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AUTHOR'S PREFACE. 

I N the following pages is contained a brief introductory 
account of some of the more fundamental portions of the theory 
of functions of a complex variable. The work was prepared 
originally as a chapter for the volume called " Higher Mathe­
matics," published in 1896. It has been enlarged by the addition 
of sections on power series, algebraic functions, and their integrals, 
functions of two or more independent variables, and differential 
equations. Furthermore, the section on uniform convergence 
has been extended, and the treatment of Weierstrass's theorem 
and of Mittag-Leffler's theorem has been simplified. 

It is hoped that the present work will give the uninitiatea 
some idea of the nature of one of the most important branches 
of modem mathematics, and will also be useful as an introduction 
to larger works, such as those in English by Forsj^h, Whittaker, 
and Harkness and Morley; in French by Jordan, Picard, Goursat, 
and Vall6e-Poussin; and in German by Burkhardt, Stolz and 
Gmeiner, and Osgood. 

NEW YOKE, August, igo6. 
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FUNCTIONS OF A COMPLEX VARIABLE. 

A R T . 1. D E F I N I T I O N OF FUNCTION. 

If two or more quantities are such that no one of them suf­
fers any restriction in regard to the values which it can assume 
when any values whatsoever are assigned to the others, the 
quantities are said to be "independent." 

A quantity is said to be a function of another quantity or of 
several independent quantities if the former is determined in 
value whenever particular values are assigned to the latter. 
The quantity or quantities upon the values of which the value 
of the function depends, are said to be the ' ' independent vari­
ables " of the function. 

A function is " one-valued," or "uniform," when to every 
set of values assigned to the independent variables there cor­
responds but one value of the function. It is said to be 
"M-valued" when to every set of values of the independent 
variables n values of the function correspond. 

The "Theory of P^unctions " has among its objects the 
study of the properties of functions, their classification accord­
ing to their properties, the derivation of formulas which exhibit 
the relations of functions to one another or to their independ­
ent variables, and the determination whether or not functions 
exist satisfying assigned conditions. 
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A R T . 2. REPRESENTATION OF COMPLEX VARIABLE. 

A variable quantity is capable, in general, of assuming both 

real and imaginary values. In fact, unless it be otherwise 

specified, every quantity w is to be regarded as having the 

" complex " form u-{-v V— i, u and v being real. It is cus-

toniary to denote V — i by i, and to write the preceding quan­
tity thus : u - j - iv. If v is zero, w is real; if « is zero, «/ is a 
" pure imaginary." 

A quantity z ^ x-\-iy is said to vary"continuously " when 
between every pair of values which it may take, c^ = a^-\- id^, 
^j = «2 "H ^^2' ^ and^ must pass through all real values inter­
mediate to «j and a^, b^ and b^, respectively, either once or a 
^nite number of times. 

I t is usual to give to a variable quantity z^ x -^-iyd, graphi­
cal representation by drawing in a plane a pair of rectangular 
axes and constructing a point whose abscissa and ordinate are 
respectively equal to x and y. To every value of z will corre­
spond a point; and, conversely, to every point will correspond 
a value of z. The terms " point " and value, then, may be inter-
ehanged without confusion. When z varies continuously the 
graphical representation of its varia­
tion, or its " path," will be a continuous 
line. This graphical representation is 
of the highest importance. By means 
of it some of the most complicated 
propositions may be given an exceed­
ingly condensed and concrete expres­
sion. 

By putting x — rzose,y = r sin d, where r is a positive real 
quantity, the point 

z = r(cos 6 -{-i sin 6) 
is referred to polar coordinates. The quantity r is called the 
absolute value or " modulus " of z. It will often be written \s\, 
0 is known as the '^argument " of z. 
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A function is sometimes considered for only such values of 
each independent variable as are represented graphically by the 
points of a certain continuous line. In the study of functions 
of real variables, for example, the path of each independent 
variable is represented by a straight line, namely, the axis of 
real quantities, or y = o. 

A R T . 3. ABSOLUTE CONVERGENCE. 

The representation of functions by means of infinite series 
is one of the most important branches of the theory of func­
tions. In many problems, in fact, it is only by means of series 
that it is possible to determine functions satisfying the condi­
tions assigned and to obtain the required numerical results. 
Frequent use will be made of the following theorem. 

Theorem.—If the moduli of the terms of a series form a 
convergent series, the given series is convergent. 

Let the given series be W^=-'W^-\-w^-\- . . . - | - w „ - j - . . . 
in which w, = r„ (cos 0^ + tain 6'„), w, = r, (cos 6^ + ism 0,) . . . 
By hypothesis the series R = r^-\-r^-{-. . . + r„- j - • • • 's 
convergent. Its terms being all positive, the sum of its first in 
terms constantly increases with m, but in such a manner as to 
approach a limit. The same will be true necessarily of any 
series formed by selecting terms from R. The sum of the first 
m terms of the series Wis composed of two parts, 

r, cos (9, + 7-1 cos ^, • . • + r^-, cos 0^.,, 
• i{r, sin e„-\-r, sin e^-\-. . . - f r„,_, sin B„_^), 

and each of these in turn may be divided into parts which have 
all their terms of the same sign. Every one of the: four parts 
thus obtained approaches a limit as m. is increased ; for the 
terms of each part have the same sign, and cannot exceed, in 
absolute value, the corresponding terms of R. Hence, as m is 
increased, the sum of the first m terms of W approaches a 
limit; which was to be proved. 

A series, the moduli of whose terms form a convergent 
series, is said to be " absolutely convergent." 
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Prob. I. Show that the series i + 2 + 2' -f . . . -(- 2* -f-. . . is 
absolutely convergent, if | 2 | < i. 

A R T . 4. ELEMENTARY FUNCTIONS. 

In elementary mathematics the functions are usually con­
sidered for only real values of the independent variables. In 
the case of the algebraic functions, however, there is no dififi-
culty in assuming that the independent variables are complex. 
The theory of elimination shows that every algebraic equation 
can be freed from radicals. Every algebraic function, there­
fore, is defined by an equation which may be put in a form 
wherein the second member is zero and the first member is 
rational and entire in the function and its independent variables. 

Besides the algebraic functions, the functions most often 
occurring in elementary mathematics are the trigonometric and 
exponential functions and the functions inverse to them. The 
definitions, by which these functions are generally first intro­
duced, have no significance in the case where the inde­
pendent variables are complex. However, the following 
familiar series, 

•̂  6 • 4 • 

s' , z' z' c o s ^ = i - - + _ - _ - l - . . . , 

Z' Z' ^ ' 

sm .s = z i + —, r + • • • 

which have been established for the case where the variables 
are real, furnish most convenient general definitions for exp z, 
cos z, and sin z, these series being absolutely convergent for 
every finite value of z. "Defining the logarithmic function by 
the equation 

îog0 — exp {logz) = z, 

it follows that 
^s _ ^ loga _ gxp (^ log a). 
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The following equations also are to be regarded as equations 
of definition: 

sin z . cos z 
tan 2 = , cot z — , 

cos z sm z 
I I 

sec 2 = , cosec z = cos.sr sm.s 

It may be shown that the formulas which are usually obtained 
on the supposition that the independent variables are real, and 
which express in that case properties of and relations between 
the preceding functions, still hold when the independent 
variables are complex. 

Prob. 2. Show that e"'e" = «"*+ ", m and n being complex. 

Prob. 3. Deduce cos 2 = i(e'^ + e''"), sin z — —.{e'" — e'"). 

Prob. 4. Deduce cos (2, + z^) = cos z, cos ẑ  — sin z^ sin 2,, 
sin (Zj 4- 2,) = cos Zj sin 2, + sin 2, cos 2, . 

A R T . 5. CONTINUITY OF FUNCTIONS. 

Let a function of a single' independent variable have a 
determinate value for a given value c of the independent vari­
able. If, when the independent variable is made to approach 
c, whatever supposition be made as to the method of approach, 
the function approaches as a limit its determinate value at c, 
the function is said to be " continuous " at c. 

This definition may be otherwise expressed as follows: A 
function of a single independent variable is continuous at the 
point c, when, being given any positive quantity e, it is possible 
to construct a circle, with center at c and radius equal to a 
determinate quantity 6, so small that the modulus of the 
difference between the value of the function at the center and 
that at every other point within the circle is less than e. 

A function of several independent variables is said to be 
continuous for a particular set of values assigned to those vari­
ables, when it takes for that set of values a determinate value 
c, and for every new set of values, obtained by altering the 
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variables by quantities of moduli less than some determinate 
positive quantity 6, the value of the function is altered by a 
quantity of modulus less than any previously chosen arbitrarily 
small positive quantity e. 

A function of one independent variable is said to be con­
tinuous in a given region of the plane upon which its indepen­
dent variable is represented, if it is contiuuous at every point 
in that region. 

From the principles of limits, it follows that if two functions 
are'continuous at a given point, their sum, difference, and prod-
uct are continuous at that point. As an immediate conse­
quence, every rational entire function of z is continuous at 
every finite point; for every such function can be constructed 
from z and constant quantities by a finite number of additions, 
subtractions, and multiplications. 

Let a function of a single independent variable be contin­
uous at c, and let it take at that point the value i, different 
from zero. Suppose also that at any other point c-\- Ac the 
function takes the value t + At. Then 

I I At 

t-\- At t t[t-\- At) 

If it be assumed that | J /1 < | if |, the modulus of the preceding 
difference cannot exceed 

\At\ 
\t\{\t\ -\At\)' 

and will, therefore, be less than e if 

\At\< i+e\t\-

Hence if a function is continuous and different from zero 
at a point c, its reciprocal is also continuous at c. It follows 
at once that if two functions are both continuous at c, their 
ratio is continuous at c, unless the denominator reduces to zero 
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at that point. But every rational function olz may be expressed 
as the, ratio of two entire functions. It is therefore continuous 
for all values of z except those for which its denominator 
vanishes. 

Consider the function exp^, 

gz+A^ _ ^ = (̂̂ A^ - I) = e^iAs-^--^. , .Y 

Hence if \Az\<i, 

but the limit of the third member is zero when \Az\ ap­
proaches zero. Hence exp z is continuous for all finite values 
of z. 

Prob. 5. Show that cos 2 and sin 2 are continuous for all finite 
values of 2. 

Prob. 6. Show that tan 2 is continuous in any circle described 
about the origin as a center with a radius less than -Ĵ r. 

A R T . 6. GRAPHICAL REPRESENTATION OF FUNCTIONS. 

It was shown in Art. 2 that a plane suffices for the complete 
graphical representation of the values of an independent vari­
able. In the same way it is convenient to use a second plane 
to represent graphically the values of any one-valued function. 
For example, if w —f{z) be such a function, to each point 
yp _[_ /y of the independent variable will correspond a point 
n _]_ ii, of the function. This point u + iv is called the " image " 
of the point x-\-iy. If w is a continuous function of z, then 
every continuous curve in the ^•-plane will have an image in 
the w-plane, and this image will be also a continuous curve. 

Consider the expression tc -\- iv = x" -\- y' -{- 2ixy, Here 
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u = x* -\- y* and v = 2xy. Since to every value of z corre­
spond determinate values of x and y, 
and consequently determinate values 
of u and v, this expression falls un­
der the .general definition of a func­
tion of .s'. It is evidently continuous. 
Every straight line x — t parallel to 
the axis of y is converted by means 
of it into a parabola v" = 4f{u — t'). 

Prob. 7. Find the family of curves 
into which the straight lines parallel to 
the axis of ^ are converted by means of 
the function u -]- iv = x' — y' -\- lixy. 
of this family intersect. 

Show that no two curves 

A R T . 7. DERIVATIVES. 

Let w = f{z) be a given function of z. If k is an " infini­
tesimal," that is, a variable having zero as its limit, and if the 
expression 

f[z + k)-f{z) 
h 

has a finite determinate Hmit, remaining the same under all 
possible suppositions as to the way in which ,̂  approaches zero, 
this Hmit is said to be'the " derivative " of the function f{z) at 

the point z. In this case w = f{z) is said to be " monogenic " 
dtv 

at z. The derivative is written f'{z) or -j—. A function is said 

to he monogenic in a region of the plane of the independent 
variable if it is monogenic at every point of that region. 

Consider now the circumstances under which a function 
w =^ u -^ iv may have a derivative at the point z ^^ x -^ iy. 
If z be given a real increment, x is changed into x -\- Ax, while 
y is unaltered, so that Az = Ax; and 

Aw 
~Az 

Au . Av 
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If, on the other hand, z is given a purely imaginary incre-
ment, Az = iAy, and 

Aw _ Au Av 
Az ~ iAy Ay ' 

If the second members of these equations approach deter­
minate limits as Ax and Ay approach zero, and if these limits 
are equal, 

'dx^'^-dx~ ^ dy '^' 

Hence, equating real and imaginary parts, 

9M_ _ 9w dv __ du 
dx ~dy' dx~~dy' 

which are necessary conditions for the existence of a derivative. 

I t can be shown that these conditions are also sufficient.* 
For let the increment of the independent variable be entirely 
arbitrary, no supposition being made as to the relative magni­
tudes of its real and imaginary parts. Then the diffeijential of 
the function, that is, that part of the increment of the function 
which remains after subtracting the terms of order higher than 
the first, is 

^ \dx ̂  dx/ ^ \dy ^ dyl -^ \dy dy 

''dii_ I .dv 
du + idv \c>x ' 'dxJ ' \dy dyl 

Hence / ^ .•QT/\ /du_ .dv\ dy_ 
^3.^ 9^/ W dy' dx 

dx 4 - idy , -dy 

'+'d^ 
which, by virtue of the conditions written above, is equal to 
either member of the equation 

9« .•dv_ _ _ -9^ _|_ _9f 
dx ~^ ^dx ~ ^dy ~^ dy 

The value thus obtained is independent of -f̂ , or, what is the 
dx 

* For a complete discussion see article by E. Goursat in the Transactions of 
the Amer. Math. Soc, vol. i, p. 14. 
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same thing, of the direction of approach to the point z. The 
existence of a derivative of the function w depends, therefore, 

only on the existence of partial derivatives —, ?^, —, ?^ 
dx dx dy dy 

satisfying the specified equations of condition. 

The same equations of condition express the tact that 
t« = w - j - iv, supposed to be an analytical expression involving 
X and y, and having partial derivatives with respect to each, 
involves ^̂  as a whole, that is, may be constructed from z by 
some series of operations, not introducing x or y except in the 
combination x -\- iy. In other words, they indicate that x and 
y may both be eliminated from w = (t>{x, y) by means of the 
equation z ^ x -\- iy. This property, however, is not sufficient 
to define a function as monogenic, for not every function which 
possesses it has a derivative with respect to z. 

A monogenic function is necessarily continuous ; that is, 
the existence of a derivative involves continuity. For, if 

limit •'-^—!—I ^-5^ =f \^\ 

it follows that 

f{zJ^h)=A^) + h\f'{?)-\-r,\ 

where r} approaches zero with h. Hence f{z) is the limit of 
A^-\'^) when k approaches zero, or f{z) is continuous at the 
point z. 

The following pages relate almost exclusively to functions 
which are monogenic except for special isolated values of z. 
Functions which are discontinuous for every value of the inde­
pendent variable, and functions which are continuous but admit 
no derivatives, have been little studied except in the case of 
real variables.* 

* In this connection see G. Darboux, Sur les fonctions discontinues, Annales de 
I'Ecole Normale, Series 2, vol. 4 (1875), pp. 51-112. For a systematic treatment 
of functions of a real variable, see the German translation of Dini's treatise by 
Liiroth and Schepp, Leipzig, 1892. For an illustration of a function constructed 
from « by a series of arithmetical operations and discontinuous for a particular 
value of z, see the expression given on pag3 53. 
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A R T . 8. CONFORMAL REPRESENTATION. 

Let z start from the point z^ and trace two different paths 
'orming a given angle at the point z,,. and let z^ and z.^ be arbi­
trary points on the first and second paths respectively. Then 

z^ — z^ =i rj(cos 6*, -|- z sin 6^ = ?-/'*i, 

where r, denotes the length of the straight line joining z„ and 

z^, and 6^ denotes the inclination of this line to the axis of 
reals. In the same way, for the point z^, there is an equation 

z^ — 2^=^ r^ (cos 0, ~\- i sin 6^ = r^e^^"^. 

If now w is a one-valued monogenic function of z, in the 
region of the .s-plane considered, to the points z^, z^, z, corre­
spond points w^, w^, w^; and for these points can be formed 
the equations 

w, — w. p, /*" , w^ — w,= p/'^". 

From the supposition that w is monogenic, it follows at 
once that, when z^ and z^ are assumed to approach z^, 

limit ^ ' - ^ ° = Hmit ^ - - ^ 
2. — 2„ 

If the members of this equation are not equal to zero, it rhay 
be put in the form 

hmit —3 ° = limit -J ^ 
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or 

Hence 

FUNCTIONS OF A COMPLEX VAEIABLE. 

limit /?V'<*>-*'> = limit "L'e''^"^-'^. 

limit (0.~<^,) = limit ( ^ . - ^ , ) ; 

and the images in the w-plane of the two paths traced by 2 
form at w„ an angle equal to that at z, in the ^^-plane. Accord­
ingly, if z be supposed to trace any configuration whatever 

in a portion of the ^^-plane in which —_ is determinate and not 
dz 

equal to zero, every angle in the image traced by w will be 
equal to the corresponding angle in the .s-plane. If, for exam­
ple, such- a portion of the ^•-plane be divided into infinitesimal 
triangles, the corresponding portion of the w-plane will be 
divided in the same manner, and the corresponding triangles 
will be mutually equiangular. Such a copy upon a plane, or 
upon any surface, of a configuration in another surface is called 
a " conformal representation." 

dw 
dz 

= limit 
Aw 

is the The modulus of the derivative , _ ,„„ , , 
dz Az 

" magnification." Its value, which, in general, changes from 
point to point, may be obtained from the relations 

dw 
dz 

IduV . (dvV IduV ,(dvV 

= teJ+U =\Vyl'^\d^l 
_ dti^dv_ _ du dv 
~ dx dy dy dx' 

The theory of conformal representation has interesting ap­
plications to map drawing.* 

* For the literature of the subject, see Forsyth, Theory o^ Functions, 
p. 500, and Holzm-illler, Einfuhring in die Theorieder isogonalen Verwandschal-
ten und der conformen Abbildungen, verbunden mit Anwendungen auf mathe-
niatische Physik. 
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A R T . 9. E X A M P L E S OF CONFORMAL REPRESENTATION. 

Example I.—Let w =: 2-{-c. This function is formed 
from the independent variable by the addition of a constant. 
Putting for w, 2, and c, respectively, u - j - iv, x -\-iy, and a -f- ib, 
one obtains 

u=2x-\-a, v=y-\-b. 

Any configuration in the s'-plane appears, therefore, in the 
w-plane unaltered in magnitude, and is situated with respect to 
the axes as if it had been moved parallel to the axis of reals 
through the distance a and parallel to the axis of imaginaries 
through the distance b. The following diagrams represent the 
transformation of a network of squares by means of the rela­
tion w ^ z -\- c. 

Example II .—Let w = cz. Writing w= p^'^, z = re^^, 
and c = r^e^, the following equations result: 

p = r,r, cp - e^-\-&. 

The origin transforms into the origin, ah distances measured 
from the origin are multiplied by a constant quantity, and 
all straight lines passing through the origin are turned through 
a constant angle. See the foHowing diagrams. 
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Example III.—Let w = e". Wri t ingz = x-\-iy, the func­
tion becomes 

w = £*/' = e'^cosy + i sin 7). 

Every straight line x = t^ parallel to the axis of y is trans­
formed into a circle p = £*' described about the origin as a 
center, the axis oi y becoming the unit circle. Points to the 
right of the axis of y fall without the unit circle, while points 
to the left of this axis fall within. Every straight line y — t^ 
parallel to the, axis of x becomes a straight line v/u = tan t^ 
passing through the origin. The accompanying diagrams* 
exhibit in a simple manner the periodicity expressed by the 
equation 

exp {z -(- 2nni) = exp (z), 

where 7t is any positive or negative integer. 

To every point in the w-p\ane, excluding the origin, corre­
spond an infinite number of points in the ^-plane. These 
points are all situated on a straight line parallel to the axis of 

* The figures of this and the following example are taken from Holzmilller's 
treatise. 



EXAMPLES OF CONFOEMAL EEPEESBNTATION. 15 

y, and divide it into segments, each of length 2;r. If z' be one 
of these points, the general value of the inverse function is 

log w =• z' -\- 2.nin, 

where n is any positive or negative integer. 

If any straight line beginning at the origin be drawn in the 
cc-plane, there will correspond in the ^^-plane an infinite number 

2j r -

Sjr 
2 ~ 

M 

of straight lines parallel to the axis of x, dividing that plane 
into strips of equal width. To any curve in the zc/-plane 
which does not meet the line just drawn, will correspond in 
the .e'-plane an infinite number of curves, of which there will be 
one in each strip. 

Example IV.—Let w = "cos z. Writing w = u-\- iv, z = 
x-\-iy, and employing as equations of definition cos {iy) =^ 
coshy, sin (iy) = i sinh_;>', the given function takes the form 

u -{- iv = cos X cosh y — i sin x sinh y. 

Hence cos X cosh jf, V sin X sinh J/. 
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Any straight line, x = t^, parallel to the axis of y, is trans­
formed into one branch of a hyperbola. 

u 
cos" t. I, 

having its foci at the points -|- i and — i. Any straight line, 
y =z t^, parallel to the axis of x, is transformed into an ellipse, 

+ 
V 

= I, cosh" /, ' sinh" t^ 

having its foci at the same points, any segment of the straight 
line equal in length to 27t corresponding to the entire curve 
taken once. By means of these confocal conies, the ze -̂plane 
is divided into curvilinear rectangles, the conformal represen­
tation breaking down only at the foci, where the condition 

that ^r- should be different from zero is not fulfilled. The 
dz 

periodicity of the function, expressed by the equation 

COS(̂ ' -j- 27t) — cosz, 
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is exhibited graphically 
in the accompanying 
diagrams. 

It is interesting to 
note in this example, 
as also in the preceding 
one, that the conformal 
represen ta t ion intro­
duces well-known sys­
tems of curv i l inear 
coordinates, the cartesian coordinates, x, y oi a point in the 
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r-plane serving to determine its image in the w-plane as an 
intersection of orthogonal curves. 

Example V.—Let w=^ 2^. Writing w = a -\- iv, Ji = 
X - j - iy, the relations 

u — x' — sxy^, V = 2xy — y' 

follow at once. If one of the variables x, y be eliminated from 
these two equations by means of the equation ix - j - ffty -\-n = o, 
representing a straight line in the .j-plane, equations are ob­
tained representing a unicursal cubic in the w-plane. 

By putting w = p(cos (p -\- i sin <p), z — r{cos 0 -\- i sin 6), 
the relations p =. r', 0 = 36*, are obtained. Hence the 
circle 

r" — 2ar cos Q -\- c^ =. (? 

gives the curve 

pS — 2ap^ cos —(- «" = c% 

which enwraps three times the point corresponding to the 
center. The accompanying figure represents this transfor­
mation, the straight YinQ feg giving the curve feg. 

dw 
dl 

To each point in the ?w-plane, excluding the origin, at which 

o and the conformal representation is not maintained. 
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t he r e correspond three points in the ^r-plane, having for their 

(p (p + 2n cp-\-All . . . , . , . , . 
a rguments —, . -—~-^—, respectively. A n y straight line 

drawn from the origin in the w-plane will have, therefore, three 

images in the ^r-plane, viz., three straight lines diverging from 

the origin, and dividing the plane into three equal regions. 

A n y cont inuous curve in the w-plane no t meet ing the line j u s t . 

drawn will be represented in the ^-plane by three curves, of 

which one will be s i tuated within each of these regions. In the 

figure here given are exhibi ted the three conformal represen­

ta t ions of a square formed in the w-plane by lines u ^^t^, u — 

/ j , V — t^, V — t^, parallel to the axes. 

If t h e relation between w and z be reversed, and z be 

t aken as a function of w, z will be a three-valued function, its 

values giving rise to three branches which will remain distinct 

and cont inuous except when w becomes equal to zero. 

