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AUTHOR’S PREFACE.

In the following pages is contained a brief introductory
account of some of the more fundamental portions of the theory
of functions of a complex variable. The work was prepared
originally as a chapter for the volume called ““Higher Mathe-
matics,” published in 1896. It has been enlarged by the addition
of sections on power series, algebraic functions and their integrals,
functions of two or more independent variables, and differential
equations. Furthermore, the section on uniform convergence
has been extended, and the treatment of Weierstrass’s theorem
and of Mittag-Leffler’s theorem has been simplified.

It is hoped that the present work will give the uninitiatea
some idea of the nature of one of the most important branches
of modern mathematics, and will also be useful as an introduction
to larger works, such as those in English by Forsyth, Whittaker,
and Harkness and Morley; in French by Jordan, Picard, Goursat,
and Vallée-Poussin; and in German by Burkhardt, Stolz and
Gmeiner, and Osgood.

New Yorg, August, 1906.
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FUNCTIONS OF A COMPLEX VARIABLE.

ART. 1. DEFINITION OF FUNCTION.

If two or more quantities are such that no one of them suf-
fers any restriction in regard to the values which it can assume
when any values whatsoever are assigned to the others, the
quantities are said to be ¢ independent.’”’

A quantity is said to be a function of another quantity or of
several independent quantities if the former is determined in
value whenever particular values are assigned to the latter.
The quantity or quantities upon the values of which the value
of the function depends, are said to be the ‘¢ independent vari-
ables '’ of the function.

A function is ““ one-valued,’’ or “uniform,” when to every
set of values assigned to the independent variables there cor-
responds but one value of the function. It is said to be
«p-valued” when to every set of values of the independent
variables » values of the function correspond.

The ¢ Theory of Functions’ has among its objects the
study of the properties of functions, their classification accord-
ing to their properties, the derivation of formulas which exhibit
the relations of functions to one another or to their independ-
ent variables, and the determination whether or not functions
exist satisfying assigned conditions.
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ART. 2. REPRESENTATION OF COMPLEX VARIABLE.

A variable quantity is capable, in general, of assuming both
real and imaginary values. In fact, unless it be otherwise
specified, every quantity w is to be regarded as having the

“complex ” form #4-v ¥ — 1, % and v being real. It is cus-

tomary to denote ¥ — 1 by 7, and to write the preceding quan-
tity thus: # +70. If v is zero, wis real; if # is zero, w is a
“ pure imaginary.” '

A quantity z = x4 4y is said to vary “ continuously ” when
between every pair of values which it may take, ¢, = o, + #5,,
¢, = a,+1b,, ¥ and y must pass through all real values inter-
mediate to @, and «4,, 4, and 4,, respectively, either once or a
finite number of times. .

It is usual to give to a variable quantity & = x - Zy a graphi-
cal representation by drawing in a plane a pair of rectangular
axes and constructing a point whose abscissa and ordinate are
respectively equal to x and . To every value of 2 will corre-
spond a point; and, conversely, to every point will correspond
avalue of 2. The terms “point”’ and value, then, may be inter-
ehanged without confusion. When 2 varies continuously the
graphical representation of its varia- |y
tion, or its ““path,” will be a continuous
line. This graphical representation is
of the highest importance. By means
of it some of the most complicated | - g
propositions may be given an exceed-
ingly condensed and concrete expres-
sion. & b %

By putting x = 7 cos 6, y = 7 sin 6, where 7 isa positive real
quantity, the point

2z = 7(cos 0 +- ¢ sin 6)
is referred to polar coérdinates. The quantity # is called the

absolute value or “modulus” of z. It will often be written (g}
g is known as the “argument’’ of z.
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A function is sometimes considered for only such values of
each independent variable as are represented graphically by the
points of a certain continuous line. In the study of functions
of real variables, for example, the path of each independent
variable is represented by a straight line, namely, the axis of
real quantities, or y = o..

ART. 3. ABSOLUTE CONVERGENCE.

The representation of functions by means of infinite series
is one of the most important branches of the theory of func-
tions. In many problems, in fact, it is only by means of series
that it is possible to determine functions satisfying the condi-
tions assigned and to obtain the required numerical results.
Frequent use will be made of the following theorem.

Theorem.—If the moduli of the terms of a series form a
convergent series, the given series is convergent.

Let the given series be W=w, 4w, 4. . .+ w, +. ..
in which w, = 7, (cos ¢, -} Zsin 8,), w, = 7, (cos ¥, 4-Zsinf,). . .
By hypothesis the series R=r, 47, 4+... 47+ ... is
convergent. Its terms being all positive, the sum of its first »
terms constantly increases with 7, but in such a manner as to
approach a limit. The same will be true necessarily of any
series formed by selecting terms from R. The sum of the first
m terms of the series W is composed of two parts,

rycos 0 7 cosb, ...4+7, cosb,_,
W7, sin 047, sin b, +...+7,  sinfb, ),
and each of these in turn may be divided into parts which have
all their terms of the same sign. Every one of the four parts
thus obtained approaches a limit as » is increased ; for the
terms of each part have the same sign, and cannot exceed, in
absolute value, the corresponding terms of R Hence, as » is
increased, the sum of the first #» terms of W approaches a
limit; which was to be proved.

A series, the moduli of whose terms form a convergent
series, is said to be “ absolutely convergent.”
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Prob. 1. Show that theseries 1 +z+2'+. .. 42" +.. . is
absolutely convergent, if |z ]| < 1.

ART. 4. ELEMENTARY FUNCTIONS.

In elementary mathematics the functions are usually con-
sidered for only real values of the independent variables, In
the case of the algebraic functions, however, there is no diffi-
culty in assuming that the independent variables are complex.
The theory of elimination shows that every algebraic equation
can be freed from radicals. Every algebraic function, there-
fore, is defined by an equation which may be put in a form
wherein the second member is zero and the first member is
rational and entire in the function and its independent variables.

Besides the algebraic functions, the functions most often
occurring in elementary mathematics are the trigonometric and
exponential functions and the functions inverse to them. The
definitions, by which these functions are generally first intro-
duced, have no significance in the case where the inde-
pendent variables are complex. However, the following
familiar series,

g 2 &
& =exp z= I—|—z—|—2_+ﬁ-|—‘_ﬂ+_,_,

2 & b4
cosg =1 ——2-—}—n—6—!—|—...,

3 5

; Fi g2 &
sin & =z—§—|—5—!—7l—+...

which have been established for the case where the variables
are real, furnish most convenient general definitions for exp z,
cos 2, and sin g, these series being absolutely convergent for
every finite value of z. "Defining the logarithmic function by
the equation
eegs = exp (log z) = 3,
it follows that
@ = ¢1°6% = exp(z log a).
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The following equations also are to be regarded as equations
of definition :

sin g COs 2z
tan gz = s cot s = ——,
Cos & sin 3
I
secs = —, cosec 8 = —.
cos 3 sin g

It may be shown that the formulas which are usually obtained
on the supposition that the independent variables are real, and
which express in that case properties of and relations between
the preceding functions, still hold when the independent
variables are complex.

Prob. 2. Show that ¢"e* = ¢”*”, m and # being complex.
0 . . I 5 i
Prob. 3. Deduce cosz = (¢ + ¢7%), sinz = 2—2.(6’” — e™%),

Prob. 4. Deduce cos (z, + 2,) = cos z, cos z, — sin z, sin z,,
sin (z, + z,) = cos 2, sin z, + sin 2, cos z,.

ART. 5. CONTINUITY OF FUNCTIONS.

Let a function of a single' independent variable have a
determinate value for a given value ¢ of the independent vari-
able. If, when the independent variable is made to approach
¢, whatever supposition be made as to the method of approach,
the function approaches as a limit its determinate value at ¢,
the function is said to be “continuous " at ¢.

This definition may be otherwise expressed as follows: A
function of a single independent variable is continuous at the
point ¢, when, being given any positive quantity e, it is possible
to construct a circle, with center at ¢ and radius equal to a
determinate quantity &, so small that the modulus of the
difference between the value of the function at the center and
that at every other point within the circle is less than e.

A function of several independent variables is said to be
continuous for a particular set of values assigned to those vari-
ables, when it takes for that set of values a determinate value
¢, and for every new set of values, obtained by altering the
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variables by quantities of moduli less than some determinate
positive quantity &, the value of the function is altered by a
quantity of modulus less than any previously chosen arbitrarily
small positive quantity e.

A function of one independent variable is said to be con-
tinuous in a given region of the plane upon which its indepen-
dent variable is represented, if jt is contiuuous at every point
in that region.

From the principles of limits, it follows that if two functions
are’continuous at a given point, their sum, difference, and prod-
uct are continuous at that point. As an immediate conse-
quence, every rational entire function of z is continuous at
every finite point; for every such function can be constructed
from 2z and constant quantities by a finite number of additions,
subtractions, and multiplications.

Let a function of a single independent variable be contin-
uous at ¢, and let it take at that point the value #, different
from zero. Suppose also that at any other point ¢ dc the
function takes the value ¢ 4 42, Then

e
Hz -+ 42y

I
: I 4t

I
7
If it be assumed that | 4¢| < | |, the modulus of the preceding
difference cannot exceed

| 4z]
[2](J2] —|4z])

and will, therefore, be less than € if

elz|’
At < —1_,
] 1+ €|7|
Hence if a function is continuous and different from zero
at a point ¢, its reciprocal is also continuous at ¢. It follows
at once that if two functions are both continuous at ¢, their
ratio is continuous at ¢, unless the denominator reduces to zero
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atthat point. Butevery rational function of 2 may be expressed
as the ratio of two entire functions. It is therefore continuous
for all values of z except those for which its denominator
vanishes.

Consider the function exp 2,

s — g5 = p3(eds — ) =ez(.dz+g;z:-+. ..).

Hence if |dz] <1,

_ 2 ) e 122
Az =|pz ! =
jesvoe—er| 2leei () + L5704 ) 2l

but the limit of the third member is zero when |4s| ap-
proaches zero. Hence exp # is continuous for all finite values
of z.

Prob. 5. Show that cos z and sin z are continuous for all finite
values of z.

Prob. 6. Show that tan z is continuous in any circle described
about the origin as a center with a radius less than 37.

ART. 6. GRAPHICAL REPRESENTATION OF FUNCTIONS.

It was shown in Art. 2 that a plane suffices for the complete
graphical representation of the values of an independent vari-
able. In the same way it is convenient to use a second plane
to represent graphically the values of any one-valued function.
For example, if w = f{z) be such a function, to each point
# -4y of the independent variable will correspond a point
# -+ 7v of the function. This point # |- zvis called the “image ”
of the point # 4-¢y. If w is a continuous function of z, then
every continuous curve in the z-plane will have an image in
the w-plane, and this image will be also a continuous curve.

Consider the expression # + 7o = 2* 4 »* 4 262y, Here
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# = 2"+ y*and v = 2xy. Since to every value of z corre-
spond determinate values of x and y, s

and consequently determinate values
of # and v, this expression falls un- t=
der the general definition of a func-
tion of z. It is evidently continuous.
Every straight line x = # parallel to
the axis of yis converted by means
of it into a parabola v* = 4#(x — ).

=0

Prob. 7. Find the family of curves
into which the straight lines parallel to

the axis of y are converted by means of
the function # + 2 = &" — ¥* 4 27xy. Show that no two curves
of this family irtersect.

ART. 7. DERIVATIVES.

Let w = f{2) be a given function of z. If % is an “infini-
tesimal,” that is, a variable having zero as its limit, and if the
expression

Sz + Z) — /&)

has a finite determinate limit, remaining the same under all
possible suppositions as to the way in which Zapproaches zero,
this limit is said to be'the “ derivative ” of the function f{2) at

the point 2. In this case w = f{2) is said to be “ monogenic’

at z. The derivative is written /() or T A function is said

to be monogenic in a region of 'the plane of the independent
variable if it is monogenic at every point of that region.

Consider now the circumstances under which a function
w = u -+ v may have a derivative at the point 2 = x 4 7.
If 2 be given a real increment, x is changed into » - 4, while
y is unaltered, so that 4z = Adx; and

dw du Ay
Zr S dr T
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If, on the other hand, # is given a purely imaginary incre-
ment, 4z = ¢4y, and
dw _ Adu + dv
dz — ddy ' 4y’
If the second members of these equations approach deter-

minate limits as 4x and 4y approach zero, and if these limits
are equal,

ou , .ov_  .om , Qv
7 T iy Ty
Hence, equating real and imaginary parts,

ox _ ov ov __ _ ou
oxr oy’ or oy’
which are necessary conditions for the existence of a derivative.

It can be shown that these conditions are also sufficient.*
For let the increment of the independent variable be entirely
arbitrary, no supposition being made as to the relative magni-
tudes of its real and imaginary parts. Then the diffesential of
the function, that is, that part of the increment of the function
which remains after subtracting the terms of order higher than
the first, is

o = (2 422 LAY
du—]—zdv_<ax —}—zax dx—l—(ay -I—zay

ou g o) (on | o0y

du—+idv (ax+zax + 2y +28}’)dx
ditidy A
I+zdx

Hence

which, by virtue of the conditions written above, is equal to
either member of the equation

% z'a'v — — z@ﬁ @?
ox ox oy oy

The value thus obtained is independent of g, or, what is the

* For a complete discussion see article by E. Goursat in the Transactions of
the Amer. Math. Soc., vol. 1, p. 14.
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same thing, of the direction of approach to the point z. The
existence of a derivative of the function w depends, therefore,
only on the existence of partial derivatives a__u, 8—7{, a_u, oz
ox °ox 9oy

satisfying the specified equations of condition.

The same equations of condition express the tact that
w = % + 1v, supposed to be an analytical expression involving
x and y, and having partial derivatives with respect to each,
involves #z as a whole, that is, may be constructed from z by
some series of operations, not introducing # or y except in the
combination x 4 zy. In other words, they indicate that x and
7 may both be eliminated from w = ¢(x, y) by means of the
equation & = x + zy. This property, however, is not sufficient
to define a function as monogenic, for not every function which
possesses it has a derivative with respect to 2.

A monogenic function is necessarily continuous; that is,
the existence of a derivative involves continuity. For, if

ﬂz + ;2 _ f(Z) :f,(z),

limit
it follows that
S+ %) =A2)+ [ (2) + 7],

where » approaches zero with 4. Hence f(¢) is the limit of
Az %) when /4 approaches zero, or J(#) is continuous at the
point 2.

The following pages relate almost exclusively to functions
which are monogenic except for special isolated values of z.
Functions which are discontinuous for every value of the inde-
pendent variable, and functions which are continuousbut admit
no derivatives, have been little studied except in the case of
real variables.®

#1In this connection see G. Darboux, Sur les fonctions discontinues, Annales de
I'Ecole Normale, Series 2, vol. 4 (1875), pp. 51~112. For a systematic treatment
of functions of a real variable, see the German translation of Dini’s treatise by
Liiroth and Schepp, Leipzig, 1892. For an illustration of a function constructed
from z by a series of arithmetical operations and discontinuous for a particular
value of z, see the expression given on pagz 53.
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ART. 8. CONFORMAL REPRESENTATION.

Let 2z start from the point 2, and trace two different paths
<

‘orming a given angle at the point g, and let 2, and 2, be arbi-
trary points on the first and second paths respectively. Then

&, — &, = r,(cos 8, +isin 6)) = 7,6,

where 7, denotes the length of the straight line joining 2z, and

Wo

Zy

@x u

z,,and 8, denotes the inclination of this line to the axis of
reals. In the same way, for the point z,, there is an equation

2, — 2, = 7,(cos 8,7 sin 8,) = 7,¢%.

If now = is a one-valued monogenic function of z in the
region of the z-plane considered, to the points &, 2,, &, corre-
spond points w,, w,, w,; and for these points can be formed
the equations
iy

— 7 _ ip
W, — Wy, == ,8 'y W, — W, =, %

From the supposition that z is monogenic, it follows at
once that, when 2, and g, are assumed to approach z,,

. . W, — W o e ol — T
limit =2 = limit 22—,
2 — % &y, — &

If the members of this equation are not equal to zera, it may
be put in the form

. . W, — W . g — 2
limit =2 —~° — limmit 2—=°
w, — w, 8, — 2

2 o
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or

limit 2o =90 — limit 71,70 =0,
2 rﬁ

Hence
limit (¢,— ¢,) = limit (6,— 6,) ;

and the images in the w-plane of the two paths traced by 2
form at w, an angle equal to that at 2, in the z-plane. Accord-
ingly, if 2 be supposed to trace any configuration whatever

in a portion of the z-plane in which fflﬂ isdeterminate and not
2

equal to zero, every angle in the image traced by = will be
equal to the corresponding angle in the z-plane. If, for exam-
ple, such-a portion of the z-plane be divided into infinitesimal
triangles, the corresponding portion of the z-plane will be
divided in the same manner, and the corresponding triangles
will be mutually equiangular. Such a copy upon a plane, or
upon any surface, of a configuration in another surface is called
a “conformal representation.”

~

The modulus of the derivative || — limit ‘%ﬁ

is the

“ magnification.” Its value, which, in general, changes from
point to point, may be obtained from the relations

= =G

d_w
daz

__ 0% v _ ou0ov
T ox oy oyox

The theory of conformal representation has interesting ap-
plications to map drawing.*

* For -the literature of the subject, see Forsyth, Theory of Functions,
p. 500, and Holzmiiller, Einfiihring in die Theorie der isogonalen Verwandschai-
ten und der conformen Abbildungen, verbunden mit Anwendungen auf mathe-
matische Physik.
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ART. 9. EXAMPLES OF CONFORMAL REPRESENTATION.

Example I.—Let w=2¢-}¢  This function is formed
from the independent variable by the addition of a constant.
Putting for w, 2, and ¢, respectively, # -+ v, x 47y, and a 4 25,
one obtains

v=z-4+a v=y-+0b

Any configuration in the z-plane appears, therefore, in the
w-plane unaltered in magnitude, and is situated with respect to
the axes as if it had been moved parallel to the axis of reals
through the distance @ and parallel to the axis of imaginaries
through the distance 4. The following diagrams represent the
transformation of a network of squares by means of the rela-
tion w = 2z 4 ¢.

Example II.—Let w=cz. Writing w= pe¥, z = re¥,
and ¢ = ¢, the following equations result:

p=rr, ¢=10,+60.

The origin transforms into the origin, all distances measured
from the origin are multiplied by a constant quantity, and
all straight lines passing through the origin are turned through
a constant angle. See the following diagrams.
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Example III.—Let w = ¢*. Writing & = x 4- 2y, the fune-
tion becomes
w = % = ¢*(cos y -+ 7 sin y).

Every straight line x = ¢, parallel to the axis of y is trans-
formed into a circle p = ¢ described about the origin as a
center, the axis of y becoming the unit circle. Points to the
right of the axis of y fall without the unit circle, while points
to the left of this axis fall within. Every straight line y = ¢,
parallel to the axis of x becomes a straight line v/# = tan ¢,
passing through the origin. The accompanying diagrams¥®
exhibit in a simple manner the periodicity expressed by the
equation
exp (2 + 2nni) = exp (2),
where 7 is any positive or negative integer.

To every point in the w-plane, excluding the origin, corre-
spond an infinite number of points in the z-plane. These
points are all situated on a straight line parallel to the axis of

* The figures of this and the following example are taken from Holzmiiller’s
treatise.
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7, and divide it into segments, each of length 2z. If 2’ be one
of these points, the general value of the inverse function is

log w = &' + 2nin,
where 7 is any positive or negative integer.

If any straight line beginning at the origin be drawn in the
av-plane, there will correspond in the g-plane an infinite number

Y
2wl ¥
P
0
N
3 |M
2 &
K E|D
J B
r—L H & )
H T P
G 5
F L '
4 E \-
2 D
c
B
1Al z
" e P

of straight lines parallel to the axis of x, dividing that plane
into strips of equal width. To any curve in the w-plane
which does not meet the line just drawn, will correspond in
the z-plane an infinite number of curves, of which there will be

one in each strip.

Example IV.—Let w =-cos 2. Writing w =« v, 2 =
x4 7y, and employing as equations of definition cos (zy) =
cosh y, sin (Z¥) = ¢ sinh y, the given function takes the form

# -} 7v = cos x cosh y — 7 sin x sinh y.

Hence u = cos x cosh y, v = — sin x sinh y,
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Any straight line, x = ¢, parallel to the axis of y, is trans-
formed into one branch of a hyperbola,

2 2

u v

cos'z, sin'#,

1,
having its foci at the points ++ 1 and — 1. Any straight line,
¥ = ¢, parallel to the axis of z, is transformed into an ellipse,
u’ o
cosh’z, a sinh’ ¢,

E L,

having its foci at the same points, any segment of the straight
line equal in length to 27 corresponding to the entire curve
taken once. By means of these confocal conics, the w-plane
is divided into curvilinear rectangles, the conformal represen-
tation breaking down only at the foci, where the condition
thét%’should be different from zero is not fulfilled. The
periodicity of the function, expressed by the equation

cos(g + 27) = cos z,

15(16{ 1|2 |8|4|5(6(7|8|9|10(11|12|18|14|15|16[ 1|2
O|P|4 C|\D\E|\F|G|\H|I|J|K|L|M O|P|4|\B z
A\P|O|N|M|L|K|J|I|H|G|F|E|D|C 4|P|O
2(1|16(|15|14|18(12|11({10| 9|8 |7 |6 |5 |4 |3 |2 |1[16(15

is exhibited graphically
in the accompanying
diagrams.

It is interesting to
note in this example,
as also in the preceding
one, that the conformal
representation intro-
duces well-known sys-
tems of curvilinear
coordinates, the cartesian coordinates, x, ¥ of a point in the
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z-plane serving to determine its image in the w-plane as an
intersection of orthogonal curves.

Example V.—Letw=2%  Writing w=2-44d, 2=
& -+ 7y, the relations

=2 —32), v=37y—5

follow at once. If one of the variables &, y be eliminated from
these two equations by means of the equation Zx 4+ my -+ 2 = o,
representing a straight line in the z-plane, equations are ob-
tained representing a unicursal cubic in the w-plane.

By putting w = p(cos ¢ + ¢ sin ¢), 2 = #(cos ¢ + 2 sin 6),
the relations p = #°, ¢ = 36, are obtained. Hence the

circle
¥ —2arcosf & =¢*

gives the curve
p8 — 2qp0% cos% +a =7,

which enwraps three times the point corresponding to the
center. The accompanying figure represents this transfor-
mation, the straight line feg giving the curve feg.

v

2 U
¢ /
AY l’
da N e \a_ . b df‘DG e a .

To each point in the w-plane, excluding the origin, at which
dw

= o and the conformal representation is not maintained,

2
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there correspond three points in the z-plane, having for their

PP+ 27[‘¢+47t

arguments
= 373 3

drawn from the origin in the w-plane will have, therefore, three
images in the z-plane, viz., three straight lines diverging from
the origin, and dividing the plane into three equal regions.
Any continuous curve in the w-plane not meeting the line just
drawn will be represented in the zplane by three curves, of
which one will be situated within each of these regions. In the
figure here given are exhibited the three conformal represen-
tations of a square formed in the =-plane by lines# =7, u =

, respectively. Any straight line

Z,, v = ¢, v = ¢, parallel to the axes.

If the relation between w and 2z be reversed, and z be
taken as a function of w, z will be a three-valued function, its
values giving rise to three branches which will remain distinct
and continuous except when w becomes equal to zero.

SQAZ

BN

-

I . . .
Prob. 8. If w = z P show that circles in the z-plane having
a common center at the origin transform into confocal ellipses.

