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Abstract 

Over the past decade, there have been many advances in developing 

computational tools toward sub-Angstrom biomolecular structure prediction accuracy. A 

remaining challenge is capturing helix hinge dynamics within membrane proteins. 

Modeling these dynamics is challenging because their location and qualities are 

determined by a fine balance of intermolecular interactions with neighboring helices and 

the surrounding lipid bilayer. In this work, I aimed to enable sampling of kinked helices 

through the use of a kinked peptide fragment library. By first developing a classification 

method for kinked helices, I generated a kinked helix library. Exploration of this library 

revealed diverse helical representations which depended on the kink degree, resulting 

from the number of backbone hydrogen bonds present. I expect this library to allow for 

insertion of kinked protein fragments from the Protein Databank into membrane proteins. 

This library has the potential to significantly improve the accuracy of membrane protein 

structure prediction and enable de novo design of membrane proteins that contain flexible 

hinges.  

Protein-protein interface prediction and design methods provide insight into protein 

function and guide protein engineering. For membrane proteins, this task is especially 

difficult because they reside in a heterogeneous lipid bilayer. In this work, I develop a 

multiscale modeling approach to dock membrane-anchored proteins. CYP76AD1 and 

NCP1 are redox enzymes which interact to produce potent small molecules. This system 

is challenging to model due to its many complexities: (i) membrane-anchored proteins, 

(ii) 600-700 residue proteins, and (iii) small molecules. I used a combination of molecular 
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dynamics, global docking and local docking to predict the protein-protein interface region. 

Through experimental validation, I determined an important residue involved within the 

interface. Furthermore, I applied the change in binding energy calculations to guide 

structural predictions. This multiscale approach has the potential to predict interface 

regions between large membrane-anchored proteins which have posed a challenge in 

the past.  
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Chapter 1: Introduction 

1.1 Motivation 

Membrane proteins are critical and play an important role in functions of 

transduction ion regulation and signaling [1]. Protein structure prediction and design can 

provide insight into the structural basis of protein function. This is especially important for 

membrane proteins, as they comprise 30% of all proteins [2]. This task is difficult for 

membrane proteins because they reside in a heterogeneous lipid bilayer. The bilayer 

results in challenges in experimental characterization [3], and parametrization of score 

terms computationally. Over the past decade, there have been advances in developing 

computational tools toward to sub-Angstrom prediction accuracy of membrane proteins 

[4], but challenges still remain. Two challenges examined in this study, are that of (i) hinge 

dynamics within transmembrane helices, and (ii) protein-protein interface prediction.  

1.2 Macromolecular modeling approaches 

Two popular approaches for macromolecular modeling are molecular dynamics 

(MD) [5,6] and Monte Carlo sampling (MC) [7]. Molecular dynamics simulations are driven 

by Newton’s equations of motion which allow atoms to be tracked through time. MD 

simulations can provide insight into protein systems which lack experimental results and 

help guide future discovery through experimental validation. These simulations provide 

success when examining dynamics of small molecule-protein interactions [8], surface-

protein interactions [9] and peptide/protein equilibration [10]. However, MD is 

computationally heavy, as calculations for each atom within a system can be slow, limiting 
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the amount of time that can be simulated. With most computational resources, simulations 

must be at small timescales of nanoseconds to microseconds and larger systems may 

require even shorter simulation times. Because MD is only feasible at short timescales, it 

is often incapable of capturing binding dynamics or protein conformational changes. 

Consequently, Monte Carlo methods [11] have been used to overcome some of the 

challenges resulting with MD.  

Monte Carlo is a method used to sample protein conformational states. Within this 

method of sampling, random moves are applied and accepted or rejected based on the 

Metropolis criterion [12]. Rosetta is a Monte Carlo (MC) based protein modeling software 

suite designed for the prediction and design of proteins. This method is used to sample 

the energy landscape, finding low-energy wells, with the goal of predicting models 

representative of native structures. 

 In comparison to MD, MC-based methods are advantageous because they are 

not time based and allow for sampling the low-energy landscape faster. Although 

visualization of dynamics in action is not possible, such as results seen with MD 

simulations. Ultimately, MD and MC methods can both provide valuable insight into 

various aspects of proteins, and each method of approach should be determined on a 

case-by-case basis.  

1.3 Significance of this work  

In this work, Chapter 2 explains a multiscale modeling approach for docking membrane 

anchored proteins. Using this approach, I modeled a large protein system comprising two 

redox enzymes within a lipid bilayer. Chapter 3 explains (i) the ability of current 
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refinement methods within Rosetta to sample dynamic helical hinges, (ii) whether Rosetta 

score functions bias specific helical conformations, (iii) a degree classification method for  

helical kinks, and (iv) the generation of a kinked fragment library. Lastly, I discuss the 

effect that each of these approaches may have on future efforts.   
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Chapter 2: A multiscale modeling approach for the prediction of 
membrane anchored protein-protein interface regions 

2.1 Background 
 
2.1.1 Recent work resulted in an engineered S. cerevisiae that can generate 

backbone of benzylisoquinoline alkaloids: a molecule with potent pharmacological 

properties 

Benzylisoquinoline alkaloids (BIAs) are a group of naturally-occurring small 

molecules that have been extracted for wide-ranging pharmaceutical purposes including 

pain relief, fighting bacterial infections, healing skin abrasions, and use as a muscle 

relaxant [13] (Figure 1). Their structures include a common backbone of rings with 

multiple chiral centers [14]. Their history pre-dates the modern era; for instance, greater 

celandine (Chelidonium majus) has been used for healing purposes throughout Europe 

and Asia since the Imperial Roman period. There are currently over 2500 known 

structures with potentially many more BIAs still undiscovered [15]. 

 

Despite their importance, BIAs can only be extracted from plants in minute 

amounts. Extraction from plants requires significant land, time for growth, and resources 

Morphine  Berberine  Papaverine  

Figure 1: Three benzylisoquinoline examples commonly found in nature 
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for cultivation [16]. In addition, environmental factors result in significant batch-to-batch 

variation of BIA purity and production quantities [17]. Chemical synthesis is a common 

alternate route for pharmaceutical production. However, the large number of chiral 

centers complicates this approach [18]. Thus far, there are thirty feasible chemical 

syntheses of different BIAs [19]. Still, the high cost and low yield makes the process 

suboptimal for batch production. As a result, the scientific community is in search of a 

more efficient route to BIA production.  

Fermentation of microbes such as E. coli, or S. cerevisiae are already used to 

produce amino acids, vitamins, and antibiotics. Recently, genetic engineering 

technologies have revealed a pathway to synthesis of more complex biomolecules 

through microbial hosts [20,21]. Specifically, we can transplant a desirable biosynthetic 

pathway from one organism into a microbial host system such as E. coli, or S. cerevisiae 

that are easier to cultivate in the lab [22]. As a result, we can take advantage of previously-

established batch-production techniques to scale production [22].  

The technology was first applied by DuPont and Genencor International, Inc. in 

2002. Nakamura et al. used metabolic engineering to develop a single organism capable 

of creating 1,3-propanediol, known for its use in polymers, from D-glucose [23]. This 

process resulted in the use of an inexpensive feedstock of D-glucose, allowing for 

increased production through renewable resources [23]. Although microbial engineering 

is appealing for its short cultivation periods and controlled environment, it is still 

challenging to optimize the synthetic biology pathways.  Even so, due to the possibility of 



 6 

low cost high yield, synthetic biology along with microbial engineering is a promising 

approach for the production of complex small molecules [24,25]. 

Recently, Deloache et al. applied metabolic engineering to modify a microbial host 

capable of synthesizing the backbone of BIA molecules [26]. First, they transplanted the 

cytochrome P450 variant CYP76AD1 from B. vulgaris into S. cerevisiae. The cytochrome 

oxidase (CYP) partners with a native reductase (NCP1) to perform the conversion by 

selectively adding a hydroxyl group onto the aromatic ring. Then, they established a 

reporting assay that converts L-DOPA to fluorescent Betaxanthin, providing a measure 

of the catalytic activity (Figure 2). Although the CYP variant shows promising activity, its 

performance remains low, emphasizing the need for enzymatic optimization.  

 

2.1.2 Computational protein engineering is a potential route to improve catalysis 

and subsequently to increase yield 

Bioinformatics and molecular modeling techniques have advanced significantly in 

the past decade and are useful for understanding and engineering enzymes. These tools 

and methods have been developed to aid in specific design and engineering of enzymes 

relating to activity, selectivity, and stability. An especially successful enzyme engineering 

UV 

Proteins are 
expressed 

Ultraviolet light is used to 
measure catalytic activity  

Catalytic activity 
is calculated  

Figure 2: Experimental method for evaluating mutant oxidase catalytic activity 
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example is the design of formolase, a cornerstone enzyme performing the carboligation 

reaction step within a novel metabolic pathway to more efficiently use carbon [27]. To 

design this enzyme, a starting structure was chosen from an enzyme which performs a 

similar reaction on a different substrate. To increase the activity of the enzyme and 

specificity for the desired substrate, computational tools were used to redesign the 

binding pocket for the new substrate. The new substrate was modeled within the binding 

site, followed by Rosetta Design and Foldit methods to fill in the hollow spaces and 

increase the binding affinity. Four iterations of computational designs followed by 

experimental evaluations were performed, resulting in a total of 121 unique designs. To 

test these designs, enzyme assays were applied to measure the amount of desired 

product produced, quantifying the catalytic activity [27]. As a result of these methods, a 

variant with four residue mutations was discovered that yielded 26-fold higher catalytic 

activity. The promising results from this design methodology demonstrate the possibilities 

of designing a new enzyme to increase affinity and specificity to catalyze specific 

reactions.  

Another promising example of enzyme engineering includes the thermostability 

enhancement of a pullulanase enzyme, responsible for the hydrolysis of glycosidic 

linkages in specific polymers [28]. Because of their poor thermostability, these enzymes 

result in decreased activity, making them suboptimal. To increase the thermostability of 

a pullulanase enzyme, four data driven rational design methods (B-FITTER, proline 

theory, PoPMuSiC-2.1 and sequence consensus approach) [29–31] were used with the 

goal of generating a highly active enzyme at higher temperatures [28]. These methods 
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predicted 39 residue sites responsible for thermostability of the enzyme, and a mixture of 

single mutations and combination mutations were tested for stability. Each enzyme was 

screened for its thermostability through an assay that assesses the enzymatic activity at 

varied temperature intervals [28]. This guided mutagenesis testing resulted in an enzyme 

with three mutations that demonstrated an eleven-fold increase in catalytic activity at 

increased temperatures.  

Although these combinations of experimental and computational methods 

provided promising results, this is not always the case. The complexity of many enzymatic 

systems can lead to inaccurate predictions which are unable to accomplish their design 

goal. Furthermore, iterations between computational predictions and experimental testing 

can be costly and time consuming. Nonetheless, each enzyme system, design goal, and 

approach requires its own set of restraints and challenges that must be overcome to reach 

a successful outcome.   

