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ABSTRACT 

The main objective of this dissertation research was to study the carbonate clumped 

isotope compositions of marine mollusk and brachiopod shells, both modern and ancient, 

and to investigate critical problems with the preservation of isotope clumping in shell 

carbonate over the Phanerozoic Eon.  This was accomplished through a series of 

empirical and laboratory studies detailed in each of the three chapters of this dissertation.  

This approach was aided by the knowledge gained from decades of previous research on 

the bulk carbon and oxygen isotope compositions of marine shells, but was novel in its 

application of modern methods for measuring carbonate clumped isotopes.  Unlike 

conventional carbonate-water oxygen isotope thermometry, carbonate clumped isotope 

thermometry is independent of the isotopic composition of the precipitating fluid, which 

for shells growing in ancient seawater is largely unknown and the long-time subject of 

debate.  Therefore, clumped isotopes, combined with bulk isotopic measurements of 

ancient shells, can provide an independent estimate of paleotemperature and the isotopic 

composition of paleoseawater.  The first chapter of this dissertation describes a 

comprehensive calibration of the carbonate clumped isotope thermometer using modern 

mollusk and brachiopod shells collected worldwide from waters of known temperature 

and isotopic composition.  The results are in accord with the temperature dependence of 

the thermometer predicted from theory, but are different from earlier empirical 

calibration attempts by other laboratories.  The second chapter explores the phenomenon 

of carbonate clumped isotope reordering—that is closed-system alteration of 13C-18O 

‘clumped’ bonds—in Paleozoic brachiopod shells, finding that sedimentary burial 

temperatures above 100°C can alter primary clumped isotope compositions over geologic 
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timescales.  The third chapter presents the emerging Phanerozoic clumped isotope record 

of seawater temperature and δ18O from well-preserved marine mollusk and brachiopod 

fossils, and evaluates it with respect to clumped isotope bond reordering described in 

chapter two.  Altogether, this research lays the groundwork for continued study of the 

clumped isotope geochemistry of marine shells, with future studies expected to shed 

insight into temperature calibration discrepancies between materials and laboratories, the 

limits and mechanism(s) of 13C-18O bond reordering, and paleoclimatology of Paleozoic 

and Mesozoic worlds.  
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1. INTRODUCTION 

Stable isotope thermometry of sedimentary rocks, marine and terrestrial, is a cornerstone 

of modern paleoclimatological and paleoceanographic research (Grossman, 2012a).  

These applications have been recognized since the earliest days of stable isotope 

measurement, and the field of stable isotope thermometry has since expanded to the sub-

surface, the cryosphere, and extraterrestrial materials.  Mineral-water oxygen isotope 

thermometry, carbonate-water isotopic exchange in particular, is arguably one of the 

most widely used systems because of the relative ease of measuring ancient minerals, but 

has traditionally been limited by unknown oxygen isotope compositions of ancient 

precipitating waters (Kasting et al., 2006; Grossman, 2012b).  Thus, mineral-water 

oxygen isotope thermometry is an underdetermined tool in most geological applications.  

This problem has, in part, motivated the calibration and study of alternative geochemical 

paleothermometers, including the temperature dependence of mineral-water cation 

distribution coefficients (e.g., Mg/Ca and Sr/Ca ratios in carbonates; Gentry et al., 2008) 

and the degree of organic molecule saturation (e.g., the alkenone unsaturation or “Uk
37” 

index; Müller et al., 1998).  However, these other paleothermometers are not without 

complication and have also been found to depend on the geochemistry of the original 

precipitating fluids (e.g., Ries, 2004) and to be susceptible to alteration during diagenesis 

and sedimentary burial (e.g., Hedges and Prahl, 1993).  An ideal (paleo)thermometer 

would therefore be solely dependent on the formation temperature of a given geologic 

archive and resistant to chemical or physical alteration during incorporation into the 

sedimentary rock record.  A novel stable isotope thermometer, carbonate clumped isotope 
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thermometry, promises just that, although, like any new proxy, it requires detailed study 

to confirm its application across a range of geological materials and environments. 

 

Carbonate clumped isotope thermometry is based on the temperature dependence of the 

equilibrium constant for the homogenous isotope exchange reaction for carbonate 

minerals which forms 13C-18O bonds by creation of the 13C18O16O2
2- ion group (Eiler, 

2011).  Statistical thermodynamics by Schauble et al. (2006) and Guo et al. (2009) 

predict that the equilibrium constant is slightly greater than 1 (thus favoring the creation 

of clumped bonds) at earth-surface temperatures, and asymptotically approaches 1 at high 

temperatures.  This temperature dependence is independent of the 12C, 13C, 16O, 17O and 

18O content of the carbonate group and arises from the competing effects of lower 

vibrational energy of heavy isotope-heavy isotope bonds and configurationally entropy, 

which tends to randomize stable isotope distribution (Wang et al., 2004; Eiler, 2011).  In 

practice, it is not possible to measure clumped isotopes in solid minerals, so the 

laboratory measurement relies on controlled phosphoric acid digestion of the carbonates, 

capture of the resultant CO2 gas, and analysis of the 13C-18O containing isotopologue with 

a nominal mass of 47 (13C18O16O) by gas source mass spectrometry.  The abundance of 

this isotopologue is proportional to the abundance of clumped bonds in the mineral after 

accounting for stable isotope fractionation during the acid reaction (Guo et al., 2009). 

 

Decades of carbonate-water oxygen isotope thermometry research have already identified 

many attractive paleoclimate questions and suitable sample sets for clumped isotope 

analysis.  Among these are terrestrial carbonates, such as soil nodules, lacustrine marls, 
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and freshwater shells, used to reconstruct continental climate and topography (e.g., 

Ghosh et al., 2006a; Passey et al., 2010; Suarez et al., 2011) and marine carbonates, such 

as foraminifera tests, invertebrate shells, and early diagenetic cements, used to record 

zonal, meridional, and temporal trends in seawater temperature and oxygen isotope 

composition (e.g., Finnegan et al., 2011; Dennis et al., 2013; Price and Passey, 2013).  

The latter examples of biogenic carbonates from marine rocks are important archives 

because (1) their calcium carbonate shells are stable and resistant to post-depositional 

chemical alteration (i.e., recrystallization or ‘open-system’ diagenesis) over long 

timescales, (2) their geochemical and petrographic compositions are different from 

diagenetic fluids and therefore relatively easy to screen for recrystallization, and (3) they 

largely precipitate their shells in isotopic equilibrium with the surrounding seawater.  

These characteristics along with the scientific questions that can be answered by more 

clearly resolving their mineralization temperatures, such as the temperature and isotopic 

evolution of seawater over the Phanerozoic (Grossman, 2012), make mollusk and 

brachiopod shells natural targets for further carbonate clumped isotope study. 

 

When I began work in 2010, there were several unknowns about clumped isotope 

thermometry that were ripe for further study: there was not yet a detailed temperature 

calibration for marine mollusks and brachiopod shells (important taxa for deep-time 

paleoclimate reconstructions), we knew of the effects of solid-state C-O bond reordering 

(largely from Dennis and Schrag, 2010), but had very little understanding of the kinetics 

and the temperature range where it becomes important, and the application of clumped 

isotopes to geological problems was still in its infancy.  Thus, the following chapters 
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address several fundamental questions about mollusk and brachiopod shell carbonate 

clumped isotope thermometry, including development of a modern, empirical 

temperature calibration, a requisite for effective fossil analysis, an evaluation of cryptic 

alteration of primary clumped isotope compositions in the solid calcite, termed ‘clumped 

isotope reordering’, and presentation of the emerging Phanerozoic clumped isotope 

record from well-preserved fossil brachiopod and mollusk shells.  
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2. CARBONATE CLUMPED ISOTOPE COMPOSITIONS OF MODERN 

MARINE MOLLUSK AND BRACHIOPOD SHELLS1 

Abstract 

We present an empirical calibration of the carbonate clumped isotope thermometer based 

on mollusk and brachiopod shells from natural and controlled environments spanning 

water temperatures of −1.0 to 29.5 °C. The clumped isotope data (Δ47) are normalized to 

CO2 gases with equilibrium distributions of clumped isotopologues at high temperature 

(1000 °C) and low temperature (27 or 30 °C), and thus the calibration is unique in being 

directly referenced to a carbon dioxide equilibrium reference frame (Dennis et al., 2011, 

Defining an absolute reference frame for clumped isotope studies of CO2, Geochimica et 

Cosmochimica Acta, 75, 7117–7131). The shell clumped isotope data define the 

following relation as a function of temperature (in kelvin): 

Δ47 = 0.0327 ×10
6 /T 2 + 0.3286  (r2 = 0.84)  

The temperature sensitivity (slope) of this relation is lower than those based on corals, 

fish otoliths, foraminifera, and coccoliths, but is similar to theoretical predictions for 

calcite based on lattice dynamics calculations. We find no convincing methodological or 

biological explanations for the difference in temperature sensitivity between this 

calibration and the previous calibrations, and suggest that the discrepancy might represent 

real but unknown differences in mineral–DIC clumped isotope fractionation between 

mollusks/brachiopods and other taxa. Nevertheless, revised analytical methods similar to 

those used in this study are now in wide use, and it will be important to develop 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 Henkes G.A., Passey B.H., Wanamaker A.D. Jr., Grossman E.L., Ambrose W.G. Jr., 
Carroll M.L. (2013) Carbonate clumped isotope compositions of modern marine mollusk 
and brachiopod shells. Geochimica et Cosmochimica Acta, 106: 307-325. 
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calibrations for other taxonomic groups using these updated methods, with analyses 

directly referenced to the carbon dioxide equilibrium reference frame. 

2.1 Introduction 

Traditional oxygen isotope thermometry is based on the temperature dependence of 

isotope exchange between fluid and mineral. The carbonate-water oxygen isotope 

thermometer, which is commonly used to infer paleotemperature from ancient 

carbonates, requires knowledge of both the oxygen isotope composition (δ18O) of the 

mineral and the precipitating fluid (e.g., Epstein et al., 1953). The difficulty of 

constraining both temperature and the oxygen isotope composition of the coeval water 

from a single carbonate δ18O measurement is a long-standing dilemma in oxygen isotope 

paleothermometry. Except for fluid inclusions and pore fluids (e.g., Schrag and DePaolo, 

1993) there are few direct δ18O measurements of natural waters beyond the historical 

record, leaving the oxygen isotope paleothermometer underdetermined in most geologic 

applications. Reconstructing paleotemperature is the cornerstone of paleoclimatology and 

paleoceanography, but the absence of independent constraints on the isotopic 

composition of ancient waters has limited the application of the oxygen isotope 

paleothermometer. The ‘clumped’ isotope thermometer has emerged as an appealing 

alternative because, unlike carbonate δ18O thermometry, it is independent of the bulk 

isotopic composition of water. 

 

Clumped isotope thermometry examines the temperature dependence of bond formation 

between two rare, heavy isotopes within a single molecule (e.g., 13C and 18O forming the 

13C-18O isotopologue of carbon monoxide). This ‘clumping’ is based on homogeneous 
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isotope exchange reactions which are independent of the bulk isotopic composition (e.g., 

δ13C, δ18O) of the phase. The relevant exchange reaction for carbonate clumped isotope 

thermometry is: 

Ca13C 16O3 +Ca
12C 18O16O2 ↔ Ca13C 18O16O2 +Ca

12C 16O3  

This differs from traditional oxygen isotope thermometry, which is only concerned with 

‘singly-substituted isotopologues’ of a molecule (e.g., Ca12C18O16O). The carbonate 

clumped isotope thermometer is of particular interest because the temperature 

dependence of its enrichment has been predicted by theory (Schauble et al., 2006) and 

carbonate minerals are common in a range of natural environments. Precise measurement 

of multiple-substituted isotopologues in natural carbonates can therefore allow 

reconstructions of their formation temperatures. Additionally, clumped isotope-derived 

temperatures can be used in conjunction with the oxygen isotope thermometer to 

calculate the isotopic composition of the precipitating fluid. Because of these features, 

clumped isotope paleothermometry is becoming a widely used technique for 

reconstructing paleotemperature and the isotopic composition of ancient seawater (Came 

et al., 2007, Finnegan et al., 2011 and Keating-Bitonti et al., 2011). Meaningful 

application of the carbonate clumped isotope paleothermometer, however, is contingent 

on the development of calibration curves that relate Δ47, a measure of 13C–18O clumping 

in carbonate, with known temperatures of mineralization. Δ47 is a function of the 

abundance of the mass-47 (13C18O16O) isotopologue of CO2 produced by acid digestion 

of a carbonate mineral and is calculated as: 

Δ47 = R47 / R47*( ) − R46 / R46*( ) − R45 / R45*( ) +1⎡⎣ ⎤⎦ ×1000     (2.1) 

where 
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Ri = mass i/mass 44         (2.2) 

is the ratio for the each isotopologue of CO2 generated from carbonate, and the asterisk 

superscript indicates ratios with stochastic isotopologue abundances. 

 

Experimental calibrations of the clumped isotope thermometer have been generated by 

measuring the Δ47 of calcium carbonate precipitated at temperatures from 1 to ~70 °C 

(Ghosh et al., 2006 and Dennis and Schrag, 2010). Empirical calibrations have used 

biogenic carbonates produced by corals, foraminifera, coccolithophores, brachiopods, 

mollusks, and fishes from natural waters with known ambient growth temperatures 

(Ghosh et al., 2006, Ghosh et al., 2007, Came et al., 2007, Tripati et al., 2010 and 

Thiagarajan et al., 2011). The majority of the calibration data have come from a 

laboratory at the California Institute of Technology (Caltech) and mostly conform to a 

single calibration line first described by Ghosh et al. (2006) (Fig. 2.1). Dennis and Schrag 

(2010), working at Harvard University and using slightly different analytical methods, 

developed an experimental (inorganic) calcite Δ47–temperature calibration which deviated 

substantially from the Ghosh et al. (2006) calibration line at temperatures below ~20 °C. 

The Dennis and Schrag (2010) data, however, closely align with theoretical predictions of 

the temperature sensitivity of the carbonate clumped isotope thermometer for calcite 

minerals by Schauble et al. (2006) and Guo et al. (2009) (Fig. 2.1). 
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Figure 2.1 Carbonate clumped isotope values (Δ47) from existing temperature (T) 

calibrations. The solid symbols are data from inorganic calcite precipitation experiments 

(Ghosh et al., 2006 and Dennis and Schrag, 2010) and the solid black and dotted gray 

lines are linear regressions through each dataset, respectively. The dashed gray curve is 

the theoretical Δ47–temperature relationship for calcite from Guo et al. (2009). Open 

symbols are data from natural and cultured biogenic carbonates. Error bars on Δ47 

represent the standard error from multiple analyses of a single sample, and error bars are 

not shown for the biogenic data to improve clarity. Clumped isotope data are reported on 

the heated gas or ‘Ghosh’ reference frame described by Ghosh et al. (2006) and 

Huntington et al. (2009). Error bars on 106/T2 represent the reported error for carbonate 

precipitation temperatures. 
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Unresolved differences between empirical calibrations have been a driving force behind 

interlaboratory comparisons designed to evaluate consistency between laboratories 

generating clumped isotope data (e.g., Dennis et al., 2011), as well as continued analysis 

of natural carbonates with well-constrained growth temperatures, such as modern land 

snails (Zaarur et al., 2011). Marine mollusks and brachiopods have so far escaped 

detailed calibration, although Came et al. (2007) report a limited dataset that conforms to 

the Caltech calibration line. A more comprehensive clumped isotope calibration, which 

spans a wider range of growth temperatures and a diversity of taxa, remains to be 

developed for these groups. 

 

Additionally, few laboratories continue to utilize the analytical methods used to generate 

the Caltech calibrations reported in Ghosh et al., 2006, Ghosh et al., 2007, Came et al., 

2007 and Tripati et al., 2010, and Thiagarajan et al. (2011). These methods include 25 °C 

acid reactions in sealed vessels, use of a capillary gas chromatography (GC) column for 

purification of CO2, and normalization of data to a single equilibrium CO2 gas 

composition (1000 °C ‘heated gases’; see Huntington et al., 2009). Most laboratories, 

including Caltech, now use online extraction systems where carbonates are reacted in hot 

acid (typically 70–90 °C), CO2 is continuously removed during the reaction by collection 

onto a cryogenic trap, and the CO2 is purified by passage through traps or packed GC 

columns filled with a divinylbenzene polymer (Porapak Q™). In addition, an improved 

reference frame has recently been proposed (Dennis et al., 2011) whereby data are 

normalized to equilibrium CO2 prepared at at least two temperatures, typically one high 

temperature (1000 °C) and one low temperature (~25 °C). As such, there is now 
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additional motivation to generate new calibrations, using the newer analytical methods, 

and within the framework of concurrent analyses of CO2 gas in isotopologue equilibrium 

at two or more widely spaced temperatures. 

 

In this paper we describe the results of a calibration of the carbonate clumped isotope 

thermometer for modern marine mollusks and brachiopods. The samples were obtained 

from natural marine environments or grown under monitored conditions in waters 

spanning a range of temperatures (−1.0 to 29.5 °C). Both of the major mineralogies of 

brachiopods and mollusks, calcite and aragonite, were examined. The Δ47 data are the 

first calibration data to be reported on a new reference frame for multiple isotopologue 

analyses of CO2. Our study also employs laboratory methods similar to those now in 

wide usage. 

 

2.2 Methods 

2.2.1 Samples 

The calibration was generated using shell material from 16 different mollusk and 

brachiopod species, spanning a range of growth environments and shell morphologies 

(Table 2.1). The majority of the organisms were collected live from the benthos, 

including shallow coastal areas, on the continental shelf, or in the deep-sea. Mollusks 

were collected from the northwestern Barents Sea (Spitsbergen Bank, Norway; Carroll et 

al., 2011), the northern Icelandic shelf (Grimsey Island, Iceland; Wanamaker et al., 

2008), the northern Gulf of Mexico (Stetson Bank, USA; Gentry et al., 2008), and the 

coastal waters of southwest Puerto Rico. Other shells were grown in controlled 
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conditions that were monitored for changes in temperature and the oxygen isotopic 

composition of water. The temperate bivalve mollusks Mytilus edulis and Mya arenaria 

were grown in tanks at the Darling Marine Center (University of Maine, Walpole, ME, 

USA), located on the Gulf of Maine coast, using tidally-influenced water from the 

Damariscotta River (Wanamaker et al., 2007). Oysters, Crassostrea virginica, were 

grown in aquaculture cages at the Horn Point Marine Laboratory (University of 

Maryland, Cambridge, MD, USA) and nautiloids, Nautilus pompilius, were obtained 

from the Toba Aquarium (Toba, Japan). The brachiopods used in this study are from 

Antarctica (South Shetland Islands), the northern Gulf of Mexico, coastal California 

(Half Moon Bay, CA, USA), and the northern Caribbean Sea (Rio Bueno Harbor, 

Jamaica). Water temperatures at the collection locations ranged from 20 to 31 °C in the 

subtropics and tropics, to less than <0 °C in high-latitude seas. 

Table 2.1 Carbon (δ13C), oxygen (δ18O), and clumped (Δ47) isotope compositions of 
marine mollusks and brachiopods. 

Sample 
ID 

Depth 
(m) 

Growth 
Temp. 
(°C) 

Temp. 
Range 
(°C) 

Salinity Classa Species 

Mollusks       
B-12, northwestern Barents Sea (Polar water), 75°39.80’ N, 24°01.14’ E 
Ha-1 99 -1.0 2.0 34.5 Bivalvia (ar) Hiatella arctica 
Ha-2 99 -1.0 2.0 34.5 Bivalvia (ar) Hiatella arctica 
Ha-3 99 -1.0 2.0 34.5 Bivalvia (ar) Hiatella arctica 
Mt-1 99 -1.0 2.0 34.5 Bivalvia (ar) Mya truncata 
Mt-2 99 -1.0 2.0 34.5 Bivalvia (ar) Mya truncata 
Mt-3 99 -1.0 2.0 34.5 Bivalvia (ar) Mya truncata 
Ci-1 99 -1.0 2.0 34.5 Bivalvia (c) Chlayms islandica 
Ci-2 99 -1.0 2.0 34.5 Bivalvia (c) Chlayms islandica 
Ci-3 99 -1.0 2.0 34.5 Bivalvia (c) Chlayms islandica 
Ac-1 99 -1.0 2.0 34.5 Bivalvia (ar) Astarte crenata 
Ab-1 99 -1.0 2.0 34.5 Bivalvia (ar) Astarte borealis 
Ab-2 99 -1.0 2.0 34.5 Bivalvia (ar) Astarte borealis 
Ab-3 99 -1.0 2.0 34.5 Bivalvia (ar) Astarte borealis 
Cc-1 99 -1.0 2.0 34.5 Bivalvia (ar) Clinocardium ciliatum 
Cc-2 99 -1.0 2.0 34.5 Bivalvia (ar) Clinocardium ciliatum 
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Table 2.1 (cont.) 

Sample 
ID 

Depth 
(m) 

Growth 
Temp. 
(°C) 

Temp. 
Range 
(°C) 

Salinity Classa Species 

B-14, northwestern Barents Sea (Atlantic water), 75°00.06’ N, 24°05.82’ E 
Ac-1 187 2.0 2.0 34.8 Bivalvia (ar) Asarte crenata 
Ac-2 187 2.0 2.0 34.8 Bivalvia (ar) Asarte crenata 
Cc-1 187 2.0 2.0 34.8 Bivalvia (ar) Clinocardium ciliatum 
Cc-2 187 2.0 2.0 34.8 Bivalvia (ar) Clinocardium ciliatum 
Cc-3 187 2.0 2.0 34.8 Bivalvia (ar) Clinocardium ciliatum 
Grimsey Island, Icelandic Sea, 66°31.59’ N, 18°11.74’ E 
WG06- 
1278 83 4.7 2.0 34.9 Bivalvia (ar) Arctica islandica 

Stetson Bank, Gulf of Mexico, USA, 28°09.96’ N, 94°17.82’ W 

FGS-1-1 24 27.5 2.2 ≥34.0 Gastropoda 
(ar) Conus ermineus 

FGS-1-2 24 23.0 1.5 ≥34.0 Gastropoda 
(ar) Conus ermineus 

FGS-1-3 24 19.8 0.8 ≥34.0 Gastropoda 
(ar) Conus ermineus 

La Parguera, Puerto Rico, USA, 17°95.00’ N, 67°04.83’ W 
Pp-1 1 29.5 3.0 ≥35.0 Bivalvia (ar) Phacoides pectinatus 
Pp-2 1 29.5 3.0 ≥35.0 Bivalvia (ar) Phacoides pectinatus 
Pp-3 1 29.5 3.0 ≥35.0 Bivalvia (ar) Phacoides pectinatus 
University of Maine Darling Marine Center, Damariscotta River, Maine, USA,  
43°51.75’ N, 69°34.88’ W 
Mya-3.5 - 3.4 0.8 30.4 Bivalvia (ar) Mya arenaria 
Mya-8.5 - 8.6 2.2 29.9 Bivalvia (ar) Mya arenaria 
Mya-16 - 15.9 1.7 30.7 Bivalvia (ar) Mya arenaria 
Mytilus-
4 - 4.0 0.5 32.0 Bivalvia (c) Mytilus edulis 

Mytilus-
8 - 8.0 0.5 32.0 Bivalvia (c) Mytilus edulis 

Mytilus-
12 - 12.0 0.5 32.0 Bivalvia (c) Mytilus edulis 

Mytilus-
15 - 15.0 0.5 32.0 Bivalvia (c) Mytilus edulis 

University of Maryland Horn Point Laboratory, Choptank River, Maryland, USA, 
38°35.60’ N, 76°07.74’ W 
HPL-1 - 14.4 0.5 13.5 Bivalvia (c) Crassostrea virginica 
HPL-2 - 27.3 0.2 11.6 Bivalvia (c) Crassostrea virginica 
HPL-3 - 23.7 0.1 13.2 Bivalvia (c) Crassostrea virginica 
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Table 2.1 (cont.) 

Sample 
ID 

Depth 
(m) 

Growth 
Temp. 
(°C) 

Temp. 
Range 
(°C) 

Salinity Classa Species 

Toba Aquarium, Toba, Japan, 34°29.00’ N, 136°51.00’ E 

P8/30 - 24.5 0.5 - Cephal-
opoda (ar) Nautilus pompilius 

P52 - 24.5 0.5 - Cephal-
opoda (ar) Nautilus pompilius 

P132 - 24.5 0.5 - Cephal-
opoda (ar) Nautilus pompilius 

P110 - 20 1.0 - Cephal-
opoda (ar) Nautilus pompilius 

P95 - 20 1.0 - Cephal-
opoda (ar) Nautilus pompilius 

P105 - 20 1.0 - Cephal-
opoda (ar) Nautilus pompilius 

       
Brachiopods      
Admirality Bay, South Shetland Islands (Southern Ocean), 62°10.00’ N, 58°25.00’ W 

GB4-3 250-
300 -1.0 1.0 34.5 Rhychon- 

ellata (c) Magellania spp. 

GB3-5 250-
300 -1.0 1.0 34.5 Rhychon- 

ellata (c) Magellania spp. 

North Central Gulf of Mexico, USA, 27°09.96’ N, 94°17.82’ W  
Brach-
m1 742 5.5 - - Rhychon- 

ellata (c) Ecnomiosa gerda 

Brach-
m2 742 5.5 - - Rhychon- 

ellata (c) Ecnomiosa gerda 

Half Moon Bay, California, USA, 37°27.32’ N, 122°26.13’ W 

HMB-3 55 10.5 1 33.2 Rhychon- 
ellata (c) 

Terebratulina 
unguicula 

Rio Bueno Harbor, Jamaica, 18°28.12’ N, 77°27.50’ W 

RBJ-1-3 20 27.5 - 35.9 Rhychon- 
ellata (c) Lacazella spp. 
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Table 2.1 (cont.) 

Sample 
ID n δ

13Ccarb  
(‰, PDB) 

δ18Ocarb  
(‰, PDB) 

δ18Owater  
(‰, 
SMOW)b 

Δ47  
(‰, 
Ghosh)c 

Δ47  
(‰, CDES)d 

Mollusks       
B-12, northwestern Barents Sea (Polar water), 75°39.80’ N, 24°01.14’ E 
Ha-1 3 1.29 (±0.02) 5.08 (±0.02) 0.72 0.708 0.768 (±0.004) 
Ha-2 3 1.42 (±0.06) 4.92 (±0.09) 0.72 0.726 0.783 (±0.006) 
Ha-3 3 0.41 (±0.03) 5.05 (±0.04) 0.72 0.719 0.776 (±0.005) 
Mt-1 3 1.71 (±0.01) 5.38 (±0.01) 0.72 0.707 0.772 (±0.006) 
Mt-2 4 1.98 (±0.01) 5.49 (±0.03) 0.72 0.693 0.757 (±0.010) 
Mt-3 3 2.07 (±0.01) 5.52 (±0.01) 0.72 0.709 0.775 (±0.007) 
Ci-1 3 1.22 (±0.01) 4.43 (±0.02) 0.72 0.713 0.782 (±0.009) 
Ci-2 3 1.02 (±0.01) 4.45 (±0.01) 0.72 0.697 0.763 (±0.005) 
Ci-3 5 1.02 (±0.01) 4.56 (±0.02) 0.72 0.717 0.784 (±0.007) 
Ac-1 3 1.50 (±0.04) 5.29 (±0.01) 0.72 0.711 0.781 (±0.003) 
Ab-1 3 0.76 (±0.01) 5.35 (±0.02) 0.72 0.694 0.764 (±0.011) 
Ab-2 3 1.03 (±0.02) 5.37 (±0.01) 0.72 0.707 0.773 (±0.004) 
Ab-3 3 0.73 (±0.03) 5.27 (±0.01) 0.72 0.692 0.758 (±0.017) 
Cc-1 3 0.27 (±0.01) 4.40 (±0.01) 0.72 0.686 0.753 (±0.007) 
Cc-2 3 -0.96 (±0.02) 4.26 (±0.03) 0.72 0.682 0.745e 
B-14, northwestern Barents Sea (Atlantic water), 75°00.06’ N, 24°05.82’ E 
Ac-1 3 1.14 (±0.01) 4.88 (±0.01) 0.66 0.717 0.788 (±0.004)f 
Ac-2 3 1.08 (±0.01) 4.89 (±0.02) 0.66 0.693 0.759 (±0.007) 
Cc-1 3 -0.20 (±0.04) 4.19 (±0.01) 0.66 0.690 0.756 (±0.013) 
Cc-2 3 -0.38 (±0.10) 4.12 (±0.01) 0.66 0.689 0.758 (±0.011) 
Cc-3 3 -0.40 (±0.03) 4.19 (±0.03) 0.66 0.698 0.765 (±0.006) 
Grimsey Island, Icelandic Sea, 66°31.59’ N, 18°11.74’ E 
WG06- 
1278 3 1.40 (±0.02) 3.62 (±0.02) 0.08 0.660 0.729 (±0.008) 

Stetson Bank, Gulf of Mexico, USA, 28°09.96’ N, 94°17.82’ W 
FGS-1-1 3 -0.30 (±0.01) -0.84 (±0.06) 1.34 0.593 0.656 (±0.007) 
FGS-1-2 3 -0.04 (±0.01) -0.22 (±0.02) 0.99 0.625 0.692 (±0.005) 
FGS-1-3 3 -0.14 (±0.01) 0.60 (±0.01) 0.68 0.630 0.697 (±0.007) 
La Parguera, Puerto Rico, USA, 17°95.00’ N, 67°04.83’ W 
Pp-1 3 0.90 (±0.07) -0.55 (±0.07) 0.80 0.624 0.690 (±0.007) 
Pp-2 3 0.77 (±0.01) -0.70 (±0.02) 0.80 0.632 0.692 (±0.005) 
Pp-3 3 1.07 (±0.02) -0.72 (±0.04) 0.80 0.629 0.697 (±0.007) 
University of Maine Darling Marine Center, Damariscotta River, Maine, USA,  
43°51.75’ N, 69°34.88’ W 
Mya-3.5 2 1.42 (±0.01) 0.41 (±0.02) -1.57 0.670 0.740 (±0.020) 
Mya-8.5 3 1.34 (±0.01) -0.45 (±0.04) -1.66 0.649 0.718 (±0.007) 
Mya-16 3 0.95 (±0.01) -0.82 (±0.04) -1.38 0.646 0.715 (±0.003) 
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Table 2.1 (cont.)     

