COLD-FORMED STEEL RESEARCH CONSORTIUM

Archetype Building Design

S.Torabian and B. Schafer Johns Hopkins University

24 July 2017

Archetype Buildings

The objectives of developing archetype SDII buildings include:

- Develop a series of 3D steel-framed archetype buildings that explore and document the design of horizontal LFRSs with steel deck-based diaphragms as well as vertical LFRSs and the inter-relationship between the two.
- Provide a series of buildings that form a common basis of comparison for diaphragms in steel-framed buildings much the same way the SAC buildings did for the vertical LFRS.
- Explicitly explore ASCE 7-16 standard, and ASCE 7-16 alternate diaphragm design with R_s =1 and R_s =3 in designs.
- Inform areas for needed experimentation, and create targets for advancing nonlinear analysis within the full SDII effort.

Archetype Buildings

SDII Archetypes: Steel framed buildings with steel deck-centric diaphragms

			Shadea are included
GENERAL (VERTICAL) BUILDI	NG DEFINITION		
Vertical SFRS	High R, Low Ω	Middle R, Middle Ω	Low R, Middle Ω
	SMF (R= $8,\Omega_0=3$)	IMF (R=4.5, Ω_0 =3)	OMF (R=3.5, Ω_0 =3)
	EBF (R= $8\Omega_{o}$ =2.5)	SCBF (R= $6\Omega_0$ =2)	OCBF (R=3.25,Ω _o =2)
	BRB (R= $8\Omega_{0}$ =2.5)		
Gravity Demand	High	Low	
	Related Occupancy Cat	Related Occupancy Cat	
Seismic Demand	High	Moderate	_
	SDC D, Sds=1.0	SDC C, Sds=0.5	
Building Stories	1	4	8
Vertical Demand Calc	ASCE 7-16 ELF	ASCE 7-16 Nonlinear time H	
Vertical Irregularities	Not considered in SDII initial arc	hetypes (see ASCE 7 for full list)	

The first selected set of archetypes are buildings with 1, 4, 8, and 12 stories with different structural systems. This document is focusing on the design of the 12 story archetype building with Buckling Restrained Braced Frame (BRBF) for the vertical Seismic Force Resisting System (VSFRS).

Shaded areas in the table above are the parameters that will be included in the first set of archetypes and those indicated by are specifically assumed in this document for the 12 story archetype example.

FLOOR/ROOF and DIAPHRAGM DEFINITION

Overall Floor/Roof plate	Rectangular	Complex	_	
		L-shaped		
		Other shapes		
		(note this also plays out in horized	ontal irregularities)	
Floor plate size	small	medium	large	extra large
	10,000 sf/floor	30,000 sf/floor	50,000 sf/floor	100,000 sf/floor
Floor plate aspect ratio (a:b)	High	Medium	Square	
	5:1 comp, 3:1 bare	3:1 comp., 2:1 bare	1:1	
Diaphragm spans	single (whole floor)	multi-span		
Diaphragm Demand Calc	ASCE 7-10/7-16	ASCE 7-16 Alt. R=1	ASCE 7-16 Alt. R=3	Nonlinear time history
Diaphagm Capacity Calc	AISI S310	Others		
Horizontal SFRS*	High R_s , Low Ω_s	Middle R_s , Middle Ω_s	Middle R_s , Middle Ω_s	Low R_s , Middle Ω_s
Floor	Comp. Deck	Comp. Deck	Comp. Deck	Comp. Deck
Roof	Bare Deck	Bare Deck	Comp. Deck	Comp. Deck
(* approximated, not defined in ASC	E7 at this time)			
Beam supporting deck	rolled shapes	steel joists		
Horizontal Irregularity	Out-of-Plane Offset		_	
(only consider options	Transfer Floor	No Transfer Floors		
listed, see ASCE 7 for others)	Near bottom			
	Near middle			
	Near top			
	Torsion Irregularity			
	Only Accidental Torsion	1.2 to 1.4 Drift Amp	>1.4 Drift Amp	-
	Diaphragm Holes (Discontinuity	Irregularity)		
	No Holes	Elevator and Stair Holes	Large hole = discontinuity irr	-
Diaphragm utilization (shear)	low	medium	high	
	<50% at peak demand	near 75% at peak demand	near 100% at peak	
Diaphragm stiffness	flexible	semi-rigid	rigid	
(depends on the design)	bare deck?	comp. deck?	comp. deck?	
		bare deck?		
Diaphragm Design	Zones based on demands	Single design for whole floor		
Collector design	Capacity Protected 1	Capacity Protected 2	Unprotected	
(Full length)	Based on VLFRS (ASCE 7-16)	Generic Ω	No Ω (ASCE 7-10)	
ADDITIONAL CONSIDERATIO	NS			
Input Sensitivities	1D motion input	2D motion input	3D motion input	

4

Project Information (iso view)

Project Information (typical plan)

Project Information (Brace frames)

Seismic force-resisting system (SFRS)

BRBF (buckling-restrained braced frame) Diagonal bracing (Same direction)

BRB $x \rightarrow A_{sc} = x \text{ in}^2$ (Steel core area)

Example	BRB15→	A _{sc} =15 in ²
---------	--------	-------------------------------------

Steel buckling-rest	rained braced frames
R	8
Ω_0	2.5
C _d	5
Max Height for	100 8
SDC=D	10010

CoerBrace Pinned BRBs

Gravity Load and Mass

Diaphragm/Deck (Typical floors) Concrete 4.5 (in) 2HR fire rating **Steel deck** (in.) Floor weight (Verco Catalog)=72.5 psf 3 **Steel deck weight** 3 (psf) **Total height** 7.5 (in.) **Concrete unit Weight** 145 (pcf) normal weight concrete Roof Bare steel deck 3 (psf) (uniform on the roof) Roofing, mechanical, beams 22 (psf) **Roof unit weight** 25 (psf) **Roof Live load** 20 (psf) Floor (concrete and deck) 75.5 (psf) (uniform on the floor) Super-imposed Dead 10 (psf) Floor unit weight 85.5 (psf) Floor Live load 50 (psf) **External Walls** 40 (psf) (external wall unit weight) Partitions (Int. Walls) 15 (psf) (uniform on the floor) Unit Wt Weight Story Wt Level Assembly Area (ft²) (kips) (psf) (kips) Roof 50000 25 1250.0 Roof Ext wall 40 11100 444.0 2069.0

15

40

15

85.5

25000

50000

15000

50000

375.0

4275.0

600.0

750.0

5625.0

Int. wall

Ext wall

Int. wall

Floor

Typical floor

Gravity loading of the beams (line loads in the model)

Material properties

Material	Designation
Columns and beams	ASTM A992 (F _y /F _u = 50/65 ksi, E=29000 ksi)
Diaphragm (Normal Weight Concrete)	f'c=3000 psi
Composite Deck (Floors)	Galvanized deck, ASTM A653 or ASTM 1063 F _y /F _u = 50/60 ksi, E=29500 ksi
Bare Deck (Roof)	Galvanized deck, ASTM A653 or ASTM 1063 F _y /F _u = 33/45 ksi, F _y /F _u = 50/65 ksi, E=29500 ksi

Material (BRBF)	Designation (CoreBrace Specifications)
BRB Core Steel (CoreBrace)	ASTM A36, F _{ysc} =42 ksi (±4ksi). F _{ysc} (min)=38 ksi
BRB Stiffener Plate (CoreBrace)	ASTM A36 (F _y = 36 ksi)
BRB Lug Plate	ASTM A572 GR-50 (F _y = 50 ksi)
BRB Casing	ASTM A500 GR-B (F_y = 46 ksi)
BRB Gusset and Repad plates	ASTM A572 GR-50 (F _y = 50 ksi)
BRB PIN	ASTM A193 GR-B (F _y = 138 ksi)
BRB Weld Electrodes	E70-XX (notch toughness: 20ft-lb at -20 degrees F)

Seismicity and Design Response Spectrum

Spectral parameters		ASCE 7 References
	33.67068	°N, 117.8227°W
Site Coordinates	(Irvine, CA	.)
Risk Category	II	Residential
I _e =	1.00	
S _s =	1.545	
S ₁ =	0.569	
F _a =	1.0	(Table 11.4-1)
$F_v =$	1.5	(Table 11.4-2)
Site Class	D	Chapter-20
$S_{MS} = F_a S_S =$	1.545	(Eq. 11.4-1)
$S_{M1} = F_v S_1 =$	0.8535	(Eq. 11.4-2)
$S_{DS} = 2/3 S_{MS} =$	1.030	(Eq. 11.4-3)
S _{D1} = 2/3 S _{M1} =	0.569	(Eq. 11.4-4)
T ₀ =	0.110	
T _s =	0.552	
T _L =	8	(Fig. 22-12)

Design Maps Summary Report

USGS Design Maps Summary Report

User-Specified Input Building Code Reference Document 2012/2015 International Building Code (which utilizes USGS hazard data available in 2008) Site Coordinates 33.6707°N, 117.8227°W Site Soil Classification Site Class D - "Stiff Soil" Risk Category I/II/III

USGS-Provided Output

s _s =	1.545 g	S _{MS} =	1.545 g	S _{DS} =	1.030 g
S ₁ =	0.569 g	S _{M1} =	0.853 g	S _{D1} =	0.569

For information on how the SS and S1 values above have been calculated from probabilistic (risk-targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the "2009 NEHRP" building code reference document.

https://earthquake.usgs.gov/cn2/designmaps/us/summary.php?templat...ibc-2012&variant=0&pe50=&resultid=single.58f5434443aa34.85667654 Page 1 o

Building Period

Mode-1:T=2.43 sec. (longitudinal, X-direction)

Mode-2:T=2.07 sec. (Transverse, Y-direction)

Mode-3:T=1.28 sec. (torsional)

Seismic forces

Building Period		References
C _u	1.4	Table 12.8.1
C _t	0.03	Table 12.8.2
x	0.75	Table 12.8.2
T _a	1.295 sec.	Eq. 12.8.7
C _u T _a	1.814 sec.	upper limit
T _{model} (mode1-X direction)	2.43 sec.	>C _u T _a *
T _{model} (mode 2 –Y direction)	2.07sec.	>C _u T _a *
T (used for Seismic force in both directions)	1.814	C _u T _a governs
Seismic response coefficients		
C _s	0.12875	Eq. 12.8-2
but should not exceed	0.03922	Eq. 12.8-3 (T <t<sub>L=8 sec.)</t<sub>
C _s should not be less than	0.04532	Eq. 12.8-5 (C _s =0.044.I.S _{DS} >0.01)**
Seismic response coefficient and base shear		
$V = C_s W$		Eq. 12.8.1
C _s	0.04532	
W	38836 kips	
V	1760 kips	

* The computed fundamental period of the structure without the upper limit ($C_u T_a$) specified in

Section 12.8.2 can be used for controlling drift, but the upper limit of C_uT_a is assumed for the period here.