2.1.3 The complexity of the CYP76AD1 system poses a challenge to understand 

and engineer 

CYP76AD1, an enzyme native to  the B. vulgaris plant, is a member of the 

cytochrome P450 superfamily [26]. Cytochrome P450 enzymes in general are found in 

all life forms from humans to bacteria and preform catalysis on a wide variety of 

compounds [32]. I examined the CYP76AD1 enzyme within the S. cerevisiae microsomal 

system. This enzyme is a class II P450 enzyme, meaning that it is found in eukaryotic 

organisms within the membrane of the endoplasmic reticulum and requires the pairing of 

a cytochrome P450 reductase (CPR) enzyme for its function [32]. Each CPR enzyme 
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include important small molecules responsible for electron transfer (FAD, FMN). This 

class of P450s functions to accomplish metabolite synthesis, making them an area of 

interest for industrial applications [33].   

The challenge engineering the CYP76AD1 system for increased catalytic activity 

is that it encompasses a coupled reaction, a lipid bilayer, and small molecules. 

CYP76AD1 is a mono-spanning membrane protein and the oxidase enzyme in a redox 

pair. In order for the CYP76AD1 to perform its catalytic activity, it requires a reductase 

enzyme capable of transferring electrons to it [34]. NCP1, a natural reductase enzyme 

within the host S. cerevisiae, satisfies this criterion, resulting in a system that functions 

with low catalytic activity. To understand how these enzymes function, and to engineer 

CYP76AD1 for increased activity, I must first determine the protein-protein interface 

between them.  

Traditional computational methods for determining interfaces between proteins 

include global docking, often followed by local docking. Global docking methods, such as 

ClusPro or ZDock, utilize a Fast Fourier Transform method to find a rough interface that 

increases shape commentary [35,36], while local docking methods, such as Rosetta Dock 

[37], rely on more complex algorithms and score functions to locate residue-residue 

contacts within the interface.  

 

While soluble protein–protein interaction prediction is well studied [35–37], NCP1 and 

CYP76AD1 are membrane-anchored proteins with large soluble head regions, which 

presents a challenge to dock, as most tools, such as those mentioned previously, are not 
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designed to predict the membrane protein-protein interface. A different approach to 

determining the interface is the use of molecular dynamics, which allows for inclusion of 

a lipid bilayer and is applied to understand the dynamics of a system [38]. However, this 

method is not feasible for predicting interfaces of large proteins such as our case, 

because it requires large time scales unachievable by most computational resources.  

Furthermore, additional challenges result from the membrane as it interacts with 

the proteins in multiple possible orientations, depending on how the soluble head regions 

lay atop the surface [39]. This interaction can result in conformational changes and limit 

residues available to interact in the protein-protein interface. As a result of these many 

challenges, there currently is no protocol to determine the interface between membrane 

proteins, such as CYP76AD1 and NCP1, highlighting the need for a prediction method 

capable of capturing systems of this type.  

2.1.4 A new approach for the prediction of membrane protein-protein interfaces  

The goal of my project is to develop an approach for predicting the interface 

between membrane-anchored proteins such as CYP76AD1 and NCP1. Due to the 

intricacies of these types of systems, I will leverage multiple computational methods to 

tackle this problem. Utilizing each method, I will understand a different part of the system, 

with the goal of generating a docked complex model. This goal is important because the 

next step is to design mutations that improve the catalytic efficiency.    

To develop this complex structure model, I will first generate the structure of each 

enzyme using homology and helix modeling techniques. This step will provide me with 

structural models required to further understand the interaction and determine the 
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interface region. Next, to account for conformational changes due to the membrane, I will 

use molecular dynamics to equilibrate each structure within its natural lipid bilayer.  

From the MD trajectory, I can investigate the effect of the membrane on each 

protein through 50 nanoseconds. Moreover, through the trajectory, I can examine whether 

the protein has equilibrated within the membrane environment in the length of the 

simulation time chosen. After each protein is equilibrated within its membrane 

environment, I will dock these proteins together using a combination of global docking 

and local docking tools.  

To predict the interface between membrane-anchored proteins, I apply different 

docking algorithms. For global docking, the methods I apply Fast Fourier Transformations 

(FFT) to provide general regions in which a set of proteins may interact, based on their 

shape complementary. For local docking, I apply several Rosetta methods ideal for 

sampling complex model orientations and providing more precise interface regions of my 

system. This results in model predictions of the interaction between the proteins, which I 

will validate experimentally.  

My combined approach has not yet been attempted on membrane anchored 

protein-protein systems. This model must be combined with experimental methods to 

validate and guide the predictions. Being able to accurately predict the interface region of 

these types of systems is a step in understanding function and designing enzymes for 

increased activity.  

2.2 Methods 
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2.2.2 Protein structure generation and orientation  

By homology modeling, I generated the structure for each enzyme’s soluble head 

region. I applied Swiss Model [40] to discover template structures based on the sequence 

identity, the global model quality estimation (GMQE), the quaternary structure quality 

estimation (QSQE), the coverage, and the resolution of each template. Through analysis 

of the sequence alignment, I identified large gaps in candidate template sequences and 

poor templates could be discarded. Top template structures identifications chosen for 

CYP76AD1 were PDBs 1og5A, 6b82 and 3e43. The top template structure chosen for 

NCP1 was 2bn4. Utilizing the top template structure(s), I generated models for 

CYP76AD1 and NCP1 through Modeller [41]. Due to the low sequence identity, below 30 

percent, of available template models for CYP76AD1, I chose three top identity template 

structures to generate its structural model. At the end, each soluble head region was 

ready for the addition of its native ligands.  

To accurately represent each protein, it was necessary to include all ligands 

involved in the system. To do so, I added each small molecule to its respective enzyme 

through the protein-relative position within the template model. Small molecules 

nicotinamide adenine dinucleotide phosphate hydrogen (NADPH), flavin adenine 

dinucleotide (FAD), and flavin mononucleotide (FMN) were added to NCP1 utilizing the 

top template crystal structure chosen for homology modeling. Heme was added to 

CYP76AD1 utilizing the top template crystal structure identified through Swiss Model. To 

avoid clashes due to small molecule placement and to provide unbiased structural 
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models, I applied Rosetta Fast Relax [42] for each crystal based structure. For the relax 

run, 500 models were generated, and I chose the lowest energy model to continue.     

To assemble the completed structure for each protein, I attached the 

transmembrane domain portions to the soluble head regions. To generate the 

transmembrane helical domain of each protein, I used Rosetta, with the known 

transmembrane sequences as the input. Utilizing Pymol [43], I attached each 

transmembrane helical structure domain to its respective soluble head region. Next, using 

PyRosetta MP [44], I oriented the protein correctly for placement within the membrane. 

This step required span file inputs, which described the region of residues within the 

membrane, to optimally place residues within the correct location. I generated each span 

file based on the membrane predicted residues for each protein through the use of 

Octopus [45]. Once I completed these steps, I had prepared each protein for placement 

within the membrane.  

2.2.3 Molecular dynamics simulations 

I equilibrated CYP76AD1 and NCP1 computationally within their natural lipid 

bilayer using all-atom molecular dynamics (MD) simulations. Simulations were setup 

through CHARMM GUI [46], utilizing the bilayer builder option with the oriented PDB 

coordinates for the input. First, utilizing the default options, I applied the CHARMM36 

forcefield as well as the TIP3 model for water. Second, I chose the composition of each 

system to provide adequate room for the enzyme to fit within the system, and offering a 

15 Å buffer region of water above the protein head. I built the CYP76AD1 system with a 

composition of 324 DLPE molecules, and 9999 water molecules. Next, I built NCP1 
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system with a composition of 611 DLPE molecules, 9999 water molecules, and 26 KCl 

neutralizing ions. Once I generated these starting systems, I had prepared the proteins 

for the next equilibration steps through molecular dynamics simulations. 

To simulate each protein’s trajectory, I used NAMD [47], with the input files 

generated from CHARM GUI. For stability, six simulation equilibration runs ranging from 

100 to 400 picoseconds were performed utilizing collective variable restraints to slowly 

release the system. After the systems were stable, I executed a production run of 50 

nanoseconds at a temperature of 303.15 K to equilibrate each protein within its system. I 

chose the temperature based on the optimum temperature that S. cerevisiae grows. From 

each output trajectory, I pulled a single structure that most represented the final 

equilibrated protein. These two structural models are now ready to be used as inputs to 

generate docked models.  

2.2.4 Prediction of the protein-protein interface 

To prepare the proteins for global docking, I removed each enzyme from its lipid 

bilayer and generated masks for the transmembrane helical domains. Each mask 

specified the residues involved in the transmembrane region within each enzyme and I 

applied these files as repulsion residues within ClusPro [36]. Using ClusPro, along with 

the input of each enzyme’s PDB file, I globally docked NCP1 to CYP76AD1. ClusPro 

outputted 30 best ranked models. A favorable complex model resulted in 5 to 7 residue-

residue contact sites, and structures with fewer than 3 sites were unfavorable. Complex 

model shapes which minimized the distance for electron transfer between heme and 
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FMN, were considered favorable.  Of these models, I chose the top four structures, based 

on the number of contacts within the interface and the shape complementary.  

Once globally docked structures were chosen, Rosetta was applied to locally dock 

the top four complex models. Three different docking protocols were tested, Local Dock 

[48], MP Dock [44] and Ensemble Dock [49]. Rosetta Dock does not take into account 

protein flexibility or membrane constraints, whereas Rosetta MP Dock models the 

membrane and the constraints that these membrane anchored proteins could have. 

Rosetta’s Ensemble Dock allows for flexibility through small conformational changes, 

which may occur through docking. By combining these methods, I collected likely protein-

protein contact residues.   

For each protocol, I generated a thousand structures and the structure with the 

lowest interface energy score was chosen to move forward. To run Ensemble Dock, I 

generated an ensemble consisting of 50 structures utilizing Rosetta Relax. Outputs from 

these protocols were then refined further utilizing the Rosetta local refinement protocol.  

2.2.5 Experimental validation and structure prediction guidance 

To test the docked models, I used experimental results. For each top complex 

model, mutations were proposed that would disrupt the interface. I picked mutation sites 

based on polar interface residues within the CYP76AD1 enzyme. For each mutation site, 

I chose both a conservative and non-conservative mutation depending on the current 

residue type. Mutations were picked to alter the residue from large to small, polar to non-

polar, charged to no-charge, and vice versa. Experimental testing of these mutations was 

performed by the Dueber at UC Berkeley with a biosensor enzyme [26] to quantify the 
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catalytic activity. I applied Rosetta Flex ∆∆G [50] in combination with these experimental 

results to analyze each complex prediction for accurate mutation sites within the interface. 

I ran Flex ∆∆G on each mutation suggested for each structure, with the default settings. 

This outputted quantitative values representing whether a mutation stabilized or 

destabilized the interface.  