Sample 
ID n δ

13Ccarb  
(‰, PDB) 

δ18Ocarb  
(‰, PDB) 

δ18Owater  
(‰, 
SMOW) 

Δ47  
(‰, 
Ghos
h) 

Δ47  
(‰, CDES) 

University of Maine Darling Marine Center, Damariscotta River, Maine, USA,  
43°51.75’ N, 69°34.88’ W (cont.) 
Mytilus-
3.5 5 -6.47 (±0.03) 0.67 (±0.04) -1.94 0.699 0.776 (±0.007)g 

Mytilus-
8.5 4 -7.89 (±0.02) -1.40 (±0.03) -3.07 0.680 0.757 (±0.009)g 

Mytilus-
12 2 -6.25 (±0.02) -1.11 (±0.02) -2.03 0.691 0.769 (±0.017)g 

Mytilus-
15 4 -6.82 (±0.01) -1.34 (±0.04) -1.37 0.665 0.741 (±0.005)g 

University of Maryland Horn Point Laboratory, Choptank River, Maryland, USA, 
38°35.60’ N, 76°07.74’ W 
HPL-1 3 -4.23 (±0.05) -1.96 (±0.03) -3.76 0.664 0.735 (±0.004) 
HPL-2 2 -5.30 (±0.02) -6.01 (±0.02) -3.54 0.616 0.686 (±0.005) 
HPL-3 3 -5.24 (±0.03) -3.99 (±0.01) -3.69 0.640 0.708 (±0.007) 
Toba Aquarium, Toba, Japan, 34°29.00’ N, 136°51.00’ E 
P8/30 3 -0.43 (±0.02) -1.10 (±0.05) -0.34 0.661 0.726 (±0.005) 
P52 3 -2.55 (±0.09) -0.89 (±0.13) -0.34 0.652 0.717 (±0.003) 
P132 3 -3.63 (±0.03) -0.71 (±0.04) -0.34 0.661 0.726 (±0.008) 
P110 3 -4.06 (±0.03) -0.33 (±0.03) -0.34 0.633 0.696 (±0.012) 
P95 3 -3.82 (±0.01) -0.06 (±0.01) -0.34 0.634 0.706 (±0.009) 
P105 3 -3.21 (±0.01) -0.20 (±0.03) -0.34 0.637 0.709 (±0.004) 
     
Brachiopods     
Admirality Bay, South Shetland Islands (Southern Ocean),  
62°10.00’ N, 58°25.00’ W 
GB4-3 3 0.54 (±0.04) 3.50 (±0.03) -0.20 0.709 0.784 (±0.007) 
GB3-5 3 0.99 (±0.01) 3.48 (±0.02) -0.20 0.693 0.773 (±0.013) 
North Central Gulf of Mexico, USA, 27°09.96’ N, 94°17.82’ W 
Brach-m1 3 1.48 (±0.02) 3.02 (±0.02) 0.00 0.690 0.756 (±0.005) 
Brach-m2 3 1.56 (±0.02) 3.48 (±0.02) 0.00 0.691 0.757 (±0.014) 
Half Moon Bay, California, USA, 37°27.32’ N, 122°26.13’ W 
HMB-3 2 1.09 (±0.01) 1.22 (±0.01) 0.10 0.681 0.754 (±0.002) 
Rio Bueno Harbor, Jamaica, 18°28.12’ N, 77°27.50’ W 
RBJ-1-3 3 2.07 (±0.04) -1.00 (±0.07) 0.80 0.614 0.676 (±0.011) 
Note: All ± values are standard error of the mean (=1σ/√n), where 1σ is the standard 
deviation of the n analyses (each analysis consists of extraction of CO2 from carbonate, 
purification of the CO2, and analysis in the mass spectrometer over six ‘acquisitions’, as 
detailed in Section 2.2.). 
a(ar) = aragonite shell, (c) = calcite shell. In some cases this was confirmed by X-ray 
powder diffraction (Fig. A1.1). 
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bWater oxygen isotope values were either measured directly or taken from the model of 
LeGrande and Schmidt (2006) using the sample coordinates and collection depths (model 
values are in italics). 
cValues reported on the heated gas or ‘Ghosh’ scale described by Ghosh et al. (2006) and 
Huntington et al. (2009). 
dValues reported on the carbon dioxide equilibrium scale or ‘CDES’ described by Dennis 
et al. (2011). 
eDuplicate and triplicate values were rejected because of high Δ48 values; possibly 
contaminated (Table A1.1). 
fHigh Δ47 value compared to other shells analyzed from this location. No methodological 
reason to reject data. 
gDivergent Δ47 values for carbonate standards run with these samples. The values of 
NBS-19 were greater than its working value (0.352‰) for JHU Sequence Numbers 382 
and 409. Samples were rejected on these grounds. 
 

The mineralogy of some mollusk shells was confirmed by powder X-ray diffraction using 

a Philips X’Pert Pro MPD diffractometer in the Department of Materials Science and 

Engineering at Johns Hopkins University, Baltimore, MD (Fig. A1.1). The shells of N. 

pompilius (Japan), Hiatella arctica, Mya truncata, Astarte crenata, Astarte borealis, 

Clinocardium ciliatum (all from the Barents Sea), Phacoides pectinata (Puerto Rico), and 

M. arenaria (Maine, USA) are all aragonite, whereas the shells of Chlamys islandica 

(Barents Sea) are calcite. M. edulis (Maine, USA) shells contain both calcite and 

aragonite, but only the calcitic component of these shells was sub-sampled for clumped 

isotope analysis (Wanamaker et al., 2007). 

 

2.2.1.1 Mollusk growth temperatures 

Generating this calibration required knowledge of the ambient shell growth temperatures 

of both natural and controlled environments. For shells collected in regions where long-

term temperature records did not exist we relied on nearby records or direct temperature 

readings made during collections. In the northwestern Barents Sea mollusks were 
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collected at two sites in an area where Arctic and Atlantic water masses, each of different 

temperature, converge (see Carroll et al., 2011 for detailed collection information). The 

collection sites were located on either side of the Polar Front, an oceanographic boundary 

between the water masses. The position of the Polar Front may vary by kilometers 

annually, but is tightly constrained in the collection area by steep seafloor topography and 

regional circulation (Johannessen and Foster, 1978 and Harris et al., 1998). Bottom 

temperatures in Arctic waters north of the Polar Front at site ‘B-12’ were −1 ± 2 °C at a 

depth of 99 m, whereas bottom temperatures in the warmer Atlantic water south of the 

Polar Front at site ‘B-14’ were 2 ± 2 °C at 187 m (Harris et al., 1998 and Carroll et al., 

2011). In summer 2007, live, undamaged bivalves were collected at each site, 

immediately shucked, and frozen aboard the R/V Lance (Norwegian Polar Institute, 

Tromsø, Norway). Using sclerochronological analyses of these same shells Carroll et al. 

(2011) demonstrated that C. ciliatum specimens collected at both sites were ≥25 years 

old. Because shell analyzed from all Arctic species represented a ‘bulk’ sample, which 

integrated across the entire shell, it is possible that decadal-scale variations in seawater 

temperature caused additional error in our growth temperature assignments for these 

sites. The longest instrumental temperature record from the Barents Sea along the Kola 

Transect shows that decadal variability in sea surface temperature (<200 m) did not 

exceeded ±1 °C from ~1900 to 2000 (Skagseth et al., 2008). This implies that measured 

sub-annual temperature variability of ±2 °C is greater than the annual and decadal 

variability over the last 100 years of shell growth in the Barents Sea. 
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One shell of the mollusk Arctica islandica was included in our calibration. This specimen 

was collected live from the northern Icelandic Shelf southwest of the island of Grimsey, 

Iceland at a depth of 83 m in June 2006 (Wanamaker et al., 2008). Based on counts of 

annual growth bands this organism lived from 1981 to 2006. Bottom temperatures on the 

northern Icelandic Shelf over this interval were estimated to be 4.7 ± 2 °C by averaging 

summer (JJA) measurements from 50 and 100 m depth along the Siglunes 3 profile, 

which is located ~25 km west of the collection location (data from the Marine Research 

Institute, Reykjavik, Iceland; see Knudsen et al., 2004). The average annual temperature 

range (1947–2006) is ~1.8 °C at Siglunes 3, which is greater than variability in the 

average monthly temperature (JJA, ±0.9 °C). Because the A. islandica shell was sub-

sampled across all growth years, we used ±2 °C as a conservative estimate of the 

assigned temperature error. 

 

A single specimen of the gastropod Conus ermineus was obtained for this study (see 

Gentry et al., 2008). This organism was collected live from the Stetson Bank in the 

northern Gulf of Mexico in 2003 at 24 m water depth, but died shortly after collection. 

Bottom growth temperatures were monitored from November 2002 to January 2004 

using data loggers deployed at the collection site by Post, Buckley, Schuh & Jernigan, 

Inc. (PBS & J Inc.) under contract to the Flower Garden Banks National Marine 

Sanctuary. From 2002 to 2004, the bottom temperatures on the Stetson Bank ranged from 

17 to 30 °C, with a mean temperature of 22.6 °C (Gentry et al., 2008). This relatively 

large seasonal temperature range precluded the use of ‘bulk’ shell from C. ermineus in 

our calibration. Instead, we sampled intra-annual shell material from within a single 
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growth year. By sub-sampling within 1 year we effectively decreased the temperature 

range associated with a single isotopic measurement. To do this we identified the most 

recent external growth band and sub-sampled from three divisions corresponding to the 

2002 growth year using a Dremel© rotary drill. The sub-sampled areas were determined 

by scaling the sub-sampling intervals in Gentry et al. (2008) to another part of the shell. 

This sampling method allowed for direct comparison with the temperatures and seawater 

oxygen isotope measurements reported by Gentry et al. (2008). 

 

Three shells of the bivalve mollusk P. pectinatus were collected in January 2010 from a 

mangrove lagoon located near the town of La Parguera, Puerto Rico. The bivalves were 

found buried in organic-rich sediment in 1 m of water. The ‘Pithahaya’ lagoon is subtidal 

and, because there are no significant local sources of freshwater, is fully marine with 

salinities in excess of 35‰ (Rooker and Dennis, 1991). Monthly sea surface temperatures 

(SST) recorded at a nearby coral reef over a 30 year period from 1966 to 1995 ranged 

from 25 to 30 °C with a mean of ~29.5 °C (Winter et al., 1998). Over 30 years the mean 

SST increased by 0.7 °C, which was significant but still smaller than the seasonal 

temperature range of 3 °C used as our estimate of growth temperature variability. P. 

pectinatus shell material used for clumped isotope analysis was sampled across all 

growth bands. 

 

Shells from two species of temperate marine bivalves were used in this calibration. These 

organisms were grown under controlled and continuously monitored environmental 

conditions at the University of Maine, Darling Marine Center in Walpole, ME, USA. 
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Because seasonal temperature gradients in the Gulf of Maine can be large (16 °C) it was 

necessary to use ‘cultured’ shell grown at several constant, intermediate temperatures (~5 

to 15 °C). We used shell material from the ventral margin of blue mussels, M. edulis, 

grown over intervals of 5–6 months at four temperatures (4, 8, 12, and 15 °C; reported in 

Wanamaker et al., 2007). Over these time periods only ~3 mm of new shell was grown. 

Because at least 30 mg of shell carbonate was required for replicate clumped isotope 

analyses (3 × 10 mg/analysis) we combined several individual shells from identical 

experimental conditions to obtain enough material for analysis. Water samples were 

collected weekly to monitor ambient changes in the seawater oxygen isotope value 

(Wanamaker et al., 2007). The soft shell clams, M. arenaria, used were also grown at the 

Darling Marine Center but the growth environments of these shells were not controlled. 

Instead, they lived in tanks fed with ambient water from the Damariscotta River. Shell 

growth was monitored from January to August 2010, over which time the water 

temperature warmed from ~2 to 18 °C. Calcein, a fluorescent dye which is commonly 

used for labeling shell, was used to mark three intervals in the shells which were later 

sub-sampled (see Beirne et al., 2012). This divided the 16 °C range in growth 

temperature into three periods: winter (average temp. = 3.39 ± 0.83 °C), spring (average 

temp. = 8.64 ± 2.18 °C), and summer (average temp. = 15.87 ± 1.65 °C). 

 

Estuarine bivalves have traditionally been avoided in oxygen isotope thermometry 

because the temperature and oxygen isotope fluctuations (from meteoric water–seawater 

mixing) in mesohaline waters are covariable and therefore difficult to independently 

constrain. Because clumped isotope thermometry is independent of the isotopic 
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composition of the ambient fluid we included eastern oysters, C. virginica, from the 

Choptank River in the Chesapeake Bay in this calibration. These specimens were grown 

in natural waters at the University of Maryland, Horn Point Laboratory in Cambridge, 

MD, USA. Oyster growth temperatures were monitored from August to November 2010, 

and shell was sampled from three intervals within this period corresponding to August 

(average temp. = 27.3 ± 0.2 °C), August–September (average temp. = 23.7 ± 0.4 °C), and 

September–November (average temp. = 14.4 ± 0.5 °C). The oxygen isotope composition 

of the waters was also monitored periodically. 

 

Lastly, several nautilus shells (N. pompilius) were obtained from the Toba Aquarium in 

Toba, Japan. Adult Nautili were maintained in recirculating aquaria which used natural 

seawater held at a constant temperature of 20 ± 1 °C. The Toba nautiluses are one of the 

only broods in the world that successfully reproduce in captivity (T. Moritaki, personal 

communication). Deposited eggs are transferred to warmer recycled seawater held at 25 ± 

0.5 °C in a smaller ‘incubation tank’ where they are allowed to hatch and grow for 1–2 

months. We analyzed ‘bulk’ shell material from both juvenile and adult shells. 

 

2.2.1.2 Brachiopod growth temperatures 

The articulate brachiopods used in this study were all collected live from their natural 

habitats (Table 1). Two specimens identified as Magellania spp. were obtained from 

Admirality Bay in the South Shetland Islands, Antarctica. Here the collection depth was 

250–300 m with a mean annual temperature of −1 ± 1 °C. Two specimens of the species 

Ecnomiosa gerda were collected in 742 m of water at 5.5 °C in the north-central Gulf of 
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Mexico on the continental slope off of Texas, USA near site 83G3-6 in Grossman and Ku 

(1986). One specimen of Terebratulina unguicula was collected at 55 m depth in Half 

Moon Bay off the coast of California where waters were 10.5 ± 1.0 °C, and one specimen 

identified as Lacazella spp. was collected from Rio Bueno Harbor, Jamaica in 20 m of 

water which was ~27.5 °C (NODC World Ocean Atlas, 

http://www.esrl.noaa.gov/psd/data/gridded/data.nodc.woa98.html; Jackson and Winston, 

1982). Brachiopod shell material came from the whole pedicle valve or was sub-sampled 

from one valve, perpendicular to the growth axis, across all growth bands. 

 

2.2.2 Stable isotope measurements 

Isotopic measurements were performed at John Hopkins University in the Department of 

Earth and Planetary Science using a Thermo Scientific MAT 253 mass spectrometer 

coupled to a custom-built, automated acid reaction and gas purification line. This line is 

nearly identical to the one described by Passey et al. (2010), and contains three coupled 

systems designed to generate high-purity CO2 gas from carbonate samples and standards, 

and reference ‘equilibrium CO2 gases’. In the first stage, ~10 mg of carbonate is reacted 

in vacuo for 10 min in a common acid bath containing phosphoric acid (ρ = 1.91 mg/ml) 

held at 90 °C. The CO2 gas is collected in a liquid nitrogen (LN) trap after passing 

through a −78 °C water trap. In the second stage the sample CO2 is transferred from the 

collection trap (warmed to −78 °C) to a second LN trap using a purified He carrier gas. 

During this transfer the sample and carrier gas pass through a second −78 °C trap, a getter 

containing silver wool (to remove sulfur-containing contaminants), and finally a 1.2 m 

gas chromatography (GC) column containing Porapak™ porous polymer absorbent held 
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at −20 °C. Prior to August 2011 the system did not use a silver wool getter. The addition 

of the getter had no obvious impact on the isotopic compositions of samples or standards. 

The last stage consists of a final transfer from the post-GC LN collection trap (warmed to 

−78 °C) to a smaller LN trap. This is done in vacuo after the He carrier gas is pumped 

away. The frozen sample CO2 is then allowed to expand at room temperature for 3 min in 

the final trap before further expansion into the bellows of the MAT 253 dual inlet system. 

The other bellows contained a reference gas (Oztech Trading Corporation, Safford, AZ, 

USA) with a bulk isotopic composition of δ13C = −3.61‰ PDB and δ18O = −15.81‰ 

PDB. 

 

Accurate carbonate clumped isotope measurements require a reference frame which 

corrects for changes in the ionization conditions inside of a gas source mass spectrometer 

and for ‘nonlinearities’ such as a dependence of the apparent Δ47 value on δ47 (where the 

latter is a measure of the 13C and 18O content of the sample; see Huntington et al., 2009 

and Dennis et al., 2011). This also allows all laboratories measuring clumped isotopes to 

report their data on a common scale (Dennis et al., 2011). To construct this reference 

frame, we regularly analyzed CO2 gases driven to isotopologue equilibrium at 1000 °C 

and 30 or 27 °C. The former were prepared by heating aliquots of CO2 in quartz tubes in 

a tube furnace held at 1000 °C. The latter were prepared by equilibrating CO2 with water 

at a temperature of 30 or 27 °C (Fig. 2.2). Prior to May 2010 the equilibrations were done 

at 27 °C; subsequently all equilibrations were done at 30 °C. For each of these 

temperatures, we used two different CO2 (or H2O) reservoirs of differing bulk 

composition, so that in total four different equilibrium gases were analyzed. We analyzed 
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one of these gases every 1–2 days, thus cycling through the four gases on a weekly or 

sub-weekly basis. These gases were introduced into a He carrier gas ‘upstream’ of the 

second stage of the purification line, and thus were treated in exactly the same manner as 

carbonates except for the initial acid extraction step. 

 

Figure 2.2 Carbon dioxide–water equilibration device used to generate ‘reference’ CO2 

gases in equilibrium with two isotopically different waters at controlled temperatures. 

Both reservoirs are submerged in a thermostatic water bath that maintains a constant 

temperature of 30 (or 27) ± 1 °C. The 4-port, 2-way valve is shown in the ‘standby’ 

position where the valve and lines to the automated extraction device (described in 

Section 2.2.2) are purged with a purified He carrier gas. During standby the sample loop 

is open to a rough pump via valves 4 and 5. During sample analysis, the sample loop is 

filled with CO2 gas from either reservoir by closing valve 5 and opening valve 4, and 

then opening either valve 2 or 3. Valve 4 is then closed, and switching of the 4-port valve 
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introduces the CO2 in the sample loop to the automated preparation device. The CO2 

immediately passes through a −78 °C trap, and is treated in exactly the same manner as 

sample CO2 (i.e., from carbonate) except that it bypasses the phosphoric acid/autosampler 

volume. 

 

Each sample, standard, or reference gas was analyzed at a bellows pressure 

corresponding to a signal of 12 V on the Faraday cup measuring mass 44 CO2. The 

measurement sequence consisted of six repetitions of nine cycles, each with 26 s of 

integration time for a total combined integration of 1404 s per gas. The long-term internal 

standard deviation for Δ47 on the six repetitions of nine cycles was approximately 

0.030‰. Most of the mollusk and brachiopod shells were run in triplicate, in which case 

the combined integration time approached the asymptotic portion of the shot noise curve 

predicted for carbonate clumped isotope analyses (Thiagarajan et al., 2011). The reported 

isotope ratios were calculated from these measurements. In some cases replicate 

measurements for a single sample (e.g., Ha-2) were all made during a single analytical 

session. It is possible that the reported error for these samples is artificially small because 

all analyses were corrected using the same reference frame. However, most samples used 

for this calibration were analyzed (replicated) over several analytical sessions. 

 

2.2.3 Data reduction and analysis 

Post-analysis data reduction was done according to the scheme outlined by Dennis et al. 

(2011) in which the equilibrium CO2 gases are used to construct an empirical transfer 

function (ETF) that maps the measured sample Δ47 values onto a reference frame 
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anchored to theoretical predictions of Δ47 of CO2 gas at two different equilibration 

temperatures: 27 or 30 °C, and 1000 °C. It has been observed that the raw Δ47 values of 

the equilibrium CO2 gases may drift over time due to changes in the physical state of 

mass spectrometers (Huntington et al., 2009 and Passey et al., 2010), causing the slope 

and intercept of the ETF to drift. To correct for this drift we used a MATLAB® script that 

models changes in the slope and intercept of the equilibrium gas lines as low-order 

polynomial functions of time using a least squares approximation (Passey et al., 2010). 

Occasionally, there was no discernible drift in the reference gas lines. When this was the 

case a static correction was used, where the equilibrium gas data were simply linearly 

regressed, not modeled. The ETF scheme also differs from previous attempts to establish 

a Δ47 reference frame (e.g., the heated gas line) because it does not depend on 

assumptions about (or calibration of) the Δ47 value of the dual inlet reference gas CO2 

(Ghosh et al., 2006, Huntington et al., 2009 and Dennis et al., 2011). An acid temperature 

correction factor was applied to all data to normalize values to acid extractions performed 

at 25 °C. For the values reported on the original ‘Ghosh’ scale, we used an acid 

correction factor of 0.081‰ (Passey et al., 2010). For values reported on the new ‘carbon 

dioxide equilibrium scale’, we used a value of 0.092‰, a value that was determined by 

analyzing three different shells using both 25 and 90 °C acid reactions (see Section 

4.1.2.). 

 

We analyzed NBS-19 and two internal carbonate standards (UU-Carrara and 102-GC-

AZ01) at regular intervals to monitor system stability and precision, with the following 

results (reported on the ‘carbon dioxide equilibrium scale’): NBS-19 (n = 23) Δ47 = 0.414 
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± 0.018‰ (mean ± 1σ standard deviation); UU-Carrara (n = 93) Δ47 = 0.403 ± 0.015‰; 

102-GC-AZ01 (n = 102) Δ47 = 0.710 ± 0.015. The δ13C and δ18O values of the samples 

were normalized to concurrent analyses of NBS-19 (δ13C = 1.95‰ PDB, δ18O = −2.20‰ 

PDB) or an in-house Carrara marble standard calibrated to NBS-19. Statistical treatment 

of corrected isotopic data (e.g., comparing Δ47 means) was done using Kaleidagraph 4 

(Synergy Software) and JMP 9 (SAS Institute Inc.). The Electronic Annex reports all 

isotopic data for samples, carbonate standards, and equilibrium gases, as well as 

information on the models, the slopes, and intercepts of equilibrium gas lines and ETFs. 

Thus the Section A1.2 contains all of the data necessary to recalculate Δ47 values and 

reconstruct the calibration. We present all data from all of the analytical sessions that we 

attempted for modern mollusks and brachiopods, including data that were judged to be 

poor analyses and subsequently were excluded from the final dataset. 

 

2.3 Results 

The isotopic compositions (δ13C, δ18O, and Δ47) of the mollusk and brachiopod shells are 

presented in Table 1 and the mean Δ47 value for each shell is plotted against its assigned 

growth temperature in Fig. 2.3a. A salient feature of this calibration data is the difference 

in Δ47, at growth temperatures below ~25 °C, relative to the previous biogenic 

calibrations. Note that these previous calibrations have been converted to the ‘carbon 

dioxide equilibrium scale’ using the equation given in Table 4 of Dennis et al. (2011) 

(Fig. 2.3a). Bivalve mollusks from the Barents Sea have the highest Δ47 values, ranging 

from 0.788‰ to 0.745‰, and sub-sampled shell from the 27.5 °C interval of the C. 

ermineus shell from the Gulf of Mexico has the lowest Δ47 value of 0.656‰ (Table 2.1, 
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Fig. 2.3). The six brachiopod Δ47 values plot within the range of mollusk values. 

Additionally, there is no clear difference in Δ47 between aragonitic mollusks and calcitic 

mollusks or brachiopods, despite the theoretical prediction of ~0.02‰ enrichment in Δ47 

of aragonite relative to calcite in this temperature range (Schauble et al., 2006 and Guo et 

al., 2009). The absence of aragonite–calcite fractionation is consistent with Caltech 

datasets for calcitic and aragonitic biogenic carbonates (e.g., Tripati et al., 2010 and 

Thiagarajan et al., 2011), which fall on a single line that agrees well with the inorganic 

calcite calibration line of Ghosh et al. (2006). A least squares linear regression of the 

mollusk and brachiopod Δ47 data versus the inverse squared growth temperatures results 

in a calibration line (r2 = 0.84): 

Δ47 = 0.0327 ×10
6 /T 2 + 0.3286        (2.3)  

that crosses the Ghosh et al. (2006) calibration line at 31.1 °C. The statistical details of 

Eq. (2.3) are presented in Table 2.2. The theoretical calibration for calcite (Schauble et 

al., 2006) is within the error of Eq. (2.3) over the temperature range of the shell data. 

Note that this calibration is adapted to the carbon dioxide equilibrium scale via 

conversion of the mineral-CO2 Δ47 ‘acid’ fractionation reported by Guo et al. (2009) 

(=0.232‰) to the carbon dioxide equilibrium scale (=0.268‰; Dennis et al., 2011, Table 

2.4). The slope and intercept of Eq. (2.3) are also similar to the re-calculated Dennis and 

Schrag (2010) calibration within the reported errors of each regression (Dennis et al., 

2011). 
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Figure 2.3 (previous page) (a) All Δ47 measurements of mollusk and brachiopod shells 

versus their growth temperatures. The solid black line is a linear regression through the 

mollusk and brachiopod data and the dashed and dotted grey lines are the empirical 

(Ghosh et al., 2006) and theoretical (Guo et al., 2009) calibrations for calcite, 

respectively. Clumped isotope data are reported on the carbon dioxide equilibrium scale 

or ‘CDES’ (Dennis et al., 2011), whereas data in Fig. 1 are reported on the ‘Ghosh’ scale 

(Ghosh et al., 2006). Error bars on Δ47 represent the standard error of the mean from 

multiple analyses of a single shell, and error bars on 106/T2 are the temperature ranges 

from Table 1. (b) Calculated δ18O of seawater (using the measured carbonate δ18O and 

the apparent clumped isotope temperatures from mollusks and brachiopods) versus the 

measured δ18O of seawater at each collection location. For aragonitic mollusks the 

inorganic aragonite equilibrium oxygen isotope fractionation equation of Kim et al. 

(2007) was used to calculate seawater δ18O. For calcitic brachiopods and mollusks the 

inorganic calcite oxygen isotope equilibrium equation of Kim and O’Neil (1997) was 

used instead. The dashed lines are ± 0.5‰ deviation from the 1:1 line and are shown only 

for reference. 

 
Table 2.2 Linear regression of mollusk and brachiopod Δ47 values versus their growth 
temperatures. 
Linear regression Δ47 = 0.0327 × 106/T2 + 0.3286 
Shells used 45 
R2 0.84 
RMSEa 0.15 
Intercept standard error (‰) 0.0278 
Intercept t ratiob 11.83 
Slope standard error (‰/106/T2) 0.0022 
Slope t ratiob 14.83 
aThe square root of the mean squared error. 
bThe ratio of the linear regression parameters to their respective standard errors. For 
example, a value greater than 2 is significant at the 0.05 significance interval. 
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For comparison with previous and contemporary data cast on the ‘Ghosh’ scale (e.g., 

Ghosh et al., 2006 and Huntington et al., 2009), we also report a least squares regression 

of the mollusk and brachiopod inverse squared growth temperatures and clumped isotope 

data reported in the ‘older’ reference frame: 

Δ47 = 0.0318 ×10
6 /T 2 + 0.2737        (2.4) 

 

It should be noted that isotopic data from the M. edulis shells were excluded from this 

calibration. During the short interval in the January–May, 2010 analytical session when 

these shells were analyzed (Table A1.1) the Δ47 value of the carbonate standard NBS-19 

was offset by 0.031 ± 0.005‰ (mean ± standard error of the mean) from the accepted 

value, which was several times greater than the offsets for other working standards run 

during this analytical session. This offset persisted despite our efforts to correct for 

temporal variability in carbonate standard Δ47 residuals during this analytical session, 

thus precluding the use of the M. edulis data in the Δ47–temperature calibration. We note, 

however, that these M. edulis Δ47 values, when plotted against their assigned growth 

temperatures, appear to agree with the trend of the mollusk and brachiopod data in Fig. 

2.3a. 

 

We also evaluated the ability of paired carbonate δ18O and Δ47 analyses to predict the 

δ18O of water in which each shell grew (Fig. 2.3b). This is done by converting the Δ47 

value to an apparent temperature using Eq. (2.3), and then calculating the temperature 

dependent oxygen isotope fractionation factor between carbonate and water using the 

equations of Kim and O’Neil (1997) or Kim et al. (2007) for calcite or aragonite, 
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respectively. The standard error of the calculated δ18Owater was determined by the 

propagation of error from the Δ47-derived temperature and measured shell δ18O through 

the equilibrium oxygen isotope thermometry equations. In general, these comparisons 

revealed that seawater compositions are predicted within about 0.5‰ of 

measured/modeled δ18Owater, although larger deviations are not uncommon (Fig. 2.3b). 

For some localities we relied on modeled δ18Owater values (LeGrande and Schmidt, 2006) 

and apparent oxygen isotope disequilibrium could be caused, in part, by error in these 

estimates (Table 2.1). 

 

In Fig. 2.3a, it is apparent that a range of Δ47 values for mollusk and brachiopod shells are 

observed for a given growth temperature. This is demonstrated most clearly where there 

is a high density of data, for example at the Polar site B-12 in the Barents Sea where 15 

shells spanning six bivalve mollusk species were analyzed. The Δ47 values at B-12 ranged 

from 0.753‰ for C. ciliatum to 0.784‰ for C. islandica, within which there appear to be 

real differences between individuals and perhaps between species (Table 2.1). One way 

to evaluate the ‘spread’ of data around the linear regression (Eq. (2.3)) is to evaluate if it 

could be created by the analytical error of Δ47 measurements alone. Fig. 2.4 plots 

distribution of all mollusk and brachiopod Δ47 measurements (i.e., not ‘grouped’ by 

means of replicate analyses), normalized by the linear regression (Eq. 2.3), along with a 

Gaussian probability density function that has a mean equal to zero and a standard 

deviation equivalent to long-term, repeat analyses of our in-house Carrara marble 

standard (=0.015‰). This comparison shows that the standard deviation of all 

measurements of mollusks and brachiopods (=0.018‰) is slightly greater than the 
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measurement error of a homogeneous carbonate standard. The standard deviation for only 

the Arctic shells from site B-12 (n = 46) is 0.016‰, only slightly greater than the 

measurement error for our internal standards. It is conceivable that this poorer precision 

is an artifact of sample heterogeneity and errors in our estimates of the growth 

temperatures. However, the data are also consistent with a small degree of ‘vital effect’ 

disequilibrium, or simply reduced precision for analyses of natural biogenic carbonates 

containing complex organic matrices, relative to the precision obtained for very pure 

laboratory standards. 