Prob. g. If w = 2 % show that the axis of reals in the z-plane

z-4 7
transforms into the circle || = 1, and the upper half of the z-plane
into the interior of this circle.
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ART. 10. CONFORMAL REPRESENTATION OF A SPHERE.

Let OPO’ be a sphere having its diameter OO’ equal in
length to unity. Con-
struct tangent planes at
at Oand O'. Draw in
the tangent plane at
O rectangular axes Ox
A and Oy; and in the

| other plane draw as
P} axes O'n, parallel to Ox
; and measured in the
J/ w same direction, and O'v
- parallel to Oy but meas-
ured in a contrary di-

% rection. Join any point

z in the plane x0y to

O’ by a straight line, and let 0’z meet the sphere in 2 Draw
OP and produce it to meet the plane 20'v in .

From the similar triangles O'Oz and O0'w

0z 00 ——
— = Ow=00";
50 —ow & Oz. 0w
that is, lzl.|lw|=rp=1.

To an observer standing on the sphere at O’ rotation about
00 from O'n toward O'v is positive, while to an observer
standing on the sphere at O such a rotation is negative.
Hence

L2202 =— fu0w, or 0= — ¢.

The following equation results:
we = pref@+0 —=1,

The w- and z-planes are therefore conformal representa-
tions of one another. Any configuration in one plane can be
formed from its image in the other by an inversion with respect
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to the origin as a center, combined with a reflection in the axis of
reals. Such a transformation was termed by Cayley a “ quasi-
inversion.” By it points at a great distance from the origin
in one plane are brought near together in the immediate neigh-
borhood of the origin in the other plane.

Since the line O'Pz makes the same angle with the plane
tangent to the sphere at 2 as with the plane 0y, any spherical
angle having its vertex at 2 is projected into an equal angle at
z. The sphere is thus seen to be related conformally to the
plane #0y, and it must be also so related to the plane #0'v.

The representation of the sphere upon a tangent plane in
the manner described ‘above is termed a *stereographic pro-
jection.” When to this representation is applied a logarithmic
transformation, that is, one inverse to the transformation
described in Example III of the preceding article, the so-
called ‘¢ Mercator’s projection '’ is obtained.

ART. 11. CONJUGATE FUNCTIONS,

The real and imaginary parts of a monogenic function,
w = u -}~ 7v, have been shown to satisfy the partial differential

equations
ou Qv ov __ ou
or oy  ox o
At any point, therefore, where # and v admit second partial
derivatives, one obtains
*u

ox*

+ &j =0 i’yz &: =0y

el ox”
that is, the functions # and v are solutions of Laplace’s equa-
tion for two dimensions. Any two real solutions p and ¢ of
this equation, such that p 47 is a monogenic function of
x 44y, are called “conjugate functions.” * Thus the examples
of Art. 9 furnish the following pairs of conjugate functions:

* Maxwell, Electricity and Magnetism, 1873, vol. 1, p, 227,
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x*+a, y4&; rrcos(6,4 6), 77 sin (6, + 6); ¢*cosy, ¢*siny;
cos x cosh y, — sin » sinh y; #° — 329", 349" — »°. The second
pair is expressed in polar coordinates, but may be transformed
to cartesian coordinates by means of the relations
T x . ¥

F= V2" , cosf = —- sin = — —,
i EE Vit

If one of two conjugate functions be given, the other is
thereby determined except for an additive constant. Let #,
for example, be given. Then

ov v
dv=—dx+ g
ox T ay 4

ou ou
= — —dr+ dy,
ay T ox 4
and therefore the value of v is

f(— O . 0% y).
oy ox
The equations # = ¢,, v = ¢,, obtained by assigning con-
stant values to two conjugate functions, represent in the
w-plane straight lines parallel to the coordinate axes. It
follows that the curves which these equations define in the
z-plane intersect at right angles. Consequently, by varying
the quantities ¢, and ¢,, two orthogonal systems of curves are
obtained ; and ¢, and ¢, may be taken as orthogonal curvilinear
coordinates for the determination of position in the zplane.
Prob. 10. Show that if p and ¢ are conjugate functions of # and

7, where # and » are conjugate functions of x and y, p and ¢ will be

conjugate functions of x and y.
Prob. 11. Show that if # and v are conjugate functions of x and

¥, x and y are conjugate functions of # and .

ART. 12. APPLICATION TO FLUID MOTION.

Consider an incompressible fluid, in which it is assumed
that every element can move only parallel to the s-plane, and
has a velocity of which the components parallel to the coordi-
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nate axes are functions of » and y alone. The whole motion
of the fluid is known as soon as the motion in the s-plane is
ascertained. When any curve in the g-plane is given, by the
“flux across the curve”* will be meant the volume of fluid
which in unit time crosses the right cylindrical surface having
the curve as base and included between the z-plane and a par-
alle] plane at a unit distance.

The flux across any two curves joining the points z, and 2
is the same, provided the curves enclose a region covered with
‘the moving fluid. For, corresponding to the enclosed region,
there must be neither a gain nor a loss of matter. Let 2z, be
fixed, and & be variable. Let % denote the flux across any curve
2,2, reckoned from left to right for an observer stationed at z,
and looking along the curve toward 2. If /, 7 be the direction
cosines of the normal (drawn to the right) at any point of the
curve, and p, ¢ be the components parallel to the axes of the
velocity of any moving element, the value of ¢ will be

b=_[Up+ mays,

where the path of integration is the curve joining 2, and 2.
The function % is a one-valued function of z in any region
within which every two curves joining £, to & enclose a region
covered with the moving fluid.

If 2 moves in such a manner that the value of % does not
vary, it will trace a curve such that no fluid crosses it, i.e., a
“stream-line.” The curves ¢ = const. are all stream-lines, and
1 is called the “stream-function.” If p and ¢ are continuous,
and if z be given infinitesimal increments parallel to » and y
respectively, one obtains

ob__ b _

If now the motion of the fluid be characterized, as is the

* Lamb’s Hydrodynami < ('893). p. 6q.
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case in the so-called “irrotational” motion,* by the existence
of a velocity-potential ¢, so that
_0o¢ _ 99
=5 1T
the following equations result :

o op o o
v oy o oy
Hence ¢ - 7 is a monogenic function of x 4 ¢». The curves
¢ = const.,, which are orthogonal to the stream-lines, are
called the “equipotential curves.”
Consider, as an example, the motion corresponding to the
functiont @ = z°. The equipotential curves are given by the
equations

#=x"—3xy"=const.,

the stream-lines by
the equations

v =3x'y —y'= const.

"In the following fig-

ure the stream-lines
are the heavy lines,
while the equipo-
tential curves are
dotted.
The fluid moves
i in toward the origin,
which is called a “cross-point,” from three directions, and
flows out again in three other directions. At the cross-point
the fluid is at a standstill, since at that point the yelocity, for
which the general expression is

JE T

* In irrotational motion each element is subject to translation and pure

strain, but not to rotation.
+ F. Klein: Riemann's Theory of Algebraic Functions ; translated by

Frances Hardcastle (1893), p. 3.
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is equal to zero. The stream-lines in the figure represent the
motion of the fluid in each of six different angles, as if the fluid
were confined between walls perpendicular to the s-plane.

It is of importance to note that if the function considered
be multiplied by 7, the equipotential curves and stream-lines
are interchanged, since the function ¢ 4 #p then becomes
— 4 ip.

An example of particular interest is

z—a
z—|—a'

Letz —a=re%, 2+ a = r,e%; then

w = — ulog

»
u=—pulog—, v=— u0, —4,).
72
The curves # = const., v = const. form two orthogonal sys.
tems of circles, either of which may be regarded as the stream-
lines, the other constituting the equipotential curves.

The velocities are everywhere, except at the points + g,
finite and determinate. If the circles 7,/7, = const. be taken
as the stream-lines, each of the points + « is a *““ vortex-point.”
If the circles 6, — 4, = const. be taken as the stream-lines, one
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of the points 4 2 is a “source,” the other a “sink.” In the
latter case, besides the hydrodynamical interpretation, a very
simple electrical illustration is afforded by attaching the poles
of a battery to a conducting plate of indefinite extent at two
fixed points of the plate.

As another example may be taken the relation w = cos z.
As has been shown, the curves x = const. form a system of
confocal hyperbolas, while the curves y = const. form an
orthogonal system of ellipses. Either system may be regarded
as stream-lines. In one case the motion of the fluid would be
such as would occur if a thin wall were constructed along the
axis of reals, except between the foci, and the fluid should be
impelled through the aperture thus formed. In the other case
the fluid would circulate around a barrier placed on the axis of
reals and included between the foci.

Besides their application to fluid-motion, conjugate func-
tions have important applications in the theory of electricity
and magnetism * and in elasticity.t

ART. 13. SINGULAR POINTS.

Let w be any rational function of z. It can be written in
the form

_ /()
Y= e

where f(2) and ¢ (2) are entire and without common factors.
This function is finite and admits an infinite number of suc-
cessive derivatives for every finite value of 2z, except the roots
of the equation ¢ () =o0. Leta be such a root. Then the
reciprocal of the given function is finite and admits an infinite
number of successive derivatives at the point 2. Such a point

# J. J. Thomson, Recent Researches in Electricity and Magnetism (1893),
Pp. 208.
} Love, Theory of Elasticity (1892), vol. 1, p. 331.
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is called a “pole.” Any rational function having a pole at a
can be put by the method of partial fractions in the form

w = 4, + 0 s * e — a)k+ ¢(z)

where 4,, ..., 4, are constants, A, being different from zero,
and (2) is finite at the point . The integer £ is said to be
the “order” of the pole, and the function is said to have for
its value at & infinity of the 4th order. In accordance with
the definition of a derivative, w does not admit a derivative at:
a. From the character of the derivative in the immediate
neighborhood of @, however, the derivative is sometimes said:
to become infinite at a.

The trigonometric function cotz has a pole of the first
order at every point z = sz, m being zero or any integer posi-
tive or negative.

The function w = log (¢ — @) has for every finite value of
z, except 2 = &, an infinite number of values. If z — & is writ-
ten in the form R¢®,

w = log R + O + 2mn),

where log R is real, and m is zero or any positive or negative
integer. If # describes a straight line, beginning at o, ® will
remain fixed, but £ will vary. The images in the w-plane will
therefore be straight lines parallel to the axis of reals, dividing
the plane into horizontal strips of width 2z. If now the z-plane
is supposed to be divided along the straight line just drawn,
and z varies along any continuous path, subject only to the
restriction that it cannot cross this line of division, there will
be a continuous curve as the image of the path of z in each
strip of the w-plane. Each of these images is said to corre-
spond to a “branch” of the function, or, expressed otherwise,
the function is said to have a branch situated in each strip.
The line of division in the z-plane, which serves to separate
the branches from one another is called a “ cut.”
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At the point z=a no definite value is attached to the
function. As z approaches that point the modulus of the real
part of the function increases without limit, while the imagi-
nary part is entirely indeterminate.

Let z, be an arbitrary point, distinct from «, and let
log R, 4 20,4 2mni

be any one of the corresponding values of the function. Sup-
pose that z starts from 2z, and describes a closed path around
the point @, the values of the function being taken so as to
give a continuous variation. Upon returning to the point 3,
the value of the function will be

log R, 4 20, 4 2(me - 1)m7,
or log R,+ i0,+ 2(m — 1)77,

according as the curve is described in a positive or negative
direction. By repeating the curve a sufficient number of times
it is evidently possible to pass from any value of the function
at z, to any other. When a point is such that a zpath en-
closing it may lead in this manner from one value of a function
to another value, it is called a “ branch-point.” In the case
of the function here considered, the point z = a is called
a “logarithmic branch-point,” or a point of “logarithmic
discontinuity.”

The function w = log ;—%, where f(z) and ¢(2) are entire,
has a point of logarithmic discontinuity at every point where
either f(z) or ¢(2) is equal to zero. For, writing

fle) = A(z —a)h(z —a)s. ..
$(e) = Ble — by(s — bym...

the value of  may be written

w = log % + =, log (# — a,) — =g, log (2 — 4,).
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Take now the function w = eEl. It has a single finite value
for every value of 2 except z =o. If 2 is supposed to ap-
proach zero, the limit of the value of the function is indeter-
minate.

For let p 4 7g be perfectly arbitrary, and write

et — ¢ | 44,
If now a - 45 is the reciprocal of p - 7g, so that

2 = _—2
r+q r+q

a =

the preceding equation may be written

1
et = ¢+ 1d.

But whatever the value of the integer 7, ¢ + 2 may be
substituted for ¢ without altering the value of ¢ + ¢4, and hence
both 2 and 4 may be made less than any assignable quantity.

1

The given function ¢= therefore takes the value ¢ - 74 at points
@ -+ ¢0 indefinitely near to the origin. A point such that, when
z approaches it, a function elsewhere one-valued may be made
to approach an arbitrary value is called an ¢‘essential singu-
larity.”’

1
Prob. 12. Show that for the function ¢z—2 z = & is an essential

singularity.
1
Prob. 13. The function ¢ # considered as a function of a real
variable is continuous for every finite value of 2z, and the same is
true of each of its successive derivatives. Show that when it is
regarded as a function of a complex variable, z = o is an essential
singularity.

In order to illustrate still another class of special points
take the function

w=HV(Ez—a)z—a)...(z—a,).
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This function has at every finite point, except a,, a,, ..., @,,
two distinct values differing in sign. At these points, however,
it takes but a single value, zero. From each of the points
a, a,, ..., a,let a straight line of indefinite extent be drawn in
such a manner that no one of them intersects any other, and
suppose the z-plane to be divided, or cut, along each of these
lines. Along any continuous path in the zplane thus divided
the values of the function form two distinct branches.

For, writing

g—a, =7t z—a,=réh ..., Z2—a,=7r.%,

the function takes the form
w= Vi T e¢.1+az+é.. +0n

No closed path in the divided plane will enclose any of the
points 2,, @,, ..., a,, and the quantities 0, 6,, ..., 6§, after
continuous variation along such a path, must resume at the
initial point their original values. No such path, therefore, can
lead from one value of the function at any point to a new
value of the function at the
same point. If, however, the
cuts are disregarded and =z
traces in a positive direction,
a closed curve including an odd
number of the points «,, &

Y

2)

., @,, and not intersecting
itself, then an odd number of
the quantities 6,, 6,,..., 6, are each increased by 2x; and
the value of the function is altered by a factor e®+)m and
so changed in sign. In the same way any closed path de-
scribed about one of these points, and enwrapping it an odd
number of times, leads from one value of the function to
the other. On the other hand, a simple closed path enclosing

z

an even number of these points, or a closed path which en-
closes but one of the points, enwrapping it an even number of
times, leads back to the initial value of the function. It fol-
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lows that each of the pointsa,, a,, ..., a, is a branch-point.
Any point in the zplane, closed paths about which lead from
one to another of a set of different values of a function, the
number of values in the set being finite, is called an “algebraic
branch-point.”

As a further illustration, consider the function
w =2+ (2 — a)},

which is a root of the equation of the sixth degree,
w' —3s0* — 2(2 — @)w' + 35" — 62(2 — a)w + (¢—a)'—2'=o.

The function has at every point, except 2=o0 and z=a,
six distinct values. Six branches are thereby formed which
can be completely separated from one another by making cuts
from the points & = 0 and # = & to infinity. Putting o for the
cube root of unity, these six branches can be written

w, = 2" (2 — a)l/a, w,=—2z" + (z— a)l/s,
w,=2"+ w(e—a)", w, = —zl/g—{—co(z—a)l/s,
w, = 2" + @'z —a)”, w,=—7"Fw(z— a)’”.

The branches w, and w,, w, and w,, 2w, and w, are interchanged
by a small closed circuit described about 2 =0, while a small
circuit described about 2 = @ permutes cyclically the branches
w,, w,, w,, and also the branches w,, w,, w,. '

All of the special points examined above, poles, points of
logarithmic discontinuity, essential singularities, and branch-
points, are called singular points. In fact, a function, or a
branch of a function, is said to have a ‘‘singular point’’ at each
point where it fails to have a continuous derivative,* or about
which as a center it is impossible to describe a circle of deter-
minate radius within which the function, or branch, is one-
valued.

Any point nota singular point is called an “ ordinary point.”

* Continuity and, therefore, finiteness of the function are implied in the
existence of a derivative.
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An ordinary point at which a function reduces to zero is called
a ‘‘zero’’ of the function.

If in a certain region of the z-plane a function is uniform
and has no singular points, the function is said to be ‘“synec-
tic”” or ‘““holomorphic ” in that region. If in a certain region
the only singular points of-a uniform function are poles, the
function is said to be ¢ meromorphic '’ in that region. Under
similar conditions, a branch of a function is also described as
holomorphic or meromorphic.

Prob. 14. When w and z are connected by the relation w — g =
(z — %)* show that if z describes a circle about % as a center, w
describes a circle about g as a center, an angle in the 2-plane hav-
ing its vertex at 4 is transformed into an angle in the w-plane #

times as great and having its vertex at g, and that 2 = /% is a branch-
point of w except when #is an integer.

ART. 14. POINT AT INFINITY.

In determining the limiting value of a function when the
modulus of the independent variable s isincreased indefinitely,
it is usual to introduce a new independent variable 2’ by the
relation z = 1/#, and consider the function at the point 5’ = o.
This is equivalent to passing from the z-plane to another plane,
the z/-plane, related to the former by the geometrical construc-
tion described in Art. 10. It is often very convenient, however,
to go further and to substitute for the z-plane the surface of the
sphere of unit diameter touching the z-plane at the origin. No
difficulty is thus introduced since, as explained in the article
just cited, any configuration in the z-plane obtains a conformal
representation upon the sphere; and the advantage is gained
that the entire surface upon which the variation of the inde-
pendent variable is studied is of finite extent. The point of
the sphere diametrically opposite to its point of contact with
the z-plane coincides with the point written above as 2’ =o.
It is called the point at infinity, # = 0, since a point on the
sphere approaches it at the same time that its image in the
z-plane recedes indefinitely from the origin.
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The point at infinity may be either an ordinary or a singular
point. For the function e:;, for example, it is an ordinary
point, since es = ¢/. TFor a rational entire function of the zth
degree it is a pole of order n. Consider it for the function
V(z— a,)(z — a,)... (2 — a,), discussed. in the preceding article.
Let a circle of great rad1us be described in the z-plane inclosing
all the branch-points ¢,, @,,...,a, Itsconformal representa.
tion on the sphere will be a small closed curve surrounding the
point 2= . This point must, therefore, be regarded as a
branch-point or not, according as the function changes value or
not when the curve surrounding it is described, that is accord-
ing as #z, the number of finite branch-points, is odd or even.
When the point at infinity is taken into account, then, the
total number of branch-points of this function is always even.
The character of the point 2 =00 for this function can be de-
termined directly, by changing 2 into 1/2" and considering the
point &/ = o.

#(z)
, where
. $(z)
¢(2) and t(z) are rational and entire if the degree of ¢(z) does
not exceed that of ¥ (z).

Prob. 15. Show that # = o is an ordinary point for ——=

ART. 15, INTEGRAL OF A FUNCTION.

Let w=/{z) be a continuous function of z in a given
region, and suppose # to describe a continuous path Z from
the point 2, to the point Z. Let a series of pqjints 2,, z,, ..., 2,
be taken on Z, and let 7,,¢,,..., ¢, be points arbitrarily chosen
on the arcs 2,2,, 2,2,, . . ., 2,2 respectively. Form the sum

S = (‘Zl — &, ﬂto) 'JI" (Za - 'gl)f(tl) + LEL + (Z_ zn)f(tn)'

If now the number of points 2, ..., 2, be increased indefi-
nitely in such a manner that the length* of each of the arcs

* It is assumed in regard to every path of integration that the idea of length
may be associated with the portion of it included between any two of its points,
or, what is the same thing, that the path is rectifiable. * This condition is evi-
dently satisfied if the current coordinates x and y can be expressed in terms of
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2,215 28,y « o0y 8,2 approaches zero as a limit, the sum S ap-
proaches a finite limit which is inde-
pendent of the choice of the points z,,
Zy ooy 8pand 2, 2, ..., L,

For take any other sum
P S = (le — za)f(to,) -+
S @ — 2+

formed in a similar manner. Suppose

- for the sake of greater definiteness
that the points z,,... and z/,... follow one another on the
line Z in the order

By 2 Bls 25 B3 Blsmuny

and form a third sum

Sl,__—(Zx—zn).f(ro)_{—(gl,_31m11)+(22/_lemra)

+ (o — 2 (7). . .
in which b>th series of points occur. It may be shown that as
the number of points in each of the series £, ... and 2/, ... is
increased, the differences S” — S and S” — S’ both approach
zero, from which it follows that the difference S — S’ has a
limit equal to zero. For example, the difference S — S has
the value

(2, — 2)[f(z)) = )]+ (5" — 2)[ A7) — f(2)]
+ (& — &) A7) — )]+ ..
If M/ denotes the upper limit or bound of the quantities
|Az) =), I Az)=A), 1Az —=A)s - -
the modulus of S”” — S will be less than
M|z, — 2| +|2) — & |+ —2'|+...1

dx

4 . .
and % are continuous. For then the integral
dt dt

any parameter ¢ so that

/ de’ - dy? is finite. See, in this connection, Jordan, Cours d’Analyse, 2d

Edition, Vol. 1., p. 100.
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But |z, — z,| is equal to the chord of the arc 2z, and must
therefore be less than or equal to this arc, and a similar result
holds for each of the quantities |2,’—sz,|,|2, —2,|,... Hence

|S” — S| < M,
where / denotes the length of the path of integration. When
the number of points of division on the line L is increased, the
differences
Az) =), fz)—AL),  Az) =S .-
approach zero, since jf(2) is continuous.* /M accordingly
decreases indefinitely and the difference S — S approaches

zero.
The limit, the existence of which has just been demon-
strated, is called the integral of fi#) along the path Z. Itis

written /f(z)a'z. The definition here given is similar to that
L

given for the integral of a function of a real variable. It is
unnecessary to specify the path of integration when the inde-
pendent variable is restricted to real values, since in that case
it must be the portion of the axis of reals included between
the limits of integration.

The following well-known principles, applicable to the case
of a real independent variable, may be readily extended to the
general case:

1. The modulus of the integral cannot exceed the length of
the path of integration multiplied by the upper bound of the
modulus of the function along that path.

2. The independent variable may be altered by any equa-
tion of transformation, but L', the path of integration in the
transformed integral, must be such that it is described by the
new variable while z describes Z.

3. If F(2) is any one-valued function having everywhere
a continuous function f{(z) for its derivative, the equation

JADds = F(Z) —Fz)

must be true.

*For a complete discussion it should be shown that the continuity of f{2) is
necessarily ¢ uniform.” See Jordan, Cours d’Analyse, 2d Edition, vol. 1, p. 183.
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To prove the third principle, write /(Z) — F(z,) in the
form
RZ)~ Fla)+-Fla)— )+ - . . +Fe)—Fa)+-Fe)—Fe,).
Since the derivative of F(z) is f(2),

F(Z:n+1) — F(an) = [f(zﬂx) + 77»!](Zm+1 - ZM)’

where 7,, has zero for its limit * when &,,,, is made to approach
2, Hence

RZ) — Fz,) = limit 2/(2,,)(%ut, — 2,) + limit 29,(2,., — 2,.);

or, since the second term of the right-hand member is equal
to zero,

RZ)—Rz)= [ Aedz.

If no function F{s) fulfilling the preceding conditions is

known, the value of the integral requires further investi-
mtom | &
Consider as an example the integral L/)? taken from the
point 2 = — I to the point # = I, the path of integration being
the upper half of the circumference of a unit circle described
about the origin as a center. Writing 2z = exp (¢¢), & will
describe the required path while ¢ varies from 7z to o.