2.3 Results 
 
2.3.1 Protein structure generation and orientation within the membrane  

Homology modeling is a powerful tool that exploits sequence similarity to generate 

structural models. I applied homology modeling tools because the structure of CYP76AD1 

was not available and the structure of NCP1 was not complete. This method allowed me 

to generate predictive structural models for each protein based on its sequence solely. 

To model CYP76AD1, I chose three top identity template structures, 1og5A, 6b82 and 

3e43. These template structures had sequence identities of 27%, 29% and 27% 

respectively to CYP76AD1. Within each template, 9-12 gaps were present, and there 

were 113 conserved residue positions between the three templates.  

To model NCP1, I used template structure 2bn4 with an identity of 99%. The 

template structure resulted in 24 gaps arising from the transmembrane domain region, 

which was missing in the template structure. However, all residues that were present 

within the template were conserved within NCP1. The generated models, template 

structure IDs, and percent identities are shown in Table 1. 
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Table 1: Structural model generated for CYP76AD1 (blue), NCP1 (tan), the percent identity for each model 
and template PDB ID(s) for NCP1 and CYP76AD1. 

Protein topology prediction methods are beneficial for predicting environmental 

conditions of each residue because I did not have environmental information for each 

residue and I did not know which residues were located within the membrane. I applied 

OCTOPUS, a topology prediction method, to both proteins. This method predicted the 

transmembrane span for each protein and these outcomes are shown in Figure 3. For 

both NCP1 and CYP76AD1, there were two regions predicted to be within the membrane, 

and the bulk of each protein located inside the membrane.  

 
 
 
 
 
STRUCTURAL 
MODEL 

 
 
 
 
 
 

 

PROTEIN CYP76AD1 NCP1 

PDB ID 6b82, 1og5A, 3e43 2bn4 

IDENTITY (%) 29, 27, 27 99 
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2.3.2 Molecular dynamics simulations 

All-atom MD simulations, in combination with experimental validation, are useful 

for visualizing molecular interactions on the atomic scale. This method is needed because 

CYP76AD1 and NCP1 structural models were generated from crystal structures in the 

solubilized form. I used constant pressure of 1 atm, a temperature of 30 °C, and a 

membrane composed of 1,2-Dilauroyl-sn-glycero-3-phosphoethanolamine (DLPE) lipids. 

MD allowed me to interrogate the protein conformation and interactions with the 

membrane. To this end, I simulated both enzyme models in this membrane system. 

To analyze the simulations, each trajectory was judged as equilibrated using two 

quantities: (i) root mean square deviation (RMSD) of the backbone atoms referenced to 

the starting structure, and (ii) distance dependent measurements from a the lipid bilayer 

Outside Membrane              Inside Membrane               Within Membrane 

Sequence:CYP76AD1 
MDHATLAMILAILFISFHFIKLLFSQQTTKLLPPGPKPLPIIGNILEVGKKPHRSFANLAKIHGPLISLRLGSVTTIVVSSA
DVAKEMFLKKDHPLSNRTIPNSVTAGDHHKLTMSWLPVSPKWRNFRKITAVHLLSPQRLDACQTFRHAKVQQLYE
YVQECAQKGQAVDIGKAAFTTSLNLLSKLFFSVELAHHKSHTSQEFKELIWNIMEDIGKPNYADYFPILGCVDPSGIR
RRLACSFDKLIAVFQGIICERLAPDSSTTTTTTTDDVLDVLLQLFKQNELTMGEINHLLVDIFDAGTDTTSSTLEWVMT
ELIRNPEMMEKAQEEIKQVLGKDKQIQESDIINLPYLQAIIKETLRLHPPTVFLLPRKADTDVELYGYIVPKDAQILVNL
WAIGRDPNAWQNADIFSPERFIGCEIDVKGRDFGLLPFGAGRRICPGMNLAIRMLTLMLATLLQFFNWKLEGDISPK
DLDMDEKFGIALQKTKPLKLIPIPRY 

Sequence:NCP1 
MPFGIDNTDFTVLAGLVLAVLLYVKRNSIKELLMSDDGDITAVSSGNRDIAQVVTENNKNYLVLYASQTGTAEDYAK
KFSKELVAKFNLNVMCADVENYDFESLNDVPVIVSIFISTYGEGDFPDGAVNFEDFICNAEAGALSNLRYNMFGLGN
STYEFFNGAAKKAEKHLSAAGAIRLGKLGEADDGAGTTDEDYMAWKDSILEVLKDELHLDEQEAKFTSQFQYTVLN
EITDSMSLGEPSAHYLPSHQLNRNADGIQLGPFDLSQPYIAPIVKSRELFSSNDRNCIHSEFDLSGSNIKYSTGDHLA
VWPSNPLEKVEQFLSIFNLDPETIFDLKPLDPTVKVPFPTPTTIGAAIKHYLEITGPVSRQLFSSLIQFAPNADVKEKLT
LLSKDKDQFAVEITSKYFNIADALKYLSDGAKWDTVPMQFLVESVPQMTPRYYSISSSSLSEKQTVHVTSIVENFPN
PELPDAPPVVGVTTNLLRNIQLAQNNVNIAETNLPVHYDLNGPRKLFANYKLPVHVRRSNFRLPSNPSTPVIMIGPG
TGVAPFRGFIRERVAFLESQKKGGNNVSLGKHILFYGSRNTDDFLYQDEWPEYAKKLDGSFEMVVAHSRLPNTKK
VYVQDKLKDYEDQVFEMINNGAFIYVCGDAKGMAKGVSTALVGILSRGKSITTDEATELIKMLKTSGRYQEDVW 

Figure 3: Octopus topology prediction results for CYP76AD1 and NCP1. Residues on the outside of the 
membrane are labeled in blue, residues on the inside of the membrane are labeled in black and residues 
within the membrane are labeled in red.  
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A B 

center of mass to set residues throughout the protein. Selected residues to track over the 

duration of the trajectory are highlighted in Figure 4. residue distance measurement plots 

for each protein are shown in Figure 5, which illustrates small deviations with maximum 

magnitudes of 2.2 angstroms for CYP76AD1 and 2.8 angstroms for NCP1. Moreover, 

RMSD plots of each protein’s trajectory are shown in Figure 6, which illustrates small 

deviations with maximum magnitudes of 0.56 Å for CYP76AD1 and 0.50 Å  for NCP1.  

 

 

Figure 4: (A) CYP76AD1 (purple) and (B) NCP1 (tan), with tracked residues represented as spheres. The 
colors correspond to the residue being tracked. Residue 10 in blue, residue 21 in brown, residue 118 in 
green, residue 235 in purple, residue 364 in orange, and residue 471 in red. 
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Figure 5: Distance measurement from specified residues to the lipid bilayer center of mass 
over the last 20 nanoseconds of each protein’s trajectory. The colors correspond to the 
residue being tracked. Residue 10 in blue, residue 21 in brown, residue 118 in green, 
residue 235 in purple, residue 364 in orange, and residue 471 in red. 
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Figure 6: Backbone RMSD of CYP76AD1 and NCP1, relative to the starting conformation, over last 20 
nanoseconds of the trajectory. 

2.3.3 Prediction of the protein-protein interface 

Global docking predicts the interface interactions between two proteins based 

highly on their shape complementary. I used docking because there was no previous data 

about how these two proteins interacted with each other. With ClusPro, I predicted 

candidate interface regions between CYP76AD1 and NCP1. Through visual examination 

of these candidate complexes, I discovered that all models involved CYP76AD1 

interacting with a single side of NCP1, with the top 4 models shown in Figure 7B. 

Interaction of this side of NCP1 with CYP76AD1 is advantageous because it minimizes 

the electron transfer distance from FMN to heme (Figure 7A). This result suggests the 

favorability for this region of NCP1 to be involved in the interface. Furthermore, 
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CYP76AD1 preferred to orient itself so that it interacted with NCP1 on the side furthest 

from the heme small molecule. In fact, 17 out of the 30 complex models produced resulted 

in this orientation of CYP76AD1. 

 

I performed local docking through Rosetta Dock, Rosetta MP Dock, and Rosetta 

Ensemble Dock to gain final complex models, which resulted in interface contact residues 

between CYP76AD1 and NCP1. The number of polar interface contact sites for the top 4 

models was 4-6 sites, providing a large interface surface area. Each of the top complexes 

demonstrated an orientation of NCP1 which minimized the distance for electron transport. 

Coevolutionary methods apply the use of multisequence alignment and evolutionary 

information from homologous proteins to predict the residues of each protein expected to 

be involved in the interface. I applied InterEvDock2 [51] to determine five residues within 

Figure 7: (A) Electron transfer pathway for the NCP1-CYP76AD1 complex model 4. (B) Top 4 complex model 
predictions through docking. NCP1 is aligned for each complex model and shown in tan. CYP76AD1 is shown 
in teal, purple, pink, and green, depending on the complex model. 
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each CYP76AD1 and NCP1 that were predicted to be involved in the interface. These 

residues are labeled and shown in cyan in Figure 8A-B. Further analysis of the structure 

revealed that the evolutionarily predicted residues within NCP1 fell in the globally docked 

prediction interface region for the top models, as shown in Figure 8C. 

Figure 8: (A) Top 5 residue predictions of InterEVDock2 for CYP76AD1, represented in spheres and colored 
in cyan. (B) Top 5 residue predictions of INterEVDock2 for NCP1, represented in spheres and colored in 
cyan. (C) Involvement of coevolutionary interface residue  predictions for NCP1, within the docked top 4 
models. CYP76AD1 is shown in different shades of blue, depending on the complex model and NCP1 aligned 
for each complex model and shown in tan.  

B A 

C 
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2.3.4 Experimental validation and structure prediction guidance 

Our collaborators at UC Berkeley experimentally tested the predicted complex 

models that I generated through computational modeling. The experimental technique 

required the use of a biosensor enzyme to convert L-DOPA to fluorescent betaxanthin, 

which could be used to quantify the catalytic activity. By experimentally testing 30 unique 

interface disruptive mutations, shown in Table 2, which I determined for each complex 

model, I gained quantitative measurements of the percent activity for each mutant 

oxidase. 
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Table 2: Mutations suggested for each predicted complex model. Residues within NCP1 are shown in red 
and residues within CYP76AD1 are shown in blue. For each mutation site, there is two proposed mutations, 
a conservative choice and a less conservative choice.  

 

Out of the 15 unique mutation sites I chose, only 4 were experimentally possible. 

The percent activity obtained from each oxidase mutation is shown in Figure 9. Out of 

these results, two mutations decreased the catalytic activity significantly. Both mutations 

were located at site T106 within the oxidase enzyme, which is a surface residue site 

located on an outer loop. I can use these experimental results further, in combinations 

with binding affinity calculations to investigate the likelihood of each complex model.  