Prob. 8. li w = z -{ , show that circles in the z-plane having 
2 

a common center at the origin transform into confocal ellipses. 
z — t 

Prob. 9. If w = ^ _^ .̂, show that the axis of reals in the 2-plane 

I, and the upper half of the 2-plane 
z -\- i 

transforms into the circle \7u\ 

into the interior of this circle, 
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A R T . 10. CONFORMAL REPRESENTATION OF A SPHERE. 

Let OPO' be a sphere having its diameter 00' equal in 
length to unity. Con­
struct tangent planes at 
at O and O'. Draw in 
the tangent plane at 
O rectangular axes Ox 
and Oy ; and in the 
other plane draw as 
axes O'u, parallel to Ox 
and measured in the 
same direction, and O'v 
parallel to Oy but meas­
ured in a contrary di­
rection. Join anj' point 
z in the plane xOy to 

O' by a straight line, and let O'z meet the sphere in P. Draw 
OP and produce it to meet the plane uO'v in w. 

From the similar triangles O'Oz and 00'w 

Oz 00' 
00' O'w 

that is. 

or Oz. O'w = 00' ; 

w I = rp ^ I. 

To an observer standing on the sphere at O' rotation about 
OO' from O'u toward O'v is positive, while to an observer 
standing on the sphere at 0 such a rotation is negative. 
Hence 

/_xOz = — /_uO'w, or 6* = — 0. 

The following equation results: 

wz = pre'<'l' + ̂ '> = I. 

The w- and s'-planes are therefore conformal representa­
tions of one another. Any configuration in one plane can be 
formed from its image in the other by an inversion with respect 
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to the origin as a center, combined with a reflection in the axis of 
reals. Such a transformation was termed by Cayley a " quasi-
inversion." By it points at a great distance from the origin 
in one plane are brought near together in the immediate neigh­
borhood of the origin in the other plane. 

Since the line O'Pz makes the same angle with the plane 
tangent to the sphere at P as with the plane xOy, any spherical 
angle having its vertex at P is projected into an equal angle at 
z. The sphere is thus seen to be related conformally to the 
plane xOy, and it must be also so related to the plane uO'v. 

The representation of the sphere upon a tangent plane in 
the manner described 'above is termed a "stereographic pro­
jection." When to this representation is applied a logarithmic 
transformation, that is, one inverse to the transformation 
described in Example III of the preceding article, the so-
called ' ' Mercator's projection ' ' is obtained. 

A R T . 11. CONJUGATE FUNCTIONS. 

The real and imaginary parts of a monogenic function, 
w = M - j - iv, have been shown to satisfy the partial differential 
equations 

du _dv 3 ^ _ _ 9^ 
dx"~ dy dx ~ dy'i 

At any point, therefore, where u and v admit second partial 
derivatives, one obtains 

d^,d''u_ 9V I 9V _ 

dx^^W' ' dx^^df-""'' 
that is, the functions u and v are solutions of Laplace's equa­
tion for two dimensions. Any two real solutions p and q of 
this equation, such that p-\-ig is a monogenic function of 
x-\-iy,d.rG called "conjugate functions."* Thus the examples 
of Art. 9 furnish the foHowing pairs of conjugate functions : 

* Maxwell, Electricity and Magnetism, 1873, vol. i, p. 227. 
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X -}- a, y-{-b ; r,r cos ((9, -f 6), r,r sin ((9, + (?) ; e" cosy, e' s\ny; 
cos X cosh J/, — sin x sinh_;v ; x' — ixy'', ^xy'' — y^. The second 
pair is expressed in polar coordinates, but may be transformed 
to cartesian coordinates by means of the relations 

r— Vx''-\-y', cos g — —_ , sin 61 = — - ^ . 

Vx'+f Vx'+f 
If one of two conjugate functions be given, the other is 

thereby determined except for an additive constant. Let u, 
for example, be given. Then 

dv = —dx 4- ~dv 
dx dy 

du , , du, 
= • dx A dy, 

dy dx •^' 
and therefore the value of v is 

/ ( - ^dx-\-^dy 
dy ^ dx-" 

The equations u ^=z c^, v =• c^, obtained by assigning con­
stant values to two conjugate functions, represent in the 
w-plane straight lines parallel to the coordinate axes. I t 
follows that the curves which these equations define in the 
.sr-plane intersect at right angles. Consequently, by varying 
the quantities c,^ and c,, two orthogonal systems of curves are 
obtained ; and c, and c^ may be taken as orthogonal curvilinear 
coordinates for the determination of position in the ^-plane. 

Prob. lo. Show that if p and q are conjugate functions of u and 
V, where u and v are conjugate functions of x and y, p and q will be 
conjugate functions of x and y. 

Prob. II. Show that if u and v are conjugate functions of x and 
y, X andy are conjugate functions of u and v. 

A R T . 12. APPLICATION TO F L U I D MOTION. 

Consider an incompressible fluid, in which it is assumed 
that every element can move only parallel to the .s'-plane, and 
has a velocity of which the components parallel to the coordi-
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nate axes are functions of x and y alone. Thfe whole motion 
of the fluid is known as soon as the motion in the 3-plane is 
ascertained. When any curve in the ^-plane is given, by the 
"flux across the curve"* will be meant the volume of fluid 
which in unit time crosses the right cylindrical surface having 
the curve as base and included between the ^•-plane and a par­
allel plane at a unit distance. 

The flux across any two curves joining the points z^ and z 
is the same, provided the curves enclose a region covered with 
'the moving fluid. For, corresponding to the enclosed region, 
there must be neither a gain nor a loss of matter. Let z^ be 
fixed, and z be variable. Let ^ denote the flux across any curve 
z^z, reckoned from left to right for an observer stationed at z^ 
and looking along the curve toward z. If I, in be the direction 
cosines of the normal (drawn to the right) at any point of the 
curve, and / , q be the components parallel to the axes of the 
velocity of any moving element, the value of ^ will be 

^ = / "(Ip -\- mq)ds, 

where the path of integration is the curve joining z^ and z. 
The function ^ is a one-valued function of z in any region 
within which every two curves joining z^ to z enclose a region 
covered with the moving fluid. 

If z moves in such a manner that the value of ^ does not 
vary, it will trace a curve such that no fluid crosses it, i.e., a 
" stream-Hne." The curves ^ = const, are aH stream-lines, and 
ip is called the " stream-function." If p and q are continuous, 
and if z be given infinitesimal increments parallel to x and y 
respectively, one obtains 

dik "drb ^ 

If now the motion of the fluid be characterized, as is the 

* Lamb's Hydrodynami •= ( So;), p. 6g. 
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case in the so-caHed " irrotational" motion,* by the existence 
of a velocity-potential cp, so that 

P 
9 0 _ 9 0 
dx' ^ dy' 

the following equations result: 

9 0 _ 9 ^ 9 ^ _ _ 9 0 
dx~dy' dx~ dy' 

Hence 0 - j - i^ is a monogenic function oi x -\- iy. The curves 
0 = const., which are orthogonal to the stream-lines, are 
called the " equipotential curves." 

Consider, as an example, the motion corresponding to the 
functionf w = z'.. The equipotential curves are given by the 

equations 

u^=^x'—ixy^=^const., 

the stream-lines by 
the equations 

V = ix'^y —jv^= const. 

• In the following fig­
ure the stream-lines 
are the heavy lines, 
while t h e equipo­
tential curves a r e 
dotted. 

The fluid moves 
i in toward the origin, 

which is called a " cross-point," from three directions, and 
flows out again in three other directions. At the cross-point 
the fluid is at a standstill, since at that point the yelocity, for 
which the general expression is 

v/ 9« 
dx. + 9«V 

dyr 
* In irrotational motion each element is subject to translation and pure 

strain, but not to rotation. 
f F . Klein : Rieraann's Theory of Algebraic Functions ; translated by 

Frances Hardcastle (1893), p. 3. 
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is equal to zero. The stream-lines in the figure represent the 
motion of the fluid in each of six different angles, as if the fluid 
were confined between walls perpendicular to the ^-plane. 

It is of importance to note that if the function considered 
be multiplied by i, the equipotential curves and stream-lines 
are interchanged, since the function (p-\-tip then becomes 
— ip-\- i(p. 

An example of particular interest is 

, z — a 
w ^ — /t log 

z-\-a 

Let z — a ^ r^e'^', z -\- a — r^c'^-^; then 

u = — ix\o%-, v= — )x{p, — d^. 
' a 

The curves u = const., v = const, form two orthogonal syŝ  
tems of circles, either of which may be regarded as the stream­
lines, the other constituting the equipotential curves. 

The velocities are everywhere, except at the points d: <2̂. 
finite and determinate. If the circles rjr, = const, be taken 
as the stream-lines, each of the points d: « is a " vortex-point." 
If the circles 6^-6^= const, be taken as the stream-lines, one 
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of the points ± a is a. " source," the other a " sink." In the 
latter case, besides the hydrodynamical interpretation, a very 
simple electrical iHustration is afforded by attaching the poles 
of a battery to a conducting plate of indefinite extent at two 
fixed points of the plate. 

As another example may be taken the relation w — cos z. 
As has been shown, the curves x = const, form a system of 
confocal hyperbolas, while the curves y = const, form an 
orthogonal system of ellipses. Either system may be regarded 
as stream-lines. In one case the motion of the fluid would be 
such as would occur if a thin wall were constructed along the 
axis of reals, except between the foci, and the fluid should be 
impelled through the aperture thus formed. In the other case 
the fluid would circulate around a barrier placed on the axis of 
reals and included between the foci. 

Besides their application to fluid-motion, conjugate func­
tions have important applications in the theory of electricity 
and magnetism * and in elasticity.f 

A R T . 13. SINGULAR POINTS. 

Let w be any rational function of z. It can be written in 
the form 

""- cpizy 

where y"(0) and 0 {z) are entire and without common factors. 
This function is finite and admits an infinite number of suc­
cessive derivatives for every finite value of z, except the roots 
of the equation 0 (2) = O. Let a be such a root. Then the 
reciprocal of the given function is finite and admits an infinite 
number of successive derivatives at the point a. Such a point 

* J. J. Thomson, Recent Researches in Electricity and Magnetism (1893), 

p . 208. 

\ Love, Theory of Elasticity (1892), vol. I, p. 331. 
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is called a "pole." Any rational function having a pole at a 
can be put by the method of partial fractions in the form 

^ = I ^ + - ' - + ( ^ ^ * + ̂ (̂ )' 
where A^, ..., A^ are constants, A^ being different from zero, 
and ip{z) is finite at the point a. The integer k is said to be 
the "order" of the pole, and the function is said to have for 
its value at a infinity of the kth. order. In accordance with 
the definition of a derivative, w does not admit a derivative at 
a. From the character of the derivative in the immediate 
neighborhood of a, however, the derivative is sometimes said 
to become infinite at a. 

The trigonometric function cbt^^ has a pole of the first 
order at every point z = mn, in being zero or any integer posi­
tive or negative. 

The function w = log {z — a) has for every finite value of 
z, except z= a, an infinite number of values. Ii z — a is writ­
ten in the form Re''^, 

w = log R -\- i{@ -f- 2imt), 

where log R is real, and m is zero or any positive or negative 
integer. If z describes a straight line, beginning at a, 0 will 
remain fixed, but R will vary. The images in the zy-plane will 
therefore be straight lines parallel to the axis of reals, dividing 
the plane into horizontal strips of width 2;r. If now the ^-plane 
is supposed to be divided along the straight line just drawn, 
and z varies along any continuous path, subject only to the 
restriction that it cannot cross this line of division, there will 
be a continuous curve as the image of the path of z in each 
strip of the zw-plane. Each of these images is said to corre­
spond to a "branch" of the function, or, expressed otherwise, 
the function is said to have a branch situated in each strip. 
The line of division in the ^•-plane, which serves to separate 
the branches from one another is caHed a " cut." 
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At the point z=:a no definite value is attached to the 
function. As z approaches that point the modulus of the real 
part of the function increases without limit, while the imagi­
nary part is entirely indeterminate. 

Let z^ be an arbitrary point, distinct from a, and let 

log R^ - j - i&^ -\- 2mni 

be any one of the corresponding values of the function. Sup­
pose that z starts from z„ and describes a closed path around 
the point a, the values of the function being taken so as to 
give a continuous variation. Upon returning to the point z^ 
the value of the function will be 

log ^0 + i®, + 2(w TH ^)7ti, 

or log i?„ + /©„ -\-2(m — \)ni, 

according as the curve is described in a positive or negative 
direction. By repeating the curve a sufficient number of times 
it is evidently possible to pass from any value of the function 
at z^ to any other. When a point is such that a .s-path en­
closing it may lead in this manner from one value of a function 
to another value, it is called a " branch-point." In the case 
of the function here considered, the point z ^= a is called 
a "logarithmic branch-point," or a point of "logarithmic 
discontinuity." 

The function w = log ^̂ -7—;, where f{z) and (p{^) ̂ re entire, 
(p[z) 

has a point of logarithmic discontinuity at every point where 
either _/(.?) or (p{z) is equal to zero. For, writing 

f{z) =A{z- ay^z - ay^. . . 

cp{z) = B{z — by^{z — by^. . . 

the value of w may be written 

ey = log - + ^ / „ . log [z - a„) — 2q„ log (z — b„). 
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1 
T a k e now the function w = e'^. I t has a single finite value 

for every value of z except r̂ = o. If 5' is supposed to ap­

proach zero, the limit of the value of the function is indeter­

minate. 

For let / -\- iq be perfectly arbitrary, and write 

If now a + ib is the reciprocal of /> - j - iq, so that 

a = ^ b= - ^ 

/ + / /+?'' 
the preceding equation may be written 

1 

ga^ii = c -\- id. 

But whatever t h e value of the integer m, q-\- 2imt may be 

subst i tu ted for q wi thout altering the value of c -|- id, and hence 

bo th a and b may be made less than any assignable quant i ty . 

T h e given function e^ therefore takes the value c -[- id at points 

a -(- ib indefinitely near to the origin. A point such that , when 

2 approaches it, a function elsewhere one-valued may be made 
to approach an arbitrary value is called an '' essential singu­
larity." 

1 

Prob. 12. Show that for the function e^-'^ z = a is an essential 

singularity. 
_\_ 

Prob. 13. The function e ^^ considered as a function of a real 
variable is continuous for every finite value of 2, and the same is 
true of each of its successive derivatives. Show that when i t is 
regarded as a function of a complex variable, 2 = o is an essential 
singularity. 

In order to illustrate still another class of special points 

take the function 

w = '^{z — a^z — a^ . . . (z — a„). 
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This function has at every finite point, except «,, a^,.. .,a„, 
two distinct values differing in sign. At these points, however, 
it takes but a single value, zero. From each of the points 
«,, â  , . . . , « „ let a straight line of indefinite extent be drawn in 
such a manner that no one of them intersects any other, and 
suppose the z-plz.ne to be divided, or cut, along each of these 
lines. Along any continuous path in the ,s-plane thus divided 
the values of the function form two distinct branches. 

For, writing 

z — a^ = r^e'^i, z — a, = r^e'^^, . . ., s — a„ = r„e^\ 

the function takes the form 
i+»2+ . . . +e„ 

w = Vr^r^ . . r„ e 

No closed path in the divided plane will enclose any of the 
points a,, a^, . . . , a„, and the quantities d^, 0^, . . . , d„, after 
continuous variation along such a path, must resume at the 
initial point their original values. No such path, therefore, can 
lead from one value of the function at any point to a new 

value of the function at the 
same point. If, however, the 
cuts are disregarded and z 
traces in a positive direction, 
a closed curve including an odd 
number of the points «,, «,, 
. . . , « „ , and not intersecting 
itself, then an odd number of 

the quantities 6,, 0,, . . . , 6„ are each increased by 2;r; and 
the value of the function is altered by a factor ^B +̂i)"'̂  and 
so changed in sign. In the same way any closed path de­
scribed about one of these points, and enwrapping it an odd 
number of times, leads from one value of the function to 
the other. On the other hand, a simple closed path enclosing 
an even number of these points, or a closed path which en­
closes but one of the points, enwrapping it an even number of 
times, leads back to the initial value of the function. It fol-
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lows that each of the points a^, a^, . . . , «„ is a branch-point. 
Any point in the ^-plane, closed paths about which lead from 
one to another of a set of different values of a function, the 
number of values in the set being finite, is called an "algebraic 
branch-point." 

As a further illustration, consider the function 

W = 2* - j - (•̂  — '̂ )*> 

which is a root of the equation of the sixth degree, 

w' —izw* — 2{z — d)w' -\- TjZ^w' — 6z{z — d)w -\- {z—df—z'-^o. 

The function has at every point, except ,2 = 0 and z^^a, 
six distinct values. Six branches are thereby formed which 
can be completely separated from one another by making cuts 
from the points z = 0 and z =^ a to infinity. Putting 00 for the 
cube root of unity, these six branches can be written 

Wj = .2 -\- (z — a)' , 
1/8 , , ,1/8 

w,^=z -{- Go(z — a)' , 
w^ = z' -\- Go{z — a)' , 

w,= — z'"^ -|- (^ — <^'^, 

w,=i — z' -\- w{z — dj'^, 

W^= — Z^ ~{- GO^Z — «)'^°. 

The branches w, and w^, w, and w^, w^ and w, are interchanged 
by a small closed circuit described about s =0, while a small 
circuit described about z = a permutes cyclically the branches 
Wj, Wj, Wj, and also the branches w„ w^, w,. 

All of the special points examined above, poles, points of 
logarithmic discontinuity, essential singularities, and branch­
points, are called singular points. In fact, a function, or a 
branch of a function, is said to have a ' ' singular point ' ' at each 
point where it fails to have a continuous derivative,* or about 
which as a center it is impossible to describe a circle of deter­
minate radius within which the function, or branch, is one-
valued. 

Any point not a singular point is called an " ordinary point." 

* Continuity and, therefore, finiteness of the function are implied in the 
existence of a derivative. 
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An ordinary point at which a function reduces to zero is called 
a " zero " of the function. 

If in a certain region of the .a'-plane a function is uniform 
and has no singular points, the function is said to be "synec-
tic " or "holomorphic " in that region. If in a certain region 
the only singular points of •^ uniform function are poles, the 
function is said to be " meromorphic " in that region. Under 
similar conditions, a branch of a function is also described as 
holomorphic or meromorphic. 

Prob. 14. When w and 2 are connected by the relation w — g =^ 
(2 — hy show that if 2 describes a circle about h as s. center, w 
describes a circle about ^ as a center, an angle in the 2-plane hav­
ing its vertex at k is transformed into an angle in the zez-plane i 
times as great and having its vertex at g, and that 2 = /? is a branch­
point of w except when t is an integer. 

A R T . 14. P O I N T AT INFINITY. 

In determining the limiting value of a function when the 
modulus of the independent variable z is increased indefinitely, 
it is usual to introduce a new independent variable z' by the 
relation z = i/z', and consider the function at the point z' = o. 
This is equivalent to passing from the .^-plane to another plane, 
the ^•'-plane, related to the former by the geometrical construc­
tion described in Art. lO. It is often very convenient, however, 
to go further and to substitute for the .s-plane the surface of the 
sphere of unit diameter touching the .a-plane at the origin. No 
difficulty is thus' introduced since, as explained in the article 
just cited, any configuration in the .j-plane obtains a conformal 
representation upon the sphere; and the advantage is gained 
that the entire surface upon which the variation of the inde­
pendent variable is studied is of finite extent. The point of 
the sphere diametrically opposite to its point of contact with 
the .ff-plane coincides with the point written above as z' = o. 
I t is called the point at infinity, ^ = 00, since a point on the 
sphere approaches it at the same time that its image in the 
.^-plane recedes indefinitely from the origin. 
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T h e point at infinity may be either an ordinary or a singular 

point . F o r the function e^, for example , it is an ordinary 

point, since e^ = e''. Fo r a rational ent ire function of t h e n'Ca. 

degree it is a pole of order n. Consider it for the function 

^{z — a,){3 — a^).. . [z — a„), discussed, in the preceding article. 

L e t a circle of great radius be described in the ^-plane inclosing 

all the branch-points a^, a,, . . . , a„. I t s conformal representa 

tion on the sphere will be a small closed curve surrounding the 

point z =: OO. This point must , therefore, be regarded as a 

branch-point or not, according as the function changes value or 

no t when the curve surrounding it is described, tha t is accord­

ing as n, t he number of finite branch-points, is odd or even. 

W h e n the point at infinity is taken into account, then, the 

tota l number of branch-points of this function is always even. 

T h e character of the point '̂ = oo for this function can be de­

te rmined directly, by changing z into i/z' and considering the 

point z' = o. 

Prob. 15. Show that 2 = 00 is an ordinary point for 77-T, where 
y;(2) 

0(2) and ^{z) are rational and entire if the degree of 0(2) does 
not exceed that oiip{z). 

A R T . 15. I N T E G R A L O F A F U N C T I O N . 

Le t w—/(z) be a continuous function of ^̂  in a given 

region, and suppose z t o describe a continuous path L from 

t h e point z^ t o the point Z. Le t a series of pc^ints z,, z,, .. .,2„ 

be taken on L, and let /„, t^,..., t„ be points arbitrarily chosen 

on t h e arcs z^z^, z^z„ . . . , 2,,Z respectively. F o r m the sum 

s = {2,- 2MQ + (̂ . - ^0/(̂ 0 + . . . + (z - zMQ-

If now the number of points z,^, . . . , z„ be increased indefi­
nitely in such a manner that the length * of each of the arcs 

* It is assumed in regard to every path of integration that the idea of length 

maybe associated with the portion of it included between any two of its points, 

or, what is the same thing, that the path is rectifiable. ' This condition is evi­

dently satisfied if the current coordinates x a n d / can be expressed in term,s of 
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2^2^, 2^2^, . . . , SnZ approaches zero as a limit, the sum 5 ap­
proaches a finite limit which is inde­
pendent of the choice of the points z^, 
2^, ..., z„ and t^, t^,..., t„. 

For take any other sum 

s' = {z:-z:)f{t:)+ 
«-V)/(0 + ... 

formed in a similar manner. Suppose 
— for the sake of greater definiteness 

that the points z,,... and ^ / , . . . follow one another on the 
line L in the order 

and form a third sum 

+ (•3', - 0 / ( n ) + . . . . 
in which b )th series of points occur. It may be shown that as 
the number of points in each of the series z„ ... and z,', . . . is 
increased, the differences S" — S and S" — S' both approach 
zero, from which it follows that the difference 5 — S' has a 
limit equal to zero. For example, the difference S" — 5 has 
the value 

{z, - ^„)[/(r„) - / ( O ] + (2/ - 2,)[/(r,) -fit)-] 

+ «-<)[/(rO-/W]+... 
If y]/denotes the upper limit or bound of the quantities 

|/(r„) -AQl W.)-At.)\, W:) -AK)\ 
the modulus of S" — 5 will be less than 

M\_\z,-z,\-\-\z,'-z,\^\z,'-z:\+...l 

dx , dy , „ , , . 
any parameter i so that -jj- and — are continuous. for then the mtegral di dt 

I \/dx^ + dy^ is finite. See, in this connection, Jordan, Cours d'Analyse, 2d 

Edition, Vol. I., p. lOO. 
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But \z, — z^\ is equal to the chord of the arc z^z,, and must 
therefore be less than or equal to this arc, and a similar result 
holds for each of the quantities \z/—z^\,\z,'—z/\,... Hence 

\S"-S\^M/, 

where / denotes the length of the path of integration. When 
the number of points of division on the line L is increased, the 
differences 

/ ( r . ) - / ( O . Ard - M), Ar.) - M), • • • 
approach zero, since /{z) is continuous.* M accordingly 
decreases indefinitely and the difference S" — S approaches 
zero. 

The limit, the existence of which has just been demon­
strated, is called the integral of fz) along the path L. It is 

written I f(z)dz. The definition here given is similar to that 

given for the integral of a function of a real variable. It is 
unnecessary to specify the path of integration when the inde­
pendent variable is restricted to real values, since in that case 
it must be the portion of the axis of reals included between 
the limits of integration. 