.1 ; 5 3
The equations —, = ™%,  dz = 7¢%40,
2

i—f =4e7%d0 = i cos 0 df - sin 0 df = id (sin ) — d (cos 6),

follow at once. Hence for the path specified
+1 tl’Z . 0 ) 0
f—g—,:zfa’(smé’)—fa’(cos 0) = — 2.
=1 T w

The application of the direct and more familiar method
vives the same result:

f%=[-1.-[-3]
- = — W o —_— = — 2.
_'1 Z Z z2=1 k4 z=-1

#The ¢ uniformity” of continuity is involved here. See Jordan, Cours
d’Analyse, 2d Edition, vol 1, p. 184.
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For a path along the axis of reals between the limits of
integration this result is unintelligible. The discontinuity of

. . dz : .
the differential, o at the point 2 = o, prevents the considera-

tion of such a path; and that the result should be negative
when the differential is at every point of the path positive
has no significance. The introduction of the complex variable
furnishes a perfectly satisfactory explanation of the result.

Prob. 16. Show that the integral of ‘-Zzi along any semi-circum-

ference described about the origin as a center is equal to 7z,

ART. 16. REDUCTION OF COMPLEX INTEGRALS TO REAL.

The integral
G

may be written in the form
@ io)dx + idy),
or, separating the real and imaginary terms,

(A 1(udx — vdy) + z't/[;('zzdx ~+ udy).

Hence the calculation of the integral may be reduced to
the calculation of two real curvilinear integrals.

The equations
o _9v ou _ v

ex oy oy o=x
which express the condition that # - 7o should be monogenic,
express also that

udx — vdy, vdx -+ udy

are the exact differentials of two real functions of the variables
x, 3. Consider the case where these functions are one-valued.
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Denoting them By P(x,y) and Q(x, y) respectively, the inte-
gral may be written

(#,,7,) and (X, V') being the initial and terminal points re-
spectively of the path of integration.

ART. 17. CaucHY’'S THEOREM.

Cauchy’s Theorem furnishes the necessary and sufficient
conditions that a uniform function f{z), having continuous
partial derivatives with respect to x and y, should yield within
a region bounded by a continuous closed curve a one-valued
integral, that is, an integral the value of which, when the lower
limit is fixed, depends simply on the upper limit, and not on the
path of integration. It will be more convenient, before consider-
ing Cauchy’s Theorem, to demonstrate the following lemma:

Lemma.—Let 4 be a portion of the z-plane, having a bound-
ary S which consists of a closed curve not intersecting itself,
or of several closed curves not intersecting themselves or one
another. If at every point of the region 4, including its
boundary S, a function ¥ of the real variables x and y is one-
valued and continuous and has continuous partial derivatives
oW aW

, the relations
oz’ 8,1’

j Wiy = / / oW 1y, 0
/ Wdy = — / / ——dzxdy (2)

exist, the integrals in the first members being taken along the
boundary in the positive direction, and those in the second
‘members being taken over the enclosed area.

Denote by A the inclination to the axis of x of the exterior
normal at any point of the boundary,* that is, the normal drawn

* It is assumed that the boundary has a'determinate tangent at every point.
If the boundary of a given region is not of this sort, the theorem holds for any
dnterior curve ot which this assumption is true.
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to the right as the boundary is described in a positive direction.
If any straight line parallel to the axis of » be traced in
the direction of increasing values of x, at each point where
it passes into the area 4,
cos A is negative, and there-

fore in the first member of

(1) dy =cos A ds is negative.

/]
At each point where this /7
N & AN

straight line passes out of
the area A, cos A, and there-
fore &y, in the first member E \ A
of equation (1), is positive. 3
Hence in the first member /
of equation (1) the differ-
entials Wdy corresponding
to a given value of y, and taken in the order of increasing
values of x, have signs which, compared with the signs of the
corresponding values of I¥, first differ, then agree, and so
on alternately. In order now to compare the integral in the
first member of equation (1) with the integral in the second
member, it is necessary to take dy as essentially positive.
The sum of the differentials in the first member, correspond-
ing to a fixed value of y, must therefore be written in the

/

form

G — W+ W, — W+ W, — ...),

where W,, W,, ... are the corresponding values of ¥ taken in
the order of increasing values of . But performing now in
the second member of equation (1) an integration with respect
to x, the same result is obtained, so that the two members of
equation (1) become identical, and the equation is verified.

To obtain equation (2) the same method is used. It is
necessary in this case to observe that if a line parallel to the
axis of y is traced in the direction of increasing values of y, at
each point where it enters 4, dx in the integral of the first
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member must be taken as positive; and at each point where

this line passes out of 4, dx in that integral must be taken as
negative.

By means of the preceding lemma, Cauchy’s Theorem is
easily proved. This theorem may be stated as follows:

Theorem.—If, on the boundary of and within a given region
A, a one-valued function w = f(g) is monogenic, and its deriv-

ative f/(¢) is continuous,* the integral J:f(z)a’z taken albng
the boundary S is equal to zero.

For writing the integral in the form

J: wdz = LA ‘(ua’x —vdy)+1¢ '/; (udy + vdx),

the preceding lemma gives

‘/(udx-—'z/dy)_ f/ > axd dy,
/(ua’y—{—wix) / ——— d xdy;

but since at every point of 4

ou ov_ au o,
oy ToxT T oax oy
the given integral reduces to zero.

ART. 18. APPLICATION OF CAUCHY'S THEOREM.

From Cauchy’s Theorem it follows that, if two different
paths Z, and Z, lead from the point , to the point Z, and if
along these paths and in the region inclosed between them a
given function f{2) has no critical points, the integrals of the
function taken along these two paths are equal. For two such
paths taken together, one described directly, the other re-
versed, constitute a closed curve, and the integral taken along

# Otherwise expressed, the one-valued function f(z) has no singular points on
the boundary of or within 4, or f(z) is holomorphic in 4. It has been shown by
Goursat that this theorem can be proved without assuming the continuity of the
derivative. See Transactions Amer. Math. Soc., vol. I, p. 14.



40 FUNCTIONS OF A COMPLEX VARIABLE.

it is equal to zero. But, since reversing the direction of the
path of integration is equivalent to changing the sign of the
integral, the equation

ﬂlﬂz)dz — L/L:f(z)dz =o0

is obtained.

The result just established may be stated in the following
theorem :

Theorem I.—If a function is holomorphic in any simply
connected region bounded by a continuous closed curve, the
integral of the function, from a fixed lower limitlin that region
to any point contained therein, is independent of the path of
integration, and is a one-valued function of its upper limit,

A region whose boundary is composed of disconnected
curves is not necessarily characterized by the property stated
in the theorem. Take, for example, the function

w=4V@E—a)e—a)...(2z—a),

and suppose thato <|e,| <|2,| <...<|a,|. With the ori-
gin as a center, construct a system of concentric circles C,,
Cy«.., C, C, passing through «,, C, through «,, and so on.
Denote by S, the region inclosed within the first circle C,, by
S, that inclosed between C, and C,, and so on, the portion
of the plane exterior to the last circle C, being denoted by S,.
At an initial point z, interior to one of these regions, assign to
w one of the two values possible, and consider the branch of
w resulting from a continuous variation. Then however & may
vary within any such region, this branch of z» will be a mono-
genic function, and its derivative will be continuous. Having
regard to the branch-points 2, «,, . . ., ,, it is evident that in
the regions S,, S,. ... it will be one-valued, and in the regions
S,, S, + - ., it will be two-valued. Thus in the regions §,, S,,
..., the branch fulfils the required conditions, but the boundary
does not. The theorem is applicable only to S,. It may be
observed that in every other region two paths may be drawn
joining the same two points such that the branch is not one-
valued in the enclosed portion of the s-plane.
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Theorem IT.—If f(z) is holomorphic in any simply connected
region S bounded by a continuous closed curve, the integral

'/f(z)a’z, taken from a fixed lower limit £, in that region to any

point Z contained therein, is a holomorphic function of its
upper limit.

Let Z be any path from 2z, to Z. When the upper limit is
at the point Z -+ dZ, L followed by a straight line from Z to
Z + dZ can be taken as the path of integration. Hence

,[2: R eds — j Fapds = [ fayds

=A2) et [ 1R — A2

The first term is equal to AZ)dZ. The modulus of second
term is equal to or less than M|dZ|, where M is the upper
bound of | f(z) — f(Z)| along the line joining Z to Z-- dZ.
But since f(2) is continuous, the limit of M when Z+ 42
approaches Z is zero. Hence

S ey — [ Aoy = (A2) + ez,

where 7 approaches zero with &Z. The integral therefore has
JAZ)fora derivative, and is holomorphic in S.

In the case of a region bounded by several disconnected
closed curves, of which one is exterior to all the others,
Cauchy’s Theorem may be stated in the following form:

Theorem III.—Let a function f2) be holomorphic in a
region 4 bounded by a closed curve € and one or more closed
curves C,, C,, ... interior to C. The integral of f(z) taken

along C will be equal to the sum of its
integrals taken in the same direction
along the curves C, C,, . ..
For the integral of f(2) taken in a
positive direction completely around the
= boundary of A4 is equal to zero. But
the curves ()}, C,, . . . are then described in the direction oppo-
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site to that in which C is described. Hence if all the curves
are described in the same direction, the result may be written

JoAeds = [ fle)ds + [ fle)ds . ..

If there is but one interior curve, so that the region A4 is
included between two curves C and C,, the integral taken along
every closed curve containing C, but interior to C has the
same value, viz., the common value corresponding to the paths

C and C,.

ART. 19. THEOREMS ON CURVILINEAR INTEGRALS.

Theorem I.—If f{2) be continuous in a given region except
at the point ¢, the integralff(z)a’z, taken around a small circle

¢, having its center at a, will approach zero as a limit simulta-
neously with the radius » of the circle ¢, provided only
lim (z — @)flz) =0 when z=ua.
For let the upper bound of the modulus of (2 — ) f(2) on
the circle ¢ be denoted by #7. Then at every point of ¢,

M M
mod f(z) = <z —a = et

and consequently

- M
mod.[f(z)dz 27/49 Z2zlM.

Theorem II.—The mtegral/ )n, taken around any

closed curve C containing the pomt a, is equal to zero, except
when » = 1. When » = 1, this integral is equal to 277

For the value of the integral will be the same if any
circle described about @ as a center be taken as the path of
integration. Let then 2 — @ = 7¢®, where 7 is a constant and
¢ varies from o to 27z. The integral becomes

z' fzw — (n=1)i0
s e A
rn 5 o
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which reduces to zero excep: when » = 1. If z = 1, its value
is 27z, whence

dz

g—qa

=, 271,

Theorem IIL.—If f{z) is a function holomorphic in a given
region S, C a closed curve the interior of which is wholly
within S, and 2 a point situated within C, then

'/cz Zf—f%;a% = 27if(a).

For describing about a as a center a small circle ¢ of radius

7, the equation
/) £,
'/z — ad n[z—a ‘
is obtained. But at every point of ¢,
f&) = Aa) +n,

where, by choosing 7 sufficiently small, the modulus of # may
be made less than any fixed positive quantity. Hence

JfZa= [+ [

but by the preceding theorems the first term of the right-hand
member is equal to 277f{(a), and the second term is equal to
zero.

If the equation of the theorem just established be differ-
entiated with respect to «, the following important formulas,
expressing the successive derivatives of a holomorphic function
at a given point, are obtained:

'/. f(Z) dz = 27if(a),

1.2 '/c,(zfig)a)’ de = 2mif"’(a),

f_ f<:;n+,dz — 27if"(a).
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The integrals in the first members of these equations areall
finite and determinate for every position of & within the curve
C. Therefore any function holomorphic in a given region ad-
mits an infinite number of successive derivatives at every
interior point. Each of these derivatives being monogenic
must be continuous. Hence the following:

Theorem IV.—If f(#) is holomorphic within a given region,
there exists an infinite number of successive derivatives of
/(#), which are all holomorphic within the same region.

Denote by » the shortest distance from the point « to the

curve C. Then at every point of this curve | — 2| S 7. Let
M be the upper bound of the modulus f(z) on (C, and / the
length of ¢. Then

modf(z ())nﬂa'z </cmd5 < guri

1.2...n Ml
27 'rn-l-x'

and consequently mod f® (a) Z

In particular, if Cis a circle having « for its center,

n.M

rn

mod f* (a) 2 !

ART. 20. TAYLOR’S SERIES.

Theorem.—Let f(z) be holomorphic in a region S, and let
C be any circle situated in the interior of S.
If a be the center and 2 4 ¢ any other point
interior to C,

Fe+- =08+ ¥ +- f”(d) +--.
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From the preceding article, denoting a variable point on €
by &,

f(a—l—t):zim' L

AQ)dE
/ e vt S a),,.(c = a—t>]

= fla) +¢/"(a) 4 nf”‘(a ;Zf(")(“) + R,

where
_ 1 i1
27f C—a C—a—n"

By taking # sufficiently great the modulus of R may be
made less than any given positive quantity. Let /M be the
upper bound of the modulus of f(¢) on the circle C, p the
modulus of Z, and » the modulus of { — & or radius of C Then

- _I_ ,pn+1 - My (B)n-i-l
|R1<27r1M7’”+1(r——p)ds<r——p rl

which, since p < 7, has zero for its limit when » = 0.

Writing now z for @+ ¢, Taylor’s Series becomes
1) =f@)He—a)f @+ ED gy A E D gy

The series is convergent and the equality is maintained for
every point z included within a circle described about a as a
center with a radius less than the distance from a to the nearest
critical point of f(2).

When « is equal to zero, Taylor’s Series takes the form

Se) = f(0)+2'f’(0)+ f”( )+ MO+

expressing f(2) in terms of powers of 2. This form is known
as Maclaurin’s Series.
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ART. 21. LAURENT'S SERIES.

Theorem.—Let S, a portion of the z-plane bounded by two
concentric circles C, and C,, be situated in the interior of the
region £, in which a given function f{z) is holomorphic. If &
be the common center of the two circles, and @ 4 7 a point
interior to S, f(@ - ¢) can be expressed in a
convergent double series of the form

fa+8) = 34,
M =—00

With @ - # as a center construct a circle

¢ sufficiently small to be contained within

the region S. If then C, be the greater of
the two given circles, it follows from Article 18 that

/Mmm._ f.mm 1 [ AR
271 27t

€E—a—1t C—a 27rz' C—at—1F

Ly S,

But from Article 19,

2nt
whence
AQdC 1 AQ)4C
ﬂa_}_l)_zm‘/;l —a—t 2—7rz'l/C.nC—Zz—f
The two integrals of the right-hand member may be written :

f(c)a’C[IJrC L4 + a)n]WL

2mivG L —qa

~ e/t

+“Wﬁj+&

where

LY e, (s

= 2mi/a(€ — ay (€ —a — 1)
f (€ — ay*’AL)dE
2 271’2 Cy

(€ —a—1)°

But |#] <|€ — 2| at every point of C,, and |#|>|{ — 2] at
every point of C,, so that K, and &, both have zero for a limit

1
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when 7z = o. The value of f{az + ¢) can therefore be expressed
in the form

flat+t)=4,+ A4+ A48+ A48 +...
A, A, A
+t++t—-+--
Since in the region S the function f(2)/(# — @)™ is holomor-
phic for both positive and negative values of 7, 4, may be

written

L f©

"= i), T = g

where C is any circle concentric with €, and C, and included
between them.

The series thus obtained is convergent at every point @ 4 #
contained within the region S. It is important to notice, how:
ever, that when the positive and negative powers of ¢ are con-
sidered separately, the two resulting series have different
regions of convergence. The series containing the positive
powers of 7 converges over the whole interior of the circle C,
while the series of negative powers of # converges at every
point exterior to the circle €, The region S can be regarded,
therefore, as resulting from an overlapping of two other
regions in which different partsof Laurent’s Series converge.

Writing z for @ + ¢, Laurent’s Series takes the form
f(Z) = Ao +A1(Z - a)—i'—Aa(Z - a)e_l— s
+A_4(z2—a) 4 A,(z—a) ...
Consider as a special numerical example the fraction

1 o I o I
z—1)(z—2)(2—3) 2(z—1) z—2+2(z — 3)

If |z| < 1, all three terms of the second member, when
developed in powers of 2 give only positive powers. If
1 <|z|< 2, the first term of the second member gives a series
of negative descending powers, but the others give the same
series as before. If 2 <|z|< 3, the first and second terms
both give.negative powers. If |z| > 3, all three terms give
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negative powers, and the development of the given fraction
can contain no positive powers. Thus a system of concentric
annular regions is obtained in each of which the given frac-
tion is expressed by a convergent power-series. Laurent’s
Series gives analogous results for every function which is holo-
morphic except at isolated points of the z-plane.

ART. 22. FOURIER'S SERIES.

Let w = f2) be holomorphic in a region S,, and let it be
periodic, having a period equal to ®, so that Az + nw) = f(3),
where # is any positive or negative integer. Denote by S, the
region obtained from S, by the addition of 7@ to z; and sup-
pose: Ehat the FEZIONS . o vy S wwon Doy D5 s 5 55955 = #5
meet or overlap in such a manner as to form a continuous strip
S, in which, of course, the function w will be holomorphic.
Draw two parallel straight lines, inclined to the axis of reals at
an angle equal to the argument of w, and contained within the
strip S. The band 7 included between these parallels will be
wholly interior to S.

2miz
By means of the transformation 2/ = ¢ @ the band 7 in
the z-plane becomes in the z’-plane a ring 7" bounded by two
conceutric circles described about the origin as a center, 2 and
%+ nw falling at the same point 2. Since w is holomorphic
in a region including 7, and

dw dw dz @ _ 2w dw

di ~ dzdd T zmi’ “ dz’
w regarded as a function of 2/ will be holomorphic in 7"
Hence, by Laurent’s Theorem,

m=w0

pa— 2
w= = A4,z

the quantity @ in the general formula of the preceding article
being in this case equal to zero. Substituting for 2 its value,
the preceding equation becomes

= 2mmiz
s —_—
w = 2 Ame 2 ]

M= =0
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where

1 'ZU(Z'Z' 1 2w zmmz
Am=——.- ml=—f ¢ @ o wdz.
2wl ¢z @,

In the latter integral the path is rectilinear. Denoting its
independent variable by ¢ for the purpose of avoiding confu-
sion, the value of w becomes

m=oo Stw  2mmi s
f(z): 1 /‘ — §) (C)dC

m——m

=2 HE A+ ES [ eos e — i)

ml

1 = o 2T 05227
—@/; Aodz+ 2 2 fg AQ)s

m=w® 27nzz/§+ . 2mnC

2 sin f (©)4¢.

ART. 23. UNIFORM CONVERGENCE.,

Let the series W=w, 4w, +w,+... +w,+. .., each
term of which is a function of 2, be convergent at every point
of a given region S. Denote by I, the sum of the first »
terms of J¥. If it is possible, whatever the value of the posi-
tive quantity €, to determine an integer p, such that whenever
n>p

| W— W.|<e
at every point of S, the series W is said to be uniformly con-
vergent in the region S.

For convergent series in general the determination of 2
will depend on the value of z. In the case of uniformly
convergent series p can be determined simultaneously for all
points in the region S.

Uniformly convergent series can in many respects be treated
in exactly the same manner as sums containing a finite num-

ber of terms.
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Theorem I.—If in a region .S a series of continuous functions

W='wo+w1+. ot Wate..

is uniformly convergent, the sum of the series is a continuous
function of z.

For at any point z, W may be written in the form W =W _+R;
and at a neighboring point 2/, W/=W '+ R'. Hence

_ W-W'=W,—W/+R-F
and
W—-Ww'\2|W,—W,|+|R|+|RI.

But by choosing # sufficiently great, |R| and |R’| may both be made
less than any given positive quantity ¢/3 for all values of z and 2/
in S. Having chosen # thus, W, becomes the sum of a finite
number of continuous functions. It is then continuous, and, by
making |z—2'| less than a suitable quantity &, |W —W’| may be
made less than ¢/3. But under these suppositions

W —W|<e.

W is therefore continuous at the point z.
Theorem IT.—If in a region S a series of continuous functions

W=w+w+...+w,+...

is uniformly convergent, the integral of the series, for any finite
path L in the region, is the sum of the integrals of its terms:

’_/L,Wdz=/zjwodz+‘/1jw1dz+. : .+./L‘w%dz+.. ‘

For, writing W=W +R, it is possible to choose # so that,
however small ¢ may be, |R|< ¢ at every point of L. If # be so

chosen,
'/L‘Wdz:‘[»?nder/L‘Rdz.
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But, by Article 15, denoting by 7 the length of the path L,
d / R 1
mo ./L' dz < €l,

which, when # = c0, has zero for its limit. Hence

'/L.Wdz= ,l,iﬂo-/L.W"dz'

From the preceding demonstration we have at once the following
result:

Theorem III.—If in a simply connected finite region S a uni-
formly convergent series of holomorphic functions is integrated
term by term, the resulting series is uniformly convergent in the
same region.

For in a simply connected region the integral of a holomorphic
function is independent of the form of the path of integration.
Only paths whose lengths have a finite upper bound need, there-
fore, be considered.

Theorem IV.—If, in a region S, the series of uniform functions

W=w,+w,+...+w,+...

is convergent, and the series

_d, du, &
T ds dz+"'+dz

w’ ol g

is uniformly convergent, and if further the terms of W’ are con-
tinuous in the same region, W’ will be the derivative of W.

For, integrating W’ from @ to z along a path L contained in
S, we have, by Theorem II,

/L‘W’dz='w0(z) —wy(a)+. .. +w, (2)—w, (a)+...
=W (z)—W (a).

But since W’ is continuous, it is the derivative of the first mem-
ber, and therefore of the second member, and of the function W.
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Theorem V.—If in a finite region S the terms of a uniformly
convergent series

W=w,+w+...+w, +...

are holomorphic, the sum of the series is holomorphic, its deriva-
tive being the sum of the derivatives of its terms.

For let C be the boundary of S, and let C’ be a closed curve
interior to C.  Let & be a positive number such that the distance
between C and C’ is gverywhere greater than ¢.© Then if z is any
point interior to C’, we will have, when ¢ varies along C,

[¢—z2]>0.
The given series being uniformly convergent, we can write
W=W_+R,

where |R|<e when # is taken sufficiently great. Accordingly if
L be the length of C, we will have in the equation

the modulus of the last term less than
eL
F.

It follows that the series

w w, Faw,
fc(?——z)—zdc=fc(c—z)2d“/;(c—z)2d5+’ .

converges uniformly. But this gives at once, if we divide by 27,

W (z)=w) (z)+w/(z)+. ..

From the preceding demonstration we have at once:
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Theorem VI.—If a series of holomorphic functions is uni-
formly convergent in a given region S, the series formed by the
derivatives of its terms will be uniformly convergent in the same
region.

To illustrate by an example that uniformity of convergence
is essential to the preceding theorems, take the series

T 00 g Zn+1

W=m+€(1 +29)(1 Lty

At the point z=1 each term is continuous, and the series
is convergent, having the value 1/2. The series is, however,
discontinuous at z=1. For, writing it in the form

We 1 1 1 1 +( 1 1 -
Tr4z  \1422 14z 14+2% 1+4g2) "0

the sum of the first # terms is seen to be

I
"1t

But W is the limit of W when n=co, and is therefore
unity at every point z for which |z|<1, and zero at every point
for which |z >1. ‘

If now this series be considered for the points within and
upon a circle described about the origin as a center with an
assigned radius less than unity, the remainder after » terms, or

Zn
W=
absolute value than any given quantity. In such a region, then,
the series converges uniformly, and, by Theorem I, can have no
point of 'discontinuity. A similar result holds for the region
exterior to any circle described about the origin as a center with
an assigned radius greater than unity.

can, by a suitable choice of #, be made less in
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Art. 24. POWER SERIES.