** Eq. 12.8-5 need not be considered for computing drift.

Seismic Forces (vertical distribution)

Level	w _x (kips)	h _x (ft)	w _x h _x ^k	C _{vx}	F _x (kips)
Roof	1271	151.50	5208729	0.084	147.39
12th	3415	139.00	12134303	0.195	343.35
11th	3415	126.50	10380303	0.167	293.72
10th	3415	114.00	8736647	0.140	247.21
9th	3415	101.50	7207356	0.116	203.94
8th	3415	89.00	5797094	0.093	164.03
7th	3415	76.50	4511374	0.073	127.65
6th	3415	64.00	3356872	0.054	94.99
5th	3415	51.50	2341934	0.038	66.27
4th	3415	39.00	1477488	0.024	41.81
3rd	3415	26.50	778889	0.013	22.04
2nd	3415	14.00	270606	0.004	7.66
Total	38836		62201595		

Vertical Distribution (1	2.8.3)
k = 1.657	Sec-12-8-3

Seismic Forces (SAP2000 v19.0.0)

Load Direction and Diaphragr	n Eccentricity	Seismic Coefficients	
Global X Direction		Ss and S1 from USGS - by L	at./Long.
Global Y Direction		Ss and S1 from USGS - by Z	ip Code
E B. K. (All Brack)		Ss and S1 User Specified	
ECC. Ratio (All Diaph.)	0.	Site Latitude (degrees)	?
Override Diaph. Eccen.	Override	Site Longitude (degrees)	?
		Site Zip Code (5-Digits)	?
Time Period	# \	0.2 Sec Spectral Accel, Ss	1.545
Approx. Period Cl	nt), x =	1 Sec Spectral Accel, S1	0.569
 Program Calc Ct (π), x = 0.03; 0.75 Ψ	Long-Period Transition Perio	d 8.
User Defined	=		т <u></u>
Lateral Load Elevation Range		Site Class	D
Program Calculated		Site Coefficient, Fa	1.
User Specified	Reset Defaults	Site Coefficient Ev	1.5
Max Z	151.5	one openionit, i v	
Min Z	0.	Calculated Coefficients	
Factors		SDS = (2/3) * Fa * Ss	1.03
Response Modification, R	8.	SD1 = (2/3) * Fv * S1	0.569
System Overstrength, Omer	a 2.5		
Deflection Amplification Cd	5	Update Dat	a
Denection Amplification, Cu	<u>.</u>		

SAP2000 IBC-2012 Seismic Load Pattern Matches the Seismic forces in the design spreadsheet

Computer Model Assumptions

- Roof and floor live load are modeled as floor live load for simplicity.
- Live Load Reduction Factors (LLRF) are calculated and implemented in the computer program. LLRF is 0.4 for all columns in the 1st to 10th story, 0.43 for 11th story, and 0.51 for the last story. LLRF is calculated 0.51 for all beams.
- The loading corresponding to the tributary edge of the slab has been neglected for simplicity.
- Member self-weight and mass is not calculated by the computer program for simplicity.
- It is assumed that wind loading is not governing the design.
- Braces are modeled as pin-ended frame elements.
- Beams are modeled as pin-ended frame elements, and columns are continuous from base to the roof. The program considers an end offset at the end of the beams to incorporate the eccentricity of the beam reaction force on the columns.

Computer Model Assumptions

- To estimate the actual stiffness of the BRBs, an axial stiffness factor (KF) is consider in the model as a "Frame Property Modifier".
- Diaphragms are modeled as rigid constrains. For the bare deck roof, the mass of the roof is distributed over the top nodes of the columns.
- SAP applies the seismic force to the center of mass. The accidental eccentricity (5%) is applied by moving the center of mass : $e_x = .05x300 = 15'$, and $e_y = .05x100 = 5'$.
- The accidental eccentricity (5%) is not applied to the roof.
- Frame columns are modeled as pinned at their bases.
- P- Δ is considered via frame geometric stiffness under gravity loads.

Design Story Drifts

Ex+5%eccentricity

X-Direction	Story height (ft)	Elastic deformation (ft)	Design story drift (ft)	Allowable story drift (ft)	Interstory Drift Ratio (%)	Design Drift Ratio (%)	Allowable Drift Ratio (%)
Story	h _{sx}	Δ_{x}	Δ_{M}	Δ_{a}	θ _x	θ _M	θ _a
12	12.5	0.048	0.238	0.25	0.38	1.90	2.0
11	12.5	0.047	0.234	0.25	0.37	1.87	2.0
10	12.5	0.046	0.231	0.25	0.37	1.85	2.0
9	12.5	0.047	0.235	0.25	0.38	1.88	2.0
8	12.5	0.048	0.238	0.25	0.38	1.91	2.0
7	12.5	0.048	0.242	0.25	0.39	1.94	2.0
6	12.5	0.047	0.234	0.25	0.37	1.87	2.0
5	12.5	0.045	0.226	0.25	0.36	1.81	2.0
4	12.5	0.042	0.209	0.25	0.34	1.68	2.0
3	12.5	0.039	0.196	0.25	0.31	1.57	2.0
2	12.5	0.036	0.178	0.25	0.28	1.42	2.0
1	14	0.033	0.167	0.28	0.24	1.19	2.0

Ey+5%eccentricity

V-Direction	Story height	Elastic	Design story	Allowable	Interstory Drift	Design Drift Ratio	Allowable Drift
1-Direction	(ft)	deformation (ft)	drift (ft)	story drift (ft)	Ratio (%)	(%)	Ratio (%)
Story	h _{sx}	Δ_{x}	Δ_{M}	Δ_{a}	θ_{x}	θ _м	θ_{a}
12	12.5	0.036	0.180	0.25	0.29	1.44	2.0
11	12.5	0.041	0.207	0.25	0.33	1.65	2.0
10	12.5	0.041	0.207	0.25	0.33	1.66	2.0
9	12.5	0.041	0.207	0.25	0.33	1.65	2.0
8	12.5	0.040	0.200	0.25	0.32	1.60	2.0
7	12.5	0.037	0.186	0.25	0.30	1.49	2.0
6	12.5	0.034	0.172	0.25	0.27	1.37	2.0
5	12.5	0.032	0.160	0.25	0.26	1.28	2.0
4	12.5	0.031	0.153	0.25	0.24	1.22	2.0
3	12.5	0.028	0.138	0.25	0.22	1.10	2.0
2	12.5	0.025	0.125	0.25	0.20	1.00	2.0
1	14	0.024	0.118	0.28	0.17	0.84	2.0

Amplification of Accidental Torsional Moment

	Max. X- displacement (ft)	Avg. X- disp. (ft)	Torsional amplification factor	Max. Y- displacement (ft)	Avg. Y- disp. (ft)	Torsional amplification factor
Story	δ_{x-max}	$\boldsymbol{\delta}_{x-avg}$	A _x	δ_{y-max}	δ_{y-avg}	A _y
12	0.526	0.523	1.00	0.410	0.384	1.00
11	0.478	0.475	1.00	0.374	0.349	1.00
10	0.431	0.429	1.00	0.333	0.309	1.00
9	0.385	0.383	1.00	0.292	0.270	1.00
8	0.338	0.336	1.00	0.250	0.232	1.00
7	0.290	0.289	1.00	0.210	0.195	1.00
6	0.242	0.241	1.00	0.173	0.160	1.00
5	0.195	0.194	1.00	0.139	0.128	1.00
4	0.150	0.149	1.00	0.107	0.099	1.00
3	0.108	0.108	1.00	0.076	0.070	1.00
2	0.069	0.069	1.00	0.049	0.045	1.00
1	0.033	0.033	1.00	0.024	0.022	1.00

Amplification is not required in X or Y directions

P-Delta Effects

P-Delta effect controls for the X-direction, which is more critical.

C_d=

5

ا_e= 1 Story height Vertical design Design story Seismic shear Stability Max. stability Check coefficient (ft) drift force coefficient load θ $\theta < \theta_{max}$ P_{x} θ_{max} Story h_{sx} Δ_{x} V_{x} 12.5 12 1271 0.238 147.4 0.033 0.100 Passed 11 4686 0.234 490.7 0.036 0.100 12.5 Passed 10 0.231 784.5 0.038 12.5 8101 0.100 Passed 9 12.5 11516 0.235 1031.7 0.042 0.100 Passed 8 12.5 14931 0.238 1235.6 0.046 0.100 Passed 12.5 18346 0.242 1399.6 0.051 0.100 Passed 7 Passed 6 12.5 21761 0.234 1527.3 0.053 0.100 25176 0.226 1622.3 0.056 Passed 5 12.5 0.100 28591 0.209 1688.5 0.057 0.100 4 12.5 Passed 32006 1730.4 12.5 0.196 0.058 0.100 Passed 3 1752.4 0.058 2 12.5 35421 0.178 0.100 Passed 38836 0.167 1760.0 0.053 1 14 0.100 Passed

Design per AISC 341-10/16 and AISC 360-10

Designed here:

- Gravity frames (Composite and non-composite joists, girders, and columns)
- Buckling Restrained Braces (BRBs)
- Columns of the Buckling Restrained Braced Frame (BRBF)
- Beams of the BRBF
- Diaphragm, chord and collectors

Not designed here:

- Base plates
- Column splices
- Beam to column connections
- Brace gusset plates and pins
- Continuity plates and stiffeners
- Foundation

Member Design Assumptions in SAP2000

- All members are deigned per AISC 360-10 and ASIC 341-10/16.
- Size of the members in the model are determined after several iterations to fulfill the following requirements:
 - *Strength:* All the members are designed to have Demand-to-capacity ratios under or close to 0.95. Different members may be designed for different load combinations.
 - *Stiffness:* All members are designed to have enough stiffness to meet the deflection requirements. The whole SFRS is designed to have lateral drift less than the lateral drift requirements in ASCE7.
 - *Ductility:* All members of the SFRS are designed per requirements of the AISC Seismic Provisions to ensure the building at both system level and member level (local stability) will behave as desired performance under seismic demands.

Member Design Assumptions in SAP2000

- Effective length of all column and braces are assumed to be 1.0 for both minor axis and major axis flexural buckling, K_{minor}=K_{major}=1.0.
- All gravity beams and girders of the concrete floors are manually designed as composite beams. Beam cross-sections in the model match the beam sizes in the composite design.
- All gravity beams and girders of the bare deck roof are designed manually as noncomposite beams. Beam cross-sections in the model match the beam sizes in the manual design.
- Columns and beams of the braced frames are design to the requirements of AISC Seismic Provisions. For the purpose of the seismic design, a separate analytical model has been made to find the demand and design the columns and beams of the braced frames.

Load Combinations

$(1.2 + 0.2S_{DS})D + \rho Q_{E} + 0.5L$	(Beams and columns)	$(1.2 + 0.2S_{DS})D + \Omega Q_{E} + 0.5L$	(Amplified load combinations for
$(0.9 - 0.2S_{DS})D + \rho Q_E$		$(0.9 - 0.2S_{DS})D + \Omega Q_{E}$	bracing columns and collectors)
$(0.9-0.2S_{DS})D + pQ_E$ UDSTL1: 1.4D UDSTL2: 1.2D+1.6L UDSTL3: 1.406D+0.5L+E, UDSTL4: 1.406D+0.5L-E, UDSTL5: 1.406D+0.5L-E, UDSTL6: 1.406D+0.5L-E, UDSTL7: 1.406D+0.5L+E, UDSTL9: 1.406D+0.5L+E, UDSTL10: 1.406D+0.5L+E, UDSTL11: 1.406D+0.5L+E, UDSTL12: 1.406D+0.5L+E, UDSTL13: 1.406D+0.5L+E, UDSTL13: 1.406D+0.5L+E, UDSTL14: 1.406D+0.5L+E, UDSTL15: 0.694D+E, UDSTL15: 0.694D+E, UDSTL16: 0.694D+E, UDSTL19: 0.694D+E, UDSTL19: 0.694D+E, UDSTL20: 0.694D+E, UDSTL21: 0.694D+E, SK UDSTL22: 0.694D+E, UDSTL22: 0.694D+E, UDSTL23: 0.694D+E, UDSTL23: 0.694D+E, UDSTL24: 0.694D-E, UDSTL24: 0.694D-E,	<pre></pre> <	$(0.9-0.2S_{DS})D + ΩQ_E$ AUDSTL3: 1.406D+0.5L+ AUDSTL4: 1.406D+0.5L+ AUDSTL5: 1.406D+0.5L+ AUDSTL6: 1.406D+0.5L+ AUDSTL6: 1.406D+0.5L+ AUDSTL7: 1.406D+0.5L+ AUDSTL9: 1.406D+0.5L+ AUDSTL10: 1.406D+0.5L+ AUDSTL11: 1.406D+0.5L+ AUDSTL12: 1.406D+0.5L+ AUDSTL13: 1.406D+0.5L+ AUDSTL13: 1.406D+0.5L+ AUDSTL14: 1.406D+0.5L+ AUDSTL15: 0.694D+2.5E _x AUDSTL16: 0.694D+2.5E _y AUDSTL19: 0.694D+2.5E _x AUDSTL19: 0.694D+2.5E _x AUDSTL20: 0.694D+2.5E _x AUDSTL20: 0.694D+2.5E _x AUDSTL21: 0.694D+2.5E _x AUDSTL22: 0.694D+2.5E _x AUDSTL22: 0.694D+2.5E _x AUDSTL23: 0.694D+2.5E _y AUDSTL23: 0.694D+2.5E _y AUDSTL23: 0.694D+2.5E _y AUDSTL23: 0.694D+2.5E _y AUDSTL23: 0.694D+2.5E _y AUDSTL23: 0.694D+2.5E _y AUDSTL24: 0.694D+2.5E _y AUDSTL25: 0.694D+2.5E _y	bracing columns and collectors) 2.5E _x 2.5E _y 2.5E _y 2.5E _y 2.5E _{x+5%} 2.5E _{x+5%} 2.5E _{y+5%} 2.5E _{y-5%} (BRB Design-no gravity) $^{5\%}$ 5
UDSTL25: 0.694D+E _{y-5%}		,	24
$0001120.0.0040^{-1}L_{y-5\%}$			

AISC 341-10/16 general provisions (summary of the applicable provisions)

Section B5.1

Diaphragms and chords shall be designed for the loads and load combinations in the applicable building code. Collectors shall be designed for the load combinations in the applicable building code, including overstrength.