  WT WT   
# Origin Donor Acceptor Suggested Mutation 1 Suggested Mutation 2 

1 CYP76AD1 

ARG 685 ASN 208 ASN 208 → GLY 208 ASN 208 → TRP 208 
THR 106 GLU 131 THR 106 → ASP 106 THR 106 → TRP 106 
ARG 234 GLU 120 ARG 234 → THR 234 ARG 234 → GLU 234 
ARG 235 ASP 122 ARG 235 → THR 235 ARG 235 → ASP 235 
ARG 236 GLU 120 ARG 236 → SER 236 ARG 236 → ASP 236 
HIS 111 HIS 170 HIS 111 → GLY 111 HIS 111 → TRP 111 

2 CYP76AD1 

THR 285 THR 682 THR 285 → GLY 285 THR 285 → TRP 285 
ARG 235 GLU 554 ARG 235 → SER 235 ARG 235 → TRP 235 
ARG 685 GLU 254 GLU 254 → GLY 254 GLU 254 → TRP 254 
SER 533 ASP 242 ASP 242 → GLY 242 ASP 242 → HIS 242 

3 CYP76AD1 

ARG 255 ASN 298 ARG 255 → SER 255 ARG 48 → ASP 255 
LYS 300 GLU 190 GLU 190 → GLY 190 GLU 190 → TRP 190 
ARG 523 GLU 254 GLU 254 → SER 254 GLU 254 → ARG 254 
ARG 48 ASP 242 ASP 242 → GLY 242  ASP 242 → ARG 242 
ARG 235 GLU 56 ARG 235 → GLY 235 ARG 235 → GLU 235 
ASN 136 HIS 111 HIS 111 → ALA 111 His 111 → ASP 111 

4 
 CYP76AD1 

ARG 523 ASP 229 ASP 229 → GLY 229 ASP 229 → TRP 229 
ARG 70 SER 561 ARG 70 → SER 70 ARG 70 → ASP 70 
ARG 235 ASP 125 ARG 235 → SER 235 ARG 235 → GLU 235 
HIS 63 ASN 567 HIS 63 → GLY 63 HIS 63 → ASP 63 
SER 533 ASP 220 ASP 220 → GLY 220 ASP 220 → TRP 220 
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To explore the likelihood that these mutations may be involved in the interface 

region and not just affecting catalytic activity through other means, I performed 

computational binding energy calculations. Using Rosetta’s Flex ∆∆G protocol [50], I 

calculated the change in binding energy due to each mutation within each complex model. 

These results are shown in Figure 10. These data show the extent to which each mutation 

should disrupt or stabilize each complex model. Mutations predicted to be within the 

interface for each complex model demonstrated disruptive effects in most cases. One 

case to highlight is mutation T106W, which presented stabilizing effects on each complex 

model proposed.  

Figure 9: Percent activity, compared to the wildtype, for each mutant oxidase variant obtained by 
John Dueber’s Lab. 
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By comparing the experimental catalytic activity results with the calculated 

changes in binding energy, I could validate or discredit each complex model. To do this, 

I plotted the percent catalytic activity vs. the change in binding energy for each model 

(Figure 11). 

Figure 10: Flex ∆∆G calculated results representing the change in binding energy due to each mutation. 
Panels A-D illustrate results for the top models, respectively 1-4. 
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Figure 11: Plots comparing the change in calculated binding energy due to each mutation and the measured 
catalytic activity of each CYP76AD1 Variant. The top 4 complex models 1-4 are shown in panels A-D, 
respectively.  

Results of the correlation plots do not show a clear trend. In Figure 11, each model 

is predicted to stabilize results for mutation T106W, even though experiments show 

significant decreased catalytic activity. Model 1, predicts disruptive mutation sites (235, 

236, 208) within the interface, but experiments demonstrate a minimal decrease in 

catalytic activity. Model 2 predicts one mutation site (235) to be within the interface. 

Experimentally, this model mutation site shows little decrease in catalytic activity and a 

neutral effect on the binding energy. Model 3 show mutation T206D to be within the 
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interface. For this structural mutation, experimental decreased catalytic activity is applied 

with the predicted disruptive calculations. Model 4 shows two mutation sites predicted to 

be disruptive (235, 236). Of these sites, one was located within the interface (235) and 

the other was not (236), but both showed little deceases in catalytic activity. 

2.4 Discussion 

2.4.1 Protein structure generation and orientation within the membrane  

The accuracy of homology modeling depends on the percent sequence identity of 

the template to the structure and the number/location of gaps in the template structure. 

The reductase template structure had a high identity (99%) and a region of 24 gaps at the 

N-terminus, which encompassed the section located within the membrane only. Thus, the 

prediction structure for the soluble head region of the reductase is expected to be reliable. 

Conversely, the top oxidase template structures chosen did not have high identities ( < 

30%), and demonstrated gaps throughout the alignment. However, prior research has 

shown that this superfamily of proteins is structurally conserved [52], and studies show 

identity templates of approximately 30 percent that are capable of yielding reliable 

structures [53]. As a result, these studies provide evidence that our oxidase prediction 

structure has the likelihood to generate a reliable representation of the true structure.  

Topology prediction methods are useful, but not always accurate. Thorough 

examination of the results, along with the knowledge of each protein, must be used to 

determine if the predictions are credible. The output from OCTOPUS predicted two 

regions from each protein to be located in the membrane. Examination of the cytochrome 

P450 superfamily of proteins suggested that these microsomal P450 enzymes contain a 
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single N-terminal membrane spanning region [54]. Furthermore, by examining these 

regions manually, I could see that the second transmembrane predicted region for each 

protein was located within the soluble head portion of the enzyme, a place that may 

contact the membrane but is unlikely to be located within the membrane. As a result, I 

concluded that only the first transmembrane segment predicted was located within the 

membrane, for each protein, aligning with previous studies on cytochrome P450 enzymes 

[54,55].  

2.4.2 Molecular dynamics simulations 

I used all-atom MD simulations to explore small structural changes occurring 

through the equilibration of each protein within its natural lipid environment. Previous 

studies have used MD to focus on identifying the multiple orientations that cytochrome 

P450 enzymes can have with the lipid bilayer [39]. For my case, I observed that each 

protein had the potential to interact with the membrane and preferred to lay on the 

membrane with the possibility of multiple different protein-membrane interface 

orientations. Although my project does not go deeply into these possible orientations, it 

does support that the enzymes do interact with the membrane, as seen in previous work 

[39,56]. Through this equilibration analysis, I discovered only small variations in each 

protein’s structure as a result of the membrane environment. These small variations 

suggests that each protein has had time to equilibrate within the environment, and the 

resulting conformations chosen are representative of the proteins within the membrane.  
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2.4.3 Prediction of the protein-protein interface 

Global and local docking tools provided me with four top model predictions of the 

interface region between CYP76AD1 and NCP1. For membrane anchored proteins, 

global docking falls short, as it does not take into account the membrane and the 

constraints/effects it could have on the complex model. However, it does provide likely 

starting points that I can down based on my knowledge of the system. From pruning the 

given structures resulting from global and local docking, I was able to narrow the complex 

models down to predictions that demonstrated 4-6 polar contact sites, and complex 

models that minimized the distance for electron transport. The final structures possessed 

a high count of interface contact residues, the interface did not block any active sites, and 

each complex had the ability for the helical transmembrane domains to be oriented 

parallel to each other within the membrane.  

Coevolutionary methods suggested five residues within each protein to be involved 

in the interface. I investigated the residue locations within the top models produced 

through local docking. These results were used to either support and strengthen or 

weaken the complex model predictions. Although the results predicted residues involved 

in the interface, there is little prior information about the interaction contact residues 

between the reductase and oxidase enzymes of the cytochrome P450 superfamily. As a 

consequence, these results were not weighted heavily in choosing complex model 

predictions, but did help to validate some of the top prediction models.  
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2.4.4 Experimental validation and structure prediction guidance 

Experimental measurements located a noteworthy site, residue 106, which when 

mutated to tryptophan or aspartate, decreased the catalytic activity significantly. Although 

the percent activity values acquired through this method can correlate to mutations within 

the interface, they may also correlate to mutations near the active site, or mutations 

altering the stability of the oxidase. Site 106 is located on the surface of the protein and 

ample distance away from the active site. Therefore, it is likely that the decrease in 

catalytic activity was not due to alterations in protein stability or effects in the active site, 

but instead due to a destabilizing mutation within the interface.  

I investigated the validity of each predicted complex model by comparing 

experimental catalytic activity and the computationally calculated changes in binding 

energy. If the complex model was accurate, I would have expected to see a trend where 

the calculated disruptive mutations decrease the catalytic activity experimentally. 

However, a clear trend was not seen for any complex model, and predictively disruptive 

mutations did not decrease the catalytic activity significantly. These results suggest that 

the complex models predicted are incorrect and do not provide the interface structure. 

Therefore, I was able to use the calculated change in binding free energy to discredit the 

current prediction models, a step that can be repeated for future prediction models.  

Although this approach found a residue site likely involved in the interface, none 

of the predicted complex models are likely to be correct. For models 1, 2 and 4, the 

mutation 106W was not predicted to be disruptive through Flex ∆∆G, which is required 

for the complex prediction models to be accurate. For models 1, 3, and 4, Flex ∆∆G 
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predicted several mutations within sites 235, 236 and 208 to be disruptive. However, 

these mutations showed little decrease in the measured catalytic activity, suggesting the 

complex models are inaccurate. If this approach was applied again, it would suggest 

alterations that could improve model predictions.  

In the future, there are several steps I would change that may yield better models. 

First, since initially finding homology template models for CYP76AD1, a new structure 

has been characterized which presents a higher sequence identity of 46%. This structure 

better represents CYP76AD1, and this template structure could produce more favorable 

results. Second, more MD simulations of each enzyme could be implemented to 

determine more possible membrane-protein orientations of each CYP soluble head 

region. Not only would this provide a better understanding of the system and its function, 

but it could also limit the interface search space, resulting in better complex model 

predictions.  

Through the entirety of this process, I was not able to determine the exact interface 

regions between the two membrane-anchored enzymes, demonstrating how challenging 

membrane protein systems are to model. However, I did find an important residue at site 

106, which is likely involved in the interface. This discovery is important, and can be used 

in the future as a constraint for predicting new complex models. Additional rounds of 

model prediction and validation through experimental methods is required, with the 

potential to successfully yield the interface region between CYP76AD1 and NCP1. 
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Chapter 3: Dynamic helical hinges in membrane proteins 

3.1 Background 

3.1.1 Helical kinks are important for membrane protein function and are 

responsible for conformational changes 

Protein structure prediction at atomic-level resolution is important to accurately capture 

inter- and intra-molecular interactions important for function. A unique feature of a-helical 

membrane proteins is kinked helices: a bend or distortion in the primary axis of the helix, 

often breaking or altering the hydrogen bonding pattern. interestingly, 64% of the 

transmembrane helices contain kinks or non-idealities [57]. These kinks or distortions are 

an attribute of long a-helices and have been identified as playing an important role in the 

function of many proteins. By acting as sites for flexibility, kinks can be responsible for 

conformational changes within membrane proteins [58–61]. For example, opening and 

closing of the KcsA, a potassium channel protein is facilitated by flexible helix kinks 

[59,61].  Similarly, other membrane proteins functioning in signaling and enzymatic 

activity involve conformational changes resulting from helical kinks [58,62]. Thus, 

describing the importance of understanding helical kinks and what causes them.  

