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Abstract

During the past decades, there has been a growing body of research on the de-

velopment of new methodologies in system sciences in public health. While systems

thinking is prevalent in the practice of public health, there is a need for tools to

quantify the multidimensional and multidisciplinary aspects of such thinking. In this

thesis, we focus on two system science methods: Agent-Based Modeling (ABM) and

System Dynamics (SD).

We begin with an ABM to simulate the effects of an urban food desert environment

on school-aged children. The data that was used to inform this model is based on

children in low-income neighborhoods of Baltimore City. The baseline model was used

to predict changes in body mass index due to eating behaviors of simulated children

interacting with their food environment. The model was then used as a virtual

social laboratory by introducing interventions into the environment and assessing

their effects on child behaviors and weight gains.

For our second application of systems science, we developed an SD model to study

the stability of community functioning (CF) after a natural disaster. We define CF
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ABSTRACT

as a measure of a broad range of community activities in providing services to its

residents. We studied the dynamic response of CF post-disaster from two different

aspects: resilience, which indicates the speed of recovery after event, and resistance,

which measures the degree to which a community can continue to function during the

event. Key components that support or reduce CF were identified and were quantified

as variables in a system of ordinary differential equations. The data for the model was

obtained at the county level for 3143 United States counties, and the model results

for resilience and resistance ratings were presented in a series of maps so that the

regional patterns of our findings could be visualized.

Finally, our last application was an SD model applied in a different public health

context: an analysis of the mechanisms underlying the health system in Afghanistan

between 2010 and 2012. We were interested in the Pay-for-Performance (P4P) in-

tervention, in which relatively small health facilities were given bonus payments as a

reward for year-to-year improvements in quality and quantity of health services. A

recently published data analysis of the P4P intervention showed no improvement in

health services. By working with some of the researchers who participated in this

intervention, we were able to develop causal loops in the system associated with some

of the key interactions that were generated within the health facilities. We then syn-

thesized these loops into a model of differential equations with delays. We were able

to generate several scenarios that indicate that the failure of P4P may be caused by

poor implementation processes and gaming within the system.
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In summary, we demonstrate how ABM and SD can naturally embody systems

thinking into a quantitative form, and can produce a wide array of numerical and

visual results that capture the complex processes that characterize public health.

Primary Reader: Professor Takeru Igusa

Secondary Reader: Professor Benjamin Schafer and Professor James Guest
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Chapter 1

Introduction

1.1 Motivation and Background

The mission and scope of public health has been evolving at an ever increasing

pace. Traditionally, public health was considered as a discipline that studies the con-

trol of contagious diseases by means of sanitation and vaccination.1 Nowadays, public

health studies large-scale solutions to promote the welfare of communities and pop-

ulations by using multidisciplinary approaches, involving applied science, education,

economics, social sciences, and management.1 For example, while a physician would

work on medical methods to treat obesity patients, public health researchers would

explore the links between obesity and food environment, social network influences

and inactivity, and then propose systematic strategies to reduce the prevalence of

obesity.
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By nature, many public health problems can be characterized as dynamic com-

plex systems. The methodologies of system sciences are well suited to study such

problems, and have recently been gaining acceptance in academics and in practice.

System science is an interdisciplinary field that studies integrated components with

the following properties:2

1. The components are heterogeneous.

2. Multiple patterns of interaction exist among the components.

3. High-level emergent features are generated from these components and their

interactions; these emergent features cannot be found by separate analyses of

the individual components.

4. Behaviors of an isolated component are relatively straightforward to study, while

the emergent behaviors may be complex.

In this thesis we demonstrate the applications of two modeling methods of system

science, System Dynamics (SD) and Agent Based Modeling (ABM), on the analysis of

several public health systems. In the remainder of this chapter, we briefly summarize

these methods.
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1.2 System Dynamics (SD)

There are three types of components involved in SD models and they are explained

as below.

Stock Stocks are continuous variables that represent the time-dependent state of a

system. Stocks change with respect to time or other independent variables, and

their rates of change are influenced by other components of the system.

Flow Stocks are often described as quantities of water in tanks; in this analogy,

flows are the movements of this water through pipes connecting these tanks.

Mathematically, flows are the time derivatives of stocks that result in time-

varying stocks.

Causal loop The value of a flow can be affected by other variables in the system,

and these relationships are indicated by causal arrows. If the affecting variable

is a stock that is the origin or destination of the flow, then the corresponding

causal arrow and associated flow form a feedback loop. There is an important

distinction between flow and feedback loop: flow involves a depletion of the

originating stock and an accumulation of the destination stock, while a feedback

loop involves a connected sequence of influences between variables that may

involve stocks, flows and other interacting variables.

SD models are suitable to solve problems with these properties:

3
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1. Each individual component is relatively simple to understand and quantify.

2. The system behaviors are determined by interactions of component behaviors.

3. Behaviors of the components are dynamic, with changes with respect to time

or other independent variable.

1.3 Agent Based Modeling (ABM)

Agent based modeling (ABM) is a simulation technique that builds the model

from bottom up by capturing the properties and behaviors of abstract entities known

as “agents.”3 Similar to the concept of “class” in many object-oriented programming

languages, each agent in an ABM possesses properties and behaviors, and can au-

tonomously act according to the environment and other agents in the model. In many

ABMs, the interactions between agents generate emergent behaviors that can only

be described at the system level. No single agent exhibits these emergent behaviors.

An example would be the flock formation of birds,4 in which the bird flock exhibits

properties as if it is a self-governing organism. Usually the emergent behaviors are

difficult to study directly as compared with individual behaviors of a single agent;

ABMs are well-suited to analyze these types of complex systems.

An agent in an ABM is a simplification of its counterpart in the real world. If

given unlimited computation resources and data that can be used to describe agent

behaviors no simplification would be necessary. While the simplification should be

4
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sufficient to make the model computationally viable, there is always a risk of over-

simplification, in which we lose important properties or behaviors that the real world

counterpart possesses and an accurate model requires.

1.4 Thesis overview

In Chapter 2 we develop an agent-based model to simulate the effects of the

food environment on childhood obesity in a low-income urban area. In Chapter 3

we study the factors affecting community resilience and develop a model to predict

the time-course of community functioning in response to a hypothetical event for

every county in the United States. In Chapter 4 we develop an SD model to study

a Pay-For-Performance intervention for improving health care at the facility level in

Afghanistan and to explain why expected outcomes did not occur and suggest how

it can be improved.
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Chapter 2

Agent-Based Models for Childhood

Obesity Simulation

Notation

ABM Agent Based Model

BLIFE Baltimore Low-Income Food Environment model

BM Body Mass

BMI Body Mass Index

CDC Centers for Disease Control and Prevention

CO Carryout store

6
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CS Corner Store

EI Energy Intake

EX Energy Expenditure

GIS Geographic Information System

GUI Graphic User Interface

SD System Dynamics

SU Supermarket

UML Unified Modeling Language

2.1 Introduction

Childhood obesity has increased dramatically in the United States over the past

three decades.5–8 Although overweight children from all backgrounds are more likely

to become obese in adulthood compared to their thinner counterparts,9,10 this pattern

is most pronounced in racial/ethnic minority groups such as African Americans and

groups of lower socioeconomic status.11,12 The etiology of the disparities in childhood

obesity is complex and multi-faceted, but research indicates that environmental fac-

tors including the “food environment” may shape eating preferences particularly in

7



CHAPTER 2. AGENT-BASED MODELS FOR CHILDHOOD OBESITY
SIMULATION

low-income and minority urban communities. In these communities, the “food envi-

ronment” may contain fewer locations that offer healthy food and beverages leading

to fewer healthy choices for both adults and children.13

An increasing number of studies aim to understand the impact of the food environ-

ments on “child dietary behaviors or dietary patterns,” meaning the choices children

make about what to eat and drink throughout the course of a day.14 While a large

body of evidence demonstrates the impact of the home and school environments on

child dietary behaviors,15–17 much less is known about the impact of after-school food

environments. Food and beverage choices made outside of school are important to

assess as they may contribute to excess calories, particularly in urban low-income

neighborhoods where high-calorie, energy-dense foods are readily available.18 There

have also been efforts to characterize child dietary behaviors in a given neighborhood

food environment,14,19–22 but these types of traditional epidemiological studies are

limited in their ability to account for the complex factors that drive dietary behav-

iors.23

Computational modeling approaches have previously been used to study the obe-

sity epidemic. Fallah-Fini et al24 developed a system dynamics (SD) model to esti-

mate the energy gap for each gender-race-BMI group, and found out that intervention

should be specially designed for each sub-population. Finegood et al used simplified

versions of the Foresight Obesity System Map to build SD models.25 Other researches

include.26,27 However, SD based models lack the ability to assess the interaction be-
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tween food environment and people.

ABM has found its applications in game theory,28,29 social science,30–32 computa-

tional economics,33 urban planning,34,35 and public health.36 ABMs simulate the com-

plex behavior of a given system composed of agents with relatively simple properties

and behavioral rules. Agents respond to other agents and the modeled environment,

and this autonomous and dynamic nature allows for the study of emergent outcomes

or higher-order properties (i.e., properties that arise from agents’ interactions).

Just as environment shapes human behavior, the obesogenic environment shapes

obesity prevalence. Edwards and Clarke demonstrated that the important obesogenic

variables are age, gender, deprivation, ethnicity, qualification, and tenure.37 It is also

essential to incorporate spatial heterogeneity in obesity ABM, since the food envi-

ronment, physical activities, and outcomes of intervention policies are all determined

largely by geographical information. The ABM built by Widener, et al38 simulated

effects of multiple policies on healthy food purchasing of low-income households in

Buffalo, NY. This study confirms that it is important to consider spatial as well as

non-spatial factors when analyzing the impact of healthy food availability on pur-

chasing behaviors in low-income neighborhoods.

The goal of this chapter is to describe the design and structure of an agent-based

model (ABM) that simulates the after-school dietary behaviors of children aged 10

to 14 years old and their obesity risk in an urban food desert environment. The

developed ABM can be employed to conduct experiments in a controlled environment

9
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to better understand and evaluate the dynamic interactions of child food-foraging

among various food sources encountered after school hours.

2.2 Modeling obesity

2.2.1 Overview

The Baltimore Low Income Food Environment (BLIFE) 1.0 model was built using

the NetLogo platform. NetLogo is a general-purpose coding language with an Inte-

grated Development Environment (IDE) for agent based modeling.39 In the BLIFE

ABM, agents move and interact with the food environment, which is modeled with

GIS (Geographic Information System). Agents representing children are programmed

to interact with GIS-specified streets, homes, schools, recreation centers, and food

sources. These agents travel the streets between their homes and schools, and they

visit recreation centers and food sources mainly according to proximity to their com-

muting paths. Each agent contains a set of sub-models that compute weight changes

associated with caloric intake and energy expenditure. Height growth trends are sim-

ulated by tracking the CDC growth charts40 and assume continued growth along the

starting trajectory. The ABM also incorporates the effects of quality (varieties of

different healthy foods) of each food source in the environment on agents’ outcomes.

The energy intake of each agent is affected by the quality of the food at the food

source. For example, increasing the quality of the food source may result in healthier
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food consumption, which in turn reflected by reduced caloric intake.

The current version of the ABM is a relatively small-size model. The detailed

information concerning size and scale is available in Table 2.1.