Figure 4.2 Distribution of all Δ47 measurements plotted as the difference between the 

measured Δ47 and the growth temperature-equivalent Δ47 predicted by Eq. (2.3). The 

distribution of Δ47 values for only the Arctic bivalves (sites B-12 and B-14) is shown in 

grey. The black line represents a Gaussian distribution of Δ47 data around a mean of 0‰ 

with a standard deviation of 0.015‰, which is the long-term standard deviation of our in-
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house Carrara marble standard. The Δ47 data used to create the ‘All’ and ‘Arctic’ 

histograms are from individual analysis of mollusk and brachiopod shell material. This 

differs from Fig. 2.2, which presents the Δ47 data as the mean of replicate analyses on a 

single specimen. 

 

2.4 Discussion 

The clumped isotope calibration in this study was generated by analyzing mollusks and 

brachiopods across the virtual totality of ambient temperatures that they inhabit (-1.0 to 

29.5 °C), as well as a number of different habitats. In the following discussion we seek 

explanations for why the calibration slopes of our study and Dennis and Schrag (2010) 

differ from those of Ghosh et al., 2006, Ghosh et al., 2007, Came et al., 2007 and Tripati 

et al., 2010, and Thiagarajan et al. (2011). Section 2.4.1. explores methodological 

explanations and Section 2.4.2. explores ‘biological’ explanations relating to possible 

differences in isotopic fractionation during biomineralization in different taxonomic 

groups. 

 

2.4.1 Methodological explanations 

2.4.1.1 Intercalibration between different laboratories 

A simple explanation for the observed differences in calibrations is that different 

laboratories are poorly intercalibrated. Prior to 2011, published carbonate clumped 

isotope data were reported on a ‘heated gas’ reference frame, which used CO2 heated to 

1000 °C to create a stochastic distribution of 13C–18O bonds (Ghosh et al., 2006 and 

Huntington et al., 2009). These gases were analyzed along with samples and used to 
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construct a reference line to which measured Δ47 values could be compared. A problem 

with this method was that the Δ47 value of the heated gases was defined as 0‰, 

effectively assuming that the reference line represented a completely disordered state 

after spending a sufficient amount of time (~2 h) at a high temperature (~1000 °C). 

However, theoretical predictions of Δ47 by Wang et al. (2004) suggested that CO2 heated 

to 1000 °C has an equilibrium Δ47 value of 0.027‰. The heated gas reference frame also 

relied on an empirically-derived correction factor to account for CO2 fragmentation 

and/or recombination reactions in the ionization source which may ‘scramble’ or reorder 

the 13C–18O bonds in the analyte gas (Huntington et al., 2009). Use of this ‘scale 

compression’ or ‘stretching’ factor requires the assumption that different tanks of Oztech 

reference CO2 used in different laboratories have the same Δ47 value, or alternatively it 

requires calibration of a reference gas to gases previously analyzed relative to the original 

Oztech reference gas at the California Institute of Technology (Caltech) used in the 

Ghosh et al. (2006) calibration study. NBS-19 served as the only widely available 

reference material for evaluating the soundness of the correction scheme through time, 

and indeed most laboratories reported broadly similar Δ47 values for this material. 

However, its Δ47 value, ~0.35‰, is far outside of the range of low temperature 

calibrations (0.55–0.78‰ on the ‘Ghosh’ scale). 

 

Dennis et al. (2011) readdressed the issue of interlaboratory standardization of clumped 

isotope measurements by establishing an empirical reference frame that tied measured 

Δ47 values of CO2 to theoretical predictions of Δ47 of CO2 at given equilibration 

temperatures. They showed that by using this revised reference frame, which we refer to 
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as the carbon dioxide equilibrium scale (CDES), interlaboratory agreement on a set of 

natural carbonates was at least 0.017‰ (1σ standard deviation), and as good as 0.008‰ 

(1σ standard deviation). These differences are too small to account for the greatest 

difference (~0.08‰) observed between Δ47–temperature calibrations at the coldest 

mollusk and brachiopod growth temperatures. 

 

We directly tested for interlaboratory agreement by distributing an aliquot of aragonitic 

shell from specimen Ha-3 (H. arctica, site B-12, western Barents Sea) for analysis at 

Yale University and Caltech. Ha-3 was chosen for this comparison because the Δ47 values 

of shells from the Arctic site B-12 are the most different from the Δ47 value predicted by 

the Ghosh et al. (2006) calibration. Of the 15 individual shells analyzed from B-12, Ha-3 

had abundant material and a Δ47 value (0.776‰) that was close to the group mean of 

0.770‰. The raw clumped isotope data (δ47, Δ47) from Yale and Caltech were corrected 

using a static heated gas line and compared to our measured value for Ha-3 on the 

‘Ghosh’ scale (Table 2.3). Unfortunately, these analyses were made before all 

laboratories were routinely reporting Δ47 data on the carbon dioxide equilibrium scale, 

thus precluding the use of the revised reference frame in these comparisons. The reported 

Δ47 value from Yale is 0.021‰ higher than our measurement and the Caltech value is 

0.008‰ higher, but neither was high enough to account for the difference between the 

Caltech calibrations and the JHU + Harvard calibrations (Table 2.3, Fig. 2.5). However, 

these differences do highlight the importance of reporting Δ47 values on the CDES 

reference frame, as it was designed to empirically account for source fragmentation or 

recombination reactions during carbonate sample, standard, and equilibrium reference 
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gas analysis. Given these results and those of the interlaboratory calibration presented by 

Dennis et al. (2011), it seems that the different slopes of the Caltech and JHU + Harvard 

calibrations cannot be explained by poor interlaboratory calibration. However, these 

intercalibration exercises are imperfect for addressing this question, because the 

methodologies used at Caltech for these exercises are not the same as those used for the 

Caltech calibration studies. The former utilized the newer 90 °C acid reaction, packed GC 

column, online technique, whereas the latter utilized the original 25 °C acid reaction, 

capillary GC column, offline method. However, the methodology used at Yale for the 

interlaboratory calibration exercises are similar to the original methods used for the 

Caltech calibrations. 

Table 2.3 Interlaboratory Δ47 comparison using shell Ha-3 (Site B-12, Barents Sea) 

Laboratory n δ13C 
(‰, PDB) 

δ18O 
(‰, PDB) 

Δ47 
(‰, Ghosh) |q|a P-valueb Null 

(α=0.1) 
Johns 
Hopkins 
University 

3 0.41 
(±0.03) 

5.05 
(±0.04) 

0.719 
(±0.005) - - - 

Yale 
University 4 0.68 

(±0.02) 
4.93 

(±0.03) 
0.741 

(±0.015) 1.55 0.60 Cannot 
reject 

California 
Institute of 
Technology 

3 0.47 
(±0.03) 

5.03 
(±0.07) 

0.727 
(±0.013) 0.66 0.89 Cannot 

reject 

Notes: All ± values are standard error of the mean (=1σ/√n), where 1σ is the standard 
deviation of the n analyses. Yale Δ47 data were corrected using a source fragmentation/ 
recombination scaling factor of −0.87‰. JHU and Caltech data were corrected using a 
−0.8453‰ scaling factor (Huntington et al. 2009). If −0.8453‰ is used in the Yale 
correction then the Yale Δ47 becomes 0.720‰. 
aAnalysis of variance (ANOVA) Tukey HSD post hoc test q statistic. A large value 
(approximately an order of magnitude greater than the reported values) indicates 
statistical significance. 
bThe P-value associated with the q statistic. If the value is below a threshold (α = 0.1) the 
conclusion would be that there is a difference between groups. 
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Figure 2.5 A compilation of interlaboratory clumped isotope comparisons. ΔΔ47 is the 

clumped isotope difference between measurements at Johns Hopkins University and 

other laboratories (ΔΔ47 = Δ47,JHU − Δ47,other). Open symbols represent data generated 

using a 90 °C phosphoric acid reaction, whereas the solid symbols represent those done at 

25 °C. The dashed lines in (a) and (b) are the long-term precision (±1σ standard 

deviation) of Δ47 measurements made on an in-house Carrara marble at JHU. The asterisk 
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in (b) identifies the Yale University measurement of Ha-3 corrected using their preferred 

source fragmentation/recombination scaling factor of −0.87‰, instead of the −0.8453‰ 

used at JHU and Caltech (Table 2.3; Huntington et al., 2009). Data for the Carrara 

marbles, 102-GC-AZ01, and DSC-9253 on the CDES scale are from Dennis et al. (2011) 

and this study. Data for the Carrara marbles, 102-GC-AZ01, and Ha-3 on the ‘Ghosh’ 

scale are from Passey et al., 2010 and Csank et al., 2011, and this study (Table 2.3). In (a) 

the grey line labeled (Ghosh et al., 2006) represents the difference between the Ghosh et 

al. (2006) calibration and the mollusk and brachiopod calibration (Eq. (2.3)). In (b) the 

grey line labeled (Ghosh et al., 2006) represents the difference between the Ghosh et al. 

(2006) calibration the theoretical calibration for calcite from Guo et al. (2009). 

 

2.4.1.2 Acid temperature 

The Caltech calibrations (Ghosh et al., 2006, Ghosh et al., 2007, Came et al., 2007, 

Tripati et al., 2010 and Thiagarajan et al., 2011) utilized 25 °C phosphoric acid reactions, 

whereas this study and Dennis and Schrag (2010) utilized 90 °C reactions. Thus it is 

critical that the difference in acid fractionation factor between 90 and 25 °C is accurately 

known, where the acid fractionation factor Δ*=Δ47,CO2-Δ63,CaCO3 (Guo et al., 2009). Δ47,CO2 

is the composition of CO2 generated by phosphoric acid reaction of carbonate, and 

Δ63,CaCO3 is the composition of the carbonate mineral. Passey et al. (2010) estimated the 

difference in Δ* between 25 and 90 °C reactions, Δ*25-90, by analyzing homogenous 

carbonates using both a 90 °C, packed GC column, online extraction line, as well as by 

25 °C, capillary GC column, offline extractions. All analyses were conducted at Caltech, 

but using two different mass spectrometers. The observed value for Δ*25-90, 0.081‰, is 
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not a pure estimate of the acid temperature effect, because the approach convolved acid 

temperature, extraction method, and different mass spectrometers. Likewise, the 

interlaboratory calibrations of Dennis et al. (2011) and those reported in Section 2.4.2. 

convolve several methodological aspects, only one of which is acid temperature. 

 

Therefore we undertook an experiment to measure Δ*25-90 using a single extraction line 

and mass spectrometer. We studied three mollusk shells, two from the Arctic collection 

site B-12 and one from Puerto Rico (Table 2.4). The 25 °C reactions were conducted in 

McCrea-type vessels for ~12 h, with the vessels immersed in a constant temperature 

water bath. The vessels were then attached to our automatic gas preparation line and the 

CO2 was extracted in the same way as our regular 90 °C analyses. The same materials 

were also analyzed using 90 °C reactions. The mean Δ*25-90 source was 0.076 ± 0.007‰ 

(1σ standard deviation; on the ‘Ghosh’ scale), similar to the 0.081‰ offset determined by 

Passey et al. (2010). The mean Δ*25-90 for the carbon dioxide equilibrium scale is 0.092 ± 

0.012‰ (1σ standard deviation). The differences among these values are not large 

enough to explain discrepancies between calibrations (Fig. 2.3a). 
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Table 2.4 Δ47 acid correction factors based on acid reactions at 90 and 25 °C using 
mollusk shells 

a‘Offline’ reactions done in vacuo for ~12 h at 25 °C using ρ = 1.91 phosphoric acid. 
Evolved CO2 was cleaned by cryogenic trapping and gas chromatography using the same 
sample purification as the automated preparation device acid reactions at 90 °C. See 
Section 2.2.2. 
bEmpirically derived. 
cTheoretically derived. 
 

In summary, we find no convincing explanation for why the carbonate clumped isotope 

calibration for mollusks and brachiopods should be different than the existing inorganic 

and biogenic calibration data (e.g., Ghosh et al., 2006). Our interlaboratory Δ47 

comparisons of shell Ha-3 add to previous comparisons, which have now been completed 

on a suite of natural carbonates (Fig. 2.5). These data should be viewed as the most 

Sample 
ID 

Sample 
species 
/type 

n 
Δ 47 
(‰, Ghosh) 
autoline, 90 °C 

Δ47 
(‰, CDES) 
autoline, 90 °C 

Δ 47 
(‰, Ghosh) 
offlinea, 25 °C 

Δ 47 
(‰, CDES) 
offlinea, 25 °C 

Ha-3 
(B-12) 

Hiatella 
arctica 3 0.638 0.684 0.714 0.783 

Ac-1 
(B-12) 

Astarte 
crenata 3 0.630 0.689 0.699 0.767 

Pp-3 Phacoides 
pectinatus 3 0.548 0.601 0.630 0.700 

   
Acid 
correction 
(‰, Ghosh) 

Acid 
correction 
(‰, CDES) 

  

Ha-3  
(B-12) 

Hiatella 
arctica  0.076 0.099   

Ac-1  
(B-12) 

Astarte 
crenata  0.69 0.078   

Pp-3 Phacoides 
pectinatus  0.082 0.099   

 Mollusk 
average  0.076 0.092   

 1σ SD  0.007 0.012   

 Passey et 
al. (2010)b  0.081 -   

 Guo et al. 
(2009)c  0.069 -   
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realistic comparisons of interlaboratory reproducibility because they make no effort to 

evaluate any single aspect of making a carbonate clumped isotope measurement. If Δ47 

calibration measurements made at Johns Hopkins were dramatically different from 

measurements currently being made at Caltech, Yale, or Harvard, it should be apparent in 

a comparison such as Fig. 2.5. 

 

2.4.2 Biological explanations 

It is conceivable that mollusks and brachiopods have a unique response of Δ47 to 

temperature, possibly owing to differences in biomineralization mechanisms. In the 

biological systems relevant to this discussion, carbonate formation occurs in semi-

isolated volumes which have varying degrees of connectivity with the ambient 

environment (Weiner and Dove, 2003). The chemical composition and mineral 

precipitation kinetics within these volumes is therefore a function of some combination of 

(a) the biological influence on the chemistry of the precipitating fluid (e.g., ionic 

transport or metabolic activity) and (b) the ambient seawater chemistry. While the design 

of our study does not allow us to evaluate the isotopic interplay between biology and 

seawater directly, we can discuss isotopic effects associated with the chemical and 

physical conditions of marine carbonate biomineralization. 

 

2.4.2.1 Isotopic mixing 

The non-linear effect on Δ47 resulting from mixing carbonates with different bulk isotopic 

compositions has been predicted from theory and demonstrated by experiment (Eiler and 

Schauble, 2004). In our study, this effect is a concern when two or more regions of a shell 
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with different δ13C and δ18O may be combined for analysis or during biomineralization 

when the shell itself may be formed from two isotopically distinct reservoirs of dissolved 

inorganic carbon (DIC). In either case, mixing will cause the resultant Δ47 to be greater 

than the weighted sum of the end member Δ47 values (Eiler and Schauble, 2004). Mollusk 

and brachiopod shell δ13C and δ18O vary in accordance with seasonal environmental 

conditions such as productivity, temperature, and the isotopic composition of water (e.g., 

Mii and Grossman, 1994, Buening and Spero, 1996, Goodwin et al., 2003, Gentry et al., 

2008, McConnaughey and Gillikin, 2008, Wanamaker et al., 2011 and Beirne et al., 

2012). The clumped isotopic composition of shells used in this calibration that were sub-

sampled indiscriminately across all growth bands could therefore incorporate a 

pronounced mixing effect. To evaluate this effect we consider a 50/50 mixing of end-

member δ13C and δ18O values for shell grown during a hypothetical mid-latitude summer 

(δ13C = 0‰, δ18O = −2‰) and winter (δ13C = 1.5‰, δ18O = 1.5‰). The result is a Δ47 

mixing effect of 0.0014‰. If the Ghosh et al. (2006) calibration represents the Δ47–

temperature relationship that all biocarbonates (including mollusks and brachiopods) 

should have, then mixing isotopically different parts of a shell would cause a shift in the 

wrong direction (positive) with a magnitude that would be too small to explain the 

difference between calibrations. 

 

2.4.2.2 Amorphous calcium carbonate 

An alternative to the mixing effect caused by combination of shell regions with different 

isotopic compositions is a different kind of mixing effect due to the presence of multiple 

phases of calcium carbonate. When material for this calibration was sub-sampled from 
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mollusk shells containing both aragonite and calcite, we carefully selected one over the 

other (e.g., calcite from M. edulis). Recent analysis of mollusk shells, however, has 

demonstrated that amorphous calcium carbonate (ACC) may be a component of juvenile 

and adult mollusk shell as a precursory phase (Weiss et al., 2002 and Jacob et al., 2011) 

that is unresolvable by traditional methods for mineralogical identification (e.g., X-ray 

diffraction). The physical and thermochemical properties of ACC have been described 

(Radha et al., 2010), but the stable isotopic composition of ACC relative to non-

amorphous phases of calcium carbonate (calcite or aragonite) is unknown. Therefore, it is 

impossible to speculate on the effect of incorporating residual molluskan (or brachiopod) 

ACC in our carbonate clumped isotope measurements. In an effort to reduce any putative 

contribution of ACC to our analyte CO2, we pretreated two shells in a pH-buffered 

calcium acetic acid solution (1 M, pH = 4.6) at 4 °C for 24 h. This pretreatment was 

expected to preferentially dissolve ACC over aragonite. We observed no effect of this 

pretreatment on the Δ47 value of the shells (Table 2.5), implying that either no appreciable 

ACC was present initially, pretreatment was ineffective at removing ACC, or ACC did 

not significantly affect the isotopic composition of untreated shell. Regardless, the 

paucity of isotopic data from amorphous phases of calcium carbonate highlights an 

important avenue for further research as it has been suggested to be an important 

transitional phase during carbonate biomineralization in mollusks, echinoderms, and 

arthropods (Adaddi et al., 2003). 
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Table 2.5 Stable isotope data from sample pretreatment experiments using pH-buffered 
acetic acid. 

Sample 
ID Species n Pretreatmenta 

δ13Ccarb 
(‰, 
PDB) 

δ18Ocarb 
(‰, 
PDB) 

Δ47 
(‰, 
Ghosh) 

Δ47 
(‰, 
CDES) 

P-valueb 

Ha-4 
(B-12) 

Hiatella 
arctica 2 

0.1 M pH-
buffered 
acetic acid 

1.03 
(±0.03) 

4.98 
(±0.02) 0.680 0.751 

(±0.002) 0.33 

Ha-4 
(B-12) 

Hiatella 
arctica 2 

Deionized 
water 
(control) 

0.99 
(±0.08) 

4.98 
(±0.01) 0.672 0.741 

(±0.006) - 

Pp-2 Phacoides 
pectinatus 2 

0.1 M pH-
buffered 
acetic acid 

0.82 
(±0.02) 

-0.70 
(±0.01) 0.620 0.688 

(±0.028) 0.80 

Pp-2 Phacoides 
pectinatus 3 None 0.77 

(±0.03) 
-0.70 
(±0.02) 0.632 0.699 

(±0.013) - 

Note: All ± values are standard deviation (1σ). 
aThe pretreatment was for 12 h at room temperature after sonicating twice for 5 min each. 
bP-values from a Wilcoxon–Mann–Whitney rank sum test. Values greater than α = 0.1 
indicate no significant differences between treatments and control values. 
 

2.4.2.3 Diffusion 

Extensional molluskan shell growth occurs directly along the ventral margin from the 

extrapallial fluid (EPF), which is enclosed in a cavity between the inner shell surface and 

the mantle. The ionic and organic composition of the EPF distinguishes it from seawater 

and suggests active biological control over the conditions of shell precipitation 

(Crenshaw, 1972). It has been hypothesized that at least some of the calcium ions and 

DIC in the EPF is supplied by the hemolymph to the outermost mantle cells (Lowenstam 

and Weiner, 1989), which is supported by recent studies on the carbon isotope 

composition of ambient DIC and coeval shell (e.g., Beirne et al., 2012). Thus, isotope 

effects from the diffusion of dissolved CO2 across cellular membranes or through body 

fluids should be considered in light of the observed discrepancies between clumped 

isotope calibrations. 
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Isotopic fractionation due to diffusion of CO2 through the phospholipid bilayer is often 

invoked in ‘vital effect’ models for carbonate biomineralization (Erez, 2003 and Cohen 

and McConnaughey, 2003). As Thiagarajan et al. (2011) point out in their discussion of 

clumped isotope compositions of corals, Knudsen diffusion, in which gas passes through 

a pore with a diameter that is less than the mean free path of the diffusing molecule, 

predicts that the diffused gas will be depleted in heavy isotopes relative to the residual 

gas according to the equation: 

Rdiffused / Rresidual = m1 /m2         (2.5) 

where Rdiffused and Rresidual are the isotope ratios of the diffused and residual gases and m1 

and m2 are masses of isotopologues 1 and 2. For an aliquot of CO2 gas that has undergone 

Knudsen diffusion the diffused gas will be lower in δ13C and δ18O by 11.3‰ and 22.5‰, 

respectively, but 0.5‰ higher in Δ47 (Eiler and Schauble, 2004). A nonstochastic value of 

Δ47 in the diffused gas results from the non-linear dependence of Δ47 on the bulk isotopic 

composition of the gas (Eiler and Schauble, 2004 and Thiagarajan et al., 2011). 

 

The isotopic fractionation associated with diffusion of CO2 through a different gas (e.g., 

air) can be calculated using the following equation: 

Rdiffused / Rresidual =
M 2 +Mair( )
M 2Mair( )

⎛

⎝⎜
⎞

⎠⎟
×

M1Mair( )
M1 +Mair( )

⎛

⎝⎜
⎞

⎠⎟
     (2.6) 

where, again, Rdiffused and Rresidual are the isotope ratios of the diffused and residual gases, 

M1 and M2 are masses of isotopologues 1 and 2, and Mair is the average atomic mass of 

air. The gas-phase diffusion of CO2 through air results in decreases for δ13C and δ18O in 

the diffused gas by 4.4‰ and 8.7‰, respectively, and a positive fractionation of 0.3‰ 
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for Δ47. However, Thiagarajan et al. (2011) point out that while illustrative of the 

magnitude and direction of isotope effects associated with pin-hole and gaseous 

diffusion, the fractionations determined by Eqs. (2.5) and (2.6) are clearly not applicable 

to aqueous systems at relatively low temperatures where the behavior of fluids deviates 

strongly from that of ideal gases. O’Leary (1984) experimentally determined a −0.7‰ 

carbon isotope fractionation associated with diffusion of CO2 through water, which was 

less than what is predicted by solving Eq. (2.6) using the atomic mass of water as “Mair”. 

Thiagarajan et al. (2011) extrapolated this result using a power law relationship between 

the magnitude of fractionation and the ratio of isotopologue masses to determine the 

isotope fractionation associated with CO2 diffusion through water for δ18O, −1.6‰, and 

Δ47, 0.036‰. 

 

Based on this information, we examine two different scenarios. 

(i) The carbonates studied in the Caltech calibrations have greater isotopic 

contributions from diffused DIC, leading to elevated Δ47 values, and this 

contribution increases with decreasing temperature, leading to a steeper Δ47–T 

slope. If this scenario is correct, then it is fortuitous that the methods used to 

precipitate calcite in the laboratory (Ghosh et al., 2006) contributed similar 

amounts of ‘diffused’ DIC to the site of mineralization as reaches the sites of 

mineralization in natural corals, foraminifera, and coccoliths (Tripati et al., 

2010 and Thiagarajan et al., 2011). Furthermore, if this scenario were correct, 

we would expect to see corresponding depletions in δ13C and δ18O. While 

there is certainly evidence of this in the coral dataset (Thiagarajan et al., 2011, 
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Fig. 2.6), there is no clear evidence of such in the inorganic data (Ghosh et al., 

2006) or the foramifera and coccolith data (Tripati et al., 2010). We therefore 

regard this scenario as an unsatisfactory explanation for the differences 

between the Caltech calibrations and the JHU or Harvard calibrations. 

(ii) Mollusks and brachiopods, and the inorganic carbonates precipitated by 

Dennis and Schrag (2010), incorporate DIC from reservoirs out of which DIC 

has diffused. Thus these carbonates incorporate residual DIC with low Δ47 that 

is left over after part of the DIC has diffused from the mineralization 

environment. If this scenario is correct, then we should observe corresponding 

enrichments in δ13C and δ18O in mollusk and brachiopod carbonate. Fig. 2.3b 

shows that, at least for δ18O, there is no consistent enrichment over expected 

values. Additionally, this scenario is unsatisfactory because DIC should be 

diffusing into, not out of, the extrapallial fluid environment during 

mineralization, because mineralization itself consumes DIC. 

 

In summary, diffusive mechanisms do not explain all of the observed data, and cannot be 

the sole reason for the observed differences in calibration. 
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Figure 2.6 Carbon isotope versus oxygen isotope crossplot for mollusk, brachiopod, 

coral, and foraminifera samples used in empirical carbonate clumped isotope calibrations. 

Mollusk (dark gray squares) and brachiopod (dark gray diamonds) shells from this study; 

deep-sea corals from Thiagarajan et al. (2011; black circles), and foraminifera from 

Tripati et al. (2010; gray triangles). The dashed line is the average linear regression of 

deep-sea coral stable isotope compositions in Adkins et al. (2003): δ13C = 2.3 × δ18O − 

7.5. Agreement between the Thiagarajan et al. (2011) data and the average regression 

confirms the presence of an Adkins et al. (2003)-type vital effect in these samples. There 

is no clear relationship between δ13C and δ18O for mollusks, brachiopods, and 

foraminifera. 
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2.4.2.4 pH and dissolved inorganic carbon speciation 

It has been demonstrated that the equilibrium oxygen isotope fractionation between the 

sum of the DIC species and water decreases with increasing pH (Usdowski et al., 1991). 

This effect arises because the equilibrium oxygen isotope fractionations between DIC and 

water decrease in the order CO2–H2O; HCO3
--H2O; and CO3

2--H2O. Therefore, because 

the relative concentrations of DIC species change strongly as a function of pH, so too will 

the oxygen isotope difference between total DIC and water (see Zeebe and Wolf-

Gladrow, 2001 for review). Beck et al. (2005) determined equilibrium oxygen isotope 

fractionation factors between CO2 and H2O, HCO3
- and H2O, and CO3

2- and H2O, and 

showed that δ18O of total DIC can vary with pH by as much as 17‰ at a single 

temperature. The pH isotope effect is an important consideration because there is a large 

range of pH values observed in body fluids of carbonate mineralizing marine organisms. 

Among these taxa mollusks are unique in that their extrapallial fluid (EPF) has a pH 

value that is slightly lower than seawater and 0.5–1.5 pH units less than the precipitating 

fluids of foraminifera, surface corals, and fishes (pH ≥ 8; Crenshaw, 1972). 

 

Currently, only theoretical predictions of the equilibrium clumped isotope compositions 

of different inorganic carbon species are available (Guo, 2009 and Guo et al., 2012). At 

300 K, HCO3
- is predicted to be 0.018‰ enriched in 13C–18O bonds relative to CO3

2-, but 

may be as large as 0.04‰ (Guo et al., 2012). As an end-member scenario, if mollusk 

shells derive carbonate only from HCO3
-, and corals and foraminifera only from CO3

2-, 

then mollusks may be ~0.04‰ higher in Δ47 than corals and foraminifera. This offset is 

of insufficient magnitude, and more importantly of the wrong sign, to explain the 
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difference in the Δ47 versus temperature relationships between these taxa. However, 

experimental observations of the effects of pH and DIC speciation on Δ47 have not yet 

been described, and given the importance of DIC speciation to the isotopic composition 

of carbonate and the nearly 2 unit range of pH values observed in biomineralizing 

organisms, it will be important to characterize these effects. 

 

2.4.2.5 DIC disequilibrium 

For the temperature range 0–50 °C, CO2 has significantly higher Δ47 values than does 

carbonate at the same temperature (Fig. 7.2.). The equilibrium clumped isotopic 

compositions of CO2 and CO3
2- over a range of temperatures define the end-member 

values of a domain that may be useful for evaluating the differences between clumped 

isotope calibrations. We consider a hypothetical system where CO2, which has a higher 

equilibrium Δ47 than CO3
2- at a given temperature, is incorporated into the biomineral 

through the DIC system without fully re-equilibrating to Δ47 compositions of CO3
2-. Thus 

the mineral ‘inherits’ some of the high Δ47 of the original CO2. Because of longer 

timescales of equilibration at lower temperatures, the 13C–18O inheritance from CO2 

would be enhanced at low temperatures, leading to an artificially steep Δ47 versus T 

slope. Several scenarios may be envisioned where these kinetics would be relevant, 

including the incorporation of diffused CO2 into fast growing biogenic carbonate (e.g., 

Adkins et al., 2003) or rapid biochemical pH change to induce mineralization from 

invaginated seawater (e.g., foraminifera; Bentov et al., 2009). 
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Figure 2.7 Theoretical predictions of the temperature dependence of Δ47 of CO2 (solid 

black line; Wang et al., 2004), Δ47 of CO2 liberated from calcite by phosphoric acid 

digestion at 25 °C (solid black line; Guo et al., 2009), and of Δ63 for View the MathML 

source (dashed black line; Schauble et al., 2006). These curves illustrate the ~0.3‰ 

difference between CO2 and CO2 generated from calcite at earth surface temperatures (~0 

to 50 °C). The empirical Δ47–temperature calibration of Ghosh et al. (2006) and Eq. (2.3) 

from this study are shown as grey dashed and solid lines, respectively. 

Additionally, a complicated interplay of chemical and isotope exchange kinetics of DIC 

ultimately determines the isotopic composition of biogenic carbonates. The rate constants 

of the carbonate system are not well understood relative to the equilibrium constants, but 
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they may be used to compare with equivalent isotope exchange reaction rates (Zeebe and 

Wolf-Gladrow, 2001). For example, the forward reaction rate constant for the hydrolysis 

reaction: 

HCO3
− +OH − →CO3

2− + H2O  

is k = 6×109 kg mol-1 s-1 at 20 °C, which for ~2.5 mmol kg-1 of HCO3
- is practically 

instantaneous (Eigen, 1964). In contrast, the oxygen isotope exchange reaction between 

bicarbonate and water: 

H 16O3
− + H2

18O→ HC 18O16O2
− + H2

16O  

can take hours to tens of hours (depending on the ambient temperature and pH) to reach 

equilibrium, implying comparatively slow reaction kinetics (Beck et al., 2005). Thus in a 

closed system with a rapid precipitation rate it is possible to rapidly dissociate 

bicarbonate into carbonate without establishing isotopic equilibrium prior to precipitation 

in the mineral phase. This kinetic effect has been invoked to explain carbonate ion effects 

on the oxygen isotope compositions of synthetic and natural carbonates (Usdowski et al., 

1991, Spero et al., 1997 and Adkins et al., 2003). 