The following well-known principles, applicable to the case 
of a real independent variable, may be readily extended to the 
general case: 

1. The modulus of the integral cannot exceed the length of 
the path of integration multiplied by the upper bound of the 
modulus of the function along that path. 

2. The independent variable may be altered by any equa­
tion of transformation, but L', the path of integration in the 
transformed integral, must be such that it is described by the 
new variable while z describes L. 

3. If F{z) is any one-valued function having everywhere 
a continuous function/(z) for its derivative, the equation 

Jlf{z)dz = F{Z) -F{z,) 

must be true. 
* For a complete discussion it should be shown that the continuity oif{z) is 

necessarily " uniform." See Jordan, Cours d'Analyse, 2d Edition, vol. i, p. 183. 
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To prove the third principle, write F(Z) — F{z„) in the 
form 

F{Z)-F{z„)+F{z„)-F{z„.,)-\-. . . +F{z,)-F{z,)+F{z,)-F{z,). 

Since the derivative of F{z) is/(z), 

F{z,n+,) - F{z„.) = [/{z„,) + 7/„J(2-„,+, - 2„), 

where ?/„, has zero for its limit * when z,„^^ is made to approach 
2„t- Hence 

F{Z) — F{z,) = limit ^f{z,„){z„,_^, — z,„) + limit 2r/„iz,„_^., - z„,); 

or, since the second term of the right-hand member is equal 
to zero, 

F{Z)-Fiz„)^jy{z)dz. 

If no function F{z) fulfilling the preceding conditions is 
known, the value of the integral requires further investi­
gation. ^ , 

Consider as an example the integral / —5 taken from the 

point ^̂  = — I to the point .s = i, the path of integration being 
the upper half of the circumference of a unit circle described 
about the origin as a center. Writing z = exp (iff), z will 
describe the required path while 0 varies from TT to o. 

The equations —, = e'^'^, dz = ie'^dd, 

dz 
— = ie-^^dd = i cos B dB^ sin B dd =1 id (sin B) — d (cos B), 

follow at once. Hence for the path specified 
+1 y 0 0 
r—=^i fd (sin B) — Cd (cos 6)^ — 2. 

The appHcation of the direct and more familiar method 
nivcs the same result: 

+ 1 
['dz__v_\'\ _r_L' 

J z'' ~ L z j , ^ , L z. 
— 2. 

*The "uniformity'' of continuity is involved here. See Jordan, Cours 
d'Analyse, 2d Edition, vol I, p. 184. 
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For a path along the axis of reals between the limits of 
integration this result is unintelligible. The discontinuity of 

dz 
the differential, —j, at the point z ^=^ o, prevents the considera­
tion of such a path; and that the result should be negative 
when the differential is at every point of the path positive 
has no significance. The introduction of the complex variable 
furnishes a perfectly satisfactory explanation of the result. 

dz 
Prob. 16. Show that the integral of — along any semi-circum­

ference described about the origin as a center is equal to ni. 

A R T . 16. REDUCTION OF COMPLEX INTEGRALS TO R E A L . 

The integral 

lAz)dz 

may be written in the form 

/ {u -\- iv)(dx -\- idy), 

or, separating the real and imaginary terms, 

/ i^dx — vdy) -\- i I {vdx -f- tidy). 

Hence the calculation of the integral may be reduced to 
the calculation of two real curvilinear integrals. 

The equations 

du _ dv du _ dv 

dx dy dy dx 

which express the condition that u -\- iv should be monogenic, 
express also that 

udx — vdy, vdx - j - udy 

are the exact differentials of two real functions of the variables 
X, y. Consider the case where these functions are one-valued. 
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Denoting them by P{x, y) and Q{x, y) respectively, the inte­
gral may be written 

IP{X, Y) - P{x„y,)-] + ilQiX, Y) - Q{x,, y,)], 

i^ixlo) and {X, Y) being the initial and terminal points re­
spectively of the path of integration. 

A R T . 17. CAUCHY'S THEOREM. 

Cauchy's Theorem furnishes the necessary and sufficient 
conditions that a uniform function /(z), having continuous 
partial derivatives with respect to x and y, should yield within 
a region bounded by a continuous closed curve a one-valued 
integral, that is, an integral the value of which, when the lower 
limit is fixed, depends simply on the upper limit, and not on the 
path of integration. It will be more convenient, before consider­
ing Cauchy's Theorem, to demonstrate the following lemma: 

Lemma.—Let ^ be a portion of the z-plane, having a bound­
ary 5 which consists of a closed curve not intersecting itself, 
or of several closed curves not intersecting themselves or one 
another. If at every point of the region A, including its 
boundary S, a function W of the real variables x and y is one-
valued and continuous and has continuous partial derivatives 
dW dW 

, , the relations 
dx' dy 

1 IVdy^ J J^^J^dy. (I) 

Jm.= -Jl^d.dy (.) 
exist, the integrals in the first members being taken along the 
boundary in the positive direction, and those in the second 
members being taken over the enclosed area. 

Denote by X the incHnation to the axis of x of the exterior 
normal at any point of the boundary,* that is, the normal drawh 

* It is assumed that the boundary has adeterminate tangent at every point. 
If the boundary of a given region is not of this sort, the theorem holds for any 
anterior curve ol which this assumption is true. 
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to the right as the boundary is described in a positive direction. 
If any straight line parallel to the axis of x be traced in 
the direction of increasing values of x, at each point where 
it passes into the area A, 
cos A is negative, and there­
fore in the first member of 
(i) dy = cos A ds is negative. 
At each point where this 
straight line passes out of 
the area A, cos A, and there­
fore dy, in the first member 
of equation (i), is positive. 
Hence in the first member 
of equation (i) the differ­
entials Wdy corresponding 
to a given value of y, and taken in the order of increasing 
values of x, have signs which, compared with the signs of the 
corresponding values of W, first differ, then agree, and so 
on alternately. In order now to compare the integral in the 
first member of equation (i) with the integral in the second 
member, it is necessary to take dy as essentially positive. 
The sum of the differentials in the first member, correspond­
ing to a fixed value of y, must therefore be written in the 
form 

dy{ - IV,+ W,-W,+ W,- ...), 

where W,, W^, . . . are the corresponding values of Wtaken in 
the order of increasing values of x. But performing now in 
the second member of equation (i) an integration with respect 
to X, the same result is obtained, so that the two members of 
equation (i) become identical, and the equation is verified. 

To obtain equation (2) the same method is used. It is 
necessary in this case to observe that if a line parallel to the 
axis oi y is traced in the direction of increasing values oi y, at 
each point where it enters A, dx in the integral of the first 
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member must be taken as positive; and at each point where 
this line passes out of .^, dx in that integral must be taken as 
negative. 

By means of the preceding lemma, Cauchy's Theorem is 
easily proved. This theorem may be stated as follows: 

Theorem.—If, on the boundary of and within a given region 

A, a one-valued function w = f{z) is monogenic, and its deriv­

ative f'{z) is continuous,* the integral If{z)d2 taken along 

the boundary .S" is equal to zero. 

For writing the integral in the form 

/ wdz = / {udx — vdy) -\-i I {udy -|- vdx), 

the preceding lemma gives 

£{udx - vdy) =-JJ^[f^ + f^dxdy, 

J^{udy + vdx) ^J J^ (î -̂ V-̂ -̂̂ ' 
but since at every point of A 

du dv _ du 'dv _ 
dy~^dx~°' dx~dy~°' 

the given integral reduces to zero. 

A R T . 18. APPLICATION OF CAUCHY'S THEOREM. 

From Cauchy's Theorem it follows that, if two different 
paths L, and L, lead from the point z^ to the point Z, and if 
along these paths and in the region inclosed between them a 
given function /(2) has no critical points, the integrals of the 
function taken along these two paths are equal. For two such 
paths taken together, one described directly, the other re­
versed, constitute a closed curve, and the integral taken along 

• Otherwise expressed, the one-valued function/(z) has no singular points on 
the boundary of or within A, or /(z) is holomorphic in A. It has been shown by 
Goursat that this theorem can be proved without assuming the contniuity oi the 
derivative. See Transactions Amer. Math. Soc, vol. i. p. I4-
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it is equal to zero. But, since reversing the direction of the 
path of integration is equivalent to changing the sign of the 
integral, the equation 

f^Az)dz - fj{z)dz = o 
is obtained. 

The result just established may be stated in the following 
theorem: 

Theorem I.—If a function is holomorphic in any simply 
connected region bounded by a continuous closed curve, the 
integral of the function, from a fixed lower limit in that region 
to any point contained therein, is independent of the path of 
integration, and is a one-valued function of its upper limit. 

A region whose boundary is composed of disconnected 
curves is not necessarily characterized by the property stated 
in the theorem. Take, for example, the function 

w — V{z — «J(2 — a^) . . . {z — an), 

and suppose that o < ] « , | < lâ  | < . . . , < | «„ j . With the ori­
gin as a center, construct a sysjiem of concentric circles C,, 
C, . . ., C„, C^ passing through a^, C, through «„ and so on. 
Denote by S^ the region inclosed within the first circle C„ by 
6'j that inclosed between C, and C„ and so on, the portion 
of the plane exterior to the last circle C„ being denoted by S„. 
At an initial point 2„ interior to one of these regions, assign to 
w one of the two values possible, and consider the branch of 
w resulting from a continuous variation. Then however z may 
vary within any such region, this branch of w will be a mono­
genic function, and its derivative will be continuous. Having 
regard to the branch-points a„ a„ . . ., a„, it is evident that in 
the regions S„, S^, . . . it will be one-valued, and in the regions 
5,, 5^, . . . , it will be two-valued. Thus in the regions S„ S^, 
.. ., the branch fulfils the required conditions, but the boundary 
does not. The theorem is applicable only to, 5„. It may be 
observed that in every other region two paths may be drawn 
joining the same two points such that the branch is not one-
valued in the enclosed portion of the 2-plane. 
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Theorem II.—If/(,s) is holomorphic in any simply connected 
region 5 bounded by a continuous closed curve, the integral 

I f{z)dz, taken from a fixed lower limit z„ in that region to any 

point Z contained therein, is a holomorphic function of its 
upper limit. 

Let L be any path from z^ to Z. When the upper limit is 
at the point Z + dZ, L followed by a straight line from Z to 
Z-\- dZ can be taken as the path of integration. Hence 

jz^ Mdz-iA^)dz = l f{z)dz 

rtZ+iZ riZ+dZ 

=f{Z)J^ dz + J^ \_A^)~f{Z)-\dz. 
The first term is equal to f{Z)dZ. The modulus of second 

term is equal to or less than M\dZ\, where M is the upper 
bound of | /(z) —f{Z)\ along the line joining Z to Z-\-dZ. 
But since f{i) is continuous, the limit of M when Z ^ dZ 
approaches Z is zero. Hence 

£y^A^)dz - f^y{B)dz = [f{Z) + v]dZ, 

where tj approaches zero with dZ. The integral therefore has 
/{Z)iorSi derivative, and is holomorphic in 5. 

In the case of a region bounded by several disconnected 
closed curves, of which one is exterior to all the others, 
Cauchy's Theorem may be stated in the following form : 

Theorem III.—Let a function f'z) be holomorphic in a 
region A bounded by a closed curve C and one or more closed 
curves C„ C„ . . . interior to C. The integral of /{z) taken 

along C will be equal to the sum of its 
integrals taken in the same direction 
along the curves C,, C.^, . . . 

(^~) Cj / PQ^ jjjg integral of /(z) taken in a 

positive direction completely around the 
boundary of A is equal to zero. But 

tne curves C,, C^, . . . are then described in the direction oppo-
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site to that in which C is described. Hence if all the curves 
are described in the same direction, the result may be written 

f^/{z)dz =^f^mdz +£Md2 + . . . 

If there is but one interior curve, so that the region A is 
included between two curves C and C„ the integral taken along 
every closed curve containing C, but interior to C has the 
same value, viz., the common value corresponding to the paths 
C and C,. 

A R T . 19. T H E O R E M S ON CURVILINEAR INTEGRALS. 

Theorem I.—li f{z) be continuous in a given region except 

at the point a, the integral I f{z)dz, taken around a small circle 

c, having its center at a, will approach zero as a limit simulta­
neously with the radius r of the circle c, provided only 

lim {z — d)f{z) = o when z ^^ a. 

For let the upper bound of the modulus of {z — d)f{z) on 
the circle c be denoted by M. Then at every point of c, 

mod f{z) - • 1 - —, 
^ ^\z — a\^ r 

and consequently 

modJ^f{z)dz '^—J ds ^2nM. 

/
dz 

j—r^—y, taken around any 

closed curve C containing the point a, is equal to zero, except 
when « = I. When « = i, this integral is equal to 27r/. 

For the value of the integral will be the same if any 
circle described about d; as a center be taken as the path of 
integration. Let then z — a = r/^, where r is a constant and 
6 varies from o to 2;r. The integral becomes 

"lair — (n-l)ie 

/
2t 

dB 
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which reduces to zero except when n — i. If « = i, its value 
is 2ni, whence 

r dz 
'^ z — 

dz 
V 27tt. 

Theorem III.—If f{z) is a function holomorphic in a given 
region S, C a. closed curve the interior of which is wholly 
within S, and a a point situated within C, then 

f I^dz = 27iiAd). 

For describing about « as a center a small circle c of radius 
r, the equation 

^'^ z — a 'J' . 
/(^) dz 

• z — a 'J' z—a 
is obtained. But at every point of c, 

A^)=Ad} + v, 

where, by choosing r sufficiently small, the modulus of i^ may 
be made less than any fixed positive quantity. Hence 

ff^dz= ff^dz + f-Jl-dz, 
'^cz—a o^z — a 'JcZ — a 

but by the preceding theorems the first term of the right-hand 
member is equal to 2nif{d), and the second term is equal to 
zero. 

If the equation of the theorem just established be differ­
entiated with respect to a, the following important formulas, 
expressing the successive derivatives of a holomorphic function 
at a given point, are obtained: 
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The integrals in the first members of these equations are all 
finite and determinate for every position of a within the curve 
C. Therefore any function holomorphic in a given region ad­
mits an infinite number of successive derivatives at every 
interior point. Each of these derivatives being monogenic 
must be continuous. Hence the following: 

Theorem IV.—If/t-^) is holomorphic within a given region, 
there exists an infinite nurhber of successive derivatives of 
A^, which are all holomorphic within the same region. 

Denote by r the shortest distance from the point a to the 

curve C. Then at every point of this curve \z — a\ > y. Let 
M be the upper bound of the modnlns f{z) on C, and / the 
length of C. Then 

n f(z) = r M ^ Ml 
' c {z — d) 

and consequently mody"**' (a) ^ . —^̂ --̂  = 1 .2 . . .n Ml 
27t 

In particular, if C is a circle having a for its center, 

m o d / C ' - ) ( a ) ^ ^ - ^ - - - " - ^ . 

A R T . 20. TAYLOR'S SERIES . 

Theorem.—Let f{z) be holomorphic in a region S, and let 
C be any circle situated in the interior of 5. 
If a be the center and a-\- t any other point /^^ ^ ^ \ ^ 
interior to C, 

A' +1) ^A") + t/X") + —/"{<•) + • • 
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From the preceding article, denoting a variable point &n C 
byZ, 

27iiJ^ Z — a 

/{a + t) = ^ . f -^^^ dZ 
2m j Z — a — t 

L^ "^ C - ^ " ^ • • • '^J^=^-'^{Z-aY{Z-a-t)\ 

= /(«) + tf'{a) -f ^f"'{a) + . . . J ^ ^ - f^\d) + R, 
1 . 2 1 . 2 . . . ; ; 

where 

j_ f «̂+y(C) . 
2'^Vc(C-«)"^'(C-«-^) 

By taking « sufficiently great the modulus of R may be 
made less than any given positive quantity. Let M be the 
upper bound of the modulus of f{z) on the circle C, p the 
modulus of t, and r the modulus of C — "Ŝ  or radius of C. Then 

\R\^-^fM-^:^^ds=j^{Ex^\ 
*̂  '^'"^Jc"^ r"+X?' — pf" ^ r — p\r. 

which, since p < r, has zero for its limit when « = oo. 

Writing now z for a-\-t, Taylor's Series becomes 

f{z)=f{d)+{z-d)f'{d)+^^^f"{d)+.. . + ^ f Z ^ / W ( « ) + . . . 

The series is convergent and the equality is maintained for 
every point z included within a circle described about « as a 
center with a radius less than the distance from a to the nearest 
critical point oi f{z). 

When a is equal to zero, Taylor's Series takes the form 

/ (^) = / (o) -f ^ / (o) + f-f"{o) 4 - . . . - f .^L_f«)io) -f . . . , 
1.2 1.2 . . . « 

expressing/(.s') in terms of powers oi z. This form is known 
as Maclaurin's Series. 
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A R T . 21. LAURENT'S SERIES. 

Theorem.—Let S, a portion of the 2-plane bounded by two 
concentric circles C", and C^, be situated in the interior of the 
region F, in which a given function /{z) is holomorphic. If a 
be the common center of the two circles, and a -\- t a. point 
interior to S, /{a - j - t) can be expressed in a 
convergent double series of the form 

?« = 00 

/(« + /) = :sA„r. 
» i = —00 

With « -|- ^ as a center construct a circle 
c sufficiently small to be contained within 
the region 5. If then C, be the greater of 
the two given circles, it follows from Article i8 that 

I r /{Z)dZ ^ i_ f f{Z)dZ , I f AZ)dZ 
2ni^c^ Z — a — t 2OT'^c, Z — a — t 2ni '^^Z — a — i 

But from Article 19, 

2ni'^' Z- a - t •'̂  ^ •" 

whence 

f<a-\-t)=-}- r^^Q^ L r_mdz_^ 
-'^ ^ ' 27r?^9C - a — t 2ni^c^Z- a — t 

The two integrals of the right-hand member may be written : 
AZ)dz 

2m 

I 
2ni 

C 

LAZ)dz 

i + , 

L".^ 

+ 
t" 

, — a 

C—a 

(C - ay. + ̂ ,, 

+ ••• + (c 

where 

^' ~ 2ni<J''^ 

' ~ 27ti-'^.t''+' {Z 

t^'f{Z)dZ 

(c-«)»+x^ -a-ty 
{Z - dT+V{Z)dZ 

a — t)' 

But 1̂ 1 < | C — (̂ l at every point of C,, and |^| > |C — «| at 
every point of C",, so that R, and R^ both have zero for a limit 
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when ?? = 00. The value oif{a -{-1) can therefore be expressed 
in the form 

f{a + l)=A.+A,t + A.I' + A/ + ... 

Since in the region 5 the function f{z)/{z — d)"'+' is holomor­
phic for both positive and negative values of m. Am may be 
written 

A -J_ C—I^l—^r 
^'"~ 2irtJ^ Ĉ -«) •"+ ' ^' 

where C is any circle concentric with C^ and C, and included 
betvy^een them. 

The series thus obtained is convergent at every point a-\-t 
contained within the region S. It is important to notice, how­
ever, that when the positive and negative powers of t are con­
sidered separately, the two resulting series have different 
regions of convergence. The series containing the positive 
powers of t converges over the whole interior of the circle C, ; 
while the series of negative powers of t converges at every 
point exterior to the circle C^. The region 5 can be regarded, 
therefore, as resulting from an overlapping of two other 
regions in whi-ch different parts of Laurent's Series converge. 

Writing z for a -\- t, Laurent's Series takes the form 

f{z) = A, + A,{z -d)-\- A,{z - a y + . . . 

+ A_i {z- a) -1 -{-A_,{z -a)''-\-... 

Consider as a special numerical example the fraction 

I _ I I I 
{Z — l) {Z — 2) {Z — 3 ) ~ 2{z — l) Z — 2'^2{z — 3) 

If 1̂ 1 < I, all three terms of the second member, when 
developed in powers of z, give only positive powers. If 
I < |,3| < 2, the first term of the second member gives a series 
of negative descending powers, but the others give the same 
series as before. If 2 < j^'j < 3, the first and second terms 
both give.negative powers. If \z\ > 3, all three terms give 
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negative powers, and the development of the given fraction 
can contain no positive powers. Thus a system of concentric 
annular regions is obtained in each of which the given frac­
tion is expressed by a convergent power-series. Laurent's 
Series gives analogous results for every function which is holo­
morphic except at isolated points of the ^•-plane. 

A R T . 22. FOURIER 'S SERIES. 

Let w = A^) ^^ holomorphic in a region S„, and let it be 
periodic, having a period equal to GO, SO tha t / (2 - j - nco) = f{z), 
where n is any positive or negative integer. Denote by 5,, the 
region obtained from S„ by the addition of noo to z; and sup­
pose that the regions . . . , S^„, . . ., S.,, S,, S,, . . ., S„, . . . 
meet or overlap in such a manner as to form a continuous strip 
.S, in which, of course, the function w will be holomorphic. 
Draw two parallel straight lines, inclined to the axis of reals at 
an angle equal to the argument of w, and contained within the 
strip S. The band T included between these parallels will be 
wholly interior to S. 

2Tnz 

By means of the transformation z' = e " the band T in 
the ^-plane becomes in the 2'-plane a ring T' bounded by two 
concentric circles described about the origin as a center, z and 
z -\- nw falling at the same point z'. Since w is holomorphic 
in a region including T, and 

dw dw dz 00 _ mtz_ dw 
dz' ~ dz dz' ~ 2ni " dz' 

w regarded as a function of z' will be holomorphic in T', 
Hence, by Laurent's Theorem, 

«[ = co 

w= '2 A„z'"\ 
JK = - 00 

the quantity a in the general formula .of the preceding article 
being in this case equal to zero. Substituting for z' its value, 
the preceding equation becomes 

w = 2 A^e " , 
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where 
^Wdz' I /^*^"" _ 2fKn-tJ . _ I nwdz' I /''+'" . 

wdz. 

In the latter integral the path is rectihnear. Denoting its 
independent variable by C for the purpose of avoiding confu­
sion, the value of w becomes 

= - 4 ^ ( « ^ ^ + l ^ ^ cos?5-%_c)/(c)^C 

= 4 / / ( « ^ S 4 - - ^ c o s - ^ / cos-^V(C)^C 

2 " " " . 2mnz n^-^" , 2in7tZ 
-1- - ^ sin / sin V(C)^C. 

m=l 

A R T . 23. UNIFORM CONVERGENCE. 

Let the series W = w^ -\- w^ -\- w^ -{-... -\- w^ -{-. . . , each 
term of which is a function of z, be convergent at every point 
of a given region 5'. Denote by PF„ the sum of the first n 
terms of W. If it is possible, whatever the value of the posi­
tive quantity e, to determine an integer / , such that whenever 
n > p 

\W- W^\<e 

at every point of S, the series J^is said to be uniformly con­
vergent in the region S. 

For convergent series in general the determination of p 
will depend on the value of z. In the case of uniformly 
convergent series p can be determined simultaneously for all 
points in the region 5. 

Uniformly convergent series can in many respects be treated 
in exactly the same manner as sums containing a finite num­
ber of terms. 
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Theorem I.—If in a region 5 a series of continuous functions 

W = Wo + Wi + . . .+Wn+. . . 

is uniformly convergent, the sum of the series is a continuou? 
function of z. 

For at any point z, W may be written in the form W = W,^+R] 
and at a neighboring point z', W' = WJ+R'. Hence 

W-W' = W„-WJ+R-R' 
and 

\W-W'\<\W„-WJ\ + \R\ + \R'\. 

But by choosing n sufficiently great, \R\ and \R'\ may both be made 
less than any given positive quantity s/3 for all values of z and z' 
in S. Having chosen n thus, M „̂ becomes the sum of a finite 
number of continuous functions. It is then continuous, and, by 
making ]z —2') less than a suitable quantity 8, \W — W'\ may be 
made less than 2/3. But under these suppositions 

\W-W'\<e. 

W is therefore continuous at the point z. 

Theorem II.—If in a region S a series of continuous functions 

W='w^+'Wi + .. .+w^ + ... 

is uniformly convergent, the integral of the series, for any finite 
path L in the region, is the sum of the integrals of its terms: 

J Wdz = J w^dz + J Wj^dz+.. .+J wjtz + ... 