Table 2.1: Size and scale of BLIFE AMB 1.0

Item Number Contained within the Model
Number of children 200 (106 female and 94 male)

Number of food sources 313 (CO: 94; CS: 274; SU: 17)
Number of schools 51

Number of recreation centers 7
Spatial resolution 121 by 81 patches

Number of iterations 1825 (days; total 5 years)

2.2.2 Agent mode of child

Each agent is an autonomous individual or collective entity that can act and inter-

act with the other agents. Child agents are considered to be simulated humans that

have memory and exhibit some aspects of intelligent behaviors. The UML (Unified

Modeling Language) diagram of a child agent is shown in Figure 2.1.

2.2.2.1 State variables

A list of state variables is shown in Figure 2.1. The model uses baseline data

collected from a sample of Baltimore City youth 10-14 years old in 2013-2014.41 At

the beginning of the simulation, all of the properties of the child agents are set to

the status (same height, weight, age and gender) of the Baltimore City youth at the

initial point of the survey. To protect the identities of the youths, the ages were
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Figure 2.1: UML diagram of a child agent

rounded to years, and the home locations were randomly generated. Schools were

assigned according to the placement of the randomly generated home locations with

respect to the school catchment regions.
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2.2.2.2 Dailyactivities

Store activities Rec center
activities

Gain
weight

Walk
to School
from Home

Walk
back Home

Gain calories
of healthy
food

Gain calories
of unhealthy
food

Lose energy due
to exercise

Choose a kind of
exercise

Total calories =
+ school
+ store
- walking
- exercises

Calculate weight
increment based
on total calories

Stop by
Rec center?

Stop by
Stores?

Choose
healthy?

Yes

No

Yes

No

Choose
a store

Another
Store ?

Yes

No

No

Yes

Choose
food types

Themodelsimulatesobesityiteratively,inwhichacycleisonesimulatedday.

Eachday,thechildagentswalkfromhometotheirrespectiveschools. Ontheway

backhome,theydecidewhetherornottostopatoneormorefoodsourcesand/or

recreationcentersaccordingtotheirpreferenceparameters.Theseparameters,mea-

suredbythesurveyofBaltimoreCityyouthandde-identifiedasnotedintheendof

Section2.2.2.1,areshowninFigure2.2.Atthebeginningofeachday,thechildren

resettheircountersofwalkingdistanceandcalorieintaketozeroandproceedtogain

weightandheightcumulativelyuntiltheendoftheday.

Figure2.2:Diagramofachild’sdailyactivities
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2.2.2.3 Behavioral rules

The location of the agent’s school is based on age and school catchment. The

model assumes that children only attend schools within walking distance (0.5 mile)

of their homes. In the current version of the ABM children attend schools of the same

type. Due to lack of data on recreation center visits, we assume that all children go

to a recreation center with the same constant probability (20%). If a child decides to

visit a recreation center, then he or she will choose the one closest to their home.

Agents select a food source based on proximity and preferences that were collected

through child interviews, including a food-frequency questionnaire and child-impact

questionnaire.41 We used these data to calculate preference factors for each food

source type for each agent. Based on the preference factors and proximity, each agent

gets a list of food sources to visit. Foods options at each food source are scored based

upon food availability, price, training, and promotion. The child agent decides what

to eat by calculating a score for each healthy or unhealthy option and then chooses

the items that receive the most points.

2.2.3 Patch model of the environment

The simulation region is uniformly discretized as a grid. In the context of Net-

Logo, each rectangle in the grid is called a patch, which is identified by its horizontal

and vertical coordinates. As for child agents, patches also have individual memory
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and can make decisions; the only difference is that patches do not move. Some spa-

tial functions have been pre-defined for patches in NetLogo, including identification

of neighbors (adjacent patches), smoothing a variable of all patches over neighbors,

and searching for movable agents currently located on a specific patch. These features

make patches inherently suitable for modeling geographic or environmental agents.

In this paper, all streets and buildings (including stores, homes, schools, and recre-

ation centers) are modeled as patches. Figure 2.3 provides an overview of all the

environment entities.

Figure 2.3: UML diagram of schools, homes, recreation centers and food sources

Schools are geo-located based on data provided by the Center for a Livable Future

at the Johns Hopkins Bloomberg School of Public Health. Latitude and longitude

of schools can be obtained from their street addresses, and then they are mapped to

patch coordinates to integrate them into the model environment. In school, each child

agent consumes the standard meal plan provided by Baltimore City Public Schools
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and spends a fixed amount of energy.

The model places the child agent homes on the grid based upon their actual

street address. Children’s eating habits at home are strongly affected by their parents

and the household food supply. However, in this version of the model, we did not

incorporate parents. For the purpose of simplicity, we assume the amount of energy

intake at home is also fixed. On the way back home from school or a food source,

the child agent may decide to stop by a recreation center and engage in physical

activity. We assume no calorie intake in recreation centers. Energy expenditures of

both walking and exercise at the recreation centers are considered.

Food sources are categorized as Carryouts (CO), Corner Stores (CS), and Super-

markets (SU). In Baltimore City, the primary local sources of food are corner stores

and carryouts, which are predominantly small, family-owned businesses. These food

outlets are a common source of calories associated with unhealthy foods, in which

most products sold are typically high in fat, salt, and sugar.42–44 Corner stores and

supermarkets are assigned a base healthy food availability index score, based on Bal-

timore neighborhood in-store assessments.45 Corner stores and carryout restaurants

are also characterized by level of infrastructure (e.g., availability of a produce refrig-

erator), level of training in selection, promotion and preparation of healthy foods,

and pricing of these foods. Locations of all food sources are specified by latitude

and longitude. During initialization of the model, NetLogo determines the patch cor-

responding to each food source and creates patch agents with properties associated
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with the food source.

Geographic information on the location of roads is imported into NetLogo from

GIS shape files. NetLogo then translates the location of each road into a grid of

patches. Each patch has a binary mobility variable which is set to 1 if a road intersects

the patch and 0 otherwise. Agents can find the locations of the roads by examining

the mobility variable at each patch. At the beginning of the simulation, prior to the

first simulated day, the shortest paths connecting the child agents’ homes, schools,

stores, and recreation centers are calculated and stored so that the ABM can reuse

this information during the simulation of daily activities.

2.2.4 Modeling child agent growth

We cannot calculate the total calories consumed during the whole day because

we have not incorporated data about school and home meals into the current version

of the ABM. Instead, we assume that the baseline trajectory of body mass follow

CDC growth curves,40 with perturbations from this baseline determined according to

after-school food foraging behaviors. The CDC growth curves are generated mainly

from five national health examination surveys of the United States. These curves

are based on growth data of infants, children and adolescents in clinical practice

and research.40 Examples of the CDC growth curves are shown in Figure 6. The

figure gives growth curves of height and weight for girls aged between 2 and 20. The

curves with different colors represent different percentiles. In our ABM we assume
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that the children’s baseline trajectories will follow a constant percentile. While the

CDC curves are used for the baseline trajectories, the ABM is used to determine the

deviation from these trajectories.

Figure 2.4: CDC growth curves for girls aged between 2 and 20 (Left: height-for-age;
right: weight-for-age)

For height growth, we assume the children follow the CDC height growth curves

strictly; we assume that weight growth will not perturb the CDC heights curves. At

the beginning of the simulation, initial gender, height and age are used to find the

height percentile. In the case that height and age do not fall on an existing percentile

curve, two-dimensional interpolation is employed to approximate the percentile. Af-

terwards, we use the interpolated percentile curve to predict height for subsequent

time. A similar approach is used in predicting weight, except that we perturb the

percentile based on calories intake and energy expenditure: if a child has an above-
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average energy balance, then his or her percentile is shifted higher using calculations

for added body weight, described in the following.

We utilized the methodology suggested by Butte et al46 to estimate the body mass

(BM) increment that arises from the difference between caloric intake and energy

expenditure. BM increment is obtained by using the following equation:46

∆BM =
1

c
(0.9 · EI− EE) (2.1)

In the above equation, EI is the energy intake and EE is the energy expenditure due

to basal metabolism, daily activity, and exercise. The constant c is defined as below:

c = cf · fr

ef
+ cff · 1− fr

eff
(2.2)

where cf is the energy density stored in fat mass; cff is the energy density stored in

fat-free mass; fr is the fraction of fat mass in the total body mass; and ef and eff are

efficiencies in the conversion of energy to fat and fat-free masses.

Children consume energy when they walk. According to Rose et al,47 walking

energy expenditure can be estimated via

EEwalk = distance · 65(kcal/mile) (2.3)
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2.2.5 GUI to support policy making

The GUI (Graphic User Interface) is almost as important as the computational

part of the model. Not only does the GUI make the model more understandable

for policy makers and stakeholders, but it also facilitates model development and

simulation analysis.

The GUI of the BLIFE1.0 ABM can be separated into four regions. As shown in

Figure 7, Region 1 is the visualization of agents and the surrounding environment;

Region 2 contains several buttons to start, pause, stop, or reset the simulation. Re-

gion 3 consists of buttons, sliders, and switches to modify simulation parameters such

as agents and environment properties. In Region 4, results are gathered during sim-

ulation; curves are plotted to show the system-level behaviors of the model. Ideally

the developed GUI can be used to assist food policy making. Before proceeding with

a candidate policy, the GUI serves to communicate estimates of the policy’s intended

impact and any potential unintended consequences.

2.3 Results and Discussions

2.3.1 BMI percentile prediction

At the beginning of the simulation, all children properties (e.g., height, weight,

age, and gender) are initialized using survey data conducted in Baltimore with de-
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Figure 2.5: Demonstration of the graphical user interface. Region 1: visualization
of children movement and food environment; Region 2: simulation controller; Region
3: model parameters controller; Region 4: model outputs

identification procedures noted earlier. The model then uses the starting data to

predict children growth during the following five years. Using the method established

by Butte et al. (as described in Section 2.2.4), we calculate the body mass change

for each child. BMI is calculated using the formula

BMI =
(mass in kg)

(height in m)2
(2.4)

Upon obtaining the average BMI for boys and girls, we use the CDC percentile

data in Figure 2.4 to interpolate the mean BMI percentile for these groups. The

results, plotted in Figure 2.6, indicate a substantial increase in mean BMI percentile

among low-income African-American children in Baltimore over a 5-year period as-

sociated with after-school eating behavior.
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Figure 2.6: BMI percentile prediction for boys, girls and overall

2.3.2 Results validation

We validated our findings by comparing the predicted BMI trajectories with data

from 3 prospective cohorts of children and adolescents enrolled by Project HeartBeat,

which was a study of cardiovascular risk factors. Project HeartBeat collected weight,

height, and other anthropometric measurements for 678 children in Texas and es-

timated growth of body fat across 5 commonly used indices. The majority of data

collected by Project HeartBeat were for white (74.6%) and black (20.1%) children. In

Figure 2.7 we compare our predicted mean BMI with BMI trajectories observed for
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African-American males and females in the Project HeartBeat cohorts.48 It can be

seen that the children in Baltimore started with higher initial BMI for both genders,

so here we only compare the rate of increment of BMI increase (i.e., the slope of the

trajectories). Figure 2.7 shows a good agreement between the BMI growth rates.

Figure 2.7: Validation of predicted BMI

2.3.3 Advances and innovations of the model

To our knowledge, this was the first use of an ABM to simulate after-school child

dietary behaviors and obesity risk of urban children in a low-income food environment.