Section D1.4a. Required Strength

• The required strength of columns in the SFRS shall be determined from the greater of the capacity-limited seismic load effect and the the compressive axial strength and tensile strength as determined using the overstrength seismic load.

Section D1.5 Composite Slab Diaphragms

- Details shall be provided to transfer loads between the diaphragm and boundary members, collector elements, and elements of the horizontal framing system.
- The nominal in-plane shear strength of composite diaphragms and concrete slab on steel deck diaphragms shall be taken as the nominal shear strength of the reinforced concrete above the top of the steel deck ribs in accordance with ACI 318 excluding Chapter 14. Alternatively, the composite diaphragm nominal shear strength shall be determined by in-plane shear tests of concrete-filled diaphragms.

AISC 341-10/16 requirements for BRBFs (summary of the applicable provisions)

Section F4.2

- BRBF designed in accordance with these provisions are expected to provide significant inelastic deformation capacity primarily through brace yielding in tension and compression.
- Expected deformations are those corresponding to a story drift of at least 2% of the story height or two times the design story drift, whichever is larger, in addition to brace deformations resulting from deformation of the frame due to gravity loading.

Section F4.2a

• Brace connections and adjoining members shall be designed to resist forces calculated based on the adjusted brace strength. The adjusted brace strength in compression shall be $\beta \omega R_y P_{ysc}$. The adjusted brace strength in tension shall be $\omega R_y P_{ysc}$. β and ω shall be determined per F4.2b.

Section F4.3

- The required strength of columns, beams, struts and connections in BRBF shall be determined using the capacity-limited seismic load effect including the adjusted strength in compression or in tension.
- Braces shall be determined to be in compression or tension neglecting the effects of gravity loads. Analyses shall consider both directions of frame loading.

AISC 341-10/16 requirements for BRBFs (summary of the applicable provisions)

Section F4.3

• The design of braces shall be based upon results from qualifying cyclic tests in accordance with the procedures and acceptance criteria of Section K3.

Section F4.4c

Where the compression strength adjustment factor, β, as determined in Section F4.2b exceeds 1.3, at least 30%, but no more than 70%, of the total horizontal force along that line is resisted by braces in tension.

Section F4.5a

 Beams and columns shall satisfy the requirements of Section D1.1 for moderately <u>ductile</u> members.

Section F4.5b2

• The brace design axial strength, ϕP_{ysc} (LRFD) in tension and compression, in accordance with the limit state of yielding, shall be determined as $P_{ysc} = F_{ysc}A_{sc}$ (ϕ =0.9)

Section F4.5c.

• The protected zone shall include the steel core of braces and elements that connect the steel core to beams and columns, and shall satisfy the requirements of Section D1.3.

Width-to-thickness ratio per Table DI.I

Width-to-thickness ratio of all Beams and columns shall satisfy the requirements of Section D1.1 for <u>moderately ductile</u> members.

Flanges of beam and columns are checked as "Unstiffened Elements" and webs are "Stiffened Elements'. Beams are under axial force (P_u) projected from the braces and h/t_w limiting ratio is determined based on $C_a=P_u/(\phi_c R_y F_y A_g)$

	TABLE D1.1 (continued) Limiting Width-to-Thickness Ratios for Compression Elements for Moderately Ductile							
		iting ickness Ratio						
	Description of Element	Width-to- Thickness Ratio	λ _{hd} Highly Ductile Members	λ _{md} Moderately Ductile Members	Example			
	Webs of rolled or built-up I shaped sections and channels used as diagonal braces	h/tw	$1.57 \sqrt{\frac{E}{R_y F_y}}$	$1.57\sqrt{\frac{E}{R_yF_y}}$	$-\underbrace{-t_w}_{t_w} h$			
	Where used in beams or columns as flanges in uniform compression due to axial, flexure, or combined axial and flexure:		F	F				
nts	1) Walls of rectangular HSS	b/t	$0.65\sqrt{\frac{L}{R_yF_y}}$	$1.18\sqrt{\frac{L}{R_yF_y}}$	h			
Stiffened Elemer	2) Flanges and side plates of boxed I-shaped sections, webs and flanges of built-up box shapes	h t						
	Where used in beams, columns, or links, as webs in flexure, or combined axial and flexure:		For $C_a \le 0.114$ $2.57 \sqrt{\frac{E}{R_y F_y}} (1-1.04C_a)$ For $C_a > 0.114$	For $C_a \le 0.114$ $3.96 \sqrt{\frac{E}{R_y F_y}} (1-3.04C_a)$ For $C_a > 0.114$				
	1) Webs of rolled or built-up I-shaped sections or channels ^[b]	h t _w	$0.88 \sqrt{\frac{E}{R_y F_y}} (2.68 - C_a)$ $\geq 1.57 \sqrt{\frac{E}{R_y F_y}}$	$1.29 \sqrt{\frac{L}{R_y F_y}} (2.12 - C_a)$ $\geq 1.57 \sqrt{\frac{E}{R_y F_y}}$	h			
	2) Side plates of boxed I-shaped sections	h t	where $C_a = \frac{P_u}{\phi_c P_y}$ (LRFD) $C_a = \frac{\Omega_c P_a}{2}$ (ASD)	where $C_a = \frac{P_u}{\phi_c P_y}$ (LRFD) $C_a = \frac{\Omega_c P_a}{2}$ (ASD)	h			
	3) Webs of built-up box sections	h t	$P_y = R_y F_y A_g$	$P_{y} = R_{y}F_{y}A_{g}$				

Width-to-thickness ratio of the columns

			Tabe D1.1 limiting ratios							Member check			
Story	Braced frame	Cross-section	Fy	E	R _y	h/t _w	b _f /(2t _f)	h/t _w	Check	b _f /(2t _f)	Check		
11,12	BF-1	W14X48*	50	29000	1.1	36.05	9.18	33.6	Passed	6.75	Passed		
9,10	BF-1	W14X109*	50	29000	1.1	36.05	9.18	21.7	Passed	8.49	Passed		
7,8	BF-1	W14X176	50	29000	1.1	36.05	9.18	13.7	Passed	5.97	Passed		
5,6	BF-1	W14x257	50	29000	1.1	36.05	9.18	9.7	Passed	4.23	Passed		
3,4	BF-1	W14x342	50	29000	1.1	36.05	9.18	7.4	Passed	3.31	Passed		
1,2	BF-1	W14x455	50	29000	1.1	36.05	9.18	5.7	Passed	2.62	Passed		
11,12	BF-2	W14X48*	50	29000	1.1	36.05	9.18	33.6	Passed	6.75	Passed		
9,10	BF-2	W14X109*	50	29000	1.1	36.05	9.18	21.7	Passed	8.49	Passed		
7,8	BF-2	W14X176	50	29000	1.1	36.05	9.18	13.7	Passed	5.97	Passed		
5,6	BF-2	W14x283	50	29000	1.1	36.05	9.18	8.8	Passed	3.89	Passed		
3,4	BF-2	W14x398	50	29000	1.1	36.05	9.18	6.4	Passed	2.92	Passed		
1,2	BF-2	W14x550	50	29000	1.1	36.05	9.18	4.8	Passed	2.25	Passed		
11,12	BF-2	W14X48*	50	29000	1.1	36.05	9.18	33.6	Passed	6.75	Passed		
9,10	BF-2	W14X48*	50	29000	1.1	36.05	9.18	33.6	Passed	6.75	Passed		
7,8	BF-2	W14X53	50	29000	1.1	36.05	9.18	30.9	Passed	6.11	Passed		
5,6	BF-2	W14x68	50	29000	1.1	36.05	9.18	27.5	Passed	6.97	Passed		
3,4	BF-2	W14x82	50	29000	1.1	36.05	9.18	22.4	Passed	5.92	Passed		
1,2	BF-2	W14x109	50	29000	1.1	36.05	9.18	21.7	Passed	8.49	Passed		

* column cross-section is changed to satisfy width-to-thickness requirements for moderately ductile members.

Width-to-thickness ratio of the beams

	Tabe D1.1 limiting ratios										Mem	ber check	
Story	Braced frame	e Cross-section	Fy	E	Rγ	\mathbf{P}_{u}	Ca	h/t _w	b _f /(2t _f)	h/t _w	Check	b _f /(2t _f)	Check
12	BF-1	W14X30	50	29000	1.1	32	0.07	70.74	9.18	45.4	Passed	8.74	Passed
11	BF-1	W18X35	50	29000	1.1	151	0.3	54.02	9.18	53.5	Passed	7.06	Passed
10	BF-1	W18X46	50	29000	1.1	340	0.51	47.73	9.18	44.6	Passed	5.01	Passed
9	BF-1	W18X60	50	29000	1.1	489	0.56	46.17	9.18	38.7	Passed	5.44	Passed
8	BF-1	W18X71	50	29000	1.1	566	0.55	46.59	9.18	32.4	Passed	4.71	Passed
7	BF-1	W18X71	50	29000	1.1	606	0.59	45.45	9.18	32.4	Passed	4.71	Passed
6	BF-1	W18X76	50	29000	1.1	624	0.57	46.05	9.18	37.8	Passed	8.11	Passed
5	BF-1	W18X86	50	29000	1.1	668	0.53	47.00	9.18	33.4	Passed	7.20	Passed
4	BF-1	W18X86	50	29000	1.1	689	0.55	46.50	9.18	33.4	Passed	7.20	Passed
3	BF-1	W18X86	50	29000	1.1	708	0.57	46.05	9.18	33.4	Passed	7.20	Passed
2	BF-1	W18X86	50	29000	1.1	743	0.59	45.22	9.18	33.4	Passed	7.20	Passed
1	BF-1	W18X86	50	29000	1.1	717	0.57	45.84	9.18	33.4	Passed	7.20	Passed
							-						
12	BF-2	W14X26	50	29000	1.1	33	0.09	66.97	9.18	48.1	Passed	5.98	Passed
11	BF-2	W21X44	50	29000	1.1	147	0.23	56.03	9.18	53.6	Passed	7.22	Passed
10	BF-2	W21X55	50	29000	1.1	294	0.37	51.94	9.18	50.0	Passed	7.87	Passed
9	BF-2	W21X68	50	29000	1.1	422	0.43	50.17	9.18	43.6	Passed	6.04	Passed
8	BF-2	W21X83	50	29000	1.1	528	0.44	49.85	9.18	36.4	Passed	5.00	Passed
7	BF-2	W21X93	50	29000	1.1	650	0.48	48.55	9.18	32.3	Passed	4.53	Passed
6	BF-2	W21X101	50	29000	1.1	768	0.52	47.38	9.18	37.5	Passed	7.68	Passed
5	BF-2	W21X111	50	29000	1.1	844	0.52	47.30	9.18	34.1	Passed	7.05	Passed
4	BF-2	W21X111	50	29000	1.1	883	0.55	46.59	9.18	34.1	Passed	7.05	Passed
3	BF-2	W21X111	50	29000	1.1	914	0.57	46.02	9.18	34.1	Passed	7.05	Passed
2	BF-2	W21X111	50	29000	1.1	939	0.58	45.56	9.18	34.1	Passed	7.05	Passed
1	BF-2	W21X111	50	29000	1.1	940	0.58	45.54	9.18	34.1	Passed	7.05	Passed