For, writing W = W^+R, it is possible to choose n so that, 
however small e may be, ]R\< s at every point of L. If n be so 
chosen, 

fwdz = f^VJz -h fRdz. 
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But, by Article 15, denoting by I the length of the path L, 

mod J Rdz < d, 

which, when « = co, has zero for its limit. Hence 

fwdz= Um Jwjz. 

From the preceding demonstration we have at once the following 
result: 

Theorem III.—If in a simply coimected finite region S a uni­
formly convergent series of holomorphic functions is integrated 
term by term, the resulting series is uniformly convergent in the 
same region. 

For in a simply connected region the integral of a holomorphic 
function is independent of the form of the path of integration. 
Only paths whose lengths have a finite upper bound need, there­
fore, be considered. 

Theorem IV.—If, in a region S, the series of uniform functions 

W = W^-\-'W-^ + . . .-f 7W„-1-... 

is convergent, and the series 

dz dz dz 

is uniformly convergent, and if further the terms of W are con­
tinuous in the same region, W will be the derivative of W. 

For, integrating W from a to z along a path L contained in 
S, we have, by Theorem II , 

J TF'£fz=w„(z)-w„(a)-f. . .+-wJz)-wJa)-\-... 

= W{z)-W{a). 

But since W is continuous, it is the derivative of the first mem­
ber, and therefore of the second member, and of the function W. 
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Theorem V.—If in a finite region S the terms of a uniformly 
convergent series 

W=w^+Wi + . . .+w^+... 

are holomorphic, the sum of the series is holomorphic, its deriva­
tive being the sum of the derivatives of its terms. 

For let C be the boundary of S, and let C be a closed curve 
interior to C. Let ^ be a positive number such that the distance 
between C and C is everywhere greater than d. Then if z is any 
point interior to C, we will have, when ^ varies along C, 

\i:-z\>8. 

The given series being uniformly convergent, we can write 

W=W„+R, 

where \R\ < s when n is taken sufficiently great. Accordingly if 
L be the length of C, we will have in the equation 

r w r w. f w„ r R . 
Jc T^^'^^Jc (c^^^+- • •+X {^^'^"-J T^^'^' 
the modulus of the last term less than 

eL 

d'' 

It follows that the series 

converges uniformly. But this gives at once, if we divide by 2W, 

W (z) = Wg' (z)+wl (z) -f.. . 

From the preceding demonstration we have at once: 
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Theorem VI.—If a series of holomorphic functions is uni­
formly convergent in a given region S, the series formed by the 
derivatives of its terms will be uniformly convergent in the same 
region. 

To illustrate by an example that uniformity of convergence 
is essential to the preceding theorems, take the series 

I «• z —z 
I + Z , ( l+2 ' ' ) ( l+Z '*+^) ' 

At the point z= I each term is continuous, and the series 
is convergent, having the value 1/2. The series is, however, 
discontinuous at z = i.. For, writing it in the form 

^ ~ i + s " ^ \ i + z ^ i+z)^\i+z' i + z ^ ' + -

the sum of the first n terms is seen to be 

W = - ^ - . 

But W is the limit of W^when M=OO, and is therefore 
unity at every point z for which lz l<i , and zero at every point 
for which jz] > i -

If now this series be considered for the points within and 
upon a circle described about the origin as a center, with an 
assigned radius less than unity, the remainder after n terms, or 

z^ 
x—W = can, by a suitable choice of n, be made less in 

absolute value than any given quantity. In such a region, then, 
the series converges uniformly, and, by Theorem I, can have no 
point of 'discontinuity. A similar result holds for the region 
exterior to any circle described about the origin as a center with 
an assigned radius greater than unity. 
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ART. 24. POWER SERIES. 

The most elementary and at the same time the most impor­
tant series of functions which enters into the theory of functions 
is of the form 

a^-Va^z + a^z'^ + . . .+ff^z"+. . . , 

where a^, ffli, a^,. . . , a^,. .. are constants. 

If this series is convergent for a certain value Z of the varia­
ble z, it will be convergent for every value of z for which \z\< \Z\. 
For if the modulus of z is less than that of Z, the series 

z z^ . z" 

is an absolutely convergent geometrical progression. Since, now, 
the series 

a„+a,Z + a^Z'' + . . . + a^Z" + ... 

is convergent, the moduli of its terms must have a finite upper 
bound A. We can accordingly use its terms as multipliers foi 
the corresponding terms of the geometrical progression, and we 
will obtain an absolutely convergent series. But this series will be 
the given series 

a^+aj^z + ay + . . . + ay + . . . 

subject only to the condition that |z| < \Z\. 

It is obvious that every power series of the form here given 
converges for z = o. When we consider other values of z three 
cases arise: 

(i) The series may converge for every finite value of z, as, 
for example, 

ẑ  z» 
J+Z + — + . .. + + . . . 

2 I . 2 . . . n 
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(2) The series may diverge for every value of z, except z=o , 
as, for example, 

i-l-z-f4zH...-l-w«z»-f... 

(3) The series may converge for some values of z different 
from zero and diverge for others. For example, the series 

1,+-+- + ...+—+... 
1 2 n 

converges for 2= — i and diverges for z = i . 

In the third case the modulus of the values of z for which the 
series converges must have a finite upper bound. Call this R. 
The circle of radius R described about the origin as a center is 
known as the circle of convergence. For this circle we have the 
following theorem: 

Theorem.—A power series is convergent at every point inte­
rior to its circle of convergence, and is divergent at every point 
exterior to its circle of convergence. 

No general statement can be made as to the convergence or 
divergence of the series upon the circumference of the circle of 
convergence. The series may converge at all points of the cir­
cumference, as, for example, 

z^ z" 
X+Z+-2 + ---+-Z-2 + ---, 

2 n 

or it may diverge at all such points, as, for example, 

i-l-z-l-22^-f.. .+nzf+..., 

or finally, as already illustrated, it may converge at some points 
and diverge at other points of this circumference. 
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ART. 25. UNIFORM CONVERGENCE OF POWER SERIES. 

Theorem I.—^A power series is uniformly convergent in every 
circle described about the origin as a center with a radius less 
than R. For, if R' < R, the series 

K\ + \a,\R' + ... + \ajR'«+... 

is convergent; and, consequently, whatever the value of the posi' 
five quantity s, we can find an integer p such that iin>p 

\a„\R'«+\a„+,\R"'+- + ... < e. 

For all values of z within the circle of radius R', the sum of 
the series will then differ from the sum of its first n terms by a 
quantity less than e in absolute value. Hence the series is uni­
formly convergent within the circle of radius R'. 

Theorem II.—If a power series is uniformly convergent in a 
given circle, the series obtained by integrating its terms or by 
differentiating its terms is uniformly convergent in the same 
circle. 

This theorem follows at once from Theorems I I I and ^T of 
Article 23. Since R is the upper bound of R', the series of primi­
tives and the series of derivatives have exactly the same circle of 
convergence as the given power series. We have also as an im­
mediate consequence of Theorems II and V of Article 23: 

Theorem III.—The primitive of a power series is the sum of 
the primitives of its terms; and the derivative of a power series 
is the sum of the derivatives of its terms. 

AS a result of these theorems, we have that, so far as continuity, 
differentiabihty, and integrability are concerned, a power series 
has within its circle of convergence the same properties as the 
sum of a finite number of powers. 
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A R T . 26. UNIFORM FUNCTIONS W I T H SINGULAR POINTS. 

Theorem I.—A function holomorphic in a region 5 and 
not equal to a constant, can take the same value only at iso­
lated points of 6'. 

For in the neighborhood of any point a interior to S, by 
Taylor's theorem, 

f{z) -f{d) = {z- d)f'{d) + i f : z ^ f"{d) + ... 
I . 2 

Unless y(,3) is constant over the entire circle of convergence of 
this series, the derivatives f'{d), f"{d), . . . cannot all be 
equal to zero. Let _/'"'(«) be the first which is not equal to 
zero. Then 

(̂,)_/(,) = (,_«)f^!!(^+__^«) (._.)+.. 1 
•'^ ' -^^ •' ^ ^ [_i. 2 . . . n ' 1. 2 . . . {n -\- i)^ ' ^ J 

Since the series within the brackets represents a contin­
uous function, if \z — a\ be given a finite value sufficiently 
small, the modulus of the first term of the series will ex­
ceed the sum of the moduli of all the other terms, and the 
same result will hold for every still smaller value of \z—a\. 
For values of z, then, distant from a by less than a certain 
finite amount,/(5) —Ad) is different from zero. 

If, on the other hand, the function is constant over the en­
tire circle, described about « as a center, within which Taylor's 
series converges, it will be possible, by giving in succession 
new positions to the point a, to show that the value of the 
function is constant over the whole region S. 

Theorem II.—Two functions which are both holomorphic 
in a given region 5 and are equal to each other-for a system of 
points which are not isolated from one another, are equal to 
each other at every point of S. 

For let f{z) and <p{z) be two such functions. By the pre­
ceding theorem, the difference/(.s) — 0(^') must be equal to 
zero at every point of S. 
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Theorem III.—A function which is holomorphic in every 
part of the a-plane, even at infinity, is constant. 

For, a being any given point, whatever the value of z, 

A^) = Ad) -^{z- a)f'{d) + . . . + ^^~''^ rid) + . . . 

But by Article 19, r being the radius of any arbitrary circle 
having its center at a, and M being the upper bound of the 
modulus of /{z) on the circumference of this circle, 

= 1 . 2 . . . nM 
mod fXa) < 

But M is always finite, and r may be made indefinitely great. 
Hence/ '" ' (a) ~ o for aU values of n, and 

Theorem IV.—If a function/(^'), holomorphic in a region S, 
is equal to zero at the point a situated within S, the function 
can be expressed in the form 

Az) = {z — df(p{z), 

where M is a positive integer, and (p{z) is holomorphic in land 

different from zero at a. 
For in the neighborhood of the point a, by Taylor's Theorem, 

fiz)=Ad) + {z~d)f'{d)-^... 
Lety'" ' ' {d) be the first of the successive derivatives at « which 
is not equal to zero. Then 

/(,) ̂  (.-.)«r /"(-) -f /""7(-) r.-.)+... 1, 
•'^ ' ^ ' \_\ .2 . . .m 1.2 . . . {m-\- \) ' J ' 
which is the required form. The point « is a zero oi f{z), and 

m is its order. 

Theorem V.—If the point « is a singular point of a given 

function/(.?), but is interior to a region S, in which the recip­

rocal oi/{z) is holomorphic, the function can be expressed in 

the form , , 

^^^'~ {z-dr' 
where m is a positive integer, and x{z) is holomorphic in the 

neighborhood of a. 
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For by the preceding theorem 

jL^ = {z- d)'^<p{z), 

where <p{z) is holomorphic and not equal to zero at z = a. 
Hence 

f(z) = ^ _ L _ - ^(^) 
•^^^ {z-a)^'(p{z) {z-a)"-' 

Further, since in a region of finite extent including the 
point a 

X{z) = A,^ A,{z- d)A^..., 

a being an ordinary point for ip{z). 

The point « is a pole oi f{z) and m is its order. 

Theorem VI.—-A function, not constant in value, and hav­
ing no finite singular points ejicept poles, must take values 
arbitrarily near to every assignable value. 

For suppose that f{z) is such a function, but that it takes 
no value for which the modulus of f{z) — ..4 is less than a given 
positive quantity e. Then the function 

I 

/ ( ^ ) - A 
will be holomorphic in every part of the ,s-plane, which, by 
Theorem III , is impossible unless f{z) is a constant. 

Theorem VII .—A function f{z), having no singular point 
except a pole at infinity, is a rational entire function of z. 

For the only singular point of/( — j is a pole at the origin. 

Hence 

where (p{z) is holomorphic over the entire plane, including the 
point at infinity. (p{z) is consequently equal to a constant A^. 

The given function therefore can be written in the form 
f{z) = A„,z--^...+A,z + A,. 
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Theorem VI I I .—A function/(z) whose only singular points 
are poles is a rational function of z. 

The poles must be at determinate distances from one an­
other ; otherwise the reciprocal of f{z) would be equal to zero 
for points not isolated from one another. The number of poles 
cannot increase indefinitely as \z\ is increased; for then the 

reciprocal of f\-] would have an infinite number of zeros indefi­

nitely near to the origin. The total number of poles is there­

fore finite. Let a, b, . . . denote them. In the neighborhood 

of a the function can-be expressed in the form 

A A 

a being an ordinary point for (p{z). In the neighborhood of b, 
(p{z) can be expressed in the form 

{z — bf^'"^ z — b 
a and b being both ordinary points for ^{z). Proceeding in 
this way the given function will be expressed as the sum of a 
finite number of rational fractions and a term which can have 
no singular point except a pole at infinity. This term is a 
rational entire function. 

Theorem IX.—If the function f{z) has no zeros and no 
singular points for finite values of z, it can be expressed in 
the form /(z) = ^«'̂ \̂ where g{z) is holomorphic in every finite 
region of the z-plane. 

For —— can have no singular points except at infinity, since 

in every finite region of the .ŝ -plane A^) and/(,0) are holomor­
phic and Az) is different from zero. Hence, choosing an arbi­
trary lower limit z^, the integral 

is holomorphic in every finite region. The function A^) con­
sequently must take the form 
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/ (z)=/(z„)^«-) = ^^W, 

where g(z) = k{z) + log/(z„). 

Theorem X.—If two functions/"(z) and (p{z) have no singu­
lar points in the finite portion of the z-plane except poles, and 
if these poles are identical in position and in order for the two 
functions, and their zeros are also identical in position and 
order, tiiere must exist a relation of the form 

Az) = cp{z)^^'\ 

where g{z) is holomorphic in every finite region of the ^-plane. 

For the ratio of the two functions has no zeros and no 
singular points in the finite portion of the z-plane. 

A R T . 27. RESIDUES. 

If a uniform function has an isolated singular point a, it 
is expressible by Laurent's series in the region comprised be­
tween any two concentric circles described about a with radii 
less than the distance from a to the nearest singular point. 
Hence in the neighborhood of a 

Az) = A, + Aiz-d) + A,{z~ay-\-... 
+ B,{z-a)-^ + B,{z-a)-' + ... 

The coefficient of {z — a)''' in this expansion is called the 
"residue" of/(^:) at the point a. 

If any closed curve C including the point a be drawn in the 
region of convergence of this series, and /(«) be integrated 
along C in a positive direction, the result wiH be 

L f{z)dz = 2TtiB^. 
' c 

The following may be regarded as an extension of Cauchy's 

theorem : 
Theorem I.—If in a region S the only singular points of the 

one-valued function/(z) are the interior points a, a', . . . , the 
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integral I f{z)dz taken around its boundary C in a positive 

direction is equal to 

fj{z)dz = 2ni{B + B'+ ...), 

where B, B', . . . are the residues of Az) at the singular points. 
For the integral taketi along C is equal to the sum of the 
integrals whose paths are mutually exterior small circles de­
scribed about the points a, a', . . . 

The following theorems are immediate consequences of the 
, preceding: 

Theorem II.—If in a region having a given boundary C the 
only singular points of the one-valued function Az) s-̂ e poles 
interior to C, an equation 

i f''^^^ds-2in{M-N) 
cfi^) 

exists, M denoting the number of zeros and N the number of 
poles within C, each such point being taken a number of times 
equal to its order. 

For in the neighborhood of the point a 

Az) =(.z- a)'"<p{z) 

where (p{z) is finite and different from zero at a, and m is a 
positive integer if a: is a zero, a negative integer if a is a pole. 

Hence 
/'(z) ^ m . (P'{z) 
Az) 2-a'^ <p{z)' 

The integrand, therefore, has a pole at every zero and pole of 
Az), and its residue is the order, taken positively for a zero, 
and negatively for a pole. 

Theorem III.—Every algebraic equarion of degree n has n 

roots. 
For let f{z) represent the first member of the equation 

2» _j_ a^z"-' + . . . -f «« = o- Since f{z) has no poles in the 
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finite part of the .j-plane, the number of roots contained within 
any closed curve C will be given by the integral 

27ltJ^ Az) 

But taking for C a circle described about the origin as a 
center with a very great radius, this integral is 

I Cnz""-^-\-{n — \)a,z^-''-\-.. _ i Cndz 
27iiJ^ z" + a^z''-' + . .'. ^ ~ '^ijc ~^ 

where e has zero for a limit when |^| = oo. Hence the limit 
of the preceding integral, as \z\ is increased, is n. 

Prob. 17. Show that if 2 = 00 is an ordinary point oi f{z), that 
is, \i f{z) is expressible for very great value of « by a series contain­
ing only negative powers of z, the integral oif{z) around an infinitely 

great circle is equal to 2Tti into the coefficient of—. This coeffi­

cient with its sign changed is called the residue for z = co . 

Prob. 18. Show that the sum of all the residues of/(s), of the 
preceding problem, including»the residue at infinity, is equal to 
zero. 

<p(z) 
Prob. IQ. If -rr{ is a rational function of which the numerator 

fP{z) 
is of degree lower by 2 than the denominator, and if the zeros 
a^, a^, . . ., an oi the denominator are of the first order, show that 

n (p{ay) _ 

^,WW) ~ °' 

A R T . 28. INTEGRAL OF A UNIFORM FUNCTION. 

It was shown in Article i8 that, if a function/(.s) is holo­
morphic in a simply connected region 5, its integral taken 
from a fixed lower limit contained in 5 to a variable upper 
Hmit ^̂  is a uniform function of z within 5. If F{z) is a function 
which takes a determinate value F{ZQ) at Z = ZQ and is uniform 
while z remains within S, having at every point Az) for its 
derivative, the integral of Az) from z„ to z is equal to 
F{z) — F{z^). If F,{z) is another function fulfilling these con-
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ditions, so that the integral of Az) can be written also in the 
form F,{z) — F^{z„), the functions F{z) and F^{z) differ only by 
a constant term ; for 

F,{z) = F{z) + [F,{z,)-F{z,)l 

Suppose now that Az) is still uniform in S, but that it 
has isolated critical points a,, a^, . . . interior to 5. Any two 
paths from z^ to z, which inclose between them a region con­
taining none of the points a,, a,, . . . , will give integrals identi­
cal in value. Let the two paths L,, L include between them 
a single critical point a^; and consider the integrals along 
these two paths. The integral along L, will be equal to the 
integral along the composite path Z,,i-~'Z, where the exponent 
— I indicates that the corresponding path is reversed ; for the 
integral along Z"'Z is equal to zero. But L^L" is a closed 
curve, or " loop," including the critical point a^, and, assuming 
that it is described in a positive direction about «„, the inte­
gral along it is equal to 2niB^, where B^ is the residue oi Az) 
at a,,. Hence 

jAz)dz = 27tiB,,-\- f'Az)dz. 

If now the two paths Z,, L from z^ to z include between 
them several critical points a^, a^, «^, . . ., draw intermediate 
paths L^, . . ., Z„,, so that the region between any two consec­
utive paths contains only one critical point. The integral 
along Z, will be equal to the integral along the composite path 
ZjZ,"'Z, . . . Z„,"'Z,„Z"'Z, since the integrals corresponding to 
L'^L^, . . ., Z„"'Z„,, Z"'Z are aH equal to zero. But L^L~\ 
L,L^'\ . . ., L„^L'^ are all closed paths or loops, each including 
a single critical point, so that, assuming that each is described 
in a positive direction and that B^, B^, B^, . . . denote the resi­
dues of Az) at the critical points, 

J^/{z)dz = 2;r^(^. + ^ , + ^^ + . . .) _|_ fj{z)dz. 

It has been assumed in the preceding that neither of the 
paths Z,, Z intersects itself. In the case where a path, for 
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example L„ intersects itself in several points c,, c, it is 
possible, to consider Z, as made up of a path Z, ' not intersect­
ing itself, together with a series of loops attached to Z / at 
the points c^, c^, . . . Each of these loops encloses a single 
critical point «« and, if described in a positive direction, adds 
to the integral a term 2niB,^ Each such loop described in a 
negative direction adds a term of the form — 27iiB,^. It is evi­
dent that the form of each loop and the point at which it is 
attached to Z / may be altered arbitrarily without altering the 
value of the integral, provided no critical point be introduced 
into or removed from the loop. In fact all the loops may be 
regarded as attached to Z / at z^. 

It can be proved by similar reasoning that the most gen­
eral path that can be dravvn from z^ to z will be equivalent, so 
far as the value of the integral is concerned, to any given path 
Z preceded by a series of loops, each of which includes a sin­
gle critical point and is described in either a positive or nega­
tive direction. The value of the integral is therefore of the 
form 

f^Az)dz + 27ti{m,B, + m,B, + . . . ) , 

where m^, m^, . . . are any integers positive or negative. 

f" dz 
As an example consider the integral / — — . The only 

critical point is ^ = «. Any path whatsoever from z^ to z is 
equivalent to a determinate path, for example, a rectilinear 
path, preceded by a loop containing a and described a certain 
number of times in a positive or negative direction. If w de­
note the integral for a selected path, the general value of the 
integral will he w -{- 2mti. If now a straight line be drawn 
joining z^ to a, and if along its prolongation from a to infinity 
the ^-plane be cut or divided, the integral in the ^•-plane thus 
divided is one-valued. But, with the variation of .s' thus re­
stricted, any branch of the function log {z — d) is one-valued. 
Select that branch, for example, which reduces to zero when 
.0 = «- j - I. It takes a determinate value for z = ^„, and its 
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derivative for every value of z is . Hence, denoting it 

by Log {z — a), 

r dz ^ ^ X T / \ ^ ^ - ^ 
I = Log {z — d) — Log {z. — «) = Log . 

^ ^^z ~ a ^ ^ ' ^ ° ' ^ z^— a 
For a path not restricted in any way, the value of the inte­

gral is 

/ 
dz ^ z — « , . , 2 — a 

= Lose f- 2mtt = log . 
z — a ^ z„ — a ^ ° z. — a 

Prob. 20. If -TT—̂  is a rational function of z of which the numer-
tp{z) 

ator is of degree lower by 2 than the denominator, and if the zeros 
a„ a^, . . ., a„ of the denominator be of the first order, show that 

r'(pU), ^^<P{av) . z-a„ 
•/̂ o tp{z) 1 ip {a^) ° z^ — Uy 

« 
where 2<p{ay)/^'{ay) = o." (See Prob. 19, Art. 27.) 

1 

A R T . 29. WEIERSTRASS'S THEOREM. 

Any rational entire function of z, having its zeros at the 
points a,, a,, . . ., a,„, can be put in the form 

A{z- ay^{z - «,)"' ...{z- a„y^, 

where .^ is a constant and «,, «,, . . ,, n„ are positive integers. 
More generally, any function which has no singular point in the 
finite portion of the .sr-plane and has the points a^, . . ., a„ as 
its zeros, is of the form 

e^'\z - «,)«. ...{z- «„,)«», 

where g{z) is holomorphic in every finite region. 

The extension of this result to the case where a function 
without finite singular points has an infinite number of zeros is 
due to Weierstrass. It is effected by means of the following 
theorem : 

Theorem.—Given an infinite number of isolated points «,, 
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«j, . . ., a„, . . ., a function can be constructed holomorphic ex­
cept at infinity and equal to zero at each of the given points 
only. 

For the given points can be taken so that 

l«i l<l«J<- • • l«J<- • •,. 
\a„i increasing indefinitely with;«. Consider the infinite product 

(P{z)=^ nil -~)ePn^''\ • 

where P„{z) denotes the rational entire function 

Z 7« 

Any factor may be written in the form 

But since 

°^^^ ~ aj~ ~J« a„ — z~~'a„~"'~ no]' "-A. «/(«„_ 4 ' 

the path of integration being arbitrary except that it avoids 
the points a„ a^, . . ., the product may be expressed as 

00 />2 z^dz 

T'''' in,which ^„(.) = -J^ ^J{^;^y 

In any finite region of the z-plane it will be possible to 
assume that | z | ^ P < \a^. if p and m be suitably chosen, since 
\aA increases indefinitely with n. Divide the product into 
two parts 

7 V̂  a J 

and. 

n ( i )e 

m 
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Since when n>m, ja^] >p, the integrand of the exponent 

"̂̂ ^̂  Jo «/(«„-z) 
is holomorphic in the circle \z\ < p. Accordingly, ^„(z) is in the 
given region a holomorphic function of its upper Hmit. 