3.1.2 The origin of helix kinks 

There have been two studies to investigate the origin of helix kinks [60,63], 

resulting in different hypotheses about their origin. Initially, helix kinks were thought to 

originate from proline residues at or near the hinge-point of the helix. Even though proline 

is present in many alpha helices [64], only 20 percent of prolines result in a kinked helix 

[60]. An alternative hypothesis is the formation of kinks due to vestigial prolines [63]. 
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Vestigial proline kinks are a result of past proline residues that have been mutated over 

the course of evolution. A recent study demonstrated that  vestigial proline kinks 

accounted for 16 percent of transmembrane protein helical kinks [57], composing a large 

portion of kinked helices. A third hypothesis is the importance of non-canonical hydrogen 

bonding between side-chain and main-chain. Common residues that lead to these types 

of kinks are serine and glycine [60], but it is also possible for other residues to be 

responsible for such kinks. The percentage resulting from this type of kinking is currently 

unknown, and there are still other factors that likely come into play, which have not yet 

been identified.  

3.1.3 Classification Methods available to identify helical kinks in structures 

Currently there are several methods used to identify helical kinks, and each uses 

its own definition of what extent of bend or distortion represents a kink and how to 

calculate the angle [57,65–67]. For example, the method ProKink [65] relies on a proline 

residue as the hinge-point within the helix. Based-on the hinge-point, it generates a pre-

proline axis and a post-proline axis, which define the kink angle. Although this method is 

commonly used, it can only account for proline kinks, which leaves 65-80 percent of 

helical kinks undefined. Another popular method is KinkFinder [66], which fits a cylinder 

over six residues of a helix. Using the location of each cylinder, the method finds adjacent 

cylinder segments. To find the angle between the two cylinders, the axis of each 

connecting segment is calculated. Other methods, MC-Helan [57] and Helanal [67], are 

available and use similar strategies of defining two axes from the helix and finding the 

angle between them.  
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Studies have applied popular methods [68,69] to predict helical kinks. MD has 

been applied to predict helical kinks in transmembrane proteins. A study by Hall et al. 

demonstrates the use of MD to reproduce membrane protein helical kinks based on the 

local sequence alone [60]. Out of 405 helices tested, 79% of proline kinks and 59% of 

vestigial proline kinks were detected. Of the remaining kinks, only 18% were 

reproduceable through MD. This study concluded that helical kinking likely depends on 

the topology of the entire protein, along with the supporting interactions between the helix 

and the protein with the lipid bilayer.  

Machine learning techniques have also been used for the prediction of helical kinks 

[68,69]. Such methods have commonly relied on sequence as an input for the predictions. 

A study by B. Kneissl et al. utilized a support vector machine and sequence input to 

predict transmembrane helical kinks [68]. The data set included 132 membrane proteins, 

with 1,014 helices. The method resulted in 80% prediction accuracy for non-kinked 

helices, when training on straight helices and all kinked variations. However, the method 

was only able to predict non-proline kinks with 55% accuracy, when trained on straight 

and non-proline kinked helices. These results are an advancement in comparison to past 

studies, but still show room for improvement. The outcome demonstrates the need for a 

method capable of predicting helical kinks with higher accuracy.   
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3.1.4 Refinement methods are not proven to sample kinked helices in membrane 

proteins 

To the best of my knowledge, no refinement method has been developed to 

account for sampling of kinked helices within membrane proteins. Within Rosetta, current 

methods do not capture the possible conformations that membrane proteins may have as 

a result of flexibility. Rosetta’s Relax Protocol [70] is a refinement method that locally 

samples the conformational space through packing of side chains and minimization of 

torsional degrees of freedom. This protocol has not been proven to sample between the 

kinked and non-kinked conformational changes present in nature, demonstrating the 

need for further exploration into current refinement methods or a new technique capable 

of capturing both possible protein states.  

The goal of my second project is to identify features that are predictive of 

membrane helical kinks, and to use this information to develop a refinement method 

capable of sampling these conformational changes effectively. Using membrane proteins 

that exhibit kinked and non-kinked helix conformations as testcases, I demonstrate that 

current Rosetta refinement protocols are not successful in sampling between the multi-

conformational helix states. Furthermore, I examined past and present Rosetta score 

functions to determine if there was a biased prediction for straight or kinked helices. To 

gain a better understanding of these helical kinks and their features, I developed a 

classification method capable of identifying them. Using this classification method, I culled 

a new fragment library consisting of kinked helical segments. I aim to use this new library 
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to sample kinked conformations within membrane proteins. This would enable accurate 

prediction of multi-conformational membrane proteins resulting from kinked helices.    

3.2 Methods part 1 

3.2.1 Testing Rosetta refinement on systems with helical hinge dynamics 

To examine whether refinement methods within Rosetta were able to sample 

between kinked and straight helices found in nature, I ran Rosetta’s Relax protocol on 

three different case study proteins. Each protein was chosen based on the following 

criteria: (i) Protein flexibility resulting in multiple conformations, (ii) availability of one 

crystal structure with a straight helix and one with a kinked helix, (iii) other than the kinked 

helix, there is no major change in the conformation of each structure. The three proteins 

I found that meet these conditions are human adiponectin receptor 1 (Figure 12), KcsA 

potassium channel (Figure 13) and human platelet-activating factor receptor (Figure 14). 
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Figure 12: The structural conformation of both the kinked and straight conformation of human adiponectin 
receptor 1 is shown in panel A, with the helical portion highlighted in purple, the straight protein conformation 
in teal and the kinked protein conformation in pink. Panel B illustrates the closed and open conformational 
structures from a top down view, with zinc shown in blue. Panel C shows the alignment of both 
conformational variants with the kinked helix shown in pink and the straight helix shown in teal.  
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Figure 13: The structural conformation of both the kinked and straight conformation of KcsA potassium 
channel is shown in panel A, with the helical portion highlighted in gray, the straight protein conformation 
in teal and the kinked protein conformation in pink. Panel B illustrates the closed and open conformational 
structures from a top down view, with ions shown in gray. Panel C shows the alignment of both 
conformational variants for a single subunit, with the kinked helix shown in teal and the straight helix shown 
in pink. 
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With these crystal structures, I applied Rosetta’s Relax protocol to each 

conformational variant of each protein. Using default settings (see Appendix) I generated 

1000 decoys for each protein variant. Through analysis of the total score calculated for 

each decoy model, and the RMSD of the kinked helix within each decoy to the kinked 

helix in the native structure, I determined whether Relax was capable of sampling 

between the two conformational states. This allowed me to determine the need for a 

method with the ability to sample kinked conformational forms within membrane proteins.  

 

Figure 14: : The structural conformation of both the kinked and straight conformation of human platelet 
activating factor receptor is shown in panel A, with the straight helical portion highlighted in green and the 
straight helical portion shown in purple. Panel B illustrates the closed and open conformational structures 
from a top down view, with supporting cofactors shown in sphere representation. Panel C shows the 
alignment of both conformational variants, with the kinked helix shown in purple and the straight helix shown 
in green.  
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3.2.2 Testing Rosetta score functions for biasing kinked or straight helical 

conformations 

To investigate if Rosetta’s past and present score functions favored straight or 

kinked helical conformations, I applied Rosetta’s Relax protocol to a second set of 

proteins. Test case proteins were chosen from a diverse set of protein classifications 

(voltage gated channel, rhomboid, cation channel, and signaling receptor) and each 

protein contained at least one helical kink. Because this set does not require crystal 

structures of both conformational states, I found a larger diversity of proteins. The test 

case protein identifications chosen were PDBs 2irv, 4h33, 5h35, and 5tud (Figure 15).  

3.2.3 Manual straightening of kinked helices 

The following steps show how I used PyRosetta [71] to straighten a kinked helix 

within each testcase protein: 

Step 1. As a result of downstream residue effects caused by changes in the helix 

residue angles, it was necessary to alter the fold tree [72]. The fold tree denotes how the 

residues within each structure are connected together and how movements will propagate 

throughout the protein structure. By adding a cut-point within the loop region, downstream 

of the helix, I altered the fold tree to prevent residue alterations past the loop.  

Step 2. Set ideal helix φ and ψ angles of residues involved within the helix.  
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Step3. To correct the loop after this change, I applied PyRosetta’s loop modeling 

movers to connect and remodel the broken region. This resulted in a new conformational 

variation for each test case protein (Figure 15).  

 

Each protein now had a natural kinked variant and a manually altered variant with 

a straight helix and a remodeled loop region. I applied Rosetta’s Relax protocol to 

generate 500 decoys for each conformational variant of the four test case structures. I 

repeated this step with three recent score functions, Ref2015, MP07, and MP12. Using 

this strategy, I could determine if each score function favored either the kinked or straight 

conformational variant.  

Figure 15: Kinked and straightened helical conformations of four test proteins. (A) 5tud, a GPCR protein, 
(B) 4h33 a voltage gated potassium channel, (C) 2irv, a rhomboid protease protein, and (D) 5h35, a TRIC 
trimer cation channel.  
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3.3 Results Part 1 

3.3.1 Need for sampling between kinked and non-kinked helical conformational 

forms in membrane proteins 

Using the output from Rosetta’s Relax protocol for each conformational variation 

of each of the three testcase structures, I investigated whether sampling between 

multiple conformations was possible. To evaluate the results of these trajectories, I 

utilized three different plots: (i) Density vs. RMSD from the kinked ensemble to the non-

kinked wildtype or kinked wildtype, and the density vs. RMSD of the non-kinked 

ensemble to the kinked wildtype or the non-kinked wildtype (Figure 16), (ii) RMSD to 

non-kinked native vs. RMSD to kinked native for each ensemble generated (Figure 17), 

and (iii) total score vs. kinked native for each ensemble (Figure 18).  I saw several 

trends through these results. For each structure shown in Figure 16, there was a single 

peak for each density line, with some peaks being broader than others. Furthermore, for 

structures 1-3, shown in Figures 17-18, I saw a single region of points and there was no 

clustering of the data into multiple regions. The trends determined through this data 

suggest that Relax does not sample between the multi-conformational states.  
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Figure 16: Panels A-C show plots of the density of each ensemble vs. RMSD to each native 
state. The line shown in red is the density of the non-kinked ensemble vs. the RMSD to the 
non-kinked native. The line shown in blue is the density of the non-kinked ensemble vs. the 
RMSD to the kinked native. The line shown in green is the density of the kinked ensemble 
vs. the RMSD to the kinked native. The line shown in purple is the density of the kinked 
ensemble vs. the RMSD to the non-kinked native. 
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Figure 17: Panels A-C illustrate the plot of the RMSD of each ensemble vs. RMSD to the kink native for 
each protein. For each protein, the kinked ensemble is shown in blue and the non-kinked ensemble is 
shown in gray.  
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Figure 18: Panels A-C illustrate the plot of the total energy vs. RMSD to the kink native. For each protein, 
the kinked ensemble is shown in blue and the non-kinked ensemble is shown in gray. 
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3.3.2 Do score functions favor kinked or straight helices?  