Compared with SD (System Dynamics) modeling and Discrete Event Simulations,

ABM is capable of capturing more real-world phenomena.49 SD models only capture

properties of the whole system, while ABM simulates systems-level (or emergent)

properties by modeling many individual agents, none of whom have the systems-level
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properties. Each agent can be quite different from the others, which enables a realistic

modeling of heterogeneity. For example, food sources are distributed non-uniformly

in the simulated space, and the same food policy (e.g., requiring small stores to stock

a range of healthy foods) could influence different areas in quite variable ways.
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Chapter 3

System Dynamics Model for

Community Resilience Research

3.1 Introduction

This study is about community resilience, i.e., a community’s capacity for resist-

ing and recovering from adverse natural or man-made events. The performance of

a community can be measured by a broad range of community activities in provid-

ing services to its residents, which we denote as Community Functioning (CF). The

concept of resilience can be found in many disciplines, such as psychology, ecology

and physics. In a general sense, there are two concepts that describe resilience from

different points of view: resistance, which quantifies the abilities to counteract an

event’s potential to inflict damage, and recovery, which quantifies the ability of the
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system to recover to its original level after the event.

In this research, we adopted the same notions. Community resistance is defined

as the proportion of CF that is sustained during a disaster event, and community

recovery is defined in terms of the speed at which a community recovers after the

event. Additionally, community resilience is defined as the combination of resis-

tance and recovery, quantified by the area under the CF curve, as described in detail

in Section 3.4.2. It is important to note that community resistance, recovery and

resilience are related with the dynamic changes of CF during and after an event, and

thus cannot be directly measured before the event. Community resistance, recovery

and resilience capture the stability of CF, and should not be confused with the base-

line CF. It is entirely possible for a community to have poor CF but strong resilience

and/or resistance, while another community to have excellent CF before an event

that is reduced quickly during a disaster and restored slowly thereafter.

Community recovery, resilience and resistance represent behaviors of a complex

and dynamic system, and we demonstrate herein that they can be analyzed using

an SD model. In the SD model, survey data is used to quantify the initial values

of the model. Resilience, recovery and resistance will be derived from the resulting

time-dependent fluctuations of CF using the equations of the SD model.

The geographical resolution is selected to be at the county level for two reasons.

First of all, residents in a county usually share a common government, culture and

laws. Many public health and emergency management activities are organized at this
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level, and thus a county can be treated as a community. Another important reason is

that relatively more data are available at the county level in United States, compared

with finer scales such as census tracts. Although even more data is available at the

state level, we believe a state is too large to be considered as a “community.”

Notation

CF Community Functioning

ES Engineered Systems

NS Natural Systems

ODE Ordinary Differential Equation

PM Prevention and Mitigation

PR Preparedness and Response

PVID Population Vulnerability, Inequality and Deprivation

SC Social Cohesion

FIPS code Federal Information Processing Standards code (unique identifiers for

all counties in the United States)

cv Coefficient of variation
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σ Standard deviation

µ Mean

ν Median

γ1 3rd standardized moment

λ Coefficient in the Box-Cox transformation

3.2 The SD model

3.2.1 Essential components

We first identified the key components in the model in Table 3.1.

3.2.2 Event

The event is defined as an independent, external input function to the model of

a community. A natural event is mathematically specified as a mono-exponential

function with respect to time:

Eventt = Event0 · k · exp(−kt) (3.1)
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Table 3.1: Essential components of the community stability model

Symbol Component Definition
CF Community

Functioning
CF is a measure of a broad range of community
activities in providing services to its residents.
The activities include these areas: communica-
tion, economy, education, food and water, govern-
ment, housing, medicine and public health, nur-
turing and care, transportation and well-being.

PM Prevention
Mitigation

PM is a combination of the influences of natural
and engineered systems and preventive activities
that mitigate damage from an event.

PVID Population
Vulner-
ability
Inequality
Deprivation

PVID is the social, political and economic con-
ditions that can potentially harm a community’s
capability of responding to and recovering from a
hazardous event.

SC Social Cohe-
sion

This is the sense among county residents of so-
cial connection and belongingness that effectively
supports the rise of community functioning after
an event.

PR Preparedness
Response

PR is the set of activities before and during
events that includes planning, organizing, train-
ing, equipping, exercising, evaluating and taking
corrective actions to ensure effective coordination
in the event of a disaster.

ER External Re-
source

ER is the stock of resources that is brought into
a community after an event that originates from
outside the affected county.

where k is a parameter controlling the time scale of the event, quantified by the rate

of time decay, and Event0 is the total overall magnitude of the event, given by the

integral of event magnitude over time.

Event0 =

∫ +∞

0

Eventt d t (3.2)
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Figure 3.1: Functions that model natural and pandemic events

For a pandemic event, which has a gradual ramp-up period before the peak and

is followed by gradual decline in severity, the magnitude at time t is defined in terms

of a Gaussian function,

Eventt = Event0 ·
1√

2πσ2
· exp

(
−(t− τ)2

2σ2

)
(3.3)

where Event0 is defined as before, τ is the time of the peak of the pandemic, and σ

is the measure of the spread of the event in time.

3.2.3 Mathematical formulations

As shown in the stock-flow diagram in Figure 3.2, the CF stock is drained by

an event as it occurs, and the three stocks, SC, PR, and ER, replenish CF as the

event subsides. The rate at which the event damages CF is regulated by PVID and
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Figure 3.2: Flow diagram of the ODE model

PM, while the rate of CF replenishment is controlled by all three stocks and by CF

itself. As noted earlier, the phenomena in which the rate of change of a stock is

regulated by its own value is called feedback. The dynamic value of CF is determined

by the combined effects of flows and feedback loops. Below we give the corresponding

ordinary differential equations that mathematically describe these actions.
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d SC

d t
= −CFt · ERt · (CF0 − CF) (3.4)

d PR

d t
= −PRt · (CF0 − CF) (3.5)

d ER

d t
= −ERt · (CF0 − CF) (3.6)

d CF

d t
= −α · CFt

d Event

d t

PM0 + PVID0

2
− d ER

d t
− d PR

d t
− d SC

d t
(3.7)

The rates of change of SC, PR and ER are defined by equations (3.4) to (3.7) and

the rate of change of CF is the combination of the damage caused by the event and the

combined replenishment of the three blocks as shown in Equation (3.7). In the above

equations α is a parameter that determines the time scale of the CF curve. In future

work, α will be calibrated using data from observed CF changes after historical events.

In this thesis we set α = 5 so that CF recovers within one year. The Runge-Kutta

method50 is used to numerically solve the above ODEs.

3.3 Measures and data

3.3.1 Measure hierarchy

All measures used in this research are categorized into a hierarchy with 3 levels.

Domain Domains are the top-level conceptualized components that play important
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roles in determining community resilience. There are 6 domains in total as

shown in Table 3.1.

Suddomain Each domain is divided into multiple subdomains, which are closely

related but represent different aspects of the domain. For some domains like

SC and PR, only one subdomain is used.

Measure Measures are the specific indicators at the bottom level that are aggregated

to characterize a subdomain.

3.3.2 Selection of measures

Several criteria were applied when we selected the measures for each component

of the model.

1. The measure should have face validity as judged by public health and social

science experts.

2. Data for the measure should be available for the majority of the counties in the

United States, preferably with multiple years.

3. The data should exhibit a reasonable amount of variation across all counties.

As we discussed in detail later in Section 3.3.3, we will transform the data to

amplify the variation if necessary.
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4. The data should be easy for others to acquire and implement; no significant

computation or GIS processing should be needed.

5. The measure should capture a single aspect of the concept, rather than being

synthesized outcomes, because the latter type of indicator tends to characterize

multiple domains of the model. There is an exception for the subdomain “Pop-

ulation Well Being,” in which we used a standard health indicator, “Average

life expectancy.”

The essential component of the model is community functioning. Based on the

aforementioned requirements and data availability, we selected measures for commu-

nity functioning as below. Each measure could contribute positively or negatively to

the subdomain and their directions are labeled using “+” or “-”, respectively.

• Communication

+ Percentage of households with Internet service over 200 kbps.

• Economy

+ Number of finance and insurance companies per 10k population.

+ Median household income.

+ Number of employers per 10k population.

• Education

– Pupil/teacher ratio (public school).
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+ High school graduation rate.

• Food and water

+ Number of grocery stores per 10k population.

+ Number of grocery stores per 100 square miles.

+ Percentage of population on public water.

– Low access to grocery store.

• Government

+ Per capita federal government spending

• Housing

– Percentage of household with severe problems

+ Number of house units per capita

• Healthcare delivery and public health services

+ Number of mental health care providers per 10k population

+ Number of primary care physicians per 10k population

+ Number of hospital beds per 10k population

+ Percentage of female Medicare enrollees aged 67 to 69 that receive mam-

mography screening
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+ Percentage of diabetic Medicare enrollees ages 65 to 75 that receive HbA1c

monitoring

– Percentage of uninsured adults in age group 16 to 64

– Percentage of adults who are current smokers

– Percentage of leisure-time physical inactivity prevalence

• Nurturing and care

+ Number of nursing care facilities per 10k population

• Transportation

+ Percentage of population who walk or cycle to work

• Population well being

+ Average life expectancy

– All-cause mortality per 100k population

+ Percentage of self-reported excellent or very good health

– Percentage of adults with frequent mental distress

In the case of a natural event, Prevention Mitigation consists of natural systems

and engineered systems. In the event of a pandemic disaster, a different set of counter-

measures are required and will be one of the future works of this thesis.

• Natural systems
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+ Distance to the nearest coast.

• Engineered systems

– Percentage of bridges with structural deficiencies.

– Average age of housing stock.

+ Percentage of housing units that are not mobile homes.

– Percentage of population affected by water violation of those served by

public water system.

PVID is composed of three subdomains:

• Vulnerability

– Percentage of children in population (below 18).

– Percentage of elderlies in population (65 and older).

– Percentage of population in institutions.

– Percentage of civilian noninstitutionalized population with a disability.

• Inequality

– Gini index of income inequality.

• Deprivation

– Percentage of population (18 to 24 years) with less than high school edu-

cation.
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– Percentage of population (16 years and over) not in the labor force.

– Percentage of children in poverty.

– Percentage of civilian in labor force but unemployed.

– Percentage of household on public assistance and food stamps.

SC has one subdomain, Social Capital and Cohesion,

• Social Capital and Cohesion

+ Percentage of population who use carpool to work

+ Percentage of population affiliated with religious group

+ Number of religious organizations per 100 square mile

+ Number of social advocacy organizations per 10k population

We currently have no optimal measure for PR, and use FEMA events temporarily.

The logic behind this is that if a county has experienced multiple events in recent

history, then it will tend to have better emergency policies and will be better prepared

for future events.

• Preparedness

+ Number of social advocacy organizations per 10k population
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3.3.3 Transformation

The data at the measure level will be scaled and aggregated to subdomain and

domain levels. Table 3.2 summarizes the procedure; the details are discussed in this

section. The details of the data, including the mathematical operations need to scale

the data and maps of the scaled results can be found in Appendix B.1.2.

In our data transformations, we perform the same mathematical operation on

each measure. In practical statistics analysis, data transformations are frequently

required to improve interpretability of the data or to bring the distribution closer to

the assumptions of the model. In this research, data transformation is indispensable

because of the skewness of much of the raw data. This is to be expected because

many phenomena in economics described by variables which follow the log-normal

distribution,51 with large values that may exceed the average by several orders of

magnitude.

3.3.3.1 Skewness

Skewness describes asymmetry in the data distribution. It can be measured by

several statistical properties. It is worthwhile to mention that each property only

describes one aspect of skewness, and in practice we need to look at several skewness

properties in combination.

• Coefficient of variation cv, also known as the relative standard deviation, defined

as the ratio between the standard deviation σ and the mean µ. It measures the
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Table 3.2: Procedures of data transformation and aggregation

Operation Motivation
1. Treat negatives as missing value. Due to the nature of this research, all mea-

sures should have a positive value. Nega-
tive and zero values should not occur and
should be treated as invalid data. We do
allow zero values because it implies that
the information for the measure of interest
is nonexistent.