 

Dissolved CO2 plays an important role in coral and foraminifera mineralization, and is 

involved in Kim and O’Neil-type laboratory precipitation experiments similar to those 

used by Ghosh et al. (2006). Thus it is conceivable that the clumped isotope composition 

of CO2 could be imprinted on synthetic calcium carbonates. In scleractinian corals it has 

been hypothesized that the enzyme Ca2+ ATPase drives calcification by pumping calcium 

ions across cellular membranes, causing aragonite supersaturation in the precipitating 

fluid (Adkins et al., 2003 and Cohen and McConnaughey, 2003). The currency of 
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extracellular ion exchange by Ca2+ ATPase is the proton, whose removal from the 

precipitating fluid causes the pH to increase, thereby dissociating HCO3
- to CO3

2-. 

Carbonate precipitation results in a net CO2 diffusion across the cellular membrane to the 

calcification site. Carbon dioxide diffusion could also be caused by CO2 removal by 

photosynthesis (this would not be the case for non-symbiotic corals) or CO2 hydration 

reactions that fail to keep pace with CaCO3 precipitation. The presence of another 

enzyme, carbonic anhydrase, may accelerate the CO2 hydration reaction when the growth 

of the biogenic carbonate is limited by carbonate ion supply (Cohen and McConnaughey, 

2003), but we feel that this would only strengthen our hypothetical scenario where CO2 

carries at least part of its equilibrium clumped isotopic composition to the mineral phase. 

 

Marine foraminifera also manipulate pH to control the calcite or aragonite saturation state 

of their precipitating fluids, which are small-volumes of endocytosed seawater (Erez, 

2003). Like corals, a pH change in the precipitating vacuole of a foraminifera causes the 

enclosed DIC (i.e., ambient seawater) to shift to mostly CO3
2-, and if the internal pH is 

higher than the external pH this causes CO2 diffusion into the endocytosing vacuole. It is 

possible that metabolic CO2 also diffuses into these vacuoles. Regardless, for both corals 

and foraminifera, it seems plausible that some of the C–O bonds in carbonate could be 

inherited from CO2 without equilibration as CO3
2-. The superficial similarities between 

the modern coral and foraminifera clumped isotope data are linked by a similar 

mechanism for inducing calcium carbonate supersaturation in their calcifying fluids 

(Cohen and McConnaughey, 2003 and Erez, 2003). 
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To evaluate this ‘CO2 inheritance’ hypothesis, we may again turn to carbon and oxygen 

isotopes. For low temperature conditions (0–30 °C), the δ13C of dissolved CO2 is 

approximately 10‰ lower than that of carbonate, and δ18O is approximately 20‰ higher 

than carbonate (Mook, 1986, Zhang et al., 1995 and Beck et al., 2005). It is impossible 

for a DIC species to reach carbon and oxygen isotope equilibrium without also reaching 

clumped isotopologue equilibrium, so any disequilibrium isotope effect seen in Δ47 

should also be reflected in δ13C and δ18O. As an end-member scenario, we assume that no 

isotopic fractionation is associated with the initial conversion of CO2 to CO3
2-: 

CO2 (aq)+ H2O↔ H2CO3 → HCO3
− + H + →CO3

2− + 2H +  

Thus the initial (unequilibrated) CO3
2- will have a Δ47 value ~0.3‰ higher than 

equilibrated CO3
2-, δ13C −10‰ lower, and δ18O 20‰ higher. The offset between the 

Caltech calibrations and the theoretical calibrations at 0 °C is about 0.08‰. Under this 

scenario about 25% of the carbonate ions in the final carbonate mineral would have to 

inherit their Δ47 value from unequilibrated CO2. The corresponding fractionations in δ13C 

and δ18O should be about −2.5‰, and +5‰, respectively. Such large fractionations are 

not observed. This implies that either the overall scenario of ‘inherited’ CO2 clumping is 

incorrect, or that the assumption of zero isotope fractionation during the initial synthesis 

of CO3
2- from CO2 + H2O is grossly in error. Both of these possibilities can presumably 

be addressed by additional theoretical and experimental work. 

 

2.5 Summary 

This paper presents the results of carbonate clumped isotope analyses performed on 

modern marine mollusk and brachiopod shells, which spanned virtually the entire range 
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of growth temperatures found in modern oceans. Regressed against the inverse squared 

shell growth temperature, these data form a calibration line, Δ47 = 0.0327 × 106/T2 + 

0.3286, whose temperature sensitivity (slope) is approximately half that of similar 

calibrations done on biogenic carbonates and inorganic laboratory precipitates (Fig. 2.3a; 

Ghosh et al., 2006, Ghosh et al., 2007, Tripati et al., 2010 and Thiagarajan et al., 2011). 

This study is unique in that it is the only clumped isotope calibration to date that uses 

newer analytical methods (i.e., ‘hot’ phosphoric acid reaction, polymer-packed gas 

chromatography column, and automated sample preparation), and is fully referenced to 

the ‘carbon dioxide equilibrium scale’ reference frame (Dennis et al., 2011). Potential 

methodological causes for discrepancies between calibrations, including poor 

interlaboratory calibration and error in the acid temperature correction, were found to be 

relatively minor compared to the magnitude of calibration disagreement. Biological 

explanations for the different temperature sensitivity of the mollusk and brachiopod 

calibration were also addressed. The isotopic effects associated with mechanical mixing 

and diffusion, as they pertain to biomineralization, were predicted to have small effects 

on the clumped isotope composition of shell. We addressed some of the physical and 

chemical aspects of shells and the chemical conditions of their formation, such as the 

potential incorporation of amorphous calcium carbonate into the analyzed material and 

the isotopic consequences of taxonomic differences in precipitating fluid pH. These 

effects are predicted to not affect shell clumped isotope compositions, although more data 

are needed to fully understand the effects of pH and ACC on the isotopic composition of 

biogenic carbonate. Finally, we used a simple kinetic model for clumped isotopic 

disequilibrium in biogenic carbonates to evaluate the possibility of CO2, whose clumped 
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isotope composition is ~0.3‰ higher than CO3
2- at a given temperature, ‘imprinting’ its 

composition on carbonate ions incorporated into rapidly growing carbonate. This is an 

attractive explanation for the differences between calibrations because of the superficial 

similarities of coral and foraminifera biomineralization, but is untenable given the bulk 

isotopic compositions (e.g., δ13C, δ18O) of these carbonates. 

 

Despite differences in calibration, the clumped isotope thermometer remains an alluring 

technique for carbonate paleothermometry and reconstruction of the oxygen isotopic 

composition of precipitating fluids. Clumped isotope thermometry is an emerging method 

– only a handful of laboratories currently make the measurement, the field has just 

recently been introduced to a normalization scheme that can be reliably reproduced in 

different laboratories (Dennis et al., 2011), and experimental and empirical calibrations 

continue to emerge. There are many aspects of carbonate isotopologue systematics that 

remain to be described, such as equilibrium fractionations between coexisting species of 

DIC, kinetic fractionations during transformations of DIC species, and temperature and 

pH-dependent rates of exchange among coexisting isotopologues. This kind of 

knowledge, combined with improved analytical techniques and standardized methods of 

data normalization, will continue to improve our ability to interpret clumped isotope 

compositions of natural carbonates in terms of temperature and other parameters. 
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3. TEMPERATURE LIMITS FOR PRESERVATION OF PRIMARY 

CALCITE CLUMPED ISOTOPE PALEOTEMPERATURES2 

Abstract 

Solid-state reordering of C–O bonds in the calcite lattice can alter the clumped isotope 

composition of paleotemperature archives such as fossil brachiopod shells without 

inducing significant changes in shell microstructure and trace element concentrations, 

metrics commonly used to gauge preservation quality. To correctly interpret the 

paleoenvironmental significance of clumped isotope-derived paleotemperatures, it is 

necessary to understand the temperature–time domain in which solid-state C–O bond 

reordering is important. We address this question using a combination of laboratory and 

natural geological experiments on Paleozoic brachiopod shells. The laboratory 

experiments involve heating fossil brachiopod calcite at different temperatures and times 

to directly observe rates of 13C–18O bond reordering. The resulting Arrhenius parameters 

are indistinguishable from values previously determined for an optical calcite with 

similar trace element compositions. We develop an alternative kinetic model for 

reordering that accounts for non-first-order reaction progress observed during the initial 

several hundred minutes of laboratory heating experiments, and show that the simplified 

first-order approximation model (Passey and Henkes, 2012) predicts reaction progress 

equally well for temperatures and timescales relevant to sedimentary basins. We evaluate 

our laboratory-based rate predictions by studying brachiopod calcite from several 

sedimentary basins with independently constrained burial temperature histories. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2 Henkes G.A., Passey B.H., Grossman E.L., Shenton B.J., Pérez-Huerta A., Yancey T.E. 
(2014) Temperature limits for preservation of primary calcite clumped isotope 
paleotemperatures. Geochimica et Cosmochimica Acta, 139: 362-382. 
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Specifically, we use the laboratory-derived Arrhenius parameters to predict the evolution 

of brachiopod calcite clumped isotope compositions during successive one million-year 

time steps reflecting the burial and exhumation temperature paths of each basin. While 

this exercise is limited by the relatively large uncertainties in the temperature histories of 

these basins, we find general correspondence, within error, between predicted and 

observed clumped isotope values. We present simplified temperature–time diagrams for 

calcite showing domains where primary clumped isotope compositions will be preserved, 

partially reordered, and fully reordered. In conclusion, calcite samples dwelling at ~100 

°C or lower for 106–108 year timescales should not be affected by solid-state C–O bond 

reordering. 

 

3.1 Introduction 

Clumped isotope thermometry of fossil marine carbonates has provided new insight into 

the paleotemperatures and oxygen isotope compositions of ancient seawaters (Came et 

al., 2007, Keating-Bitonti et al., 2011 and Price and Passey, 2013), revealed evidence for 

large global climatic shifts (e.g., the Late Ordovician-Early Silurian glaciation; Finnegan 

et al., 2011), and differentiated estuarine from marine paleoenvironments (e.g., in the 

Cretaceous Western Interior Seaway; Dennis et al., 2013). Undoubtedly, deep-time 

paleoceanography using the skeletons of marine organisms will continue to be a major 

application of this relatively new paleothermometer, in part because of the fundamental 

questions that can be addressed, such as the possibility of hot Early Paleozoic oceans 

(Joachimski et al., 2009, Finnegan et al., 2011 and Grossman, 2012a), the role of cooling 

in Ordovician biodiversification (Sheehan, 2001 and Trotter et al., 2008), and the isotopic 
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evolution of seawater (Veizer et al., 1999 and Eiler, 2011). This technique has also been 

applied to reconstructions of ancient terrestrial paleotemperatures and meteoric water 

δ18O (e.g., Ghosh et al., 2006a and Passey et al., 2010). Despite the apparent success of 

this new method, relatively little is known about the physical conditions required for 

long-term (~106–109 years) preservation of primary carbonate clumped isotope 

paleotemperatures. The goal of this study is to establish a quantitative basis for defining 

those conditions through analysis of fossil brachiopod shells, which have become a de 

facto standard for pre-Mesozoic stable isotope paleothermometry (Veizer et al., 1999 and 

Grossman, 2012a). 

 

Brachiopod shells have been the preferred material for deep-time isotopic 

paleotemperature studies because of their widespread occurrence in space and time, 

relatively large size, and stable mineralogy and chemistry (low-Mg calcite). However, 

preservation of shell chemistry for hundreds of millions of years has long been a concern 

(e.g., Land, 1995 and Veizer, 1995). This has lead to a variety of analytical approaches to 

evaluate preservation of fossil shells, including petrographic and cathodoluminescence 

microscopy, scanning electron microscopy, trace and minor element analysis, and X-ray 

powder diffraction (e.g., Compston, 1960, Popp et al., 1986, Veizer et al., 1986, 

Grossman et al., 1996 and Mii et al., 1997). In addition, cements and replacement calcites 

associated with fossils have also been studied to understand isotopic and chemical trends 

associated with diagenesis. The net result of applying various combinations of these 

techniques is highly screened stable isotope records that are believed to represent 

conditions at the ancient Earth surface (Grossman, 2012b). All of the recent carbonate 
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clumped isotope studies of marine fossils have used some combination of these 

diagenetic screening techniques (Came et al., 2007, Finnegan et al., 2011, Keating-

Bitonti et al., 2011, Brand et al., 2012, Dennis et al., 2013 and Price and Passey, 2013). 

Therefore, these clumped isotope paleotemperature records are thought to be devoid of 

major diagenetic imprints, at least to limits of detection for the most common screening 

tests. 

 

However, clumped isotope paleotemperatures from primary carbonates are susceptible to 

alteration via C–O bond reordering in the solid mineral lattice. Specifically, such 

‘reordering’ must involve the breakage of existing C–O bonds, and reforming the C–O 

bonds with allochthonous C or O originating from, for example, neighboring carbonate 

groups, or interstitial positions. Such reordering is likely related to solid-state diffusion of 

C and O atoms through the mineral lattice. Regardless of the exact mechanism(s), the net 

result is a change in the abundance of 13C–18O bonds (and other isotope-specific bonds), 

as illustrated by the following isotope exchange reaction (for the case of calcium 

carbonate): 

Ca13C 16O3 +Ca
12C 18O16O2 ↔ Ca13C 18O16O2 +Ca

12C 16O3     (3.1) 

This process can reset primary clumped isotope compositions without changing the 

texture, 18O/16O, 13C/12C, or trace element composition of the calcite. Because the process 

involves reordering of C–O bonds at the molecular to unit-cell scale, it does not require 

mass exchange with external fluids or gases, as would be required to alter 18O/16O and 

13C/12C via self-diffusion (e.g., Anderson, 1969, Kronenberg et al., 1984 and Farver, 

1994). Studies of marbles and carbonatites suggest ‘closure temperatures’ for this process 
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of approximately 150–250 °C (Dennis and Schrag, 2010). However, these closure 

temperatures are cooling-rate dependent (Passey and Henkes, 2012), and knowledge of 

the clumped isotope compositions of marbles and carbonatites does not provide a basis 

for accurate prediction of reordering rates at lower temperatures that might be 

experienced during burial and exhumation of paleoclimate archives. 

 

The kinetics of C–O bond reordering have recently been investigated via timed heating 

experiments on two natural calcites (Passey and Henkes, 2012). Arrhenius parameters 

derived from these experiments predict that for timescales of 106–108 years, burial 

temperatures of ~100–150 °C may lead to measurable alteration of primary clumped 

isotope paleotemperatures. Thus, it is possible that the marine carbonate clumped isotope 

paleotemperature record includes data from samples that were at least partially reordered. 

This is problematic because unlike dissolution/reprecipitation-type diagenesis of fossil 

calcite, purely reordered samples are not identifiable by existing chemical and textural 

approaches. 

 

In this study, we present carbonate clumped isotope results from 12 Carboniferous 

brachiopod shells collected from five ancient sedimentary basins now exposed in the 

United States and Russia. These samples are ‘well-preserved’ from the viewpoint of 

texture (thin sections) and trace element geochemistry (i.e., cathodoluminesence), but 

their clumped isotope paleotemperatures range from 35 to 165 °C, with the higher 

temperatures clearly pointing to alteration. We then present results of a set of laboratory 

heating experiments, similar to those of Passey and Henkes (2012), performed on aliquots 



	
   64 

of calcite from a Permian brachiopod shell. We evaluate these data in the context of first-

order reaction progress (Passey and Henkes, 2012), as well as a new non-first-order 

kinetic model, and determine Arrhenius parameters that allow for prediction of reordering 

over temperatures and timescales relevant to sedimentary basins. Predictions based on the 

experimental data are evaluated against brachiopod clumped isotope data from the five 

Carboniferous basins, and calcite data from the Carrara marble (a deep-burial, high-

temperature end-member). Brachiopod calcite is ideal for such tests because, unlike 

calcite in micritic limestones or sedimentary cements, it provides constraints on primary 

texture, chemistry, and temperature of mineralization (probably less than 40 °C, and 

certainly less than 50 °C, given the current understanding of thermal limits for complex 

animal life; e.g., Ravaux et al., 2013). Thus, for brachiopods we have a basis for 

determining whether or not calcite has been extensively altered (chemically or 

physically), and can therefore avoid such samples in our analysis (since we are studying 

solid-state diffusion processes, and not recrystallization processes such as 

dissolution/reprecipitation, authigenic carbonate overgrowths or infillings of porosity, 

and other non-primary mineralization). Our experiments help place new constraints on 

the timescales and burial conditions most likely to afford preservation of original shell 

clumped isotope paleotemperatures. 

 

3.2. Carboniferous brachiopods 

We studied several pristine Carboniferous brachiopod shells from the United States and 

Russia (Table 3.1). The samples come from the Bird Spring Formation, Nevada (Early 

Pennsylvanian; Jones et al., 2003), the Grove Church Formation, Illinois (Late 
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Mississippian; Flake, 2011), the Glenshaw Formation, West Virginia (Late 

Pennsylvanian; Flake, 2011), the Fern Glen Formation, Missouri (Early Mississippian; 

Mii et al., 1999) and from the Cheremchanskian and Krasnopolyanskian Horizons 

exposed in the Ural Mountains, Russia (Early Pennsylvanian; Mii et al., 2001). The 

tectonic setting of these basins include active arc-continent and continent–continent 

convergent margin tectonics (Nevada and the Ural Mountains, respectively), and 

relatively stable intra-plate basins (Illinois, West Virginia, and Missouri) with sediment 

supplied by adjacent mountain building resulting from convergent tectonics. The burial 

histories of these basins are discussed in detail in Section 3.4. 
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Table 3.1 Stable isotope compositions of Carboniferous brachiopods from North 
America and Western Russia. 

Sample ID Taxonomic information CL Character n δ
13Cc  

(‰, VPDB) 
δ18Oc 
(‰, VPDB) 

North America     
Fern Glen Fm. (upper Mississippi Valley, Missouri, USA), Early Mississippian (348-
340 Ma) 
MO074 Prospira vernonensis NL 3 3.60 ± 0.36 -1.93 ± 0.14 
MO076 Prospira vernonensis NL 3 3.16 ± 0.05 -1.75 ± 0.05 
MO077 Prospira vernonensis NL/SL 3 4.14 ± 0.08 -1.97 ± 0.07 
Bird Spring Fm. (eastern Great Basin province, Nevada, USA), Late Mississippian 
(323 Ma) 
NV007 productid NL 3 2.66 ± 0.05 -1.06 ± 0.04 
NV008 productid NL/SL 3 2.84 ± 0.03 -1.04 ± 0.03 
NV014 productid NL 3 1.55 ± 0.04 -0.78 ± 0.07 
NV021 productid NL/SL 3 2.32 ± 0.45 -0.40 ± 0.04 
Grove Church Fm. (southern Illinois Basin, Illinois, USA), Late Mississippian (333-
318 Ma) 
WP58  
Inf-1 Inflatia NL 3 1.26 ± 0.03 -3.33 ± 0.03 

Glenshaw Fm. (Appalachian Basin, West Virginia, USA), Late Pennsylvanian (305-
299 Ma) 
WP50b 
NS-1 Neospirifer NL/SL 3 2.72 ± 0.03 -3.66 ± 0.06 

WP53  
NS-1 Neospirifer NL/SL 3 1.92 ± 0.03 -3.70 ± 0.05 

Western Russia     
Cherem. & Krasno. Hrzs. (Urals Mountains, Russia), Early Pennsylvanian (318 Ma) 
RU124 Choristites NL 3 4.84 ± 0.02 -1.02 ± 0.18 
RU129A Choristites NL 3 4.66 ± 0.06 -2.48 ± 0.11 
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Table 3.1 (cont.) 
Sample ID Δ47 (‰, CDES)a T(Δ47) (°C)b δ18Ow (‰, VSMOW)c 
North America   
Fern Glen Fm. (upper Mississippi Valley, Missouri, USA), Early Mississippian 
(348-340 Ma) 
MO074 0.708 ± 0.013 20 ± 5 -1.5 
MO076 0.686 ± 0.016 29 ± 7 0.6 
MO077 0.695 ± 0.011 25 ± 4 -0.4 
Bird Spring Fm. (eastern Great Basin province, Nevada, USA), Late Mississippian 
(323 Ma) 
NV007 0.439 ± 0.012 157 ± 12 17.2 
NV008 0.430 ± 0.013 166 ± 13 17.8 
NV014 0.448 ± 0.005 148 ± 4 16.9 
NV021 0.461 ± 0.013 137 ± 11 16.4 
Grove Church Fm. (southern Illinois Basin, Illinois, USA), Late Mississippian 
(333-318 Ma) 
WP58  
Inf-1 0.621 ± 0.004 48 ± 2 2.4 

Glenshaw Fm. (Appalachian Basin, West Virginia, USA), Late Pennsylvanian 
(305-299 Ma) 
WP50b 
NS-1 0.652 ± 0.002 35 ± 1 -0.3 

WP53  
NS-1 0.633 ± 0.008 42 ± 4 1.1 

Western Russia   
Cheremchanskian & Krasnopolyanskian Horizons (Urals Mountains, Russia), 
Early Pennsylvanian (318 Ma) 
RU124 0.448 ± 0.016 149 ± 14 16.6 
RU129A 0.450 ± 0.015 147 ± 13 15.0 
Note: Error values are standard error of the mean (= ±1σ/√n), where 1σ is the 
standard deviation of n analyses. When n = 2 the error value is 1σ (standard deviation). 
aValues relative to the ‘carbon dioxide equilibrium scale’ or CDES. An acid correction 
factor of 0.092‰ was applied to normalize these data to the 25 °C phosphoric acid 
reaction scale. 
bPaleotemperatures calculated using linear regressions through the theoretical Δ47-
temperature relationship from Schauble et al. (2006) adjusted for the kinetic effects of 
calcite phosphoric acid reaction (Guo et al., 2009). A regression of model predictions 
from 0 to 50 °C (Δ47 = 38455/T2 + 0.258) was used for ‘WP’ samples and a regression 
from 50–250 °C (Δ47 = 41746/T2 + 0.213) was used for ‘NV’ and ‘RU’ samples. The 
modern calibration from Henkes et al. (2013) was used for ‘MO’ samples. Error was 
calculated by propagating the analytical error for Δ47 through these linear equations. 
cWater isotope compositions calculated using clumped isotope derived paleotemperatures 
and the calcite oxygen isotope thermometry equation of O’Neil et al. (1969): 1000lnα = 
2.78 × 106/T2 − 3.39 for temperatures > 50 °C. For temperature < 50 °C the equation of 
Kim and O’Neil (1997): 1000lnα = 18.03 × 103/T − 32.42 was used. 
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3.2.1 Analytical methods 

Prior to stable isotope analysis, we characterized the preservation of brachiopods using 

plane-polarized light and cathodoluminescence (CL) microscopy. An example of results 

is shown in Fig. 3.1, and results for other specimens are provided in Section A3.3 (Figs. 

A3.3–A3.13). Some of this screening was done by referencing previous characterizations 

of these specimens by Mii et al. (1999) and Mii et al. (2001). New or more detailed 

imaging was performed at Texas A&M University using a Technosyn 8200 MKII CL 

stage mounted on a petrographic microscope. Based on these images, each shell was 

assigned a qualitative CL character (Table 3.1). Non-luminescent (NL) and semi-

luminescent (SL) shells are considered pristine and near-pristine, respectively, whereas 

luminescent shells reflect uptake of trace elements (primarily Mn) and hence are not 

considered in this study. The prismatic secondary or tertiary shell layers were sampled, 

with care taken to avoid material from the primary shell layer, which is commonly 

observed to be recrystallized (e.g., Adlis et al., 1998) and exhibit vital effects (e.g., 

Carpenter and Lohmann, 1995). 
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Figure 3.1 Scanned sample thin section (a) and billet (b), and plane-light (PL) and 

cathodoluminescence (CL) photomicrograph mosaics for a Carboniferous productid 

brachiopod (NV007) from the Bird Spring Formation, Arrow Canyon, NV, USA. The 

black box in (a) corresponds to the area covered by the photomicrograph images. This 

sample represents a typical nonluminescent (NL) brachiopod shell (Table 3.1). The 

sample billet (b) was scanned after sub-sampling from the area inside the white dashed 

line (also shown in 3.1a). 

Stable isotope compositions of the fossil shells and their associated limestone matrices 

were determined at Johns Hopkins University (JHU) using methods described in Henkes 

et al. (2013). Carbonate clumped isotope compositions are expressed in Δ notation: 
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Δ47 =
R47
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−1⎛

⎝⎜
⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ ×1000      (3.2) 

where Ri = mass i/mass 44 and the asterisk indicates ratios for isotopologues at stochastic 

abundance levels (Affek and Eiler, 2006). Mass 47 CO2 contains the 13C–18O bond on 

which the thermometer is based (Ghosh et al., 2006b). Oxygen and carbon isotope values 

are expressed in δ notation, on either the VPDB (mineral) or VSMOW (water) scales. 

All carbonate clumped isotope values in this study are presented on an absolute reference 

frame, herein referred to as the ‘carbon dioxide equilibrium scale’ or CDES, which 

empirically corrects for instrumental nonlinearities and changes in the ionization 

environment during mass spectrometry (Dennis et al., 2011). This reference frame was 

established by periodically analyzing aliquots of CO2 that were isotopically equilibrated 

at 30 or 1000 °C (for details see Henkes et al., 2013). We analyzed at least one of these 

equilibrium CO2 reference gases every 1–2 days, thus cycling through four isotopically 

distinct gases weekly or sub-weekly. 

 

The international standard NBS-19 and two internal carbonate standards, UU-Carrara and 

102-GC-AZ01, were regularly analyzed alongside samples to monitor system stability 

and precision, with the following long-term averages: NBS-19 (n = 9) Δ47 = 0.404 ± 

0.009‰ (CDES, mean ± 1σ standard deviation); UU-Carrara (n = 27) Δ47 = 0.402 ± 

0.017‰; 102-GC-AZ01 (n = 36) Δ47 = 0.713 ± 0.012‰. The δ13C and δ18O values of 

samples were corrected using concurrent analyses of NBS-19. An effort was made to 

analyze each sample in triplicate during different analytical sessions to minimize session-
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specific bias, although for some samples replicate measurements were made during a 

single session (Table A3.12). 

 

Temperatures were calculated from Δ47 using the theoretical Δ47-temperature relationship 

from Schauble et al. (2006), adjusted for the kinetic effects of calcite phosphoric acid 

digestion (Guo et al., 2009). The theoretical Δ47 temperature calibration was used because 

of the lack of empirical calibrations in the range of temperatures corresponding to the 

Carboniferous brachiopod clumped isotope compositions (up to ~150 °C) and our 

experimental temperatures. For brachiopod samples thought to have retained their 

primary clumped isotope compositions, we used the modern mollusk and brachiopod 

temperature calibration from Henkes et al. (2013) to calculate paleotemperatures. 

 

3.2.2. Results for Carboniferous brachiopods and associated cements 

Carbonate clumped isotope paleotemperatures (T(Δ47)) of fossil brachiopod shells ranged 

from 20 ± 5 °C to 166 ± 13 °C (Fig. 3.2, Table 3.1, Table A3.12). The higher 

temperatures are clearly incompatible with shell growth, whereas the lower temperatures 

seem plausible for the low-paleolatitude tropical seas from which they originated (Mii et 

al., 1999; Mii et al., 2001). Measured brachiopod shell δ18O values were used with T(Δ47) 

to solve calcite–water oxygen isotope thermometry equations (e.g., O’Neil et al., 1969 

and Kim and O’Neil, 1997) for the oxygen isotope composition of the waters (δ18Ow) 

that would have been in equilibrium with these shells. Calculated δ18Ow values ranged 

from −0.4‰ to 17.8‰ (Table 3.1). Again, the higher-end values in this range are 

incompatible with primary shell growth in ancient seawater. Note that the data in Fig. 3.2 
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generally plot along ‘closed-system pathways’ defined by solutions to the calcite-water 

δ18O thermometry equations for constant calcite δ18O. In other words, the drastically 

altered clumped isotope compositions are not accompanied by obvious changes in calcite 

δ18O, a pattern consistent with solid-state reordering or low water/rock ratio 

recrystallization. The most extreme examples of this behavior are brachiopods from 

Arrow Canyon, NV, USA and the Ural Mountains in Russia (Fig. 3.2). Associated 

carbonate matrix from Arrow Canyon and the Ural Mountains (Fig. A3.12, Table A3.3) 

have T(Δ47) values that range from 89 to 127 °C, which are cooler than each of the 

associated brachiopods, but warmer than expected for early diagenetic cements. 
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Figure 3.2 (previous page) Carboniferous brachiopod carbonate clumped isotope 

temperatures (T(Δ47)) versus apparent water oxygen isotope compositions of the 

precipitating waters (δ18Ow). Water oxygen isotope values were determined from 

measured carbonate δ18O and T(Δ47) using the calcite-water oxygen isotope thermometry 

equation of Kim and O’Neil (1997). For paleotemperatures greater than 50 °C, the 

equation of O’Neil et al. (1969) was used. Details on the Δ47-temperature relationships 

used to determine the temperatures are in Table 3.1. Open symbols represent non-

luminescent (NL) shells, whereas half-filled symbols represent semi-luminescent (SL) 

shells. The gray dashed and dotted lines represent solutions to the calcite–water oxygen 

isotope thermometry equations for constant carbonate δ18Oc values, as noted above the 

figure. 

 

The T(Δ47) data in Fig. 3.2 pose a problem: How can primary paleotemperatures be 

identified when analyses of brachiopods of similar textural and chemical preservation 

yield a ~150 °C apparent temperature range? Given the elevated clumped isotope 

temperatures, the lack of evidence for extensive recrystallization, and the apparently 

primary calcite δ18O values we conclude that much of this temperature range results from 

solid-state reordering of C–O bonds at elevated burial temperatures experienced by some 

of these samples. An understanding of the temperatures and timescales over which such 

reordering becomes important will aid in identification of sedimentary strata and fossils 

most capable of preserving primary clumped isotope compositions. 
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3.3. Experimental determination of reordering kinetics in brachiopod calcite 

3.3.1. Experimental methods and observations 

Timed heating experiments were conducted on a fossil brachiopod shell fragment (WA-

CB-13) collected from the Lower Permian Callytharra Formation in the Carnarvon Basin 

of Western Australia (Sakmarian-Artinskian Stage, ~290 mya). This formation contains 

the oldest Permian sediments in the region free of Late Paleozoic glacial influence 

(Dixon and Haig, 2004 and Mory and Haig, 2011). This shell was selected over the 

lower-temperature Carboniferous shells shown in Fig. 3.2 because of the large sample 

size requirements (see below) for heating experiments run at several temperatures. The 

design of the heating experiments closely follows the methods of Passey and Henkes 

(2012). The shell fragment (3.4 × 2.4 × 0.8 cm) was crushed in a mortar and pestle and 

sieved through 125 and 251 µm mesh. This size fraction was then rinsed and 

ultrasonicated in deionized water to remove smaller adhered particles. The cleaned 

material was dried at 60 °C for 24 h and stored in a desiccator. Approximately 30 mg 

aliquots of the crushed shell material were loaded into fused silica tubes, dried in vacuo at 

100 °C for 1 h, and then torch-sealed along with ~80 µmol of dry CO2. The isotopic 

composition of the CO2 was δ13C = −39‰ (VPDB) and δ18O = −31‰ (VPDB), which 

was significantly different than the shell (δ13C = 3.75‰; δ18O = −0.66‰), allowing for 

monitoring of isotopic exchange between the mineral and CO2 as might result from 

unintended dissolution/reprecipitation reactions. 

