998 Oct;72(10):8150-7. 
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1.  Preparation of 293 cells 

Passage 293T cells regularly to prevent clumping.  The day before transfection, 

trypsinize and triturate aggressively.  Count cells and dilute them to 0.5 x 106 

cells/ml.  For concentration reasons, at least 3 x 10 cm plates is best, resulting in 

30 ml of viral supernatant. 

 

10 cm plates:  10 ml of cells 

15 cm plates: 23 ml of cells 

 

Transfect 12-24 hours after seeding. 

 

2.  Transfection 

DNA from HR’ backbone (lentivirus) sometimes doesn’t grow well in DH5 cells.  

Transform all constructs into Sure or Top10 cells for maxi preps.  

 

Chapter 1:  10 cm plate: In a 15 ml polypropylene tube mix the following: 

5 µg of HR’ construct (your viral construct) plus 5 µg pMDLg/pRRE, 5 µg 

RSV-Rev and 5 µg of VSV-G packaging plasmids.  Add 124 µl of 2M 

CaCl2, and fill up to 1 ml with ddH20.  

 

Chapter 2:   15 cm plate: 7.5 µg of HR' vector plus 7.5 µg pMDLg/pRRE, 

7.5 µg RSV-Rev and 7.5 µg VSV-G packaging plasmids.  Add 248 µl of 

2M Cacl2, and fill up to 2 ml with ddH20.  
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Chapter 3:  To transfect cells, add 1 ml (10 cm plate) or 2 ml (15 cm 

plate) of 2x HBSS pH=7.05 to the tube containing DNA/CaCl2/H2O using a 

10ml sterile pipette; quickly and vigorously bubble mixture by pressing 

eject button on pipetteman.  Drip the 4ml DNA/CaCl2/HBSS mixture onto a 

plate of 293T cells, swirl and put the plate back in the incubator.  It is wise 

to dispose of the combined transfection reagent and contaminated tips in 

the regular biohazard waste.  Tips should be first enclosed in a container 

to prevent "poking through" the bag (e.g. first sealed in a 50 ml conical 

tube and then disposed of in the biohazard waste).  

 

Chapter 4:  8 hours after adding DNA + HBSS, aspirate medium, and 

change to 10 ml (10 cm plate) or 20 ml (15 cm plate) of new medium.  

Pasteur pipettes must be decontaminated by aspirating 100% bleach from 

a beaker before they are disposed of.   Always decontaminate hood 

surface and potentially contaminated equipment with 70% EtOH at this 

time whether or not you spilled supernatant.  If you know you spilled, 

please thoroughly decontaminate with 1% SDS in 70% EtOH and then 

clean up SDS residue with 70% EtOH. Bleach the trap and lines and 

dispose of liquid within trap after use. 
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Chapter 5:  Allow cells to expand and produce virus for 40 - 48 hours 

after changing the media.  Transfection efficiency using this protocol 

should approach 50%-80%.   

 

3. Collection and Concentration 

Before collecting the viral supernatant, turn on ultracentrifuge and reduce 

temperature to 4˚C.  

 

Recover supernatant and spin for 5 minutes at 1000-1500 rpm to pellet down 

cell debris. Otherwise, the supernantant may clog the filter.  The clinical 

centrifuge next to the water bath, not the common centrifuge, must be 

used.  

  OPTIONAL- If the 293T cells do not appear to be lifting off the  

  plate, we frequently skip this centrifugation step and go straight to  

  filtration. 

 

c. Filter supernatant with a 0.45µm filter (Nalgene).  Filters, plates and other  

contaminated material from this stage must be disposed of in the 

infectious waste containers managed by the University.  If this is 

unavailable, please dispose of your waste into a separate biohazard bag 

and autoclave immediately.  Always decontaminate hood surface and 

potentially contaminated equipment with 70% EtOH at this time whether or 
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not you spilled supernatant.  If you know you spilled, please 

decontaminate with 1% SDS in 70% EtOH. 