2. Transform each measure using Box-Cox
transformation.

Much of the original data is extremely
skewed. Transforming the data towards
the normal distribution increases their dif-
ferentiating power and interpretability.

3. Take Z-score of each measure. This is important because in the aggrega-
tion stage all measures will be summed to-
gether.

4. Truncate with ±3.5 at the measure
level. Data after this step is called scaled
data.

It is noted that some values still stay quite
large after the Box-Cox transformation.
To control the effect of outliers, the Z
scores are truncated at 3.5, namely 3.5
times the standard deviation of the trans-
formed data.

5. Adjust for direction. The polarity of some measures are in the
opposite direction of that of the corre-
sponding domain.

6. Scale the data from range [−3.5, 3.5] to
[0, 1].

The scale from 0 to 1 is easier to interpret.

7. For each county, take the average of
available measures in each subdomain as
the value for the subdomain

Missing data are simply ignored in calcu-
lating the aggregated values.

8. For each county, take the average of
subdomain values as the domain value

Subdomains are aggregated into domains.

9. Fill in missing values of any domain
with the average of that domain for all
counties in the same state.

The state average is a good, simple esti-
mate of missing values.

amount of variability relative to the mean.

cv =
σ

µ
(3.8)
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• The 3rd standardized moment, defined as below

γ1 = E

[(
X − µ
σ

)3
]

(3.9)

• Ratio of mean and median. In symmetric distributions such as the normal

distribution, the mean is equal to the median and thus this ratio is 1.

Table 3.3: Statistics of the original data for the measure: Number of grocery stores
per 100 square miles (Appendix A.1.4.2)

Item Value
Minimum value 0
Maximum value 5839.06

Mean µ 9.0
Median ν 0.87

Standard deviation σ 130.90
Mean-to-median ratio µ/ν 10.36
Coefficient of variation cv 14.47

3rd standardized moment γ1 34.96

As an example, grocery store density (Number of grocery stores per 100 square

miles (Appendix A.1.4.2)) is a measure of economical activities, and it roughly follows

the lognormal distribution. According to the USDA Food Environment Atlas, in 2011

the maximum value of this measure is 5839 stores/100 sq.mi., while its mean is only

9.0 stores/100 sq.mi. More detailed statistics are shown in Table 3.3. As shown

in Figure 3.3, the majority of the data entries falls within the leftmost bin in the

histogram plot, and large values are so infrequent such that they are not discernible

in the histogram plot. In the color coded map, almost all counties are blue (minimum

value) and the map provides almost no information.
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(a) Histogram plot (b) Map plot

Figure 3.3: Original data of measure: Number of grocery stores per 100 square miles
(Appendix A.1.4.2). Both histogram and map plot show little difference between
counties

Some standard transformation techniques for such highly skewed data include the

log-transformation52 and the power-law transformation.53 In this research we used the

Box-Cox transformation, which can be viewed as a combination of the aforementioned

two transformations.

3.3.3.2 Box-Cox transformation

The Box-Cox transformation54,55 of a variable x is defined as:

B(x) =
xλ − 1

λ
(3.10)

where λ is determined by maximizing the Log-Likelihood Function (LLF) of the

transformed data. As shown in Equation 3.10, the Box-Cox transformation is a power-

law transformation. However, when λ approaches zero, the Box-Cox transformation
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reduces to the log-transformation

lim
λ→0

(
xλ − 1

λ

)
= lim

λ→0

(
xλ · loge x

1

)
= loge x (3.11)

where we applied L’Hospital’s Rule by taking derivatives of the numerator and de-

nominator of the indefinite form 0/0.

Here we show several examples comparing data after the Box-Cox transformation

and log-transformations. Figure 3.4 shows a comparison of the transformed grocery

store density data. Both transformations worked well and the transformed data ex-

hibit sufficient variation for use as a measure in our model. Figure 3.5 demonstrates

transformations on Percentage of housing units that are not mobile homes (Appendix

A.2.2.3), an example of right-skewed data. Log-transformation increased the skew-

ness, while Box-Cox spreads the data entries more evenly.

(a) Original data (b) Log-transformed data (c) Box-Cox transformed data

Figure 3.4: Comparison of Box-Cox transformation (λ = −0.104) with log-
transformation on left-skewed data. Measure: Number of grocery stores per 100
square miles (Appendix A.1.4.2)
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(a) Original data (b) Log-transformed data (c) Box-Cox transformed data

Figure 3.5: Comparison of Box-Cox transformation (λ = 4.310) with log-
transformation on right-skewed data. Measure: Percentage of housing units that
are not mobile homes (Appendix A.2.2.3)

3.3.3.3 Z-score and truncation

The Z-score is the number of standard deviations by which a data value is above

or below the mean. It is defined as

z =
x− µ
σ

(3.12)

After a Z-score transformation, all data are centered at 0 and at the same level of

variability. In other words, data for different measures are comparable after Z-score

transformation, and we can average multiple measures to get aggregated values. To

reduce the effect of large outliers on skewing the data (which happens infrequently),

we truncate the data at ±3.5. In this paper we call the result scaled data.

The scaled data shown in Figure 3.6 shows far more variation than the original

data in Figure 3.3. It is now possible to interpret the data by examining the colors

in the figure: grocery stores are more geologically dense in large cities like New York,
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Figure 3.6: Map plot of scaled measure: Number of grocery stores per 100 square
miles (Appendix A.1.4.2)

Chicago, Seattle and San Francisco, while they are relatively sparse, and hence less

accessible in rural counties in states such as Nevada and Utah.

3.4 Results and conclusions

3.4.1 Aggregated domains

Figure 3.7 shows a color-coded map of the initial value of community function-

ing computed using an aggregation of transformed measures as explained before. It

can be inferred from Figure 3.7 that the Midwest counties have relatively high com-
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munity functioning, while the counties in the South show relatively low community

functioning. The other domains are shown in color-coded maps in Figure 3.8.

Figure 3.7: Map plot of aggregated community functioning

3.4.2 Resistance, recovery and resilience

To demonstrate the concepts of resistance, recovery and resilience, we simulate

generic natural event to all counties with the same total magnitude and parameters.

By solving the ODEs, we obtain a CF trajectory in time as shown in Figure 3.9.

CF0 is the initial pre-event community functioning, CFmin is the minimum value of

community functioning during the event, and CFmiddle is the average of CF0 and

CFmin.
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(a) Prevention mitigating (b) Preparedness response

(c) Population vulnerability, inequality and de-
privation

(d) Social cohesion

Figure 3.8: Map plot of other domains

• Resistance is defined as the minimum percentage of remaining CF during an

event:

Resistance =
CFmin

CF0

(3.13)

• Recovery is defined as the reciprocal of the time it takes for the community

to recover half of the CF lost due to the event, as indicated in Figure 3.9. The
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Figure 3.9: Graphical definition of resistance and resilience

formulation for resilience is expressed as

Recovery =
1

thalf

(3.14)

where thalf is a time after event at which CF recovers to CFmiddle.

• Resilience is defined as the average value of CF from beginning of the event

to end time of study, as highlighted in Figure 3.9.

Resilience =

∫ T

0

CFtd t

/
T (3.15)
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where T is the time period of study, chosen as 12 here.

Figure 3.10 shows the calculated resistance, recovery and resilience. The geograph-

ical patterns of resistance and resilience are significantly influenced by PR: counties

in the Mountain states with poor preparedness exhibit low resistance, recovery and

resilience, while counties in south California exhibit strong recovery due to excellent

preparedness. Comparing pre-event CF in Figure 3.7 with resilience and resistance,

we also conclude that counties with poor CF could have relatively excellent resistance

and resilience, such as the south Texas counties. We can also infer that large cities

tend to have better resistance and resilience.

3.5 Conclusions

Community resistance and resilience describe the dynamic response of a com-

munity to a hazardous event. We realized that these properties cannot be directly

derived from the static pre-event community functioning. Therefore, we developed

a framework of using system dynamics model to analyze community resistance and

resilience. This framework could address needs of policymakers by facilitating the

understanding of community stability, assessing current state of resilience and resis-

tance of the United States and evaluating the effectiveness of a proposed intervention

policy.
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(a) Resistance (b) Resilience

(c) Recovery

Figure 3.10: Map plot of model results
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Chapter 4

System Dynamics Model for

Pay-For-Performance Strategy

Study in Afghanistan

Notations

CLD Causal Loop Diagram

DDE Delayed Differential Equation

HSS Health Systems Strengthening

P4P Pay for Performance

NGO Non-Governmental Organization
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MCH Maternal and Child Health

MoPH Ministry of Public Health

HF Health Facility

SBA Skilled Birth Attendance

4.1 Introduction

Pay for performance (P4P) is an incentive strategy widely used in health systems

to strengthen the effectiveness of health care delivery in low- and middle-income

counties.56–59 Charitable organizations pay particular interest to P4P because their

traditional approach has been investing in input-based program activities, where the

agency problem is inevitable.56,57 Agency problem arises in organizational design

when the “agents” who are placed in control over resources are under obligation to

use these resources in the interest of other parties rather than their own interest.

“Pay for performance” is a strategy that puts incentives on the performance of the

agents with the intent of aligning the agents’ interest with the funder’s objectives. In

the context of public health, the performance is measured as improvement in health

services outputs or outcomes.56,57

Plenty of practical evidence exist to support that P4P can improve health services

delivery in low- and middle-income counties.57–59 On one hand, some studies in Cam-

bodia, Rwanda, and Haiti showed that P4P led to improved utilization of maternal
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and child health services.60–62 On the other hand, some studies suggested that P4P

failed to increase health services delivery.62,63 The importance of P4P implementa-

tion is acknowledged in all these studies; however, the interacting effects of involved

factors have not been studied.57–62

Public provision of health services in Afghanistan was funded significantly dur-

ing the last decades by Non-Governmental Organizations (NGOs).64 Utilization and

quality of general ambulatory care has been improved by the aforementioned health

services delivery contracts; however, utilization of critical Maternal and Child Health

(MCH) services was not improved.64,65 According to Afghanistan Mortality Survey

2010, Skilled Birth Attendance (SBA) at delivery was as low as 19% and the maternal

mortality rate of 0.584% was among the highest in the world.

Between September 2010 and December 2012, the Afghanistan Ministry of Public

Health (MoPH) tested a P4P intervention at the health facility level in 9 provinces

(out of 32) in order to improve the volume and quality of essential MCH services.66

During the intervention, extra bonuses (on top of regular budgets) were given to

health facility managers whose performances were beyond baseline level in aspects

like antenatal care for pregnant women, SBA at delivery and immunization services.

A performance bonus program managed by the Afghanistan MoPH did not im-

prove the coverage and general quality of MCH services, as revealed in a study re-

garding the effectiveness of the P4P intervention.66 The study attributed the failure

of P4P to poor implementation as one of the potential reasons. To capture the dy-
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namic and nonlinear relationships involved, we developed a system dynamic model

to provide insights about how various interacting components work together from a

holistic viewpoint.

4.2 Modeling basic operation of a health

facility

The construction of SD models consists of three basic stages:

1. Identify basic components of the system in terms of a set of variables.

2. Develop a Causal Loop Diagram (CLD). A CLD is a visual representation of

variables and their causal relationships.

3. Quantify the relationships in the CLD and develop the corresponding Ordinary

Differential Equations (ODEs). In some relationships, the affected variables

may depend on the affecting variable’s value at a previous time rather than

its current value. In this case the equations are called Delayed Differential

Equations (DDEs).