The most elementary and at the same time the most impor-
tant series of functions which enters into the theory of functions
is of the form

VRN SR o P ol S

where a,, a,, @y, ..., @, ... are constants.

If this series is convergent for a certain value Z of the varia-
ble z, it will be convergent for every value of z for which |z]<|Z].
For if the modulus of z is less than that of Z, the series

g 2 o

I-l—z-l-?-l-. . '+?‘+' 5w

is an absolutely convergent geometrical progression. Since, now,
the series

By Z el o e 8L Fusn

is convergent, the moduli of its terms must have a finite upper
bound 4. We can accordingly use its terms as multipliers for
the corresponding terms of the geometrical progression, and we
will obtain an absolutely convergent series. But this series will be
the given series

e, taztag’+. . . ta g ...

subject only to the condition that |7|<|Z|.

It is obvious that every power series of the form here given
converges for z=o0. When we consider other values of z three
cases arise:

(1) The series may converge for every finite value of 2, as,
for example,

2 n

z
I-I-z-l-;-!-. % et

S S
I.2...0
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(2) The series may diverge for every value of 2, except z=0,
as, for example,

1+3448%+. . utstt. .,

(3) The series may converge for some values of z different
from zero and diverge for others. For example, the series

2 on

3z
B e ek S Sl T
I 2 "

converges for z= —1 and diverges for z=1.

In the third case the modulus of the values of z for which the
series converges must have a finite upper bound. Call this R.
The circle of radius R described about the origin as a center is
known as the circle of convergence. For this circle we have the
following theorem:

Theorem.—A power series is convergent at every point inte-
rior to its circle of convergence, and is divergent at every point
exterior to its circle of convergence.

No general statement can be made as to the convergence or
divergence of the series upon the circumference of the circle of
convergence. The series may converge at all points of the cir-
cumference, as, for example,

z? 2"
1+z+2—2+. 3 '+7_Lé+' T
or it may diverge at all such points, as, for example,

1+z+22%+. . . +ngnt. ..,

or finally, as already illustrated, it may converge at some points
and diverge at other points of this circumference.
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Art. 25. UNIFORM CONVERGENCE OF POWER SERIES.

Theorem I.—A power series is uniformly convergent in every
circle described about the origin as a center with a radius less
than R. For, if R’ <R, the series

gy +]a|R 4. . .+ a, [R™+. ..

is convergent; and, consequently, whatever the value of the posi«
tive quantity e, we can find an integer p such that if n>p

|a, R+ [@pt | R+ . <e.

For all values of z within the circle of radius R’, the sum of
the series will then differ from the sum of its first # terms by a
quantity less than e in absolute value. Hence the series is uni-
formly convergent within the circle of radius R’

Theorem II.—If a power series is uniformly convergent in a
given circle, the series obtained by integrating its terms or by
differentiating its terms is uniformly convergent in the same
circle.

This theorem follows at once from Theorems IIT and VI of
Article 23. Since R is the upper bound of R/, the series of primi-
tives and the series of derivatives have exactly the same circle of
convergence as the given power series. We have also as an im-
mediate consequence of Theorems IT and V of Article 23:

Theorem III.—The primitive of a power series is the sum of
the primitives of its terms; and the derivative of a power series
is the sum of the derivatives of its terms.

As a result of these theorems, we have that, so far as continuity,
differentiability, and integrability are concerned, a power series
has within its circle of convergence the same properties as the
sum of a finite number of powers.
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ART. 26. UNIFORM FUNCTIONS WITH SINGULAR POINTS.

Theorem I.—A function holomorphic in a region S and
not equal to a constant, can take the same value only at iso-
lated points of S.

For in the neighborhood of any point « interior to S, by
Taylor’s theorem,

)= fa) == ar'@+E=DL rr@) + ...

Unless f{s) is constant over the entire circle of convergence of
this series, the derivatives f'(a), f''(a),... cannot all be
equal to zero. Let f®(2) be the first which is not equal to
zero. Then

N&)— fla) = (s—a) I .fz(”i(L.Z). n + L2 }"(j‘f‘)((:?_‘_ 1)<g—d)+ T :I

Since the series within the brackets represents a contin-
uous function, if |z — 4| be given a finite value sufficiently
small, the modulus of the first term of the series will ex-
ceed the sum of the moduli of all the other terms, and the
same result will hold for every still smaller value of | — «|.
For values of z then, distant from « by less than a certain
finite amount, /(&) — f«) is different from zero.

If, on the other hand, the function is constant over the en-
tire circle, described about @ as a center, within which Taylor’s
series converges, it will be possible, by giving in succession
new positions to the point @, to show that the value of the
function is constant over the whole region S.

Theorem II.—Two functions which are both holomorphic
in a given region S and are equal to each other-for a system of
points which are not isolated from one another, are equal to
each other at every point of S.

For let f(#) and ¢(g) be two such functions., By the pre-
ceding theorem, the difference f{z) — ¢(2) must be equal to
zero at every point of S.
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Theorem III.—A function which is holomorphic in every
part of the z-plane, even at infinity, is constant.

For, @ being any given point, whatever the value of &,

A6) = fd) + & — af (@) + .. . 4 5D ) -
But by Article 19, » being the radius of any arbitrary circle
having its center at @, and M being the upper bound of the
modulus of f(z) on the circumference of this circle,

mod f"(a) fl 2 . nM

But M is always finite, and » may be made indefinitely great.

Hence f*(a) = o for all values of z, and
f&) = Aa).

Theorem I'V.—If a function f{z), holomorphic in a region S,
is equal to zero at the point & situated within S, the function
can be expressed in the form

A7) = (g — a)"¢(2),
where m is a positive integer, and ¢(z) is holomorphic in Sand
different from zero at a. ‘

For in the neighborhood of the point @, by Taylor’s Theorem,

Se)=Aa)+ (¢ —a)f (@ +...
Let £ (a) be the first of the successive derivatives at @ which
is not equal to zero. Then
_ e f(m) (Ll) f(m + x)(a) _
1) =te—a I.2...m+1.2...(m—}—1)(3 a)—}-...:|,
which is the reduired form. The point @ is a zero of f(2), and
m is its order.

Theorem V.—If the point @ is a singular point of a given
function f(2), but is interior to a region S, in which the recip-
rocal of £(#) is holomorphic, the function can be expressed in

the form

where m is a positive integer, and x(z) is holomorphic in the
neighborhood of . \
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For by the preceding theorem
—— = (2 — a)"P(z

where ¢(g) is holomorphlc and not equal to zero at z =a.
Hence

LS ()
IO =G 5 = o

Further, since in a region of finite extent including the
point a

X(z)—A —{-A(z—a)—{—.
f&) = G—ar Tt ’"'—fz-l-%b(z),

@ being an ordmary point for #(z).

The point « is a pole of f(2) and 7z is its order.

Theorem VI.—A function, not constant in value, and hav-
ing no finite singular points except poles, must take values
arbitrarily near to every assignable value.

For suppose that f(g) is such a function, but that it takes
no value for which the modulus of /() — 4 isless than a given
positive quantity e. Then the function

I
Sz —4
will be holomorphic in every part of the z-plane, which, by
Theorem 111, is impossible unless f/(2) is a constant.

Theorem VII.—A function f{(z), having no singular point
except a pole at infinity, is a rational entire function of z.

For the only singular point of f<§-> is a pole at the origin.

Hence

Q=2 t Lt e,

>4

where ¢(z) is holomorphic over the entire plane, including the
point at infinity. ®(2) is consequently equal to a constant 4.
The given function therefore can be written in the form

flA=4d,8"s.+-Az1-4,
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Theorem VIIL.—A function f(z) whose only singular points
are poles is a rational function of z.

The poles must be at determinate distances from one an-
other ; otherwise the reciprocal of f(2) would be equal to zero
for points not isolated from one another. The number of poles
cannot increase indefinitely as |z| is increased; for then the

I
reciprocal of f (2) would have an infinite number of zeros indefi-

nitely near to the origin. The total number of poles is there-
fore finite. Let g, 4, ... denote them. In the neighborhood
of @ the function can-be expressed in the form

(z G—ap T

a being an ordinary point for ¢(z). In the neighborhood of &,
@(2) can be expressed in the form

(z_b)n—l- A+ 2 )

@ and & being both ordinary points for ¢(z). Proceeding in
this way the given function will be expressed as the sum of a
finite number of rational fractions and a term which can have
no singular point except a pole at infinity. This term is a
rational entire function.

Theorem IX.—If the function f{z) has no zeros and no
singular points for finite values of z, it can be expressed in
the form f(z) = 4@, where g(z) is holomorphic in every finite
region of the z-plane.

F orj:(()) can have no singular points except at infinity, since

in every finite region of the z-plane Sz) and £'(2) are holomor-
phic and f(#) is different from zero. Hence, choosing an arbi-
trary lower limit 2, the integral

S _
Zo -/(‘Z) - k(z)

is holomorphic in every finite region. The function fz) con-
sequently must take the form
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F(z) = f(5,)"D) = e,
where &) = /(z) + log f(z,).

Theorem X.—If two functions f{z) and ¢(z) have no singu-
lar points in the finite portion of the z-plane except poles, and
if these poles are identical in position and in order for the two
functions, and their zeros are also identical in position and
order, there must exist a relation of the form

A2) = ¢(2)e?,
where g(2) is holomorphic in every finite region of the z-plane,

For the ratio of the two functions has no zeros and no
singular points in the finite portion of the z-plane.

ART. 27. RESIDUES.

If a uniform function has an isolated singular point g, it
is expressible by Laurent’s series in the region comprised be-
tween any two concentric circles described about  with radii
less than the distance from & to the nearest singular point.
Hence in the neighborhood of &

fey=4,+A4AE—a)+A4A,z—a)+...
+Bg—a)y'+Blg—a)y"4...

The coefficient of (¢ —a)' in this expansion is called the
“residue’” of f{z) at the point a.

If any closed curve C including the point @ be drawn in the
region of convergence of this series, and f(z) be integrated
along Cin a positive direction, the result will be

ff(z)a’z = 2niB..

The following may be regarded as an extension of Cauchy’s
theorem:

Theorem I.—If in a region S the only singular points of the
one-valued function f{z) are the interior points @, @/, . . . , the
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integral f J(2)dz taken around its boundary C in a positive

direction is equal to

S Aeyds = 2mi(B4 B .. ),

where B, B’, . . . are the residues of f(2) at the singular points.
For the integral taken along C is equal to the sum of the
integrals whose paths are mutually exterior small circles de-
scribed about the points @, @/, . . .

The following theorems are immediate consequences of the
preceding :

Theorem II.—If in a region having a given boundary C the
only singular points of the one-valued function f{(2) are poles
interior to C, an equation

F1) g
L "de = 2im (M —
c/12) (=M
exists, M denoting the number of zeros and /V the number of
poles within C, each such point being taken a number of times
equal to its order.

For in the neighborhood of the point

S&) = (2 — a)"@(2)
where ¢(z) is finite and different from zero at g, and » is a

positive integer if « is a zero, a negative integer if @ is a pole.
Hence
f@_ m P
flz) z2—a &(2)
The integrand, therefore, has a pole at every zero and pole of
f(2), and its residue is the order, taken positively for a zero,

and negatively for a pole.

Theorem' I11.—Every algebraic equation of degree # has #

roots.
For let f(z) represent the first member of the equation

ot ag . Fa =0 Since f{(2) has no poles in the
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finite part of the z-plane, the number of roots contained within
any closed curve C will be given by the integral

L (/)
ZTEZ'\Kf(Z) az.
But taking for C a circle described about the origin as a

center with a very great radius, this integral is

1 n2""t 4 (n — a4 .. go— 1 nas

: =-— | —(14¢€
2mi J . a2 . 2mz /. z( +e)

where € has zero for a limit when |2|= . Hence the limit
of the preceding integral, as |#| is increased, is 7.

Prob. 17. Show that if 2 = c is an ordinary point of /(2), that
is, if /(z) is expressible for very great value of z by a series contain-
ing only negative powers of z, the integral of /(z) around an infinitely

great circle is equal to 277 into the coefficient of —. This coeffi-
cient with its sign changed is called the residue for z = w0 .

Prob. 18. Show that the sum of all the residues of f(z), of the
preceding problem, including-the residue at infinity, is equal to
zero.

Prob. 19. If i—((z% is a rational function of which the numerator

is of degree lower by 2 than the denominator, and if the zeros
a,,@,,...,a, of the denominator are of the first order, show that
x Pla) _

A

ART. 28. INTEGRAL OF A UNIFORM FUNCTION.

It was shown in Article 18 that, if a function /{z) is holo-
morphic in a simply connected region S, its integral taken
from a fixed lower limit contained in S to a variable upper
limit & is a uniform function of & within S. If F(2) is a function
which takes a determinate value /#(g,) at z = 2, and is uniform
while # remains within S, having at every point f(2) for its
derivative, the integral of f{#) from 2z, to z is equal to
F(z) — F(z,). If F,(2) is another function fulfilling these con-
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ditions, so that the integral of f(z) can be written also in the
form F,(s) — F,(z,), the functions #(z) and F,(2) differ only by
a constant term ; for
F](Z) — F(Z) + I:E(zn) - F(Zo)]'
Suppose now that /() is still uniform in S, but that it

has isolated critical points «,, a,, ... interior to S. Any two
paths from s, to 2, which inclose between them a region con-
taining none of the points ¢, ,, ..., will give integrals identi-

cal in value. Let the two paths Z,, Z include between them
a single critical point a.; and consider the integrals along
these two paths. The integral along Z, will be equal to the
integral along the composite path Z,27'Z, where the exponent
— I indicates that the corresponding path is reversed; for the
integral along LZ-'L is equal to zero. But L, Z-*is a closed
curve, or “loop,” including the critical point ., and, assuming
that it is described in a positive direction about a,, the inte-
gral along it is equal to 2775,, where B, is the residue of f{z)
at @.. Hence

L/L: A2)dz = 2miB,+ [ Az)dz.

If now the two paths Z,, L from 2, to # include between
them several critical points a, @y, 4,, . .., draw intermediate
paths Z,, . .., L, so that the region between any two consec-
utive paths contains only one critical point. The integral
along Z, will be equal to the integral along the composite path
LL™L,...L,"'L,L™"L, since the integrals corresponding to
L~"L,...,L,"'L,, L7'L are all equal to zero. But Z,Z,",
Lr, ..., L,L™" are all closed paths or loops, each including
a single critical point, so that, assuming that each is described
in a positive direction and that By, By, B,, . . . denote the resi-
dues of f(z) at the critical points,

le Ae)ds = 2miBe+ Bat Burt- . )+ . Aepde.

It has been assumed in the preceding that neither of the
paths Z,, L intersects itself. In the case where a path, for
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example L, intersects itself in several points ¢, ¢, ..., it is
possible to consider Z, as made up of a path Z,” not intersect~
ing itself, together with a series of loops attached to Z, at
the pointse¢, ¢, ... Each of these loops encloses a single
critical point @, and, if described in a positive direction, adds
to the integral a term 2778, Each such loop described in a
negative direction adds a term of the form — 27z75,. It is evi-
dent that the form of each loop and the point at which it is
attached to Z,’ may be altered arbitrarily without altering the
value of the integral, provided no critical point be introduced
into or removed from the loop. In fact all the loops may be
regarded as attached to L/ at z,.

It can be proved by similar reasoning that the most gen-
eral path that can be drawn from £, to ¢ will be equivalent, so
far as the value of the integral is concerned, to any given path
L preceded by a series of loops, each of which includes a sin-
gle critical point and is described in either a positive or nega-
tive direction. The value of the integral is therefore of the
form

), Ae)ds + 2miim, B, + m,B,+. . ),

where »2,, m,, . . . are any integers positive or negative.

* 4,
As an example consider the integral l: iz' The only

critical point is 2 = . Any path whatsoever from z, to z is
equivalent to a determinate path, for example, a rectilinear
path, preceded by a loop containing @ and described a certain
number of times in a positive or negative direction. If z de-
note the integral for a selected path, the general value of the
integral will be w - 2z77. If now a straight line be drawn
joining #, to , and if along its prolongation from & to infinity
the z-plane be cut or divided, the integral in the z-plane thus
divided is one-valued. But, with the variation of 2z thus re-
stricted, any branch of the function log (z — ) is one-valued.
Select that branch, for example, which reduces to zero when
g=a-+ 1. It takes a determinate value for 2 = g,, and its
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% 1% 3 I . .
derivative for every value of is —» Hence, denoting it

by Log (2 — a),

z d —_—
=, = Log (¢ — @) — Log (2, — a) = Log "

Wd—a g, — a

For a path not restricted in any way, the value of the inte-
gral is

z dz' z2—a z2—a

= L ) fa— 1 .

P—a ogzo_a—l—z;zm ngo—a
Prob. zo. If g% is a rational function of z of which the numer-

ator is of degree lower by 2 than the denominator, and if the zeros
a,, @,, . « ., @, of the denominator be of the first order, show that

“ ¢)(Z)a’z - % ¢(ll,,) 1 Z — @y

20 (2) T (a) B, — a4
where %¢(av)/¢’(ay) =o. (See Prob. 19, Art. 27.)

ART. 29. WEIERSTRASS'S THEOREM.
Any rational entire function of z, having ‘its zeros at the
points «,, @,, . . .. @,,, can be put in the form
Az —a) (e —a)=... (2 — a,)n,
where A is a constant and #,, #,, ..., #, are positive integers.
More generally, any function which has no singular point in the

finite portion of the z-plane and has the points a,, . .., , as
its zeros, is of the form

ENg—a)r ... (2 — a,)n,
where g(2) is holomorphic in every finite region.

The extension of this result to the case where a function
without finite singular points has an infinite number of zeros is
due to Weierstrass. It is effected by means of the following
theorem :

Theorem.—Given an infinite number of isolated points «,,
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@5+« +y Gy, . . ., a function can be constructed holomorphic ex-

cept at infinity and equal to zero at each of the given points
only.

For the given points can be taken so that

|“;]2laa]2---|‘lu!2---’-

l@.| increasing indefinitely with #. Consider the infinite product

@(z) = H(I ——z*>e‘°n(’),
1 a,
where P,(z) denotes the rational entire function

Zn
na,”

g
.P,,{z):;—]—.. .+
Any factor may be written in the form

z
(I - ’z_)tp"(‘) e (1_‘Tn>+P"(Z).

”

But since
( z) * dz 2 & f‘ 2"ds
log(r — %)= — N NN Y s
a, ° q,—z a, na, o a,(a,—2)

the path of integration being arbitrary except that it avoids
the points 2,, 4,, . . ., the product may be expressed as

o . o anz

IIe¥#2, in,which ¢,(2) = —-/ ————,

1 o aMa, — 2)

In any finite region of the z-plane it will be possible to
assume that | z| T p < |a,], if pand # be suitably chosen, since
|2,| increases indefinitely with ».  Divide the product into
two parts

m=—1 2
I (1 — —)eP"(z)

I n

and

TTe¥®,

m
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Since when # >m, |a,|>p, the integrand of the exponent

2 2"z
#O== [, e

is holomorphic in the circle |z| 2p. Accordingly, ¢,(2) is in the
given region a holomorphic function of its upper limit.
But we may write

. 3 gu)
Hes”n(z) —¢

m

Consider now the series 3 ¢, (). For the modulus of each term
we have " )

- o

I, ER |a,./(12,.l—p)

where / denotes the length of the path of integration. But, if the
path of integration be taken as rectilinear, we will have /Zp.
Hence each term of the series is less in absolute value than the
corresponding term of a convergent geometrical progression in-
dependent of z. The series is, accordingly, uniformly conver-
gent and, by Theorem V of Article 23, represents a function holo-
morphic in the given region. The exponential

w
2 ¢n(2)

L

also must be holomorphic. The other part of the product

m—1 o

IT I—i eP,.(Z)

1 a,

containing only a finite number of factors is everywhere holo-
morphic, vanishing at all of the points a,, a,,..., which are
situated within the given finite region. But this region may be

extended arbitrarily. The product therefore fulfils the required

conditions.
In the preceding demonstration it was tacitly assumed that
none of the given points a;, @y, ... Wwas situated at the origin.

To introduce a zero at the origin it is necessary merely to mul-
tiply the result by a power of z.
The most general function without finite singular points
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having its only zeros at the given points @,, @, + « « @x . . ., Can
be expressed in the form

Az) = sofr(r — ai>ef’ﬂ<z>,
1 n

A

where g(2) is holomorphic except at infinity; for the ratio of
any two functions satisfying the required conditions is neither
infinite nor zero at any finite point. '

By means of Weierstrass’s theorem it is possible to express
any function, /{2), whose only finite singular points are poles as
the ratio of two functions holomorphic except at infinity. For,
construct a function ¢(g) having the poles of F{(g) as its zeros,
The product #(z). ¢(2) = ¢(2) will have no finite singular point.
The given function can, therefore, be written

which is the required form.

In applying Weierstrass’s theorem to particular examples,
it will rarely be found necessary to include in the polynomiald
P,(2) so many terms as were employed in the demonstration
given above. It is quite sufficient, of course, to choose these
polynomials in any way which will make the product converge
for finite values of 2 to a holomorphic function. Factors of the

form 2
(I . _)ePn(z),
a”
where P,(z) is chosen in such a manner, are called “primary

factors.”

As an application of Weierstrass’s Theorem take the reso-
lution of sin z into primary-factors. The zeros of sin z are o,
+7x, +2m, ..., &nx, .... Consider factors of the form

2
z nw
(= 2)e
nmw

b4
nr

% 2dz
1/)“(2’) = —\/0‘ ﬂﬂ(ﬂﬂ __'_Z—)'

so that P,(¢) contains only one term —, and
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The series 2¢,(3) will converge uniformly in any given finite
m

region. For if p and m be suitably chosen we will have

|2| < p<mi.

Hence

—_

mr

W EIZ 72 <"’_ oy

where / is the length of the path of integration from the origin
to the point z. If this path be taken as rectilinear, we will have
12 pand ¢ () will be less in absolute value than the correspond-
ing term of the convergent numerical series

A similar result holds for the series ~ ¢,(2). These series ac-

cordingly represent holomorphic functions in any region for
which |z| Zp. Hence the expression sought is

+ 0 2 z
sin z=ze) [T <1 ——> e,

- nw

the value #n=o being excluded from the product. It will be
shown in the next article that 5 =1,

Prob. 21. If w; and w, be two quantities not having a real ratio,
I

the doubly infinite series of which the general term is ————
(maws+naw,)?
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is absolutely convergent if p>2. Hence show that the product

z , 22

-—+ —
2\ w 20?2
a(z)=zﬂ(1—z>e ;

where w=mw;+nw;y, defines a holomorphic function in any finite
region of the g-plane. This function is Weierstrass’s sigma func-
tion, and is the basis of his system of elliptic functions.

Prob, 22, Show that the product

n—1I

z(I-I-z)ﬁ(I-i--z-)cz log =,
2 n

defines a function holomorphic in every finite region of the z-plane.
This function is the reciprocal of the gamma function I'(z) or, in the
notation employed by Gauss, II(z—1). It may also be defined as
the limit when #= o of the product

2(z+1)(zt2) ... (z4+n) -5
I1:2:3...7% vt

Prob. 23. Assuming the relation that

I'(1+42)=2I"(2),

show that
I T sin 7z

ART. 30. MITTAG-LEFFLER’S THEOREM,

Any uniform function f(z) with isolated singular points
a1, as, ... can be represented in the neighborhood of one of
these points by Laurent’s series; viz.,

j@) =4o+A1(z—a,) +42(5—a,)*+. ..