 

d. Add filtered supernatant, up to 30 ml per tube, to 25 x 89 mm Nalgene  

 ultratubes (open-top, thick-walled, polycarbonate).  Spin for 90 minutes in  

 a SW 28 swinging bucket rotor at 25000 rpm, 4˚C.  This also corresponds  

 to 25900 rpm in an SW41Ti rotor.  

 

e. Pour off supernatant into a beaker (put bleach in the beaker to inactivate  

the virus) and invert tubes over a Kimwipe that has been draped over a 15 

cm plate.  The plate prevents draining supernatant onto the tissue culture 

hood surface.  After 5 minutes, aspirate the media residue collected at the 

opening of the tubes.  Bleach Pasteur pipettes before disposal.  Dispose 

of kimwipes and plates in infectious waste container.   

 

f. Add 100 µl of cold Hanks or PBS (+ Ca & Mg, no bicarbonate) to the tubes   

and seal tubes with parafilm.  Incubate tubes at 4˚C for at least 12 hours 

to dissolve the pellet. After incubation, pipette up and down gently and 

aliquot the virus into in epp. tubes.  Freeze at –70C or use immediately.  

Dispose of tips in a 50 ml conical tube and seal the tube before disposing 

in the Caltech infectious waste containers. 

 

4.    Cleanup 
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IMPORTANT: Swinging centrifuge buckets must be rinsed in 70% EtOH after 

each use regardless of whether a spill is know to have occurred.  Ultracentrifuge 

tubes for lentiviral concentration should be treated overnight in 70% ethanol/1% 

SDS to inactivate remaining virus and then washed liberally with water for 

storage.  Tubes should not be stored in 70% EtOH long term since it affects 

strength of the tube.  Just prior to reuse, wash ultracentrifuge tubes liberally with 

water again to assure removal of SDS and finally with sterile PBS.  Any objects 

that come in contact with virus containing media should be decontaminated with 

1% SDS in 70% ethanol or autoclaved. 

 

The same procedure should be followed when infecting cells with the virus.  

When adding virus to cells, use filter tips to transfer virus from eppendorf tubes to 

cells.  Dispose of tips in 50 ml sealed conical tube in Caltech waste container.  

Please do not use your fingers to remove tips from the pipetman as this is likely 

to contaminate your gloves with virus which could result in the spread of virus to 

other surfaces.  Rinse Pipetman thoroughly with 70% Ethanol after use.  Virus is 

inactivated after 5-6 hours in 10% serum media.  After this time the media can be 

aspirated into the common container that contains Wescodyne.   

 

5.   Infection 

Note: infect in as small a volume as is possible while still covering the cells.  This 

forces the virus into contact with the cells and results in very efficient infection. 
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Some people use the viral supernatants without concentrating (the ultracentrifuge 

step), but the supernantant from 293Ts and the serum can have unpredictable 

and toxic effects esp. on primary cells.  

 

a) Reduce culture media to 300µl/well OR 80µl/MatTek 

b) Add appropriate amount of shRNA in a total volume of 50µl/well OR   

    20µl/MatTek 

c) Replace media after 8-12 hours 

Note: Add back media so that cells do not dry out, but do not 

suction/replace viral-containing media for the next 24 hours 

d) Change media every 24 hours. Allow infection to proceed for the  

    desired amount of time, optimized for experiment and construct;  

    typically, around 48-96 hours. 

 

 

 

 

 

 

 

 

 

 



	

	 139 

Co-Immunoprecipitation Protocol 

 

Co-IP lysis buffer: 100mM KCl, 4mM MgCl2, 10mM HEPES (pH 7.3), 50µM 

ZnCl, 0.5% NP-40 (add to 10mL: protease inhibitors, phosphatase inhibitors, 

20µM NEM) 

 

Co-IP wash buffer: 50mM HEPES (pH=7.8), 150mM NaCl, 1mM MgCl2, 50µM 

ZnCl, 0.05% NP-40 (add to 10mL: protease inhibitors, phosphatase inhibitors, 

20µM NEM) 

 

***For buffers in co-IPs stabilized by RNA, use DEPC water 

 

Day 1 

1) Block protein G sepharose beads in 1.5ml NT2 buffer + 5% BSA for 1  

hour. 

 i. want 30µl 50% bead slurry per sample 

 

2) Centrifuge beads at 200 x g for 25 sec at 4°C, suction off supernatant, and 

re-suspend in co-IP wash buffer with protease inhibitors, phosphatase 

inhibitors, and NEM (to 50% slurry). 