 

The silica tubes containing aliquots of WA-CB-13 were held at temperatures ranging 

from 385–475 °C inside tube furnaces for time periods of 30 min to 4 days. Each tube 
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was quickly removed from the furnace at prescribed intervals and quenched to room 

temperature (<30 s) with compressed air. Calibration curves between thermocouple-

indicated furnace temperature and actual temperature were generated regularly by 

observation of in vacuo melting points for Sn, Zn, and Al using their ITS 90 reference 

values (Preston-Thomas, 1990), and the uncertainty in absolute temperature was less than 

3 °C. 

 

The average Δ47 value of unreacted shell material was 0.669 ± 0.010‰ (CDES), which 

corresponds to a growth temperature of 37 ± 5 °C (using the mollusk- and brachiopod-

specific calibration reported by Henkes et al., 2013). Electron microprobe analyses of 

unreacted and reacted WA-CB-13 grains revealed low Mn and Fe contents (128–216 

µmol/mol Mn/Ca, 36–110 µmol/mol Fe/Ca; Table A3.4), suggesting that the shell 

fragment did not undergo obvious natural meteoric diagenesis, and did not change in 

minor element composition during experimental heating (Popp et al., 1986). Heated 

grains of WA-CB-13 appeared similar to unheated grains in terms of size, shape, surface 

luster, and color. However, in some longer experiments, a slight darkening of the grains 

was observed. This may have been caused by pyrolization of trace amounts of organic 

carbon, or reduction of calcite to graphite, or calcite decomposition, and is similar to 

observations for heated optical and spar calcite studied by Passey and Henkes (2012). 

 

In several reactions at 425–475 °C, a small amount of condensation was observed on the 

inside of the silica tubes following the quench to room temperature (noted in Table A3.5). 

The source of this fluid is unknown, but it is possible that it came from decrepitation of 
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fluid inclusions or hydrolysis of organic carbon occluded in the shells. Of relevance as to 

whether the presence of such water might affect reordering rates, Passey and Henkes 

(2012) conducted both dry (CO2, ~0.1 MPa) and wet (H2O, ~0.1 and ~100 MPa) 

reordering experiments on calcite at 425 °C, and observed no difference in reordering 

rates between these treatments. Thus we do not expect this fluid to have a large influence 

on the reordering behavior of our current experiments. As discussed in Passey and 

Henkes (2012), the apparent insensitivity of clumped isotope reordering rates on fH2O is 

consistent with recent evidence (Labotka et al., 2011) that the mechanism of increased 

apparent rates of O diffusion in calcite at elevated fH2O relates to reactions between water 

and calcite at the mineral surface, and not to changes in the diffusivity of the bulk 

mineral. 

 

However, we did observe systematic 0.2–0.4‰ decreases in δ18O of reacted samples 

(Table A3.5), and we also observed that the samples did not approach equilibrium Δ47 

values as closely as was observed in previous experiments with optical calcite (Passey 

and Henkes, 2012). Complete oxygen isotope exchange between CO2 and calcite in our 

experiments would result in a lowering of the calcite δ18O by about 6‰ (calculated using 

CO2-calcite fractionation factors from Chacko et al., 1991), and hence an observed 

change of 0.3‰ represents an approach to equilibrium of about 5%. At the same time, we 

observed no change in δ13C values of reacted samples, despite an equilibrium value for 

complete C exchange between CO2 and calcite about 10‰ lower than the initial 

composition of the mineral. These findings suggest that the observed change in δ18O 

probably does not reflect dissolution and reprecipitation of mineral lattice (which we 
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expect would result in decreases of mineral δ13C values). Perhaps the change in δ18O is a 

result of solid-state O diffusion (which is significantly faster than C diffusion; e.g., 

Labotka et al., 2011), or some intrinsic change in the acid fractionation factor related to 

dewatering of the samples, or other unknown factors. With this caveat, we proceed with 

interpreting the observed clumped isotope changes as reflecting solid-state reordering 

only. 

 

3.3.2. Heating experiment isotopic results 

The isotopic compositions (δ13C, δ18O, and Δ47) of our heating experiment samples are 

presented in Table A3.5 and illustrated (Δ47 only) in Figs. 3.3a–c. For comparison, we 

plot these data alongside results for optical calcite (Fig. 3.3d–f) from Passey and Henkes 

(2012). These two materials show similar Δ47 changes with time, including (1) 

progressive decrease throughout the reaction, (2) higher rates of decline at higher 

temperature, (3) an initial, rapid decline followed by a less rapid decrease after several 

hundred minutes, and (4) an asymptotic approach towards high temperature equilibrium 

Δ47 values of 0.30–0.35‰ for higher temperature reactions. Fig. 3.3b and e plot the data 

in terms of first-order reaction progress (Passey and Henkes, 2012): 

ln 1− F( ) = −kt = ln Δ47
t − Δ47

eq

Δ47
init − Δ47

eq

⎡

⎣
⎢

⎤

⎦
⎥        (3.3) 

where Δ47
t  is the value of the sample at a time duration t, and Δ47

init  and Δ47
eq  are the initial 

and equilibrium Δ47 values, respectively, F is the fractional approach to equilibrium, and 

k is the reaction rate constant. The temperature-dependent Δ47
eq values used in this study 

are the same as reported by Passey and Henkes (2012), but adjusted by +0.011‰ to 
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account for the difference in acid fractionation factors used in this study (0.092‰; see 

Henkes et al., 2013) versus the previous study (0.081‰). Fig. 3.3b and e clearly show 

that the reaction is not strictly first-order since the data for a given reaction temperature 

do not plot along straight lines (except for data from samples closely approaching 

equilibrium), and do not have intercepts at the origin. Instead, the data show early, rapid 

reordering followed by slower reordering. 
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Figure 3.3 (previous page) Results of the reordering experiments on the Permian 

brachiopod shell WA-CB-13, and for comparison the results of analogous experiments 

performed on an optical calcite, MGB-CC-1, from Passey and Henkes (2012). (a,d) 

Measured Δ47 values as a function of time. The temperatures of each heating experiment 

are indicated in the legend. The yellow stars denote the initial compositions of the 

materials and the dashed line marks the theoretical equilibrium value for 475 °C, shifted 

by +0.092‰ to account for the acid fractionation for 90 °C reactions (Henkes et al., 

2013). (b,e) Reordering reaction progress, plotted as ln(1−F), as a function of time. The 

dashed lines represent best-fit linear regressions to the data identified as having first-

order behavior, whose slopes are equivalent to the reaction rate constant k (Eq. (3.3), 

Table 3.2). Unfilled symbols at times <1000 min correspond to non-first-order reaction 

and thus are not included in the linear regressions. Unfilled symbols at times >1000 min 

correspond to data that closely approach equilibrium for the respective reaction 

temperatures and are also not included in the linear regressions (see Section A3.1). (c,f) 

Arrhenius plots for determining the activation energies (Ea) and frequency factors (K0) 

for the first-order approximation model. The slopes of the regressions equal −Ea/R, where 

R is the universal gas constant, and the intercepts equal ln(K0). 

 

3.3.3. Carbonate clumped isotope reordering models 

We consider two alternative kinetic models for the data. The first model treats the data in 

terms of first-order kinetics (‘first-order approximation’ model; Passey and Henkes, 

2012), whereas the second, a new ‘transient defect/equilibrium defect’ model, accounts 

for all parts of the reaction progress curve. Both models are based on the hypothesis that 
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crystallographic defects, particularly point defects, are the vehicle by which solid-state 

diffusion occurs (Lasaga, 1998, Cole and Chakraborty, 2001, Kittel, 2005 and Zhang, 

2010). Defects can be classified as intrinsic, extrinsic, or “structural”. Intrinsic defects 

have concentrations that are a function of temperature and exist as a consequence of the 

thermodynamic battle between order and energy. In contrast, extrinsic defects arise from 

ionic impurities with radii and charges similar to or different from those of native ions, as 

well as other non-intrinsic point defects generated during crystal growth. Lastly, 

structural defects are those associated with dislocations, low and high angle grain 

boundaries, surfaces, radiation damage zones, and macroscale inclusions. For example, a 

Frenkel defect is a type of intrinsic defect consisting of a vacancy-interstitial pair created 

by migration of an atom from a lattice position to an interstitial position. The number of 

Frenkel defects increases with temperature according to n ≈ N exp(−Ep/2kBT) where N is 

the total number of atoms, Ep is the energy required to create a vacancy-interstitial pair, 

kB is Boltzmann’s constant, and T is temperature in Kelvin (Kittel, 2005). Of these defect 

types, intrinsic defects can be considered to be ‘unannealable’: their concentrations are 

not reduced or changed during prolonged heating at elevated temperature (but note that 

with the onset of heating, the concentration of intrinsic defects will adjust to the new 

thermodynamic equilibrium). In contrast, certain types of extrinsic and structural defects 

are ‘annealable’: prolonged heating can act to eliminate (‘annhilate’ or ‘heal’) or 

otherwise immobilize these defects (i.e., the defect becomes fixed in its spatial coordinate 

and is no longer able to effect C–O bond reordering). The models presented below are 

based on the dichotomy of annealable defects, here termed ‘transient’ defects, and 

unannealable defects, here termed ‘equilibrium’ defects. Note that the latter is not strictly 
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limited to intrinsic defects; for example, it is generally not possible to remove ionic 

impurities simply by heating samples under closed-system conditions. 

 

3.3.3.1. First-order approximation model 

As described in Passey and Henkes (2012), this model assumes that the initial rapid 

reaction observed in our experiments (first several hundred minutes; Fig. 3.3a and c) is 

influenced by ‘transient’ defects. The existence of annealable defects in calcite and their 

promotion of rapid rates of solid-state diffusion have previously been observed in studies 

of O self-diffusion in calcite (Kronenberg et al., 1984 and Farver, 1994), although the 

nature of these defects has not been resolved. We further define a transient defect as any 

defect whose role in promoting C–O bond reordering is deactivated by prolonged 

heating. The transient defects are deactivated early in the experiment after effecting a 

finite amount of 13C–18O reordering, while equilibrium defects persist indefinitely, with 

constant, temperature-dependent concentrations. Thus, equilibrium defects give rise to 

the first-order reaction progress observed during the latter part of the reactions (see 

Passey and Henkes, 2012, for further justification for applying first-order rate laws to 

13C–18O bond reordering). 

 

For determination of first-order rate constant regressions and Arrhenius parameters (Fig. 

3.3c and f) we will exclude the early transient defect-related data (unfilled data in Fig. 

3.3b and e) from consideration. The justification for this exclusion is given by Passey and 

Henkes (2012), who argue that transient defects anneal early in the thermal evolution of 

carbonates previously residing at high temperatures (e.g., marbles and carbonatites). The 



	
   83 

general purpose of the present study, however, is to constrain reordering rates at elevated 

temperatures for samples initially residing at surface temperatures. Therefore, we cannot 

assume that transient defects have been annealed, and we must make the assumption that 

the annealable defects are mostly inactive (in terms of effecting C–O bond reordering) at 

temperatures relevant to burial of paleoclimate archives (~200 °C or lower). This 

assumption is evaluated in our development of the extended ‘transient defect/equilibrium 

defect’ model (Section 3.3.3.2), and indirectly in Section 3.4, where we compare 

predicted clumped isotope compositions of Carboniferous brachiopods (based on the 

Arrhenius parameters applied to known burial temperature histories) to measured 

clumped isotope compositions. 

 

The slope of linear regressions through the data exhibiting apparent first-order behavior 

(filled symbols in Fig. 3.3b and e) provide values for the reaction rate constant k (Fig. 

3.3b, Table 3.2). Section A3.2 discusses the criteria used to include or exclude data from 

rate constant regressions; in short, the included data are from reaction durations longer 

than the period in which the transient reordering is active, but shorter than the period 

when clumped isotope compositions closely approach their equilibrium values. 

Table 3.2 Rate constant regressions and Arrhenius parameters for the first-order 
approximation model for Permian brachiopod calcite WA-CB-13 and an optical calcite 
from Passey and Henkes (2012), for comparison. 
Reaction T (°C) Slope (=-k) (s-1) Intercept R2 SRX Points Used* 
WA-CB-13     
385 -5.52×10-7 -0.34 - 037, 042 
405 -1.68×10-6 -0.44 0.98 033, 041, 044 
425 -4.29×10-6 -0.61 1.00 012, 013, 014 
450 -1.25×10-5 -0.75 - 020, 031 
475 -3.50×10-5 -0.88 1.00 017, 021, 029 
Arrhenius parameters: Ea = 188±6 kJ/molm K0 = 4.45×108 [{+27.14/-1.05)×109] s-1 
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Table 3.2 (cont.)    
Reaction T (°C) Slope (=-k) (s-1) Intercept R2 ‘RDX’ Points Used 
MGB-CC-1 (from Passey and Henkes, 2012)  
385 -3.18×10-7 -0.27 - 181, 189 
405 -1.39×10-6 -0.32 0.99 169, 173, 177 
425 -2.01×10-6 -0.59 0.97 149, 150, 151, 153 
450 -7.95×10-6 -0.88 0.91 144, 145, 147, 148 
475 -2.98×10-5 -0.79 0.97 112, 113, 114, 115 
Arrhenius parameters: Ea = 197±19 kJ/molm K0 = 1.39×109 [{+36.0/-1.34)×109] s-1 
Note: Regressions are best-fit, least-squares regressions calculated using the statistical 
software package JMP. 
*Isotope data provided in Table A3.5. 
 

According to the Arrhenius relation: 

k = K0e
−Ea
RT

⎛
⎝⎜

⎞
⎠⎟           (3.4) 

where K0 is a constant referred to as the frequency factor. A plot of ln(k) versus 1/T for 

each experiment will have a slope of -Ea/R, where Ea is the activation energy and R is the 

universal gas constant, and an intercept of ln(K0) ( Fig. 3.3c and f). The Arrhenius 

parameters for WA-CB-13 are presented in Table 3.2, along with the data and calculated 

Arrhenius parameters for the optical calcite (MGB-CC-1, from Passey and Henkes, 

2012). We find that the activation energies of the brachiopod calcite and the optical 

calcite are identical within error, and that their frequency factors are marginally 

distinguishable. Note that for two experimental temperatures for WA-CB-13, only two 

points are used for the Arrhenius regressions (Table 3.2). This was unavoidable given the 

criteria used for selecting points to define the equilibrium defect behavior (Section A3.2) 

and the lack of sufficient sample for additional experiments. 
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3.3.3.2. Transient defect/equilibrium defect model 

This model, developed fully in Section A3.1, accounts for C–O bond reordering due to 

both transient defects and equilibrium defects. The first step in this analysis is to quantify 

the reordering kinetics due to equilibrium defects, which is procedurally and 

mathematically equivalent to quantifying rate constants in the ‘first-order approximation’ 

model discussed above, and hence yields the same Arrhenius parameters. We then 

mathematically subtract the influence of the equilibrium defect pool on the overall 

reaction progress, leaving a reaction progress that is solely attributable to transient 

defects (the ‘curve-stripping’ procedure is described in Section A3.2). The resulting 

reaction progress is non-first-order, reflecting the fact that the rate constant is a function 

both of defect concentration and the efficacy of those defects at promoting C–O 

reordering. Since the concentration of transient defects decreases with time, the rate 

“constant” k is not actually constant. We therefore model k as a function of time (elapsed 

since initiation of heating), and for simplicity assume that the concentration of defects 

decreases proportional to the number of defects (a first-order rate law). The integrated 

rate equation for this model is (Section A3.1): 

ln Δ47
t − Δ47

eq

Δ47
init − Δ47

eq

⎛
⎝⎜

⎞
⎠⎟
= kct +

kd
k2

e−k2t −1( )        (3.5) 

Note that this equation features three rate constants, and hence three Arrhenius equations. 

The constant kc is identical to the first-order rate constant in the first-order approximation 

model (Section 3.3.3.1), and describes the reordering behavior due to equilibrium defects. 

The constant kd describes the efficacy of transient defects at effecting reordering, whereas 

the constant k2 describes the rate at which these defects are annealed (the time-evolving 

concentration of defects). Regressions for determining these constants for WA-CB-13, 
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and their Arrhenius parameters, are given in Table A3.1. The results of these regressions 

for the optical calcite from Passey and Henkes (2012) are also given in Table A3.2. 

 

3.3.4. General predictions of the models 

In this section we evaluate the extent of 13C–18O reordering predicted by each model as a 

function of time and temperature. For the first-order approximation model, Eqs. (3.3) and 

(3.4) can be combined, resulting in the following relationship: 

ln Δ47
t − Δ47

eq

Δ47
init − Δ47

eq

⎡

⎣
⎢

⎤

⎦
⎥ = tK0 exp

−Ea

RT
⎡
⎣⎢

⎤
⎦⎥

       (3.6) 

This equation allows the prediction of reaction progress (i.e., the change in Δ47
t ) as a 

function of temperature T, time spent at that temperature t, and the mineral- and material-

specific Arrhenius parameters Ea and K0. The solid lines in Fig. 3.4 show equation 3.6 

evaluated over a wide range of temperatures and time durations for the Arrhenius 

parameters of brachiopod calcite (WA-CB-13, Fig. 3.4a) and optical calcite (MGB-CC-1, 

Fig. 4b). Lines are given for T-t combinations that would result in 1% approach to 

isotopic equilibrium (minimal reordering) and 99% approach to isotopic equilibrium 

(nearly complete reordering). This figure predicts that solid-state reordering will be 

negligible for samples held at ~100 °C or lower for ~108 year timescales. The close 

correspondence between the lines for brachiopod calcite and optical calcite reflects the 

similarity in Arrhenius parameters observed for these materials. 
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Figure 3.4 (previous page) Temperature-time predictions for incipient (1%) and near-

complete (99%) reordering calculated using Arrhenius parameters for (a) WA-CB-13, 

well-preserved Permian brachiopod calcite, and (b) MGB-CC-1, an optical calcite 

(Passey and Henkes, 2012). The lower, black lines correspond to 1% reordering and the 

upper, red lines correspond to 99% reordered. The region to the left of these curves are 

the conditions necessary for preservation of primary carbonate clumped isotope 

compositions from brachiopods. The dashed lines show the ‘transient defect/equilibrium 

defect’ model and the solid lines show the ‘first-order approximation’ model. The inset 

figures focus on the conditions relevant to sedimentary burial and demonstrate that below 

temperatures of ∼150 °C both models have similar behavior. 

 

For the transient defect/equilibrium defect model, equation 3.5 can be combined with 

Arrhenius equations for each of the three rate constants (i.e., as Eq. (3.4)) to give an 

equation analogous to equation 3.6 allowing prediction of reaction progress as a function 

of temperature and time: 

ln Δ47
t − Δ47

eq

Δ47
init − Δ47

eq

⎛
⎝⎜

⎞
⎠⎟
= −tKc exp Ec / RT( ) + Kd exp Ed / RT( )

K2 exp E2 / RT( ) exp −tK2 exp E2 / RT( )⎡⎣ ⎤⎦ −1{ }  

(3.7) 

where Kc, Ec; Kd, Ed; and K2, E2 are the frequency factors and activation energies for the 

equilibrium defect component (c), transient defect component (d), and rate of annealing 

of the transient defect component (2). The temperature–time predictions from this model 

are shown as dashed lines in Fig. 3.4. A key finding illustrated by this figure is that 

reordering rates are nearly identical to those predicted by the first-order approximation 
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model for temperatures below 150–200 °C. Thus, the transient defects are inefficient at 

effecting C–O bond reordering at temperatures below this range, and hence are predicted 

to be important only for samples experiencing higher burial temperatures. Geologically 

relevant temperature–time combinations for incipient and near-complete reordering as 

predicted by both of the models are listed in Table 3.3. 

Table 3.3 Temperature–time combinations for incipient (1%) and near-complete (99%) 
carbonate clumped isotope reordering calculated using Arrhenius parameters for Permian 
brachiopod calcite (WA-CB-13) and optical calcite (MGB-CC-1). 
Time Permian brachiopod calcite Optical calcite 
 First-order 

approx. model 
Transient defect/ 
equil. defect 
model 

First-order 
approx. model 

Transient defect/ 
equil. defect 
model 

 1% 
(°C) 

99% 
(°C) 

1% 
(°C) 

99% 
(°C) 

1% 
(°C) 

99% 
(°C) 

1% 
(°C) 

99% 
(°C) 

1 Ga 88 127 87 127 98 138 98 138 
100 Ma 102 144 101 144 112 155 112 155 
10 Ma 116 163 115 163 127 174 127 174 
1 Ma 133 183 131 183 144 194 144 194 
100 ka 150 205 146 205 161 216 161 216 
10 ka 169 230 162 230 180 241 180 241 
1 ka 190 257 174 257 201 268 201 268 
1000 y 213 287 186 287 224 298 223 298 
100 y 239 321 205 321 250 332 245 331 
10 y 267 360 229 359 278 370 263 369 
1 y 301 407 258 405 312 416 273 414 
1 m 323 438 278 435 334 447 274 443 
1 d 356 485 306 479 366 492 289 481 
1 h 417 576 359 559 426 580 349 546 
1 m 515 730 445 665 522 728 462 705 
1 s 647 954 557 826 649 938 614 928 
 

3.4. Evaluation using the geological record 

3.4.1. General approach and limitations 

In this section we evaluate the laboratory-derived reordering kinetics against our 

observations from the geological record (Section 3.2). Our approach is straightforward: 

we examine sedimentary strata that have reasonably good independent constraints on 
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thermal history (e.g., from the study of fluid inclusions, conodont color alteration index, 

vitrinite reflectance, overburden reconstruction, and low-temperature thermochronology). 

For each Carboniferous basin we construct a thermal history that begins at the time of 

deposition, proceeds to maximum burial and through exhumation, and ends with the 

sample residing in outcrop at the present day. We divide the thermal history into uniform 

time-steps, typically one million years, which we find to be sufficiently short for accurate 

modeling of reordering progress. For each time-step, we use Eq. (3.6) to predict the 

extent of solid state C–O reordering that would be experienced by brachiopod calcite. 

This allows calculation of a new calcite Δ47 value that can be used as the Δ47
init  value in the 

next time-step of the model (this approach is functionally equivalent to using equation 13 

of Passey and Henkes, 2012). We model changes in brachiopod Δ47 at million year time-

steps, and the final result is a prediction of the final Δ47 value of the brachiopod after the 

final step (after exposure at the surface). We then compare this modeled Δ47 value (or 

equivalent T(Δ47)) with the measured Δ47 values (or equivalent T(Δ47)) of the 

brachiopod(s) collected from the same basin. If our laboratory-derived kinetics are valid 

for geological temperatures and timescales and if the burial temperature reconstructions 

are correct, then we should observe general correspondence between modeled and 

measured Δ47 values. 

 

The main limitation of this approach is gaps or uncertainties in the thermal histories of 

the basins. As will be seen below, for many basins these uncertainties lead to large 

differences in the extents of predicted 13C–18O reordering, in some cases ranging from no 

reordering to ‘complete’ reordering. As yet we have no remedy for this problem, but 
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point out that other simple geological heating events such as contact metamorphism from 

emplacement of dikes and sills also have wide error margins due to uncertainties in the 

thermal properties of magmas and rocks and the nature of heat transfer (e.g., conductive 

versus convective). Despite these uncertainties, we can still examine whether laboratory-

derived rate predictions are consistent with observations from the geological record. 

Also, we can in part work around these uncertainties by studying several basins that 

collectively have a wide range of thermal histories, from shallow burial of no more than 

~1 km (mid-continental U.S.) to burial in a metamorphic core complex (Carrara marble). 

 

Additionally, an irony exists in that we are treating methods like conodont color 

alteration, vitrinite reflectance, and fission-track annealing as yielding “correct” thermal 

history estimates against which our estimates of C–O reordering kinetics can be tested, 

whereas these burial temperature proxies arguably have more complicated and uncertain 

kinetics than solid-state C–O bond reordering (e.g., Castraño and Sparks, 1974, Epstein et 

al., 1977 and Donelick et al., 2005). For example, no simple chemical reactions can be 

written to describe the processes of conodont color alteration or bitumen maturation. 

These processes undoubtedly involve vast suites of high molecular weight organic 

molecules, and in the case of vitrinite reflectance may also involve physical changes such 

as consolidation and compaction. Thus, while we test the estimates of C–O reordering 

kinetics versus these more established methods, in the future C–O reordering may 

become a measure against which other methods are compared. 
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3.4.2. Compilation of burial-temperature histories 

We compiled burial temperature histories for strata from five sedimentary basins, ranging 

(roughly) from high-temperature to low-temperature: the Bird Spring Formation, Arrow 

Canyon, Nevada (Late Mississippian); the Cheremchanskian and Krasnopolyanskian 

Horizons, Ural Mountains, Russia (Early Pennsylvanian); the Grove Church Formation, 

Illinois (Late Mississippian); the Glenshaw Formation, West Virginia (Late 

Pennsylvanian); and the Fern Glen Formation, Missouri (Early Mississippian). 

Additionally, as a high-temperature end-member, we modeled the rapid burial and 

exhumation of the Carrara marble, initially comprised of marine carbonate rocks that 

were buried deeply enough to become part of a metamorphic core complex and 

metamorphosed to marble (Kligfield et al., 1986, Carmignani and Kligfield, 1990 and 

Fellin et al., 2007). When possible we used complete thermal histories determined by 

previous studies, for example a numerical hydrothermal fluid-flow model for the southern 

Illinois Basin in Rowan et al. (2002) and an apatite fission track and (U–Th)/He 

thermochronology record for the central Appalachian Basin in Reed et al. (2005). 

However, this was not possible for other basins and therefore we compiled basic thermal 

histories using published data from conodont color alteration, vitrinite reflectance, 

sediment decompaction, and geochemistry. Temperatures, times, uncertainties, and 

citations for all burial temperature histories are given in Tables A3.6–A3.11. 

 

As part of this empirical comparison it is important to consider the range of uncertainty 

for each point used to construct thermal histories. The commonly used indices for burial 

temperature have errors arising from analytical methods (e.g., (U–Th)/He 
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thermochronology; see Reed et al., 2005) and natural variability (e.g., conodont color 

alteration; see Epstein et al., 1977). Because of the relatively narrow band between 

‘unaltered’ and ‘reordered’ states apparent in Fig. 3.4, a slight shift (within error) to 

warmer or cooler temperatures in the compiled burial histories could result in drastically 

different model predictions of apparent T(Δ47). This threshold behavior is discussed 

further in Section 3.4.3, but to give a sense of this feature in complex, natural systems we 

have modeled both ‘shallow’ and ‘deep’ scenarios. These represent the lower and upper 

bounds of uncertainty in our compilations and expose a limitation of these empirical data-

model comparisons, as the scenarios often yield extreme T(Δ47) predictions (i.e., no 

reordering at the lower bound and ‘complete’ reordering at the higher bound). It should 

also be noted that uncertainty in the chronology of the thermal histories is as important in 

the models as uncertainty in burial temperatures, but for simplicity we only consider the 

latter. 

 

3.4.3. Results: predicted reordering during burial versus observed T(Δ47) 

A schematic diagram demonstrating the behavior of the first-order approximation model 

in response to a simple, hypothetical burial and exhumation history is shown in Fig. 3.5. 

There are several distinct features of the burial trajectory predicted by the model. First, 

there is a period where clumped isotope reordering is ‘inactive’, coinciding with early 

burial, and original T(Δ47) values do not change. For a sample buried to sufficiently high 

temperatures this initial inactivity is followed by a period of rapid activation of 

reordering when the apparent T(Δ47) approaches equilibrium with the burial environment. 

With increasing temperature, T(Δ47) reaches equilibrium with the ambient temperature 
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(T(Δ47) = T). Once the sample reaches this point of apparent thermal equilibrium it will 

continue to remain in equilibrium at all higher burial temperatures. During retrograde 

cooling the sample will again pass through the burial temperature equilibrium point and 

enter a phase where reordering is still active, but is ‘closing’ (i.e., apparent T(Δ47) > 

burial temperature). Eventually the sample will cool to a point where reordering is 

effectively closed and the mineral ‘locks in’ an apparent T(Δ47) value. 

Figure 3.5 A schematic guide to the features of the burial history (a) and T(Δ47)-burial T 

trajectories (b) predicted by the first-order approximation model for carbonate clumped 

isotope reordering. Points 1→2: Reordering ‘inactive’ during early burial. No change in 

T(Δ47) is predicted by the model. Points 2→3: Reordering becomes ‘active’ during 

further burial. Points 3→4: Reordering remains active, and the clumped isotope 

temperature of the sample is in equilibrium with the burial temperature. Points 4→5: The 

sample remains in equilibrium with the burial environment during retrograde cooling. 

Points 5→6: Reordering remains active during further cooling but is ‘closing’ with 



	
   95 

respect to the burial environment. Points 6→7: Reordering becomes inactive during late 

exhumation and apparent T(Δ47) is ‘locked in’. It should be noted that if a buried sample 

only reaches point 2 (that is, if burial temperatures do not reach the active region of the 

reordering curve) then the first-order approximation model predicts no change in original 

T(Δ47). 

 

Modeled changes in brachiopod (and marble) clumped isotope compositions, expressed 

as apparent T(Δ47), are presented in Fig. 3.6 and Fig. 3.7 along with estimated burial 

temperature histories used in each of the models (from Tables A3.5–A3.11). The panels 

in each figure are arranged in order of highest T(Δ47) to lowest. Fig. 3.6 shows scenarios 

for the three highest T(Δ47) values, including the marble, and Fig. 3.7 shows the scenarios 

for the three lowest. In most cases three ‘burial trajectories’ are shown for each basin, 

with the upper and lower curves reflecting the uncertainty in the burial temperature 

estimates in our compilations. The yellow stars indicate the measured T(Δ47) from each 

basin and allow for direct comparison with the final model predictions. 
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Figure 3.6 (previous page) Diagrams showing the compiled burial histories for samples 

with apparent T(Δ47) greater than 100 °C, including Carrara marble, and the modeled 

evolution of T(Δ47) during burial. Supporting data for burial temperature histories are 

presented in Tables A3.6–A3.8 for the Carrara marble (a,b), brachiopods from Arrow 

Canyon, NV (c,d), and brachiopods from the Ural Mountains, Russia (e,f). For each 

location three curves are shown: an ‘intermediate’ curve representing published values, 

and ‘deep’ and ‘shallow’ curves representing uncertainty in the burial temperature 

estimates. The grayed lines in (d) and (f) are the model predictions that are invalidated by 

the measured T(Δ47) values (i.e., the values represent minimum burial temperatures). The 

clumped isotope reordering model for the Carrara marble used kinetic parameters from 

Passey and Henkes (2012) for the optical calcite, whereas the brachiopod models used 

parameters for the ‘first-order approximation model’ determined in this study. The gray 

dashed lines in (a) and (b) mark the axis boundaries in (c) through (f). Yellow stars in (b), 

(d), and (f) indicate measured clumped isotope temperatures (Table 3.1). 
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Figure 3.7 (previous page) Diagrams showing the compiled burial histories for samples 

with apparent T(Δ47) less than 100 °C and the modeled evolution of T(Δ47) during burial. 