+B1(Z_an) —1+32(z_an)—2+0 oo

Hence &) =¢(z)+ Gn<z —Ia,)’
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where ¢(z) is holomorphic in a region containing the point a,,

and G,,( !

p— > is holomorphic over the whole plane excluding

I
z—a,
number of terms; otherwise, it is an infinite series. If the num-

the point a,. If a, is a pole of f(z), Gn< >consists of a finite

ber of singular points is finite, and the function G,,(_ Ia ) is
A Gy

formed at each such point, we can obtain by subtracting the
sum of these functions from j(3) a remainder which has no
singular point in the finite part of the plane. This remainder
can therefore be expressed as a series of ascending powers G(2)
converging for every finite value of z. The function f(z) can
accordingly be written in the following form:

&= +36,(2),

z2—a,

which is analogous to the expression of a rational function by
means of partial fractions.

The extension of this result to the case where the number
of singular points is infinite is due to Mittag-Leffler. ILet ay,
as, ..., @, ... be the singular points of the one-valued func-
tion f(z), and suppose that

(31 b2 b 1 -

la,| increasing without limit when # is increased indefinitely.
I

Let, further, Gn< > be the series of negative powers of

z—a,
z—a, contained in the expansion of f(z) according to Laurent’s

series in the neighborhood of a,.
The function Gn<z—_17>, having no singular pomt except at

a,, may be developed by Maclaurin’s series in the form
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I
G”(z—a,,) =AM+ 41 Mg+ 4+ 4,M2 4., .,

and the series will converge uniformly within a circle described
about the origin as a center with any determinate radius p, < |a,|.
Hence, for any point within the circle |z]= p,,

1
Ga <z - a,) =FolEE,

F,(2) representing the first p terms of the development of
G&#) by Maclaurin’s theorem, and R the remainder, which

by a suitable choice of $ may be made less in absolute value
than any given quantity.

Choose the positive quantities e, €2, ... , ¢, ... so that
the series e;+ea+...+¢,+... is convergent. Choose also in
connection with each of the points a4, ag, ..., @, ..., asuitable

integer p such that

modl:G1< - )—Fl(z):]<sl, if|z]201<|an;

22—

mod[G2< ! )—Fz(z)] < ey, if [z|Zp2< ag];

Z2—Aas,

and, in general,

mod[Gn< : >—Fn(2)] <¢, if [2|20,<]ay).

2—a,

Consider now the series

3[6.(25)-ra]

{5

in any finite region of the plane, the points @i, @z, «+ . Gy o«
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being excluded. Since |¢,| increases indefinitely with #, it is
possible, in any finite’ region of the z-plane, to assume that
|z|<p,,<|a,|. Separate from the series its first m—1 terms.
These terms will have a finite sum. The remaining terms of the
series taken in order will be less in absolute value than ¢,
€, 41+ - - Tespectively, |zl being less than the least of the quanti-
ties o,y Opt1r - - - Accordingly, the series

= [6.(;2) -0

-is absolutely convergent for every value of z except a,, a5 ...,
a,... Itis evident, further, that in any given finite region,
from which the points a,, @,,..., @,,... are removed by means
of small circles described about them as centers, the series
converges uniformly. In such a region any term of the series
is holomorphic; and, therefore, by Theorem V of Article 23, the

series defines a holomorphic function.

The point @, is an ordinary point for the difference

ro-[6.(:2)-ro-[ro-6.(2) ] +ro,

since in its neighborhood this difference may be developed as a
convergent series containing only positive powers of z—a,. In
the same way each of the points a,, @,,...,a,,... is an ordinary
point for the function

-3 [6.(Z)-n.0)

This function, therefore, can have no singular point except at
infinity, and must be expressible as a series G(z) containing
only positive powers of z and converging uniformly in any
finite region of the z-plane. Hence the function f{z) may be
put in the form

n
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Ae) =

in which the character of each singular point is exhibited.

As an application of Mittag-Leffler’s theorem consider cot 2.
Its singular points are 2 =0, & #, & 27, ... . In the neigh-

1. 5 3 .
borhood of 2 =0, cot & — S is holomorphic; and in the neigh-
borhood of 2 = nz, » being any positive or negative integer,

I . . .
cotz— ——is holomorphic. The series

+ o 1

2 g— nr’

m

in which = is an arbitrary positive integer, is not convergent
for finite values of 5, even when |z| <mnx. The series.

+ I + 3
2’”[7—77; ' Emr(z—mr) = ( z)

m wta

I___

nm

is, however, absolutely convergent at every point for which
|#] < mmz. For the modulus of any term is equal to

| ] 2]

A z | < Ed
T — — n’ﬂ’(l ——)
wa ll 7’!71} nmw

and, therefore, less than the corresponding term in the series
Ed i
- I
2 lZi E -
1 ——) = n
(= or)
A similar result holds for the series

E[z—{—nn nrw

Tt is easy to see now that the reasoning employed in the
demonstration of Mittag-Leffler’s theorem may be apphed to

show that the series
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1 Tz I I
z + % 5 — nmw + nrl’
where the summation does not include # = 0, defines a func-

tion holomorphic in any finite region of the z-plane, the points
o, + =, + 27, ... being excluded. The difference

1 = I 1
cotz——g—% z——mt+nn'
can have no singular point except at infinity. It must, there-

fore, be expressible as a series G(zg) of positive powers of 2,
having an infinite circle of convergence. Hence

cotz_G(z)—l— —}—z

The next step is to determine G(2). It is to be observed
that, if G(z) is a constant, its value must be zero, since
cot (— 2) = — cot z. If G(2) is not a constant, differentiation
of the preceding expression for cot z gives

/
B Skl 2 = (z — nmy mz)"
It follows, by changing 2 into z 4 =, that
G'(z+ n) = G'(2).
Hence G'() is periodic, having a period equal to = ; and as the
point & traces a line parallel to the axis of reals, G'(2) passes
again and again through the same range of values. But G'(2),
being the derivative of G(2), is holomorphic for every finite
value of z. It can, therefore, become infinite, if at all, only

when the imaginary part of zis infinite. If z be written in
the form x4 ¢y, the value of G’(¢) may be expressed as

N I i I 27¢/(cos x -+ 7 sin x)\’
Cle= (x +2) +§ (r+iy—n=) _((cos 2z sin zx)—ezf)'

When y = 4 « the first and last terms of the second
member vanish. In regard to the series it can be proved that,
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for any given region is which y is finite and different from
zero, an integer # can be found such that the sum of the moduli
of those terms for which |7|> # is less in absolute value than
any previously assigned quantity e. As |y| is increased the
modulus of each of these terms is diminished. The modulus
of their sum, therefore, cannot exceed e when y =4. But
when y=4-c0 the sum of any finite number of terms of the series
is zero. Hence the limit of the whole series is zero. G'(2),
therefore, never becomes infinite. Hence, by Theorem III,
Article 26, it is constant, and is equal to zero. It follows that
G(2) is equal to zero.

The expression for cot z is accordingly

T rishad I + I
€0 3—54‘_2” g —nw ' nw |
The logarithmic derivative of the product expression for
sin 2 given in the preceding article as an example of Weier-
strass’s theorem, is

1 &2
cot z:g’(z)—{——z— -+ _2

I +I_

g — N7 nmw

Hence g(2) in that expression is a constant. Making 2z = o,
its value is seen to be unity.

Prob. 24. From the expression for cot z deduce the equation

4
I
2
cosec’ z = —
2 (z — nm)®
— o
where the summation does not exclude » = o,

Prob. 25. Show that the doubly infinite series

o) =5+ = | rZai o )

where @= m®, + n®,, defines a function whose only finite singular
points are z = @. This function is Weierstrass’s g-function. (Com-
pare Problem 21.)

Prob. 26. Prove that
dﬂ
p(z) =— =3 log o (2).
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Prob. 27. Prove that ¢’(z) = — ZE(zTIET" where the summa-

tion does not exclude @ = o.

ART. 31, SINGULAR LINES AND REGIONS.

The functions whose properties have been considered in the
preceding articles have been assumed to have only isolated sin-
gular points. That an infinite number of singular points may
be grouped together in the neighborhood of a single finite
point is evident, however, from the consideration of such ex-
amples as

I 1
w = cot ri ) = gEIE o,

In the former an infinite number of poles are grouped in the
neighborhood of the origin, In the latter an infinite num-
ber of essential singularities are situated in the vicinity of the
point z = a.

It is easy to illustrate by an example the occurrence of lines
and regions of discontinuity. Take the series*

ooy = 2+ T

g —1 g2 —1 & —'1

The sum of its first 7 terms is

i
which converges to unity if |#|< 1, and to zero if |z[> 1.
Hence the circle |[¢|=1 is a line of discontinuity for this

series.

Consider now any two regions S, and S,, the former situated
within, the latter without, the unit circle. Let ¢(2) and #(2)
be two arbitrary functions both completely defined in these
regions. The expression

B()(2) + P21 — 6(z)]

* This series is due to J. Tannery. See Weierstrass, Abhandlungen aus der
Functionenlehre (1886), p. 102.
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will be equal to ¢(z) in S, and #(3) in S,. In regions com-
pletely separated from one another by a singular line, the same
literal expression may thus represent entirely independent
functions.

For a single continuous region, however, in the interior of
which exist only isolated critical points, the character of the
function in one part determines its character in every other
part. .Let .S be such a region, and assume that its boundary is a
singular line. Inthe neighborhood of any interior point @, not
a critical point,'the given function is expressible as a power
series, viz.:

16) = f(@) (s — @) @)+ . A LD gy

This series will converge uniformiy over a circle described
about « as a center with any determinate radius less than the
distance from « to the nearest singular point. It serves for the
calculation of f(g) and all its successive derivatives at any point
6 interior to this circle. From the preceding power series, ac-
cordingly, can be obtained another

A& = A+ — O+ D gy

representing the f{z) within a circle described about & as a
center. In general, the point & can be so chosen that a portion
of this new circle will lie without the circle of convergence of
the former power series. At any new point ¢ within the circle
whose center is 4, the value of the function and all its succes-
sive derivatives can be calculated; and so, as before, a power
series can be obtained convergent in a circle described about ¢
as a center and, in general, including points mot contained in
either of the preceding circles. By continuing in this manner
it will be possible, starting from a given point 2 with the ex-
pression of f{) in ascending powers, to obtain an expression of
the same character at any other point £ which can be connected
with @ by a continuous line everywhere at a finite distance
from the nearest singular point. It follows that the character of
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the function everywhere within S can be determined completety
from its expression in ascending power series in the neighbor-
hood of a single interior point.

The process here described, whereby from a single ascending
power series representing a function in the neighborhood of a
given point of the z-plane one can derive a succession of similar
series, the totality of which determines the function throughout a
connected region limited only by the singularities of the function,
is known as the process of ¢ analytical continuation.” Each of
the series obtained is called an ‘ element” of the function. Ac-
cording to the theory of functions of a complex variable as pre-
sented by Weierstrass, the infinite number of elements connected
together by the process of analytical continuation are said to
constitute the definition of an “ analytical function.”

It will be impossible by the process just explained to derive
any information in regard to a function at points exterior to the
connected region S covered by the circles of convergence of its
elements. Moreover, as has been shown by an example, in
expression which gives a complete definition of f(z) within S
may carry with it the definition of an entirely independent func-
tion outside of S.

As an example of a function having a singular region con-
sider the function defined by the series

1425428 422"+4...,
which represents a function without singular points in the
interior of the circle |2] = 1. For points on or without this
circle the series is divergent; and, further, it is impossible to
obtain from it an expression converging when |z] = 1. The
function thus defined, consequently, exists only in the region
interior to the unit circle. By changing # into 1/7 a series

2, 2. 2
I+—+=+=+...
+I24242+
is obtained, representing a function which has no existence in

the interior of the unity circle. Functions in connection with
which such regions arise are called “lacunary functions.” ¥

* Poincaré, American Journal of Mathematics, Vol. XIV; Harkness and
Morley, Theory of Functions (1893), p. 119
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ARrT. 32. FuNCTIONS HAVING 7 VALUES.

Let the function w = f{() take at the point 2, of a given re-
gion S avalue @®. Suppose that along any continuous path,
beginning at z,, and subject only to the conditions that it shall
remain in the interior of S and shall not pass through certain
isolated points «,, «,, ..., wis continuous and has a contin-
uous derivative. If it is impossible, when z traces such a-path,
to return to the point £, so as to obtain there a value of w dif-
ferent from 2@, w is uniform in the region S. On the other
hand, certain paths may lead back to z, with new values of .

Suppose that at each point of S, except ,, a,, ..., w has
7 different values, and that starting from such a point 2, and
tracing any continuous curve not passing through 2, «,, ...,
the several values of w give rise to % branches w,, w,, ..., w,,
each of which is characterized by a continuous derivative. In
the neighborhood of @, any one of the points 4, «,, ...
these branches are said to be distinct or not, according as small
closed curves described about this point lead from each value of
2w back to the same value again, or cause some of the branches
to interchange values. In the latter case the point is a branch
point.

About any branch point @, as a center describe a small cir-
cle ; and suppose that, starting from any point of it with the
value 1w, corresponding to a certain branch, the values
wg, w, ...are obtained by successive revolutions about «,,
the original value being reproduced after p revolutions. In-
troduce now a new independent variable &’ such that

I
& = (g — ay).

It can be shown that when 2z makes one revolution about
a,, 2 makes only one pth part of a revolution about the ori-
gin of the #-plane, and that to a complete revolution of v
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about the origin of the 2’-plane correspond p revolutions of &
about @;. Considering then the branch =, as a function of #/,
the origin cannot be a branch point, for whenever 2’ describes
a small circle about it, the value w, is reproduced. The
branch w, must accordingly be expressible by Laurent’s
series in the form Yo
w, = = 4,5,
or, substituting for 2’ its value,

1 2
w, = A, + Ay(e — @)’ + Az — 2 ) + ...
4 A_.(2— a,,)‘3+ A_, (2 —.ak)—é—l— e

This expression makes plain the relation between the different
branches of a function in the neighborhood of a branch point.
When the development of a branch in the neighborhood of one
of its branch points gives rise to only a finite number of terms
containing negative powers, the branch point is called a ** polar
branch point.”
Consider the functions

P=w+w+...4+w,,

P =ww +ww, + ...+ w,_ w,,

Pyp= s, « + « Wi
Each of these functions is unchanged in value when several or all
of the quantities w,, w,, . .., w, are interchanged, and is con-
sequently a one-valued function of z within .S. Hence w must
satisfy an equation of the 7th degree,

w* + Pw"™ + Pw*? ., .4+ P, =0,

the coefficients of which are one-valued functions of £ having
only isolated critical points within S, When the entire g-plane
can be taken as the region S, and those branch points at which
the branches do not all remain finite are polar branch points,
the only other critical points being poles for one or more
branches, the functions P, P, ..., P,are rational functions
of 2. In this case w is an algebraic function of z.
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ArT. 33. ALGEBRAIC FUNCTIONS.

Any algebraic function satisfies an equation of the form
F(z, w)=o0, where F(3, w) is a rational entire function of z and w.
1t this equation is of the nth degree in w, to any value of z will
correspond, in general, » different values of w; but for special
values of z, two or more values of w may be equal.

The principle of continuity applied to the values of an alge-
braic function would lead us to expect that, when F(a, w)=o0
has ¢ roots equal to b, it should be possible, whatever the value
of the positive number e, to determine a positive quantity ¢ such,
that, whenever [z—a[< 0, the equation F(z, w)=o0 would give ¢
and only ¢ values of w satisfying the condition |w—2b|<e.

It is necessary in the demonstration of this fundamental prop-
erty of algebraic functions to consider only the case where ¢ and
b are both zero; for every other case can be reduced to this one
by means of the substitution z=a+2, w=0+w'. Write the
function F(z, w) in the form

F(z, w)=P,+Pw+...+Puw'+...+P v

in which, when z=o0, Pj=P,=...=P, ,=o, but P, takes a
value different from zero. This expression can be put in the

form
F(z, w)=Pwi(x+U+V),

where
_ Loy P,
U= qu—]—...-l-qu L
1 Py }_Pq—t
Veript o p

Describe about the points z=o0 and w=o as centers, in the
z-plane and w-plane respectively, circles C and I', of radii » and
p. Tt is possible to choose 7 and p sufficiently small to satisfy
the following conditions: (1) whenever z and w are interior to C

and I”
’ U] <%
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(2) whenever w is on the circumference I', and 2 is interior to C,
V] <4

It is evidently possible to satisfy the first condition. The ine-
quality

Po
P,

. ] Pq

Jvlz;—q

shows, further, since P, ..., P,—, all approach zero with 7,
that for any value of p,  can be chosen sufficiently small to sat-
isfy the second condition.

But for any assignable position of z within C, the number of
roots of the equation F(z, w)=o contained within I' is, by
Theorem II, Article 27, equal to

6]
I /a—[Pq‘wq(I +U+7V)]
; L dw
27 ’
Par(i+U+V)

T

or the total variation of any branch of
log [Pw(1+ U+ V)],

when w describes the circumference I, divided by 27s. But
log [Pawi(1+ U+ V)]=log P,+q log w+log (1+ U+ 7).

The first term is constant; the total variation of the second term
is 2miq; and, since U+ V|<1 when w is on the circumference I,
the argument of 1+ U+ V must return to its original value, and
the total variation of log (14+U+7V) is zero. The number of
values of w within I" is, therefore, equal to ¢. ' »
Those values of z for which two or more values of w are equal
must satisfy the equation obtained by eliminating w between

6]
F(z,w)=o, a—wF(z, w)=o0.
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For every other finite value of z, the equation

OF(z, w)
dw 0z
dz oF(z, w)

Qw

gives at once a single determinate value for the derivative of w.

It follows from the preceding Article that any branch wa of
w must be expressible in the neighborhood of any singular point
ay by a series of the form *

Wa=A,+A,(z—ar)? +A,(z—ap? +. ..

+B1(z—ak)_¥+Bz(z—ak)_7+. ..

uniformly convergent in a small circular band surrounding the
point ax. If a is not a branch point, p=1.

Art. 34. INTEGRALS OF ALGEBRAIC FUNCTIONS.

In determining the value of the integral of an algebraic func-
tion w=/(z) along any path joining z, to z, it is possible by virtue
of Cauchy’s Theorem to alter the path of integration arbitrarily,
provided that no singular point is contained in the region enclosed
between its original and final positions. By employing the same
reasoning as in Article 28, any path joining z, to z may be reduced
to a determinate path, preceded by a system of loops, of which
each encloses a single singular point. The value of the integral
corresponding to a loop surrounding a branch point requires
special consideration. If z describes such a loop, w returns to
z, with an altered value. When, however, the initial point is
fixed, the value of the integral is not altered by varying arbi-

* For examples see Brror and BouQuET, Fonctions elliptiques (1875), pp. 40,
g7; CHRYSTAL, Algebra, vol. 1t (1889), pp. 356, 370
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trarily the form of the loop, provided that no singular point is
introduced into or removed from the loop.

To show that a given loop, containing a branch point and
attached to the path of integration at a point ¢,, different from
z,, may be transformed into one whose initial point is z, it is
necessary to observe that the variable passes first from z, to ¢,
and then around the loop to ¢, again. If now, before continuing
along the remaining part of the path, z be required to retrace its
way to z, and then return to ¢,, the value of the integral will not
be altered thereby; for the integral resulting from the path ¢z,
is equal to zero. The loop, however, has been made to begin and
end at z,; and it is followed by a path which begins at z.

For any algebraic function, therefore, just as for a function
without branch points, the most general path of integration can
be reduced to a determinate path, having the same limits, pre-
ceded by a system of loops of which each encloses a single sin-
gular point.

The integral around such a loop enclosing aj, a singular
point but not a branch point for the branch of f(z) considered, is
equal to +2miBy, where By, is the residue of this branch of /(z)
at ar, and the plus or minus sign is taken according as the loop
is described in a positive or negative direction.

Consider now a loop enclosing a branch point @,. It can be
reduced to a special form, consisting of a small circle described
about a,, as a center and a line,
straight or curved, joining this
circle to z,. The term Q,, to be
added to the integral on account
of this loop will be obtained by
integrating w=/(z) from z, along
the line jomning z, to the circle, around the circle, and back along
the same line again to 2. The parts resulting from tracing the
line joining z, to the circle in oppusite directions do not cancel;
since on account of the nature of the branch point w does not
take its former system of values when 2 retraces its path to z,

If now the integral of f(z) along any determinate path from
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%, to z be denoted by I(z), the general value of the integral, J(3),
resulting from an arbitrary path between the same limits, is

J@)=I1z)+2Q,,

where Q,, is the value of the integral along the mth loop in the
reduced form of the path of J(z).

1i the upper limit z of the integral J(2) is situated in the neigh-
borhood of a critical point, w is expressible in a region containing
z by the uniformly convergent series

w=A0+A1(z—ak); +A,z—an)? +...
+B,(z—ar) ?+Ry(z—az) P+...

The integral, therefore, except for a constant term, which includes
2Q,, is equal to

?__I ) btz
J(@)=4,(z— ak)—l--——Al(z—a;;) +§+—A (5—ar) £ F...
+?_f;31(z—dk)7’_+jjf—232(2—ak)77+. ot pBy(a—ar)?

+B,log (z—ax) —pBM.I(z—ak)"E——gB?ﬂ(z—ak)_F—, ..

As an example consider the integral

J(2)= fVI /V(x—z)(1+2)

where the initial value of the radical V1—z* is +r1. If under
the integral sign z be replaced by st, where ¢ is a real quantity vary-
ing from zero to unity, the resulting integral

'
I =Z'/0) N (1 —28)(1 +2t)

will correspond to a rectilinear path joining the origin to 2.
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In J(z) the only singular points of the integrand are z= +1.
The integral for the circumference of a small circle described
about either of these points as a center, by Theorem I of Article
19, approaches zero as a limit simultaneously with the radius of
the circle. A loop enclosing the point +1, therefore, gives a
term equal to

1

odz 0 dz o dz
fo x/rzﬁfl —«/‘;—22“2/0 Nilg

the radical taking a negative sign on the way back to the origin
by virtue of the.fact that z has turned around the branch point
z=1. In the same way, a loop enclosing the point z= —1 will
give, if the initial value of the radical is positive,

- dz Yodz
o, e, e

When z describes a loop about either of the points +1, the radical
returns to the origin with its sign changed. Hence, if z describe
in succession two loops about the same branch point, the total
effect on the value of the integral is zero. If the path of the in-
tegral J,(z) is equal to that of the integral J(z) p}eceded by a
single loop enclosing the point +1 or the point —1, the value
of J,(z) will be

r—J(E) or —n—J(z)

respectively. If the path of J,(2z) consist of two loops, the first
about z=1, the second about = —1, followed by the path of J(z),

J(2)=27+TJ ().
An arbitrary path from 2, to z gives an integral of the form

onn+I1(z) or (en+1)7—I(3),
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where # is an integer positive or negative and I(z) is the integral
for a rectilinear path.

Prob. 28. If R=V/(z—a,) ... (3—a,), and the rectilinear inte-

ay ] ;s
grals '/0' lﬁz=A1,..., faqj; A4,, f dz —=2Z, show that the gen-
0

2 dz
1 val / - i
eral value of y R s

amdy+ .. +em, A, +Z or a2m A+ ... +om A, +Ak—2Z,

where my, . .., m, are any integers, positive or negative.

ARrt. 35. FUNCTIONS OF SEVERAL VARIABLES.