To investigate whether Rosetta refinement favored straight helices over kinked 

helices, I applied Rosetta’s Relax protocol to a second test case set of proteins. Each 

protein had both an altered conformational variation of an unnatural straight helix and a 

variation with a natural kinked helix. Using the 500 decoys generated, I examined the 

distribution of the scores due to the total-score and due to each hydrogen bonding term. 

For each structural ensemble, I compared the kinked ensemble vs. the straight ensemble. 

Hydrogen bonding terms present in each score function of Rosetta are backbone side-

chain hydrogen bonding (hbond_bb_sc), long-range backbone hydrogen bonding 

(hbond_lr_bb), side-chain-side-chain hydrogen bonding (hbond_sc) and short-range 

backbone hydrogen bonding (hbond_sr_bb). Because the score of helices rely heavily on 

hydrogen bonding, these terms can be used to determine if a specific conformation is 

favored. The density plots of each structure for each energy function are shown in Figures 

19-21.  

For the MP07 (Figure 19) score function, the kinked conformation total-score term 

resulted in lower scores for three of the four proteins (2irv, 4h33, 5h35). For protein 5tud, 

the straight conformation scored lower in the total-score by 10 Rosetta energy units 

(REU). The long-range backbone hydrogen bonding term for this protein is the only 

hydrogen bonding term that scored the straight conformation lower, with a difference of 2 

REU. This separation in score, due to hydrogen bonding, is not enough to explain the 

total-score preference toward a straight helix in this protein. It is likely that other global 

effects of straightening the helix within this protein cause this preference.  
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For all proteins scored by MP07, the side-chain-side-chain hydrogen bonding term 

resulted in lower energy scores for kinked conformations and higher scores for straight 

conformations. In the remaining three hydrogen bonding score terms I observed mixed 

results where kinked conformations scored higher in some proteins and lower in others. 

Therefore, it is not likely that the hydrogen bonding terms are affecting the total-score to 

prefer kinked or straight conformations. 

 

Figure 19: Plots for the MP07 score function for the four hydrogen bonding terms and the total-score within 
Rosetta. The pink line shows the kinked ensemble and the teal line shows the straight ensemble for each 
protein in the testcase set.   
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For the MP12 (Figure 20) score function, the kinked conformation total-score term 

resulted in lower scores for each protein. In all proteins, the hydrogen bond side-chain-

side-chain and long-range backbone terms scored the kinked conformation lower overall. 

However, I saw mixed results for the short-range backbone hydrogen bonding term, 

where half the proteins (5tud, 4h33) scored the straight conformation lower. Thus, the 

MP12 score function works as expected, by scoring kinked conformations lower than 

straight conformations. The kinked conformation is in its natural form, which is expected 

to be at its lowest energy state. In these cases, the hydrogen bonding terms do affect the 

total-score, which resulted in a lower score for kinked conformations.  
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Figure 20: Plots for the MP12 score function for the four hydrogen bonding terms and the total score within 
Rosetta. The pink line shows the kinked ensemble and the teal line shows the straight ensemble for each 
protein in the testcase set.   

For the Ref2015 score function (Figure 21), the straightened conformation total-

score term resulted in lower scores for two of the proteins (2irv, 5tud). I observed that the 

hydrogen bonding terms for protein 2irv showed comparable or lower scores for the 

kinked conformation, as expected. This does not explain why the total score is lower for 

the straight conformation. It is probable that global changes throughout the protein 

resulted in favoring of the straight conformation. For protein 5tud, I visualized that the 
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hydrogen bonding terms were comparable or scored lower for the straightened 

conformation. Thus, the hydrogen bonding terms directly affected the total-score term for 

this protein, resulting in its favoring of a straightened conformation. For protein 5h35, the 

hydrogen bonding terms overall scored the kinked conformation lower, as expected. The 

hydrogen bonding terms did have an effect on the total-score for 5h35, leading to the 

preference of a kinked conformation. For protein 4h33, the hydrogen bonding terms 

scored the straight conformation lower overall. This is not what I expected, and it is likely 

that global effects contributed to the lower total-score of the kinked conformation. 
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Figure 21: Plots for the Ref2015 score function for the four hydrogen bonding terms and total score within 
Rosetta. The pink line shows the kinked ensemble and the teal line shows the straight ensemble for each 
protein in the testcase set.   

3.4 Discussion Part 1 

3.4.1 Need for sampling between kinked and non-kinked helical conformational 

forms in membrane proteins 

For the plot of RMSD to non-kinked native vs. RMSD to kinked native, I observed 

a single cluster of points. Similarly with the plot of total score vs. RMSD to kinked-native 

(Figure 18), I detected a single cluster of data-points. If Relax was able to sample both 

conformations, I would expect to see clustering of points into two different regions for 
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each ensemble. I would expect this because the kinked and straight conformations would 

likely be at distinctive low energy wells within the protein energy landscape. Because 

Rosetta protocols are MC-based, results are driven towards finding structures within low 

energy wells. Thus, I would expect structures to fall into one of these low energy wells, 

generating two divergent regions of points. Since these results only demonstrated a single 

group of points, the results indicate no multi-conformational sampling.  

Furthermore, analysis of the density of each ensemble vs. RMSD to both native 

variations demonstrated little overlap. If there was sampling between both conformations, 

I would have expected to see the density plots having a large area of overlap between 

the two ensembles. Because there is little to no overlap in the density areas, it suggests 

that there is no multi-conformational sampling. As a result of the analysis, I concluded 

that Rosetta’s Relax protocol does not sample between conformational variants. Relax 

only allows for a small amount of movement within the backbone, but generating a kinked 

helix requires large backbone movements.  

3.4.2 Do score functions favor kinked or straight helices?  

Using density plots for each score function, I compared the kinked and straight 

conformational scores for the total-score and each hydrogen bonding term. The outcome 

established that each score function had different results. For score functions MP07 and 

Ref2015, different results were seen for different targets. For score function MP12, I 

observed expected results, where the kinked conformation scored lower than the straight 

conformation. It is possible that the mixed results stem from the location of each helix 

within the structure. The variation of structures result in some helices buried deep within 
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the protein, making many contacts, and others located near the outward portion of the 

protein, making few contacts. Furthermore, the straight conformations were manually 

generated, putting this conformation at a disadvantage to be favored initially. This 

disadvantage is hard to account for when examining the results, but it must be mentioned 

that this likely plays a role in the outcome.  

3.5 Methods Part 2 

3.5.1 Development of a classification method for kinked helices 

First, to determine whether kinked helical conformations are present in a structure, a 

method must label each helix as kinked or straight. I developed a method to determine 

the degree to which a helix is kinked. As input information, I used data present in 

Rosetta’s culled PDB library. This consisted of each residue’s C_a coordinates, the 

secondary structure, the PDB identification, the f angle and the ψ angle of each 

residue. My method worked by determining the hinge-point within the helix. To locate 

the hinge-point I searched for the residue resulting in the greatest variation from ideal 

helical f and ψ angles. To determine the angle, I applied principal component analysis 

(PCA) to define two vectors, 𝑣" and 𝑣#. 𝑣"	represented the direction of the span of 

residues from the beginning of the helix to the hinge-point, and 𝑣#	represented the span 

of residues from the hinge-point to the end of the helix. The angle between the two 

vectors was determined as: 𝜃 = cos*" +,∙+.
|+,|∙|+.|

, where 𝜃 is the helix kink angle. 
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Furthermore, I was able to use this classification method (Figure 22) to generate a new 

library consisting of only kinked helices.  

 

3.5.2 Generation of a kinked helical fragment library of different lengths  

Applying my classification method, I generated a library consisting of kinked helical 

fragments. To accomplish this, I first needed to search from an all-inclusive library culled 

from the entire PDB. I used Rosetta’s raw PDB data file, consisting of all secondary 

structures from all proteins within the PDB. Sifting through this library, I first pulled a 

segment of 24 residues for examination. To confirm that the segment consisted only of a 

helix, I started from each end of the segment, moving inward and trimming all residues 

without helical secondary structure. With the remaining segment, only two residues with 

secondary structure other than helical were allowed. If the segment did not meet these 

requirements, it was discarded and a new segment of 24 residues was pulled sequentially 

from the library.  Once each segment was prepared, I was able to apply my classification 

method.  

To prepare a segment to input into the classification method, not only did it need 

to be trimmed and contain a limited amount of non-helical secondary structure residues, 

Figure 22: Steps for the helical classification method. Step 1 locate of the hinge-point, step2 use PCA to 
gain two vectors representing the helix, and step 3 use of the two vectors to determine the helix kink 
angle.  

Step 1 Step 2  

𝜃 

Step 3 
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but it also had to meet a length criteria. For each vector obtained from PCA to result in an 

accurate direction, it is necessary that each vector be based off of no less than 6 residues. 

After a segment matching this criteria is discovered, the classification method is applied 

to it and an angle is calculated. With the helical kink fragments determined, I was able 

collect their relevant information to generate a new library.  

With the kinked fragments identified, I applied a degree cutoff which only accepted 

helices containing kinks of 20° or more for collection. Using this cutoff, I pulled the 

information of each accepted segment and input it into a new library. With this algorithm 

(Figure 23), I was able to set a required fragment length to pull. Starting from the hinge-

point and moving outward in each direction, I pulled lengths of 5-mers, 7-mers and 9-

mers. By sequentially looping through Rosetta’s entire PDB library, I collected all kinked 

segments into a new library labeled by fragment size. 

 

Figure 23: The steps involved in adding kinked fragments to the library. Step 1, pull a fragment of 24 
residues from the full PDB library. Step 2, eliminate ends that are not helical secondary structure. Step 
3, count secondary structure and allow only two non-helical residues. Step 4-5, utilize classification 
method to determine the angle of the kinked helix. Step 6, remove edges of the segment to reach the 
desired length.  

Step1 Step 2 

𝜃 

 Step 4 Step 5  Step 6 
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Step 3 
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3.6 Results Part 2 

3.6.1 A new classification method for kinked helices 

To determine the degree to which a helical segment is kinked, I developed a kink 

measurement method using PCA. This kink measurement method utilized vectors, 

representative of the backbone coordinates of helical segments, to determine the kinked 

angle. This method is different from other methods because it takes inputs directly from 

Rosetta’s raw PDB data file. I used PyMol to manually examine the helix angle for 50 

structures and compared the results to the output from the kink classification method. The 

PyMol measurements matched closely to kink classification measurements.  