In this section we explain the process in detail.
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4.2.1 Variables

The performance of a health facility is measured by its quality and volume of

service, as defined below.

4.2.1.1 Volume of service

Volume of service is defined as the number of patients visiting a health facility

in a month. This data is based on self-reported information collected through the

health information management system of MoPH at the health facility level.

4.2.1.2 Quality of service

Quality of service is a combined measure of infrastructure quality of the health

facility (including assessments of health facility equipment, infrastructure function-

ality and drug availability), equipment presence and functionality, and the perceived

quality by clients. These indicators have been previously used to assess quality of

health facilities in Afghanistan.67

4.2.1.3 Revenue

To build the simplest nontrivial model capturing the basic operations of a health

facility, we introduced the variable of revenue, which is defined as the total financial

resources (such as wages and salaries) used to maintain the quality of a health facility
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at a certain level. Revenue covers both capital and operational expenditures, but

does not include any performance-based bonus.

4.2.2 Causal relationships

As shown in Figure 4.1, we identified all causal relationships. In the CLD, variables

are labeled with their names, and relationships are shown as arrows between pairs of

variables. All relationships are also marked with a positive or negative sign indicating

the direction of influence. The four causal relationships are described in more detail

below:

• (A) Revenues are provided to a health facility by government or NGO funds

through a health services provision contract. The amount of fund is determined

by average cost per patient and the estimated number of patients covered by

this health facility.

• (B) The health facility managers use the revenue to maintain infrastructure and

purchase supplies and equipment. These management activities convert revenue

to quality of services.

• (C) The capability of a health facility of delivering health services is fixed in a

short-term period, because it takes time and effort to improve this capability.

Therefore, an increment in volume of services would lead to a decrement in

quality of services, if the volume is beyond a critical threshold.
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• (D) An improvement in service quality attracts other patients to visit the facil-

ity, thus increasing the volume of service. This is based on the model assumption

that noticeable improvements in quality will have a positive effect on demand

and the volume of services. A delay was shown in Figure 4.1 because it takes

several weeks for an increased perception of service quality to generate new

patients.

Figure 4.1: Causal loop diagram modeling basic operations

Two loops can be found in the CLD. The outer loop (A→ B → D) that connects

revenue, quality and volume show a positive influence between each variable and the

subsequent one. A feedback loop (C) with a negative influence is necessary for the

system to achieve an equilibrium, otherwise the outer loop would result in unlimited

increases in all variables.

57



CHAPTER 4. SYSTEM DYNAMICS MODEL FOR PAY-FOR-PERFORMANCE
STRATEGY STUDY IN AFGHANISTAN

4.2.3 DDE model

With the developed CLD, we can move to a stock and flow diagram that is used

to graphically represent a set of ordinary differential equations. The three variables

in the CLD are modeled as stocks in the stock and flow diagram (shown as boxes in

Figure 4.2). Each flow is explained below.

Figure 4.2: Flow diagram modeling basic operations

4.2.3.1 Recovery rate of revenue

Recovery rate of revenue rR is defined as the rate at which revenue is provided

to a health facility. The effect of volume on revenue is approximately linear when

volume is very small, while revenue cannot increase infinitely even if volume of ser-

vices enlarges rapidly. As many other relationships, the marginal effect of volume on

revenue decreases as volume goes larger and eventually approaches zero. To model
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this behavior, we introduced a Logistic function

L(x) =
1− exp(−kx)

1 + exp(−kx)
(4.1)

where k is a parameter to control the curvature of the Logistic function. As shown

in Figure 4.3, as k increases, the Logistic function becomes steeper. In this research

we used k = 2.

Figure 4.3: Demonstration of the Logistic function and the curvature parameter k

With the Logistic transformation, we can define rR to be proportional to trans-

formed volume of services. The coefficient α is determined from survey data, through

a model calibration process.

rR = α · L(Vt) (4.2)
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4.2.3.2 Conversion rate of revenue

The conversion rate of revenue rRQ to quality is the rate at which a health facility’s

revenue improves the quality of services. The causal relationship (B) in Figure 4.1 is

converted to a flow from revenue to quality, modeling the conversion from financial

resources in revenue to a specific amount of quality, with a conversion rate rRQ. It is

reasonable to assume a fixed portion of revenue will be used to maintain quality. The

key feature of this flow is that the source variable essentially sacrifices itself in order

to increase the destination variable.

rRQ = α ·Rt (4.3)

4.2.3.3 Depletion rate of quality

The depletion rate of quality rQ is the rate at which the quality of services declines

as the volume of service increases. In accordance with reality, quality in the model

exhibits a decaying effect: quality tends to decrease in time unless there are sufficient

resources to maintain quality at a constant level. The rate of quality decay is regulated

by the value of volume of service. The relationship is different from a flow because

no conversion is involved.

rQ = α · L(Vt) (4.4)
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4.2.3.4 Recovery rate of volume

The recovery rate of volume rV is the rate at which the volume of services increases

in response to an increase in the quality of service. Volume will increase as HF quality

gets better, but it is important to note that this does not involve a conversion. No

amount of quality can be converted to volume, although it can boost the increment

of volume. In addition, this effect is delayed so that rV is proportional to quality at

an earlier time.

rV = α · L(Qt−∆t) (4.5)

4.2.3.5 Summary

Based on the stock and flow diagram, we can build a model of DDEs. The model is

not calibrated and only tries to simulate the system qualitatively. The parameters in

the DDEs are determined in a way such that the model generates visually meaningful

results. The purpose of the model is to provide insights into how key implementation

processes could influence outcomes of P4P interventions.

dR

d t
= 0.3 · L(V )− 0.2 ·R (4.6)

dQ

d t
= 0.2 ·R− 0.3 · L(V ) (4.7)

dV

d t
= 0.1 · L(Qt−∆t) (4.8)
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4.2.4 Results and discussion

By solving the DDEs with initial conditions, we can get the results shown in

Figure 4.4. To allow straightforward interpretation of the results, we use the Logistic

transformed quality and volume, so that −1, 0, 1 correspond to far below average,

average and far above average, respectively. The baseline model satisfies our model

assumption that a health facility, given sufficient funding, should have average quality

and volume at equilibrium.

Figure 4.4: Results of baseline model
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4.3 Incorporating P4P, gaming and moti-

vation

4.3.1 New variables

In the advanced model we introduce P4P, gaming, motivation and other auxiliary

variables.

4.3.1.1 P4P bonus

The amount of performance bonus is directly based on the extra volume of service

of a health facility. Before the actual allocation of payment, a subset of the volume

data chosen at random was verified by independent monitors, who visit patients’

home to access their health service satisfaction.66

While P4P could be negative or positive from a mathematical point of view, we

do not allow P4P to be negative so that a health facility will not be penalized if its

volume of service is below average. As studies68 suggest, the disbursement of P4P

was delayed due to technical difficulties. Therefore, the amount of P4P is assumed

to be proportional to the volume of service a certain time before. We denote fP4P to

be the parameter that influences the magnitude of P4P.

P4P = max

{
0, fP4P · L(Vt−∆t)

}
(4.9)
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4.3.1.2 Gaming

Gaming is defined as the activities of health workers who aim to get more P4P

bonuses than warranted. It is assumed that a bilateral relationship exists between

P4P and gaming: the possibility of getting P4P stimulates gaming, which in turn

increases P4P. In the model, gaming is defined to be the exponentiation of the sum

of baseline gaming G0 and the portion caused by P4P.

G = G0 · αβ
P4P−1 (4.10)

4.3.1.3 Extrinsic motivation

The theory of P4P is based on the assumption that monetary incentives could

strenthen the extrinsic motivation of health workers. Extrinsic motivation differs

from intrinsic motivation in that it is responsive to monetary and/or non-monetary

incentives.69,70 We introduce a variable to assess the extent to which the health work-

ers feel that certain aspects of their job were motivated by P4P. Extrinsic motivation

is proportional to the amount of P4P and affects the conversion rate of revenue to

quality and the recovery rate of the volume of services. Some baseline motivation M0

is assumed to exist among health workers independent on the P4P bonuses.

M = M0 · αβ·P4P−γ·G (4.11)
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4.3.2 Causal loops

The theory of P4P is based on the assumption that monetary bonuses provided to

health workers can improve their quality and volume of services by stimulating their

extrinsic motivation.68,70 If given sufficient bonuses in the optimal way, health workers

are expected to further improve quality of the health facility and thereby attract new

clients. The bonuses in themselves are a part of revenue because they help maintain

quality at a certain level. Therefore, in Figure 4.5, positive causal relationships are

added from P4P to revenue and extrinsic motivation, and from extrinsic motivation

to volume and quality of services.

Figure 4.5: Causal loop diagram modeling P4P, gaming and motivation

As we argued before, positive relationships exist between P4P and gaming. On

the other hand, it is entirely possible that health workers act for the sole purpose

of getting more performance-based bonuses. Such behaviors may include cheating
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with service volume reports and colluding with corrupt monitors who are in charge

of approving and verifying P4P.71,72 Hence, health workers can game the system to

get P4P without actually taking actions to improve their performance. The health

workers who make real efforts to improve service quality may be discouraged by their

colleagues who game the system to get the same or even more bonuses. A negative

arrow is added from gaming to extrinsic motivation to reflect this possibility.

4.3.3 DDE model

In accordance with the updates in the causal loop diagram (Figure 4.5), we added

a few new flows, arrows and stocks in Figure 4.6. P4P is modeled as an extra flow

replenishing revenue, with magnitude that primarily depends on the volume of service

a certain time earlier. There is a delay because in practice P4P in the current period is

determined based on the volume of service of the previous period. P4P bonuses affect

extrinsic motivation positively. Extrinsic motivation boosts the conversion rate from

revenue to quality of service and the recovery rate of volume of service. Gaming does

harm to quality of service and extrinsic motivation, but has a positive effect on P4P

bonuses. A mutually strengthening feedback loop exists between P4P and gaming.

We call the previous model baseline because if we set P4P, extrinsic motivation and

gaming variables to be zero, then the model reduces to the baseline model.

The set of delayed ordinary differential equations are given by Equation (4.12) -

(4.14) below. We scaled all stock variables such that zero corresponds to baseline
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Figure 4.6: Flow diagram modeling P4P, gaming and motivation

values. This is convenient in interpreting the model outputs. The modifiers due to

extrinsic motivation and gaming are formulated in different ways according to whether

volume or quality is positive or negative.

dR

d t
= 0.3 · L(Vt)− 0.2 ·R ·M + P4P (4.12)

dQ

d t
= 0.2 ·R ·M −


0.3 · L(Vt) ·G/M if Vt > 0

0.3 · L(Vt) ·M/G otherwise

(4.13)

dV

d t
=


0.1 · L(Qt−∆t) ·M if Qt−∆t > 0

0.1 · L(Qt−∆t)/M otherwise

(4.14)
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4.4 Scenarios analysis and discussions

In this section, we use our model to simulate the effect of P4P in different allocation

scenarios. There is not a standard approach to allocate the P4P bonuses within

a health facility among health workers. Studies show that HF managers tend to

distribute these bonuses in one of the three ways:68

1. Bonuses allocated to all staff members equally. This is the easiest to implement.

2. Bonuses allocated proportional to health worker salaries.

3. Bonuses allocated based on the direct contributions of the individual health

workers to services that triggered the P4P payments.