Let f(z, 2,) be a function of two independent variables holo-
morphic with respect to each when z and z, are interior to the
regions A, and A, respectively. Let C; and C, be two closed
curves drawn in these regions, and let ¢, and @, be points con-
tained within these curves. Then

f f&’-zi)dzl=2m'f(al, 2,)

C]_ Zl - al

S L fia, 22>dz =2/l @),
so that

Sz, 2)
Uz dg,= (271)a,, @
‘/Ct"/c; (2,—0)(2,—a) »=( (@, @5).
Differentiating this integral with respect to the parameters a;, a,,

gives the general result

. Se, ) dsy
S Y N e e

= (271)?

" f(a,, a,).
0a,f0a,?
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It follows that f(z,, z,) has an infinite number of successive par-
tial derivatives holomorphic under the same conditions as itself.

Let M be the upper bound of the modulus of /{2, 2,) when
2, and 2, vary along the curves C, and C, respectively; 7, and 7,
the shortest distances from a, and a, to these curves; /, and /,
the lengths of these curves: then

ot fla, a,)_1°2...p 1 2...Q f ds.ds
0a,#0a,? = (277)2 e (;27’1P+I7’2‘Z+I 72

mod

- op12...q M,
< (271.)2 rlp+172q+1'

If C, and C, are circles described about a, and a, as centers,
l,=2mr,, l,=27nr,, and

ort9(a, @) _1°2...p 1 2.,
<
0a,?0a,? 7:87,2

I,

mod

It is easy now to extend Taylor’s Series to the case of a function
of two variables. Let /{2, 2,) be holomorphic as long as z and
2, remain within circles C; and C, described about ¢, and a, as
centers. Let a,+%, a,+17, be points chosen arbitrarily within
these circles. Then

f(aq +1i;, a+ tz) = '(-27:—1,)2 f f f(zu 22) dzldzz

ave(@— t1)(zz_az_tz)
1y
2.”)2’_/. /f(zl’ zz)dz1dzz[ — m+ :I
I iy
[:z—z—:-_%_l_(zz—az)z—*-”']
Aoy 0+ Ly W ),

3.2
+n<f@a—+t2——> o2

I 0 0
+I - 3(tlaa Hzaa > Sy, @)+
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The proof that the remainder approaches zero as a limit is anal-
ogous to that given in the case of a single variable.

Corresponding results can be obtained for functions having
any number of independent variables.

ArT. 36. DIFFERENTIAL EQUATIONS.*

Consider the differential equation
dw
E=f (2, w),

where /{(z, w)is holomorphic when z and w are near the points
2, and w, respectively. By the transformation w=w,+w’, z=
. dw'
7,42, the equation becomes E=¢(z’ , W), where &(2, w) is
holomorphic when 2’ and @’ are both near zero. Without loss
of generality, therefore, the discussion can be restricted to the
special case where /(z, w) is holomorphic with respect to z and
w, when z and w are confined to small regions containing z=o0

and w=o respectively.

If the given differential equation admits an integral, holomor-
phic in the neighborhood of z=o0, and vanishing at that point,
this integral will be unique; for all its successive differential co-
efficients at the point z=0 can be obtained from the given differ-
ential equation. It is sufficient to differentiate that equation
once, and make z=o0, w=o, in order to find the second differen-
tial coefficient; to differentiate again and make the same substi-
tution to find the third differential coefficient, and so on. In this
way is obtained the development.

_ (% +L<@> 2L . =gzt a2+
w=\g ) 2t e ) E e mae st
If this development can be proved to converge when [z] is suffi-
ciently small, w thus defined satisfies the differential equation.
For (2—10 and f(z, w) have the same value for z=o0; and their suc-

* Briot and BouQUET, Fonctions Elliptiques, p. 325; PIcArD, Traité d’Analyse,
vol. 11, p. 291.
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cessive differential coefficients with respect to z of any order what-

soever are also equal for z=0. Hence (2—1: and f(z, w) are equal.

Describe small circles C and C’ about the points z=o, w=o0
as centers with radii #,#/. Let M be the upper bound of the
modulus of f{(z, w) within or upon these circles. If now the

function
) (—W
I— 7 I — 7"

be constructed, it will be holomorphic within the circles C and
C’.  TIts development in a convergent series of ascending powers
of z and w, is found by multiplying together the series for

I
and ——,
W

I—— i

7 '

and introducing into each term the constant factor M.
The successive partial derivatives of F(z, w) are all positive
and such that

oYz, w)|  _ (OPHIF(z, w)
0zPowt [5Z0<\ 0ztowt JiZ¥

Consider now the differential equation

aw
_dZ_=F(Z’ W)

If it has an integral W, holomorphic in the neighborhood of
z=o0, the integral will be expressible in the form

aw 4
W=< ) z-l—L(d W> 224, . =Az+ A2+, ..
0 0

dz 12\ dz,

The coefficients in this series are all positive, and for every value

of m
lamle m*
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The series given above for w, therefore, is convergent at every
point where the series for W converges. But it is easy to demon-
strate the existence of the function W. For the equation

oy

may be written in the form

( E)@l’_i’—’_
YY) T #
..

7

The two members are the derivatives respectively of

2

W—WL, and —Mrlog <I—-z->.
g 7

If the logarithm be chosen so that it vanishes when z=o, it will
be holomorphic within the circle |z|=#. Since W is to vanish
when z=o, the relation between W and z should be

w2 g
W= ~Mrlog (1—7>,
2My z
or W=r’—r’\j1+—r, - <I—7>,

where the radical is equal to +1 for z=o.
The function W thus defined satisfies the equation

(?]—?=F (z, W); it vanishes when z=o; and it is holomorphic

in the interior of a circle having for its center the origin, and for
its radius p the root of the equation

2My 0
1+ e log <I —;>=o,
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. -
that is, p=r(1 —e zMr>.

The series for W, consequently, converges in the interior of the
circle of radius p. The series for w must converge in the same
circle. Hence the given differential equation admits an integral
vanishing for z=o, and holomorphic within the circle of radius
o and center at the origin.

The preceding discussion can be extended Wlthout modifica-
tion to the case of 7 equations:

dw,
dz 1_];(2 Wiy Way o e » ,w”),

dw.
'd—zz=.fz(z: Wiy Way e oo ; w”),

dw,,
dz f(z wl’ wZ""’wn)'

The functions in the second members are supposed to be holo-
morphic with respect to 2, w,,..., w, within a circle of radius
7 described about z=o, and circles of radius # described about
W,=0,...,W,=o0.

If, further, M denotes the upper bound of the moduli of £,
Jo .., f, in the regions considered, the associated differential
equations are

aw, dw aw,,
= = P W W W),

where

FEWo Wy .., W)=
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The functions W,, W,,..., W, all vanish for =0 and are

3

identical, so that only one equation

need be considered. The radius p of the circles, within which
all the developments converge, is

r’
p=r<1 —e (n+1)Mr>_
As an example take the differential equation

dw 5
B?: I+w?,

assuming as initial conditions z=o0, w=o. This equation defines
w as a holomorphic function of z in any region in which w re-
mains finite. Suppose that w becomes infinite for some finite
value @ of the variable z. To determine the nature of the point
z=a, make the substitution

I
z=a+7, w=_"

The given differential equation is transformed to
dw’
p— (),

the initial conditions being #' =0, w'=o0. This equation defines
' as a holomorphic function of 2’ in the neighborhood of 2'=o,
and, consequently, of z in the neighborhood of z=a. The given
differential equation is satisfied, therefore, by a function w whose
only finite critical points are poles.
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The values of z for which w takes an assigned value may be
found bv means of the integral

—f T+w? /’wz%_%-/olwlj—::

If w describes two paths symmetrical with respect to the origin,
z acquires values numerically equal but of opposite signs. It
follows that w is an odd function of z. A loop enclosing the point
w=1, described in the positive direction # times, adds to the inte-
gral a term equal to #nr. A loop described about w= —7in a
positive direction # times similarly gives —#n=. The function w
is thus periodic, having a period equal to 7.

It is possible to express w as the ratio of two functions having
no finite critical points. Assume w=w,/w, The given differ-
ential equation takes the form

dw, dw,
(g =) (G 4m) o

This equation can be satisfied by making

dw, dw,
dz e gp T

and z=o, w,=o0, w,=1 may be taken as initial conditions. From
these equations can be obtained

dw, dw, dw, dw,

dz dz?  d* dzt

W, =—

dw,  d'w, dw, dw,

dz  d? d?  dzt

W, =

Hence, when z=o,

'dw, (dzw1 _ <d3w1> <%> B
(wl)lJ: % (E):I’ _dZ_2>o—o, dZ 5 dz* 0-0,..-
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and

_ dw,\ d*wy\ d*w, {d*w,
(@s)o=1, <dz>o_°’ (dz’)o—_:[’ <dz"‘)0=°’ (_d?):l’”'

The series for w, and w, are, therefore,

2 Z8 v 2° .
W= —. .. =8IN Z
1 I I .2 .3 I 2 .3.4.5 )
72 2t
W,=TI— —...=CO0S 3}
1-2 I'2-3-4
sin 2
whence w=——=tan 3.
coS 2

Prob. 29. Show that the integral of %%U=w, with the initial condi-

2

: . . 2
tions z=o, w=1, is the series w=1+z+:+. . .=€xXp. 2.
. du ; ;
Prob. 30. Show that the equation Ez—z—+u=o is equivalent to the
7 dv . . .
system, e L and that with the initial conditions z=o,

u=a, v=>, the solution by series gives #=a cos 3+b sin z.
2
Prob. 31. Show that the equation %= (1—w?)(1— k*w?) with the

initial conditions z=o, w=o0, vV 1—w?=+1, V 1— FPw’=+ 1, is equiv-
dw au dv . S
alent to the system R d—z=—k2wu, with th¢ initial
conditions z=o, w=o0, #=1, v=1, and that the functions w, u, v have
no finite critical points except poles. The functions are Jacobi’s

elliptic functions sn z, cn %, dn 2, respectively.
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Text-book of Organic Chemistry. (Walker and Mott.). ........... 8vo,
#  Laboratory Manual of Organic Chemistry. (Walker.)........... 12mo,
Hopkins’s Oil-chemists’ HandbooK... .. .....iuiemniieineenneennan. 8vo,
Jackson’s Directions for Laboratory Work in Physiological Chemistry. .8vo,
JEED'S CABE THOT, 5 5 swmrims o 5 o srih 1 & § soutnes @ ¢ ws © & FEsas & SUHERS § £
Ladd’s Manual of Quantitative Chemical Analysis.. ..
Landauer’s Spectrum Analysis. (Tingle.). .. ....oovvviiiiinnainn.. 8vo,
# Langworthy and Austen. The Occurrence of Aluminium in Vegelable
Products, Animal Products, and Natural Waters.............. 8vo,
Lassar-Cohn’s Practical Urinary Analysis. (Lorenz.)................ 12mo,
Application of Some General Reactions to Investigations in Organic
Chemistry. (TIREIE.)e v vr oottt it e 12mo0,
Leach’s The Inspection and Analysis of Food with Special Reference to State
COBIOLowow s v v s » warmyes 3 § 55605 § § 4 905 5 8 ¥ uWEH 4 5 5 Uo@ 5§ 8 e 8vo,
Lib’s Electrochemistry of Organic Compounds. (Lorenz.)............. 8vo,
Lodge’s Notes on Assaying and Metallurgical Laboratory Experiments. .. .8vo,
Low’s Technical Method of Ore Analysis.. ... .....ovveunninennnn.. 8vo.
Lunge’s Techno-chemical Analysis. (Cohn.).......vuuieveernunnn.. 12mo
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* McKay and Larsen’s Principles and Practice of Butter-making ....... 8vo 1
Mandel’s Handbook for Bio-chemical Laboratory ...... ............ 12mo, I
* Martin’s Laboratory Guide to Qualitative Analysis with tke Blowpipe. . 12mo,
Mason’s Water-supply. (Considered Principally from a Sanitary Standpoint.)
3d Edition, Rewritten. ... ...t ittt 8vo, 4
Examination of Water. (Chemical and Bacteriological.)........ 12mo, I
Matthew’s The Textile FIbres. . .....oovoniiiin i, 3
Meyer’s Determination of Radicles in Carbon Compounds. I
Miller’s Manual of ASSAYIBG. .o o s v v v s v paaan s ¥ 5 ésiens s 5 ¥ 5aas I
Cyamide PIOCESS: « . ¢ vsvmis <5 v 5 5wioioms 58 5§ oo 85 o poecs I
Minet’s Production of Aluminum and its Industrial Use. . =)
Mixter’s Elementary Text-book of Chemistry. ...................... I2mo, I
Morgan’s An Outline of the Theory of Solutions and its Results. ...... 12m0, I
Elements of Physical Chemistry........... . c.coiviriiinnnnn.ns. I2mo, 3
* Physical Chemistry for Electrical Engineers,................. 12mo, I
Morse’s Calculations used in Cane-sugar Factories. ......... 16mo, morocco, I
Mulliken’s General Method for the Identification of Pure Organic Compounds.
Vok Es 5 5 ws conicwn v 2 ¢ oogpes § 5 8 S0006E ¥ & § TR £ & M@ B Large 8vo, 5
O’Brine’s Laboratory Guide in Chemical Analysis.........covuueuen... 8vo, 2
O’Driscoll’s Notes on the Treatment of Gold Ores. ... ....covvunvnnn.n. 8vo, 2
Ostwald’s Conversations on Chemistry. Part One. (Ramsey.).......1zmo, I
o U L 5 Part Two. (Turnbull)...... I2Mmo, 2
* Penfield’s Notes on Determinative Mineralogy and Record of Mineral Tests.
8vo, paper,
Pictet’s The Alkaloids and their Chemical Constitution. (Biddle.).....8vo, 5
Pinner’s Introduction to Organic Chemistry. (Austen.).............. I2mo. I
Poole’s Calorific Poweriof FUelsi e s cuiw s 5o v vion s 5 ¢ siins e 85 2845 4 5 8 dios 8vo, 3
Prescott and Winslow’s Elements of Water Bacteriology, with Special Refer-
ence to Sanitary Water Analysis. .. ......... .. ... ... Izme, 1
* Reisig’s Guide to Piece-dyeing. . ... ...t ininnnennnn.. ..8vo, 25
Richards and Woodman’s Air,Water, and Food from a Sanitary Standpoint. .8vo, 2

Ricketts and Russell’s Skeleton Notes upon Inorganic Chemistry. (Part L

Non-metallic Elements.). . ... cvv i 8vo, morocco,
Ricketts and Miller’s Notes on AsSSavVing. ... .vivttieirincnnennnennn.. 8vo,
Rideal’s Sewage and the Bacterial Purification of Sewage. . ............ 8vo,

Disinfection and the Preservation of Food...............oo.vvu...

Riggs’s Elementary Manual for the Chemical Laboratory. ..
Robine and Lenglen’s Cyanide Industry. (Le Clerc.).... ..
Rostoski’s Serum Diagnosis. (Bolduan.). ........ccoovviinninan...
Ruddiman’s Incompatibilities in Prescriptions. . e
% WHYS I PHACOTAET ¢y vy s 18 55 00ans 9 1 5 o063 & § 5 085 5 8 § § 5 0w
Sabin’s Industrial and Artistic Technology of Paints and Varnish.
Salkowski’s Physiological and Pathological Chemistry. (Orndorff.).. ...8vo,

Schimpf’s Text-book of Volumetric Analysis. « o.....oovin v, 12mo,
Essentials of Volumetric Analysic. .« oo vvveinniiirennan.. 12mo,
#  Qualitative Chemical Analysis. ......... B B G § N R A % b s 8vo,
Smith’s Lecture Notes on Chemistry for Dental Students. ... .......... 8vo,
Spencer’s Handbook for Chemists of Beet-sugar Houses. . ...16mo, morocco,
Handbook for Cane Sugar Manufacturers.............. 16mo, morocco,

Stockbridge’s Rocks and Soils. .. .. ..ot
* Tillman’s Elementary LessonsinHeat. ...........ooviviinneneeinn,
#*  Descriptive General Chemistry. . ........... ¥ sessamon # & s o » skl
Treadwell’s Qualitative Analysis. (Hall)........
Quantitative Analysis. (Hall.).............. .
Turneaure and Russell’s Public Water-supplies. ..........coveveeeannn
Van Deventer’s Physical Chemistry for Beginners.
* Walke’s Lectures on Explosives...............
Ware’s Beet-sugar Manufacture and Refining. . .........
Washington’s Manual of the Chemical Analysis of Rocks. . ............ 8vo,
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Wassermann’s Immune Sera: Hamolysins, Cytotoxins, and Precipitins. (Bol-

QUATL) . Lt 12mo,
Weaver’s Military EXploSives. .. .. .ovvveve ittt 8vo,
“Wehrenfennig’s Analysis and Softening of Boiler Feed-Water .......... 8vo,

8vo,

‘Wells’s Laboratory Guide in Qualitative Chemical Analysis.............
Short Course in Inorganic Qualitative Chemical Analysis for Engineering

Students. o v v i viit i e s 12mo,
Text-book of Chemical Arithmetic .....ocvviviniin e, 12mo,
Whipple’s Microscopy of Drinking-water. .. ..........ooiiviii.. 8vo,

Wilson’s Cyanide Processes
Chlorination Process. . .

_Winton’s Microscopy of Vegetable Foods. . ................... ... 8vo,
%7ulling’s Elementary Course in Inorganic, Pharmaceutical, and Medical
CRETISIEY: 5 5 5 5 5 ciman 65 5 § coumis 4 ¥ » pardnm & ¢ « swwes ¥ o owms = 8 @ 12mo,

CIVIL ENGINEERING.
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BRIDGES AND ROOFS. HYDRAULICS. MATERIALS OF ENGINEERING,

KAILWAY ENGINEERING.

Baker’s Engineers’ Surveying Instruments. .. .................i....I2mo,
Bixby’s Graphical Computing Table. ... ............ Paper 104 X 24} inches.
. sk Burr’s Ancient and Modern Engineering and the Isthmian Cana.. (Postage,
27 cenfts additionals)i. ¢ cos o covni s svmmn sy o5 76 adiion s ¥ 8vo,
Comstock’s Field Astronomy for Engineers. ... ......covvver oo, 8vo,
Davis’s Elevation and Stadia Tables.. .. ........cuirernnrrnnennnnnnn. 8vo,
Elliott’s Engineering for Land Drainage. .. .......ovvuunvivrnnnnn, I2mo,
Practical Farm Drainage............oiuniiiiieinnrennnnnnans 12mo,
*Fiebeger’s Treatise on Civil Engineering. .. ...........c0o0ivunennn... 8vo,
Flemer’s Phototopographic Methods and Instruments................. 8vo,

Folwell’s Sewerage. (Designing and Maintenance.). .................. 8vo,
Freitag’s Architectural Engineering. 2d Edition, Rewritten........... 8vo,
French and Ives’s Stereotomy. .. ....ouvvit it ii i 8vo,
Goodhue’s Municipal Improvements. « .. ....covuuveivnnreranrena.. 12mo,
Goodrich’s Economic Disposal of Towns’ Refuse. ...o.vuvv.... 3 § 5 8vo,
Gore’s Elements of Geodesy. ... . X vt 9 o = wedo 8B @b 3 B o vune 8vo,
Hayford’s Text-book of Geodetic Astronomy. .. .......cc.oooiii ... 8vo,
Hering’s Ready Reference Tables (Conversion Factors). .. ... 16mo, morocco,
Howe’s Retaining Walls for Earth. ............................... 120,
= Fyes’s Adjustments of the Engineer’s Transit and Level.......... 16mo, Bds.
“Ives and Hilts’s Problems in Surveying ................... 16mo, morocco,
Johnson’s (J. B.) Theory and Practice of Surveying.............. Small 8vo,
Johnson’s (L. J.) Statics by Algebraic and Graphic Methods. ........... 8vo,
“Laplace’s Philosophical Essay on Probabilities. (Truscott and Emory.).12mo,
“Mahan’s Treatise on Civil Engineering. (1873.) (Wood.)............ 8v6,
=  Descriptive Geometry. . . c.....ooii i . .8vo,
Merriman’s Elements of Precise Surveying and Geodesy. .. .8vo,
“Merriman and Brooks’s Handbook for Surveyors. ... ....... 16mo, morocco,
Nugent’s Plane SUrveying. . .........ooouiiiiiiininneninnnnnnnnn.,
Qgden’s Sewer Design. . ...............

Parsons’s Disposal of Municipal Refuse. .
Patton’s Treatise on Civil Engineering. . .
Reed’s Topographical Drawing and Sketching

Rideal’s Sewage and the Bacterial Purification of Sewage

Siebert and Biggin’s Modern Stone-cutting and Masonry. . ...,

Smith’s Manual of Topographical Drawing. (McMillan.).............. 8vo,

Sondericker’s Graphic Statics, with Applications to Trusses, Beams, and Arches.
8vo,
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Taylor and Thompson’s Treatise on Concrete, Plain and Reinforcea.. .. .8vo,

* Trautwine’s Civil Engineer’s Pocket-book. . .............. 16mo, morocco,
Ven.able's Garbage Crematories in America. . . ..o v oot .. 8vo,
Wait’s Engineering and Architectural Jurisprudence. .. .............. Svo,
. Sheep,

Law of Operations Preliminary to Construction in Engireering and Archi-
103 8vo,

Sheep,

Law of Comtracts. v v vvvieieie et 8vo,
‘Warren’s Stereotomy—Problems in Stone-cutting. .................... 8vo,

‘Webb’s Problems in the Use and Adjustment c! Engineering Instruments.
) 16mo, morocco,
Wilsoni’s Topographic SUrVEYINE .o 4 s ¢ vvewn & 5 svioies ¥ v solsps s

BRIDGES AND ROOFS.

Boller’s Practical Treatise on the Construction of Iron Highway Bridges. .8vo,
% Thames River Bridge. « « « o wwn s v 6 v s o 5 ¢« o s 2 & 6 s g 4to, paper,
Burr’s Course on the Stresses in Bridges and Roof Trusses, Arched Ribs, ard
Suspension Bridges. ... .......iuinii 8vo,

Burr and Falk’s Influence Lines for Bridge and Roof Computations.. . ... 8vo,
Design and Construction of Metallic Bridges .. ................... 8vo,

Du Bois’s Mechanics of Engineering. Vol IL............... ... .Cmall 4to,
Foster’s Treatise on Wooden Trestle Bridges.. .. ...................... 4to,
Fowler’s Ordinary Foundations. ..................cooioiiiiininn... 8vo,
Greene’s ROOF TIUSSeS. « v oo vvinte et e e e e 8vo,
PBridpres TLUSSES:w ¢ o coswmies v 5 v v wwmsen 5 5 & wwures § < 5 5 Sivsin = x5 % Swinis 0 5 8 4 8vo,
Arches in Wood, Iron, and Stone. . .........ooovuviiiiiiiinan 8vo,
Howe's Treatise on ATCHES: s s 5 & o s 55 & wien @ 5 p #dapn o £ 5 cgus % ¢ 0 o aand 8vo,
Design of Simple Roof-trusses in Wood and Steel. ................ 8vo,
Symmetrical Masonry Arches. . ........ ... 8vo,
Johnson, Bryan, and Turneaure’s Theory and Practice in the Designicg of
Modern Framed Structures... . ................ooouo... Small 4to,

Merriman and Jacoby’s Text-book on Roofs and Bridges:
Part I. Stresses in Simple Trusses
Part II. Graphic Statics. . ..
Part III. Bridge Design. .. ..