CoreBrzce Design Aids for KF and YLR

APPROXIMATE STIFFNESS MODIFICATION FACTORS, $KF^{\{1,2\}}$

F _{ysc} : (262	= 38 ksi 2 MPa)		Lwp, ft (m)						
A _{sc} in² (cm²)	P _{y_axial} kip (kN)	Conn. Type ³	20 (6.1)	25 (7.6)	30 (9.1)	35 (10.7)	40 (12.2)		
		W	1.35	1.26	1.22	1.19	1.16		
5.0 (32)	171 (760)	В	1.42	1.31	1.25	1.20	1.17		
		Р	1.45	1.33	1.26	1.22	1.18		
		W	1.47	1.34	1.26	1.22	1.19		
10.0 (65)	342 (1520)	В	1.62	1.44	1.34	1.28	1.24		
		Р	1.47	1.34	1.27	1.22	1.19		
		W	1.56	1.38	1.31	1.25	1.21		
15.0 (97)	513 (2280)	В	1.65	1.46	1.34	1.28	1.24		
		Р	1.58	1.41	1.32	1.26	1.22		
		W	1.76	1.47	1.37	1.29	1.25		
20.0 (129)	684 (3040)	В	1.76	1.51	1.39	1.32	1.27		
		Р	1.61	1.43	1.34	1.28	1.23		
		W	-	-	-	-	-		
25.0 (161)	855 (3800)	В	1.84	1.57	1.43	1.34	1.29		
		Р	1.66	1.47	1.36	1.29	1.26		
		W	-	-	-	-	-		
30.0 (194)	1026 (4560)	В	2.05	1.60	1.46	1.37	1.31		
		Р	1.64	1.46	1.35	1.29	1.25		

$\begin{array}{c} \text{APPROXIMATE} \\ \text{YIELD-TD-LENGTH RATIOS, } \text{YLR}^{\{1,2\}} \end{array}$

F _{ysc} = (262	= 38 ksi 2 MPa)		Lwp, ft (m)						
A _{sc} in²(cm²)	P _{y_axial} kip (kN)	Conn. Type ³	20 (6.1)	25 (7.6)	30 (9.1)	35 (10.7)	40 (12.2)		
		W	0.64	0.71	0.75	0.79	0.81		
5.0 (32)	171 (760)	В	0.62	0.70	0.75	0.78	0.81		
		Р	0.56	0.65	0.70	0.75	0.78		
		W	0.56	0.65	0.71	0.75	0.78		
10.0 (65)	342 (1520)	В	0.52	0.62	0.68	0.73	0.76		
		Р	0.58	0.67	0.72	0.76	0.79		
		W	0.51	0.61	0.67	0.72	0.75		
15.0 (97)	513 (2280)	В	0.51	0.60	0.67	0.72	0.75		
		Р	0.54	0.63	0.69	0.74	0.77		
		W	0.43	0.57	0.62	0.68	0.72		
20.0 (129)	684 (3040)	В	0.46	0.57	0.64	0.69	0.73		
		Р	0.51	0.61	0.67	0.72	0.75		
		W	-	-	-	-	-		
25.0 (161)	855 (3800)	В	0.44	0.55	0.63	0.68	0.72		
		Р	0.49	0.59	0.66	0.71	0.74		
		W	-	-	-	-	-		
30.0 (194)	1026 (4560)	В	0.37	0.53	0.61	0.67	0.71		
		Р	0.50	0.60	0.66	0.71	0.74		

Approximate Stiffness Modification Factor and Yield-to Length Ratio

								Adju	usted
A _{sc}	Stort height	Bay size	H/W	Adj.	Lwp	KF	YLR	KF	YLR
in ²	ft	ft			ft.				
5	14	33.3	0.42	0.89	36.2	1.21	0.76	1.36	0.85
5	12.5	33.3	0.38	0.88	35.6	1.22	0.75	1.37	0.85
5	14	25	0.56	0.91	28.7	1.28	0.69	1.44	0.77
5	12.5	25	0.50	0.90	28.0	1.29	0.68	1.45	0.77
10	14	33.3	0.4	0.89	36.2	1.21	0.77	1.37	0.86
10	12.5	33.3	0.4	0.88	35.6	1.22	0.76	1.37	0.86
10	14	25	0.6	0.91	28.7	1.29	0.71	1.45	0.80
10	12.5	25	0.5	0.90	28.0	1.30	0.70	1.46	0.79
15	14	33.3	0.4	0.89	36.2	1.25	0.75	1.41	0.84
15	12.5	33.3	0.4	0.88	35.6	1.26	0.74	1.41	0.84
15	14	25	0.6	0.91	28.7	1.34	0.67	1.51	0.76
15	12.5	25	0.5	0.90	28.0	1.36	0.67	1.53	0.75
20	14	33.3	0.4	0.89	36.2	1.27	0.73	1.43	0.82
20	12.5	33.3	0.4	0.88	35.6	1.27	0.72	1.43	0.81
20	14	25	0.6	0.91	28.7	1.36	0.65	1.54	0.74
20	12.5	25	0.5	0.90	28.0	1.38	0.65	1.55	0.73

Table values based on 14" (356 mm) deep columns and 18" (457 mm) deep beam

Approximate Stiffness Modification Factor and Yield-to Length Ratio

	Brace -X	KF _x	YLR _x	Brace-Y	KF _Y	YLR _Y
Story	A _{sc} (in ²)			A _{sc} (in ²)		
12th	2	1.37	0.85	2	1.45	0.77
11th	7	1.37	0.85	5	1.45	0.77
10th	11	1.37	0.86	8	1.46	0.79
9th	13	1.37	0.86	10	1.46	0.79
8th	14	1.37	0.86	12	1.53	0.75
7th	14	1.37	0.86	14	1.53	0.75
6th	15	1.41	0.84	16	1.53	0.75
5th	15	1.41	0.84	17	1.53	0.75
4th	16	1.41	0.84	17	1.53	0.75
3rd	16	1.41	0.84	18	1.53	0.75
2nd	16	1.41	0.84	18	1.53	0.75
1st*	17	1.41	0.84	19	1.51	0.76
Approxim	ate factors	1.39	0.85		1.50	0.76

* Story Height =14 ft

BRB Design (DCR ratios)

	Brace -X	Brace-Y
Story	A _{sc} (in ²)	A _{sc} (in ²)
12th	2.0	2.0
11th	7.0	5.0
10th	11.0	8.0
9th	13.0	10.0
8th	14.0	12.0
7th	14.0	14.0
6th	15.0	16.0
5th	15.0	17.0
4th	16.0	17.0
3rd	16.0	18.0
2nd	16.0	18.0
1st	17.0	19.0

(BRB Design load combination)

- C1: E_x
- C2: E_y
- C3: E_{x+5%}
- C4: E_{x-5%}
- C5: E_{y+5%}
- C6: E_{y-5%}

Average Brace Strain

$$\theta_x = \frac{\Delta_x}{h_{sx}}$$

$$h_{sx} = L_{wp} \sin \alpha$$
 $L_y = YLR \ L_{wp}$

$$\Delta_{bx} = \Delta_x \cos \alpha$$

$$\theta_x = \frac{\Delta_{bx}/\cos\alpha}{L_{wp}\sin\alpha} = \frac{2\Delta_{bx}}{L_{wp}\sin2\alpha}$$

$$\theta_x = \frac{2\Delta_{bx}}{L_y} \frac{L_y}{L_{wp} \sin 2\alpha} = 2\varepsilon_{sc} \frac{YLR}{\sin 2\alpha}$$

$$\varepsilon_{sc} = \frac{\theta_x \sin 2\alpha}{2YLR}$$

Figure ref.: Seismic Design of Steel Buckling-Restrained Braced Frames: A Guide for Practicing Engineers, NIST GCR 15-917-34 (2015)

CoreBrace Adjusted Strength Factors (β, ω)

NOTE:

The graphs above are based on subassemblage testing data from multiple BRB manufacturers and provide results at approximately a standard deviation above the mean. They may be conservative. Used by permission of the authors: B. Saxey and M. Daniels.

Average Brace Strain

X-Direction	Story height (ft)	Bay size (ft)	Expected Drift Ratio (%)	Angle (deg.)	Yield Length Ratio	Average Brace Strain (%)	Strain Hardening	Compression Overstrength	
Story	h _{sx}	В	θ _м	α	YLR	ε _{sc}	ω	β	ωβ
12	12.5	33.33	3.80	20.6	0.85	1.47	1.38	1.23	1.70
11	12.5	33.33	3.74	20.6	0.85	1.45	1.37	1.23	1.69
10	12.5	33.33	3.70	20.6	0.86	1.41	1.37	1.23	1.67
9	12.5	33.33	3.76	20.6	0.86	1.44	1.37	1.23	1.68
8	12.5	33.33	3.81	20.6	0.86	1.46	1.38	1.23	1.69
7	12.5	33.33	3.87	20.6	0.86	1.48	1.38	1.23	1.70
6	12.5	33.33	3.74	20.6	0.84	1.46	1.38	1.23	1.69
5	12.5	33.33	3.62	20.6	0.84	1.42	1.37	1.23	1.68
4	12.5	33.33	3.35	20.6	0.84	1.31	1.35	1.21	1.63
3	12.5	33.33	3.13	20.6	0.84	1.23	1.33	1.21	1.60
2	12.5	33.33	2.85	20.6	0.84	1.11	1.30	1.19	1.56
1	14	33.33	2.39	22.8	0.84	1.01	1.28	1.18	1.52

			*						
Y-Direction	Story height (ft)	Bay size (ft)	Expected Drift Ratio (%)	Angle (deg.)	Yield Length Ratio	Average Brace Strain (%)	Strain Hardening	Compression Overstrength	
Story	h _{sx}	В	θ _м	α	YLR	€ _{sc}	ω	β	ωβ
12	12.5	25	2.88	26.6	0.77	1.50	1.38	1.23	1.71
11	12.5	25	3.31	26.6	0.77	1.72	1.43	1.26	1.80
10	12.5	25	3.32	26.6	0.79	1.68	1.42	1.25	1.78
9	12.5	25	3.31	26.6	0.79	1.67	1.42	1.25	1.78
8	12.5	25	3.20	26.6	0.75	1.71	1.43	1.26	1.79
7	12.5	25	2.98	26.6	0.75	1.59	1.40	1.24	1.75
6	12.5	25	2.75	26.6	0.75	1.47	1.38	1.23	1.70
5	12.5	25	2.56	26.6	0.75	1.37	1.36	1.22	1.66
4	12.5	25	2.44	26.6	0.75	1.30	1.34	1.21	1.63
3	12.5	25	2.20	26.6	0.75	1.17	1.32	1.20	1.58
2	12.5	25	2.00	26.6	0.75	1.07	1.29	1.19	1.54
1	14	25	2.00	29.2	0.76	1.12	1.31	1.19	1.56

*Expected drift ratio is 2% of the story height or two times the design story drift, whichever is larger.

Adjusted Brace Strength

Based on the CoreBrace design Aids, β and ω factors are estimated to be as follows:

 β =1.25 ω =1.41 $\beta\omega$ =1.7625 F_{ysc} =42 ksi (±4ksi) $F_{ysc (min)}$ =38 ksi $F_{ysc (max)}$ =46 ksi

R_v (estimated)=46/38=1.21

Adjusted brace strength in compression: $R_y\beta\omega=2.134$ Adjusted brace strength in tension: $R_y\omega=1.707$

Adjusted Brace Strength

Using thermal deformation to make tension and compression in the braces.