 

3) Coat beads with Flag antibody or control isotype-specific serum (IgG) 

rotating at 4°C overnight. 
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a. Use about 1µg antibody per 100µg protein sample 

 

 

Day 2 

1) Prepare beads: 

a. Wash beads  

i. Antibody coated beads from day 0 + beads for preclearing 

(30µl 50% slurry per sample). Wash with 1.5ml chilled co-IP 

wash buffer (invert, spin 200 x g for 25 sec at 4°C, suction 

off buffer with needle and repeat). 

b. Resuspend beads in 2x excess of co-IP wash buffer with protease 

inhibitors, phosphatase inhibitors, and NEM (45µl per IP final 

volume).  

 

*Neurons only* 

2) BDNF stimulation: 

a. Incubate primary mouse hippocampal cultures, DIV14-17, in serum-

reduced media (0.5% B27) for 2 hrs 

b. Add 40µl 1ng/µl BDNF (diluted in NBA) to a final concentration of 

100ng/ml. Incubate 60-90 minutes. 

 

3) Lysis: 

a. Wash cells 2x with ice-cold PBS + 0.9mM MgCl2 
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b. Harvest lysate in polysomal lysis buffer with protease inhibitor 

cocktail, phosphatase inhibitors, NEM, and freshly added 1mM 

DTT. Let cells sit in lysis buffer on ice 10 min, scrape, and rotate at 

4°C 10 minutes. 

i. For 24 wells plates, to concentrate lysate, lyse first well in 

70µl, subsequent wells in 40µl transferring lysate before 

scraping. 

ii. For 10cm dishes, lyse in 800µl/dish 

c. Centrifuge lysate at 12000 x g, 4°C for 15 minutes. Remove 

supernatant. 

 

4) Protein assay (Bradford) to determine concentration 

 

5) Remove a 2.5-10% lysate protein sample, add SDS, boil, and freeze to 

run on gel later 

 

6) Lysate pre-clearing: 

a. Pre-clear lysate with protein G sepharose beads pre-washed in co-

IP wash buffer buffer. Add 45µl 3x bead dilution to lysates. 

b. Incubate 45 min rotating at 4°C, then spin 200 x g for 1 minute at 

4°C and remove cleared lysate to new tube. 
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7) Add 45µl antibody bound beads (now 15µl beads in 33% suspension) to 

protein lysate. 

a. Use p200 tips with ends cut off 

b. Incubate rotating 3-4 hours at 4°C 

 

8) Washes: 

a. Wash 3x with 1.5µl cold co-IP wash buffer with protease inhibitors, 

phosphatase inhibitors, and NEM by filling tube, resuspending, and 

then briefly spinning the breads in an eppendorf tube at 200 x g, 

4°C for 25 sec. Use vacuum line with needle to suction off 

supernatant (careful not to remove the beads!) 

b. For third wash, let rotate at 4°C for 5-10 minutes before suctioning 

off supernatant. 

c. Wash 1x with 1ml cold co-IP wash buffer WITHOUT protease 

inhibitors/phosphatase inhibitors/NEM, spin for 1 minute at 200 x g 

4°C, and remove buffer entirely with vacuum suction. 