Supporting data for burial temperature histories are presented in Tables A3.9–A3.11 for 

brachiopods from the Illinois Basin (a,b), the Appalachian Basin, WV (c,d), and the U.S. 

midcontinent, MO (e,f). For each location three curves are shown: an ‘intermediate’ 

curve representing published values, and ‘deep’ and ‘shallow’ curves representing 

uncertainty in the burial temperature estimates. Yellow stars in (b), (d), and (f) indicate 

measured clumped isotope temperatures (Table 3.1). For the Illinois Basin we relied 

exclusively on modeled burial temperature histories of Rowan et al. (2002), who 

considered (1) a thermal history using sedimentary burial only (“burial”) and (2) a hybrid 

thermal history using burial depth and simulated hydrothermal fluid flow (“hybrid”). An 

intermediate burial scenario was not considered for this locality. 

 

In the six comparisons in Fig. 3.6 and Fig. 3.7 the models demonstrate at least one or 

more of the features described in Fig. 3.5, thereby capturing a range of responses from 

the reordering model. Overall, we observe a general (albeit inexact) correspondence 

between the measured T(Δ47) and the reordering model predictions. In the U.S. 

midcontinent, which has the coolest reconstructed burial temperatures, burial trajectories 

never reach the aforementioned activation period (Fig. 3.7f), whereas basins with high 

peak burial temperatures approach thermal equilibrium with the burial environment, with 

final Δ47 values possibly determined by retrograde reordering and cooling rate during 

exhumation (Fig. 3.6d). The burial trajectory for the Carrara marble also shows this 
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cooling rate dependence, and close correspondence between all of the modeled scenarios 

and the measured T(Δ47) (Fig. 3.6b). 

 

This empirical test, however, is not without complications. Observed clumped isotope 

temperature from Arrow Canyon, NV are only compatible with the ‘deep’ burial scenario 

(Fig. 3.6c and d)—that is, the upper bound of the temperatures estimated from measured 

conodont color alteration index values of 2.0–2.5 (Martin et al., 2012)—and all of the 

model predictions from the Ural Mountains are cooler than the measured T(Δ47) (Fig. 

3.6e and f). In Arrow Canyon these results suggest that carbonate clumped isotope 

studies may complement and refine existing maximum burial temperature estimates in 

the region as reordered brachiopod clumped isotope thermometry indicates at least a 

minimum burial temperature, thereby invalidating shallower burial histories (Fig. 3.6c 

and d). In the Ural Mountains the data-model mismatch highlights the lack of reliable 

burial information in the middle Uralian foredeep where our brachiopods were collected 

(Fig. 3.6e and f; Mii et al., 2001). However, it is also possible that data-model differences 

are the result of these brachiopod shells having different and thus far unrecognized 

clumped isotope reordering kinetics. We are continuing to conduct timed heating 

experiments on other brachiopod calcites to probe whether there are a range of 

susceptibilities to carbonate clumped isotope reordering, but the observation that two 

vastly different calcite samples (Permian brachiopod and hydrothermal optical calcite) 

have nearly identical kinetics (i.e., Fig. 3.3) suggests that compositionally similar 

minerals may have similar kinetics. 
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The wide range of possible trajectories predicted by the reordering model using published 

burial histories is best demonstrated by the data-model comparisons in the Illinois and 

Appalachian Basins. In both cases the measured T(Δ47) values are only consistent with 

the cooler burial temperature histories (Fig. 3.7a–c). In the Illinois Basin there is good 

geologic and model-based evidence of late Paleozoic hydrothermal fluid flow, as shown 

by the thermal ‘pulse’ in Fig. 3.7a. Because this pulse is relatively short-lived, the 

modeled T(Δ47) is highly dependent on the maximum temperature of the fluid, and hence 

the wide range of predictions in Fig. 3.7b. In this case, additional clumped isotope 

measurements could help constrain the duration, geographic range, and peak temperature 

of this event due to the wide temperature–time sensitivity of clumped isotope reordering 

(Fig. 3.4). 

 

To summarize, these data-model comparisons highlight a relationship between the burial 

temperature history of fossil brachiopod shell calcite and its measured carbonate clumped 

isotope composition. From the perspective of preservation of primary brachiopod 

paleotemperatures, these results suggest that Δ47 values are preserved at burial 

temperatures of less than ~100–120 °C; above those temperatures C–O bond reordering 

begins altering Δ47 values. This is illustrated in Fig. 3.8 where we used a simple ‘box car’ 

heating event lasting 60 million years and the first-order approximation model for WA-

CB-13 to solve for the evolution of T(Δ47) at simulated burial temperatures from 100 to 

160 °C. At 160 °C, the apparent T(Δ47) altered to 160 °C in ~15 million years, whereas 

at 100 °C there is no apparent change in T(Δ47). Intermediate burial temperatures show a 

range of final T(Δ47) between 28 and 137 °C, none of which reach apparent thermal 
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equilibrium with the artificial burial environment after 60 million years. Translated to the 

geologic record, this behavior implies that carbonate fossils with burial temperature 

histories that fall within this intermediate temperature range may be expected to have a 

wide range of measured Δ47 values. In contrast, primary carbonate with burial 

temperatures that are lower or higher than this range are expected to show, respectively, 

either no evidence of reordering or essentially complete reordering to higher T(Δ47) 

values, the latter reflecting cooling rate dependent ‘closure’ temperatures (e.g., Passey 

and Henkes, 2012). In the future, these observations may be exploited by measurement of 

natural brachiopod shells spanning a range of stratigraphic positions in a single basin as a 

tool for refining the dynamics of burial. 
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Figure 3.8 (previous page) Illustration of the threshold behavior of carbonate clumped 

isotope reordering for simple ‘box-car’ heating scenarios lasting 60 million years. The 

solid lines represent the temperature forcing used to solve the first-order approximation 

model and are in 15 °C increments from 100 to 160 °C. The dashed and dotted lines 

represent the model response at each time step, with the final indicated temperature (at 

180 My) equivalent to a measured Δ47 temperature. At 100 °C maximum burial 

temperature there is no apparent change from the initial T(Δ47) (25 °C) whereas at 160 °C 

maximum burial temperature the model predicts complete reordering. 

 

3.5 Conclusions and an outlook for future research 

A key conclusion from the laboratory reordering data and empirical comparisons 

presented in this study is constraining the burial temperatures capable of preserving of 

primary brachiopod paleotemperatures to less than ~100 °C for 106–108 year timescales. 

Also remarkable is the nearly identical carbonate clumped isotope reordering kinetics for 

two different types of calcite, well-preserved Permian brachiopod calcite and an optical 

calcite. The similar trace element content of these materials (Table A3.4; Fig. 1, Passey 

and Henkes, 2012) and the implication of ionic impurities in the creation of extrinsic 

crystallographic defects suggest that the bulk chemistry of calcite may, in part, determine 

its susceptibility or resistance to reordering. A positive relationship between trace 

element (Mn) content and the rate of O diffusion into the calcite lattice has been 

identified (Kronenberg et al., 1984), but similar effects on self-diffusion of C and O 

within a carbonate mineral are largely unknown. We note, however, that an 

experimentally heated calcite spar sample from Passey and Henkes (2012; NE-CC-1 had 
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very different Mg and Mn contents and distinctly different reordering kinetics. A 

combination of future experiments and identification of naturally reordered samples will 

likely shed new light on the relationship between trace elements and reordering, and on 

the nature of C–O bond reordering itself. 

 

This conclusion limits meaningful clumped isotope paleoclimate records to sedimentary 

basins with relatively shallow burial histories. Fortunately, we can screen the 

stratigraphic record for suitable burial histories prior to analysis. Thermal maturity index 

data and thermochronology studies exist for most basins throughout the world due to the 

economic importance of oil, gas, and coal resources, particularly (and fortuitously) in 

pre-Cenozoic strata. As was attempted in Section 3.4 of this study, compilations of these 

data prior to sampling for deep-time paleoclimate studies should allow for a ‘first-pass’ 

evaluation of primary T(Δ47) preservation with respect to clumped isotope reordering. 

Additionally, an understanding of the reordering reaction kinetics for other minerals 

commonly targeted for carbonate clumped isotope analysis – for example soil carbonates, 

mollusk shells, biogenic apatite, and dolomite – will further constrain the burial 

environments capable of preserving primary paleoclimate information over a range of 

timescales. 

 

Finally, the clumped isotope composition of pristine, yet reordered brachiopod shells may 

be exploited and utilized as a low-temperature geothermometer, provided brachiopod 

calcite reordering kinetics are universal and appropriate constraints can be placed on their 

geological context (e.g., age and stratigraphy). This approach would be similar to the 
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inversion of low-temperature thermochronology data resulting in a set of temperature–

time ‘paths’ or a single, best-fit path representing some statistical evaluation of the 

numerical models presented in this paper and measured T(Δ47) (Ketcham, 2005). Of 

course, this approach would require that the variation observed in Δ47 values would be 

solely determined by clumped isotope reordering processes and not simultaneously 

influenced by cryptic dissolution/reprecipitation diagenesis, which cannot be definitively 

ruled out for the natural and experimental brachiopods in this study. 

 

Electron backscatter diffraction (EBSD) is a relatively new technique with increasing use 

in the study of diagenesis of fossil biocarbonates, including brachiopods. EBSD has been 

used to detect loss of primary crystallographic orientation with no apparent alteration of 

microstructures (Pérez-Huerta et al., 2007 and Pérez-Huerta et al., 2012), presence of 

secondary mineralization and recrystallization not detected with other techniques (such as 

XRD; Cusack et al., 2008), and the presence of primary crystallographic information for 

paleoecological and phylogenetic applications (Grellet-Tinner et al., 2012 and Dietrich et 

al., 2013). Ongoing analyses are expected to provide information on how EBSD 

observations of extant brachiopod shells compare with samples from the geologic record, 

and will probe micro-scale calcite dissolution/reprecipitation and diagenetic reorientation 

of otherwise ‘well-preserved’ calcite crystals. In the context of carbonate clumped 

isotope reordering, EBSD may be well-suited as a complementary method used to rule 

out the contribution of chemical diagenesis to apparent T(Δ47) changes. It may also be 

able to constrain the spatial scales over which C–O bond reordering occurs, to the extent 

that crystallite size may exert control over the maximum domain size of defect 
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propagation. In future applied and experimental clumped isotope studies we envision 

‘next generation’ sample screening techniques such as EBSD to be used in conjunction 

with traditional petrographic screening, as each method has equivalent trade-offs between 

analysis time and resolution. 
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4. THE EMERGING RECORD OF PHANEROZOIC SEAWATER 

TEMPERATURE AND δδ18O FROM CARBONATE CLUMPED 

ISOTOPES: REAL OR REORDERED? 

Abstract 

The 5-6‰ increase in marine carbonate δ18O from past to present over the Phanerozoic is 

one of the most prominent and yet poorly-understood features of the geological record. 

The correct interpretation of the increase has broad implications for the evolution of 

climate, metazoan life, and water-rock interactions at oceanic spreading centers.  

Competing explanations for the increase in δ18O over this interval include decreasing 

ocean temperatures, increasing seawater δ18O, and the influence of diagenesis on older 

samples.  Carbonate clumped isotope thermometry has the potential to address these 

possibilities because unlike δ18O thermometry, it can uniquely resolve the temperature 

and δ18O value of ancient seawater.  However, also unlike δ18O, clumped isotope bonds 

(e.g., 13C−18O) are susceptible to alteration by closed-system recrystallization and solid-

state diffusion.  Here we present a long-term paleotemperature and seawater δ18O record 

from new and previously published clumped isotope data, screened for chemical 

diagenesis (recrystallization) and evaluated for the effects of solid-state diffusive 

reordering of 13C-18O bonds.  To accomplish the latter, we used newly determined kinetic 

parameters for C-O bond reordering in brachiopod and optical calcite, combined with the 

reconstructed maximum burial temperature of each basin from which biogenic calcite and 

aragonite were analyzed, to predict the degree of preservation of the original clumped 

isotope ordering.  In general, shallowly-buried brachiopod and mollusk shells comprising 

much of the Phanerozoic clumped isotope record are unaffected by solid-state reordering.  
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The emerging Phanerozoic clumped isotope record shows no evidence of a long-term 

trend in seawater δ18O over the last ~450 million years, and indicates that tropical 

seawater temperatures exceeded 30 °C during intervals of the early and latest Paleozoic. 

 

4.1. Introduction 

Since its inception, carbonate clumped isotope thermometry has been poised to shed new 

light on the interpretation of the Phanerozoic marine carbonate oxygen isotope record 

(Came et al., 2007; Eiler, 2011).  The technique holds this promise because, unlike 

conventional carbonate-water oxygen isotope thermometry, it is independent of the bulk 

isotopic composition of the mineral and fluid from which the analyzed mineral 

precipitated (Eiler and Schauble, 2004; Schauble et al., 2006; Ghosh et al., 2006).  In 

addition to the paleoclimatological value of reconstructing temperature, simultaneous 

knowledge of both the clumped and oxygen isotope compositions of carbonates allows 

for calculation of the isotopic composition of ancient seawater.  In the context of the 

long-term marine carbonate δ18O record, deconvolving the paleotemperature and 

seawater δ18O signals has broad biological, geochemical, and geophysical implications 

(Muehlenbachs, 1998; Kasting et al., 2006; Jaffrés et al., 2011).  

 

Three explanations have been proposed for the observed 5-6‰ increase in carbonate δ18O 

from past to present over the Phanerozoic: (1) cooling of low-latitude seawater 

temperatures towards present-day values from 35-40 °C during the early to middle 

Paleozoic (e.g., Bassett et al., 2007; Trotter et al., 2008; Joachimski et al., 2009 (after 

correcting for differences in standardization [Puceat et al., 2010; M. Joachimski, pers. 
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comm., 2013]; Grossman, 2012), (2) a secular increase of seawater δ18O (Veizer et al., 

1999; Kasting et al., 2006; Jaffrés et al., 2011), and (3) progressively increased oxygen 

isotope exchange between older carbonate rocks and diagenetic fluids (Land et al. 1995; 

Veizer et al., 1995; Land and Lynch, 1996).  The third possibility has been largely 

discounted for the Phanerozoic record from well-preserved and carefully screened marine 

invertebrate fossils (e.g., brachiopods, mollusks, and foraminifera; Grossman, 2012a), 

although diagenesis remains a problem for the interpretation of Proterozoic and Archean 

oxygen isotope records from non-biogenic sedimentary carbonates and cherts. 

 

The temperatures proffered in the first hypothesis assume an ice-free world with a 

constant seawater δ18O value of -1‰ (VSMOW). Such high paleotemperatures for early 

to middle Paleozoic ocean (~35°C or higher) challenge our understanding of the thermal 

limits of metazoan life and of greenhouse climate dynamics. It has long been assumed 

that metazoan life has upper temperature limits near that of maximum seawater 

temperatures today (~30 °C), but recent findings on the thermal tolerances of organisms 

at hydrothermal vents show that metazoans can survive at temperatures warmer than 40 

°C, but not more than 55 °C, thus challenging traditional assumptions about the 

environmental limits imposed by biology (Ravaux et al., 2013).  While many common 

extant marine bivalve species have thermal limits exceeding 30 °C (summarized by Hicks 

and McMahon, 2002). It seems unlikely, however, that these organisms can spend their 

entire lives at such high temperatures, and it is questionable whether they are able to 

actively precipitate shell material under such conditions.   
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Hot seawater paleotemperatures also have provocative implications for the existence or 

absence of a climate thermostat (Huber, 2012).  Tropical temperatures in excess of 30 °C 

may be inconsistent with the strict physical mechanisms thought to maintain the modern 

tropical climate and meridional temperature gradient, although data-model mismatch 

could be reduced on either end: models require better constraints for different climate 

modes (e.g., super-greenhouses) and paleotemperature proxies require refinements their 

degrees of uncertainty. 

 

If instead early Phanerozoic temperatures were relatively clement, then seawater δ18O 

values must have increased significantly over the last ~450 million years, indicating 

either a decrease in low-temperature water-rock interaction (as occurs on continents and 

in the shallow oceanic crust), and increase in high-temperature water-rock interaction (as 

occurs at mid-ocean ridges and deep within the oceanic crust), or both.  However, it has 

been argued that this is inconsistent with oxygen isotope measurements of oceanic crust 

silicates and typical rates of water-rock interaction at mid-ocean ridges (Muehlenbachs 

and Clayton, 1976; Gregory and Taylor, 1981; Muehlenbachs, 1998).  Nevertheless, 

compelling predictions of changing seawater δ18O have come from geophysical models 

of seafloor spreading and hydrothermal circulation (e.g., Kasting et al., 2006; Jaffrés et 

al., 2011).  

 

New geochemical constraints from carbonate clumped isotope thermometry are clearly 

needed.  Published carbonate clumped isotope datasets from marine fossils now 

collectively span the greater part of the Phanerozoic (Fig. 4.1; Table 4.1).  All of these 
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studies have employed some combination of chemical and petrographic methods to 

identify and omit altered samples (Popp et al., 1986; Grossman, 1994; Veizer et al., 

1999).  Therefore, a Phanerozoic record representing the best-preserved samples is at 

hand (Fig. 4.1).  Despite this screening, anomalous clumped isotope temperatures persist.  

Henkes et al. (2014) have attributed the highest of these altered paleotemperatures, 

including T(Δ47) as high as ~150 °C, to solid-state reordering of C-O bonds at elevated 

temperatures following sedimentation during deep sedimentary burial.  

Paleotemperatures from well-preserved Carboniferous brachiopods with very warm (40-

50°C), but not extreme clumped isotope temperatures may also be eliminated from the 

Phanerozoic record based on burial temperature histories that exceeded 100 °C (Henkes 

et al., 2014). However, it is not known whether other samples in Figure 4.1 may have 

also been affected by C-O bond reordering during burial. 

 

Here we present new brachiopod clumped isotope data from the Carboniferous of the 

U.S. mid-continent and the Moscow Basin in Russia, and combine these data with 

published result to critically evaluate the emerging Phanerozoic clumped isotope record 

with respect to the effects of solid-state reordering.  Such evaluation has recently been 

made possible by the availability of kinetic data for C-O reordering in calcites (Passey 

and Henkes, 2012; Henkes et al., 2014). 
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Figure 4.1 Compiled (a) carbonate δ18O and (b) clumped isotope paleotemperatures 

(T(Δ47)) from marine brachiopod and mollusk fossils.  The thick gray line in (a) is a 

running average of δ18O from tropical/sub-tropical foraminifera, belemnites, and 

brachiopods from Grossman (2012), with ±1σ standard deviation indicated by the thin 

lines.  Large blue symbols refer to samples that pass geochemical tests for good 

preservation.  Medium red symbol are of questionable/intermediate preservation based on 

geochemical tests but still may have been effected by solid state reordering of clumped 

isotopes following burial, and small yellow symbols represent poorly preserved samples.  

In some cases smaller symbols are obscured by larger symbols. Individual studies are 

represented by different symbols: equilateral triangle, Finnegan et al. (2011); star, Came 

et al. (2007); cross, this study; half-square (diagonal), Cummins et al., (2014); circle, 

Henkes et al. (2014); polygon, Shenton et al. (submitted); left-facing triangle, Brand et al. 

(2012); square, Price and Passey (2013); right-facing triangle, Dennis et al. (2013); 

inverted equilateral triangle, Keating-Bitonti et al. (2011); half-square (diagonal), 
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Douglas et al., (2014); diamonds, Henkes et al. (2013).  T(Δ47) precision is typically the 

width of the blue symbols (~5-7 °C).  The numbers in parentheses underneath (a) 

correspond to collection localities in Table 4.1. 

 

4.2. Carbonate clumped isotope reordering 

Carbonate clumped isotope reordering is a process whereby solid-state diffusion of C and 

O atoms through the carbonate mineral lattice alters the abundance of 13C-18O ‘clumped’ 

bonds (Dennis and Schrag, 2010; Passey & Henkes, 2012).  Although the exact 

mechanism(s) of reordering is (are) unknown, the process must involve the breakage of 

existing 13C-18O bonds and subsequent formation of 12C-18O and 13C-16O bonds, with 12C 

or 16O swapped from neighboring carbonate ions or interstitial spaces.  Based on data 

from laboratory heating experiments Passey and Henkes (2012) determined reordering 

rates in abiogenic calcite and used a first-order kinetic model to predict these rates as a 

function of temperature.  Henkes et al. (2014) applied the same experimental approach to 

the study of Late Paleozoic brachiopod calcite, explored alternative kinetic models for the 

reordering reaction, and used a numerical modeling scheme to predict clumped isotope 

reordering during the burial and exhumation of brachiopods from several sedimentary 

basins worldwide.  General agreement between predictions of the clumped isotope 

reordering model and the measured values of Carboniferous brachiopods demonstrate 

that laboratory-derived kinetics reasonably predict the progress of reordering over 

geological timescales (Henkes et al., 2014).  A similar approach is used here to evaluate 

the Phanerozoic carbonate clumped isotope record with respect to carbonate clumped 

isotope reordering. 
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4.3. Results 

4.3.1. Carboniferous brachiopods 

New stable isotope data for Carboniferous brachiopods and their limestone matrices are 

presented in Table A4.1 and shown in Figure 4.1 as part of the Phanerozoic record.  

These fossils are from the Kinderhookian-age Gilmore City Formation (~350 Ma) in 

Iowa, USA (Mii et al., 1999) and the Chesterian-age Tarruskian Horizon (~320 Ma) in 

the Moscow Basin south of Moscow, Russia (Mii et al., 2001).  The average clumped 

isotope paleotemperatures from well-preserved specimens are 32 °C from the Gilmore 

City Fm. and 27 °C from the Tarruskian Horizon, with average calculated seawater δ18O 

values of 2.1‰ and -1.7‰, respectively.  Their calcite oxygen isotope compositions fall 

along a running-mean curve representing well-preserved subtropical fossils and thus 

agree with measured brachiopod values globally for the Carboniferous (Fig. 4.1a; from 

Grossman, 2012).  In general, these shells have excellent petrographic and chemical 

preservation, as indicated by cathodoluminescence microscopy (i.e., little to no diagenetic 

uptake of Mn2+ from reduced pore waters) and previous trace element analyses (Figs. 

Figs. A4.1-A4.12; Mii et al., 1999, 2001); however, some shells show slight 

luminescence and are therefore shown as small, yellow symbols in Figure 4.1.  While 

these shells likely have some diagenetic overprinting, their isotopic compositions are 

within the range of values for nominally pristine samples during the Carboniferous. 
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4.3.2. Evaluation of clumped isotope reordering 

We compiled maximum burial temperature estimates from the literature for each 

collection locality represented in the Phanerozoic marine carbonate clumped isotope 

record (Table 4.1).  Based on the sample age (t) and maximum burial temperature (T) 

each sample can be plotted on a diagram (Fig. 4.2) showing the t-T domains where 

samples will be completely reordered, not reordered (i.e., pristine), and partially 

reordered (Henkes et al., 2014).  By using the maximum burial temperatures and sample 

ages in Figure 4.2, we are effectively assuming a ‘boxcar’ burial history, where the box 

width is the sample age and the box height is the maximum burial temperature.  This then 

makes the most restrictive use of the dataset as samples likely did not reside at maximum 

depth for the entire time since sedimentation until present.  This is a conservative 

approach because it assumes instantaneous rates of burial and exhumation rather than 

relying on poorly constrained estimates, and because rates and extents of reordering are 

the greatest at maximum burial temperatures.  Using this approach, we discard data from 

samples from the Phanerozoic record that plot to the right of the 1% curve in Figure 4.2.  

Importantly, the majority of samples included in the geochemically and physically-

screened Phanerozoic record fall well within the domain of no reordering. 

Table 4.1 Burial temperature information for the Phanerozoic clumped isotope record 

# Collection Locality (reference) Age 
(Ma) 

Max. 
Burial 
Temp. 
(°C) 

Burial 
Temperature 
Reference* 

Clumped 
isotope 
reordering? 

1 Minnesota, USA  (Finnegan et 
al., 2011) 455 <50 Hay et al. (1988)1 No 

2 Kentucky and Indiana, USA 
(Finnegan et al., 2011) 

447-
449 <90 Epstein et al. 

(1977)2 No 

3 
Anticosti Island, Canada 
(Finnegan et al., 2011; Came 
et al, 2007) 

447-
440 <90  Mcracken and 

Barnes (1981)2 No 
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Table 4.1 ( cont.) 

# Collection Locality (reference) Age 
(Ma) 

Max. 
Burial 
Temp. 
(°C) 

Burial 
Temperature 
Reference* 

Clumped 
isotope 
reordering? 

4 Gotland Island, Sweden 
(Cummins et al., 2014) 

434-
430 

<50-
80 Jeppsson (1983)2 No 

5 Iowa, USA (this study) 350 ~50 

Kaufmann et al. 
(1988), Banner 
and Kaufman 
(1994)3 

No 

6 Missouri, USA (Henkes et al., 
2014) 345 ~50 

Kaufmann et al. 
(1988), Banner 
and Kaufman 
(1994)3 

No 

7 Nevada, USA (Henkes et al., 
2014) 323 170-

180 

Martin et al. 
(2012), Shenton 
et al. 
(submitted)2,4 

Yes 

8 Moscow Basin, Russia (this 
study) 320 <80 Alekseev et al. 

(1996)2 No 

9 Illinois, USA (Henkes et al., 
2014) 320 135, 

175 
Rowan et al. 
(2002)5 Yes 

10 Ural Mountains, Russia  
(Henkes et al., 2014) 318 >100 Matenaar et al. 

(2005)2,6 Yes 

11 Oklahoma, USA (Came et al., 
2007) 307 <70 Cardott et al. 

(1990)6 No 

12 West Virginia, USA (Henkes et 
al., 2014) 300 145 Reed et al. 

(2005)4,6 Yes 

13 Andes, Venezuela (Shenton et 
al., submitted) 270 150 Callejon et al. 

(2003)7,8 Yes 

14 Southern Alps, Italy (Brand et 
al., 2012) 251 100, 

but ? 
Zattin et al. 
(2006)6 No† 

15 Siberia, Russia (Price and 
Passey, 2013) 140 50 Price and Passey 

(2013)7 No 

16 South Dakota, USA (Dennis et 
al., 2013) 

73.5, 
67 60-80 Gerhard et al. 

(1982)7 No 

17 Maryland, USA (Dennis et al., 
2013) 67 50 

Hansen (1969), 
Minard et al. 
(1974) 

No 

18 Alabama, USA(Keating-Bitonti 
et al., 2011) 53 65 Carroll (1999)6 No 

19 
Seymour Island, Antarctic 
Peninsula (Douglas et al., 
2014) 

45-
37.4 <80 Pirrie et al. 

(1994)6,8 No 
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(previous page) *Numbers indicate burial depth/temperature proxy used in each 
reference: 1=K/Ar dating of authigenic K-feldspar formation (timing of maximum 
burial), 2=conodont color alteration index, 3=unpublished coal grade and burial history 
curve cited by these authors, 4=secondary fluid inclusions, 5=predictions from 
hydrothermal fluid flow model, 6=vitrinite reflectance, 7=sedimentary overburden with 
assumed geothermal gradient (~25 °C/km), 8=apatite fission track thermochronology. 
†Conclusion of no clumped isotope reordering is tentative given the collection locality 
information in Brand et al. (2012) and the complex structure of Permian sediments in the 
Italian Alps. According to Zattin et al. (2006), vitrinite reflectance values vary from 0.95 
to 2.63% within 20 km. 
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Figure 4.2 (previous page) Maximum burial temperature and sample age for each 

collection locality in the Phanerozoic clumped isotope record. The data symbols are 

identical to Fig. 4.1 and the numbers (to the lower right of each symbol) correspond to 

localities in Table 4.1.  The lines represent predictions of carbonate clumped isotope 

reordering using experimentally-derived reaction kinetics for a low-temperature, 

hydrothermal, optically-pure calcite (black, Passey and Henkes, 2012) and a pristine 

Permian brachiopod (red, Henkes et al., 2014). The dashed lines represent 1% ‘reordered’ 

and the solid lines represent 99% reordering. The area between the lines is the zone of 

partial clumped isotope reordering. For some localities the arrows connecting two points 

indicate a range of estimated maximum burial temperatures.  

 

4.4. The emerging Phanerozoic record 

The screened Phanerozoic clumped isotope paleotemperature record from fossil 

brachiopods and mollusks is presented in Figure 4.3, as are calculated seawater oxygen 

isotope compositions from these samples.  Note that low-latitude seawater 

paleotemperatures during some intervals of the Paleozoic were extremely warm (≥ 30 

°C), for example across the Ordovician-Silurian boundary and during the early 

Carboniferous.  Most of these brachiopod fossils come from shallow, epicontinental seas 

and therefore may be best compared with modern analog environments in the western 

tropical Pacific and the Arabian Peninsula, where summer seawater temperatures 

regularly reach 28-30 °C and higher (e.g., Boely et al., 1990; Pohl et al., 2014).  

Paleozoic samples primarily come from low-paleolatitudes, whereas Mesozoic and 

Cenozoic shells are from temperate and high paleolatitudes.  Only when the clumped 
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isotope temperature record from marine invertebrate shells has been filled out both 

spatially and temporally, as is approached by the carbonate δ18O record (Grossman, 

2012), will we be able to fully evaluate the long-term seawater temperature evolution of 

the oceans.  Despite this, the clumped isotope record screened for both chemical 

alteration and the effects of carbonate clumped isotope reordering nevertheless suggests 

paleotemperatures approaching 40 °C. 