But we may write 
CO 

CO 

Consider now the series I<p^(z). For the modulus of each term 

we have pH 

where / denotes the length of the path of integration. But, if the 
path of integration be taken as rectilinear, we will have l<.p. 
Hence each term of the series is less in absolute value than the 
corresponding term of a convergent geometrical progression in­
dependent of z. The series is, accordingly, uniformly conver­
gent and, by Theorem V of Article 23, represents a function holo­
morphic in the given region. The exponential 

111 

e 

also must be holomorphic. The other part of the product 

a 
containing only a finite number of factors is everywhere holo­
morphic, vanishing at all of the points Oj, a^,.. . , which are 
situated within the given finite region. But this region may be 
extended arbitrarily. The product therefore fulfils the required 
conditions. 

In the preceding demonstration it was tacitly assumed that 
none of the given points Oj, a^, •.. was situated at the origin. 
To introduce a zero at the origin it is necessary merely to mul­
tiply the resuh by a power of z. 

The most general function without finite singular points 
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having its only zeros at the given points «,, « j , . . . , « « . . . , can 
be expressed in the form 

Az) = e^^-mii - -V''"*"'. 

where_^(5') is holomorphic except at infinity; for the ratio of 
any two functions satisfying the required conditions is neither 
infinite nor zero at any finite point. 

By means of Weierstrass's theorem it is possible to express 
any function, F{z), whose only finite singular points are poles as 
the ratio of two functions holomorphic except at infinity. For, 
construct a function rp{z) having the poles of F{z) as its zeros. 
The product F{z). ip{z) = cpiz) will have no finite singular point. 
The given function can, therefore, be written 

<̂̂) = i ' 
which is the required form. 

In applying Weierstrass's theorem to particular examples, 
it will rarely be found necessary to include in the polynomials' 
PJ^z) so many terms as were employed in the demonstration 
given above. It is quite sufficient, of course, to choose these 
polynomials in any way which will make the product converge 
for finite values of ,sr to a holomorphic function. Factors of the 
form / „ 

where P„{z) is chosen in such a manner, are called " primary 
factors." 

As an appHcation of Weierstrass's Theorem take the reso­
lution of sin z into primary factors. The zeros of sin z are o, 
±7t ±27t, . :., -iinn Consider factors of the form 

' Z \ -nn 
I ]e 

\ mt' 
so that PJ^z) contains only one term —, and 

r ^dz 
lb„{z) = — I -, r. 
^ ^ / n7T{n7t — z) 
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00 

The series ^<l>„{z) wiU converge uniformly in any given fijiite 

region. For if p and m be suitably chosen we will have 

\z\<p<mK. 

Hence 

l^«(^)l<«<«;r-^)<7 
mn] 

where I is the length of the path of integration from the origin 
to the point z. If this path be taken as rectihnear, we will have 
/ < p and ^„(z) will be less in absolute value than the correspond­
ing term of the convergent numerical series 

• ( -

p" « £ 
p\mn' 

mn) 

A similar result holds for the series I ^„(z). These series ac-
— •m 

cordingly represent holomorphic functions in any region for 
which \z\ < p. Hence the expression sought is 

-1-00 

sinz=ze«W_zj / z \ i 

the value w = o being excluded from the product. It will be 
shown in the next article that e«̂ '̂ = i . 

Prob. 21. If Wl and co^ be two quantities not having a real ratio, 

the doubly infinite series of which the general term is 
{moj^+nctj^f 
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is absolutely convergent if ^ > 2. Hence show that the product 

a{z)==zU{r-^e'' ^ , 

where (o—mcoi+noj^, defines a holomorphic function in any finite 
region of the z-plane. This function is Weierstrass's sigma func­
tion, and is the basis of his system of elliptic functions. 

Prob. 22. Show that the product 

.(.+.)&(.+f)/-. « — I 

defines a function holomorphic in every finite region of the z-plane. 
This function is the reciprocal of the gamma function/'(z) or, in the 
notation employed by Gauss, iT(z—i). It may also be defined as 
the Umit when w= 00 of the product 

z(z+i)(z+2) . . . (z-l-w)^^-, 
~7lf . I • 2 • 3 . ...» 

Prob. 23. Assuming the relation that 

r( i -fs)=zr(z) , 
show that 

I I _sin7rz 
f(i)'r(i-z)~ n ' 

ART. 30. MITTAG-LEFFLER'S THEOREM. 

Any uniform function /(z) with isolated singular points 
ai, az, . . • can be represented in the neighborhood of one of 
these points by Laurent's series; viz., 

}{z)=Ao+Ai{z-a„)+A2{z-a„)2 + , , , 

+ 5 i ( z - a „ ) - i + 5 2 ( z - a J - 2 + . . . 

Hence /(z) = 0(z)-f G „ ( ^ j , 
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where (p{z) is holomorphic in a region containing the point a„, 

and G„[ 1 is holomorphic over the whole plane excluding 
\z — a„/ 

the point a„. If a„ is a pole of j{z), GJ Iconsists of a finite 
\z — a„/ 

number of terms; otherwise, it is an infinite series. If the num­

ber of singular points is finite, and the function GJ 1 is VZ-««. 

formed at each such point, we can obtain by subtracting the 
sum of these functions from f{z) a remainder which has no 
singular point in the finite part of .the plane. This remainder 
can therefore be expressed as a series of ascending powers G{z) 
converging for every finite value of z. The function /(z) can 
accordingly be written in the following form: 

f{z)^G{z)+IG„{j^y 

which is analogous to the expression of a rational function by 
means of partial fractions. 

The extension of this result to the case where the number 
of singular points is infinite is due to Mittag-Leffler. Let ai, 
a2, . . ., a„, . . . be the singular points of the one-valued func­
tion /(z), and suppose that 

kil<la2|< . . . Ia„|5. . . , 

\a„\ increasing without Hmit when n is increased indefinitely. 

Let, further, GJ~^—) be the series of negative powers of 

z — a„ contained in the expansion of f{z) according to Laurent's 
series in the neighborhood of a„. 

The function GJ ), having no singular pomt except at 
\z — a„/ 

a„, may be developed by Maclaurin's series in the form 
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and the series will converge uniformly within a circle described 
about the origin as a center with any determinate radius p„< \a„\. 
Hence, for any point within the circle \z\ = p„, 

^«(z-::^J=^«(^)+^' 

F„{z) representing the first p terms of the development of 

GJ I by Maclaurin's theorem, and R the remainder, which 

by a suitable choice of p may be made less in absolute value 
than any given quantity. 

Choose the positive quantities si, £2, • • • , « « , • • • so that 
the series £1 + 12 + . . • + s„+. . . is convergent. Choose also in 
connection with each of the points a^, az, .. . , a„, . . . , a suitable 
integer p such that 

mod[Gi( jzr^J --P'i(z)] < si, ii\z\<pi<\ai\; 

mod\G2\—^] --^2(2) J < £2, if |zl^^2< 1̂ 2!; 

and, in general, 

m o d | ^ G „ ^ ^ ^ j -i^«(z)J < c,.., if \z\<p„< \a„\. 

Consider now the series 

in any finite region of the plane, the points ai, 0 2 , . . . , a„,... 
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being excluded. Since |a^| increases indefinitely with n, it is 
possible, in any finite' region of the z-plane, to assume that 
N</'m<k»tl- Separate from the series its first m — i terms. 
These terms wjll have a finite sum. The remaining terms of the 
series taken in order will be less in absolute value than s^, 
£„,+!,... respectively, \z\ being less than the least of the quanti­
ties p^, p,„+i,. . . Accordingly, the series 

? [«-fe)-^-»] 
is absolutely convergent for every value of z except <ii, dj) • • • > 
a„,... It is evident, further, that in any given finite _ region, 
from which the points a^, a^,... , a^,... are removed by means 
of small circles described about them as centers, the series 
converges uniformly. In such a region any term of the series 
is holomorphic; and, therefore, by Theorem V of Article 23, the 
series defines a holomorphic function. 

The point a„ is an ordinary point for the difference 

since in its neighborhood this difference may be developed as a 
convergent series containing only positive powers of z — a^. In 
the same way each of the points a^, a^,.. . , a^,... is an ordinary 
point for the function 

^(^)-?[^.>(z-:^)-^«(^)]-

This function, therefore, can have no singular point except at 
infinity, and must be expressible as a series G{z) containing 
only positive powers of z and converging uniformly in any 
finite region of the z-plane. Hence the ftmction /(z) may be 
put in the form 
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f{z)=G{z) + ±[_Gj^^yFlz)-\, 

in which the character of each singular point is exhibited. 

As an appHcation of Mittag-Leffler's theorem consider cot z. 

Its singular points are .s = o, ± TT, ± 27r, . . . . In the neigh­

borhood of r̂ = o, cot z is holomorphic; and in the neigh-

borhood of z = mt, n being any positive or negative integer, 
I 

cot z-
z— nn 

is holomorphic. The series 

+» 
nn 

in which m is an arbitrary positive integer, is not convergent 
for finite values of z, even when |^| < mn. The series. 

+« 
.̂ ^ — nn nn_ 

— z 
nn{z — nn) 

n'n\\ 
nn. 

is, however, absolutely convergent at every point for which 
\z\ < mn. For the modulus of any term is equal to 

and, therefore, less than the corresponding term in the series 

A similar result holds for the series 

^ r ^ — - - 1 . 
^- \_z -f- nn nnj 

It is easy to see now that the reasoning employed in the 
demonstration of Mittag-Leffler's theorem may be applied to 
show that the .series 
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I +" r I I ~i 

z ~^ ^^ \_z — nn' nnJ' 

where the summation does not include n —o, defines a func­
tion holomorphic in any finite region of the .s-plane, the points 
O, ± ;r, ± 2 ; r , . . . being excluded. The difference 

cot^-i-^[j:r^ + - ] 
— 30 I — ' 

can have no singular point except at infinity. It must, there­
fore, be expressible as a series G{z) of positive powers of z, 
having an infinite circle of convergence. Hence 

cot z = G{z) + - + ] — nn nnJ 

The next step is to determine G{z). It is to be observed 
that, if G{z) is a constant, its value must be zero, since 
cot {— z) = — cot 2. li G{z) is not a constant, differentiation 
of the preceding expression for cot z gives 

I ^ , . V I 
= G'{z) - - , - > , r,. 

z ^{z — nny sxn z 

It follows, by changing z into z-\- n, that 

G'{z -\-n)= G'{z). 

Hence G'{z) is periodic, having a period equal to n; and as the 
point 2 traces a Hue parallel to the axis of reals, G'{z) passes 
again and again through the same range of values. But G'{z), 
being the derivative of G{s), is holomorphic for every finite 
value of z. It can, therefore, become infinite, if at aH, only 
when the imaginary part of z is infinite. If z be written in 
the form x -\- iy, the value of G'{z) may be expressed as 

I _r ^ \ / 2iey{cos X-\-i sin x)y 
^ ' ~ {x -\- iyy ^ {x-\-iy—nny \(cos 2x-\-isin 2x)—e'''i' 

When y = ± CO the first and last terms of the second 
member vanish. In regard to the series it can be proved that. 
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for any given region is which y is finite and different from 
zero, an integer I'can be found such that the sum of the moduli 
of those terms for which |w| > v is less in absolute value than 
any previously assigned quantity e. As \y\ is increased the 
modulus of each of these terms is diminished. The modulus 
of their sum, therefore, cannot exceed e when j / = ± o o . But 
when_j'=±oo the sum of any finite number of terms of the series 
is zero. Hence the limit of the whole series is zero. G'{z), 
therefore, never becomes infinite. Hence, by Theorem III , 
Article- 26, it is constant, and is equal to zero. It follows that 
G{z) is equal to zero. 

The expression for cot z is accordingly 

nnJ cot 2 = - + ' 
z ' ' 

I 

nn nn 

The logarithmic derivative of the product expression for 
sin 2, given in the preceding article as an example of Weier­
strass's theorem, is 

co\.z-=g'{z)-\-^ -f 
I , i ^ I I , 1 t z ^— \-3 — nrr 

~- CO 

Hence g{z) in that expression is a constant. Makings = o, 
its value is seen to be unity. 

Prob. 24. From the expression for cot z deduce the equation 

c o s e c Z = > 7 r j , 

^— (2 — nn) 

where the summation does not exclude « = o. 

Prob. 25. Show that the doubly infinite series 

where c»= mao^ -\- noo^, defines a function whose only finite singular 
points are z -^ 00. This function is Weierstrass's ^function. (Com­
pare Problem 21.) 

Prob. 26. Prove that 
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Prob. 27. Prove that &'{z) = — 2^-. r-., where the summa-
' ' ^ ' {z — 00)" 

tion does not exclude 0 3 = 0 . 

A R T . 3 1 . S I N G U L A R L I N E S A N D R E G I O N S . 

T h e functions whose propert ies have been considered in the 

preceding articles have been assumed to have only isolated sin­

gular points. T h a t an infinite number of singular points may 

be grouped toge ther in t h e ne ighborhood of a single finite 

point is evident, however, from the consideration of such ex­

amples as 

w — cot - , w = e'^°^'"^ jz^. 
z 

In the former an infinite number of poles are grouped in the 

ne ighborhood of ,the origin. In the la t ter an infinite num­

ber of essential singularities are s i tuated in the vicinity of the 

point z = a. 

I t is easy to illustrate by an example the occurrence of lines 

and regions of discontinuity. T a k e the series * 

T h e sum of its first n t e rms is 

I 

Z^ — I 

which converges to uni ty if l^'l < i , and to zero if \z\> i. 

Hence the circle | ^ ' | = l is a Hne of discont inui ty for this 

series. 

Consider now any two regions 5 , and 5 , , t he former situated 

within, the la t ter without , t he unit circle. L e t (p{z) and ip{z) 

be two arbi trary functions bo th complete ly defined in these 

regions. T h e expression 

<P{z)B{z)-\-i^{z)li-d{z)-] 

* This series is due to J. Tannery. See Weierstrass, Abhandlungen aus der 
Functionenlehre (1886), p. 102. 
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•will be equal to 0(z) in S^ and tp{z) in S^. In regions com­
pletely separated from one another by a singular Hne, the same 
literal expression may thus represent entirely independent 
functions. 

For a single continuous region, however, in the interior of 
which exist only isolated critical points, the character of the 
function in one part determines its character in every other 
part. Let S be such a region, and assUme that its boundary is a 
singular line. In the neighborhood of any interior point a, not 
a critical point, the given function is expressible as a power 
series, viz.: 

f{s) =. / («) + {z- d)f{d) + . . . + J lHfZL/(«)(«) + . . . 
\ .2 . . . n 

This series will converge uniformly over a circle described 
about « as a center with any determinate radius less than the 
distance from a to the nearest singular point. It serves for the 
calculation oi Az) and all its successive derivatives at any point 
b interior to this circle. From the preceding power series, ac­
cordingly, can be obtained another 

Az) = Ab) + {z- b)f{b) + . . . + - i-^-l i l!- / ' ' ) (^) -f . . . , 

representing the Az) within a circle described about b as a 
center. In general, the point b can be so chosen that a portion 
of this new circle will lie without the circle of convergence of 
the former power series. At any new point c within the circle 
whose center is b, the value of the function and all its succes­
sive derivatives can be calculated ; and so, as before, a power 
series can be obtained convergent in a circle described about c 
as a center and, in general, including points Hot contained in 
either of the preceding circles. By continuing in this manner 
it will be possible, starting from a given point a with the ex­
pression oi Az) iti ascending powers, to obtain an expression of 
the same character at any other point k which can be connected 
with a by a continuous line everywhere at a finite distance 
from the nearest singular point. It foDows that the character of 
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the function everywhere within 5 can be determined completely 
from its expression in ascending power series in the neighbor­
hood of a single interior point. 

The process here described, whereby from a single ascending 
power series representing a function in the neighborhood of a 
given point of the z-plane one can derive a succession of similar 
series, the totality of which determines the function throughout a 
connected region limited only by the singularities of the function, 
is known as the process of " analytical continuation." Each of 
the series obtained is called an " element" of the function. Ac­
cording to the theory of functions of a complex variable as pre­
sented by Weierstrass, the infinite number of elements connected 
together by the process of analytical continuation are said to 
constitute the definition of an " analytical function." 

It will be impossible by the process just explained to derive 
any information in regard to a function at points exterior to the 
connected region S covered by the circles of convergence of its 
elements. Moreover, as has been shown by an example, m 
expression which gives a complete definition of /(z) within S 
may carry with it the definition of an entirely independent func­
tion outside of S. 

As an example of a function having a singular region con­
sider the function defined by the series 

1-{-2Z-]r 2Z'-\-2Z''-}-..., 

which represents a function without singular points in the 
interior of the circle l̂ '] = i. For points on or without this 
circle the series is divergent; and, further, it is impossible to 
obtain from it an expression converging when \2\ = i. The 
function thus defined, consequently, exists only in the region 
interior to the unit circle. By changing .2; into i/z a series 

I 2 , 2 , 2 , 

is obtained, representing a function which has no existence in 
the interior of the unity circle. Functions in connection with 
which such regions arise are called "lacunary functions."* 

*Poincar6, American Journal of Mathematics, Vol. XIV; Harkness and 
Morley, Theory of Functions (1893), p. i ig 
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ART. 32. FUNCTIONS HAVING n VALUES. 

Let the function w ^ Az) take at the point z^ of a given re­
gion 6" a value ew™. Suppose that along any continuous path, 
beginning at z^, and subject only to the conditions that it shall 
remain in the interior of 6" and shall not pass through certain 
isolated points a,, a^, . . . , w is continuous and has a contin­
uous derivative. If it is impossible, when B'traces such a path, 
to return to the point z^ so as to obtain there a value of w dif­
ferent from zc"", zu is uniform in the region 5 . On the other 
hand, certain paths may lead back to z^ with new values of w. 

Suppose that at each point of S, except a,^, a^, . . ., w has 
n different values, and that starting from such a point z^ and 
tracing any continuous curve not passing through a, , a,, . . . , 
the several values of w give rise to n branches w,^, w^, . . . , w„, 
each of which is characterized by a continuous derivative. In 
the neighborhood of a^ any o'ne of the points a,, a^, . . . 
these branches are said to be distinct or not, according as small 
closed curves described about this point lead from each value of 
w back to the same value again, or cause some of the branches 
to interchange values. In the latter case the point is a branch 
point. 

About any branch point a^. as a center describe a small cir­
cle ; and suppose that, starting from any point of it with the 
value w^ corresponding to a certain branch, the values 
w^^w.^ . . . are obtained by successive revolutions about a^., 
the original value being reproduced after p revolutions. In­
troduce now a new independent variable z' such that 

z' •={z- a,y. 

It can be shown that when z makes one revolution about 
a^, z' makes only one pth. part of a revolution about the ori­
gin of the /-plane, and that to a complete revolution of z' 
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about the origin of the ^^'-plane correspond / revolutions of z 
about «j. Considering then the branch w„ as a function of z', 
the origin cannot be a branch point, for whenever z' describes 
a small circle about it, the value w^ is reproduced. The 
branch w„ must accordingly be expressible by Laurent's 

series in the form +„ 
«/„ = 2A^z'^, 

— OO 

or, substituting for z' its value, 
1 2 

w^ = A, + A,{z-a,Y + A,{z-a,Y+... 
1 3 

+ A_,{z-a,) *+A_^{z-a,) ? + . . . 
This expression makes plain the relation between the different 
branches of a function in the neighborhood of a branch point. 
When the development of a branch in the neighborhood of one 
of its branch points gives rise to only a finite number of terms 
containing negative powers, the branch point is called a '' polar 
branch point." 

Consider the functions 
P^ — w^ A- w^ + . . . -\- w„ , 
P, = w,w^ + w,w^ -\- . . .-\- w„ _ ,w„ "«> 

Each of these functions is unchanged in value when several or all 
of the quantities «/„ w„ . . . , w„ are interchanged, and is con­
sequently a one-valued function of z within 5. Hence w must 
satisfy an equation of the «th degree, 

w» -f P,w"-' + P^ w"-' -I- . . . ^ /.^ ^ ô  
the coefficients of which are one-valued functions of z having 
only isolated critical points within 5'. When the entire ^-plane 
can be taken as the region 5, and those branch points at which 
the branches do not aH remain finite are polar branch points, 
the only other crirical points being poles for one or more 
branches, the funcdons P„ P„ . . . , P„ are rational functions 
of z. In this case w is an algebraic function of z. 
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ART. 33. ALGEBRAIC FUNCTIONS. 

Any algebraic function satisfies an equation of the form 
F{z, w) = o, where F{z, w) is a rational entire function of z and w. 
It this equation is of the nth degree in w, to any value of z will 
correspond, in general, n different values of w; but for special 
values of z, two or more values of w may be equal. 

The principle of continuity appHed to the values of an alge­
braic function would lead us to expect that, when F{a, w) = o 
has q roots equal to b, it should be possible, whatever the value 
of the positive number e, to determine a positive quantity d such, 
that, whenever \z—a\<d, the equation i^(z, TO) = O would give q 
and only q values of w satisfying the condition \w — b\<s. 

It is necessary in the demonstration of this ftmdamental prop­
erty of algebraic functions to consider only the case where a and 
b are both zero; for every other case can be reduced to this one 
by means of the substitution z = a+z', w^l+w'. Write the 
function F{z, w) in the form 

F{Z, W)=P„-fPiW-|- . . .-f PgW« + . . .+P. W^' 

in which, when z = o, P„ = Pi = . . .=P5_i = o, but P , takes a 
value different from zero. This expression can be put in the 
form 

P(z, w) =PgWf{x + U+ V), 
where 

"q '-I 

^ W^Pg"'^W P, ' 

Describe about the points z=o and w = o as centers, in the 
z-plane and w-plane respectively, circles C and F, of radu r and 
p. I t is possible to choose r and p sufficiently small to satisfy 
the following conditions: (i) whenever z and w are interior to C 
and r, 

\u\<h 
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(2) whenever w is on the circumference F, and z is interior to C, 

\V\< 

It is evidently possible to satisfy the first condition. The ine­
quality 

1̂ 1̂ ,̂ p. p 

shows, further, since P^,. . . , Pg-^ all approach zero with r, 
that for any value of p, r can be chosen sufficiently small to sat­
isfy the second condition. 

But for any assignable position of z within C, the number of 
roots of the equation F{z, w) = o contained within F is, by 
Theorem II , Article 27, equal to 

27nJ • 

^lPgW%i + U+V)] 
-dw, dw 

r PgWi{i + U+V) 

or the total variation of any branch of 

log[PgW'i{i + U+V)l 

when w describes the circumference F, divided by 2m. But 

log [PgWi{i -1- C/"-f F)] = log P^ -f g' log w-I-log (i -f Z7-f F). 

The first term is constant; the total variation of the second term 
is 27tiq; and, since |i7-f F l < i when w is on the circumference F, 
the argument of i+U+V must return to its original value, and 
the total variation of log {i + U+V) is zero. The number of 
values of w within F is, therefore, equal to q. 

Those values of z for which two or more values of w are equal 
must satisfy the equation obtained by eliminating w between 

F{z,w)=o, ^ P ( z , w ) = o . 
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For every other finite value of z, the equation 

BP(z, w) 
dw dz 
dz '^F{z, w) 

dw 

gives at once a single determinate value for the derivative of w. 

It follows from the preceding Article that any branch wa of 
w must be expressible in the neighborhood of any singular point 
ak by a series of the form * 

_1_ 2 

Wa = A^+A^{z-ak)^ +A^{z-akP +... 

_ I 2_ 

+ B^{z-ak) 'f+B^{z-a,,) P+... 

uniformly convergent in a smaU circular band surrounding the 
point ak. If a ft is not a branch point, p = i. 

ART. 34. INTEGRALS OF ALGEBRAIC FUNCTIONS. 