In all simulations, we let a health facility start with average quality (LQ0 = 0) and

below-average volume (LV0 = −0.5). The volume deficit was introduced so that we

could examine whether the various scenarios could converge to an equilibrium with

higher quality and volume. We first conduct the baseline experiment with P4P only

(no extrinsic motivation, gaming or P4P delay), and in each scenario we answer the

question: how much extra P4P bonus is required to yield the same level of performance

as in the baseline? The average of volume and quality of service was used as the

performance indicator.
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4.4.1 P4P only

“P4P only” is chosen as the baseline scenario. In this case, the time delay of P4P

disbursement, ∆t, is set to zero to model timely disbursement. It is worth mentioning

that other delays remain positive, such as the delay between improved quality and

increased volume. Figure 4.7 shows the result. The system takes 59 units of time to

reach the final state: both volume and quality of the health facility are above average.

Figure 4.7: P4P only. fP4P = 0.2, no time delay of P4P. Time to equilibrium = 59

4.4.2 Equal allocation to all staff

Studies show that the extent to which health workers are motivated is determined

by the relative size of their bonuses compared to their regular earnings.73 In the case

of equal allocation, the bonuses may be comparable only for low-level workers due to

their relatively low wages. Then we can assume that extrinsic motivation and gaming

will be at a moderate level. If we let M0 = 0.1 and G0 = 0.3, keeping fP4P = 0.2 and
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introducing a 3-month delay of P4P disbursement to simulate the actual situation,

then we get results shown in Figure 4.8. If we want to achieve the same performance

as in the baseline scenario (Section 4.4.1), we need fP4P = 0.823 which is 411% of the

baseline bonus.

Figure 4.8: Equal bonus allocation strategy

4.4.3 Proportionate to salaries

It is reasonable to assume that the leadership of a health facility receive more

salaries than health workers. If bonuses are allocated based on salaries, then the

leadership gets relatively high bonuses. Since most of the effects to improve qual-

ity and volume need to be carried out by the lower-level health workers and since

these workers will receive relatively low performance-based bonuses, they will not be

motivated to act. On the other hand, it is the leadership’s responsibility to compile

and finalize the data reported by each health workers or middle-level managers, and
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thus they are better positioned to game the system for more bonuses. Therefore, the

strategy would be harmful to performance. We let M0 = 0.05 and G0 = 0.8 for this

scenario and we get results shown in Figure 4.9. In this case, increasing P4P would

not have a beneficial effect.

Figure 4.9: Bonuses proportional to salary

4.4.4 Proportionate to contribution

If we can recognize each health worker’s efforts in improving the health facility’s

performance, then each individual health worker would be strongly motivated to do

so. Leadership would be less prone to game because they will need to demonstrably

contribute to improvement of performance in order to get performance-based bonuses.

For this scenario, we let M0 = 0.3 and G0 = 0.05 to get the results shown in Figure

4.10. If we want to achieve the same performance as in the baseline scenario (Section

4.4.1), we need fP4P = 0.22 which is 110% of that in the baseline scenario.
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Figure 4.10: Bonuses proportional to contribution

4.5 Conclusions

An effective P4P intervention should deliver the bonus incentives to key health

workers at the health facility level. Specific strategies that could increase the proba-

bility of a successful P4P intervention include prompt disbursement of performance-

based bonus, adequate levels of bonus according to health worker’s contribution,

and frequent monitoring on the reported volume of services. A P4P intervention,

if designed poorly, could be harmful to the public health service delivery system by

encouraging gaming and damaging extrinsic motivation.
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Future Work

5.1 Limitations and future work on the

obesity ABM

While we demonstrate that our ABM can simulate children growth and obesity

within an inner-city food environment, there are several limitations of the model. We

have previously described several of these limitations, and we briefly summarize the

key issues here.

1. The model only considered children walking to school, while in reality some

children take school buses or public transportation to school. The model also

did not distinguish between schools of different levels.

2. The model does not account for social interactions which can influence eating
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behaviors.74 For instance, peer pressure can be positive or negative. People

may eat healthier food or exercise more if they are in the right environment.

On the other hand, people in an obesogenic environment may not even realize

that their weight is unhealthy. Our next step is to employ graphical models to

capture the dependency of children’s preferences on local environment.

3. In the current model, children purchase their food based on store informa-

tion, food availability and promotions. Children’s purchasing preferences and

storeowner’s stocking strategies are assumed to be static in the model, but

they should be dynamic and interact with each other as they do in the real

world. Store owners will adjust their inventory according to children’s pur-

chasing preferences, which implies a feedback loop will need to be included to

account for this interaction between children and store owners. Future versions

of the ABM would benefit from incorporating system dynamic sub-models for

the food sources, such that storeowners can adjust their stocking, pricing, and

promotional policies based on children’s purchasing behaviors.
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5.2 Limitations and future work on the

community resilience system dynam-

ics model

It has been demonstrated that the model can be used as a decision support tool

for public policy makers. This tool would be improved through the following research

tasks.

5.2.1 Calibration and validation

In the current model, the time scale was arbitrarily set to create CF trajectories

with approximately a one-year time span before nearly fully recovery. We set the

other model parameters based on expert opinion. In future work, we would calibrate

the model parameters based on observed patterns of CF after natural or pandemic

disasters.

Another important work is validation. The model yields a predicted curve of com-

munity functioning, which resembles the often cited functioning curve of a Christchurch

hospital75 after the 2011 Christchurch Earthquake. We have initiated the validation

process by choosing six events and associated counties as shown in Table 5.1. Upon

obtaining CF curves during and after these events at a relatively fine time resolution,

we will be able to validate the model output with the observed CF curves.
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Table 5.1: Counties and events chosen for future validation

State County (FIPS) Event Year
Missouri Jasper County (29097) Joplin Tornadoes 2011
California Shasta County (6089) California Wildfires 2013
Oklahoma Cleveland County (40027) Moore, OK Tornadoes 2013
New York Bronx County (36005)

Kings County (36047)
New York County (36061)
Queens County (36081)
Richmond County (36085)

Super storm Sandy 2012

Texas McLennan County (48309) Non-Purposive Explosion 2013
Colorado Boulder County (8013) Colorado Flash Floods 2013

5.2.2 Expansion of the model

The model captures the most essential components related with community func-

tioning, but it may be too simplistic to serve as a predictive tool. We would expand

the model in the following aspects.

• Incorporating the notion of “leadership/political system effectiveness” (perhaps

as a modifier on the valves for social cohesion, preparedness, and external re-

sources).

• Explicitly including supply chain and critical infrastructure, because they are

frequently identified as of prime importance, and are currently only implicitly

included (and thus buried) in Engineered Systems.

• Adding details to Engineered Systems according to the specific type of event.

The damage on engineered systems by an event largely depend on the nature

of the event and type of engineered systems. For example, the Fukushima
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Nuclear Power Plants are designed to withstand a severe earthquake, as proven

by the fact that its engineered systems successfully resisted direct damage from

the Great East Japan Earthquake (2011). However, its engineered systems are

not capable of mitigating damage due to the strong tsunami caused by this

earthquake. This weakness led to the worst nuclear disaster in history.76

• In the current model all counties are treated individually. A county would

experience the same effect from a national event as from a localized event.

However, in reality both social cohesion and preparedness / response may be

influenced by other neighboring counties. In the future version of this model, we

will incorporate the potentially beneficial interactions from adjacent counties.

5.3 Future work on the P4P system dy-

namics model

The system dynamics model for the Pay-For-Performance intervention in Afghanistan

can be improved if additional, possibly latent, variables were added to the existing

data set. Specifically, we need variables that quantify the extent of gaming in each

health facility and degree of motivation among the health facilities’ workers. Latent

variable techniques, such as SEM (Structural Equation Modeling), may lead to esti-

mates for gaming and motivation. Once these estimates are obtained, then they can
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be appended to the existing data and subsequently used to calibrate and validate our

system dynamics model.

The approach would be essentially nonlinear maximum likelihood estimation (MLE),

in which the unknown parameters are the coefficients and other parameters listed in

Section 4.3 and the output variables are the two main stocks, quality and volume.

Uncertainties in these parameters can be estimated using statistical bootstrapping,77

in which the health facilities used in the MLE analysis are randomly sampled with

replacement.

In the future, when other similar bonus-based interventions are planned in low-

and middle-income countries, we would recommend survey instruments that can quan-

tify measures related to health worker motivation. Obviously, it would be difficult if

not impossible to measure gaming at the health facility level; hence indirect measures

of gaming that could be of use in SEM would be of interest.

78



Appendix A

Measure Data and Source in

Community Stability Research

Notations

ACS American Community Survey of Census

AHRF Area Health Resources Files

BRFSS Behavioral Risk Factor Surveillance System of CDC

CBP County Business Patterns of Census

CDC Centers for Disease Control and Prevention

CMS Centers for Medicare & Medicaid Services

79



APPENDIX A. MEASURE DATA AND SOURCE IN COMMUNITY STABILITY
RESEARCH

CHAS Comprehensive Housing Affordability Strategy

EPA Environmental Protection Agency

FCC Federal Communications Commission

FEMA Federal Emergency Management Agency

NCES National Center for Education Statistics

NOAA National Oceanic and Atmospheric Administration

NAICS North American Industry Classification System

HRSA Health Resources and Services Administration

HUD Housing and Urban Development Office

SAIPE Small Area Income and Poverty Estimates of Census

SAHIE Small Area Health Insurance Estimates of Census

USDA United States Department of Agriculture

WONDER Wide-ranging Online Data for Epidemiologic Research of CDC
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A.1 Community Functioning (CF)

A.1.1 Communication

A.1.1.1 Percentage of households with Internet service over

200 kbps

The data is obtained from Form 477 (Local Telephone Competition and Broad-

band Reporting) collected by Federal Communications Commission (FCC). Each data

entry is as of 12/30 of the corresponding year. The data is categorical, with 0: zero;

1: zero to 20%; 2: 20% to 40%; 3: 40% to 60%; 4: 60% to 80%; 3: 80% to 100%.

Figure A.1: Percentage of households with Internet service over 200 kbps (2010)
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A.1.2 Economy

A.1.2.1 Number of finance and insurance companies per 10k

population

The data is obtained from County Business Patterns (CBP) of Census Bureau.

CBP collects number of establishments, number of employees and payroll information

of each county every year. The data is additionally grouped by industry, specified us-

ing NAICS code (North American Industry Classification System). For this measure

we used the industry code “52” representing the industry of “Finance and Insurance”.

Figure A.2: Number of finance and insurance companies per 10k population (2010)
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A.1.2.2 Median household income

The data is directly available from Small Area Income and Poverty Estimates

(SAIPE) of Census Bureau.

Figure A.3: Median household income in dollars (2010)

A.1.2.3 Number of employers per 10k population

The data is obtained from County Business Patterns (CBP) of Census Bureau.

For this measure we used all industries. It is worth to mention that all employers are

counted the same way regardless of their size.
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Figure A.4: Number of employers per 10k population (2010)

A.1.3 Education

A.1.3.1 Pupil/teacher ratio (public school)

The data is obtained from National Center for Education Statistics (NCES). The

data year means the ending year of a school year; for example, data in 2015 means

the school year 2014 - 2015. It is worth to mention that a lot counties have missing

data.

A.1.3.2 High school graduation rate

High school graduation rate is measured by the percentage of ninth graders who

graduated in four years. The data is obtained from EDfacts Initiative, U.S. Depart-
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Figure A.5: Pupil/teacher ratio (public school) (2010)

ment of Education. A significant correlation was observed between pupil/teacher

ratio and high school graduation rate.

A.1.4 Food and water

A.1.4.1 Number of grocery stores per 10k population

Number of grocery stores and supermarkets is obtained from County Business

Patterns (CBP) of Census Bureau. The NAICS code for this category is “445110”,

including establishments of supermarkets and general line of food retailing stores

(such as canned and frozen foods, fresh fruits and vegetables, and fresh or prepared

meats, fish, and poultry). Convenience stores and warehouse club stores are excluded.
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Figure A.6: High school graduation rate (2010)

The number of stores are then divided by population of the corresponding year.