Figure 4.3 Paleotemperatures (T(Δ47)) and calculated seawater oxygen isotope 

compositions (δ18Oseawater) from clumped isotope and δ18O measurements of fossil 

brachiopod and mollusk shells, after screening for variable chemical and petrographic 

preservation (Table A4.2, Fig. 4.1) and for carbonate clumped isotope reordering (Table 

A4.3, Fig. 4.2).  Data symbols correspond to studies referenced in Fig. 4.1 and are 

colored according to the paleolatitudes of each collection locality.  For reference in (a) 

the average global monthly maximum sea surface temperature for the tropics between 

1980 and 2012 is shown (dashed line), as well as the range in modern maximum sea 
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surface temperature in the Banda and Arafura Seas (gray band, modern analogs for 

ancient epicontinental seas; Boely et al., 1990). In (b) the trend of δ18O of seawater 

proposed by Veizer et al. (1999) is shown by the dashed line. The numbers in parentheses 

underneath (a) correspond to collection localities in Table 4.1. 

 

One issue of note in these paleotemperature determinations is the temperature range for 

which the carbonate clumped isotope paleothermometer was defined.  For mollusk and 

brachiopod shells, the modern calibration data do not exceed 30 °C (Henkes et al., 2013; 

Eagle et al., 2013; Came et al., 2014), which may lead to larger uncertainty in calculated 

temperatures from relatively low Δ47 values (<0.70‰, but >0.65‰) corresponding to hot 

paleotemperatures in the Paleozoic.  The problem of extrapolating paleothermometers 

outside their modern calibration temperature ranges is not unique to clumped isotopes.  

The proxy data suggesting extremely hot tropical temperatures during the Eocene 

(Pearson et al., 2007), mid-Cretaceous (Forster et al., 2007), and Paleozoic (Joachimski et 

al., 2009) raises similar concerns (Huber and Caballero, 2011), and together with these 

clumped isotope data highlight the need to refine calibrations for interpreting 

controversial paleotemperature proxy data. 

 

Perhaps more striking than the emerging Phanerozoic seawater temperature trend is the 

nearly constant seawater δ18O values calculated from these samples, notably the 

clustering of values around 0‰ since the Late Ordovician-Early Silurian (~450 million 

years ago).  This observation disregards the Cretaceous Western Interior Seaway samples 

from Dennis et al. (2013) that exhibit possible freshwater influence (Fig. 4.3b).  
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Interpretation of this long-term δ18O record simultaneously requires a congruent 

explanation for the observed range of the data clustered around near-modern seawater 

δ18O values (± 2-3‰).  We believe that this could reflect the influence of climatological 

or local environmental changes, which occur at timescales well below our sampling 

resolution.  For example, to explain high δ18O values for Early Carboniferous 

brachiopods from the North American midcontinental seas, Grossman et al. (2008) argue 

for intense evaporation as evidenced by laterally extensive evaporate deposits in the 

region (Iowa and Missouri samples in Fig. 4.3; this study and Henkes et al., 2014).  This 

is a tenable scenario for seawater δ18O variation in Figure 4.3 considering observed 

enrichments in modern, low-latitude closed basin seawaters (e.g., ~+2‰ in the 

Mediterranean Sea; LeGrande and Schmidt, 2006).  The waxing and waning of 

continental glaciers, especially across at the Ordovician-Silurian boundary and during the 

Late Paleozoic greenhouse-icehouse transition, is also a suspected driver of 1-2‰ 

changes in global seawater δ18O values at both high and low frequencies (Grossman et 

al., 2008; Finnegan et al., 2011), and finally, we cannot rule out the effects of fluid-rock 

oxygen exchange in oceanic crust causing ±1‰ changes on million year timescales 

(Muehlenbachs and Clayton, 1976). 

 

In conclusion, there are now a sufficient number of published carbonate clumped isotope 

datasets from marine biogenic carbonates to piece together a preliminary revision of the 

Phanerozoic paleotemperature and seawater δ18O record.  While uncertainties in clumped 

isotope temperature calibration and questions about the interpretation of extremely warm 

paleotropical seas remain, we believe we are now able to effectively remove from the 
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overall record (Fig. 4.1b) the effects of (1) chemical diagenesis, from geochemical and 

petrographic tests, and (2) carbonate clumped isotope reordering, given the recent 

evaluations of the controls on clumped isotope reordering (Passey and Henkes, 2012; 

Henkes et al., 2014).  Future paleoclimate studies using fossil carbonates must carefully 

consider the effects of bond reordering on the preservation of primary clumped isotope 

temperatures, and continued analysis of texturally- and chemically-preserved Paleozoic 

and Mesozoic mollusks and brachiopods will further test the fidelity of our conclusion 

that seawater oxygen isotope compositions have not changed, on average, over the last 

450 million years. 
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5. SUMMARY AND CONCLUSIONS 

This research, along with the growing body of literature and datasets produced from other 

carbonate clumped isotope laboratories, serves to improve our understanding of mollusk 

and brachiopod shell-based clumped isotope thermometry.  As emphasized throughout 

this dissertation, this method of determining ancient seawater temperatures and oxygen 

isotope compositions shows promise for resolving the deep-time paleoclimate record, 

notably in the Paleozoic and Mesozoic, where the hypothesized temperature changes are 

commensurate with the current precision of the measurement (~±3-5 °C) and the isotopic 

composition of seawater is largely unconstrained.  As documented in each chapter, 

successful application of carbonate clumped isotope thermometry is contingent on 1) 

empirical and experimental temperature calibration using modern carbonates, biogenic 

and inorganic, with universal interlaboratory agreement, 2) a working understanding of 

C-O bond reordering constrained by laboratory-derived kinetics and predictive models 

for geologic samples, and 3) reconciling the emerging Phanerozoic record with our 

current understanding of the thermal structure of Earth’s ancient oceans, especially the 

tropics, and the geochemical processes which control the oxygen isotope values of the 

ocean over long timescales. 

 

In Chapter 2 a carbonate clumped isotope temperature calibration using modern mollusk 

and brachiopod shell carbonate is presented.  The observed calibration line is striking in 

that it has a slope approximately half of previous clumped isotope calibrations using 

modern biogenic and inorganic carbonates.  The discussion of the mollusk and 

brachiopod data included evaluating some of the aspects of shell formation, such as 
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incorporation of amorphous calcium carbonate and taxonomic differences in the 

chemistry of the precipitating fluids, none of which are concluded to have a significant 

effect on clumped isotopes in these samples.  Differences in clumped isotope 

composition between dissolved inorganic carbon species in body fluids are also explored 

as a possible explanation for the shallower calibration slope, but are untenable given the 

bulk carbon and oxygen isotope composition of these shells.  Since the completion of this 

research and its publication, differences among various clumped isotope calibrations has 

received much attention in the clumped isotope research community.  Methodological 

differences are a compelling explanation for calibration discrepancies.  Newer laboratory 

methods and data standardization schemes indicated that the slope of the Δ47-temperature 

relationship appears to be dependent on the temperature and manner of carbonate acid 

digestion (e.g., Wacker et al., 2013; Fernandez et al., 2014).  Future studies and 

interlaboratory tests of carbonate standards should provide further clarity on these issues.  

Nevertheless, problems with proxy calibration and establishing laboratory best practices 

are not challenges unique to clumped isotopes, and will co-evolve with application of this 

thermometer to scientific questions. 

 

Chapter 3 presented a laboratory and empirical study of carbonate clumped isotope bond 

reordering in brachiopod shell calcite, following the methods and theory developed in 

Passey and Henkes (2012).  There are now experimental constraints on C-O bond 

reordering kinetics for several calcites and two models for the observed Δ47 changes 

during the laboratory heating experiments, one that assumes first-order reaction kinetics 

and one that does not.  Regardless of the kinetic models used, the predictions from the 
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data are the nearly same: the effects of clumped isotope reordering are insignificant 

below temperatures of ~100 °C on geologic timescales.  This conclusion bears on the 

preservation of primary paleotemperatures from carbonates precipitated at Earth surface 

conditions (e.g., shells), but perhaps more importantly allows prediction of the extent of 

reordering when minerals experience temperatures above 100 °C during deep 

sedimentary burial.  Results demonstrate the potential of carbonate clumped isotope 

thermometry in quantitatively constraining burial histories of sedimentary basins at >2-3 

km in the continental crust.  This application may be seen as an improvement on existing 

semi-quantitative thermal maturity proxies commonly used to constrain the formation of 

oil, gas, and coal.  The predictive clumped isotope reordering models may also be 

employed to screen the sedimentary record for collection localities suitable (or not) for 

paleoclimate studies.  Future research on C-O bond reordering in carbonates should focus 

on whether or not calcites have a universal ‘susceptibility’ to this phenomenon, as well as 

elucidating the mechanism(s) that control the breakage and reforming of 13C-18O clumped 

bonds in the solid mineral lattice. 

 

Finally, in Chapter 4 a compiled and critically evaluated the Phanerozoic clumped 

isotope record for reconstructing global seawater paleotemperatures and oxygen isotope 

compositions.  The emerging record suggests trends that are contrary to convention (e.g., 

Paleozoic temperatures as high as 35 °C in the tropics) and supports the hypothesis that 

seawater δ18O has, on average, not varied from modern values of ~0 ± 2-3‰ over the last 

~450 million years.  Future studies of samples that are well preserved both chemically 

and with respect to clumped isotope reordering, shells test and refine these observations. 
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APPENDICES 
 
A2.1 X-ray diffraction data for mollusk shells 
 
 
 

 

Figure A1.1 X-ray diffraction spectra generated from the shells of a) Nautilus pompilius, 

b) Hiatella arctica, c) Mya truncata, d) Chlamys islandica, e) Astarte crenata, f) Astarte 

borealis, g) Clinocardium ciliatum, h) Phacoides pectinata, and i) Mya arenaria. Peaks 

were qualitatively identified using the Phillips X’Pert Highscore software references for 

aragonite (red, #24-0025 for a-c, g-i and #76-0606 for e,f) and calcite (blue, #89-1304 for 

d). 
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A2.2 Supplementary data table for modern mollusk and brachiopod analyses  

(Table A2.2, see supplemental files) 

A3.1 Derivation of the transient defect/equilibrium defect model 

Here we provide a full derivation of the ‘transient defect/equilibrium defect’ model for 

carbonate clumped isotope reordering as an alterative explanation (to the ‘first-order 

approximation’ model in Section 3.3.3) for the experimental observations in Fig. 3.3a and 

d. We can start with a more complete form of Eq. (3.1) to describe the reordering 

reaction: 

Ca13C 16O3 +Ca
12C 18O16O2

kα ,k← →⎯⎯ Ca13C 18O16O2 +Ca
12C 16O3    (A3.1) 

where the reaction from left to right corresponds to the ordering reaction, and from right 

to left is the disordering reaction. For simplicity, we denote the species in Eq. (A3.1) as 

(from left to right) 61, 62, 63, and 60, in reference to the mass numbers of the carbonate 

ion in each species. Also, for simplicity we do not explicitly include 17O and the 

isotopologues Ca12C17O18O16O, Ca13C16O 17O2, and Ca12C17O3, which together comprise 

only about 6.5% of mass 63 isotopologues (Ghosh et al. 2006a). The following derivation 

is based largely on Criss’ (1999, p. 140–142) treatment for the kinetics of isotopic 

exchange. The rate of change of the clumped species (mass 63) can be written as: 

d63
dt

= kα 61[ ] 62[ ]− k 63[ ] 60[ ]        (A3.2) 

where the brackets denote fractional abundances ([60] + [61] + [62] + [63] ≈ 1). Note that 

at equilibrium, the left term becomes zero, and α is the equilibrium constant: 

α eq =
63[ ]eq 60[ ]eq
61[ ]eq 62[ ]eq

         (A3.3) 

The isotopologue ratios normalized to mass 60 are: 
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R63 = 63[ ]
60[ ] , R62 = 62[ ]

60[ ] , R61 = 61[ ]
60[ ]        (A3.4) 

Combining (?.2) and (?.4) yields: 

d63
dt

= kαR61R62 60[ ]2 − kR63 60[ ]2                  (A3.5a) 

Since the concentration of mass 60 is essentially constant, [60]2 is constant and can be 

subsumed into k, so: 

d63
dt

= k αR61R62 − R63( )                   (A3.5b) 

Differentiation of R63 yields: 

dR63 = d 63[ ]
60[ ] −

63[ ]d 60[ ]
60[ ]2

                  (A3.6a) 

Because [63] is very small (∼6.5 × 10−5), and d[60] = d[63] (from Eq. (A3.1)) and [60] is 

close to 1, the second term on the right side is negligible compared to the first term on the 

right side. Thus: 

dR63 = d 63[ ]
60[ ]                     (A3.6b) 

 

Combining (A3.5b) and (A3.6b), and subsuming [60] into the rate constant, yields: 

dR63 = −k R63 −αR61R62( )dt         (A3.7) 

In a closed system, variation in R63 is due solely to deviation of R63 from the stochastic 

prediction. The natural range of this deviation is on the order of 1.5‰ (Eiler and 

Schauble, 2004), which corresponds to a change of 0.0001‰ (0.1 ppm) in the absolute 

abundance of mass 63 carbonate. According to Eq. (A3.1), the corresponding change in 
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mass 61 and 62 carbonate is the same (∼0.1 ppm), which amounts to ∼0.009‰ and 

∼0.016‰ changes in R61 and R62, respectively. Thus, compared to changes in R63, 

changes in R61 and R62 due to reordering reactions are negligible, and we can approximate 

these ratios as their equilibrium values. Combining (A3.7) and (A3.3) thus yields: 

dR63 = −k R63 − Req
63( )dt         (A3.8) 

where Req
63 is the R63 ratio at thermodynamic equilibrium, and is therefore constant at any 

given temperature. 

 

To account for the rapid initial reaction observed in the experimental data, we propose 

that the rate constant k is related to (1) a time-invariant pool of equilibrium defects of 

concentration Dc with an ability to effect C–O bond reordering (represented by kc), and 

(2) a pool of transient defects of concentration Dd that decreases with time due to defect 

annealing, trapping, or other means of deactivation, with an ability to effect C–O bond 

reordering indicated by kd. Thus equation A3.8 can be recast as: 

dR63

R63 − Req
63 = − kcDc + kdDd( )dt        (A3.9) 

Since Dc is constant, it can be subsumed into the rate constant kc of the equilibrium defect 

pool. Dd is not constant, and although other models are imaginable, we assume that the 

rate of defect disappearance is proportional to the concentration of defects: 

Dd = D0e
−k2t                     (A3.10) 

where D0 is the initial defect concentration, and k2 is a rate constant describing the loss of 

defects with time. Since D0 is constant, it can be subsumed into kd, and therefore: 
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dR63

R63 − Req
63 = − kc + kde

−k2t( )dt                   (A3.11) 

Integration yields: 

ln Rt
63 − Req

63( ) = −kct +
kd
kc
e−k2t +C                  (A3.12) 

At t = 0, Rt
63  = Rinit

63 , the initial R63 of the sample, and therefore: 

ln Rinit
63 − Req

63( ) = kdkc e
−k2t +C                              (A3.13) 

Combining Eqs. (A3.12) and (A3.13) yields: 

ln
Rt
63 − Req

63

Rinit
63 − Req

63

⎛

⎝⎜
⎞

⎠⎟
= −kct +

kd
kc

e−k2t −1( )                             (A3.14) 

which is approximately equivalent to (see Passey and Henkes, 2012, Appendix A): 

ln Δ47
t − Δ47

eq

Δ47
init − Δ47

eq

⎛
⎝⎜

⎞
⎠⎟
= −kct +

kd
kc

e−k2t −1( )                  (A3.15) 

All of the parameters on the left side of the equation can be determined by mass 

spectrometry (or provisionally inferred from theory in the case of Δ47
eq ), leaving the 

parameters kc, kd, and k2 as unknowns. 

 

A3.2 Determination of rate constants in the transient defect/equilibrium defect 

model 

As shown by Eq. (A3.15), the carbonate clumped isotope reordering reaction progress for 

any temperature is related to three rates constants: kc, kd, and k2. Here we describe an 

inverse ‘curve-stripping’ procedure for determining these rate constants that is analogous 

to the approach used to identify different half-lives in mixtures of radioisotopes 
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(Friedlander et al., 1981; see also Appendix B of Passey and Henkes, 2012). For 

convenience, we define a reaction progress term ln(1 − F) as: 

ln 1− F( ) = ln Δ47
t − Δ47

eq

Δ47
init − Δ47

eq

⎛
⎝⎜

⎞
⎠⎟
= −kct +

kd
kc

e−k2t −1( )                (A3.16) 

In the case where k2 ≫ kc, the term e−k2t  becomes negligible at long times t, and Eq. 

(A3.1) reduces to: 

ln 1− F( ) = −kct +
kd
kc

                   (A3.17) 

Therefore a plot of ln(1 − F) versus t will produce straight line arrays whose slope 

correspond to the temperature-dependent values of −kc, and whose intercepts equal 

−kd/k2. Fig. A3.1a shows that this is true for WA-CB-13 at the experimental temperatures, 

indicating that k2 ≫ kc for this material. Note that while the mathematics differ, 

procedurally this is equivalent to the regressions in the first-order approximation model 

(Fig. 3.3a and b; see also Passey and Henkes, 2012). 
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Figure A3.1 (previous page) The scheme for determining reaction rates constants for the 

transient defect/equilibrium defect model. (a) First-order reaction progress (i.e., 

equilibrium defect pool) and best-fit linear regressions plotted as a function of time. 

Empty symbols, which mostly represent early, non-first-order samples, are not included 

in the regressions. The temperatures of the heating experiments are indicated. Gray 

inverted triangle symbols for the 475 °C reaction plot off-axis and closely approach 

equilibrium, and thus are not suitable for inclusion in the regression. (b) Reaction 

progress of the early, non-first order data that represent the annealable transient defect 

pool. (c) Reaction progress data plotted with the full solutions to the transient 

defect/equilibrium defect model (Eq. (?.15), solid lines) for each experimental 

temperature. 

 

In practice, when selecting the points to define the equilibrium defect (linear) behavior, it 

is important to consider that some points at earlier times t may still reflect the evolving 

contribution of the transient pool of defects (i.e., when the transient pool is active), and 

thus should not be included in the regression ( Fig. A3.1a). Conversely, at very long 

experimental times t and high temperatures T the Δ47 values may approach the 

equilibrium Δ47 composition, where analytical error has an increasingly large influence in 

the error of calculated ln(1-F) values (gray data in Fig. A3.1a). Thus, it is important to 

establish a cut-off value for ln(1 − F) below which values are excluded from the 

regression. Admittedly, selection of a cut-off value is somewhat arbitrary, but here we 

use a value of −2.5, which corresponds to the approximate ln(1 − F) for a sample with 

Δ47 = Δ47
equil +1σ  (where 1σ is the analytical precision). We note that the exact value of 
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Δ47
equil  used is dependent on the experimental temperature, so the exact ln(1 − F) value will 

vary slightly. 

 

With values of kc and kd/k2 determined, the influence of the kc pool is then added back to 

each data point, resulting in the quantity ln(1 − F)’: 

ln 1− F( ) ' = ln 1− F( ) + kct =
kd
kc

e−k2t −1( )                 (A3.18) 

Simply stated, ln(1 − F)’ represents the progress of reordering due only to the transient 

defect pool. Eq. (A3.3) can be rearranged to solve for k2 in terms of ln(1 − F)’ and the 

ratio kd/k2: 

k2t = − ln k2
kd

ln 1− F( ) '+ kd
k2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ = − ln(A)                 (A3.19) 

where A is substituted for the terms inside the brackets. Therefore, a plot of ln(A) versus t 

will produce straight line arrays whose slopes correspond to the temperature-dependent 

values of –k2 ( Fig. A3.1b). Values of kd are calculated using k2 values and the ratio kd/k2. 

Finally, the Arrhenius relation (Eq. (3.3)) is used to determine the activation energies and 

frequency factors of each component. Table A3.1 summarizes the rate constants and 

Arrhenius parameters determined for WA-CB-13, the Permian brachiopod calcite, and 

Table A3.2 summarizes the rate constants and Arrhenius parameter determined for MGB-

CC-1, an optical calcite from Passey and Henkes (2012). 
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Table A3.1 Rate constants and Arrhenius parameters determined for the transient 
defect/equilibrium defect model using the Permian brachiopod calcite WA-CB-13. 
Reaction T (°C) Slope (=-kc) (s-1) Intercept R2 SRX Points Used 
Equlibrium defect component   
385 -5.48×10-7 -0.34 - 037, 042 
405 -1.68×10-6 -0.44 - 041, 044 
425 -4.29×10-6 -0.61 1.00 012, 013, 014 
450 -1.25×10-5 -0.74 - 020, 031 
475 -3.50×10-5 -0.87 0.99 017, 021, 029 
kc Arrhenius parameters: Ea = 187.6±2.7 kJ/mol K0 = 4.5×108 [{+27.14/-1.1)×109] s-1, 
R2=0.999 
Transient defect component   
385 -3.30×10-5 -0.16 0.95 034, 036, 040, 043, 047 
405 -5.30×10-5 -0.27 0.88 033, 035, 038, 045, 046 

425 -1.14×10-4 -0.28 0.93 006, 007, 008, 009, 010, 
011 

450 -2.71×10-4 -0.19 0.98 019, 023, 025, 032 
475 -6.14×10-4 -0.11 1.00 016, 026, 027 
kd Arrhenius parameters: Ea = 180.0±5.7 kJ/mol K0 = 2.0×109 [{+34.5/-8.1)×108] s-1, 
R2=0.997 
k2 Arrhenius parameters: Ea = 136.1±3.7 kJ/mol K0 = 1.8×106 [{+13.1/-7.2)×108] s-1, 
R2=0.993 
Note: ± values are the standard errors of error weighted, best-fit linear regressions using 
the statistical software package JMP. 
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Table A3.2 Rate constants and Arrhenius parameters determined for the transient 
defect/equilibrium defect model using the optical calcite MGB-CC-1. 
Reaction T (°C) Slope (=-kc) (s-1) Intercept R2 ‘RDX’ Points Used* 
Equlibrium defect component   
385 -3.18×10-7 -0.27 - 037, 042 
405 -1.40×10-6 -0.32 0.99 169, 173, 177 
425 -2.00×10-6 -0.59 0.97 149, 150, 151, 153 
450 -7.95×10-6 -0.88 0.91 144, 145, 147, 148 
475 -2.98×10-5 -0.79 0.97 112, 113, 114, 115 
kc Arrhenius parameters: Ea = 196.6±19.1 kJ/mol K0 = 1.4×109 [{+37/-1.3)×109] s-1, 
R2=0.97 
Transient defect component   
385 -4.43×10-5 -0.31 0.47 182, 183, 185, 187 

405 -7.68×10-5 -0.30 0.76 168, 171, 175, 176, 178, 
179 

425 -7.07×10-5 -0.46 0.55 152, 154, 166, 167, 170, 
172, 174 

450 -1.29×10-4 -0.33 - 143, 146 
kd Arrhenius parameters: Ea = 133.3±11.9 kJ/mol K0 = 4.5×105 [{+30.8/-3.9)×105] s-1, 
R2=0.999 
k2 Arrhenius parameters: Ea = 47.9±21.2 kJ/mol K0 = 3.2×10-1 [{+1.3/-0.3)×101] s-1, 
R2=0.940 
Note: ± values are the standard errors of error weighted, best-fit linear regressions using 
the statistical software package JMP. 
*Stable isotope data from Passey and Henkes (2012). 
 

From Table A3.1 and Table A3.2 it can be seen that the regressions for the kc component 

are generally good, however, for WA-CB-13 many of the regressions are only defined by 

two points. Regressions for the k2 component are excellent for WA-CB-13, but much less 

so for MGB-CC-1. In future experiments these uncertainties may be remedied by further 

experimentation, particularly in the early and late t range, and greater analytical 

replication (i.e., n > 1–2, Table A3.5). Also troubling is the fact that while equation ?.4 

predicts that the intercept of ln(A) versus t should be zero, we observe intercepts as low 

as −0.5 (Table A3.1 and Table A3.2, Fig. A3.1b). This may indicate the presence of an 

additional, unrecognized reordering component accounting for ∼5–10% of the total 

reordering signal. 
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Finally, Fig. A3.1c shows that the forward model based on the derived Arrhenius 

parameters (Eq. (A3.15)) closely reproduces the observed data for WA-CB-13, with the 

exception of some data-model mismatch in the earliest reaction. This may be related to 

the non-zero intercept in the ln(A) versus t regressions. Nevertheless, we view the model 

as being successful at predicting the observed reordering behavior. 
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A3.3 Brachiopod petrographic screening images and limestone matrix isotopic data 

Figure A3.2. Scanned thin section (a.) and billet (b.) of brachiopod sample MO074 

(cross-sectional view). Collection and taxonomic information is listed in Table 3.1. In a. 

and b. the areas inside the dashed lines are the regions of shell (translucent material) and 

limestone matrix (opaque material) sub-sampled for carbonate clumped isotope analysis. 

The white and black outlined boxes in a. correspond to the plane polarized light (‘PL’) 

and cathodoluminescence (‘CL’) photomicrographs from Mii et al. (1999) (PL2 & CL2) 

and this study (PL1 & CL1, PL3 & CL3). PL1 and CL1 are photomicrograph mosaics 

each composed of 4 overlapping images. The dark, circular area inside the black outlined 

boxes in a. and in PL1 is the sub-sampled region of Mii et al. (1999). 
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Figure A3.3. Scanned thin section (a.), sample billet (b.), and photomicrograph mosaics 

for brachiopod shell MO076 (cross-sectional view). Collection and taxonomic 

information is listed in Table 3.1. The black box in a. corresponds to the 

photomicrograph images in the lower right corner. “PL” stands for plane-polarized light 

and “CL” for cathodoluminesence microscopy. MO076 represents a typical non-

luminescent shell (Table 3.1). The sample billet (b.) was scanned after sub-sampling from 

the areas highlighted by the dotted lines. Both shell and micritic limestone matrix were 

sampled. 
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Figure A3.4. Scanned thin section (a.) and billet (b.) of brachiopod sample MO077 

(cross-sectional view). Collection and taxonomic information is listed in Table 3.1. In a. 

and b. the areas inside the dashed lines are the regions of shell (translucent material) and 

limestone matrix (opaque material) sub-sampled for carbonate clumped isotope analysis. 

The black outlined box in a. corresponds to the plane polarized light (‘PL’) and 

cathodoluminescence (‘CL’) photomicrographs shown in the lower left corner. PL and 

CL are photomicrograph mosaics each composed of 4 overlapping images. The dark, 

circular area inside the black outlined boxes in a. and in PL is the sub-sampled region of 

Mii et al. (1999). 
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Figure A3.5. Scanned thin section (a.) and billet (b.) of brachiopod sample NV008 

(cross-sectional view). Collection and taxonomic information is listed in Table 3.1. In a. 

and b. the areas inside the dashed lines are the regions of shell (translucent material) and 

limestone matrix (opaque material) sub-sampled for carbonate clumped isotope analysis. 

The white boxes in a. correspond to the plane polarized light (‘PL’) and 

cathodoluminescence (‘CL’) photomicrographs shown in the lower right corner. PL1 and 

CL1 are photomicrograph mosaics each composed of 3 overlapping images. PL2 and 

CL2 are also photomicrograph mosaics, but each are composed of only 2 overlapping 

images. 
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Figure A3.6. Scanned thin section (a.) and billet (b.) of brachiopod sample NV014 

(cross-sectional view). Collection and taxonomic information is listed in Table 3.1. In a. 

and b. the areas inside the white dashed lines are the regions of shell (translucent 

material) and limestone matrix (opaque material) sub-sampled for carbonate clumped 

isotope analysis. The white boxes in a. correspond to the plane polarized light (‘PL’) and 

cathodoluminescence (‘CL’) photomicrographs. PL1 and CL1 are photomicrograph 

mosaics each composed of 2 overlapping images. 
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Figure A3.7. Scanned thin section (a.) and billet (b.) of brachiopod sample NV021 

(cross-sectional view). Collection and taxonomic information is listed in Table 3.1. In a. 

and b. the areas inside the dashed lines are the regions of shell (translucent material) and 

limestone matrix (opaque material) sub-sampled for carbonate clumped isotope analysis. 

The white boxes in a. correspond to the plane polarized light (‘PL’) and 

cathodoluminescence (‘CL’) photomicrographs shown in the upper and lower right 

corners. PL1 and CL1 are photomicrograph mosaics each composed of 2 overlapping 

images. 
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Figure A3.8. Scanned thin section (a.) and billet (b.) of brachiopod sample WP58 Inf-1 

(cross-sectional view). Collection and taxonomic information is listed in Table 3.1. In a. 

and b. the areas inside the dashed lines are the regions of shell (translucent material) sub-

sampled for carbonate clumped isotope analysis. The white box in a. corresponds to the 

plane polarized light (‘PL’) and cathodoluminescence (‘CL’) photomicrographs shown 

below a. and b. PL and CL are photomicrograph mosaics each composed of 3 

overlapping images. 
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Figure A3.9. Scanned thin section (a.) and billet (b.) of brachiopod sample WP50b NS-1 

(cross-sectional view looking across the shell length axis). Collection and taxonomic 

information is listed in Table 3.1. In a. and b. the areas inside the dashed lines are the 

regions of shell (translucent material) sub-sampled for carbonate clumped isotope 

analysis. The white box in a. corresponds to the plane polarized light (‘PL’) and 

cathodoluminescence (‘CL’) photomicrographs shown in the lower right corner. PL and 

CL are photomicrograph mosaics each composed of 2 overlapping images. 
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Figure A3.10. Scanned thin section (a.) and billet (b.) of brachiopod sample WP53 NS-1 

(cross-sectional view). Collection and taxonomic information is listed in Table 3.1. In a. 

and b. the areas inside the dashed lines are the regions of shell (translucent material) sub-

sampled for carbonate clumped isotope analysis. The white box in a. corresponds to the 

plane polarized light (‘PL’) and cathodoluminescence (‘CL’) photomicrographs shown in 

the lower right corner. PL and CL are photomicrograph mosaics each composed of 2 

overlapping images. 
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Figure A3.11. Scanned thin section (a.) and billet (b.) of brachiopod sample RU124 

(cross-sectional view). Collection and taxonomic information is listed in Table 3.1. In a. 

and b. the areas inside the white dashed lines are the regions of shell (translucent 

material) and limestone matrix (opaque material) sub-sampled for carbonate clumped 

isotope analysis. The white box in a. corresponds to the plane polarized light (‘PL’) and 

cathodoluminescence (‘CL’) photomicrographs from Mii et al. (2001) shown in the lower 

right corner. PL and CL are photomicrograph mosaics each composed of 2 overlapping 

images. The dark areas inside the white box in a. are the sub-sampled regions of Mii et al. 