In determining the value of the integral of an algebraic func­
tion w=f{z) along any path joining ẑ  to z, it is possible by virtue 
of Cauchy's Theorem to alter the path of integration arbitrarily, 
provided that no singular point is contained in the region enclosed 
between its original and final positions. By employing the same 
reasoning as in Article 28, any path joining z„ to z may be reduced 
to a determinate path, preceded by a system of loops, of which 
each encloses a single singular point. The value of the integral 
corresponding to a loop surrounding a branch point requires 
special consideration. If z describes such a loop, w returns to 
Z(, with an altered value. When, however, the initial point is 
fixed, the value of the integral is not altered by varying arbi-

* For examples see BRIOT and BOUQUET, Fonctions elliptiques (1875), pp. 40, 
57; CHRYSTAL, Algebra, vol. n (1889), pp. 356, 370. 
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trarily the form of the loop, provided that no singular point is 
introduced into or removed from the loop. 

To show that a given loop, containing a branch point and 
attached to the path of integration at a point c^, different from 
z„, may be transformed into one whose initial point is z^, it is 
necessary to observe that the variable passes first from ZQ to c^ 
and then around the loop to Cj again. If now, before continuing 
along the remaining part of the path, z be required to retrace its 
way to z„ and then return to q, the value of the integral will not 
be altered thereby; for the integral resulting from the path c.^z^c^ 
is equal to zero. The loop, however, has been made to begin, and 
end at z„; and it is foUowed by a path which begins at z„. 

For any algebraic function,, therefore, just as for a function 
without branch points, the most general path of integration can 
be reduced to a determinate path, having the same limits, pre­
ceded by a system of loops of which each encloses a single sin­
gular point. 

The integral around such a loop enclosing a^, a singular 
point but not a branch point for the branch oif{z) considered, is 
equal to ±27iiBk, where Bh is the residue of this branch of/(z) 
at ak, and the plus or minus sign is taken according as the loop 
is described in a positive or negative direction. 

Consider now a loop enclosing a branch point a^^. It can be 
reduced to a special form, consisting of a small circle described 

about a„, as a center and a line, 
straight or curved, joining this 
circle to z„. The term Q^ to be 
added to the integral on account 
of this loop will be obtained by 
integrating w=/(z) from z^ along 

the Hne joining ẑ  to tne circle, around the circle, and back along 
the same line again to z„. The parts resulting from tracing the 
Hne joining z„ to the circle in opposite directions do not cancel; 
since on account of the nature of the branch point w does not 
take its former system of values when z retraces its path to z„. 

If now the integral of /(z) along any determinate path from 
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z„ to z be denoted by I{z), the general value of the integral, J{z), 
resulting from an arbitrary path between the same limits, is 

J{z) = I{z) + IQ^, 

where Q„ is the value of the integral along the mth loop in the 
reduced form of the path of J{z). 

If the upper limit z of the integral J{z) is situated in the neigh­
borhood of a critical point, w is expressible in a region containing 
z by the uniformly convergent series 

I _2_ 

w=AQ+A^{z-ak)^ +A2{z-ak)^ +... 

+B^{z-ak) ^+R^{z-ak) ^+... 

The integral, therefore, except for a constant term, which includes 

•^Qm> î  equal to 
* e+j. p t±i 

J{z)=A^{z-ak) + ^^A^{z-ak) ^ +j^A^{z-ak) P +... 

•¥-~B^{z-ak)~^''^-^B^{z-ak)''f' + .. .+pB^^,{z-ak)'^ 
P 1 p 2 

-\-Bp\og{z-ak)-pBf+^{z-ak) P—B^+,{z-ak) ^ - . . . 

As an example consider the integral 

n dz f' dz 

''^^'~Jo vr^^""X V(i-z)(i+z)' 
where the initial value of the radical V i - z M s -f i . If under 
the integral sign z be replaced by zt, where t is a real quantity vary-
mg from zero to unity, the resulting integral 

I(z) = z / — = = = = ^ 
^ ^0 V ( i - z i ) ( i 4 - z 0 

will correspond to a rectilinear path joming the origin to z. 



88 FUNCTIONS OF A COMPLEX VAEIABLB. 

In J{z) the only singular points of the integrand are z= ± 1 . 
The integral for the circumference of a smaU circle described 
about either of these points as a center, by Theorem I of Article 
19, approaches zero as a limit simultaneously with the radius of 
the circle. A loop enclosing the point -hi, therefore, gives a 
term equal to 

/"' <̂z r° dz _ /-'' dz 
^0 Vi—z^ '^i —Vi—z^ "̂ 0 Vi—z^ 

the radical taking a negative sign on the way back to the origin 
by virtue of the.fact that z has turned around the branch point 
z = i. In the same way, a loop enclosing the point z=—i will 
give, if the initial value of the radical is positive. 

/ •" ' dz />' dz 
'•'0 V l — Z ^ ^ 0 V l — Z 

When z describes a loop about either of the points ± 1 , the radical 
returns to the origin with its sign changed. Hence, if z describe 
in succession two loops about the same branch point, the total 
effect on the value of the integral is zero. If the path of the in­
tegral 'Ji(z) is equal to that of the integral J{z) preceded by a 
single loop enclosing the point -t-i or the point — i, the value 
of Jj(z) will be 

n — J{z) or — TT —/(z) 

respectively. If the path of /i(z) consist of two loops, the first 
about z= I, the second about z= — i, followed by the path of /(z), 

/i(z) = 2;r-t-/(z). 

An arbitrary path from z„ to 2 gives an integral of the form 

2M7r-f I(z) or {2n+T.)n — I{z), 
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where n is an integer positive or negative and I{z) is the integral 
for a rectilinear path. 

Prob. 28. If i2=V(z-ffli) . . . (z-a„) ' and the rectilinear inte-

^ ^ ^ ' Jo R^^" ••••Jo R^^'" Jo R^^' '^°^ ^^^' ^^^ ^ ' ' ' " 

eral value of / -„ is 
^0 R 

2in^Ai+ ... +2m„A^+Z or 2miAi+ ... +2m^,A„+AK-Z, 

where m^,. .. , m,^ are any integers, positive or negative. 

ART. 35. FUNCTIONS OF SEVERAL VARIABLES. 

Let /(Zi, Z2) be a function of two independent variables holo­
morphic with respect to each when ẑ  and z^ are interior to the 
regions A^ and A.^ respectively. Let C^ and C2 be two closed 
curves drawn in these regions, and let a^ and a^ be points con­
tained within these curves. Then 

/* /Tz z 1 
/ ^r-V~(^Zi = 2OT/(a„Z2) 

/ „ ' ' ' dz^ = 2mAai, a^), 
'Jc„ Zn — a, 

so that 

<̂ c, «̂C2 (Z;-ai)(z2-a2) 

Differentiating this integral with respect to the parameters a^, a^, 

gives the general result 

r r /(zi, z^)dz^dz^ 
^'''"^-^-''••yjc.{z,-ad^^\z,-a,)^^^ 

,9^+^/(a„ a,). 
^^'""'^ da,Pda,^ 
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It follows that /(Zj, Z2) has an infinite number of successive par­
tial derivatives holomorphic under the same conditions as itself. 

Let M be the upper bound of the modulus of /(z^, Zj) when 
Zi and Z2 vary along the curves Cj and C^ respectively; r^ and r^, 
the shortest distances from aj and a^ to these curves; l^ and l^, 
the lengths of these curves: then 

dP+A{a^,a,)=-^-2...p-i-2...q r p M 
^̂ '̂i 9a/9a2^ < M^ JJC.^T'^'^''^'' 

^1-2... p-i-2 . . . q MIJ,^ 
< {211)^ r/+=?-2«+^' 

If Cj and C2 are circles described about a^ and a^ as centers, 
h = 2nr^, l2 = 2Tcr2, and 

9^+<'(ai,a2)=.i-2... j ' - i - 2 . . . g , ^ 
mod .̂  .aQ> n < r~S ^• 

dafda.^ ^ rî ?'2* 
It is easy now to extend Taylor's Series to the case of a function 
of two variables. Let /(Zj, Z2) be holomorphic as long as z^ and 
Z2 remain within circles C^ and C^ described about aj and a^ as 
centers. Let ffi-t-^i, 03 + 2̂ be points chosen arbitrarily within 
these circles. Then 

/ ( % + ^1, 2̂ -1-1̂ ) = 7 ^ /* Z' ;̂  ^ -/(^i'^^) —JZî Zj 
•'^ 1 (2w)^«/c,«/c2(Zi-ai-i{i)(z2-02-i!2), 

= 7 — ^ f f{ZvZi)dZidzJ +- ^ , - t - . . . l 
{2myJcyc^ L^i-ai (Zi-fl̂ 2) J 

r-L_+ i^ + 1 
LZ2-O2 (32-^2)^ " j 

-/(a„ a,) + - ^ ^ ^ 1 + 3̂ ,̂  4 

I / 3 3 \=^ 

1 / 9 3 V^ 
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The proof that the remamder approaches zero as a limit is anal­
ogous to that given in the case of a single variable. 

Corresponding results can be obtained for functions having 
any number of independent variables. 

ART. 36. DIFFERENTIAL EQUATIONS.* 

Consider the differential equation 

dw 
-^= / (z ,™) , 

where / (z , w)is holomorphic when z and w are near the points 
Z(, and Wg respectively. By the transformation w=w^+w', z = 

z^+z', the equation becomes -TJ = <P{Z', wf), where 4>{z', w) is 

holomorphic when z' and w' are both near zero. Without loss 
of generaHty, therefore, the discussion can be restricted to the 
special case where /(z, w) is holomorphic with respect to z and 
w, when z and w are confined to smaH regions containing z = o 
and w = o respectively. 

If the given differential equation admits an integral, holomor­
phic in the neighborhood of z = o, and vanishing at that point, 
this integral wiU be unique; for aU its successive differential co­
efficients at the point z = o can be obtained from the given differ­
ential equation. It is sufficient to differentiate that equation 
once, and make z = o, w=o, in order to find the second differen­
tial coefficient; to differentiate again and make the same substi­
tution to find the third differential coefficient, and so on. In this 
way is obtained the development. 

ldw\ I [d^w\ , 
dz j 0 r-2\dz 

If this development can be proved to converge when \z\ is suffi­
ciently small, w thus defined satisfies the differential equation. 

dfw 
For -J- andy"(z, w) have the same value for z = o ; and their suc-

* BRIOT and BOUQUET, Fonctions Elliptiques, p. 325; PICARD, Traite d'Analyse, 
vol. n , p . 291. 
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cessive differential coefficients with respect to z of any order what-
dii) 

soever are also equal for z=o. Hence -7- and f{z, w) are equal. 

Describe smaU circles C and C' about the points z = o, w = o 
as centers with radu r, / . Let M be the upper bound of the 
modulus of / (z , w) within or upon these circles. If now the 
function 

M 
F{Z, w) =-, ^r-, ; 

^ ^ ' z\ W r/\ / 

be constructed, it will be holomorphic within the circles C and 
C . Its development in a convergent series of ascending powers 
of z and w, is found by multiplying together the series for 

and 
z w 

I — I—— 
r r 

and introducing into each term the constant factor M. 

The successive partial derivatives of F{z, w) are all positive 
and such that 

3^+«/(z, w) I ^ /3*+9P(z, w) 
dzPdw'i \lzl<\ dzPdwi llzt 

Consider now the differential equation 

If it has an integral W, holomorphic in the neighborhood of 
z=o, the integral will be expressible in the form 

„ , (dW\ I / ^ W \ , . . , 
^ = \dz-)o'''-2\l^)/^- • - V + ^ ^ H . . . 

The coefficients in this series are all positive, and for every value 
oim 
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The series given above for w, therefore, is convergent at every 
point where the series for W converges. But it is easy to demon­
strate the existence of the function W. For the equation 

dW M 
dz (-7)(-J) 

maylse written in the form 

_W\dW_ M 
r'! dz z' 

r 

The two members are the derivatives respectively of 

TF-—^ and - M ^ - l o g l i -

If the logarithm be chosen so that it vanishes when z = o, it will 
be holomorphic within the circle \z\=r. Since W is to vanish 
when z=o, the relation between W and z should be 

W-~=-Mr 
2r 

or 

log(i-D, 

where the radical is equal to -f i for z = o. 

The function W thus defined satisfies the equation 

-r~=F{z, W); it vanishes when z = o; and it is holomorphic 

in the interior of a circle having for its center the origin, and for 
its radius p the root of the equation 

2Mr, / ^ \ 



94 FUNCTIONS OF A COMPLEX VARIABLE. 

that is, p=r(i—e~'^A, 

The series for W, consequently, converges in the interior of the 
circle of radius p. The series for w must converge in the same 
circle. Hence the given differential equation admits an integral 
vanishing for z = o, and holomorphic within the circle of radius 
p and center at the origin. 

The preceding discussion can be extended without modifica­
tion to the case of n equations: 

- ^ =/l(Z, Wl, ^ 2 , . . . , wj, 

- ^ = / 2 ( Z , Wl, ^2, . . . ; Wj, 

dw J. 
--^==/„(Z,Wi,W2, . . . , w j . 

The functions in the second members are supposed to be holo­
morphic with respect to z, Wi , . . . , w^ within a circle of radius 
r described about z=o, and circles of radius / described about 
Wl = 0, . . . , w „ = o. 

If, further, M denotes the upper bound of the moduU oif^, 
fi, • • • ,fn i^ the regions considered, the associated differential 
equations are 

dW^ dW^ dW„ 

^ = lz-=---=-^=^(^'^^'^---'^«). 

where 

M F{z,W„W„...,-WJ = 

(-:-)('-^^)-G4-)-
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The functions W„ W^,..., W„ all vanish for z=o and are 
identical, so that only one equation 

dW M 

* (.-i)(.-?)" 

need be considered. The radius p of the circles, within which 
aU the developments converge, is 

As an example take the differential equation 

dw 
-Tz~- ^ + ^ ' 

assuming as -initial conditions z = o, w=o. This equation defines 
w as a holomorphic function of z in any region in which w re­
mains finite. Suppose that w becomes infinite for some finite 
value a of the variable z. To determine the nature of the point 
z=a, make the substitution 

z=a^^, w=—,, 
•uf 

The given differential equation is transformed to 

the initial conditions being s' = o, w' = o. This equation defines 
w' as a holomorphic function of z' in the neighborhood of z' = o, 
and, consequently, of z in the neighborhood of z = a. The given 
differential equation is satisfied, therefore, by a function w whose 
only finite critical points are poles. 
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The values of z for which w takes an assigned value may be 
found bv means of the integral 

_ /"" dw I /"" dw -s_ /"" dw 
JQ r+w"^ 2iJo w — i 2^^^ w+i 

If w describes two paths symmetrical with respect to the origin, 
z acquires values numerically equal but of opposite signs. It 
foUows that w is an odd function of z. A loop enclosing the point 
w = i, described in the positive direction n times, adds to the inte­
gral a term equal to nri. A loop described about w= —i in a 
positive direction n times similarly gives —nit. The function w 
is thus periodic, having a period equal to 7t. 

It is possible to express w as the ratio of two functions having 
no finite critical points. Assume w=Wj^/w2. The given differ­
ential equation takes the form 

/dWj^ \ /dw. 
• ^ 2 1 , 

V dz 

\ /dwo \ 

This equation can be satisfied by making 

dw. dw, 
-—=W2, - 3 - = — w , , 
dz " dz " 

and z=o , Wi=o, W2=i may be taken as initial conditions. From 
these equations can be obtained 

Hence, when 

Wl 

W2 

z = 

dw^ 
dz 

dw^ 
dz 

0 , 

d'w^ 
~ dz' ~ 

d^w^ 

d^w^ 
~~dz'" 

d*w^ 

d*W2 

" dz^ 

(dw^\ (d'w^\ (d^w.\ /d*wA 

(̂ 1)0=0, t^j=i . [-d^)=°' [-d^jr-'' te/o=°'"' 
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and 

/ N Idw^ (d'w.\ /d^w„\ /d*w,\ 

T h e series for w^ and w^ are, therefore, 

W i = - — -̂1 . . . = s i n z, 
' I I -2 -3 I -2 • 3 - 4 - 5 

w , = i— -I • — . . . = c o s z ; 
1-2 I -2 -3 -4 

sin z 
whence w= = t a n z. 

cos z 

Prob. 29. Show that the integral of — = •», with the initial condi-
(tZ 
z' 

tions z ^ o , w=i, is the series w = i - f z-j (-.. . = erp. z. 
1 - 2 ^ 

d'u 
Prob. 30. Show that the equation -j-y-fM=o is equivalent to the 

system, ^-='Z7, -3-=—M; and that with the initial conditions z=o , 
dz dz 

u=a, v=b, the solution by series gives u=a cos z-f-S sin z. 

dw' 

dz' 

initial conditions z=o , w=o, "vi — w'= + i, 'Vr — k''w'= + i, is equiv-
dw du dv ,„ . , , , . . . , 

alent to the system —r-=uv, -r-=—vw, -Y-=—k''wu, with tW initial 
•̂  dz dz dz 

Prob. 31. Show that the equation -5-^=(i —TO^)(I —PTO^) with the 

conditions z = o , w=o, M = I , V=I, and that the functions w, u, v have 
no imite critical points except poles. The functions are Jacobi's 
elliptic functions sn z, en z, dn z, respectively. 
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McKay an injurious to Staple Crops i2mo. i 50 
" " " i n u ous \o Garden Crops. (In preparation.^ 

^ ^ ^ . d u r i n g Fruits. (In preparation.) ^^^^ ^ ^^ 

Stockbridge's R°^^%^^f^ vegeU^^^^ T''^ ' ^^ 
Wlnton's Microscopy of Veg p ^ ^ y ^ e n ^6mo. x 50 
Woll's Handbook for Farmers 

ARCHITECTURE. 
i 2 i n o , 2 50 

. ^.. ™ TToatine for BuiUio8S j2mo, i oo 
Baldwin's Steam Heating g^^ge • • • • , • _ to, 5 oo 
B,3ho,e's sanitation rf a C-u- V ^ ^ ^ ^ . , , , ^''''°^^L.^-.s ""r.: .• -U 3 oo 
Berg's Buildings and f t ^ ^ ^ ^ t ^ . t i o n of American Theatres. . . 8,„_ 3 50 
Birtanire's Planning ^^^^°T^^^ ;. . , .g™, 2 00 

Architectural I ' f / " f =*\' ^3 Applied in Buildings 
Compound ^^'^If^^Xn o^ High Oface Buildings. . . . . • • • • • ^^^^ ^ „„ 
Planning and C o n s W l ^ ^ . j ^ . _ ^ ^ ^ 8vo, 4 0 0 

3 , 5 C d ^ r n - S ™ - - SCool Buildings 



Carpenter's Heating and Ventilating of Buildings 8vo, 
Freitag*s Architectural Engineering 8vo, 

Fireproofing of Steel Buildings Svo, 
French and Ives's Stereotomy ^vo, 
Gerhard's Guide to Sanitary House-inspection z6mo. 

Theatre Fires and Panics i2mo, 
•Greene's Structural Mechanics Svo, 
Holly's Carpenters* and Joiners' Handbook i8mo, 
Johnson's Statics by Algebraic and Graphic Methods 8vo, 
Kidder's Architects' and Builders'Pocket-book. Rewritten Edition. i6mo,mor. 
Merrill's Stones for Building and Decoration 8vo, 

Non-metallic Minerals: Their Occurrence and Uses 8vo, 
Monckton's Stair-building 4to, 
Patton's Practical Treatise on Foundations 8vo, 
Peabody's Naval Architecture 8vo, 
Rice's Concrete-block Manufacture Svo, 
Richey's Handbook for Superintendents of Construction i6mo, mor., 
* Building Mechanics' Ready Reference Book. Carpenters' and Wood­

workers' Edi t ion. . . . , i6mo, morocco, 
Sabin's Industrial and Artistic Technology of Paints and Varnish 8vo, 
Siebert and Biggin's Modern Stone-cutting and Masonry 8vo, 
Snow's Principal Species of "Wood 8vo, 
Sondericker's Graphic Statics with Applications to Trusses, Beams, and Arches. 

8vo, 
Towne's Locks and Builders* Hardware l8mo, morocco, 
Wait's Engineering and Architectural Jurisprudence 8vo, 

Sheep, 
Law of Operations Preliminary to Construction in Engineering and Archi­

tecture 8vo, 
Sheep, 

Law of Contracts 8vo, 
"Wood's Rustless Coatings: Corrosion and Electrolysis of Iron and Steel. .8vo, 
Woicester and Atkinson's Small Hospitals, Establishment and Maintenance, 

Suggestions for Hospital Architecture, with Plans for a Small Hospital. 
i2mo. 

The World's Columbian Exposition of 1893 Large 4to, 

ARMY AND NAVY. 

Bemadou's Smokeless Powder, Nitro-cellulose, and the Theory of the Cellulose 
Molecule l2mo, 

=•= Bruff's Text-book Ordnance and Gunnery 8vo, 
Chase's Screw Propellers and Marine Propulsion 8vo, 
Cloke*s Gunner's Examiner 8vo, 
Craig's Azimuth 4to, 
Crehore and Squier's Polarizing Photo-chronograph 8vo. 
* Davis's Elements of Law Svo, 
* Treatise on the Military Law of United States 8vo, 

Sheep, 
De Brack's Cavalry Outposts Duties. (Carr.) 24mo, morocco, 
Dietz's Soldier's First Aid Handbook i6mo, morocco, 
* Dredge's Modem French Artillery 4to, half morocco, 
Durand's Resistance and Propulsion of Ships Svo, 
* Dyer's Handbook of Light Artillery. l2mo, 
Eissler's Modern High Explosives Svo, 
* Fiebeger's Text-book on Field Fortiflcation Small Svo, 
Hamilton's The Gunner's Catechism iSmo, 
* Hoff's Elementary Naval Tactics Svo, 
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Ingalls*s Handbook of Problems in Direct Fire 8vo, 4 00 
* Ballistic Tables 8vo, 1 50 
* Lyons's Treatise on Electromagnetic Pbenomena. Vols. I. and n . .8vo, each, 6 00 
* Mahan's Permanent Fortifications. (Mercur.) Svo, half morocco, 7 50 
Manual for Courts-martial i6mo, morocco, i 50 
* Mercur's Attack of Fortified Places i2mo, 2 00 
* Elements of the Art of "War Svo, 4 00 
Metcalf's Cost of Manufactures—And the AdministratioD of Workshops. .Svo, 5 00 
* Ordnance and Gunnery. 2 vols i2mo, 5 00 
Murray's Infantry Drill Regulations i8mo, paper, 10 
Nixon's Adjutants' Manual 24mo, i 00 
Peabody's Naval Architecture Svo, 7 EO 
* Phelps's Practical Marine Surveying Svo, 2 50 
Powell's Army Officer's Examiner i2mo, 4 00 
Sharpe's Art of Subsisting Armies in War iSmo, morocco, i 50 
* Tupes and Poole's Manual of Bayonet Exercises and Musketry Fencing. 

24mo, leather, 50 
* Walke's Lectures on Explosives Svo, 4 00 
Weaver's Military Explosives Svo, 3 00 
* Wheeler's Siege Operations and Military Mining Svo, 2 00 
Winthrop's Abridgment of Military'Law i2mo, 2 50 
WoodhuU's Notes on Military Hygiene i6mo, i 50 
yo"ng'« Simple Elements of Navigation i6nio, morocco, 2 00 

ASSAYING. 

Fletcher's Practical Instructions in Quantitative Assaying with the Blowpipe. 
i2mo, morocco, 

Furman's Manual of JPractical Assaying 8vo, 
Lodge's Notes on Assaying and Metallurgical Laboratory Experiments. . . .Svo, 
Low's Technical Methods of Ore Analysis 8vo, 
Miller's Manual of Assaying i2mo, 

Cyanide Process i2mo, 
Minet's Production of Aluminum and its IndustrialXJse. (Waldo.) i2mo, 
O'Driscoll's Notes on the Treatment of Gold Ores Svo, 
Ricketts and Miller's Notes on Assaying 8vo, 
Robine and Lenglen's Cyanide Industry. (Le Clerc.) Svo, 
Dike's Modem Electrolytic Copper Refining. 8vo, 
Wilson's Cyanide Processes i2mo, 

Chlorination Process i2mo, 

ASTRONOMY. 