E=1 ksi α=1/°F KF=1.0

 $\Delta T= R_y \beta \omega F_{ysc (min)}=81.08$ (Compression)

 $\Delta T = R_y \omega F_{ysc (min)} = -64.87 \text{ ksi}$ (Tension)

The force will be combined with dead and live loads as follows:

(1.2D+0.2S_{ds})+0.5L+brace_force

Adjusted Brace Strength (Verification)

W14X30		
X 2883 X4	🔀 Diagrams for Frame Object 296 (BRB2)	
41W W18X35 80 41 41 41 41 41 41 41 41 41 41 41 41 41	Case EXP ▼ Items Axial (P and T) ▼ Single valued ↓ Items J.End Length Offset 0. ft (J_End: 0. ft (0. ft) Jt: 1226 J.End: 0. ft (35.6 ft) (35.6 ft)	Display Options Scroll for Values Show Max
001X41	Equivalent Loads - Free Body Diagram (Concentrated Forces in Kip, Concentrated T 129.74 129.74 129.74	orsions in Kip-ft) Dist Load (1-dir) 0. Kip/ft at 35.6 ft Positive in -1 direction
W18X71	Resultant Axial Force	Axial 129.736 Kip at 35.6 ft
W18X76	Resultant Torsion	Torsion 0. Kip-ft at 35.6 ft
W18X86 BRB15 BRB15 BRB15 BRB15	Reset to Initial Units Done	Units Kip, ft, F 🗸
W18X86 BRB1 W18X86 BRB1 W18X86 BRB1 W18X86 BRB1 W18X86 BRB1 W18X86 BRB1 W18X86 BRB1 W18X86 BRB1 W18X86	R _y ∞ F _{ysc (min)} A _{sc} =2x64. (Tension)	87 ksi=129.74 k

Axial forces in the beams and columns under capacity-limited seismic load effect

Bracing Column and Beam Design (DCR ratios)

Bracing frame beams columns are designed for the maximum of the adjusted strength of the BRBs and the amplified load combinations. (AISC 341-16: Chapter D.4a)

Column Design Summary

Notes:

- Columns are spliced every other stories. Accordingly, column size kept unchanged for two consequent stories.
- Perimeter columns, Mid columns, and Corner columns are mostly gravity columns.
- Brace-X, Brace-Y, and Brace-Y-Zipper columns are seismic columns and designed for the greater of the load effect resulting from adjusted brace forces and the compressive axial strength and tensile strength as determined using the overstrength seismic load.

Column Design Summary

	G	iravity Columns			Brace frame colu	umns
Story	Perimeter columns	Mid columns	Corner Columns	Brace-X columns	Brace-Y columns	Brace-Y-Zipper-columns
12	W(10×20	\\/10v22	W/10v20	\\/1 <i>\\</i> /10	\\/1 / \/1 0	\\\1 4\x49
11	W 10x50	VV 10X55	W10X50	VV 14X40	VV 14X40	VV 14X48
10	W(10):45	W10×40	W/10-22	W14×100	<u>\\\14~100</u>	VN/1 4.: 4 Q
9	W 10x45	W10x49	W10X33	VV14X109	W14X109	VV 14X48
8			N/40.20			N/14 50
7	W10x54	W10x77	W10x39	W14x176	W14x176	W14x53
6		N//4 0 4 0 0	N/40 40		14/1 4 202	N/1 A CO
5	W10x//	W10x100	W10x49	W14x257	W14x283	W14x68
4						
3	W12x87	W12x120	W10x54	W14x342	W14x398	W14x82
2	W12-120	<u>) N/1 D1 F D</u>	M/1077			W114-100
1	VV12X12U	W12X152	W LUX / /	VV 14X455	VV14X55U	W14X109

Composite deck gravity design (typical floors)

PLW3[™] or W3 FORMLOK[™]

- 7¹/₂ in. TOTAL SLAB DEPTH
- Normal Weight Concrete
- **2 Hour Fire Rating**

Shoring required in shaded areas to right of heavy line.

Maximum Unshored Clear Span (ft-in.)

Deck	Numbe	r of Dec	k Spans
Gage	1	2	3
22	8'-3"	7'-4"	7'-4"
21	8'-11"	9'-2"	9'-2"
20	9'-7"	10'-4"	10'-8"
19	10'-6"	11'-5"	11'-10"
18	11'-0"	12'-5"	12'-10"
16	11'-8"	13'-10"	13'-8"

Shoring is required for spans greater than those shown above. See Footnote 1 on page 69 for required bearing.

Deck	Number of							S	oan (ft-i	n.)						
Gage	Deck Spans	8'-0"	8 '-6''	9'-0"	9'-6"	10'-0"	10'-6"	11'-0"	11'-6"	12'-0"	12'-6"	13-0"	13'-6"	14'-0"	15'-0"	16'-0"
	1	388	283	251	224	200	179	161	144	130	117	105	95	85	69	55
22	2	320	283	251	224	200	179	161	144	130	117	105	95	85	69	55
	3	320	283	251	224	200	179	161	144	130	117	105	95	85	69	55
	1	400	378	276	247	221	198	179	161	145	131	119	107	97	79	64
21	2	400	378	344	247	221	198	179	161	145	131	119	107	97	79	64
	3	400	378	344	247	221	198	179	161	145	131	119	107	97	79	64
	1	400	400	367	335	240	216	195	176	160	145	131	119	108	89	73
20	2	400	400	367	335	308	216	195	176	160	145	131	119	108	89	73
	3	400	400	367	335	308	284	195	176	160	145	131	119	108	89	73
	1	400	400	400	378	347	320	228	207	188	171	156	143	130	109	91
19	2	400	400	400	378	347	320	296	207	188	171	156	143	130	109	91
	3	400	400	400	378	347	320	296	275	188	171	156	143	130	109	91
	1	400	400	400	400	384	354	327	236	215	196	180	164	151	127	107
18	2	400	400	400	400	384	354	327	304	283	196	180	164	151	127	107
	3	400	400	400	400	384	354	327	304	283	264	180	164	151	127	107
	1	400	400	400	400	400	400	389	361	267	245	225	208	191	163	139
16	2	400	400	400	400	400	400	389	361	336	314	294	276	191	163	139
10																

Concrete Properties

Notes:

See footnotes on page 69.

Super imposed load for typical floors is 100.5 (dead) + 50 (live)=150.5psf

- The joists are along x-direction and joist spacing is assumed to be 12.5 ft, which is one joist in the middle of each bay.
- Minimum required deck ٠ thickness for PLW3 or W3 FORMLOK decks is 16 gage for unshored and 19 gage for shored construction, based on 2 span design.
- The immediate deflection of the composite slab due to allowable superimposed load is limited to L/360.
- Deck thickness may change in diaphragm design. 45

Density (pcf)	Uniform Weight (psf)	Uniform Volume (yd ³ /100 ft ²)	Compressive Strength, f' _c (psi)
145	72.5	1.852	3000
:			

1. Volumes and weights do not include allowance for deflection.

2. Weights are for concrete only and do not include weight of steel deck.

3. Total slab depth is nominal depth from top of concrete to bottom of steel deck.

									•	,						
Gage	Deck Spans	8'-0"	8' -6 "	9'-0"	9'-6"	10'-0"	10'-6"	11'-0"	11'-6"	12'-0"	12'-6"	13-0"	13'-6"	14'-0"	15'-0"	16'-
	1	388	283	251	224	200	179	161	144	130	117	105	95	85	69	55
22	2	320	283	251	224	200	179	161	144	130	117	105	95	85	69	55
	3	320	283	251	224	200	179	161	144	130	117	105	95	85	69	55
	1	400	378	276	247	221	198	179	161	145	131	119	107	97	79	64
21	2	400	378	344	247	221	198	179	161	145	131	119	107	97	79	64
	3	400	378	344	247	221	198	179	161	145	131	119	107	97	79	64
	1	400	400	367	335	240	216	195	176	160	145	131	119	108	89	73
20	2	400	400	367	335	308	216	195	176	160	145	131	119	108	89	73
	3	400	400	367	335	308	284	195	176	160	145	131	119	108	89	73
	1	400	400	400	378	347	320	228	207	188	171	156	143	130	109	91
19	2	400	400	400	378	347	320	296	207	188	171	156	143	130	109	91
	3	400	400	400	378	347	320	296	275	188	171	156	143	130	109	91
	1	400	400	400	400	384	354	327	236	215	196	180	164	151	127	10
18	2	400	400	400	400	384	354	327	304	283	196	180	164	151	127	10
	3	400	400	400	400	384	354	327	304	283	264	180	164	151	127	10
	1	400	400	400	400	400	400	389	361	267	245	225	208	191	163	13
16	2	400	400	400	400	400	400	389	361	336	314	294	276	191	163	13

Bare deck gravity design (Roof)

Type PLB[™]-36 or HSB[®]-36

Allowable Uniform Loads (psf)

	DECK									SPAN	(ft-in.))						
SPAN	GAGE	CRITERIA	2'-0"	3'-0"	4'-0"	5'-0"	5'-6"	6'-0"	6'-6"	7'-0"	7'-6"	8'-0"	8'-6"	9'-0"	9'-6"	10'-0"	11'-0"	12'-0"
		Stress	300	300	220	141	116	98	83	72	63	55	49	43	39	35	29	24
	22	L/360	***	287	121	62	47	36	28	23	18	15	13	11	9	8	6	4
	22	L/240	***	***	182	93	70	54	42	34	28	23	19	16	14	12	9	7
		L/180	***	***	***	124	93	72	56	45	37	30	25	21	18	15	12	9
		Stress	300	300	288	184	152	128	109	94	82	72	64	57	51	46	38	32
ш	20	L/360	***	***	150	77	58	44	35	28	23	19	16	13	11	10	7	6
	20	L/240	***	***	225	115	86	67	52	42	34	28	23	20	17	14	11	8
U.		L/180	***	***	***	153	115	89	70	56	45	37	31	26	22	19	14	11
Z		Stress	300	300	300	251	208	174	149	128	112	98	87	/8	10	63	52	44
5	18	L/360	***	***	207	106	79	61	48	39	31	26	22	18	15	13	10	8
•••		L/240	•••	•••	•••	159	119	92	12	28	47	39	32	21	23	20	15	11
		L/160	200	200	200	212	159	122	90	162	142	125	43	30	31	26	20	15
		1/260	300	300	261	122	100	77	61	103	40	120	27	33	10	17	12	10
	16	L/360	•••	••••	201	200	150	116	01	43	40	40	21	23	20	25	10	14
		L/240				200	200	154	121	97	79	45	54	46	30	33	25	19
		L/100	300	300	235	150	124	104	80	77	67	59	52	40	42	38	20	19
		1/360	500	300	200	150	124	94	74	59	48	40	33	28	24	20	15	12
	22	1/240					444	444			444	40	49	42	35	30	23	18
		L/180		***	***	***	***		***	***	***	***	444	***	***	•••	30	23
		Stress	300	300	296	190	157	132	112	97	84	74	66	59	53	47	39	33
		L/360	+++	+++	+++	+++	146	113	89	71	58	48	40	33	28	24	18	14
	20	L/240	+++	+++	+++	+++	+++	+++	***	***	+++	71	59	50	43	37	27	21
Ξ		L/180	***	***	+++	+++	+++	+++	+++	+++	+++	+++	+++	***	+++	+++	37	28
		Stress	300	300	300	265	219	184	157	135	118	103	92	82	73	66	55	46
Ō		L/360	***	***	***	258	194	149	117	94	76	63	53	44	38	32	24	19
ŏ	18	L/240	***	***	***	***	***	***	***	***	115	94	79	66	56	48	36	28
		L/180	***	***	***	+++	***	***	***	***	***	***	***	***	+++	64	48	37
		Stress	300	300	300	300	271	228	194	167	146	128	113	101	91	82	68	57
	40	L/360	***	***	+++	+++	241	186	146	117	95	78	65	55	47	40	30	23
	10	L/240	***	***	***	***	***	***	***	***	143	118	98	83	70	60	45	35
		L/180	***	***	***	***	***	***	***	***	***	***	***	***	***	80	60	46
		Stress	300	300	294	188	155	131	111	96	84	73	65	58	52	47	39	33
	າາ	L/360	***	***	247	127	95	73	58	46	38	31	26	22	18	16	12	9
	22	L/240	***	***	***	***	143	110	86	69	56	46	39	33	28	24	18	14
		L/180	***	***	***	***	***	***	***	92	75	62	52	43	37	32	24	18
		Stress	300	300	300	237	196	165	140	121	105	93	82	73	66	59	49	41
	20	L/360	***	***	298	152	115	88	69	56	45	37	31	26	22	19	14	11
	20	L/240	***	***	***	229	172	132	104	83	68	56	47	39	33	29	21	17
Ξ.		L/180	***	***	***	+++	***	***	139	111	90	74	62	52	44	38	29	22
2		Stress	300	300	300	300	274	230	196	169	147	129	115	102	92	83	68	57
Ë	18	L/360	***	***	***	202	152	117	92	74	60	49	41	35	29	25	19	15
	10	L/240	***	***	***	***	228	175	138	110	90	74	62	52	44	38	28	22
		L/180	***	***	+++	***	+++	+++	184	147	120	99	82	69	59	50	38	29
		Stress	300	300	300	300	300	285	243	209	182	160	142	127	114	103	85	71
	16	L/360	***	***	+++	251	189	145	114	92	74	61	51	43	37	31	24	18
	10	L/240	***	***	+++	+++	283	218	172	137	112	92	77	65	55	47	35	27
		L/180	***	***	+++	+++	***	+++	229	183	149	123	102	86	73	63	47	36