 

9) Elution with FLAG peptide 

a. Add 30µl of peptide, diluted in NT2 to 100µg/ml (1:40 from stock) 

b. Rotate 30 min-1 hr at ROOM TEMP 

c. Spin 10 sec at 12000 x g at ROOM TEMP 

d. Collect 30µl of eluent 1 

e. Repeat steps 2x and collect eluents 2 and 3 



	

	 143 

f. Combine eluents (60µl) and spin for 10 sec at 12000 x g 

g. Pipet off 30µl of eluent 

h. Boil samples with loading dye for SDS-PAGE analysis 

 

	

	



	

	 144 

Stringent Immunoprecipitation Protocol 

 

Stringent IP Lysis Buffer: 100mM KCl, 4mM MgCl2, 10mM HEPES, 50µM 

ZnCl2, 50µM PR-619, 1% TritonX, 0.25% SDS      pH=7.3 

**Add 1mM DTT just before use 

 (add to 10ml: protease inhibitors, phosphatase inhibitors) 

 

Stringent IP Wash Buffer: 1M NaCl, 1mM MgCl2, 50mM HEPES, 50µM ZnCl2, 

50µM PR-619, 20% glycerol, 1% NP-40    pH=7.8 

 (add to 10mL: protease inhibitors, phosphatase inhibitors) 

 

Day 1 

1) Block protein G sepharose beads in 1.5ml stringent IP wash buffer + 5% 

BSA for 1 hour at 4°C. 

a. want 20µl 50% bead slurry per sample (10µl beads per sample) 

 

2) Centrifuge beads at 2000xg for 25 sec at 4°C, suction off supernatant, and 

resuspend in stringent IP wash buffer to 50% slurry. 

 

3) Coat beads with Flag antibody or control isotype-specific serum (IgG) 

rotating at 4°C overnight. 

a. Use about 1µg antibody per 100µg protein sample (varies  

depending on antibody) 
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Day 2 

1) Prepare beads: 

a. Wash beads  

i. Wash antibody coated beads from day 1 and beads for 

preclearing  (see Day 2 Step 6). Wash twice with 1.5ml 

chilled IP wash buffer (invert, spin 200 x g for 25 sec at 4°C, 

suction off buffer with crushed pipette tip and repeat). 

b. Resuspend beads in 2x excess of stringent IP wash buffer + 

protease/phosphatase inhibitor (e.g. resuspend 15µl beads in 30µl 

NT2).  

 

2) Harvest/lysis: 

a. Wash cells 2x with ice-cold PBS + 0.9mM MgCl2 

b. Harvest lysate in IP lysis buffer with protease inhibitor cocktail, 

phosphatase inhibitors, and freshly added 1mM DTT. Let cells sit in 

lysis buffer on ice 10 min, scrape, and rotate at 4°C 10 minutes. 

i. For 24 wells plates, to concentrate lysate, lyse first well in 

70µl, subsequent wells in 40µl transferring lysate before 

scraping. 

ii. For 10cm dishes, lyse in 800µl/dish 

c. Centrifuge lysate at 13.2 x g, 4°C for 15 minutes. Remove 

supernatant. 
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3) Protein assay (Bradford) to determine concentration 

  

4) Remove a 10% lysate protein sample, add SDS buffer, boil, and freeze to 

run on gel later 

 

5) Lysate pre-clearing: 

a. Pre-clear lysate with protein G sepharose beads pre-washed in 

stringent IP wash buffer (step 1) 

b. Preclear with 1µl  beads (20µl  50% bead slurry, 30µl  33% bead 

slurry) 

c. Incubate 30 min rotating at 4°C, then spin 200 x g for 1 minute at 

4°C and remove cleared lysate to new tube. 

d. Repeat, incubating for 30 min rotating at 4°C. Spin for 200 x g for 1 

minute at 4°C and remove cleared lysate to new tube. 

 

6) Add 30µl antibody bound beads (10µl beads in 33% suspension) to  

protein lysate. 

a. Incubate rotating 3-4 hours at 4°C 

 

7) Washes 

a. Wash 3x with 1.5ml cold stringent IP wash buffer + protease and 

phohsphatase inhibitors by filling eppendorf tube, resuspending, 

and then briefly spinning the breads at 200 x g, 4°C for 25 sec. Use 
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vacuum line with crushed pipette tip to suction off supernatant 

(careful not to remove the beads!) 

i. For third wash, let rotate at 4°C for 10 minutes before 

suctioning off supernatant. 

b. Wash 1x with 1ml cold stringent IP wash buffer WITHOUT 

protease/phosphatase inhibitors, spin for 1 minute at 200 x g 4°C, 

and remove buffer entirely with vacuum suction. 