3.6.2 Examination of a new kinked helix fragment library  

To generate a fragment library of helical kinked segments, I wrote an algorithm 

that sifted through a culled library consisting of all protein residues. The new library I 

generated contained helical segments with a kinked measurement of 20° or greater. The 

kinked library consists of 1500 helical fragments and demonstrates many different 

degrees of kinking and hydrogen bonding patterns. I calculated the number of hydrogen 

bonds made throughout the kinked 5-mer library per kink angle (Figure 24). Higher 

hydrogen bond numbers occur at lower degree angles. As seen in Figure 24, when there 

are the maximum number of 10 backbone hydrogen bonds, the degree angle is 

approximately 32°. Whereas, when there are no backbone hydrogen bonds, the average 

angle is approximately 112°. 
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Within the generated library, I discovered five different types of helical kinks 

(Figure 25) resulting from the number of hydrogen bonds made within the helix. These 

types of kinks are: normal curved kink, normal tight kink, elongated kink, U-turn kink and 

U-turn gap kink. Furthermore, to analyze the distribution of angles throughout the kinked 

library, I generated a density vs. angle plot that is shown in Figure 26. The results from 

this plot showed three peak regions with the highest density falling at 33°. As the angle 

increased the density decreased, with the other peak points seen at 70 and 110°.  

Figure 24: Number of hydrogen bonds changes as the angle of helical kinks increases from 20 to 
160°. The total number of hydrogen backbone bonds capable of being satisfied is 10 and the 
minimum number is 0.  
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Elongated Kink 

Normal Curved Kink 
Normal Tight Kink 

U-Turn Kink U-Turn Gap Kink 

Figure 25: Types of helical kinks found within the kink fragment library. 

Figure 26: Density of angles for the kinked fragment library. The percent of possible backbone hydrogen 
bonds satisfied is shown in purple and the general shape of helices at three angles across the range of 
angles is shown in teal.  
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3.7 Discussion Part 2 

 

3.7.1 A novel classification method for kinked helices 

There have been several previous attempts to identify and measure curving and 

kinking of helices. Each approach is unique and defines a kink slightly different based on 

the calculation method and the minimum angle described as a kink. My method is novel 

because it utilizes information already collected within a data file. As a result, I do not 

have to search each structural PDB file to determine kinked segments within the entire 

Protein Data Bank. Instead, I can sift through a data file to determine and classify all 

kinked helices. This method allows for analysis and classification of large numbers of 

helices more efficiently. This is something that has not been done before and has a unique 

application towards generating a new library consisting only of kinked helical information.  

3.7.2 A fragment library of kinked helices 

Currently, there is not a library of data that contains helical kinked fragments. This 

is important for ease of analysis of helical features, and to use in fragment insertion 

methods. Fragment insertion is commonly used in de-novo protein prediction methods, 

where it can sample conformations efficiently. This new library can be incorporated into 

various protein prediction, design and refinement protocols. 

3.7.3 Future steps 

In the future, a next step is to develop a refinement algorithm which utilizes this 

library to insert kinked fragments into helical membrane proteins, with the goal of 

sampling possible kinked conformations. This type of method has not yet been attempted 



 62 

before and has the possibility of improving membrane protein refinement results and 

allowing for sampling of other low energy conformational states possible but not seen in 

current refinement methods. Furthermore, other applications of this library include its 

involvement in protein design, where a protein could be designed to have a helical kink 

located within a specific region. As a result this could generate novel proteins with new 

functions.   

Chapter 4: Conclusion  

Membrane protein prediction and design has proven to be challenging in the past, 

with the results of this study also resounding the difficulty. I have shown through this study 

that the combination of current approaches is not yet capable of predicting accurate 

membrane protein models through a single round of predictions. However, one round did  

locate a single residue within the interface, suggesting that with repeated rounds of 

predictions, followed by experimental validation, accurate models can be reached. This 

complex model prediction attempt emphasizes the importance of method development 

towards accurate prediction and design approaches for membrane proteins.  

Kinks are an important feature within membrane proteins providing the flexibility 

for conformational changes. To advance the development of accurate prediction of kinked 

helices within membrane proteins, I generated a new kinked fragment library to enable 

sampling of kinked protein conformations. This library has the potential to be applied in 

fragment insertion methods to preform refinement on membrane proteins. Current 

refinement methods do not allow for conformational changes resulting from helix kinks. 

Furthermore, fragment insertion methods are not currently used within refinement 
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protocols, as they can lead to protein unfolding. However, the combination of refinement 

with insertion of kinked fragments could provide improved sampling results.  
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Appendix  

MARCC script 
 

 

Relax refinement script 
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Straighten kink script 

 
Classification script 
""" 

MeasureDegreeKink: 
1.    Method to find the dotproduct of vectors 
2.    Method to find the length of a vector 
3.    Method to find the angle between two vectors 
4.    Method to find the kink point or hinge residue within a helix 



 66 

5.    Method to find the backbone coordinates of the helix 
6.    Method to find the angle of the kink 

 

""" 
import rosetta 
from pyrosetta import* 
init() 
from pyrosetta import toolbox 
from pyrosetta.rosetta.protocols.membrane import* 
from sklearn.decomposition import PCA 
import matplotlib.pyplot as plt 
import numpy as np 
import math 
class MeasureDegreeKink(): 
"""Measures the degree to which a residue kinks""" 
def __init__(self, file): 

"""Construct the class""" 
self.file=file 
self.pose=pose_from_file(self.file) 

def dotproduct(self,v1,v2): 
""" Dot product of two vectors""" 
# 1. Input vectors to find the dot product 
return sum((a*b) for a, b in zip(v1, v2)) 

def length(self,v): 
""" Length of a vector """ 
# 2. Input a vector and return its length 
return math.sqrt(MeasureDegreeKink(self.file).dotproduct(v, 

v)) 
def angle(self,v1, v2): 

""" Angle between two vectors """ 
# 3. Take two vectors and output the angle between them 
return math.acos(MeasureDegreeKink(self.file).dotproduct(v1, 

v2) / (MeasureDegreeKink(self.file).length(v1) * 
MeasureDegreeKink(self.file).length(v2))) 
def kink_point(self): 

""" Determines the kink point within a helix """ 
# 4. Determine the hinge residue for kinking within a helix 

        #     by finding which residue has the greatest phi and psi 

 

        #     change from the ideal dihedral angles of an alpha 
helix 
        phi_ave = -64.0 
        psi_ave = -41.0 
        set=0 
        res_num=1 
        end=self.pose.total_residue()+1 
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        for x in xrange(1,end): 

 

phi=self.pose.phi(x) 
psi=self.pose.psi(x) 
dif_phi = math.fabs(phi_ave-phi) 
dif_psi = math.fabs(psi_ave-psi) 
tot=dif_phi+dif_psi 
#print tot 
if tot > set and x >= 5 and x <= 

self.pose.total_residue()-4: 
res_num = x 
set = dif_phi+dif_psi 

else: 

set=set  

res_num=res_num 
return res_num 
#print res_num 

def direction(self): 
""" Find the direction of PCA vectors """ 
# 9. Using vectors from the start to kink coords or the kink 

to end coords 
        #     the angle can be found to determine if the PCA 
vectors 1 
and 2 are 

 

        #     pointing in the right direction 
        coord = 
MeasureDegreeKink(self.file).count(0,self.pose.total_residue()) 
        kink_point = MeasureDegreeKink(self.file).kink_point() 
        point1 = np.array(coord[0]) 
        point2 = np.array(coord[kink_point-1]) 
        point3 = np.array(coord[-1]) 
        vector12 = point2-point1 
        vector23 = point3-point2 
        coord1 = coord[0:kink_point+1] 
        coord2 = coord[kink_point:len(coord)+1] 
        pca1 = PCA(n_components=1) 
        pca2 = PCA(n_components=1) 
        pca1.fit(coord1) 
        pca2.fit(coord2) 
        Vpca1 = pca1.components_[0] 
        Vpca2 = pca2.components_[0] 
        diff1 = 
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MeasureDegreeKink(self.fragfile).angle(vector12,Vpca1)*180/3.14 
        diff2 = 
MeasureDegreeKink(self.fragfile).angle(vector23,Vpca2)*180/3.14 
        diffs=[diff1,diff2] 
        return diffs 
    def count(self, start, end): 
        """ Find the coordinates for the backbone atoms of the 
helix""" 
        # 5. Find the backbone coordinates of the helix by looping 
through 

 

#    each residue and finding the coordinates of the Calpha, 
the N 

#    and C of each residue 
coord=[] 
for x in xrange(start,end): 

CA=self.pose.residue(x).xyz("CA") 
N=self.pose.residue(x).xyz("N") 
C=self.pose.residue(x).xyz("C") 
x1=[CA[0],CA[1],CA[2]] 
x2=[N[0],N[1],N[2]] 
x3=[C[0],C[1],C[2]] 
coord.append(x1) 
coord.append(x2) 
coord.append(x3) 

coord=np.array(coord) 
return coord 

def kink_angle(self): 
""" Determines the kink angle of a helix by using PCA""" 
# 6. Use Principle Component Analysis (PCA)to find a vector 

        #     that points in the direction of the helix before the 

 

        #     hinge point, and a vector that points in the 
direction 

 

        #     of the helix after the hinge point. Using the two 
vectors 

 

        #     find the angle between the two vectors 
        #print "this" 
        start = MeasureDegreeKink(self.file).kink_point() 
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        #print start 
        end = MeasureDegreeKink(self.file).kink_point()+1 
        #print end 
        coord1 = MeasureDegreeKink(self.file).count(1,end) 
        #print coord1 
        coord2 = 
MeasureDegreeKink(self.file).count(start,self.pose.total_residue()) 
        pca1 = PCA(n_components=1) 
        pca2 = PCA(n_components=1) 
        pca1.fit(coord1) 
        pca2.fit(coord2) 
        vector1 = pca1.components_[0] 
        vector2 = pca2.components_[0] 
        #print vector1 
        #print vector2 
angle=MeasureDegreeKink(self.file).angle(vector1,vector2)*180/3.14 
        #print angle 
        if angle >= 90: 
            angle=math.fabs(180-angle) 
        else: 
            angle=angle 
        print "Angle (degree): "+ str(angle) 
MeasureDegreeKink("/Users/Maestro/apps/ 
PyRosetta4/3f5wEndHelix.pdb").kink_angle() 

 

 
Kinked fragment collection script 
""" 

FindHelixKinkFrags: 
1.    Method to find the dotproduct of vectors 
2.    Method to find the length of a vector 
3.    Method to find the angle between two vectors 
4.    Method to find the number of secondary structure that is 
not helical  
5.    Method to find the kink point or hinge residue within a 
fragment 
6.    Method to trim the edges of the fragment that are not 
helical 
secondary structure 
7.    Method to find the angle of the kink 
8.    Method to collect the Calpah coordinates, phi, psi, and 
secondary structure  
of the fragment from the current fragment library 
9.   Method to determine the direction of the Principle 
Component vector 
10.  Method to pull only the lines +/- 4 from the kink point 
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11.  Method to iterate through the fragments inspecting 
fragments of 24 residues at a time 
""" 
# -*- coding: utf-8 -*- 
import rosetta 
from pyrosetta import* 
init() 
import gzip 
from decimal import Decimal 
from pyrosetta import toolbox 
from pyrosetta.rosetta.protocols.membrane import* 
from sklearn.decomposition import PCA 
import matplotlib.pyplot as plt 
import numpy as np 
import math 
import linecache 
from itertools import islice 
class FindHelixKinkFrags(): 
""" Generates a new kinked helix fragment library""" 
def __init__(self,fragfile): 