Part IV. Higher Structures ... ......oovvivion i,
Morison’s Memphis Bridge. . . ..o ato,
Waddell’s De Pontibus, a Pocket-book for Bridge Engineers. .16mo, morocco,

# Specifications for Steel Bridges. . ..ot 12mo0,
Wright’s Designing of Draw-spans. Two parts in one volume........., 8vo,

HYDRAULICS.

Barnes’s Ice FOrmation. ... ....ooverereinnainsaanaan s 8vo,
Bazin’s Experiments upon the Contraction of the Liquid Vein Issuing from

an Orifice. (TrautWine.). «ov o vvvuunr e e onen oo 8vo,

Bovey’s Treatise on Hydraulics 8vo,
Church’s Mechanics of Engineering. ... ... ... .c.cveiiiiiniaeens 8vo,
Diagrams of Mean Velocity of Water in Open Channels.......... paper,
Hydraulic MOtOTS. o . o.v v vvvarae oo e 8vo,
Coffin’s Graphical Solution of Hydraulic Problems. ......... 16mo, morocco,
Flather’s Dynamometers, and the Measurement of Power. .. ... ..... 12mo,
8vo,

Tolwell’s Water-supply Engineering
Frizell’s Water-power.. .. ... ... ...«
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Fuertes's Water and Public Health o . oo v comnesswimmnsaseomensgs 5120,
Water-filtration Works: .. .oovivvnnrnienvinieisinnesss + e+ 0120,
Ganguillet and Kutter’s General Formula for the Uniform Flow of Water in

Rivers and Other Channels. (Hering and Trautwine.). ....... 8vo,

Hazen’s Filtration of Public Water-supply. . ........ .0 coirireneeenns 8vo,

Hazlehurst’s Towers and Tanks for Water-works. . ................... 8vo,

Herschel’s 115 Experiments on the Carrying Capacity of Large, Riveted, Metal

CondUitS, v\ vttt s 8vo,

Mason’s Water-supply. (Considered Principally from a Sanitary Standpoint.)

8vo,

Merriman’s Treatiseron Bydratliesico ¢ o o ¢ o s 6 o s oo o « 5 smoms « o & o 8vo,

* Michie’s Elements of Analytical Mechanics. . .....oovvvnnni . - 8vo,

Schuyler’s Reservoirs for Irrigation, Water-power, and Domestic Water-

SUDDI ivss = o sovmiman 5 % 3 @ GEran % % B 6 SAE B ¥ ¥ IR B R R B SRR 4 Large 8vo,

*%* Thomas and Watt’s Improvement of Rivers (Post., 44c. additional.) 4to,

Turneaure ard Russell’s Public Water-supplies .. .. ....vvvriennann. ot 8vo,

‘Wegmann’s Design and Construction of Dams. ... .......c.ooovennnnn.n. 4to,

‘Water-supply of the City-of New York from 1658 to 1895.. ........4to,

Williams and Hazen’s Hydraulic Tables. ............covineeinneno.. 8vo,

Wilson’s Irrigation Engineering. . ... ..........c.ouuiiunennn... Small 8vo,

Wolff’s Windmill as a Prime Mover.. . ... e 8vo,

Wood’s TUIDINES. + ou ottt ettt et e 8vo,

Elements of Analytical Mechanics. . .....................c.c00.n. 8vo,
MATERIALS OF ENGINEERING.

Baker’s Treatise on Masonry Construction. .. .v.ouuvvinunnn.n.. «ov 8vo,

Roads and Pavements. .« .« « o cowen s v ¢ 5 wsraiofs 55 2 8 65inoh 5 5 o som e ¢ ] 8vo,

.Oblong 4to,

...8vo,

+ i BV0;

..................................... 8vo,

Inspection of the Materials and Workmanship Employed in Construction.
16mo,

Church’s Mechanics of Engineering. .........
Du Bois’s Mechanics of Engineering. Vol I .
*Eckel’s Cements, Limes, and Plasters
Johnson’s Materials of Construction.
Fowler’s Ordinary Foundations.
Graves’s Forest Mensuration

Keep’s Cast Irom. oo vouvinin it aae e, .
Lanza’s Applied Mechanics. ...........ooovuvinnununnnn ., 8vo,
Marten’s Handbook on Testing Materials. (Henning.) 2 vols. ........ 8vo,
Maurer’s Technical Mechanics. ..............coovuununnnn o 8vo,
Merrill’s Stones for Building and Decoration. . . .
Merriman’s Mechanics of Materials. ....................
Strength of Materials ...........

Metcalf’s Steel. A Manual for Steel-users. .. ...,

Patton’s Practical Treatise on Foundations.. ... ..

Richardson’s Modern Asphalt Pavements................

Richey’s Handbook for Superintendents of Construction.. ........ 16mo, mor.,
* Ries’s Clays: Their Occurrence, Properties, and Uses.. .............. 8vo,
Rockwell’s Roads and Pavements in France. .. ......... ... .. .. ... . 12mo,
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Spalding’s Hydsaulic Cement. . o. ..o ivivierrnnes
Text-book on Roads and Pavements.. ...........c.evuuvnneennn
Taylor and Thompson’s Treatise on Concrete. Plain and Reinforced. . . . ..
Thurston’s Materials of Engineering. 3 Parts....................
Part I. Non-metallic Materials of Engineering and Metallurgy
Part II  Tron and Steel. oo .. vvvuinnn i
Part ITI. A Treatise on Brasses, Bronzes, and Other Alloys and their
ConETBEOnESiscs & « wommes 5 5 0 = srowmn % 5 & o Surn & & 5 9 AT & § D R § ¥
Thurston’s Text-book of the Materials of Construction. ...
Tillson’s Street Pavements and Paving Materials. . ., ..................
‘Waddell’s De Pontibus (A Pocket-book for Bridge Engineers.). . 16mo, mor.,

Specifications for Steel Bridges. .« . ..vviiiiiiiiinnin e 12mo,
Wood’s (De V.) Treatise on the Resistance of Materials, and an Appendix on
the Preservation of Timber. .. ..........iiivinrnrnnnenen .. 8vo,

RAILWAY ENGINEERING.

Andrew’s Handbook for Street Railway Engineers.. .. .3x5 inches, morocco,
Berg’s Buildings and Structures of American Railroads ................ 4to,
Brook’s Handbook of Street Railroad Location. . .......... 16mo, morocco,
Butt’s Civil Engineer’s Field-book. .. ........coivuinnennn. 16mo, morocco,
Crandall’s Transition Curve...............covvunn . .16mo, morocco,

Railway and Other Earthwork Tables. .. ................. ... .8vo,
Dawson’s “Engineering’’ and Electric Traction Pocket-book 16mo, morccco,
Dredge’s History of the Pennsylvania Railroad: (1870).............. Paper,
* Drinker’s Tunnelling, Explosive Compounds, and Rock Drills. 4to, half mor.,
Fisher’s Table of Cubic Yards....... B s o % oo & % o Stsem B B % & G 9 6 @ Cardboard,
Godwin’s Railroad Engineers’ Field-book and Explorers’ Guide. . . 16mo, mor.,
Howard’s Transition Curve Field-book.. .................. 16mo, morocco,
Hudson's Tables for Calculating the Cubic Contents of Excavations and Em-

DANKIMENTS, o te i it e e 8vo,
Molitor and Beard’s Manual for Resident Engineers. . ...............16mo,
Nagle's Field Manual for Railroad Engineers. . ............. 16mo, morocco.
Philbrick’s Field Manual for Engineers.. ................. 16mo, morocco,
Searles’s Field Engineering. .........covevveeinnnneennn. 16mo, morocco,

Railroad Spiral. . ...ccvniniiiiiniaiasaiiiisiasnns 16mo, morocco,
Taylor’s Prismoidal Formulee and Earthwork. ... .................00 8vo,
* Trautwine's Method of Calculating the Cube Contents of Excavations and

Embankments by the Aid of Diagrams. ..................... 8vo,

The Field Practice of Laying Out Circular Curves for Railroads.
I2mo, morocco,

Cross—section Sheet. .« covvieiuiiorerieiiiviiisesvniacenionn Paper,

Webb's Railroad Construction. . .« .....ovvirvevenennann 16mo, morocco,

Econcmics of Railroad Construction................o.c.. Large r2mo,

Wellington’s Economic Theory of the Location of Railways. . ....Small 8vo.
DRAWING.

Barr’s Kinematics of Machinery. .
“ Bartlett’s Mechanical Drawing. .
* “ « «

Coolidge’s Manual of Drawing. o . .voevvovnnoaiirnneeneeninns
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Coolidge and Freeman’s Elements of General Drafting for Mechanical Engi-

TBEES: 5ownt 5 5 8§ sbiommn B v momendbd § 5 5 o000 5 5 8 ¥ womamend ¥ 5 RGBS § Oblong 4to,
Durley’s Kinematics of Machines. . . ...vviueeiniinneinreenennernns 8vo,
Emch’s Introduction to Projective Geometry and its Applications........ 8vo,
Hill’s Text-book on Shades and Shadows, and Perspective. « vovveverenn- 8vo,
Jamison’s Elements of Mechanical Drawing. v .8v0,
Advanced Mechanical Drawing. .......c..eevennnerecnscnanesens 8vo,
Jones’s Machine Design:
Part I. Kinematics of Machinery. .. .......ovvevreeennneneennns

Part II. Form, Strength, and Proportions of Parts. . ...
MacCord’s Elements of Descriptive Geometry. . .
Kinematics; or, Practical Mechanism.
Mechanical DIaWing. «oo. vttt eiiiniinanenananeaeeans
Velocity Diagrams. ... ...............
MacLeod’s Descriptive Geometry., .................
* Mahan'’s Descriptive Geometry and Stone-cutting.. .

Industrial Drawing. (Thompson.)... ...........
Moyer’s Descriptive Geometry.. ... ..o.vit ittt e it ie i
Reed’s Topographical Drawing and Sketching. .. .....................
Reid’s Course in Mechanical Drawing. « v oo o vovevininn ...
Text-book of Mechanical Drawing and Elementary Machine Design.8vo,
Robinson’s Principles of MechaniSm. . ... .....cvuveuieiunerunnnennn. 8vo,
Schwamb and Merrill’s Elements of Mechanism. .. ................... 8vo,
Smith’s (R. S.) Manual of Topographical Drawing. (McMillan.) ... ... 8vo,
Smith (A. W.) and Marx’s 1 "achine Design.. ...
* Titsworth’s Elements of Mechanical Drawing
Warren’s Elements of Plane and Solid Free-hand Geometrical Drawing. 12mo,
Drafting Instruments and Operations. . .. ......c.ovoveieninnn... 12mo,
Manual of Elementary Projection Drawing. . ............coun... 12mo,
Manual of Elementary Problems in the Linear Perspective of Form and
Shadow........ S & § E SEERT B B E QAR B Y e SR & ¥ B R § 5 12mo,
Plane Problems in Elementary Geometry........coviueiiuunn.. 12mo,
Priniary GEOTeITN o8 2 5 5 5 ooiP 85 5 8 05096 § 5 § LGNS E § 3 5P9SH 2 84 12mo,
Elements of Descriptive Geometry, Shadows, and Perspective. . ... .. 8vo,
General Problems of Shades and Shadows . ................ .8vo,
Elements of Machine Construction and Drawing. .. ............. 8vo,
Problems, Theorems, and Examples in Descriptive Geometry. .. .... 8vo,
Weisbach’s Kinematics and Power of Transmission. (Hermann and
JCIBITL. Yo scsvsivmn v % v swwwas 5 v 3 o0 onevarions & @ ¥ @ wwm % § 8 & SERT B R F 8 § SRk ¥ 8vo,

‘Whelpley’s Practical Instruction in the Art of Letter Engraving. . .
Wilson’s (H. M.) Topographic Surveying....................

...Izmo,
...8vo,

Wilson’s (V. T.) Free-hand Perspective..................... .8vo,
Wilson’s (V. T.) Free-hand Lettering. . . . ........vvvvrennnnn... .8vo,
Woolf’s Elementary Course in Descriptive Geometry............. Large 8vo,
ELECTRICITY AND PHYSICS.

Anthony and Brackett’s Text-book of Physics. (Magie.)......... Small 8vo,
Anthony’s Lecture-notes on the Theory of Electrical Measurements. . . .12mo,
Benjamin’s History of Electricity. . ................................. 8vo,
Violtaic Cell . o « omm n 5 ¢ o om0 5 w0 sowsm 8 5 3 3 Svions 84 5 6 56058 § 5§ Sudhg 8vo,
Classen’s Quantitative Chemical Analysis by Electrolysis. (Boltwood.).8vo,
* Collins’s Manual of Wireless Telegraphy.. .. ............ ......... 12m0,
Morocco,

Crehore and Squier’s Polarizing Photo-chronograph. . ,................ 8vo,

Dawson’s “Engineering’ and Electric Traction Pocket-hook.16mo, morocco,
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Dolezalek’s Theory of the Lead Accumulator (Storage Battery). (Von

Ende.). o vve e 12mo,
Duhem’s Thermodynamics and Chemistry. (Burgess.). ............... 8vo,
Flather’s Dynamometers, and the Measurement of Power. .. ......... 12mo,
Gilbert’s De Magnete. (Mottelay.). .........oovveueenn.... O 8vo,
Hanchett’s Alternating Currents Explained. .. ......................
Hering’s Ready Reference Tables (Conversion Factors).

Holman’s Precision of Measurements. . . ...............

Telescopic Mirror-scale Method, Adjustments, and Tests. .. .Large 8vo,
Kinzbrunner’s Testing of Continuous-current Machines. . .. ........... 8vo,
Landauer’s Spectrum Analysis. (Tingle.). .. covvvviiinininionnn .. 8vo,
Le Chatelier s High-temperature Measurements. (Boudouard—Burgess.) 12mo,
L6b’s Electrochemistry of Organic Compounds. (Lorenz.)............. 8vo,

* Lyons’s Treatise on Electromagnetic Phenomena. Vols. I. and II. 8vo, each,
* Michie’s Elements of Wave Motion Relating to Sound and Light. ......8vo,
Niaudet’s Elementary Treatise on Electric Batteries. (Fishback.). ....12mo,
* Parshall and Hobart’s Electric Machine Design........ .. 4to, half morocco,
* Rosenberg’s Electrical Engineering. (Haldane Gee—Xinzbrunner.). . .8vo,
Ryan, Norris, and Hoxie’s Electrical Machinery. Vol L .............. 8vo,
Thurston’s Stationary Steam-engines. ............couun.

* Tillman’s Elementary Lessons in Heat. . ...........

Tory and Pitcher’s Manual of Laboratory Physics.
Ulke’s Modern Electrolytic Copper Refining. « v vvvvvun. S5EIE ¥ § RSTEH § § 8 8vo,

* Davis’s Elements of Law. o« .ovviiieinnininnnnas
%  Treatise on the Military Law of United States
*

Manual for Courts-martial. . v...vviivureereee vans
Wait’s Engineering and Architectural Jurisprudence. ... .c............ 8vo,
Sheep,
Law of Operationg Preliminary to Construction in Engineering and Archi-
EECEIIE e 5w 5 5 0 GV § ¥ Gonemmsns » ¥ § SeTame = ¥ & simiviess £ % muies B 8vo,
Sheep,
Law of Contracts. v e v covvivevrirnnersennsnnnes G § eeemeEsa 8vo,
Winthrop’s Abridgment of Military Law. . ceveeruececonssseascecnns I2mo,

MANUFACTURES.

Bernadou’s Smokeless Powder—Nitro-cellulose and Theory of the Cellulose
Molecule. .......oovvvenn.
Bolland’s Iron Founder...............
The Iron Founder,” Supplement. . .
Encyclopedia of Founding and Dictionary of Foundry Terms Used in the

Practice of Moulding. .. ..o vvvvnt i i 12mo,
Claassen’s Beet-sugar Manufacture. (Hall and Rolfe.)........... v....8v0,
% Eckel’s Cements, Limes, and Plasters. .............ccoiiiiaiinene 8vo,
Eissler’s Modern High Explosives. .. .................s .. 8vo,
Effront’s Enzymes and their Applications. (Prestott)ies s s ¢ swrewess o =5 8vo,

Fitzgerald’s Boston Machinist. .......oovirrenioaeriinniniaan.. 12mo,
Ford’s Boiler Making for Boiler Makers
Hopkin’s Oil-chemists’ Handbook,
Keep’s Cast Iron. v v evvvvvverorons

NN NWSA N

NA OWWWwN

I2

W N H NN

O H NN

N WU n

NWHHWAE OB W

50
0o
oo
50
0o
50
oo
75
oo
oo
oo
oo
oo
0o
50
50
50
50
50
50
oo
oo

50
o0
50
50
00
50

00
50
oo
50

50
50
50

00

oo
oo
00
oo
oo
00
50



Leach’s The Inspection and Analysis of Food with Special Reference to State
* McKay and Larsen’s Principles and Practice of Butter-making
Matthews’s The Textile Fibres, ..............
Metcalf’s Steel. A Manual for Steel-users. .. .......oovvviuunneenn.
Metcalfe’s Cost of Manufactures—And the Administration of Workshops.8vo,
Meyer’s Modern Locomotive Construction. . o...oovvvevuinrnnnennennnn
Morse’s Calculations used in Cane-sugar Factories. . . .

* Reisig’s Guide fo Piece-dyeing. . .
Rice’s Concrete-block Manufacture

Sabin’s Industrial and Artistic Technology of Paints and Varnish, ....... 8vo,
Smith’s Press-working of Metals. c cv o vvvvniriinnnnreenrerenresin 8vo,
Spalding’s Hydraulic Cement. » oo .vvivrvenn it e ineenennnnennn 12mo,
Spencer’s Handbook for Chemists of Beet-sugar Houses. . ... 16mo, morocco,

Handbook for Cane Sugar Manufacturers. . ............ ¥6mo, morocco,
Taylor and Thompson’s Treatise on Concrete, Plain and Reinforced. .. .. 8vo,
Thurston’s Manual of Steam-boilers, their Designs, Construction and Opera-

Ware’s Beet-sugar Manufacture and Refining. . .

Weaver’s Military Explosives. .. .....coovivnininniann

West's Americant Foundry Practice.. cos o v sav s o v sawens b oasn sy o gils
Moulder’s TeXt-DO0Y: wmws s 5 wrmn 3 § & 6w5en § 4 § SO@WH 7 § 5owDN § 5 des

Wolff’s Windmill as a Prime MOVEr ..ue oiinnnniiniinrenneeinn.n 8vo,

‘Wood’s Rustless Coatings: Corrosion and Electrolysis of Iron and Steel. .8vo,

MATHEMATICS.

Baker’s Elliptic Functions. ...

* Bass’s Elements of Differential Calculus.

Briggs’s Elements of Plane Analytic Geometry.............

Compton’s Manual of Logarithmic Computations

Davis’s Introduction to the Logic of Algebra. . .........oovvuvin...

* Dickson’s College Algebra. .. ...........ccoiiiiviiinnennn..

*  Introduction to the Theory of Algebraic Equations......... Large 12mo,

Emch’s Introduction to Projective Geometry and its Applications........ 8vo,

Halsted’s Elements of Geometry. .. ...ovvtivn it eninrnnnanannnn. 8vo,
Elementary Synthetic Geometfy. e e 8vo,
Rational Geometry. « v oottt it e e 12mo,

* Johnson’s (J. B.) Three-place Logarithmic Tables: Vest-pocket size.paper,

100 copies for

* Mounted on heavy cardboard, 8 X 1o inches,

10 copies for

Johnson’s (W W.) Elementary Treatise on Differential Calculus. .Small 8vo,
Elementary Treatise on the Integral Calculus ....... ... .. .Small 8vo,
Johnson’s (W. W.) Curve Tracing in Cartesian Co-ordinates......... 12mo,
Johnson’s (W. W.) Treatise on Ordinary and Partial Differential Equations.
Small 8vo,

Johnson’s (W. W.) Theory of Errors and the Method of Least Squares. 12mo,
* Johnson’s (W W.) Theoretical Mechanics, .o.........oovvvvnnn... 12mo,

Laplace’s Philosophical Essay on Probabilities. (Truscott and Emory.).12mo,
* Ludlow and Bass. Elements of Trigonometry and Logarithmic and Other

Pablesy yiwons s om0 5 55 005 § ¢ ¥ sommmn x5 » s & % 5 o o 8vo,
Trigonometry and Tables published separately. .. . Each,

* Ludlow’s Logarithmic and Trigonometric Tables, ....... 8vo,
Manning’s Irrational Numbers and their Representation by Sequences and Series

12mo
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Mathematical Monographs. Edited by Mansfield Merriman and Robert
S. Woodward. D T . .Octavo, each
No. .. History of Modern Mathematics, by David Eugene Smith.
No. ». Synthetic Projective Geometry, by George Bruce Halsted.
No. 3. Determinants, by Laenas Gifford Weld. No. 4. Hyper-
bolic Funetions, by James McMahon. No. 5. Harmonic Func-
tions, by William E. Byerly., No. 6. Grassmann's Space Analysis,
by Edwar_d W. Hyde. No. 7. Probability and Theory of Errors,
by Robert 8. Woodward. No. 8. Vector Analysis and Quaternions,
by Alexander Macfarlane. No. o. Differential Equations, by
William Woolsey Johnson. No. 1o. The Solution of Equations,
by Mansfield Merriman. No. 1. Functious of a Complex Variable,
by Thomas S. Fiske.
Maurer’s Technical Mechanics. . ... ......oooueniiisonenennareenn... 8vo,
Merriman®s Method of Least Squares. ...............o.oooooo... .8vo,
Rice and Johnson’s Elementary Treatise on the Differsntial Calculus..Sm. 8vo,

Differential and Integral Calculus. 2 vols. in one. . .. .. .0mall 8vo,
Wood’s Elements of Co-ordinate Geometry, . oo oo evennnnnnonn.. 8vo,
Trigonometry: Analytical, Plane, and Spherical .........., NS, 5 ¢ (s 18

MECHANICAL ENGINEERING,

MATERIALS OF ENGINEERING, STEAM-ENGINES AND BOILERS.

Bacon’s Forge Practice. ce..vvovuivnn it i, 12mo,

Baldwin’s Steam Heating for Buildings. ..............c.vevennn... 12mo,

Barr’s Kinematics of Machinery. ...................

* Bartlett’s Mechanical Drawing.. ...............c...00.

* ey £ L Abridged Ed )

Benjamin’s Wirinkles and RECITES; o« 4 s v ¢ ¢ sown s o6 puismss s 65 5w esis iy e

Carpenter’s Experimental Engineering. . .. ............... S b E EGE
Heating and Ventilating Buildings. . . ..........cooviviinan.....

Cary’s Smoke Suppression in Plants using Bituminous Coal. (In Prepara-

tion.)
Clerk’s Gag afid OILENGING: .45 45 5 ssiosi 5 5 8 fowion 8 ¥ § 50009 55 8 1w Small 8vo,
Coolidge’s Manual of Drawing. . . .. ..venvnrinenenennnnenennn. 8vo, paper,

Coolidge and Freeman’s Elements of General Drafting for Mechanical En-

gineers. ... ..uiniii i . .Oblong 4to,
Cromwell’s Treatise on Toothed Gearing. .
Treatise on Belts and Pulleys. .......
Durley’s Kinematics of Machines. . ........covviiiiiiiniiiinenneon..
Flather’s Dynamometers and the Measurement of Power. . ........... 12mo,
RODE DILVIBG: s sssssmon s b bs vpoens v o Essss ¢ s Q89 53 8 doums s 12mo,
Gill’s Gas and Fuel Analysis for Engineers.. .........c.cvuiuviunn.. I2mo,
Hall’s Car Lubrication. .. ........coouiuiunninnenan... e 12mo,
Hering’s Ready Reference Tables (Conversion Factors) . 16mo, morocco,

Hutton’s'The Gas ENZITE. & « o v o v o mosaseine o 8 siveonin
Jamison’s Mechanical Drawing
Jones’s Machine Design:

Part I. Kinematics of Machinery. . «o..ovvvvveeinnneeeannnenn. '.8vo,
Part II. Form, Strength, and Proportions of Parts. .. ............ 8vo,

Kent’s Mechanical Engineers’ Pocket-book. .. .............