8) Elution with FLAG peptide 

a. Add 30µl  of peptide, diluted in stringent IP wash buffer to 100µg/ml 

b. Rotate 1-2 hr at ROOM TEMP 

c. Spin 10 sec at 12000 x g at ROOM TEMP 

d. Collect 30µl  of eluent 1 

e. Repeat steps 2X and collect eluents 2 and 3 

f. Combine eluents (about 90µl) and spin for 10 sec at 12000 x g 

g. Pipet off 30µl of eluent, 2x, to make 2 loading samples for each 

condition 

h. Boil samples with loading dye for SDS-PAGE analysis 

 

OR 

9) Elution by boiling 

a. Resuspend beads in stringent IP wash buffer + 6X SDS loading 

buffer (72µl /sample total) 

b. Boil 90°C for 5-10 minutes 
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c. Spin 10sec at 12000 x g at ROOM TEMP 

d. Pipette off supernatant and save for gel 
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RNA isolation, purification, and analysis 

 

Note: At all steps, keep tubes on ice whenever possible 

Lysis 

1) Lyse cells in 1ml TRI-REAGENT per sample 

2) Let sit for 5 minutes, vortex if necessary 10 sec to permit complete 

dissociation of nucleoprotein complexes. Samples can be frozen at 80°C 

until experimenter is ready to proceed with the protocol. 

 

Phase separation 

1) Add 200µl cholorform per 1ml of TRI-REAGENT. Mix well for 30 sec by 

inversion. 

2) Let sit on ice for 3 min to allow layers to separate 

3) Centrifuge at 12,000 x g for 15 min at 4°C (DNA contamination will be 

present in RNA if temperature is higher than 4°C) 

4) 3 phases form: colorless upper aqueous phase (RNA); white interphase 

(DNA); lower red, phenol-chloroform organic phase (protein) 

 

RNA precipitation 

1) Transfer the aqueous phase (around 400-600µl per 1mL TRI-REAGENT) 

to a fresh tube (be careful to not be greedy, avoid DNA contamination) 

2) Add 600µl isopropanol, mix well, and incubate for 20 min 

3) Centrifuge at 12,000 xg for 20 min at 4°C 
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RNA wash 

1) Decant supernatant into separate tubes to ensure no pellet is lost 

3) Add 1ml 75% RNase-free ethanol to tubes containing pellets and invert to 

mix    ***pellet will not go into solution 

4)  Centrifuge at 12,000 x g for 5 min at 4°C 

5)  Repeat ethanol wash 

 

RNA solubilization 

1) Decant ethanol into separate tubes to ensure no pellet is lost 

2)  Air dry for 3-5 min  ***do not dry past when pellets start to turn 

transparent, or solubility will significantly decrease 

3)  Resuspend pelles in 20µl sterile DEPC water. 

4)  Read RNA concentration using a NanoDrop spectrophotometer. OD 

260/280 (protein contamination) and 260/230 (organic solvent, EDTA 

contamination) ratios should both be >1.8. 

5)  Immediately proceed to reverse transcription for cDNA, without freeze-

thaw. 

 

Reverse transcription for mRNA 

1) Using TaqMan High Capacity RNA to cDNA Kit, make RNA/primer 

mixture: 2µg RNA, 2µl random decamer (Applied Biosystems), 2µl  

oligo(dT) primer (Promega), plus water up to 16µl. 
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2) Master mix: 14 µl/reaction, 30µl for total reaction 

-MultiScribe Reverse Transcriptase (Applied Biosystems): 2µl 

-RT buffer (10X): 3µl (100mM Tris pH 8.3, 500mM KCl) 

-dNTP (10 nM, Qiagen) 8µl 

-RNaseOut (Invitrogen): 1µl 

      3) Thermal cycler setting 

  -RNA/primer mixture: heat at 75°C for 3 min 

  -Cool to 4°C for 3 min, PAUSE 

  -Add master mix 20ul, mix well by gentle pipetting and hit GO TO  

NEXT 

-Incubate 37°C for 1 hour 

-Inactivate 95°C for 5 min 

 