Comstock's Field Astronomy for Engineers Svo, 2 50 
Craig's Azimnth 4to, 3 5o 
Doolittle's Treatise on Practical Astronomy Svo, 4 00 
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Gore's Elements of Geodesy. .Svo, 

Hayford's Text-book of Geodetic Astronomy 8vo, 3 00 
Merriman's Elements of Precise Surveying and Geodesy 8vo, 2 so 
* Michie and Harlow's Practical Astronomy Svo, 3 00 
* White's Elements of Theoretical and Descriptive Astronomy i2mo, 2 00 

BOTANY. 

Davenport's Statistical Methods, with Special Reference to Biological Variation. 
l5mo, morocco, I 23 

Thomr and Bennett's Structural and Physiological Botany. i6mo, 2 2S 
Westermaier's Compendium of General Botany. (Schneider.). 8vo, 2 00 

3 



CHEMISTRY. 

Adrlance's Laboratory Calculations and Specific Gravity Tables. i2mo, i 23 
Alexeyeff's General Principles of Organic Synthesis. (Matthews.) Svo, 3 00 
Allen's Tables for Iron Analysis • • _ • • -Svo, 3 00 
Arnold's Compendium of Chemistry. (Mandel.) Small Svo, 3 50 
Austen's Notes for Chemical Students i2mo, 1 50 
Bernadou's Smokeless Powder.—Nitro-cellulose, and Theory of the Cellulose 

Molecule " m o , 2 50 
* Browning's Introduction to the Rarer Elements Svo, i 50 
Brush and Penfleld's Manual of Determinative Mineralogy Svo, 4 00 
Claassen's Beet-sugar Manufacture. (Hall and Ro^fe.) Svo-, 3 00 
Classen's Quantitative Chemical Analysis by Electrolysis. (Boltwocd.). .Svo, 3 co 
Cohn's Indicators and Test-papers l2mo, 2 00 

Tests and Reagents Svo, 3 00 
Crafts's Short Course in Qualitative Chemical Analysis. (Schaefler.).. .i2nio, i 50 
Dolezalek's Theory of the Lead Accumulator (Storage Battery). (Von 

Ende.) l2mo, 2 50 
Drechsel's Chemical Reactions. (Merrill.) izmo, i 2s 
Duhem's Thermodynamics and Chemistry. (Burgess.) Svo, 4 00 
Eissler's Modern High Explosives gy^ . Q^ 
Efiront's Enzymes and their AppUcations. (Prescott.) gyo, 3 00 
Erdmann's Introduction to Chemical Preparations. (Dunlap.) i2mo, i 23 
Fletcher's Practical Instructions in Quantitative Assaying with the Blowpipe.' 

i2mo, morocco, i 50 
Fowler's Sewage Works Analyses i2mo 2 00 
Fresenius's Manual of Qualitative Chemical Analysis. (WeUs.) Svo! 5 00 

Manual of Qualitative Chemical Analysis. Part I. Descriptive. (Wells.) Svo, 3 00 
System of Instruction in Quantitative Chemical Analysis. (Cohn ) 

2 vols 8vo, 12 50 
Fuertes's Water and Public Health i2mo, i 50 
Furman's Manual of Practical Assaying Svo, 3 00 
* Getman's Exercises in Physical Chemistry i2mo, 2 00 
Gill's Gas and Fuel Analysis for Engineers i2mo, i 23 
Grotenfelt's Principles of Modern Dairy Practice. (WoU.) i2mo, 2 00 
Groth's Introduction to Chemical Crystallography (Marshall) i2mo, i 23 
Hammarsten's Text-book of Physiological Chemistry. (Mandel.) Svo, 4 00 
Helm's Principles of Mathematical Chemistry. (Morgan.) i2mo, i 50 
Hering.'s Ready Reference Tables (Conversion Factors) i6mo, morocco, 2 30 
Hind's Inorganic Chemistry Svo, 3 «>-
* Laboratory Manual for Students i2mo, i 00 
Holleman's Text-book of Inorganic Chemistry. (Cooper.) Svo, 2 50 

Text-book of Organic Chemistry. (Walker and Mott.) Svo, 2 30 
* Laboratory Manual of Organic Chemistry. (Walker.) izmo, i 00 
Hopkins's Oil-chemists' Handbook Svo, 3 00 
Jackson's Directions for Laboratory Work in Physiological Chemistry. .8vo, i 23 
Keep's Cast Iron Svo, 2 30 
Ladd's Manual of Quantitative Chemical Analysis i2mo, i 00 
Landauer's Spectrum Analysis. (Tingle.) Svo, 3 00 
* Langworthy and Austen. The Occurrence of Aluminium in Vegetable 

Products, Animal Products, and Natural Waters Svo, 2 00 
Lassar-Cohn's Practical Urinary Analysis. (Lorenz.) l2mo, r 00 

Application of Some General Reactions to Investigations in Organic 
Chemistry. (Tingle.) l2mo, i 00 

Leach's The Inspection and Analysis of Food with Special Reference to State 
Control , Svo, 7 30 

Lob's Electrochemistry of Organic Compounds. (Lorenz.) Svo, 3 00 
Lodge's Notes on Assaying and Metallurgical Laboratory Experiments. .. .Svo, 3 00 
Low's Technical Method of Ore Analysis.. Svo. 3 00 
Lunge's Techno-chemical Analysis. (Cohn.) i2mo i 00 

4 



* McKay and Larsen's Principles and Practice of Butter-making Svo i 50 
Mandel's Handbook for Bio-chemical Laboratory i2mo, r 50 
* Martin's Laboratory Guide to Qualitative Analysis with the Blowpipe. . i2mo, 60 
Mason's Water-supply. (Considered Principally from a Sanitary Standpoint.) 

3d Edition, Rewritten Svo, 4 00 
Examination of Water. (Chemical and Bacteriological.) i2mo, i 25 

Matthew's The Textile Fibres Svo, 3 50 
Meyer's Determination of Radicles in Carbon Compounds. (Tingle.). . i2mo, i 00 
Miller's Manual of Assaying i2mo, i 00 

Cyanide Process i2mo, i 00 
Minet's Production of Alimiinum and its Industrial Use. (Waldo.). . . . i2mo, 2 50 
Mixter's Elementary Text-book of Chemistry i2mo, 1 50 ' 
Morgan's An Outline of the Theory of Solutions and its Results i2mo, i 00 

Elements of Physical Chemistry i2mo, 3 00 
* Physical Chemistry for Electrical Engineers i2mo, r 50 

Morse's Calculations used in Cane-sugar Factories i6mo, morocco, i 50 
Mulhken's General Method for the Identification of Pure Organic Compounds, 

Vol. I Large Svo, 5 00 
O'Brine's Laboratory Guide in Chemical Analysis Svo, 2 00 
O'Driscoll's Notes on the Treatment of Gold Ores Svo, 2 00 
Ostwald's Conversations on Chemistry. Part One. (Ramsey.) i2mo, i 50 

*' " " " Part Two. (Turnbull.) r2mo, 2 00 
* Penfield's Notes on Determinative Mineralogy and Record of Mineral Tests. 

Svo, paper, 50 
Pictet's The Alkaloids and their Chemical Constitution. (Biddle.) Svo, 5 00 
Pinner's Introduction to Organic Chemistry. (Austen.) I2m0: i 50 
Poole's Calorific Power of Fuels Svo, 3 oc 
Prescott and Winslow's Elements of Water Bacteriology, with Special Refer­

ence to Sanitary Water Analysis i2mo, 1 25 
* Reisig's Guide to Piece-dyeing Svo, 25-Oo 
Richards and Woodman's Air.Water, and Food from a Sanitary Standpoint. .Svo, 2 00 
Ricketts and Russell's Skeleton Notes upon Inorganic Chemistry. (Part I. 

Non-metallic Elements.) Svo, morocco, 75 
Ricketts and Miller's Notes on Assaying 8vo, 3 00 
Rideal's Sewage and the Bacterial Purification of Sewage Svo, 3 50 

Disinfection and the Preservation of Food. . .= Svo, 4 00 
Riga ' s Elementary Manual for the Chemical Laboratory Svo, i 25 
Robine and Lenglen's Cyanide Industry. (Le Clerc). . . . Svo, 4 00 
Rostoski's Serum Diagnosis. (Bolduan.) i2mo, i 00 
Ruddiman's Incompatibilities in Prescriptions Svo, 2 oc 
•* Whys in Pharmacy i2mo, i 00 
Sabin's Industrial and Artistic Technology of Paints and Varnish Svo, 3 00 
Salkowski's Physiological and Pathological Chemistry. (Orndorff.) Svo, 2 50 
Schimpf's Text-book of Volumetric Analysis. , i2mo, 2 50 

Essentials of Volumetric Analysis i2mo, i 25 
* Qualitative Chemical Analysis Svo, i 25 
Smith's Lecture Notes on Cheniistry for Dental Students , . .Svo, 2 50 
Spencer's Handbook for Chemists of Beet-sugar Houses i6mo, morocco, 3 00 

Handbook for Cane Sugar Manufacturers." T6mo, morocco, 3 00 
Stockbridge's Rocks and Soils 8vo, 2 50 
* Tillman's Elementary Lessons in Heat Svo, i 50 
* Descriptive General Chemistry Svo, 3 00 
Treadwell's Quafitative Analysis. (HalL) Svo, 3 00 

Quantitative Analysis. (Hall.) Svo, 4 00 
Turneaure and Russell's Public Water-supplies Svo, 5 00 
Van Deventer's Physical Chemistry for Beginners. (Boltwood.) i2mo, i 50 
* Walke's Lectures on Explosives Svo, 4 00 
Ware's Beet-sugar Manufacture and Refining . .Small Svo, cloth, 4 00 
Washington's Manual of the Chemical Analysis of Rocks Svo, 2 00 
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Wassermann's Immune Sera: Hsemolysins, Cytotoxins, and Precipitins. (Bol­
duan.) i2mo, 

Weaver*s Military Explosives 8vo, 
Wehrenfennig's Analysis and Softening of Boiler Feed-Water 8vo, 
Wells's Laboratory Guide in Qualitative Chemical Analysis 8vo, 

Short Course in Inorganic Qualitative Chemical Analysis for Engineering 
Students i2mo. 

Text-book of Chemical Arithmetic l2mo, 
Whipple's Microscopy of Drinking-water Svo, 
Wilson's Cyanide Processes i2mo, 

Chlorination Process i2mo, 
^Winton's Microscopy of Vegetable Foods Svo, 
WuUing's Elementary Course in Inorganic, Pharmaceutical, and Medical 

Chemistry izmo. 

CIVIL ENGINEERING. 

BRIDGES AND ROOFS. HYDRAULICS. MATERIALS OF ENGINEERING. 
RAILWAY ENGINEERING. 

Baker's Engineers' Surveying Instruments ; . . . . i2mo, 3 00 
Bixby's Graphical Computing Table Paper i s i X 24^ inches. 23 

. ** Burr's Ancient and Modern Engineering and the Isthmian Cana.. (Postage, 
27 cents additional.) Svo, 3 50 

Comstock's Field Astronomy for Engineers Svo, 2 30 
Davis's Elevation and Stadia Tables Svo, I 00 
Elliott's Engineering for Land Drainage l2mo, i 50 

Practical Farm Drainage izmo, 1 00 
*Fiebeger's Treatise on Civil Engineering Svo, 5 00 
Flemer's Phototopographic Methods and Instruments Svo, 3 00 
Folwell's Sewerage. (Designing and Maintenance.) Svo, 3 00 
Freitag's Architectural Engineering. 2d Edition, Rewritten Svo, 3 50 
French and Ives's Stereotomy Svo, 2 50 
Goodhue's Municipal Improvements i2mo, i 73 
Goodrich's Economic Disposal of Towns' Refuse Svo, 3 30 
Gore's Elements of Geodesy '. Svo, 2 50 
Hayford's Text-book of Geodetic Astronomy. Svo, 3 00 
Bering's Ready Reference Tables (Conversion Factors) i6mo, morocco, 2 50 
Howe's Retaining Walls for Earth izmo, i 23 
* ives's Adjustments of the Engineer's Transit and Level i6mo, Bds. 23 
Tves and Hilts's Problems in Surveying i6mo, morocco, T 50 
Johnson's (J. B.) Theory and Practice of Surveying Small Svo, 4 00 
Johnson's (L. J.) Statics by Algebraic and Graphic Methods Svo, 2 00 

Xaplace's Philosophical Essay on ProbabiUties. (Truscott and Emory.). i2mo, 2 00 
Mahan's Treatise on Civil Engineering. (1S73.) (Wood.) Svo, 3 00 

'* Descriptive Geometry Svo, i 30 
Merriman's Elements of Precise Surveying and Geodesy Svo, 2 30 

TVlerrlman and Brooks's Handbook for Surveyors i6mo, morocco, 2 00 
Nugent's Plane Surveying Svo, 3 30 
Ogden's Sewer Design i2mo, 2 00 
Parsons's Disposal of Municipal Refuse Svo, 2 00 
Patton's Treatise on Civil Engineering. Svo half leather, 7 50 
Reed's Topographical Drawing and Sketching 4to, 3 00 
Rideal's Sewage and the Bacterial Purification of Sewage Svo, 3 50 
Siebert and Biggin's Modern Stone-cutting and Masonry Svo, i 50 
Smith's Manual of Topographical Drawing. (McMillan.) Svc, 2 50 
Sondericker*s Graphic Statics, with Applications to Trusses, Beams, and Arches. 

Svo, 2 00 
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Taylor and Thompson*s Treatise on Concrete, Plain and Reinforcea Svo, 
* Trautwine*s Civil Engineer's Pocket-book i6mo, morocco, 
Venable's Garbage Crematories in America Svo, 
Wait's Engineering and Architectural Jurisprudence Gvo, 

Sheep, 
Law of Operations Preliminary to Construction in Engineering and Archi­

tecture Svo, 
Sheep, 

Law of Contracts Svo, 
Warren's Stereotomy—Problems in Stone-cutting Svo, 
Webb's Problems in the Use and Adjustment cl Engineering Instruments. 

i6mo, morocco, 
Wilson*s Topographic Surveying Svo, 

BRIDGES AND ROOFS. 

Boiler's Practical Treatise on the Construction of Iron Highway Bridges. . Svo, 2 oo 
* Thames River Bridge .4to, paper, 3 00 
Burr's Course on the Stresses in Bridges and Roof Trusses, Arched Ribs, and 

Suspension Bridges Svo, 3 30 
Burr and Falk's Influence Lines for Bridge and Roof Computations Svo, 3 o» 

Design and Construction of Metallic Bridges Svo. 5 00 
Du Bois's Mechanics of Engineering. Vol. II Cnall 4to, 10 co 
Foster's Treatise on Wooden Trestle Bridges 410, 3 00 
Fowler's Ordinary Foundations Svo, 3 50 
Greene's Roof Trusses Svo, 1 25 

Bridge Trusses 8vo, 2 30 
Arches in Wood, Iron, and Stone Svo, 2 30 

Howe's Treatise on Arches Svo, 4 00 
Design of Simple Roof-trusses in Wood and Steel Svo, 2 00 
Symmetrical Masonry Arches Svo, 2 30 

Johnson, Bryan, and Turneaure's Theory and Practice in the Designirg of 
Modern Framed Structures Small 4to, 10 00 

Merriman and Jacoby's Text-book on Roofs and Bridges: 
Part I. Stresses in Simple Trusses 8vo, 2 30 
Part H. Graphic Statics ' 8vo, 2 so 
Part III. Bridge Design Svo, 2 30 
Part IV. Higher Structures 8vo, 2 30 

Morison's Memphis Bridge 4*0, 10 00 
WaddeU's De Pontibus, a Pocket-book for Bridge Engineers. . i6nio, morocco, ^ 00 

* Specifications for Steel Bridges i2mo 5 0 

Wright's Designing of Draw-spans. Two parts in one volume Svo, 3 .50 

HYDRAULICS. 

Barnes's Ice Formation 8™' 3 oa-
Bazin's Experiments upon the Contraction of the Liquid Vein Issuing from 

an Orifice. (Trautwine.) 8vo, 2 00. 
Bovey's Treatise on HydrauUcs ^^O" 
Church's Mechanics of Engineering 8vo, 

Diagrams of Mean Velocity of Water in Open Channels paper. 
Hydraulic Motors ^™' 

Coffin's Graphical Solution of HydrauUc Problems i6mo, morocco, 
Flather*s Dynamometers, and the Measurement of Power i2mo, 
Folweirs Water-supply Engineering ^™' 
Frizell's Water-power "'"' 
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Fuertes's Water and Public Health , i2mo, i so 
Water-filtration Works i2mo, 2 30 

Ganguillet and Kutter*s General Formula for the Uniform Flow of Water in 
Rivers and Other Channels. (Hering and Trautwine.) .Svo, 4 00 

Hazen's Filtration of Public Water-supply 8vo, 3 00 
Hazlehurst's Towers and Tanks for Water-works Svo, 2 30 
Herschel*s T15 Experiments on the Carrying Capacity of Large, Riveted, Metal 

Conduits Svo, 2 00 
Mason*s Water-supply. (Considered Principally from a Sanitary Standpoint.) 

Svo, 
Merrlman*s Treatise on Hydraulics Svo, 
•!= Michie's Elements of Analytical Mechanics Svo, 
Schuyler's Reservoirs for Irrigation, Water-power, and Domestic Water-

supply Large Svo, 
** Thomas and Watt's Improvement of Rivers (Post., 44c. additional.) 4to, 
Turneaure and Russell's Public Water-supplies Svo, 
Wegmann's Design and Construction of Dams 4to, 

Water-supply of the Cityof New York from 163S to 1893 4to, : 
Williams and Hazen's HydrauUc Tables Svo, 
Wilson's Irrigation Engineering Small Svo, 
Wolff's Windmill as a Prime Mover Svo, 
Wood's Turbines Svo, 

Elements of Analytical Mechanics Svo, 

MATERIALS OF ENGINEERING. 

Baker's Treatise on Masonry Construction Svo 
Roads and Pavements gyg 

Black's United States PubBc Works Oblong 4to 
* Bovey's Strength of Materials and Theory of Structures , Svo 
Burr's Elasticity and Resistance of the Materials of Engineering Svo 
Byrne's Highway Construction g^^ 

Inspection of the Materials and Workmanship Employed in Construction. 

i6mo, 
Church's Mechanics of Engineering Svo 
Du Bois's Mechanics of Engineering. Vol. I Small 4to' 
^Eckel's Cements, Limes, and Plasters g^J 
Johnson's Materials of Construction Larg-e Svo' 
Fowler's Ordinary Foundations gyp' 
Graves's Forest Mensuration g^g' 
* Greene's Structural Mechanics g^o' 
Keep's Cast Iron g^P 
Lanza's AppUed Mechanics g^o 
Marten's Handbook on Testing Materials. (Henning.) 2 vols Svoi 
Maurer's Technical Mechanics g^o 
Merrill's Stones for Building and Decoration Svo' 
Merriman's Mechanics of Materials Svo 

Strength of Materials i2mo 
MetcaH's Steel. A Manual for Steel-users i2mo 
Patton's Practical Treatise on Foundations Svo, 
Richardson's Modern Asphalt Pavements Svo, 
Richej^s Handbook for Superintendents of Construction r6mo, mor., 
* Ries's Clays: Their Occurrence, Properties, and Uses Svo 
Rockwell's Roads and Pavements in France i2mo 
Sabin's Industrial and Artistic Technology of Paints and Varnish Svo 
Smith's Materials of Machines l2mo 
Snow's Principal Species of Wood ĝ .̂ . 
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Spalding's Hydeaiulic Cement i2mo, 2 00 
Text-book on Roads and Pavements. izmo, 2 00 

Taylor and Thompson's Treatise on Concrete. Plain and Reinforced Svo, 5 00 
Thurston's Materials of Engineering. 3 Parts Svo, 8 00 

Part I. Non-metallic Materials of Engineering and Metallurgy Svo, 2 00 
Part II Iron and Steel Svo, 3 30 
Part III. A Treatise on Brasses, Bronzes, and Other Alloys and their 

Constituents Svo, 2 30 
Thurston's Text-book of the Materials of Construction Svo, s 00 
Tillson's Street Pavements and Paving Materials Svo, 4 00 
Waddeli's De Pontibus (A Pocket-book for Bridge Engineers.). . l6mo. mor., 2 00 

Specifications for Steel Bridges. . . .• i2mo, i 25 
Wood's (De V.) Treatise on the Resistance of Materials, and an Appendix on 

the Preservation of Timber Svo, 2 00 
Wood's (De V.) Elements of Analytical Mechanics Svo, 3 00 
Wood's (M. P.) Rustless Coatings; Corrosion and Electrolysis of Iron and 

Steel. Svo, 4 0 0 

RAILWAY ENGINEERING. 

Andrew's Handbook for Street Railway Engineers 3x3 inches, morocco, i 23 
Berg's Buildings and Structures of American Railroads 4to, 5 00 
Brook's Handbook of Street Raihoad Location i6mo, morocco, 
Butt's Civil Engineer's Field-book i6mo, morocco, 
Crandall's Transition Curve l6mo, morocco. 

Railway and Other Earthwork Tables Svo, 
Dawson's "Engineering" and Electric Traction Pocket-book i6mo, morccco. 
Dredge's History of the Pennsylvania Raihoad: (1S7Q) Paper, 
* Drinker's Tunnelling, Explosive Compounds, and Rock Drills. 4to, half mor., 
Fisher's Table of Cubic Yards < Cardboard, 
Godwin's Raihoad Engineers' Field-book and Explorers' Guide, . . i6mo, mor., 
Howard's Transition Curve Field-book i6mo, morocco, 
Hudson's Tables for Calculating the Cubic Contents of Excavations and Em­

bankments 8vo, I 00 
MoUtor and Beard's Manual for Resident Engineers. .'. i6mo, 1 00 
Nagle's Field Manual for Raihoad Engineers i6mo, morocco, 3 00 
Philbrick's Field Manual for Engineers i6mo, morocco, 3 00 
Searles's Field Engineering l6mo, morocco, 3 00 

Raihoad Spiral l6mo, morocco, 1 30 
Taylor's Prismoidal Formulae and Earthwork Svo, I 30 
* Trautwine's Method ot Calculating the Cube Contents of Excavations and 

Embankments by the Aid of Diagrams Svo, 2 00 
The Field Practice of Laying Out Circular Curves for Raihoads. 

l2mo, morocco, 2 50 
Cross-section Sheet Paper, 23 

Webb's Raihoad Construction i6mo, morocco, 3 oo 
Economics of Raihoad Construction Large i2mo, 2 30 

Welhngton's Economic Theory ot the Location of Railways SmaU Svo. s 00 

DRAWING. 