Figure A.7: Number of grocery stores per 10k population (2010; colored in log scale)
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A.1.4.2 Number of grocery stores per 100 square miles

Number of grocery stores and supermarkets is obtained from (CBP) and processed

in the same way as the above one. The number of stores are then divided by popula-

tion of the corresponding year. The data shows that the per capita number of grocery

stores is roughly the same across United States, with the exception that areas with

sparse populations have relatively more and most likely smaller grocery stores.

Figure A.8: Number of grocery stores per 100 square miles (2010; colored in log
scale)

A.1.4.3 Percentage of population on public water

The data is obtained from Water Use Report, United States Geological Survey.

The data shows strong state patterns, suggesting that this policy is usually made at
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the state level.

Figure A.9: Percentage of population on public water (2010)

A.1.4.4 Low access to grocery store

Percentage of Households in the county that have no car and are further than 1

mile away from a grocery store. The data is directly available in Food Environment

Atlas, Economic Research Service of USDA. Alaska is shown to have exceptionally

low access to grocery stores.
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Figure A.10: Low access to grocery store (2010; colored in log scale)

A.1.5 Government

A.1.5.1 Per capita federal government spending

The amount of government spending in thousand dollars is obtained from Federal

Funds Statistics, Economic Research Service of USDA, and then divided by popula-

tion of the corresponding year.
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Figure A.11: Per capita federal government spending in 1000 dollars (2010; colored
in log scale)

A.1.6 Housing

A.1.6.1 Percentage of household with severe problems

Household means all people, related as a family or unrelated, living in a hous-

ing unit. The data is obtained from Comprehensive Housing Affordability Strategy

(CHAS) Data, Housing and Urban Development Office (HUD). A household is con-

sidered as “with severe problems” if it experiences any one or more of the following

four problems:

1. is missing complete kitchen facilities

2. lacks complete plumbing facilities
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3. overcrowding; there are 1 or more people living in one room on average.

4. cost burdened; a household is cost burdened if the monthly housing utility-

included cost is more than 30% of monthly income (adjusted for inflation) of

the household.

Figure A.12: Percentage of household with severe problems (2010)

A.1.6.2 Number of house units per capita

The data is obtained from Census Bureau. According to Census, a housing unit

is a house, an apartment, a group of rooms, or a single room occupied or intended

for occupancy as separate living quarters. An outlier in the data is Hamilton County,

New York, with FIPS code 36041. The county lies entirely within the Adirondack
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Park and is the least populous county in New York State.

Figure A.13: Number of house units per capita (2010)

A.1.7 Healthcare delivery and public health ser-

vices

A.1.7.1 Number of mental health care providers per 10k pop-

ulation

The data is obtained from Centers for Medicare & Medicaid Services (CMS)
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Figure A.14: Number of of mental health care providers per 10k population (2008;
colored in log scale)

A.1.7.2 Number of primary care physicians per 10k popula-

tion

The data is obtained from Area Health Resources Files (AHRF), Health Resources

and Services Administration (HRSA)

A.1.7.3 Number of hospital beds per 10k population

The data is obtained from Area Health Resources Files (AHRF), Health Resources

and Services Administration (HRSA)
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Figure A.15: Number of primary care physicians per 10k population (2010; colored
in log scale)

Figure A.16: Number of hospital beds per 10k population (2010; colored in log
scale)
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A.1.7.4 Percentage of female Medicare enrollees aged 67 to

69 that receive mammography screening

The data is obtained from Dartmouth Atlas of Health Care.

Figure A.17: Percentage of female Medicare enrollees aged 67 to 69 that receive
mammography screening (2010)

A.1.7.5 Percentage of diabetic Medicare enrollees ages 65 to

75 that receive HbA1c monitoring

The data is obtained from Dartmouth Atlas of Health Care.
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Figure A.18: Percentage of diabetic Medicare enrollees ages 65 to 75 that receive
HbA1c monitoring (2010)

A.1.7.6 Percentage of uninsured adults in age group 16 to 64

The data is obtained from Model-based Small Area Health Insurance Estimates

(SAHIE) for Counties, Census Bureau.

A.1.7.7 Percentage of adults who are current smokers

The data is obtained from Behavioral Risk Factor Surveillance System (BRFSS)

of CDC. Smokers are those adults (over 18 years old) who reported have smoked

more than 100 cigarettes during their lifetime and who now smoke every day or some

days. An interesting fact to note is that smokers in Utah are relatively rare due to

the religion of Mormonism.
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Figure A.19: Percentage of uninsured adults in age group 16 to 64 (2010)

Figure A.20: Percentage of adults who are current smokers (2014)
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A.1.7.8 Percentage of leisure-time physical inactivity preva-

lence

The data is obtained from CDC Diabetes Statistics. It has been widely acknowl-

edged that physical inactivity is closely correlated with obesity and other chronic

diseases. The definition of physical inactivity can be found in Physical activity guide-

lines advisory committee report.78

Figure A.21: Percentage of leisure-time physical inactivity prevalence (2010)
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A.1.8 Nurturing and care

A.1.8.1 Number of nursing care facilities per 10k population

The data is obtained from County Business Patterns (CBP) of Census Bureau.

The measured used NAICS code “623110” which represents “Nursing Care Facilities

(Skilled Nursing Facilities)”.

Figure A.22: Number of nursing care facilities per 10k population (2010)

A.1.9 Transportation

A.1.9.1 Percentage of population walk or cycle to work

The data is obtained from American Community Survey (ACS), Census Bureau.
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Figure A.23: Percentage of population walk or cycle to work (2010; colored in log
scale)

A.1.10 Population well being

A.1.10.1 Average life expectancy

The data is obtained from Global Health Data Exchange.

A.1.10.2 All cause mortality per 100k population

The data is obtained from Wide-ranging Online Data for Epidemiologic Research

(WONDER), CDC.
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Figure A.24: Average life expectancy (2010)

Figure A.25: All cause mortality per 100k population (2010)
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A.1.10.3 Percentage of self-reported excellent or very good

health

The data is obtained from Behavioral Risk Factor Surveillance System (BRFSS)

of CDC.

Figure A.26: Percentage of self-reported excellent or very good health (2014)

A.1.10.4 Percentage of adults with frequent mental distress

The data is obtained from Behavioral Risk Factor Surveillance System (BRFSS)

of CDC.
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Figure A.27: Percentage of adults with frequent mental distress (2014)

A.2 Prevention Mitigation (PM)

A.2.1 Natural systems

A.2.1.1 Distance to the nearest coast

The data is obtained from National Oceanic and Atmospheric Administration.

We assume this data does not change during the years of the study.
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Figure A.28: Distance to the nearest coast in 1000 miles

A.2.2 Engineered systems

A.2.2.1 Percentage of bridges with structural deficiencies

The data is obtained from Federal Highway Administration. The data shows

strong state patterns, suggesting that this policy is usually made at the state level.

A.2.2.2 Average age of housing stock

The data is obtained from American Community Survey (ACS), Census Bureau.

A.2.2.3 Percentage of housing units that are not mobile homes

The data is obtained from American Community Survey (ACS), Census Bureau
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Figure A.29: Percentage of bridges with structural deficiencies (2010)

Figure A.30: Average age of housing stock (2010)
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Figure A.31: Percentage of housing units that are not mobile homes (2010)

A.2.2.4 Percentage of population affected by water violation

of those served by public water system

The data is obtained from United States Environmental Protection Agency (EPA)
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Figure A.32: Percentage of population affected by water violation of those served
by public water system (2014)

A.3 Population Vulnerability Inequality De-

privation (PVID)

A.3.1 Vulnerability

A.3.1.1 Percentage of children in population (below 18)

The data is obtained from American Community Survey (ACS), Census Bureau

A.3.1.2 Percentage of elderlies in population (65 and older)

The data is obtained from American Community Survey (ACS), Census Bureau.
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Figure A.33: Percentage of children in population (below 18) (2010)

Figure A.34: Percentage of elderlies in population (65 and older) (2010)
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A.3.1.3 Percentage of population in institutions

The data is obtained from Summary File of Census Bureau. According to Census,

“the institutionalized population is persons residing in institutional group quarters

such as adult correctional facilities, juvenile facilities, skilled-nursing facilities, and

other institutional facilities such as mental (psychiatric) hospitals and in-patient hos-

pice facilities.” People in institution are unlikely or unable to participate in labor

force.

Figure A.35: Percentage of population in institutions (2010; colored in log scale)
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A.3.1.4 Percentage of with a disability in civilian noninsti-

tutionalized population

The data is obtained from American Community Survey (ACS), Census Bureau

Figure A.36: Percentage of with a disability in civilian noninstitutionalized popu-
lation (2014)

A.3.2 Inequality

A.3.2.1 Gini index of income inequality

The data is directly available in Table B19083, “Gini Index of Income Inequality”

of ACS. Gini index is a normalized number ranged between 0 and 1 indicating the

statistical dispersion of the household incomes, and it is commonly used as a measure
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of income inequality.79

Figure A.37: Gini index of income inequality (2014)

A.3.3 Deprivation

A.3.3.1 Percentage of population (18 to 24 years) with less

than high school education

The data is obtained from American Community Survey (ACS), Census Bureau

A.3.3.2 Percentage of population (16 years and over) not in

the labor force

The data is obtained from American Community Survey (ACS), Census Bureau
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Figure A.38: Percentage of population (18 to 24 years) with less than high school
education (2010)

A.3.3.3 Percentage of children in poverty

The data is obtained from American Community Survey (ACS), Census Bureau

A.3.3.4 Percentage of civilian in labor force but unemployed

The data is obtained from American Community Survey (ACS), Census Bureau

A.3.3.5 Percentage of household on public assistance and

food stamps

The data is obtained from Table B19058, “Public Assistance Income or Food

Stamps/Snap in the Past 12 Months For Households” of ACS. The data column
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Figure A.39: Percentage of population (16 years and over) not in the labor force
(2010)

Figure A.40: Percentage of children in poverty (2010)

113



APPENDIX A. MEASURE DATA AND SOURCE IN COMMUNITY STABILITY
RESEARCH

Figure A.41: Percentage of civilian in labor force but unemployed (2010)

labeled “With cash public assistance or Food Stamps/SNAP” is used.

Figure A.42: Percentage of household on public assistance and food stamps (2010)
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A.4 Social Cohesion (SC)

A.4.1 Social capital and cohesion

A.4.1.1 Percentage of population who use carpool to work

The data is obtained from American Community Survey (ACS), Census Bureau.

All the surveyed means of going to work are listed as below:

• Car, truck, or van: drove alone or carpooled

• Public transportation: bus or trolley bus, streetcar or trolley car, subway or

elevated railroad, ferryboat,

• Bicycle

• Walked

• Taxicab, motorcycle, or other means

• Worked at home

A.4.1.2 Percentage of population affiliated with religious group

The data is obtained from U.S. Religion Census. NAICS code for religious orga-

nizations is “813110”.
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Figure A.43: Percentage of population who use carpool to work (2010)

Figure A.44: Percentage of population affiliated with religious group (2010)

116



APPENDIX A. MEASURE DATA AND SOURCE IN COMMUNITY STABILITY
RESEARCH

A.4.1.3 Number of religious organizations per 100 square

mile

The data is obtained from County Business Patterns (CBP) of Census Bureau.

NAICS code for religious organizations is “813110”.