 Reverse transcription for individual microRNA 

1) RNA: 10ng in 5µl 

2) Master mix: 10µl/reaction, 15µl total reaction 

-RT buffer: 1.5µl 

-dNTP (100 nM, Qiagen): 0.15µl 

-RNaseOut (Invitrogen): 0.2µl 

-Individual stem-looped RT primer (20X or 60X) 

-Water to 10µl 

 3) Thermal cycler setting 

  -4°C, 5 min 
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  -16°C, 30 min 

  -42°C, 30 min 

  -85°C, 5 min 
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BrdU Incorporation Protocol 

 

Labeling 

1) Plate HEI193 cells at 1 X 104/35mm glass bottom MatTek cell culture dish 

for 24 hours 

2) Serum starve (0% FBS) for 24 hours 

3) Replace media with complete media containing 10µM BrdU for 8hrs. 

 

Harvest for Immunoblot 

1) Prior to IHC, take one MatTek dish from each condition and harvest cells 

on ice 

a. Let sit 10 min in 40µl lysis buffer per MatTek 

b. Scrape cells on ice 

c. Rotate lysate for 10 min at 4°C followed by high speed 

centrifugation for 15 min at 12,000 x g at 4°C 

d. Save supernatant for analysis 

2) Analyze protein lysate by immunoblot to biochemically confirm efficacy of 

treatment conditions 

 

IHC 

1) Rinse briefly in warm PBS (200µL/dish; warm at 37°C) 

2) Suction off PBS and fix in 4% PFA/4% sucrose/PBS for 30-40 min at room 

temp 
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**Thaw PFA buffer at 37°C 

3) Remove PFA with 200µL pipette into PFA waste 

4) Rinse 3X with PBS 

5) Suction and permeabalize for 30-40 min in 0.2% triton X-100/PBS 

6) Rinse 3x with PBS  

7) Incubate in 2M HCl at 37 degrees C for 30 min 

8) Wash 1X PBS 

9) Incubate in 0.1M borate buffer for 5 min, twice 

10)  Wash 2X PBS 

11)  Block in 10% BSA/PBS for at least 1 hr at room temp 

12)  Primary antibody (mouse anti-BrdU) overnight in 10% BSA/PBS at 4°C 

13)  Wash 3x PBS, let sit 10 min room temp 

14)  Secondary antibody (Alexa 488 mouse) 

15)  Wash 2x PBS, let sit 10 min room temp 

16)  Wash 1x PBS containing DAPI stain (2 drops/1mL PBS), let sit 10 min 

room temp 

17)  Add 150µL mounting media and coverslips 

18)  Seal with agar 
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Pulse Chase: 35S Labeling for Lin28a half-life 

 

Stringent IP Lysis Buffer: 100mM KCl, 4mM MgCl2, 10mM HEPES, 50µM 

ZnCl2, 50µM PR-619, 1% TritonX, 0.25% SDS      pH=7.3 

**Add 1mM DTT just before use 

 (add to 10ml: protease inhibitors, phosphatase inhibitors) 

 

Stringent IP Wash Buffer: 1M NaCl, 1mM MgCl2, 50mM HEPES, 50µM ZnCl2, 

50µM PR-619, 20% glycerol, 1% NP-40    pH=7.8 

 (add to 10mL: protease inhibitors, phosphatase inhibitors) 

 

Day 1: Neuronal Infection 

1) Infect hippocampal neurons (DIV14-16) plated in 24 well plates with 3-4µl 

FSW-myc-Lin28a lentivirus. Add back media 8-16 hours post infection. 

 

Day 2: Culture maintenance 

1) Change neuronal media 

 

Day 3: G-sepharose bead preparation 

1) Block protein G sepharose beads in 1.5ml stringent IP wash buffer + 5% 

BSA for 1-2 hours. 

a. use 30µl 50% bead slurry per sample 
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2) Centrifuge beads at 200 x g for 25 sec at 4°C. Suction off supernatant, 

and re-suspend in stringent IP wash buffer (to 50% slurry). 