(2001).
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Figure A3.12. Scanned thin section (a.) and billet (b.) of brachiopod sample RU129A 

(cross-sectional view). Collection and taxonomic information is listed in Table 3.1. In a. 

and b. the areas inside the white dashed lines are the regions of shell (translucent 

material) and limestone matrix (opaque material) sub-sampled for carbonate clumped 

isotope analysis. The white box in a. corresponds to the plane polarized light (‘PL’) and 

cathodoluminescence (‘CL’) photomicrographs from Mii et al. (2001) shown in the lower 

right corner. The dark area inside the white box in a. is the sub-sampled region of Mii et 

al. (2001). 
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Figure A3.13. Brachiopod-associated matrix carbonate clumped isotope temperatures 

(T(Δ47)) versus calculated water oxygen isotope compositions (δ18Ow). Water oxygen 

isotope values were determined from measured carbonate δ18O and clumped isotope 

temperatures using the calcite-water oxygen isotope thermometry equation of Kim 

and O’Neil (1997). For paleotemperatures >50°C, the equation of O’Neil et al. (1969) 

was used. Details on the Δ47-temperature relationships used to determine the 

temperatures are in Table S2. The gray dashed and dotted lines represent solutions to 

the calcite-water oxygen isotope thermometry equations for constant carbonate δ18O 

values, as noted in the figure. The gray data are the brachiopod calcite data shown in 

Fig. 3.1, where open and half-filled symbols represent pristine and near-pristine 

shells, respectively.   
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A3.4 Supplementary data tables for Carboniferous brachiopod analyses and basin 
history compilations 
 
Table A3.3. Stable isotope compositions of Carboniferous limestones from North 
America and Western Russia associated with brachiopods in Table 3.2. 

Sample ID CL 
Character n δ13C 

(‰, VPDB) 
δ18O 

(‰, VPDB) 
Δ47 

(‰, CDES)* 
Temp. 
(°C)# 

δ18Ow 
(‰, VSMOW) § 

North America       
Fern Glen Formation (upper Mississippi Valley, Missouri, USA), Early Mississippian (348-340 Mya) 
MO074-m L 3 2.83 ± 0.04 -2.19 ± 0.03 0.655 ± 0.015 34 ± 6 0.97 
MO076-m L 3 2.83 ± 0.02 -2.16 ± 0.02 0.677 ± 0.005 26 ± 2 -0.56 
MO077-m L 2 3.23 ± 0.09 -2.08 ± 0.19 0.657 ± 0.000 33 ± 0 0.94 
Bird Spring Formation (Eastern Great Basin province, Nevada, USA), Late Mississippian (333-318 Mya) 
 NV008-m L 2 -0.25 ± 0.11 -4.52 ± 0.00 0.504 ± 0.003 106 ± 2 9.30 
 NV014-m L 3 1.50 ± 0.03 -3.83 ± 0.02 0.509 ± 0.007 102 ± 5 9.63 
 NV021-m L 3 2.48 ± 0.03 -2.51 ± 0.12 0.474 ± 0.008 127 ± 6 13.37 
Western Russia       
Cheremchanskian & Krasnopolyanskian Horizons (Urals Mountains, Russia), Late Pennsylvanian (318 Mya)  
 RU124-m SL 3 3.38 ± 0.09 -4.12 ± 0.05 0.517 ± 0.009 98 ± 5 8.82 
 RU129A-m SL 3 3.49 ± 0.74 -5.75 ± 0.32 0.532 ± 0.022 89 ± 12 6.18 
Note: Error values are standard error of the mean (± =1σ/√n), where 1σ is the standard deviation of n 
analyses. When n = 2 the error value is 1σ (standard deviation). 
*Values relative to the ‘carbon dioxide equilibrium scale’ or CDES. An acid correction factor of 0.092‰ 
was applied to normalize these data to the 25 °C phosphoric acid reaction scale. 
#Paleotemperatures calculated using linear regressions through the theoretical Δ47-temperature relationship 
from Schauble et al. (2006) adjusted for the kinetic effects of calcite phosphoric acid reaction (Guo et al., 
2009). A regression of model predictions from 50-250 °C (Δ47 = 41746/T2 + 0.213) was used for ‘NV’ and 
‘RU’ samples. Error was calculated by propagating the analytical error for Δ47 through this equation. 
§Water isotope compositions calculated using clumped isotope derived paleotemperatures and the calcite 
oxygen isotope thermometry equation of O’Neil et al. (1969): 1000lnα = 2.78 × 106/T2 -3.39. 
 
 
 
 
 
Table A3.4. Minor and trace element contents of reacted and unreacted WA-CB-13 
determined from electron microprobe analysis 
Reaction 

ID n Temp., Time 
(°C, min) 

MgO 
(wt. %) 

MnO 
(wt. %) 

FeO 
(wt. %) 

CaO 
(wt. %) 

CO2
* 

(wt. %) 
Total 

(wt. %) 
unreacted 5 -, - 0.091 ± 0.028 0.012 ± 0.007 0.002 ± 0.002 55.381 ± 0.277 43.971 99.457 
SRX013 5 425, 2880 0.146 ± 0.064 0.008 ± 0.004 0.004 ± 0.004 54.790 ± 0.971 43.971 98.919 
SRX032 5 450, 90 0.133 ± 0.083 0.007 ± 0.007 0.006 ± 0.006 54.473 ± 0.470 43.971 98.591 
SRX022 5 450, 2880 0.129 ± 0.046 0.008 ± 0.009 0.005 ± 0.003 54.22 ± 0.733 43.971 98.334 
Note: All ± values are 1σ standard deviation of n grains of shell material. 2-4 microprobe spots were 
analyzed per grain. Analyses were standardized against concurrent analyses of in-house laboratory 
standards of dolomite, rhodochrosite, siderite, and calcite. 
*Weight percent for CO2 was assigned for calcite.  
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Table A3.5. Stable isotope compositions of WA-CB-13 calcite heating experiments done  
under a dry CO2 atmosphere 

Reaction ID n Temp. 
(°C) 

Time 
(min) 

δ13C 
(‰, VPDB) 

δ18O 
(‰, VPDB) 

Δ47 
(‰, CDES) 

unreacted 3 - - 3.75 ± 0.02 -0.66 ± 0.03 0.669 ± 0.010 
SRX040 1 385 30 3.80 -0.95 0.650 
SRX036 1 385 60 3.78 -0.95 0.637 
SRX047 1 385 120 3.76 -0.86 0.629 
SRX043 2 385 240 3.77 ± 0.02 -0.97 ± 0.06 0.625 ± 0.009 
SRX034 2 385 480 3.76 ± 0.01 -1.00 ± 0.02 0.597 ± 0.021 
SRX037 2 385 1450 3.75 ± 0.04 -0.94 ± 0.02 0.564 ± 0.023 
SRX042 2 385 4320 3.77 ± 0.05 -0.99 ± 0.03 0.543 ± 0.20 
SRX038 1 405 30 3.79 -0.92 0.627 
SRX046 2 405 60 3.74 ± 0.00 -0.96 ± 0.01 0.635 ± 0.009 
SRX045 1 405 120 3.80 -0.98 0.599 
SRX035 2 405 240 3.77 ± 0.02 -0.96 ± 0.02 0.569 ± 0.005 
SRX033 1 405 480 3.78 -0.87 0.558 
SRX041 1 405 1450 3.73 -1.03 0.521 
SRX044 1 405 4320 3.77 -0.96 0.474 
SRX007 3 425 30 3.74 ± 0.01 -0.97 ± 0.01 0.588 ± 0.006 
SRX010 3 425 60 3.74 ± 0.01 -1.01 ± 0.02 0.562 ± 0.003 
SRX009 3 425 90 3.72 ± 0.01 -0.75 ± 0.03 0.557 ± 0.004 
SRX008 3 425 120 3.76 ± 0.01 -1.00 ± 0.04 0.554 ± 0.006 
SRX006 3 425 240 3.72 ± 0.02 -1.04 ± 0.06 0.534 ± 0.012 
SRX011 3 425 480 3.77 ± 0.01 -0.99 ± 0.02 0.496 ± 0.002 
SRX014 3 425 1440 3.72 ± 0.02 -1.03 ± 0.02 0.459 ± 0.007 
SRX013* 3 425 2880 3.75 ± 0.02 -1.08 ± 0.02 0.419 ± 0.006 
SRX012* 3 425 5760 3.75 ± 0.02 -1.00 ± 0.02 0.374 ± 0.008 
SRX025 3 450 30 3.79 ± 0.01 -0.92 ± 0.03 0.553 ± 0.005 
SRX023 2 450 60 3.72 ± 0.03 -1.06 ± 0.07 0.528 ± 0.014 
SRX032 3 450 90 3.76 ± 0.01 -0.99 ± 0.02 0.502 ± 0.002 
SRX019 3 450 120 3.72 ± 0.03 -1.06 ± 0.02 0.489 ± 0.008 
SRX020* 3 450 240 3.75 ± 0.02 -1.05 ± 0.01 0.463 ± 0.006 
SRX031 3 450 1440 3.77 ± 0.02 -1.03 ± 0.02 0.383 ± 0.003 
SRX022 3 450 2880 3.75 ± 0.04 -1.10 ± 0.04 0.354 ± 0.007 
SRX030* 3 450 5760 3.72 ± 0.02 -1.15 ± 0.03 0.322 ± 0.008 
SRX016 3 475 30 3.74 ± 0.02 -1.00 ± 0.04 0.498 ± 0.003 
SRX026 3 475 60 3.73 ± 0.00 -0.99 ± 0.02 0.462 ± 0.009 
SRX027 3 475 90 3.72 ± 0.02 -1.05 ± 0.02 0.446 ± 0.008 
SRX029 3 475 120 3.75 ± 0.01 -1.04 ± 0.02 0.438 ± 0.006 
SRX021* 3 475 240 3.78 ± 0.02 -1.01 ± 0.02 0.407 ± 0.009 
SRX017 3 475 480 3.70 ± 0.01 -1.08 ± 0.00 0.377 ± 0.004 
SRX018 4 475 1450 3.73 ± 0.02 -1.11 ± 0.03 0.344 ± 0.009 
SRX024 4 475 2880 3.71 ± 0.00 -1.10 ± 0.04 0.339 ± 0.010 
SRX015* 4 475 5760 3.74 ± 0.01 -1.09 ± 0.01 0.331 ± 0.003 

Note: Error values are standard error of the mean (± =1σ/√n), where 1σ is the standard deviation of n 
analyses. When n = 2 the error value is 1σ (standard deviation). 
*Samples in which, during the quench to room temperature, a small amount of condensation was observed 
on the inside of the quartz reaction tubes. 
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Table A3.6. Thermal history of Carrara marble from the Alpi Apuane 
metamorphic core complex in the Northern Apennines, Italy. 
Time 
(Ma) 

Temp. 
(°C) 

Temp.  
Uncertainty (°C) Justification 

30.5 20 ± 5 

Deposition of ‘pseudomacigno sandstone’ turbidites, the 
youngest deposits prior to metamorphism; Carmignani 
and Kligfield (1990) (citing biostratigraphy from 
Dallan-Nardi (1977)).   

26 375 ± 25 

K-Ar and 40Ar/39Ar thermochronology of earliest 
compressive deformation phase (D1) micas; Kligfield et 
al. (1986). Uncertainty estimated from the range of 
values reported by Kligfield et al. (1986).    

10 240 ± 40 
Zircon fission-track thermochronology; Fellin et al. 
(2007), Bernet (2002) (as reported by Balestrieri et al. 
(2003)).  

7 180 ± 20 Zircon U-Th/He thermochronology; Fellin et al. (2007), 
Balestrieri et al. (2003) 

5.5 110 ± 20 
Apatite fission-track thermochronology; Carmignani 
and Kligfield (1990), Balestrieri et al. (2003), Fellin et 
al. (2007) 

5 70 ± 10 Apatite U-Th/He thermochronology; Fellin et al. (2007) 
0 20  Approximate present day temperature 
Note: Temperature uncertainty for each thermochronometer estimated from Reiners (2005) based  
on typical cooling rates and crystal sizes. 
 
Table A3.7. Burial temperature history for Arrow Canyon, Nevada, USA. 
Time 
(Ma) 

Temp. 
(°C) 

Temp. 
Uncertainty (°C) Justification 

318 25 ± 5 Approximate age based on biostratigraphy; Bishop et al. (2009, 
2010). 

311 30  
Rapid burial in the Antler foreland basin. Temperatures based on 
sediment decompaction estimates for Pennsylvanian strata and a 
geothermal gradient of 25 °C/km (Martin et al., 2012). 

308 43  
307 50  
305 53  
299 55  

250 135 ± 35 

Maximum burial temperature based on conodont CAI in Arrow 
Canyon (= 2.0-2.5; Martin et al., 2012)1. Values in Martin et al. 
(2012) cited as personal communication with B. Wardlaw. 
Timing based on the activation of the Sonoma Orogeny in the 
eastern Great Basin province (Dickinson, 2006). Temperature 
uncertainty estimated from interpolation between CAI 2 and CAI 
3 in Epstein et al. (1977). 

25 42.5 ± 12 

Basin & range tectonics drove uplift to ~0.5 km burial depths in 
the eastern Great Basin. Uncertainty estimated assuming ± 0.5 
km burial depth. Temperatures calculated using a geothermal 
gradient of 25 °C/km. 

0 21  Present day formation temperature estimated from mean annual 
air temperature (NOAA, Las Vegas, NV). 

1Garside & Hess (2007) show CAI values of >3 for Carboniferous conodonts in the Arrow Canyon range,  
which suggest higher burial temperatures ranging from 110-200 °C.	
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Table A3.8. Burial temperature history for Carboniferous strata in the Uralian foredeep 
along eastern margin of the Russian Platform, Russia. 
Time 
(Ma) 

Temp. 
(°C) 

Temp. 
Uncertainty (°C) Justification 

315 20 ± 5 Age and paleotemperature estimated from Mii et al. (2001) and 
Grossman et al. (2002). 

295 100 ± 40 

Burial temperatures from Carboniferous CAI values of ~2 and 
vitrinite reflectance values of  ~1% in the southern Uralian 
foredeep (Matenaar et al., 1999)1. Temperature uncertainty 
estimated from Arrhenius plots in Epstein et al. (1977). 

260 90 ± 30 

High burial temperatures persisted until at least the Permian based 
on vitrinite reflectance values of 0.8-0.9% in lower Permian rocks 
(Matenaar et al., 1999)1. Temperature uncertainty estimated from 
mean range values presented in Epstein et al. (1977). 

210 70 ±10 General scheme for post-Uralian Orogeny exhumation 
(Glasmacher et al. 2002). Temperatures calculated assuming at 
geothermal gradient of 25 °C/km. 15 60 ±10 

0 ~5  Present day formation temperature estimated from mean air 
temperature for Yekaterinburg, Russia. 

1Stratigraphic coherence between the Sokol section, the brachiopod collection locality in this study, and 
Carboniferous sections in the southern Ural Mountains sampled by Matenaar et al. (1999) is confirmed by  
Proust et al. (1998).	
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Table A3.9. Burial temperature histories for mid-Carboniferous strata in the  
southern Illinois basin, IL, USA  

Time (Ma) Temp. 
(°C) Justification 

‘Burial only’ model, Rowan et al., 2002, Fluorspar District 

320 25 Chesterian age for the Grove Church Formation (Flake, 2011) 
and approximate paleotemperature from Grossman et al. (2008). 

310 50  
290 60 Relatively high (0.09-0.14 mm/yr) sedimentation rates were 

assumed in the model for this interval . 280 100 

270 135 

Maximum burial temperature coincident with middle Permian 
ore deposition. Value in general agreement with the approximate 
range of fluid inclusion homogenization temperatures (~130-150 
°C) and Herrin Coal vitrinite reflectance values. 

260 100 Relatively high (0.09-0.14 mm/yr) erosion rates were assumed in 
the model for this interval. 250 60 

160 50  
0 25  
‘Hybrid’ (burial +hydrothermal fluid flow) model, Rowan et al., 2002, Fluorspar District	
  

320 25 Chesterian age for the Grove Church Formation (Flake, 2011) 
and approximate paleotemperature from Grossman et al. (2008). 

300 60 
During the Permian burial reaching a maximum depth of 1.3 km 
in the southern parts of the basin. In the model the southern end 
of the Illinois Basin dwells at this depth until 160 Ma. 

295 60 
290 70 
280 75 
275 95 To simulate the effects of lower Permian magmatism at the 

southern end of the basin, basal heat flow in the model was 
increased from 62.5 to 155 W/m2. 270 175 

265 110  
260 95  
160 95 Fluid flow rates into the Illinois Basin decline after the uplift of 

the Pascola arch. 60 70 
10 60  
0 25  
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Table A3.10. Burial temperature history for upper Pennsylvanian strata in the  
Appalachian Basin, WV, USA. 
Time 
(Ma) 

Temp. 
(°C) 

Temp. 
Uncertainty (°C) Justification 

305 25 ± 5 
Virgilian age of the Ames Formation (Flake, 2011 and 
references therein) and approximate paleotemperature 
from Grossman et al. (2008).  

263 145 ± 10 

Vitrinite reflectance and fluid inclusion homogenization 
thermometry from Reed et al. (2005), similar maximum 
burial temperatures found by Mora et al. (1998). 
Uncertainty estimated from the range of measured 
values in Reed et al. (2005). 

142 100 ± 20 Apatite fission track thermochronology data from 
Blackmer et al. (1994), reported by Reed et al. (2005). 

89 60 ± 10 

Apatite (U-Th)/He thermochronology data from Reed et 
al. (2005). Uncertainty estimated from Reiners (2005) 
based on the published cooling rate and He diffusion 
domain size in apatite.  

0 19  Average present day formation temperature reported by 
Reed et al. (2005) 

Note: This burial temperature history for Pennsylvanian strata in West Virginia generally agrees  
with the maximum burial depths of Pennsylvanian strata in southwestern Pennsylvania  
(Blackmer et al., 1994) and eastern Ohio (Caudill et al., 1997). 
 
 
Table A3.11. Burial temperature history for early Mississippian strata in the U.S. 
Midcontinent (MO, USA). 

Time 
(Ma) 

Temp. 
(°C) 

Temp. 
Uncertainty (°C) Justification 

345 25 ± 5 Age and approximate paleotemperature from Mii et al. 
(1999). 

330 38 ± 5 
Crystal morphology and geochemistry of early cements 
suggest burial depths no greater than 0.5 km (Zones II-
IV, II’; Kaufman et al. (1988)1.  

320 50 ± 10 

Vitrinite reflectance thermometry from shales in the 
Burlington-Keokuk Formation, which overlies the 
lower Osagean carbonates in Missouri, indicates a 
maximum burial depth of ~1 km1,2. 

305 50 ± 10 
Coal-rank data from Pennsylvanian coals 
unconformably overlying the Burlington-Keokuk 
Formation2.  

0 10 
 Present day formation temperature estimated from 

mean annual air temperature (NOAA, Quad Cities, 
IA/IL). 

1Temperature calculated assuming a geothermal gradient of 25 °C/km, and uncertainty estimated by  
assuming ± 10 °C/km variation in the geothermal gradient. 
2Interpretation from Kaufman et al. (1988) and Banner & Kaufman (1994) but no vitrinite 
reflectance data are actually presented in these papers. Coal-grade data and a burial history curve 
are cited as unpublished data by O. Cox. 
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A3.5 Supplementary data table for Carboniferous brachiopod analyses 

(Table A3.12, see supplemental files) 
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A4.1 Brachiopod petrographic screening images  

Figure A4.1. Scanned thin section (a) and billet (b) of brachiopod IA115 (cross-sectional 

perspective). Taxonomic information is listed in Table A4.1. Sample originally collected 

by Mii et al. (1999). In (a) and (b) the areas inside the dashed lines are regions of shell 

(translucent material) and limestone matrix (opaque material) sub-sampled for carbonate 

clumped isotope analysis. The white outlined boxes in (a) correspond to the plane 

polarized light (‘PL’) and cathodoluminescence (‘CL’) photomicrographs from Mii et al. 

(1999) (PL1 and CL1) and this study (PL2 and CL2). PL2 and CL2 are photomicrograph 

mosaics each composed of 3 overlapping images and were captured using methods 

described in Section 3.2.1. The dark, circular area inside the white outlines in (a) is the 

sub-sampled region of Mii et al. (1999).  
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Figure A4.2. Scanned thin section (a) and billet (b) of brachiopod IA144 (cross-sectional 

perspective). Taxonomic information is listed in Table A4.1. Sample originally collected 

by Mii et al. (1999). In (a) and (b) the areas inside the dashed lines are regions of shell 

(translucent material) and limestone matrix (opaque material) sub-sampled for carbonate 

clumped isotope analysis. The white outlined box in (a) corresponds to the plane 

polarized light (‘PL’) and cathodoluminescence (‘CL’) photomicrographs from Mii et al. 

(1999). The dark, circular area inside the dashed lines in (a) is the sub-sampled region of 

Mii et al. (1999).
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Figure A4.3. Scanned thin section (a) and billet (b) of brachiopod IA146 (cross-sectional 

perspective). Taxonomic information is listed in Table A4.1. Sample originally collected 

by Mii et al. (1999). In (a) and (b) the areas inside the dashed lines are regions of shell 

(translucent material) and limestone matrix (opaque material) sub-sampled for carbonate 

clumped isotope analysis. The white outlined boxes in (a) correspond to the plane 

polarized light (‘PL’) and cathodoluminescence (‘CL’) photomicrographs from Mii et al. 

(1999) (PL1 and CL1) and this study (PL2 and CL2). PL2 and CL2 are photomicrograph 

mosaics each composed of 3 overlapping images and were captured using methods 

described in Section 3.2.1. The dark, circular area inside the dashed lines in (a) is the sub-

sampled region of Mii et al. (1999). 
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Figure A4.4. Scanned thin section (a) and billet (b) of brachiopod IA197 (cross-sectional 

perspective). Taxonomic information is listed in Table A4.1. Sample originally collected 

by Mii et al. (1999). In (a) and (b) the areas inside the dashed lines are regions of shell 

(translucent material) and limestone matrix (opaque material) sub-sampled for carbonate 

clumped isotope analysis. The white outlined boxes in (a) correspond to the plane 

polarized light (‘PL’) and cathodoluminescence (‘CL’) photomicrographs from Mii et al. 

(1999) (PL1 and CL1) and this study (PL2 and CL2). PL2 and CL2 are photomicrograph 

mosaics each composed of 2 overlapping images and were captured using methods 

described in Section 3.2.1. The two dark areas inside the white boxes in (a) are the sub-

sampled regions of Mii et al. (1999). 
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Figure A4.5. Scanned thin section (a) and billet (b) of brachiopod RU001 (cross-

sectional perspective). Taxonomic information is listed in Table A4.1. Sample originally 

collected by Mii et al. (2001). In (a) and (b) the areas inside the dashed lines are regions 

of shell (translucent material) and limestone matrix (opaque material) sub-sampled for 

carbonate clumped isotope analysis. The white outlined box in (a) corresponds to the 

plane polarized light (‘PL’) and cathodoluminescence (‘CL’) photomicrographs from Mii 

et al. (2001). The dark, circular areas inside the white outlines in (a) are the sub-sampled 

regions of Mii et al. (2001).
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Figure A4.6. Scanned thin section (a) and billet (b) of brachiopod RU010 (cross-

sectional perspective). Taxonomic information is listed in Table A4.1. Sample originally 

collected by Mii et al. (2001). In (a) and (b) the areas inside the dashed lines are regions 

of shell (translucent material) and limestone matrix (opaque material) sub-sampled for 

carbonate clumped isotope analysis. The white outlined box in (a) corresponds to the 

plane polarized light (‘PL’) and cathodoluminescence (‘CL’) photomicrographs from Mii 

et al. (2001). The dark, circular area inside the dashed line in (a) is the sub-sampled 

region of Mii et al. (2001).	
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Figure A4.7. Scanned thin section (a) and billet (b) of brachiopod RU053 (cross-

sectional perspective). Taxonomic information is listed in Table A4.1. Sample originally 

collected by Mii et al. (2001). In (a) and (b) the areas inside the dashed lines are regions 

of shell (translucent material) and limestone matrix (opaque material) sub-sampled for 

carbonate clumped isotope analysis. The black outlined boxes in (a) correspond to the 

plane polarized light (‘PL’) and cathodoluminescence (‘CL’) photomicrographs from Mii 

et al. (1999) (PL1 and CL1) and this study (PL2 and CL2). Photomosaic pairs 2 and 3 

were captured using methods described in Section 3.2.1. The dark, circular areas in (a) 

are the many sub-sampled regions of Mii et al. (2001). 
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Figure A4.8. Scanned thin section (a) and billet (b) of brachiopod RU054 (cross-

sectional perspective). Taxonomic information is listed in Table A4.1. Sample originally 

collected by Mii et al. (2001). In (a) and (b) the areas inside the dashed lines are regions 

of shell (translucent material) and limestone matrix (opaque material) sub-sampled for 

carbonate clumped isotope analysis. The black outlined boxes in (a) correspond to the 

plane polarized light (‘PL’) and cathodoluminescence (‘CL’) photomicrographs from Mii 

et al. (1999) (PL3 and CL3) and this study (PL1 & CL1, PL2 & CL2, and PL4 & CL4). 

PL2 and CL2 are photomicrograph mosaics each composed of 2 overlapping images and 

were captured using methods described in Section 3.2.1. The two dark, circular areas 

inside the dashed white lines in (a) are the sub-sampled regions of Mii et al. (2001). 
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Figure A4.9. Scanned thin section (a) and billet (b) of brachiopod RU055 (cross-

sectional perspective). Taxonomic information is listed in Table A4.1. Sample originally 

collected by Mii et al. (2001). In (a) and (b) the areas inside the dashed lines are regions 

of shell (translucent material) and limestone matrix (opaque material) sub-sampled for 

carbonate clumped isotope analysis. The black outlined boxes in (a) correspond to the 

plane polarized light (‘PL’) and cathodoluminescence (‘CL’) photomicrographs from Mii 

et al. (2001) (PL1 & CL1 and PL2 & CL2).  
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Figure A4.10. Scanned thin section (a) and billet (b) of brachiopod RU071 (cross-

sectional perspective). Taxonomic information is listed in Table A4.1. Sample originally 

collected by Mii et al. (2001). In (a) and (b) the areas inside the dashed lines are regions 

of shell sub-sampled for carbonate clumped isotope analysis. The black outlined box in 

(a) corresponds to the plane polarized light (‘PL’) and cathodoluminescence (‘CL’) 

photomicrographs from Mii et al. (2001). The dark, circular areas inside the black outline 

in (a) are the sub-sampled regions of Mii et al. (2001). 
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Figure A4.11. Scanned thin section (a) and billet (b) of brachiopod RU073 (cross-

sectional perspective). Taxonomic information is listed in Table A4.1. Sample originally 

collected by Mii et al. (2001). In (a) and (b) the areas inside the dashed lines are regions 

of shell sub-sampled for carbonate clumped isotope analysis. The white outlined box in 

(a) corresponds to the plane polarized light (‘PL’) and cathodoluminescence (‘CL’) 

photomicrographs from Mii et al. (2001). The dark, circular areas inside the white outline 

in (a) are the sub-sampled regions of Mii et al. (2001). 
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Figure A4.12. Scanned thin section (a) and billet (b) of brachiopod RU071 (cross-

sectional perspective). Taxonomic information is listed in Table A4.1. Sample originally 

collected by Mii et al. (2001). In (a) and (b) the areas inside the dashed lines are regions 

of shell sub-sampled for carbonate clumped isotope analysis. The white outlined box in 

(a) corresponds to the plane polarized light (‘PL’) and cathodoluminescence (‘CL’) 

photomicrographs from Mii et al. (2001). The dark, circular areas inside the white outline 

in (a) are the sub-sampled regions of Mii et al. (2001). 

A4.2 Supplementary data tables for the Phanerozoic carbonate clumped isotope 

record from brachiopod and mollusk shells 

(Tables A4.1, A4.2, and A4.3, see supplemental files) 
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the carbonate clumped isotope compositions of Late Paleozoic marine fossils” with BH Passey, EL 
Grossman, A Pérez-Huerta, B Shenton, and TE Yancey. 
 
April 2013, Society for American Archaeology 78th Annual Meeting, Honolulu, HI, USA 
Invited talk: “Carbonate clumped isotope thermometry of archaeological shell from the Chesapeake 
Bay” with TC Rick and BH Passey. 
 
January 2013, 3rd International Workshop on Clumped Isotopes, Cambridge, MA, USA 
Talk: “Empirical and experimental evidence of 13C-18O bond reordering in Paleozoic brachiopod shells” 
with BH Passey, EL Grossman, TE Yancey, and B Shenton. 
 
June 2012, The 22nd V.M. Goldschmidt Conference, Montreal, Canada 
Talk: “Clumped isotope thermometry of Carboniferous brachiopods and the effects of burial heating” 
with EL Grossman, TE Yancey, and BH Passey.  
 
July 2011, The XVII International Congress on the Carboniferous and Permian, Perth, Australia 
Poster: “Clumped isotope geochemistry of Carboniferous brachiopods: Early lessons from a novel 
paleothermometer” with BH Passey, EL Grossman, and TE Yancey.  
 
December 2010, American Geophysical Union Fall Meeting, San Francisco, CA, USA 
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Invited talk: “Clumped isotope thermometry of modern and early Cretaceous molluscan carbonate from 
high-latitude seas” with GD Price, WG Ambrose Jr., ML Carroll, and BH Passey. 
 
December 2007, American Geophysical Union Fall Meeting, San Francisco, CA, USA 
Poster: “Tracing environmental variation of the past 130 years in the Barents Sea: Mineral ratio (Mg/Ca, 
Sr/Ca, Ba/Ca, Mn/Ca) evidence in shells of the circumpolar Greenland cockle, Serripes groenlandicus” 
with WG Ambrose Jr., BJ Johnson, ML Carroll, KW McMahon, SG Denisenko, TR Thorrold. 
 
July 2007, 1st International Sclerochronology Conference, St. Petersburg, FL, USA 
Poster: “Environmental conditions in a Norwegian high-Arctic fjord: Evidence from Serripes 
groenlandicus (Bivalvia) growth rates and shell organic carbon isotope compositions” with BJ Johnson, 
WG Ambrose Jr., KW McMahon, ML Carroll, and H Hop. 
 
Spring 2007, New England Estuarine Research Society Spring Meeting, Boothbay, ME, USA 
Poster: “Annual growth variations and shifts in the δ13C signal in shell organic matter of the Greenland 
cockle, Serripes groenlandicus”, an indicator of changing primary productivity in the Arctic Ocean?” 
with BJ Johnson, WG Ambrose Jr., KW McMahon, ML Carroll, and H Hop. 
 
Invited Seminars 
 
2014 University of Georgia, Center for Applied Isotope Studies 
2014 Carnegie Institution of Washington, Geophysical Laboratory, informal talk 
2014 National Institute of Standards and Technology, Gas Metrology Group 
2014 Texas A&M University, Department of Geology & Geophysics, informal talk 
 
Professional Memberships 
 
American Geophysical Union, Geochemical Society, American Association of Petroleum Geologists, 
Society for American Archaeology 
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