- Super imposed load for the roof is 25 (dead)+20(live)=55psf
- The joist are along x-direction and joist spacing is assumed to be 6.25ft, which is three joist in each bay of 25ft long..
- Minimum required deck thickness for HSB-36 interlocking deck is 22 gage.
- The immediate deflection of the composite slab due to allowable superimposed load is limited to L/360.
- Deck thickness may change in diaphragm design.

Beam (joist) and Girder design Summary

	Element	Location	Cross-section	Length (ft)	Spacing (ft)	No. Studs	S (in)	S_selected	Camber (in)
	Dooms	Interior	W18x40	33.33	12.50	22	18.2	18	1.50
Floor	Deams	Exteior	W18x35	33.33	12.50	14	28.6	28	0.00
F 1001	Cindons	Interior	W21x55	25	33.33	20	15.0	15	0.00
	Girders	Exteior	W21x44	25	33.33	16	18.8	18	0.00
	Dooma	Interior	W12x19	33.33	6.25	_	-	-	-
Doof	Deams	Exteior	W12x16	33.33	6.25	-	-	-	-
K001	Cirdora	Interior	W14x30	25	33.33	-	-	-	-
	Girders	Exteior	W12x22	25	33.33	-	-	-	-

Notes:

- Floor beams (joists) and girders are designed as partially composite beams with ¾" steel headed stud anchors. All beams and girders are braced in lateral torsional buckling (LTB).
- Roof beams (joists) and girders are designed as non-composite beams. Joists are assumed to be braced in LTB by the steel deck, but the girders are just braced at the location of the joists (3 points along the length)
- All beams and girders are design in a separate spreadsheet attached to this document.
- *Exterior beams (joists) and girders may subject to change after designing chords and collectors.

*Exterior beams (joists) and girders may subject to change after designing chords and collectors.

Diaphragm Design

Diaphragms are design for the following demands:

- 1) ASCE 7-16
- 2) ASCE 7-16 Alternative design, R_s =3.0
- 3) ASCE 7-16 Alternative design, R_s =1.0

Following parts of the diaphragms are designed:

- Shear design of the composite floors
- Shear design of the bare deck roof
- Collector design of the bare deck roof and the composite floors
- Chord design of the bare deck roof and the composite floors

Chord and collector design (Composite floor)

- Chord is provided by two methods: (1) addition of supplemental slab reinforcement (ASTM A615, Grade 60 deformed reinforcing bars) and compressive strength of concrete; (2) perimeter steel beams designed as beam-columns.
- Collector is provided by two methods: (1) supplemental slab reinforcement for the collector in tension and compressive slab strength in compression. Collectors are designed for the amplified seismic demands (2) perimeter steel beams designed as beam-columns.
- Diaphragm to LFRS connection is provided by the steel headed shear studs designed for the amplified seismic demand.
- The beam of the braced frame, between grids 2 and 4 on grids A and M for the long direction (Y-direction seismic force) and beams between grids B and C on grids 1 and 5 are designed as non-composite beams connected to the diaphragms via shear studs.

Chord and collector design (Roof deck)

- Chord is provided by perimeter beams designed as beam-columns. Chord are on grids 1 and 5 for the long direction of the diaphragm (Y direction seismic demands) and on grids A and M for the short direction of the diaphragm (X direction seismic demands).
- Collector is provided by by perimeter beams designed as beam-columns. Collectors are on grids A and M for the long direction of the diaphragm (Y direction seismic demands) and on grids 1 and 5 for the short direction of the diaphragm (X direction seismic demands).
- Diaphragm to LFRS connection is provided by the steel headed shear studs designed for the amplified seismic demand.
- The beams of the braced frame, between grids 2 and 4 on grids A and M for the long direction (Y-direction seismic force) and beams between grids B and C (H and I) on grids 1 and 5 are designed as non-composite beams connected to the diaphragms vis shear studs.

Diaphragm demands (ASCE7-16 and ASCE7-16 Alt. R_s =1, 3)

ASCE7-16 and ASCE7-16 Alt. R_s=3

ASCE7 Alt. R_s=1

Level	F _i (k)	W _i (k)	F _P (k)	F _{P-min} (k)	F _{P-max} (k)	F _P (k) design	F _P (k) design
Roof	147	1271	147	262	524	262	419
12th	343	3415	358	703	1407	703	1126
11th	294	3415	331	703	1407	703	1126
10th	247	3415	306	703	1407	703	1142
9th	204	3415	283	703	1407	703	1171
8th	164	3415	261	703	1407	703	1200
7th	128	3415	240	703	1407	703	1229
6th	95	3415	220	703	1407	703	1258
5th	66	3415	202	703	1407	703	1287
4th	42	3415	185	703	1407	703	1316
3rd	22	3415	169	703	1407	703	1345
2nd	8	3415	155	703	1407	703	1374

Diaphragm Shear and Chord demand (Composite floor, roof deck-Transverse direction)

ASCE7-16 and ASCE7-16 Alt. R_s=3

ASCE7-16 Alt. R_s=1

Level	v _r (lb/ft)	F _c (kip)
Roof	1309	98
12th	3517	264
11th	3517	264
10th	3517	264
9th	3517	264
8th	3517	264
7th	3517	264
6th	3517	264
5th	3517	264
4th	3517	264
3rd	3517	264
2nd	3517	264

Level	v _r (lb/ft)	F _c (kip)
Roof	2095	157
12th	5628	422
11th	5628	422
10th	5712	428
9th	5857	439
8th	6002	450
7th	6147	461
6th	6292	472
5th	6437	483
4th	6582	494
3rd	6727	505
2nd	6872	515

Diaphragm shear demand, uniform distribution along the depth of diaphragm on gridlines A and M: $v_r = F_p / (2h_{diaphragm})$

Maximum tension and compression force in the chords along gridlines 1 and 5: $F_c=F_pL_{diaphragm}/(8h_{diaphragm})$

Diaphragm Design (Composite floor)

ASCE7-16 and ASCE7-16 Alt. R_s=3

- Required shear capacity v_r is 3517 lb/ft, to use allowable strength we need to divide it by 1.5 (as recommended by Verco), v_{ra}=2344 lb/ft < v_a=2950 lb/ft
- Minimum concrete reinforcement 0.0405 in² per foot width of the slab in each direction.

DIAPHRAGMS WITH STEEL HEADED STUD ANCHORS

Table 5: Allowable Diaphragm Shear Strengths (plf) and Flexibility Factors (in./lbx10⁶) for Decks with Concrete Fill and ³/₄" Diameter Steel Headed Stud Anchors ^{1-8, 11, 16, 17, 19}

Concrete	Concrete		Spaciı	ng of St	eel Headed S		F ¹²		
Type ⁹	Thickness ¹⁰	12"	16"	18"	24"	30"	32"	36"	F
	Minimum	Concrete R	einforcement	of 0.000	75 Times the <i>I</i>	Area of Fill /	Above the D	eck ¹³	
	2" ¹⁸	1310	1310	1310	1310	1310	1310	1310	0.40
	21⁄2"	1640	1640	1640	1640	1640	1640	1640	0.32
	3"	1970	1970	1970	1970	1970	1970	1970	0.26
INVV	31⁄2"	2300	2300	2300	2300	2300	2300	2300	0.23
	4½"	2950	2950	2950	2950	2950	2790	2480	0.18
	6"	3940	3940	3940	3720	2980	2790	2480	0.13

Diaphragm Design (Roof deck)

ASCE7-16 and ASCE7-16 Alt. R_s=3

Required shear capacity v_r is 1309 lb/ft, to use allowable strength we need to divide it by 1.5 (as recommended by Verco), v_{ra}=872 lb/ft < v_a=1037 lb/ft

Type HSB®-36-SS

 36/7/4 Screw Pattern at Supports #12 or #14 SDI Recognized Screws at Supports 0.0385" and thicker
 Sidelaps Connected with #10 Screws

Allowable Diaphragm Shear Strength, q (plf) and Flexibility Factors, F ((in./lb)x10⁶)

DECK GAGE A 	SIDELAP					S	PAN (ft-in	.)			
	ATTACHMENT		2'-0"	3'-0"	4'-0"	5'-0"	6'-0"	7'-0"	8'-0"	9'-0"	10'-0"
	#10 @ 24"	q	792	729	594	568	475	472	411	416	373
DECK GAGE 18	#10 @ 24	F	4.7+17R	5.4+11R	6.8+7R	6.9+6R	8+4R	7.8+3R	8.7+3R	8.5+2R	9.2+2R
	#10 @ 19"	q	969	729	696	651	551	538	529	469	468
18	#10@16	F	3.8+18R	5.4+11R	5.8+8R	6.1+6R	7+5R	7+4R	7+3R	7.7+3R	7.6+2R
	#10 @ 10"	q	969	854	793	731	688	658	634	616	601
18	#10@12	F	3.8+18R	4.7+11R	5.2+8R	5.5+7R	5.8+5R	5.9+4R	6.1+4R	6.2+3R	6.3+3R
18	#10 @ 9"	q	1122	1074	969	949	877	875	829	833	799
	#10@0	F	3.3+18R	3.8+12R	4.4+9R	4.5+7R	4.8+6R	4.8+5R	5+4R	4.9+4R	5.1+3R
Г	#10 @ 6"	q	1254	1169	1123	1076	1043	1019	1001	986	975
	#10@6	F	3+18R	3.6+12R	3.9+9R	4.1+7R	4.2+6R	4.3+5R	4.4+4R	4.4+4R	4.5+4R
	#10 @ 4"	q	1461	1400	1367	1333	1309	1291	1278	1267	1259
	#10@4	F	2.6+19R	3.1+12R	3.3+9R	3.5+7R	3.6+6R	3.6+5R	3.7+5R	3.7+4R	3.8+4R
	#10 @ 24"	q	1019	950	774	748	631	633	552	562	504
	#10 @ 24	F	4.3+9R	4.9+6R	6.1+3R	6.1+3R	7+2R	6.9+1R	7.6+1R	7.4+1R	8+0R
	#10 @ 10"	q	1260	950	914	862	731	719	709	635	636
	#10@16	F	3.6+10R	4.9+6R	5.2+4R	5.4+3R	6.1+2R	6.1+2R	6.1+2R	6.7+1R	6.6+1R
	#10 @ 10"	q	1260	1121	1046	971	920	882	853	831	813
40	#10@12	F	3.6+10R	4.2+6R	4.6+4R	4.8+3R	5+3R	5.2+2R	5.3+2R	5.4+2R	5.4+1R
10	#10 @ 9"	q	1466	1416	1284	1265	1175	1176	1117	1124	1081
	#10@0	F	3.1+10R	3.4+7R	3.8+5R	3.9+4R	4.1+3R	4.1+3R	4.3+2R	4.3+2R	4.4+2R
	#10 @ 6"	q	1639	1540	1486	1431	1393	1366	1344	1327	1314
	#10@6	F	2.8+10R	3.2+7R	3.4+5R	3.5+4R	3.6+3R	3.7+3R	3.7+2R	3.8+2R	3.8+2R
	#10 @ 4"	q	1901	1833	1796	1758	1732	1712	1697	1686	1676
	#10 @ 4	F	2.5+11R	2.8+7R	2.9+5R	3+4R	3.1+3R	3.1+3R	3.2+3R	3.2+2R	3.2+2R
See feet	otos on nago 28										

Span=6.25 ft q=1037 lb/ft F=4.25+5.75/2=7.125 (in/lb)x10⁶

Detailing:

- 18 gage deck
- 36/7/4 #12 screw Pattern at supports
- #10 @6" sidelap attachments

Diaphragm Design (Composite floor)

ASCE7-16 Alt. R_s=1

- Maximum Required shear capacity v_r is 6872 lb/ft, to use allowable strength we need to divide it by 1.5 (as recommended by Verco), v_{ra}=4581 lb/ft < v_a=4970 lb/ft
- Spacing of ¾" diameter Steel Headed Stud Anchors=18" (each stud 7.46 kip allowable shear strength). Stud length is 4.5".
- Sidelap No.10 screw 36" o.c.
- Minimum concrete reinforcement 0.135 in² per foot width of the slab in each direction.