 

3) Coat beads with myc antibody rotating at 4°C overnight. 

a. Use about 1µg antibody per expected 100µg protein sample 

 

Day 4: Pulse Chase 

1) Wash wells 2X with DMEM without cysteine/methionine, then pre-treat 

for 15 minutes in DMEM without cysteine/methionine + 0.5% B27 + 

glutamine (place cells in incubator). 

 

2) Add 35S methionine to wells for labeling phase 

a. Dilute 35S (stock: 11mci/ml) to 600µci/ml in DMEM-cys,met. Suction 

wells down to 250µl volume and add 35S in 50µL volume to a final 

concentration of 100µci/ml. 

b. Label for 3 hours in incubator 

 

3) Chase 

a. Wash wells 3X with NBA + 2% B27 + glutamine. Deposit wash 

waste in liquid radioactivity beaker. 

b. Add back NBA + 2% B27 + glutamine 
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c. BDNF/mock stimulation: Suction volume down to about 360µl in 

well. Add 40µl 1ng/µl BDNF (or empty media, mock) to final 

concentration of 100ng/ml. 

d. Incubate cells with BDNF/empty media for desired chase period. 

***I stagger my labeling/chase phase between samples so that I 

harvest all samples at the same time, regardless of the length of the 

chase*** 

 

4) Harvest 

a. At the end of desired chase period, place cells on ice and wash 2X 

with PBS + .9mM MgCl2 (deposit waste in liquid radioactivity 

beaker) 

b. Harvest lysate in stringent IP lysis buffer (pH=7.3) + protease 

inhibitor cocktail + phosphatase inhibitors and freshly added 1mM 

DTT. Let cells sit in lysis buffer on ice 10 min prior to scraping. 

i. If necessary, to concentrate lysate, add 70µl to first well and 

40µl to subsequent wells. Transfer lysate from previous to 

next well prior to scraping. 

c. Rotate harvested lysate for 10min at 4°C 

d. Centrifuge lysate at 13.2 X g at 4°C for 15 minutes. Remove 

supernatant. 

 

5) Protein assay (BCA) to determine concentration of samples 
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6) Remove 5-10% lysate (depending on amount to IP) for input sample. Add 

SDS, boil, and freeze to run on gel later. 

 

7) IP 

a. Prepare beads: Wash myc antibody coated beads from day 3 with 

1.5ml chilled stringent IP wash buffer (invert, spin 200 x g for 25 

sec at 4°C, suction off buffer) twice. Resuspend in 2X excess of 

stringent IP wash buffer with protease and phosphatase inhibitors 

(e.g. 30µl of stringent IP wash buffer to 15µl beads per IP) 

b. Add 45l 33% myc-bead slurry to protein lysate for IP. IP around 

1mg protein per sample. 

i. Use p200 tips with ends cut off 

ii. Incubate rotating 3-4 hours at 4°C  

 

8) Washes 

a. Wash 3X with 1.5 µl cold stringent IP wash buffer with protease and 

phosphatase inhibitors by filling tube, resuspending, and then 

briefly centrifuging at 200 x g, 4°C for 25 sec. Use vacuum line to 

suction off supernatant; crush pipette tip with tweezers to decrease 

tip diameter. 

b. Wash 1X with 1.5ml cold stringent IP wash buffer WITHOUT 

inhibitors and spin for 1 minute at 200 x g 4°C. Remove buffer 

entirely. 
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9)  Elution 

a. Add 36µl stringent IP wash buffer + 6X SDS buffer to each bead 

sample. Boil 10 minutes.  

b. Spin down 10 sec 12000 x g at room temp. Pipette off liquid sample 

and save for SDS-PAGE analysis. 