Kerr’s Power and Power Transmission. .......

Leonard’s Machine Shop, Tools, and Methods. .......................

* Lorenz’s Modern Refrigerating Machinery. (Pope, Haven, and Dean.) . .8vo,

MacCord’s Kinematics; or Practical Mechanism. .................... 8vo,
Mechanical DIAWILE, cums 3 s ¢ comnss s § 5 coses § s § Gowmns & o v mowmws s o v 4to.
Velocity DIGETamS: o wmis s 55 o8mms s 85 5 aehn 8 3 8 Semes § o s 8vo,
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MacFarland’s Standard Reduction Factors for Gases. . ..........c.ooex-
Mahan’s Industnial Drawing. (Thompson.).... ............
Poole’s Calorific Power of Fuels. o v voovtvininennnneianinnnnaneeesens
Reid’s Course in Mechanical Drawing. .. o..ocvuuvnnneniiiineonenens
Text-book of Mechanical Drawing and Elementary Machine Design.8vo,
Richard's Conmpresse At u e « « « cumens 3 § wumsy s § S0ses § § S5 § § GeuEs
Robinson’s Principles of Mechanism. . ............ovuiviiriennennnn.
Schwamb and Merrill’s Elements of Mechanism
8mith’s (0.) Press-working of Metals. . . ...
Smith (A. W.) and Marx’s Machine Design. .

Thurston’s Treatise on Friction and Lost Work in Machinery and Mill

WIORIES: oo v 2iisns 5 5 5 50ams 5 5 5 SAU0RE § 5 SEwEE 5 § F 6w 3 & 5 wepas 8vo,

Animal as a Machine and Prime Motor, and the Laws of Energetics. 12mo,
Warren’s Elements of Machine Construction and Drawing. . ........... 8vo,
Weisbach’s Kinematics and the Power of Transmission. (Herrmann—
RACTorm 5 = = ¢ povsmes 5 5 ponumn 5 v s » o S, = 0 5 S B 7 5 s 8vo,

Machinery of Transmission and Governors. (Herrmann—l\{lein.). .8vo,
Wolff’s Windmill as a Prime Mover

Wiood!s TOUrHINES @ g6 5 1 5 00769585 § § SAGTS 5 ¥ HEERRY § § 090 ¥ & G8SeE § § oo
MATERIALS OF ENGINEERING.
* Bovey’s Strength of Materials and Theory of Structures. ............. 8vo,
Burr’s Elasticity and Resistance of the Materials of Engineering. 6th Edition.
2 O OO O PSR S PRI S

Church’s Mechanics of Engineering. . .
* Greene's Structural Mechanics . . ...

Johnson’s Materials of Construction, «.....ooovivinineneinnneenes

Keep’s Cast JEOD: & v owvon s 58 gl s @ v awd et ¥ 5 o e s s s sim e
Lanza’s Applied Mechamics. . ....vvviininrnncnnriiennenoannnansinns 8vo,
Martens’s Handbook on Testing Materials. (Henning.) ............... 8vo,
Maurer’s Technical Mechanics, ... ..ccivi i, 8vo,
Merriman’s Mechanics »f Materials, ........... ARG § Y LAEEE LSS e 8vo,
Strength of Materiall .. ... ...ttt niiae e 12mo,
Metcalf’s Steel. A mansa._Jor Steel-users... ...........oconinononnn I2mo,
Sabin’s Industrial and Artistic Technology of Paints and Varnish. ...... 8vo,
Smith’s Materials of Machines. ... ... vt ittt 12mo,
Thurston’s Materials of Engineering. .. .....ccooviiivane. .. 3 vols., 8vo,
Pagt I, Tton afid-Steel. somn oy« v vameens o ¢ ¢ owrns & 2 @ swmes 5 s ¥ 5 aevos 4 8vo,
Part III. A Treatise on Brasses, Bronzes, and Other Alloys and their
COnEHATENTE: s 5 5 s = fven i 55 8 e i 5 8 5o 3s & § 5 § W0J0WT § § 5 59650 5 8vo,
Text-book of the Materials of Construction. ... .................. 8vo,
Wood’s (De V.) Treatise on the Resistance of Materials and an Appendix on
the Preservation of Timber. ... cvviveeivrer i 2vo,
Elements of Analytical Mechanics. .................... P 8vo,
Wood’s (M. P.) Rustless Coatings: Corrosion and Electrolysis of Iron and
Ste8los: & sewmps 3 5 5 wwnps & 3 aawews s Vg § § s e 8 e 8vo,

STEAM-ENGINES AND BOILERS.

Berry’s Temperature-entropy Diagrami.......oovivn e ennvenn. 12mo,
Carnot’s Reflections on the Motive Power of Heat. (Thurston.). ., ..I2mo,
Dawson’s ‘ Engineering” and Electric Traction Pocket-book. . ..16mo mor.,
Ford’s Boiler Making for Boiler Makers............cooovviiunavennn. 18mo,
Gio8s’s LOCOTOtIve BHATIS, « o wowms 8555 5w 25 6 5 LGHSA 5 5 8 Moo 5 3 4 L550 4 8vo,
Hemenway’s Indicator Practice and Steam-engine Economy.......... i2mo,
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Hutton’s Mechanical Engineering of Power Plants. .............o.onn.. 8vo,
Heat and Heat-engines. ... .......ooonuunn..

Kent’s Steam boiler ECOMOMY. v v\t v vvvvtvesreneenunnnneenens

Kneass’s Practice and Theory of the Injector,

MacCord’s Slide-valves. .....................

Meyer’s Modern Locomotive Construction. . .....

Peabody’s Manual of the Steam-engine Indicator.

Tables of the Properties of Saturated Steam and Other Vapors ..... 8vo,
Thermodynamics of the Steam-engine and Other Heat-engines.. ... . 8vo,
Valve-gears for Steam-engines. . ........coevirunnennnennnnnnnn. 8vo,
Peabody and Miller’s Steam-boilers, ......... S — 8vo,
Pray’s Twenty Years with the Indicator........... Large 8vo,
Pupin’s Thermodynamics of Reversible Cycles in Gases and Saturated Vapors.
(OSEELBErg, )v o « wn s v 5 & svarm 5 5 8 & wees s 5 & & 0dsn 5 & 5 § SEEVEE 5 12mo,
Reagan’s Locomotives: Simple Compound, and Electric. v v vvvv.v.... 12mo,
Rortgen’s Principles of Thermodynamics. (Du Bois.).e.s vviunnn... *.8vo,
Sinclair’s Locomotive Engine Running and Management........,.... 12mo,
Smart’s Handbook of Engineering Laboratory Practice
Snow’s Steam-boiler Practice. .. .....ovuniiinniiii i
Spangler’s Valve-gears. ..........
Notes on Thermodynamics
Spangler, Greene, and Marshall’s Elements of Steam-engineering . ...... 8vo,
Thoitias’s StEamM-tUrDBINES. e « v o o » swwms 5 6 & & svsms § 6 & eemeo b ¥ 5 5 EREam o 8vo,
Thurston’s Handy TABleR: comuns s s o owaeie s s 8 aaw/s s o ¢ 50 4 62 5 5 oo 8vo,
Manual of the Steam-engine. ..........coovunevieennnnn 2 vols., 8vo,
Part I. History, Structure, and Theory. ... ...
Part II. Design, Construction, and Operation....................
Handbook of Engine and Boiler Trials, and the Use of the Indicator and
thig PEofiy-Braloes o wemmcn 5 5 o comn a v 0 wwossen 5 # ¢ eemsin ¥ & & s § 8vo,
Stationary Steam-enginesic v s s o ¢ vwmin 5 5 § v s 7§ geewa s 36 sewE e 8vo,
Steam-boiler Explosions in Theory and in Practice ... ........... 12mo,
Manual of Steam-boilers, their Designs, Construction, and Operation. . ... 8vo,
‘Wehrenfenning’s Analysis and Softening of Boiler Feed-water (Patterson) 8vo,
‘Weisbach’s Heat, Steam, and Steam-engines. (Du Bois.)............. 8vo,
Whitham’s Steam-engine Design. ... ....oouiitniiiiiiieenennn. 8vo,

Wood’s Thermodynamics, Heat Motors, and Refrigerating Machines. . .8vo,

MECHANICS AND MACHINERY.

Barr’s Kinematics of Machinery. .. ....c.oovviiniiiiiiiineineennns 8vo,
* Bovey’s Strength of Materials and Theory of Structures ............. 8vo,
Chase’s The Art of Pattern-making. .. .....ooniineneninnenenaa.. 12mo,
Church’s Mechanics of Engineering.. .....covvuiiiienieniienenenoun 8vo,
Notes and Examples in Mechanics. . oovvevvriniin i, 8vo,
Compton’s First Lessons in Metal-working. . . G aE AN 3 E E . 12mo,
Compton and De Groodt’s The Speed Lathe..........oovuvenninn, 12mo,
Cromwell’s Treatise on Toothed Gearing................cociunnnnn. 12m0,
Treatise on Belts and Pulleys.. .. ... ....veiviinnuerninnernnnn 12mo,
Dana’s Text-book of Elementary Mechanics for Colleges and Schools. . 12mo,
Dingey’s Machinery Pattern Making . ................. ..ot 12mo,
Dredge’s Record of the Transportation Exhibits Building of the World’s
Columbian Exposition of 1803......... ...t 4to half morocco,
u Bois’s Elementary Principles of Mechanics:

Vol. Y. XKinematics,  .c..,ow séseaemnssssavunniyqoonsssss 8vo,

Vol. IL: SUAicEs, v .00 55485 0ums 88 ¢ saei § 5 § oowms s v ¢ Sesss 5 ¥ v o 8vo,
Mechanics of Engineering. Vol. I..... .. .Small 4to,

72+ R S Small 4to,

Durley’s Kinematics of Machines. . ..... «eovvrercreiirnacerenans.. 8vo,
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Fitzgerald’s Boston Machinist. .. ......oovuniniiiineiinennrenaens 16mo,
Flather’s Dynamometers, and the Measurement of Power. ........... 12mo,
RODE DIIVIIEL 1o 5 5 nosamis § 5 S95ms & 3 & SO 5 5 5 Som & & & Smevie s o & 5 12mo,
Goss’s Locommotive Sparks: . ... iepsiaonssssinmisesanns ...8vo,
* Greene’s Structural Mechanies.. .. ...oovrvnreier e . .8vo,
Hall'siCar TATNTICATION s 5 5 sviwis 5 5 & 0975005 § 5 5,050 & § L0008 & § 8 HE%5% 8§ ¥ § 12mo,
Holly’stArt of SaW Flins o s s s v omn s 55 vewin d § 5 wamn 5§ 8 Badms 45 ¥ 18mo,
James’s Kinematics of a Pointand the Rational Mechanics of a Particle.
Sma'l 8vo,
* Johnson’s (W. W.) Theoretical Mechanics. . o.. ..o iviirinrennnns 12mo,
Johnson’s (L. J.) Statics by Graphic and Algebraic Methods. ....... «...8vo,

Jones’s Machine Design:

Part 1. Kinematics of Machinery. ........ .......cccovvieinnn

‘Part II. Form, Strength, and Proportions of Parts. .. .....
Kerr’s Power and Power Transmission. ......................
Lanzals Applied. MeGHamien. « & s u o 5 somen § 5 $LE0% € 5 o US0FE 3 8 S ¢ 5 8vo,
Leonard’s Machine Shop, Tools, and Methods........................ 8vo,
* Lorenz’s Modern Refrigerating Machinery. (Pope, Haven, and Dean.).8vo,
MacCord’s Kinematics; or. Practical Mechanism. .

Velocity Diagrams. » v o vvveinn et ee it e,
* Martin’s Text Book on Mechanics, Vol. I, Statics. . . ...
Maurer’s Technical Mechanics

%  Elements of Mechanics.............oooeeeiiieeiinenn...
* Michie’s Elements of Analytical Mechanics. . . .............ovunn...
* Parshall and Hobart’s Electric Machine Design. .. .........
Reagan’s Locometives. Simple, Compound, and Electric
Reid’s Course in Mechanical Drawing. . . .....ovvtiniennennnnn...
Text-book of Mechanical Drawing and Elementary Machine Design.8vo,
Richards's Compressed. Al s v « sl 5 v « saramse & o o vt 4 5 @ s o ¢ Wi
Robinson’s Principles of Mechanism.

Ryan, Norris, and Hoxie’s Electrical Machinery. Vol. L .............. 8vo,
Sanborn’s Mechanics: Problems. .. .............covvuenvo... Large 12mo,
Schwamb and Merrill’s Elements of Mechanism. .. ................... 8vo,
Sinclair’s Locomotive-engine Running and Management. .. .......... 12mo,
Smith’s (0.) Press-working of Metals ,.................

Smith’s (A. W.) Materials of Machines

Smith (A. W.) and Marx’s Machine Design,

Spangler, Greene,and Marshall’s Elements of Steam-engineering.

WOTE i 2 2 5.5 % 500l ¥ o m sdlimsnse 0 4 o n summs B 5 8 Go0s 5 5 5000 5.3 § e 8vo,
Animalas a Machine and Prime Motor, and the Lawe of Energetics, 12mo,
Warren’s Elements of Machine Construction and Drawing. . ........... 8vo,
Weisbach’s Kinematics and Power of Transmission. (Herrmann—XKlein:).8vo,
Machinery of Transmission and Governors. (Herrmann—XK!zin.).8vo,
Wood’s Elements of Analytical Mechanics. ........ovvievervnnnavens. 8vo,
Principles of Elementary Mechanics, « v.oovvvvneveenevunnnrern, 12mo,
Turbines. . ......... e I T TTTYT™” 8vo,
The World’s Columbian Exposition of 1893 ... cvverevenns Wi 1 2 6 e #410%
METALLURGY.
Egleston’s Metallurgy of Silver, Gold, and Mercury:
Vol L. SIVEIE o 5 5 o sovmmans 5 v 5 s & 5 5§ HOEHE § £ § SRS £ 2 8 it 8vo,
Vol II.  Gold mod Mereoryio . « o o vowes 6 5 § 85555 ¢ § 5 0580mn s o 2 s 8vo,
Goesel’s Minerals and Metals: A Reference Book.. . ... . .16mo, mor
#* Jles’s Lead-smelting. (Postage ¢ cents additional.). .............. 12mo,
Keep's Cast TrOH v 5o vwwos 50 6 650695 2 55 5 065 8 55 5 f0sinm 2 x 5 sy WE— 8vo,

I

H NN NWH

TN W e W NN NDA HULD M HULA A TN W H

W W HW W

H N H WU HW

NN W

0o
00
oo
00
50
0o
78

oo
(o]0
50
00
oo
00
25
50
00

50
50
00
50
50



Kunhardt’s Practice of Ore Diressing Tm BEarone] sews sass s s & saaws & § ¢ 569 8vo,

Le Chatelier’s High-temperature Measurements. (Boudouard—Burgess.)12mo.
Metcalf’s Steel. A Manual for Steel-users. . . ...................... 12mo,
Miller’s Cyanide ProCess. . «. ... ..ottt e 12mo,
Minet’s Production of Aluminum and its Industrial Use. (Waldo.). .. .12mo,
Robine and Lenglen’s Cyanide Industry. (Le Clerc.)..o. ............. 8vo,
Smith’s Materials of Machines. .....................c.cceuuuurn... 12mo,
Thurston’s Materials of Engineering. In Three Parts. ................ 8vo,
Part II, Ironand Steel.u.....oooveiiiiinie i, 8vo,
Part III. A Treatise on Brasses, Bronzes, and Other Alloys and their
Constituents. ..o e 8vo,
Ulke’s Modern Electrolytic Copper Refining. .. v.ovuvvvvnnuinennnn... 8vo,
MINERALOGY.
Barringer’s Description of Minerals of Commercial Value. Oblong, morocco,
Boyd’s Resources of Southwest Virginia. ............................ 8vo,
Map of Southwest Virignia........................ Pocket-book form.
Brush’s Manual of Determinative Mineralogy., (Penfield.)............. 8vo,
Chester’s Catalogue of Minerals. .. ........c.oviuniunninnennn .. 8vo, paper,
Cloth,
Dictionary ot the Names of Minerals. . ... \.ovounrens e .. 8vo
Dana’s System of Mineralogy. .. .................. Large 8vo, half leather
First Appendix to Dana’s New “‘ System of Mineralogy.” ... ..Large 8vo,
Text-book of Mineralogy. .. .. ..ottt
Minerals and How to Study Them . .. .........0coiririnnun....
Catalogue of American Localities of Minerals... .........
Manual of Mineralogy and Petrography. .. .............
Douglas’s Untechnical Addresses on Technical Subjects 3
Bakle's Mineral Tables, oo vowmnis o vowms s 58 comss s § Fowes § ¢ selies & 8
Egleston’s Catalogue of Minerals and Synonyms. ..............c......
Goesel‘s Minerals and Metals: A Reference Book.. ...........
Groth’s Introduction to Chemical Crystallography (Marshall)........ 12mo,
Hussak’s The Determination of Rock-forming Minerals. (Smith.).Small 8vo,
Merrill’s Non-metallic Minerals® Their Occurrence and Uses. .. ....... 8vo,
* Penfield’s Notes on Determinative Mineralogy and Record of Mineral Tests.
8vo, paper,
Rosenbusch’s Microscopical Physiography of the Rock-making Minerals.
CTAAIBEE)s ¢ 2 v 5 5+ & LEEES 5 5 QERIE™S 5 5 POEEF 6 5 & SWHE § 5 8 N5 § 9 8vo,
% Tillman’s Text-book of Important Minerals and Rocks. ........covunn. 8vo,
MINING.
Beard’s Ventilation of Mines. .........cvevnnnnn %% § e § § swewEs 7 12mo,
Boyd’s Resources of Southwest Virginia. ........oovviiiiiiiiiann, 8vo,
Map of Southwest Virginia...............co.ooounn Pocket-book form .
Douglas’s Untechnical Addresses on Technical Subjects. . ............ 12mo,
* Drinker’s Tunneling, Explosive Compounds, and Rock Drills. . 4to, hf. mor.,
Eissler’s Modern High ExploSiVes. .. ov vt ivinneunerennnneen.. &=n
Goesel’s Minerals and Metals: A Reference Book.. .......... 16mo, mor.
Goodyear’s Coal-mines of the Western Coast of the United States...... 12mo,
Thiseng’s Manual of Mining......uvercecmnnerinnnnniene cueeenuin. 8vo,
#% Jles’s Lead-smelting. (Postage gc. additional.)e ... ...voovuun.... 12mo,
Kunhardt’s Practice of Ore Dressing in Europe. . . .v.vvvvvieinnnnnn... 8vo,
Miller’s Cyanide ProCeSS. e av v vvv v v tnnennenneneriennarineeeneens 12mo,
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O’Driscoll’s Notes on the Treatment of Gold Ores. ...
Robine and Lenglen’s Cyanide Industry. (Le Clerc.)... .....cooovenen 8vo,
* Walke’s Lectures on EXplosives.. .. ...t
Weaver’s Military Explosives. .. ... ...viivine e s
Wilson’s Cyanide Processes. .........couvverensceraseeronns
Chlorination Process. - v oooovevviiiiurenrvanncsossans
Hydraulic and Placer Muning. oo ..oovvvivrmnnnnsencosesns .
Treatise on Practical and Theoretical Mine Ventilation. ..........

SANITARY SCIENCE.

Bashore’s Sanitation of a Country House. ......ccovtiiiienrnieeins 12mo,
*  Qutlines of Practical Sanitation...............c..ciiiiiiiennn I2mo,
Folwell’s Sewerage. (Designing, Construction, and Maintenance.). .....8vo,
Water-supply Engineering. c.....o.ovvniirimienneann...
Fowler’s Sewage Works Analyses. . .
Fuertes’s Water and Public Health. .
Water-filtration Works. ..........ccuiiiiiiinennernenanannnen
Gerhard’s Guide to Sanitary House-inspection . ..........coovvvnn. ..
Goodrich’s Economic Disposal of Town’s Refuse.
Hazen’s Filtration of Public Water-supplies
Leach’s The Inspection and Analysis of Food with Special Reference to State

Comntrol. o v vttt e 8vo,

Mason’s Water-supply. (Consxdered principally from a Sanitary Standpoint) 8vo,
Examination of Water. (Chemical and Racteriological.)......... 12mo,
Opdén’s Sewet DESTEN s z rays 52 5 95m0% § 5 = 55502 5 8 5508 5§ 5668 ¥ a s I12mo,

Prescott and Winslow’s Elements of Water Bacteriology, with Special Refer-
ence to Sanitary Water Analysis. .

* Price’s Handbook on Sanitation..................
Richards’s Cost of Food. A Study in Dietaries...........
Costyof Living as Modified by Sanitary Science
Cost of Shelter. . ... .....uiiii i i 12mo,

Richards and Woodman’s Air, Water, and Food from a Sanitary Stand-
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* Richards and Williams’s The Dietary Computer. ...........cooveunn..
Rideal’s Sewage and Bacterial Purification of Sewage.......
Turneaure and Russell’s Public Water-supplies. ........
Von Behring’s Suppression of Tuberculosis. (Bolduan.).
Whipple’s Microscopy of Drinking-water. .. .......coovviiineeinnnn..
Winton’s Microscopy of Vegetable Foods. . .. oovvvnneunnnnerinenn..
Woodhull’s Notes on Military Hygiene. .. .........
*  Personal Hygieme, c v v vvvinninnennennn e

MISCELLANEOTS.

De Fursac’s Manual of Psychiatry. (Rosanoff and Collins.). . ..Large r2mo,
Ehrlich’s Collected Studies on Immunity (Bolduan)............ ... ..8vo,
Emmons’s Geological Guide-book of the Rocky Mountain Excursion of the

International Congress of Geologists. ... ............... Large €vo,
Ferrel’s Popular Treatise onthe Winds. . ..........oovivunvn.. ey 8vo.
Haines’s American Railway Management. .................... “....I2mo,
Mott’s Fallacy of the Present Theory of Sound ................ .....16mo,
Ricketts’s History of Rensselaer Polytechnic Institute, 1824-1894..Small 8vo,
Rostoski’s Serum Diagnosis. (Bolduan.). ........... § &

Rotherham’s Emphasized New Testament... ..... Simminihsn »
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Steel’s Treatise on the Diseases of the Dog. . ........
The World’s Columbian Exposition of 1803
Von Behring’s Suppression of Tuberculosis.
Winslow’s Elements of Applied Microscopy
‘Worcester and Atkinson. Small Hospitals, Establishment and Maintenance;

Suggestions for Hospital Architecture : Plans for Small Hospital. 12mo,

HEBREW AND CHALDEE TEXT-BOOKS.

Green’s Elementary Hebrew Grammar............... ... _r 12mo,
Hebrew Chrestomathiy. . .. ....uutieenne e e eneananes 8vo,
Gesenius’s Hebrew and Chaldee Lexicon to the Old T'eastkmgxlt Scriptures.
(Trepelles oo o s s sovmmng s savmens s 5 nivme Small . 4t9, half fnorocco,
Letteris’s Hebrew Bible.. .... 5§ 3 - 8vo,
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