Figure A.45: Number of religious organizations per 100 square mile (2010; colored
in log scale)

A.4.1.4 Number of social advocacy organizations per 10k

population

The data is obtained from County Business Patterns (CBP) of Census Bureau,

with the category “Social Advocacy Organizations” and NAICS code “8133”.
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Figure A.46: Number of social advocacy organizations per 10k population (2010)

A.5 Preparedness Response (PR)

A.5.1 Preparedness

A.5.1.1 Total number of FEMA events from 1986 to 2015

The data is obtained from Federal Emergency Management Agency.
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Figure A.47: Total number of FEMA events from 1986 to 2015
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Appendix B

Implementation of Community

Stability Research

B.1 Data transformation and aggregation

B.1.1 Data files

We provide all the raw data files:

1. “county 48ALHI.csv” contains all the counties in this study. FIPS code is a

5-digit number that unique identifies a county.

2. “list.csv” gives the list of measures along with their domain, subdomain and

directions.
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3. The folder of “OriginalMeasure” contains raw data files for all measures. Each

data file is named after its identifier (id) as in “list.csv”, and it is composed of

two columns: FIPS code and value.

B.1.2 Data aggregation framework

Here we provide the data aggregation framework developed in Python. The frame-

work take inputs of the following:

1. Individual measure data

2. Domain and subdomain of each measure

3. The set of counties to be processed

The framework then transforms each measure and aggregate them to get subdomain

and domain values. Currently we did not develop the graphical user interface and

only provide the source code with documentations. To use the code, one needs to

configure his or her computer as follows:

1. Install Python 3.5 and pip (python package manager)

2. Make sure the dependent packages have been already installed. A requirements

file is provided, and to install all packages one simply needs to execute pip

install -r requirements.txt
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3. Execute the source code “prepare data.py” with Python3.5. It will create a

database file name “data.db” and a table containing all domain level data in

“domain.csv”. In the database file, table “scaled” contains all transformed and

scaled measure data, “subdomain” contains the aggregated data at subdomain

level, and “domain” save an extra copy of domain data.

The source code is in the file named “prepare data.py” and also attached below.

1 from scipy import stats

2 import pandas

3 import sqlite3

4 import numpy

5 import os

6

7 # Load in the list of measures

8 LS = pandas.DataFrame.from_csv(’list.csv’)

9

10

11 def init_df():

12 return pandas.DataFrame.from_csv(’county_48ALHI.csv’)[[]]

13

14

15 def load_and_scale():

16 """

17 Load measure data from files salved in OriginalMeasure and scale them.

18 :return: The scaled measures

19 """

20 measures = init_df()

21 for id, row in LS.iterrows():

22 # Load data from file

23 df = pandas.DataFrame.from_csv(’OriginalMeasure/{}.csv’.format(id))

24

25 # Remove possibly duplicate rows

26 df = df[~df.index.duplicated()]

27

28 # Remove negative entries

29 df.query(’value >= 0’, inplace=True)
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30

31 # Shift up a little to avoid zero in Box-Cox transformation.

32 tiny = 0.000001 * (df[’value’].max() - df[’value’].min())

33 df[’value’] += - df[’value’].min() + tiny

34

35 # Box cox transformation

36 df[’value’], lam = (stats.boxcox(df[’value’]))

37

38 # Take Z-score

39 df[’value’] = stats.zscore(df[’value’])

40

41 # Truncation with +- 3.5

42 df[’value’][df[’value’] > 3.5] = 3.5

43 df[’value’][df[’value’] < -3.5] = -3.5

44

45 # Adjust for direction

46 if row[’direction’] == ’-’:

47 df[’value’] *= -1

48

49 # Scale from [-3.5, 3.5] to [0, 1]

50 df[’value’] = (df[’value’] + 3.5) / 7

51

52 # Save to data frame

53 measures[id] = df[’value’]

54 return measures

55

56

57 def aggregate(measures):

58 """

59 Aggregate individual measures to domains

60 :param measures: data frame of measures

61 :return: data frame of domains

62 """

63 # Aggregate to subdomain level

64 SD = init_df()

65 for subdomain in set(LS[’subdomain’]):

66 df = init_df()

67 df[’value’] = 0

68 df[’cnt’] = 0

69 for id in LS.query(’subdomain == "{}"’.format(subdomain)).index:

70 df[’value’] += numpy.nan_to_num(measures[id])

71 df[’cnt’] += 1 - numpy.isnan(measures[id])
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72

73 SD[subdomain] = df[’value’] / df[’cnt’]

74

75 # Aggregate to domain level

76 D = init_df()

77 for domain in set(LS[’domain’]):

78 df = init_df()

79 df[’value’] = 0

80 df[’cnt’] = 0

81 for subdomain in set(LS.query(’domain == "{}"’.format(domain))[’subdomain’]):

82 df[’value’] += numpy.nan_to_num(SD[subdomain])

83 df[’cnt’] += 1 - numpy.isnan(SD[subdomain])

84 D[domain] = df[’value’] / df[’cnt’]

85

86 # Save to database

87 con = sqlite3.connect(’data.db’)

88 measures.to_sql(’scaled’, con, if_exists=’replace’)

89 SD.to_sql(’subdomain’, con, if_exists=’replace’)

90 D.to_sql(’domain’, con, if_exists=’replace’)

91

92 # Fill missing value with state average

93 for domain in set(LS[’domain’]):

94 con.cursor().execute("""

95 UPDATE domain SET ‘{0}‘ = (

96 SELECT AVG(‘{0}‘)

97 FROM domain AS domain2

98 WHERE domain2.fips/1000 == domain.fips/1000

99 ) WHERE ‘{0}‘ IS NULL""".format(domain))

100 D = pandas.read_sql(’SELECT * FROM domain’, con).set_index(’fips’)

101 con.close()

102 return D

103

104

105 measures = load_and_scale()

106 domains = aggregate(measures)

107 domains.to_csv(’domain.csv’)
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B.2 The ODE model

B.2.1 Solving ODEs

We also provide a Matlab file that loads in data from “domain.csv”, solve ODEs,

calculate resilience and resistance, and then save the results back to file “domain.csv”.

1 clear, clc

2 filename = ’domain.csv’;

3 T = readtable(filename, ’ReadRowNames’,true);

4 T.Resilience = zeros(size(T, 1), 1);

5 T.Resistance = zeros(size(T, 1), 1);

6 T.Recovery = zeros(size(T, 1), 1);

7 T.CFend = zeros(size(T, 1), 1);

8 tspan = linspace(0, 12, 121); % unit: month

9

10 global var_list;

11 var_list = {’ER’, ’CF’, ’SC’, ’PR’, ’PreCF’, ’PVID’, ’PM’};

12 N_counties = size(T,1);

13

14 %% Solving

15 for i_county = 1 : N_counties

16 fprintf(’>>> Calculating county %d\n’, i_county);

17

18 % Assemble the initial state vector

19 W0 = zeros(length(var_list), 1);

20 for i_var = 1:length(var_list)

21 switch var_list{i_var}

22 case {’PreCF’}

23 W0(i_var) = T{i_county, ’CF’};

24 case {’ER’}

25 W0(i_var) = 0.5;

26 otherwise

27 W0(i_var) = T{i_county, var_list{i_var}};

28 end

29 end

30

31 % solving
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32 [~, W ] = ode45( @fdW, tspan, W0);

33

34 % Solve for resilience and resistance

35 [T{i_county, ’Resistance’}, T{i_county, ’Recovery’}, T{i_county, ’Resilience’}] = res(W(:,2), tspan);

36 T{i_county, ’CFend’} = W(end,2);

37 end

38 writetable(T, filename, ’WriteRowNames’, true);

B.2.2 Definition of ODEs

1 function dW = fdW(t, W)

2 %% Parameters

3 isPandemic = false;

4 Event0 = 1;

5 global var_list;

6

7 for i = 1:length(var_list)

8 eval(sprintf(’%s = max(W(%d), 0);’, var_list{i}, i));

9 end

10

11 %% constant variables

12 Event_damage_rate_constant = 4;

13 ER_flow_rate_constant = 1;

14 PR_flow_rate_constant = 1;

15 SC_flow_rate_constant = 1;

16 CF_depletion_rate_constant = 5;

17

18 %% CF replenish

19 CF_drop = max( PreCF - CF, 0 );

20 SC_flow_rate = SC_flow_rate_constant * CF * SC * CF_drop;

21 PR_flow_rate = PR_flow_rate_constant * PR * CF_drop;

22 ER_flow_rate = ER_flow_rate_constant * ER * CF_drop;

23 CF_replenish_rate = SC_flow_rate + PR_flow_rate + ER_flow_rate;

24

25 %% CF depletion rate

26 if isPandemic

27 tau = 2; % event peak (mean)

28 sigma = 1; % event spead (std)

29 coef = 1 / sqrt(2*pi*sigma^2);
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30 Event_t = Event0 * coef * exp(-(t-tau)^2 / (2*sigma^2));

31 else

32 k = Event_damage_rate_constant;

33 Event_t = Event0 * k * exp(-k * t);

34 end

35

36 Event_damage_rate = Event_t * (PM + PVID)/2;

37 CF_depletion_rate = CF_depletion_rate_constant * CF * Event_damage_rate;

38

39 %% Derivatives

40 dSC = - SC_flow_rate;

41 dPR = - PR_flow_rate;

42 dER = - ER_flow_rate;

43 dCF = - CF_depletion_rate + CF_replenish_rate ;

44

45 dW = zeros(length(var_list), 1);

46 for i = 1:length(var_list)

47 fieldname = var_list{i};

48 switch fieldname

49 case {’PreCF’, ’PVID’, ’PM’} % for constant values.

50 dW(i) = 0;

51 otherwise

52 eval(sprintf(’dW(%d) = d%s;’, i, fieldname));

53 end

54 end

B.2.3 Definition of resistance and resilience

1 function [resistance, recovery, resilience] = res(CF, tspan)

2 resilience = mean(CF);

3 CF0 = CF(1);

4 [CF_min, idx_min] = min(CF);

5

6 % Resistance is the percentage of CF that remained during event.

7 resistance = CF_min / CF0;

8

9 CFrecovery = (CF(idx_min : end) - CF_min) / (CF0 - CF_min);

10 if max(CFrecovery) > 0.5

11 tHalf = interp1(CFrecovery, tspan(idx_min : end), 0.5);
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12 else

13 tHalf = 12;

14 end

15 % Resilience is the speed of half recovery.

16 recovery = 1 / tHalf;

B.3 Map visualization tool

A map visualizer was developed to facilitate the examination and studying of data

and model results in folder “maps”. The tool is developed mainly in JavaScript and

works as a standalone web application. The first column of “data.csv” should always

be FIPS code and be named exactly as “fips”. Table B.1 gives an example of such

table.

Table B.1: Example format of data table to be visualized

fips Variable name 1 Variable name 2
1001 4.3 0.1
1003 9.2 0.3
1005 1.4 0.8

Each of the other columns is one variable to be visualized on the map. The tool

draws each column as one map titled with the column name. To use the tool:

1. Place you data into “data.csv” as specified before.

2. If you use “Safari”, simply open “index.html”.

If you use other web browser: make sure Python is installed, go the source code
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folder, and start a mini server: python -m SimpleHTTPServer 8000 . Then

you can visit the web application in your browser: http://localhost:8000

B.4 CF simulation tool

A community function simulation tool was developed to perform sensitivity anal-

ysis in a straightforward way: http://slinjhu.github.io/CFSimulator . Figure

B.1 gives a preview. Source code is also available.
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Figure B.1: Preview of the CF simulation tool
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