 

 

Day 5: Phosophoimage and SDS-PAGE analysis 

1) Run acrylamide gel with both input and IP elution samples; transfer during 

day or O/N 

2) Let membrane dry and place in phosphoimager cassette O/N 

3) Use typhoon imager (Green lab) to obtain phosphoimage of myc-Lin28a 

IP 

4) Myc immunoblot 

a. Use rabbit anti-myc antibody (sigma) at 1:5000 for 2 hours RT 

***Remember to clear phosphoimager cassette right before and after use*** 

 

 

 

 

 

 

 



	

	 160 

Quickchange Mutation Protocol to Generate shRNA-resistant Constructs 

 

Primer Design 

1) Design two complementary primers containing desired mutation 

a. Flank mutation by ~15 unmodified nucleotides (25-45 total nt) 

b. Minimum %GC > 40% 

c. Terminate in one or more G/C 

d. Tm > -78°C 

2) Sequences: 

a. FSW-TRBPSΔA*:  

GGCAATGAGGTGGAGCCCGATGATGACCACTTC 

b. FLAG-Lin28a*: 

CTGCCACCCCAGCCCAAAAAATGTCACTTCTGCCAGAGC 

PCR 

1) Reaction: 

a. 10ng DNA per reaction  

b. 0.2µM primer mix per reaction 

c. 1mM dNTPs per reaction 

d. 0.5µl Phusion polymerase per reaction 

Note: Add Magnesium/DMSO if required 

2) Program: 

a. 95°C 5 min 

b. 95°C 1 min 
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c. 69°C 1 min 

d. 72°C 10 min 

e. Repeat b-d X 15 

f. 4°C forever 

 

Dpn1 Digest 

1) Reaction: 

a. 40µl PCR product per digest 

b. 40 units Dpn1 per digest 

c. Total volume: 50µl per digest 

2) Incubate 2-3hrs at 37°C 

3) Heat inactivate 20 min at 80°C 

4) Transform 3µl DNA digest 

5) Plate 5µl digested construct in 75µl LB+ 
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Processing and Imaging for Scholl Analysis 

 

1) Transfection 

Neurons were transfected 48 hours prior to imaging with 10ng FL-Lin28a 

coding region or PCDNA3.1 (empty vector control) and 5ng soluble 

mCherry fluorophore per 35mm MatTek dish using Lipofectamine 2000 

reagent, according to the manufacturer’s instructions. Dishes were 

randomly assigned to conditions, and the experimenter was blinded to 

condition assignment throughout the imaging/analysis process. 

 

2) Stimulation 

a. Incubate cultures in serum starvation media (0.5% B27) for 2 hours 

b. Suction media down to 90µl per MatTek and add 10µl 1µg/ml 

BDNF to a final concentration of 100ng/ml. 

c. Incubate with BDNF for 1 hour at 37°C 

 

3) IHC 

a. Rinse briefly in warm PBS (200µL/dish; warm at 37°C) 

b. Suction off PBS and fix in 4% PFA/4% sucrose/PBS for 30-40 min 

at room temp 

**Thaw PFA buffer at 37°C 

c. Remove PFA with 200µL pipette into PFA waste 

d. Rinse 3X with PBS 
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e. Suction and permeabalize for 30-40 min in 0.2% triton X-100/PBS 

f. Rinse 3x with PBS  

g. Block in 10% BSA/PBS for at least 1 hr at room temp 

h. Primary antibody (mouse anti-mCherry) overnight in 10% BSA/PBS 

at 4°C 

i. Wash 3x PBS, let sit 10 min room temp 

j. Secondary antibody (Alexa 568 mouse) 

k. Wash 3X PBS, let sit 10 min room temp during each wash 

l. Add 150µL mounting media and coverslips 

m. Seal with agar 

 

4) Imaging 

Confocal images of hippocampal pyramidal neurons (determined by 

morphology) were acquired using a 40x objective on a Yokogawa spinning 

disk system (Cell Observer, Carl Zeiss). All experimental conditions were 

from a minimum of 3 independent cultures, no more than 4 neurons per 

dish. 

 

5) Scholl analysis 

Scholl analysis was performed using the Scholl plugin in ImageJ (A. 

Ghosh lab). Z-compressed neuronal projections were semi-automatically 

traced. Dendritic arborization was quantified using a circle of 15µm 

diameter centered on the cell soma, with subsequent circles of increasing 
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5µm increments. The number of intersections between dendritic 

projections and circles at differing distances from the soma were counted 

and analyzed. 
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