DIAPHRAGMS WITH STEEL HEADED STUD ANCHORS

Table 5: Allowable Diaphragm Shear Strengths (plf) and Flexibility Factors (in./lbx10⁶) for Decks with Concrete Fill and ³/₄" Diameter Steel Headed Stud Anchors ^{1-8, 11, 16, 17, 19}

Concrete	Concrete		Spacir	ng of Ste	of Steel Headed Stud Anchors ¹⁴						
Type ⁹	Thickness ¹⁰	12"	16"	18"	24"	30"	32"	36"	F		
	Minimu	m Concrete	Reinforcemer	nt of 0.00	25 Times the	Area of Fill	Above the D	Deck			
	2" ¹⁸	3110	3110	3110	3110	2980	2790	2480	0.40		
	21⁄2"	3890	3890	3890	3720	2980	2790	2480	0.32		
N1) A7	3"	4670	4670	4670	3720	2980	2790	2480	0.26		
INVV	31⁄2"	5450	5450	4970	3720	2980	2790	2480	0.23		
l	4½"	7000	5590	4970	3720	2980	2790	2480	0.18		
	6"	7450	5590	4970	3720	2980	2790	2480	0.13		

Diaphragm Design (Roof deck)

ASCE7-16 Alt. R_s=1

• Required shear capacity v_r is 2095 lb/ft, to use allowable strength we need to divide it by 1.5 (as recommended by Verco), v_{ra} =1397 lb/ft < v_a =1727 lb/ft

Type HSB®-36-SS

 36/7/4 Screw Pattern at Supports #12 or #14 SDI Recognized Screws at Supports 0.0385" and thicker
 Sidelaps Connected with #10 Screws

Allowable Diaphragm Shear Strength, q (plf) and Flexibility Factors, F ((in./lb)x10⁶)

DECK	SIDELAP					S	PAN (ft-in	.)			
GAGE	ATTACHMENT		2'-0"	3'-0"	4'-0"	5'-0''	6'-0"	7'-0"	8'-0''	9'-0''	10'-0''
DECK GAGE 18 - - - - - - - - - - - - - - - - - - -	#10 @ 24"	q	792	729	594	568	475	472	411	416	373
DECK GAGE 18	#10 @ 24	F	4.7+17R	5.4+11R	6.8+7R	6.9+6R	8+4R	7.8+3R	8.7+3R	8.5+2R	9.2+2R
	#40 @ 40"	q	969	729	696	651	551	538	529	469	468
	#10@18	F	3.8+18R	5.4+11R	5.8+8R	6.1+6R	7+5R	7+4R	7+3R	7.7+3R	7.6+2R
	#40 @ 40"	q	969	854	793	731	688	658	634	616	601
40	#10@12	F	3.8+18R	4.7+11R	5.2+8R	5.5+7R	5.8+5R	5.9+4R	6.1+4R	6.2+3R	6.3+3R
18	#10 @ 8"	q	1122	1074	969	949	877	875	829	833	799
	#10@0	F	3.3+18R	3.8+12R	4.4+9R	4.5+7R	4.8+6R	4.8+5R	5+4R	4.9+4R	5.1+3R
	#10 @ 0"	q	1254	1169	1123	1076	1043	1019	1001	986	975
	#10@6	F	3+18R	3.6+12R	3.9+9R	4.1+7R	4.2+6R	4.3+5R	634 616 601 6.1+4R 6.2+3R 6.3+3R 829 833 799 5+4R 4.9+4R 5.1+3R 1001 986 975 4.4+4R 4.5+4R 1259 3.7+5R 3.7+4R 3.8+4R 552 562 504 7.6+1R 7.4+1R 8+0R 709 635 636 6.4:2B 6.314D 6.6		
	#10 @ 4"	q	1461	1400	1367	1333	1309	1291	1278	1267	1259
	#10 @ 4	F	2.6+19R	3.1+12R	3.3+9R	3.5+7R	3.6+6R	3.6+5R	3.7+5R	3.7+4R	3.8+4R
	#10 @ 24"	q	1019	950	774	748	631	633	552	562	504
	#10 @ 24	F	4.3+9R	4.9+6R	6.1+3R	6.1+3R	7+2R	6.9+1R	7.6+1R	7.4+1R	8+0R
	#10 @ 19"	q	1260	950	914	862	731	719	709	635	636
	#10@10	F	3.6+10R	4.9+6R	5.2+4R	5.4+3R	6.1+2R	6.1+2R	6.1+2R	6.7+1R	6.6+1R
	#10 @ 10"	q	1260	1121	1046	971	920	882	853	831	813
40	#10@12	F	3.6+10R	4.2+6R	4.6+4R	4.8+3R	5+3R	5.2+2R	5.3+2R	5.4+2R	5.4+1R
10	#10 @ 9"	q	1466	1416	1284	1265	1175	1176	1117	1124	1081
	#10@0	F	3.1+10R	3.4+7R	3.8+5R	3.9+4R	4.1+3R	4.1+3R	4.3+2R	4.3+2R	4.4+2R
-	#10 @ 6"	q	1639	1540	1486	1431	1393	1366	1344	1327	1314
	#10@6	F	2.8+10R	3.2+7R	3.4+5R	3.5+4R	3.6+3R	3.7+3R	3.7+2R	3.8+2R	3.8+2R
	#10 @ 4"	q	1901	1833	1796	1758	1732	1712	1697	1686	1676
	#10 @ 4	F	2.5+11R	2.8+7R	2.9+5R	3+4R	3.1+3R	3.1+3R	3.2+3R	3.2+2R	3.2+2R
See footr	notes on page 28.										

Span=6.25 ft q=1727 lb/ft F=3.1+3/2=4.6 (in/lb)x10⁶

Detailing:

- 16 gage deck
- 36/7/4 #12 screw Pattern at supports
- #10 @4" sidelap attachments

Diaphragm Stiffness

• Diaphragm stiffness per ASCE7-16

$$\Delta = \Delta_s + \Delta_b = \frac{qL^2}{8bG'} + \frac{5qL^4}{384EI} \qquad \text{(DDM04)}$$
$$\Delta = \Delta_s + \Delta_b = \frac{F_x L_d}{8h_d} \frac{F}{10^6} + \frac{5F_x L_d^3}{384EI}$$
$$I_j = 2A_j \left(\frac{h_d}{2}\right)^2, I_c = \frac{1}{12}t_c h_d^3$$

FIGURE 12.3-1 Flexible Diaphragm

F_roof	7.125 in./lbx10 ⁶	Aj	4.7 in ²
F_floors	0.18 in./lbx10 ⁶	lj	23500 in ⁴
L _d =	100.00 ft	Ι _c	6.48E+08 in ⁴
h _d =	300.00 ft	E _c	3024 ksi

Level	F _x (kips)	δMDD (in)	∆ADVE (in)) δMDD/∆ADVE		
Roof	147	0.470	0.42	1.114	<2	not Flexible
12th	343	0.023	0.47	0.049	<2	not Flexible
11th	294	0.020	0.47	0.042	<2	not Flexible
10th	247	0.017	0.46	0.036	<2	not Flexible
9th	204	0.014	0.45	0.031	<2	not Flexible
8th	164	0.011	0.41	0.027	<2	not Flexible
7th	128	0.009	0.38	0.023	<2	not Flexible
6th	95	0.006	0.36	0.018	<2	not Flexible
5th	66	0.004	0.34	0.013	<2	not Flexible
4th	42	0.003	0.31	0.009	<2	not Flexible
3rd	22	0.001	0.28	0.005	<2	not Flexible
2nd	8	0.001	0.26	0.002	<2	not Flexible

* Δ_b is negligible for the composite decks due to high in plane stiffness of the concrete deck.

Diaphragm Chord Design as deep concrete beam (Typical concrete floors)

ASCE7-16 and ASCE7-16 Alt. R_s =3

Chord Design in tension side	(Long directio	n)			Chord Design in compression	on side (Long dire			
$(1.2 + 0.2S_{DS})D + \rho Q_E + 0.5$	L	F _y =	60	ksi	$(1.2 + 0.2S_{DS})D + \rho Q_E + 0.$	51	f'c=	3000	psi
Level	T _u (k)	A _{s req} (in. ²)	A _{rebar} (in. ²)	#8	Level	Z (ft ³)	f _c	0.2f' _c	
Roof	98	-	-	-	Roof	-	-	-	-
12th	264	4.885	0.790	7.0	12th	938	195	600	transverse reinforcement is not required
11th	264	4.885	0.790	7.0	11th	938	195	600	transverse reinforcement is not required
10th	264	4.885	0.790	7.0	10th	938	195	600	transverse reinforcement is not required
9th	264	4.885	0.790	7.0	9th	938	195	600	transverse reinforcement is not required
8th	264	4.885	0.790	7.0	8th	938	195	600	transverse reinforcement is not required
7th	264	4.885	0.790	7.0	7th	938	195	600	transverse reinforcement is not required
6th	264	4.885	0.790	7.0	6th	938	195	600	transverse reinforcement is not required
5th	264	4.885	0.790	7.0	5th	938	195	600	transverse reinforcement is not required
4th	264	4.885	0.790	7.0	4th	938	195	600	transverse reinforcement is not required
3rd	264	4.885	0.790	7.0	3rd	938	195	600	transverse reinforcement is not required
2nd	264	4.885	0.790	7.0	2nd	938	195	600	transverse reinforcement is not required

AS€E7-116+A¢t	t:⁺° R ′ _s =1	F _y = 60 ksi			$(1.2 + 0.2S_{DS})D + \rho Q$	$(1.2 + 0.2S_{DS})D + \rho Q_E + 0.5L$			psi		
Level	T _u (k)	A _{s req} (in. ²)	A _{rebar} (in. ²)	#8	Level	Z (ft³)	f _c	0.2f' _c			
Roof	157	-	-	-	Roof	-	-	-	-		
12th	422	7.817	0.790	10.0	12th	938	313	600	transverse reinforcement is not required		
11th	422	7.817	0.790	10.0	11th	938	313	600	transverse reinforcement is not required		
10th	428	7.933	0.790	11.0	10th	938	317	600	transverse reinforcement is not required		
9th	439	8.134	0.790	11.0	9th	938	325	600	transverse reinforcement is not required		
8th	450	8.336	0.790	11.0	8th	938	333	600	transverse reinforcement is not required		
7th	461	8.537	0.790	11.0	7th	938	341	600	transverse reinforcement is not required		
6th	472	8.739	0.790	12.0	6th	938	350	600	transverse reinforcement is not required		
5th	483	8.940	0.790	12.0	5th	938	358	600	transverse reinforcement is not required		
4th	494	9.142	0.790	12.0	4th	938	366	600	transverse reinforcement is not required		
3rd	505	9.343	0.790	12.0	3rd	938	374	600	transverse reinforcement is not required		
2nd	515	9.545	0.790	13.0	2nd	938	382	600	transverse reinforcement is not required		

#8 rebars are provided for the tensile side and since compressive stress in under $0.2f'_{c}$ there is no need for transverse reinforcement.