"""Constructs the class""" 
self.fragfile=fragfile 

def dotproduct(self,v1,v2): 
""" Dot product of two vectors""" 
# 1. Input vectors to find the dot product 
return sum((a*b) for a, b in zip(v1, v2)) 

def length(self,v): 
""" Length of a vector """ 
# 2. Input a vector and return its length 
return 

math.sqrt(FindHelixKinkFrags(self.fragfile).dotproduct(v, v)) 
def angle(self,v1, v2): 

""" Angle between two vectors """ 
# 3. Take two vectors and output the angle between them 
return 

math.acos(FindHelixKinkFrags(self.fragfile).dotproduct(v1, v2) 
/ 
(FindHelixKinkFrags(self.fragfile).length(v1) * 
FindHelixKinkFrags(self.fragfile).length(v2))) 
def count_ss(self,ss): 

""" Number of non helical residues """ 
#  4. Takes the trimmed fragment and finds how many none 

helical 
#     residues are present 
helix=0 
total=0 



 71 

for word in ss: 
total+=1 
if word=="H": 

helix+=1  

return total-helix 
def kink_point(self,startline,endline): 

""" Determines the kink point within a helix """ 
# 5. Determine the hinge residue for kinking within a 
helix 

        #     by finding which residue has the greatest phi 
and psi 

 

        #     change from the ideal dihedral angles of an 
alpha helix 
        phi_ave = -64.0 
        psi_ave = -41.0 
        set=0 
        res_num=0 
lists=FindHelixKinkFrags(self.fragfile).trim(startline,endline
) 
        phi_list = lists[0] 
        psi_list = lists[1] 
        ss = lists[3] 
        end=len(phi_list) 
        count=FindHelixKinkFrags(self.fragfile).count_ss(ss) 
        if lists != "not good frag": 
            if count<=2: 
                for x in xrange(1,end+1): 
                    phi=phi_list[x-1] 
                    psi=psi_list[x-1] 
                    dif_phi = math.fabs(phi_ave-phi) 
                    dif_psi = math.fabs(psi_ave-psi) 
                    tot=dif_phi+dif_psi 
                    if tot > set and x >= 5 and x <= end-4: 

res_num = x  

                        set = dif_phi+dif_psi 
                    else: 

set=set  
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res_num=res_num 
if res_num != 0: 

return res_num 

the end,  

residues  

else: 
return "not good frag" 
#print "not good frag" 

else: 
return "not good frag" 
#print "not good frag" 

else: 
return "not good frag" 
#print "not good frag" 

def trim(self,startline,endline): 
""" Trims the ends of fragments """ 

# 6.  

# 
helica residue 

#  

#  

Takes an input fragment and starting from the start or 
removes all residues that are not helical, till a 
is found. Makes sure that the fragments are at least 15 
in length to move forward 

lists = 
FindHelixKinkFrags(self.fragfile).splitRoute(startline,endline
) 

ss = 
FindHelixKinkFrags(self.fragfile).splitRoute(startline,endline
)[3] 

ss2=lists[3] 
coord=lists[2] 
phi_list=lists[0] 
psi_list=lists[1] 
FirstNlines=lists[4] 
range = len(ss) 
for x in xrange(0,range-1): 
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if x<=len(ss): 
if ss[x] != "H" and len(ss2)>=1: 

del coord[0] 
del ss2[0] 
del phi_list[0] 
del psi_list[0] 
del FirstNlines[0] 

elif ss[x] == "H": 
break 

else: break  

ss.reverse() 
coord.reverse() 
ss2.reverse() 
phi_list.reverse() 
psi_list.reverse() 
FirstNlines.reverse() 
range=len(ss) 
for x in xrange(0,range): 

if x <= len(ss): 
if ss[x] != "H" and len(ss2)>=1: 

del coord[0] 
del ss2[0] 
del phi_list[0] 
del psi_list[0] 
del FirstNlines[0] 

elif ss[x] == "H": 
#    """""" 

break 
elif len(ss2)==0: 

return "not good frag" 
else: 

break 
ss.reverse() 
coord.reverse() 
ss2.reverse() 
phi_list.reverse() 
psi_list.reverse() 
FirstNlines.reverse() 
#print ss2 
np.array(coord) 
list2=[phi_list,psi_list,coord,ss2,FirstNlines] 
#list2=list[0:2] 
#print list2 
if len(FirstNlines) >= 15: 
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count = 0 
#print len(list2[0c]) 
for x in xrange(0,len(list2[0])): 

phi=list2[0] 
psi=list2[1] 
#print phi[x] 
#print psi[x] 
if phi[x] <= -54 and phi[x] >= -74 and psi[x] 
<= -31 

and psi[x] >= -51: 
count+=1 

if count == len(list2[0]): 
return "not good frag" 

else: 
return list2 

else: 
return "not good frag" 

def direction(self,startline,endline): 
""" Find the direction of PCA vectors """ 
# 9. Using vectors from the start to kink coords or the 
kink 

to end coords 
        #     the angle can be found to determine if the PCA 
vectors 1 
and 2 are 

 

        #     pointing in the right direction 
        coord = 
FindHelixKinkFrags(self.fragfile).trim(startline,endline)[2] 

kink_point =  

FindHelixKinkFrags(self.fragfile).kink_point(startline,endline
) 

point1 = np.array(coord[0]) 
point2 = np.array(coord[kink_point-1]) 
point3 = np.array(coord[-1]) 
vector12 = point2-point1 
vector23 = point3-point2 
coord1 = coord[0:kink_point+1] 
coord2 = coord[kink_point:len(coord)+1] 
pca1 = PCA(n_components=1) 
pca2 = PCA(n_components=1) 
pca1.fit(coord1) 
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pca2.fit(coord2) 
Vpca1 = pca1.components_[0] 
Vpca2 = pca2.components_[0] 
diff1 = 

FindHelixKinkFrags(self.fragfile).angle(vector12,Vpca1)*180/3.
14 

diff2 = 
FindHelixKinkFrags(self.fragfile).angle(vector23,Vpca2)*180/3.
14 

diffs=[diff1,diff2] 

return diffs  

#print diffs 
def pull_lines(self,startline,endline): 

""" Pull lines +/- 4 from the kink point""" 
# 10. Collect lines only +/- 4 from the kink point for 

creating new 
#     fragments in the kinked fragment library 
kink_point = 

FindHelixKinkFrags(self.fragfile).kink_point(startline,endline
) 

if kink_point != "not good frag": 
lines = 

FindHelixKinkFrags(self.fragfile).trim(startline,endline) 
FirstNlines = lines[4] 
remove=[] 
for x in xrange(1,len(FirstNlines)+1): 

if x < kink_point-2 or x > kink_point+2: 
remove.append(int(x-1)) 

count=0 
for y in remove: 

del FirstNlines[y-count] 
count+=1 

return FirstNlines 
#print FirstNlines 

else: 
return "not good frag" 
#print "not good frag" 

def kink_angle(self,startline,endline): 
""" Determines the kink angle of a helix by using PCA""" 
# 7. Use Principle Component Analysis (PCA)to find a 
vector 

        #     that points in the direction of the helix before 
the 
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        #     hinge point, and a vector that points in the 
direction 

 

        #     of the helix after the hinge point. Using the 
two vectors 

 

        #     find the angle between the two vectors 
kink_point=FindHelixKinkFrags(self.fragfile).kink_point(startl
ine,endl 
ine) 
        if kink_point == "not good frag": 
            return "not good frag" 
            #print "not good frag" 
        else: 
            start = kink_point 
            end = kink_point 
            coord = 
FindHelixKinkFrags(self.fragfile).trim(startline,endline)[2] 
            coord2 = coord[kink_point:len(coord)+1] 
            coord1 = coord[0:kink_point+1] 
            pca1 = PCA(n_components=1) 
            pca2 = PCA(n_components=1) 
            pca1.fit(coord1) 
            pca2.fit(coord2) 
            vector1 = pca1.components_[0] 
            vector2 = pca2.components_[0] 
            #angle = 
FindHelixKinkFrags(self.fragfile).angle(vector1,vector2)*180/3
.14 
            diffs = 
FindHelixKinkFrags(self.fragfile).direction(startline,endline) 
            if abs(diffs[0]) >= 90: 
                vector1 = -vector1 
            if abs(diffs[1]) >= 90: 
                vector2 = -vector2 
            angle = 
FindHelixKinkFrags(self.fragfile).angle(vector1,vector2)*180/3
.14 
            #print angle 
            return angle 



 77 

    def kink_fragfile(self): 
        """ Iterates through fragment file to find new kinked 
fragments""" 
        # 11. Iterate through fragments of 24 residues at a 
time and 

 

        #      determine if the angle is great enough to 
keep the 
fragment 

 

        #      or if the fragment is not kinked enough to 
keep 
        start = 30 
        range = sum(1 for line in 
gzip.open(self.fragfile)) 
        endtot=(range-start)/9. 
        end = start+24 
        while end <= range: 
angle=FindHelixKinkFrags(self.fragfile).kink_angle(start,
end) 
            #print angle 
            if angle >= 20 and angle != "not good frag": 
                """""" 

 

#print angle 
#print 180-angle 
#lines2= 

FindHelixKinkFrags(self.fragfile).trim(start,end) 
lines = 

FindHelixKinkFrags(self.fragfile).pull_lines(start,end) 
#print lines2 

+ '\n')  

#print lines 
for x in xrange(0,len(lines)): 

lines[x]=lines[x].replace('\n', "  " + str(angle) 
#print lines 
with open("kinkfileTest5mer.txt","a") as f: 

f.writelines(lines) 
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else: 
"""""" 
start=end 

end=start+24 
def splitRoute(self,start,end): 

""" Collect fragments of 24 residues from the file """ 
# 8. Opens the fragfile and reads the lines, pulling the 
phi, 

psi  

        #     Calpha coordinates, secondary structure, and the 
full 
lines 

 

        #     from the file 
        with gzip.open(self.fragfile,"rb") as myfile: 
            firstNlines=[] 
            phi_list=[] 
            psi_list=[] 
            coord=[] 
            ss=[] 
            for line in islice(myfile,start,end): 
                firstNlines.append(line) 
                phi=line[104:113] 
                psi=line[113:122] 
Ca=[float(line[25:33]),float(line[33:42]),float(line[42:51])] 
                coord.append(Ca) 
                phi_list.append(float(phi)) 
                psi_list.append(float(psi)) 
                ss.append(str(line[8:9])) 
            list=[phi_list,psi_list,coord,ss,firstNlines] 
            #print list 
            return list 
FindHelixKinkFrags("/Users/Maestro/Research/ReadFragFile/ 
vall.jul19.2011.gz").kink_fragfile() 
#FindHelixKinkFrags("/Users/Maestro/Research/ReadFragFile/ 
test.txt").kink_point() 
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