Diaphragm Collector Design as Additional Reinforcement (Typical concrete floors)

ASCE7-16 and ASCE7-16 Alt. $R_s\!=\!3$

Collector Design in tension and compression (Long direction) $(1.2 + 0.2S_{DS})D + \Omega_0 Q_F + 0.5L$ Fy= 60 ksi t_c=4.5 in. f'c= 3000 B2= 1.065 psi P_u/T_u (k) $A_{s req}$ (in.²) A_{rebar} (in.²) \mathbf{b}_{\min} (in) Level #8 82 Roof -12th 220 4.336 0.790 6.0 17 11th 220 4.336 0.790 6.0 17 10th 220 4.336 0.790 6.0 17 9th 220 4.336 0.790 6.0 17 8th 220 4.336 0.790 6.0 17 7th 220 4.336 0.790 6.0 17 6th 220 4.336 0.790 6.0 17 5th 220 4.336 0.790 6.0 17 6.0 4th 220 4.336 0.790 17 3rd 220 4.336 0.790 6.0 17 2nd 220 4.336 0.790 6.0 17

ASCE7-16 Alt. R_s=1

Level	P _u /T _u (k)	A _{s req} (in. ²)	A _{rebar} (in. ²)	#8	b _{min} (in)
Roof	131	-	-	-	-
12th	352	6.937	0.790	9.0	28
11th	352	6.937	0.790	9.0	28
10th	357	7.040	0.790	9.0	28
9th	366	7.219	0.790	10.0	29
8th	375	7.398	0.790	10.0	30
7th	384	7.577	0.790	10.0	30
6th	393	7.756	0.790	10.0	31
5th	402	7.935	0.790	11.0	32
4th	411	8.113	0.790	11.0	32
3rd	420	8.292	0.790	11.0	33
2nd	430	8.471	0.790	11.0	34

Sample calculation: Axial force= $\Omega_0 L_{beam} V_r$ Axial force= 2.5 x 25 ft x 3517=220 kips

The collector width, b_{min}, can easily accommodated along line A and M.

 $P_r = P_{nt} + B_2 P_{lt} = B_2 P_u$ $b_{min} = P_r / (0.2 f'_c t_c)$

Diaphragm Collector Design (Shear Studs)

ASCE7-16 and ASCE7-16 Alt. R_s=3

- The maximum required shear capacity (floor 11) V_r = F_{pi}/2 = 703/2=351.5 kip. We also need to use <u>amplified seismic demands</u>: V_{r-ampl}=351.5*2.5=878.75 kip
- Allowable capacity of each ¾" diameter stud 7.46 kip. The factored LRFD capacity is 7.46 x1.5=11.19 kip (DDM04: Nominal 21 kip, φ=0.55 → Factored 11.55 kip)
- Required number of studs= 878.75/11.19=79
- Stud spacing = 100'/79x12=15.18"<18" (gravity design)→ Stud Spacing for the exterior girders should be 15" o.c.

Short direction (X- Direction lateral load)

Stud spacing = 300'/79x12=70.65">18" (gravity design)→ gravity design stud spacing is adequate.

Diaphragm Collector Design (Shear Studs)

ASCE7-16 Alt. R_s=1

Long direction (Y- Direction lateral load)

- The maximum required shear capacity (floor 2) $V_r = F_{pi}/2 = 1374/2 = 687$ kip. We also need to use <u>amplified seismic demands</u>: $V_{r-ampl} = 687x2.5 = 1717.5$ kip
- Allowable capacity of each ¾" diameter stud 7.46 kip. The factored LRFD capacity is 7.46 x1.5=11.19 kip (DDM04: Nominal 21 kip, φ=0.55 → Factored 11.55 kip)
- Required number of studs= 1717.5/11.19=153
- Stud spacing = 100'/153x12=7.85"<18" (gravity design)→ Stud Spacing for the exterior girders should be 7.5" o.c.

Short direction (X- Direction lateral load)

Stud spacing = 300'/153x12=23.55">18" (gravity design)→ gravity design stud spacing is adequate.

Diaphragm Design summary (2nd floor concrete floors)

Diaphragm Chord and Collector Design as Perimeter Beams

- Diaphragm chords and collectors are designed as perimeter beams under gravity loads and axial load of the diaphragm. Chord and collector are designed as beam-columns in the roof deck and as composite beam-columns in the typical concrete floor decks.
- The composite beam-column design is performed assuming non-composite axial strength and composite flexural strength.
- The design method is an iterative process and has been performed in the spreadsheets attached to this document.
- Perimeter beams of the composite floors are assumed to be fully braced in minor axis direction and LTB. The beams can still experience torsional-flexural buckling. For the roof deck, the lateral bracing of the collectors are provided at the joists (typically 6.25' o.c.)
- Collectors are designed under amplified seismic loads as moderately ductile members.
- Chord and collectors are deigned for two different demands in ASCE7-16, including ASCE7-16 and ASCE7-16 Alt. R_s =3 and R_s =1. The design is performed for th

Summary of Diaphragm Chord and Collector Design as Perimeter Beams

	Element	Location	Cross-section	Length (ft)	No. Studs	S (in)	S_selected	Camber (in)
	Chand	Rs=3	W21x68	33.33	24	16.7	16	0.00
Floor	Cnora	Rs=1	W24x94	33.33	46	8.7	8	0.00
F 1001	Collector	Rs=3	W21x55	25	20	15.0	15	0.00
	Conector	Rs=1	W24x76	25	28	10.7	S_selected 0 16 8 15 10 - - - - - -	0.00
		Rs=3	W14x30	33.33	-	-	-	-
Doof	Choru	Rs=1	W14x38	33.33	-	-	-	-
K001	Collector	Rs=3	W14x26	25	-	-	-	-
	Conector	Rs=1	W14x30	25	-	-	-	-

Chord: Grids 1 and 5 between grids C and H Collectors: Grids A and M between grids 1 and 5

Frame size summary (chord and collectors are included)

Grid A, Y-direction typical braced frame

1 B		2 B		B B		4 B		5
	W14X30		W14X30		W14X30		W14X30	
W14X48	W21X55	W10X33	W21X55	W10X33	W21X55	W10X33	W21X55	W14X48
W14X48	W21X55	W10X33	W21X55	W10X33	W21X55	W10X33	W21X55	W14X48
W14X109	W21X55	W10X49	W21X55	W10X49	W21X55	W10X49	W21X55	W14X109
W14X109	W21X55	W10X49	W21X55	W10X49	W21X55	W10X49	W21X55	W14X109
W14X176	W21X55	W10X77	W21X55	W10X77	W21X55	W10X77	W21X55	W14X176
W14X176	W21X55	W10X77	W21X55	W10X77	W21X55	W10X77	W21X55	W14X176
W14X257	W21X55	W10X100	W21X55	W10X100	W21X55	W10X100	W21X55	W14X257
W14X257	W21X55	W10X100	W21X55	W10X100	W21X55	W10X100	W21X55	W14X257
W14X342	W21X55	W12X120	W21X55	W12X120	W21X55	W12X120	W21X55	W14X342
W14X342	W21X55	W12X120	W21X55	W12X120	W21X55	W12X120	W21X55	W14X342
W14X455	W21X55	W12X152	W21X55	W12X152	W21X55	W12X152	W21X55	W14X455
W14X455		W12X152		W12X152		W12X152		W14X455
\square					> Y			

Grid B, Y-direction typical gravity frame

Frame size summary (chord and collectors are included)

Grid 1, X-direction typical braced frame

Frame size summary (chord and collectors are included)

2 A	<	2 B	2 C	2	2 E	2 F	2 6	2 H	2 1 1 M
	W12X19	W12X19	W12X19	W12X19	W12X19	W12X19	W12X19	W12X19	W12X19
W14X48	W18X40	255 ≤ ₩18X40	82 X01 W18X40	W18X40	EE 000 000 000 000 000 000 000 000 000	82001A W18X40	2225 ▲ W18X40	₩18X40	89201 W18X40
W14X48	W18X40	2255 ₩18X40	ее конструкций и конструкции и констру и конструкции и констру и конструкции и конструкции и конструкции и конструкции и конструкции и конструпции и констру и констру и констру и конструпции и констру и конструпции конструпции и конструпции и конструпци	ее хорания и минахарания и	82 X01	8000 W18X40	W18X40	W18X40	84 84 84 84 84 84 84 84 84 84 84 84 84 8
W14X109	W18X40	₩18¥40	W10X40	M18X40	04 70 70 70 70 70 70 70	00 00 00 00 00 00 00 00 00 00 00 00 00	2020 W18X40	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	W18X40
W14X109	W18X40	W18740	667 W10X40	65X10 65X10 W18X40	010X	W10X40	W18X40	00000000000000000000000000000000000000	W18X40 W114X109
W14X176	W18X40	W18X40	22 20 20 20 20 20 20 20 20 20 20 20 20 2	LX X0 X0 X0 X0 X0 W18X40	22 22 20 20 20 20 20 20 20 20 20 20 20 2	LLX W18X40	W18X40	W18X40	W18X40
W14X176	W18X40	W18X40	22 01 W18X40	22X01M W18X40	12 X01 M W18X40	۲۲۲۲ ۲۲۲۲ ۲۲۲۲ ۲۲۲۲ ۲۲۲۲ ۲۲۲۲ ۲۲۲۲ ۲۲	W18X40	W18X40	W18X40
W14X283	W18X40	W18X40	001X01A W18X40	001X01A W18X40	00 01 X0L M W18X40	001X01A W18X40	W18X40	W18X40	W18X40
W14X283	W18X40	W18X40	001X01A W18X40	001X01A W18X40	00 1X 01 X 01 X 01 X 01 X 01 X 01 X 01	001X01X01X	₩18X40	0 61 ▲ ₩18X40	001201 W18X40
W14X398	W18X40	W18X40	071X771 W18X40	021X2130 W18X40	071X 771 W18X40	021X21X W18X40	₩18X40	₩18X40	86657471 W18X40
W14X398	W18X40	W18X40	071X X71M W18X40	071X21M W18X40	0777721 W18X40	021X21M W18X40	W18X40	W18X40	W18X40
W14X550	W18X40	W18X40	25 25 25 25 25 25 25 25 25 25 25 25 25 2	251X 251X 251X 251X 251X 251X 251X 251X	25 25 1 X 21 W18X40	251X21M W18X40	W18X40	W18X40	W18X40
W14X550	C3870510	7CI V7I M	W12X152	W12X152	M12X152	W12X152	201V21W	ZCIXZIW	W14X550
\square		4	\square		×		॑ ∠	4 2	

Grid 2, X-direction typical gravity frame

Attached documents

Building Models (SAP2000 v19.0.0)

- 2017 07 07 Archetype building_100_300
 Elastic model of the building for gravity and lateral
- 2017 07 07 Archetype building_100_300_updated for chords and collectors Elastic model of the building for gravity and lateral including chord and collector designed as perimeter beams.
- 2017 07 07 Archetype building_100_300_ultimate Elastic model of the building for gravity and lateral

Spreadsheets:

- 2017 07 07 Archetype_Joist and Beam Design.xls (composite beam and beam-column design)
- 2017 07 07 Archetype_Design_100x300.xls (gravity and seismic loading and concrete diaphragm design)
- 2017 07 07 Archetype Design Summary_Tables.xls (All Tables and calculations)
- 2017 07 07 BRB_parameters.xls (BRB, KF an YLR factors)