Barr's Kinematics of Machinery Svo 2 30 
* Bartlett's Mechanical Drawing 8vo, 3 00 
* " " " Abridged Ed Svo, I 50 
CooUdge's Manual of Drawing Svo, paper, i 00 
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Coolidge and Freeman's Elements of General Drafting for Mechanical Engi­
neers Oblong 4to, 

Dmrley's Kinematics of Machines Svo, . 
Emch's Introduction to Projective Geometry and its Applications Svo, 
Hill's Text-book on Shades and Shadows, and Perspective 8vo, 
Jamison's Elements of Mechanical Drawing Svo, 

Advanced Mechanical Drawing Svo, 
Jones's Machine Design: 

Part I. Kinematics of Machinery Svo, 
Part H. Form, Strength, and Proportions of Parts Svo, 

MacCord's Elements of Descriptive Geometry Svo, 
Kinematics; or, Practical Mechanism Svo, 
Mechanical Drawing 4to, 
Velocity Diagrams Svo, 

MacLeod's Descriptive Geometry Small Svo, 
* Mahan's Descriptive Geometry and Stone-cutting Svo, 

Industrial Drawing. (Thompson.) Svo, 
Moyer's Descriptive Geometry Svo, 2 00 
Reed's Topographical Drawing and Sketching 4to, 5 00 
Reid's Course in Mechanical Drawing Svo, 2 00 

Text-book of Mechanical Drawing and Elementary Machine Design.Svo, 3 00 
Robinson's Principles of Mechanism Svo, 3 00 
Schwamb and Merrill's Elements of Mechanism Svo, 3 00 
Smith's (R. S.) Manual of Topographical Drawing. (McMillan.) Svo, ^ 50 
Smith (A. W.) and Marx's l^achine Design Svo, 3 00 
* Titsworth's Elements of Mechanical Drawing Oblong Svo, i 25 
Warren's Elements of Plane and Solid Free-hand Geometrical Drawing. i2mo, i 00 

Drafting Instruments and Operations i2mo, i 25 
Manual of Elementary Projection Drawing i2mo, i 50 
Manual of Elementary Problems in the Linear Perspective of Form and 

Shadow i2mo, i 00 
Plane Problems in Elementary Geometry T2mo, 1 25 
Primary Geometry i2rao, 75 
Elements of Descriptive Geometry, Shadows, and Perspective Svo, 3 50 
General Problems of Shades and Shadows Svo, 3 00 
Elements of Machine Construction and Drawing Svo, 7 50 
Problems, Theorems, and Examples in Descriptive Geometry Svo, 2 50 

Weisbach's Kinematics and Power of Transmission. (Hermann and 
Klein.) Svo, 5 00 

Whelpley's Practical Instruction in the Art of Letter Engraving i2mo, 2 00 
Wilson's (H. M.) Topographic Surveying Svo, 3 50 
Wilson's (V. T.) Free-hand Perspective Svo, 2 50 
Wilson's (V. T.) Free-hand Lettering 8vo, i 00 
Woolf's Elementary Course in Descriptive Geometry .Large Svo, 3 oc 

ELECTRICITY AND PHYSICS. 

Anthony and Brackett's Text-book of Physics. (Magie.) .Small Svo, 3 
Anthony's Lecture-notes on the Theory of Electrical Measurements. . . . i2mo, 1 
Benjamin's History of Electricity Svo, 3 • 

Voltaic Cell Svo, 3 < 
Classen's Quantitative Chemical Analysis by Electrolysis. (Boltwood.).Svo, 3 < 
* Collins's Manual of Wireless Telegraphy _ i2mo, r i 

Morocco, 2 I 
Crehore and Squier's Polarizing Photo-chronograph. , , Svo, 3 1 
Dawson's "Engineering" and Electric Traction Pocket-book. i6mo, morocco, 5 < 
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Dolezalek's Theory of the Lead Accumulator (Storage Battery). (Von 
Fnde.) izmo, 2 30 

Duhem's Thermodynamics and Chemistry. (Burgess.) Svo, 4 oo 
Flather's Dynamometers, and the Measurement of Power i2mo, 3 00 
Gilbert's De Magnate. (Mottelay.) -. Svo, 2 so 
Hanchett's Alternating Currents Explained i2mo, i 00 
Hering's Ready Reference Tables (Conversion Factors) i6mo, morocco, 2 50 
Holman's Precision of Measurements Svo, 2 00 

Telescopic Mirror-scale Method, Adjustments, and Tests. . . .Large Svo, 
Kinzbrunner's Testing of Continuous-current Machines Svo, 
Landauer's Spectrum Analysis. (Tingle.) Svo, 
Le Chatelier s High-temperature Measurements. (Boudouard—Burgess.) l2mo. 
Lob's Electrochemistry of Organic Compounds. (Lorenz.) Svo, 
* Lyons's Treatise on Electromagnetic Phenomena. Vols. I. and H. Svo, each, 
* Michie's Elements of Wave Motion Relating to Sound and Light Svo, 
Niaudet's Elementary Treatise on Electric Batteries. (Fishback.) i2mo, 
* ParshaU and Hobart's Electric Machine Design 4to, half morocco, : 
* Rosenberg's Electrical Engineering. (Haldane Gee—Kinzbrunner.). ..Svo, 
Ryan, Worris, and Hoxie's Electrical Machinery. Vol. I Svo, 
Thurston's Stationary Steam-engines Svo, 
* Tillman's Elementary Lessons in Heat Svo, 
Tory and Pitcher's Manual of Laboratory Physics Small Svo, 
Ulke's Modern Electrolytic Copper Refining Svo, 

LAW. 

* Davis's Elements of Law 8vo, 2 30 
* Treatise on the Mihtary Law of United States Svo, 7 00 
* Sheep, 7 30 
Manual for Courts-martial l6mo, morocco, I So 
Wait's Engineering and Architectural Jurisprudence Svo, 6 00 

Sheep, 6 50 
Law of Operations Preliminary to Construction in Engineering and Archi­

tecture 8vo, s 00 
Sheep, s So 

Law of Contracts 8vo, 3 00 
Winthrop's Abridgment of Mihtary Law l2mo, 2 so 

MANUFACTURES. 

Bernadou's Smokeless Powder—Nltro-tellulosc and Theory of the Cellulose 
Molecule izmo, 

Bolland's Iron Founder izmo. 
The Iron Founder," Supplement i zmo. 

Encyclopedia of Founding and Dictionary of Foundry Terms Used in the 
Practice of Moulding i2mo, 

Claassen's Beet-sugar Manufacture. (Hall and Rolfe.) Svo, 
•* Eckel's Cements, Limes, and Plasters Svo, 
Eissler's Modern High Explosives 8vo, 
EHront's Enzymes and their AppUcations. (Prescott.) Svo, 
Fitzgerald's Boston Machinist • izmo. 
Ford's Boiler Making for Boiler Makers i8mo, 
Hopkin's Oil-chemists' Handbook 8vo, 
Keep's Cast Iron • ^™' 
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Leach's The Inspection and Analysis of Food with Special Reference to State 
Control Large Svo, 7 5° 

* McKay and Larsen's Principles and Practice of Butter-making Svo, i 50 
Matthews's The Textile Fibres Svo, 3 50 
Metcalf's Steel. A Manual for Steel-users i2mo, 2 00 
Metcalfe's Cost of Manufactures—And the Administration of Workshops.Svo, 5 00 
Meyer's Modern Locomotive Construction 4to, 10 00 
Morse's Calculations used In Cane-sugar Factories i6mo, morocco, i 50 
* Reisig's Guide to Piece-dyeing Svo, 25 00 
Rice's Concrete-block Manufacture Svo, 2 00 
Sabin's Industrial and Artistic Technology of Paints and Varnish Svo, 3 00 
Smith's Press-working of Metals ; . Svo, 3 00 
Spalding's HydrauHc Cement i2mo, 2 00 
Spencer's Handbook for Chemists of Beet-sugar Houses . . . . . i6mo, morocco, 3 00 

Handbook for Cane Sugar Manufacturers T6mo, morocco, 3 00 
Taylor and Thompson's Treatise on Concrete, Plain and Reinforced Svo, 5 00 
Thurston's Manual of Steam-boilers, their Designs, Construction and Opera­

tion Svo, 5 00 
* Walke's Lectures on Explosives Svo, 4 00 
Ware's Beet-sugar Manufacture and Refining Small Svo, 4 00 
Weaver's Military Explosives Svo, 3 00 
West's American Foundry Practice i2mo, 2 50 

Moulder's Text-book i2mo, 2 50 
Wolfi's Windmill as a Prime Mover Svo, 3 00 
Wood's Rustless Coatings: Corrosion and Electrolysis of Iron and Steel. .Svo, 4 00 

MATHEMATICS. 

Baker's Elliptic Functions Svo, i 50 
* Bass's Elements of Differential Calculus i2mo, 4 00 
Briggs's Elements of Plane Analytic Geometry i2mo, 1 00 
Compton's Manual of Logarithmic Computations t2mo, i 50 
Davis's Introduction to the Logic of Algebra Svo, i 50 
* Dickson's College Algebra Large i2mo, i 50 
* Introduction to the Theory of Algebraic Equations Large i2rno, i 25 
Emch's Introduction to Projective Geometry and its Applications Svo, 2 50 
Halsted's Elements of Geometry Svo, i 75 

Elementary Synthetic Geometry. Svo, i 50 
Rational Geometry i2mo, i 75 

* Johnson's (J. B.) Three-place Logarithmic Tables: Vest-pocket size.paper, 15 
roo copies for 5 00 

* Mounted on heavy cardboard, 8X TO inches, 25 
10 copies for 2 00 

Johnson's (W W.) Elementary Treatise on Differential Calculus. .Small Svo, 3 00 
Elementary Treatise on the Integral Calculus Small Svo, 1 50 

Johnson's (W. W.) Curve Tracing in Cartesian Co-ordinates i2mo, i 00 
Johnson's (W. W.) Treatise on Ordinary and Partial Differential Equations. 

Small Svo, 3 50 
Johnson's (W. W.) Theory of Errors and the Method of Least Squares. i2mo, i 50 
* Johnson's (W W.) Theoretical Mechanics, i2rno, 3 00 
Laplace^s Philosophical Essay on Probabilities. (Truscott and Emory.). i2mo, 2 00 
* Ludlow and Bass. Elements of Trigonometry and Logarithmic and Other 

Tables. Svo, 3 00 
Trigonometry and Tables published separately Each, 2 00 

* Ludlow's Logarithmic and Trigonometric Tables Svo. 2 00 
Manning's Irrational Niimbers and their Representation by Sequences and Series 

lamo I 25 
13 



Mathematical Monographs. Edited by Mansfield Merriman and Robert 
S. Woodward Octavo, each i oo 

No. i . History of Modern Mathematics, by David Eugene Smith. 
No. .:. Synthetic Projective Geometry, by George Bruce Halsted. 
No. 3. Determinants, by Laenas Gifford Weld. No. 4. Hyper-
boUc Funetions, by James McMahon. No. s. Harmonic Func­
tions, by William E. Byerly. No. 6. Grassmann's Space Analysis, 
by Edward W. Hyde. No. 7. ProbabiUty and Theory of Errors, 
by Robert S. Woodward. No. 8. Vector Analysis and Quaternions, 
by Alexander Macfarlane. No. 9. Differential Equations, by 
WUham Woolsey Johnson. No. 10. The Solution of Equations, 
by Mansfield Merriman. No. 11. Functions of a Complex Variable, 
by Thomas S. Fiskc. 

Maurers Technical Mechanics Svo, 4 0 0 
Merriman's Method of Least Squares Svo, 2 00 
Rice and Johnson's Elementary Treatise on the Differential Calculus.. Sm. Svo, 3 00 

Differential and Integral Calculus. 2 vols, in one Small Svo, 2 30 
Wood's Elements of Co-ordinate Geometry, 8vo 0 0 
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Trigonometry; Analytical, Plane^ and Spherical i2mo, x oo 

MECHANICAL ENGINEERING. 

MATERIALS OF ENGINEERING, STEAM-ENGINES AND BOILERS. 

Bacon's Forge Practice i2mo, 
Baldwin's Steam Heating for Buildings i2mo, 
Barr's Kinematics of Machinery Svo, 
* Bartlett's Mechanical Drawing Svo, 
* *' " " Abridged Ed Svo, 
Benjamin's Wrinkles and Recipes i2mo. 
Carpenter's Experimental Engineering Svo, 

Heating and Ventilating Buildings Svo, 
Gary's Smoke Suppression in Plants using Bituminous Coal. (In Prepara­

tion.) 
Clerk's Gas and Oil Engine Small Svo, 4 00 
Coolidge's Manual of Drawing Svo, paper, r 00 
Coolidge and Freeman's Elements of General Drafting for Mechanical En­

gineers Oblong 4to, 2 50 
Cromwell's Treatise on Toothed Gearing i2mo, i 50 

Treatise on Belts and Pulleys i2mo, x 50 
Durley's Kinematics of Machines Svo, 4 00 
Flather's Dynamometers and the Measurement of Power. i2mo, 3 00 

Rope Driving i2mo, 2 00 
Gill's Gas and Fuel Analysis for Engineers i2mo, i 25 
HaU's Car Lubrication i2mo, i 00 
Hering's Ready Reference Tables (Conversion Factors) i6mo, morocco, 2 50 
Button's The Gas Engine. Svo, 5 00 
Jamison's Mechanical Drawing Svo, 2 50 
Jones's Machine Design: 

Part I. Kinematics of Machinery Svo, i 50 
Part II. Form, Strength, and Proportions of Parts Svo, 3 00 

Kent's Mechanical Engineers' Pocket-book i6mo, morocco, 5 00 
Kerr's Power and Power Transmission Svo, 2 00 
Leonard's Machine Shop, Tools, and Methods Svo, 4 00 
* Lorenz's Modern Refrigerating Machinery. (Pope, Haven, and Dean.) . . Svo, 4 00 
MacCord's Kinematics; or Practical Mechanism Svo, 5 00 

Mechanical Drawing 4to, 4 00 
Velocity Diagrams 8vo, i 50 
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MacFarland's Standard Reduction Factors for Gases • • -Svo, i 5° 
Mahan's Indust^al Drawing. (Thompson.) Svo, 3 50 
Poole's Calorific Power of Fuels 8vo, 3 00 
Reid's Course in Mechanical Drawing Svo, 2 00 

Text-book of Mechanical Drawing and Elementary Machine Design.Svo, 3 00 
Richard's Compressed Air i2mo, i 50 
Robinson's Principles of Mechanism Svo, 3 00 
Schwamb and Merrill's Elements of Mechanism Svo, 3 00 
(Smith's (O.) Press-working of Metals Svo, 3 00 
Smith (A. W.) and Marx's Machine Design Svo, 3 00 
Thurston's Treatise on Friction and Lost Work in Machinery and Mill 

Work.. . „ Svo, 3 00 
Animal as a Machine and Prime Motor, and the Laws of Energetics. i2mo, i 00 

Warren's Elements of Machine Construction and Drawing Svo, 7 5'̂  
Weisbach's Kinematics and the Power of Transmission. (Herrmann— 

Klein.). „ Svo, s 00 
Machinery of Transmission and Governors. (Herrmann—Klein.). .Svo, s 00 

Wolff's Windmill as a Prime Mover Svo, 3 00 
Wood's Turbines Svo, 2 50 

MATERLALS OP ENGINEERING. 

* Bovey's Strength of Materials and Theory of Structures Svo, 7 50 
Burr's Elasticity and Resistance of the Materials of Engineering. 6th Edition. 

Reset Svo, 
Church's Mechanics of Engineering Svo, 
=̂- Greene's Structural Mechanics Svo, 
Johnson's Materials of Construction Svo, 
Keep's Cast Iron, Svo, 
Lanza's Apphed Mechanics Svo, 
Martens's Handbook on Testing Materials. (Henning.) ; Svo, 
Maurer's Technical Mechanics. . . .' ' Svo, 
Merriman's Mechanics of Materials Svo, 

Strength of MaterialL i2mo, i 00 
Metcalf's Steel. A man'-a. Tor Steel-users i2mo, 2 00 
Sabin's Industrial and Artistic Technology of Paints and Varnish Svo, 3- 00 
Smith's Materials of Machines i2mo, i 00 
Thurston's Materials of Engineering 3 vols., Svo, S 00 

Part n . Iron and Steel Svo, 3 50 
Part III. A Treatise on Brasses, Bronzes, and Other Alloys and their 

Constituents Svo, 2 50 
Text-book of the Materials of Construction Svo, s 00 

Wood's (De V.) Treatise on the Resistance of Materials and an Appendix on. 
the Preservation of Timber Svo, 2 00 

Elements of Analytical Mechanics Svo, 3 00 
Wood's (M. P,) Rustless Coatings: Corrosion and Electrolysis of Iron and 

Steel Svo, 4 00 

STEAM-ENGINES AND BOILERS. 

Berry's Temperature-entropy Diagram i2mo, 1 25 
Carnot's Reflections on the Motive Power of Heat, (Thurston.) i2mo, i 50 
Dawson's "Engineering" and Electric Traction Pocket-book. . . .i6mo mor., 5 00 
Ford's Boiler Making for Boiler Makers iSmo, i 00 
Goss's Locomotive Sparks Svo, 2 00 
Hemenway's Indicator Practice and Steam-engine Economy i2nio, 2 00 
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Hutton's Mechanical Engineering of Power Plants Svo, 5 00 
Heat and Heat-engines Svo. 5 00 

Kent's Steam boiler Economy Svo, 4 00 
Kneass's Practice and Theory of the Injector Svo, 1 50 
MacCord's Slide-valves Svo, 2 00 
Meyer's Modern Locomotive Construction 4to, 10 oO' 
Peabody's Manual of the Steam-engine Indicator f2mo, 1 so 

Tables of the Properties of Saturated Steam and Other Vapors Svo, i 00 
Thermodynamics of the Steam-engine and Other Heat-engines Svo, 5 00 
Valve-gears for Steam-engines Svo, 2 50 

Peabody and Miller's Steam-boilers Svo, 4 00 
Pray's Twenty Years with the Indicator Large Svo, 2 50 
Pupin's Thermodynamics of Reversible Cycles in Gases and Saturated Vapors. 

(Osterberg.) i2mo, i 25 
Reagan's Locomotives: Simple Compound, and Electric i2mo, '2 50 
Rontgen's Principles of Thermodynamics. (Du Bois.) '.Svo, 5 oc; 
Sinclair's Locomotive Engine Running and Management i2mo, 2 00 
Smart's Handbook of Engineering Laboratory Practice i2mo, 2 50 
Snow's Steam-boiler Practice Svo, 3 00 
Spangler's Valve-gears Svo, 2 50 

Notes on Thermodynamics i2mo, i 00 
Spongier, Greene, and Marshall's Elements of Steam-engineering Svo, 3 00 
Thomas's Steam-turbines Svo, 3 50 
Thurston's Handy Tables Svo, i so 

Manual of the Steam-engine 2 vols., Svo, 10 00 
Part I. History, Structure, and Theory Svo, 6 00 
Part n . Design, Construction, and Operation Svo, 6 00 
Handbook of Engine and Boiler Trials, and the Use of the Indicator and 

the Prony Brake Svo, 5 00 
Stationary Steam-engines Svo, 2 50 
Steam-boiler Explosions in Theory and in Practice i2mo, i 50 

Manual of Steam-boilers, their Designs, Construction, and Operation Svo, 5 00 
Wehrenfenning's Analysis and Softening of Boiler Feed-water (Patterson) Svo, 4 00 
Weisbach's Heat, Steam, and Steam-engines. (Du Bois.) Svo, 5 00 
Whitham's Steam-engine Design .Svo, 5 00 
Wood's Thermodynamics, Heat Motors, and Refrigerating Machines. . .Svo, 4 oo 

MECHANICS AND MACHINERY. 

Barr's Kinematics of Machinery Svo, 2 50 
* Bovey's Strength of Materials and Theory of Structures Svo, 7 50 
Chase's The Art of Pattern-making i2mo, 2 30 
Church's Me.chanics of Engineering Svo, 6 00 

Notes and Examples in Mechanics Svo, 2 00 
Compton's First Lessons in Metal-working i2mo, i 50 
Compton and De Groodt's The Speed Lathe i2mo, i 50 
Cromwell's Treatise on Toothed Gearing i2mo, i 50 

Treatise on Belts and Pulleys i2mo, i 50 
Dana's Text-book of Elementary Mechanics for Colleges and Schools. . i2mo, i 50 
Dingey's Machinery Pattern Making i2nio, 2 00 
Dredge's Record of the Transportation Exhibits Building of the World's 

Columbian Exposition of i8g3. 4*0 half morocco, 5 00 
u Bois's Elementary Principles of Mechanics: 

VoL I. Kinematics Svo, 3 5o 
Vol. H. Statics Svo, 4 00 
Mechanics of Engineering, Vol. I • • . SmaU 4to, 7 50 

Vol. 'n Small 4to, 10 00 
Dxirley's Kinematics of Machines Svo, 4 00 
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Fitzgerald's Boston Machinist i6mo, i oo 
Flather's Dynamometers, and the Measurement of Power i2mo, 3 00 

Rope Driving i2mo, 2 00 
Goss's Locomotive Sparks Svo, 2 00 
* Greene's Structural Mechanics Svo, 2 50 
Hall's Car Lubrication r2mo, i 00 
Holly's Art of Saw Filing iSmo, 75 
James's Kinematics of a Point and the Rational Mechanics of a Particle. 

Small Svo, 2 00 
* Johnson's (W. W.) Theoretical Mechanics i2mo, 3 o* 
Johnson's (L. J.) Statics by Graphic and Algebraic Methods » . . .Svo, 2 ,00 
Jones's Machine Design: 

Part I. Kinematics of Machinery .Svo, i 50 
'Part II. Form, Strength, and Proportions of Parts. _ Svo, 3 00 

Kerr's Power and Power Transmission Svo, 2 00 
Lanza's Applied Mechanics Svo, 7 50 
Leonard's Machine Shop, Tools, and Methods Svo, 4 00 
* Lorenz's Modern Refrigerating Machinery. (Pope, Haven, and Dean.).Svo, 4 00 
MacCord's Kinematics; or. Practical Mechanism Svo, s 00 

Velocity Diagrams. , , ^ Svo, i 50 
* Martin's Text Book on Mechanics, Vol. I, Statics i2mo, i 25 
Maurer's Technical Mechanics Svo, 4 00 
Merriman's Mechanics of Materials Svo, 5 00 ' 
* Elements of Mechanics i2mo, i 00 
* Michie's Elements of Analytical Mechanics Svo, 4 00 
* Parshall and Hobart's Electric Machine Design 4to, half morocco, 12 50 
Reagan's Locomotives. Simple, Compound, and Electric i2mo, 2 50 
Reid's Course in Mechanical Drawing Svo, 2 00 

Text-book of Mechanical Drawing and Elementary Machine Design.Svo, 3 00 
Richards's Compressed Air i2mo, c 50 
Robinson's Principles of Mechanism Svo, 3 00 
Ryan, Norris, and Hoxie's Electrical Machinery. Vol. I Svo, 2 50 
Sanborn's Mechanics: Problems Large i2mo, T 50 
Schwamb and Merrill's Elements of Mechanism. Svo, 3 00 
Sinclair's Locomotive-engine Running and Management i2mo, 2 00 
Smith's (0.) Press-working of Metals Svo, 3 00 
Smith's (A. W.) Materials of Machines i2mo, i 00 
Smith (A. W.) and Marx's Machine Design Svo, 3 00 
Spangler, Greene,and Marshall's Elements of Steam-engineering Svo, 3 00 
Thurston's Treatise on Friction and Lost Work in Machinery and Mill 

Work Svo, 3 00 
Animal as a Machine and Prime Motor, and the LawE of Energetics. i2mo, i 00 

Warren's Elements of Machine Construction and Drawing Svo, 7 50 
Weisbach's Kinematics and Power of Transmission. (Herrmann—Klein:). Svo, 5 00 

Machinery of Transmission and Governors. (Herrmann—K^ein.).Svo, 5 00 
Wood's Elements of Analytical Mechanics Svo, 3 00 

Principles of Elementary Mechanics i2mo, i 25 
Turbines Svo, 2 50 

The World's Columbian Exposition of 1893 .4to, i 00 

METALLURGY. 

Egleston's Metallurgy of Silver, Gold, and Mercury.-
Vol. I. Silver 8vo, 7 50 
Vol. n . Gold and Mercury.. 8vo, 7 50 

Goesel's Minerals and Metals: A Reference Book . . . i6mo, mor. 3 00 
** Iles's Lead-smelting. (Postage g cents additional.) i2mo, 2 50 
Keep's Cast Iron 8vo, 2 50 
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Kunhardt's Practice of Ore Dressing in Europe Svo, i so 
Le Chatelier's High-temperature Measurements. (Boudouard—Burgess.)i2mo. 3 00 
Metcalf's Steel. A Manual for Steel-users lamo, 2 00 
Miller's Cyanide Process i2mo, I 06 
Minet's Production of Aluminum and its Industrial Use. (Waldo.)... . i2mo, 2 30 
Robine and Lenglen's Cyanide Industry. (Le Clerc.) Svo, 4 00 
Smith's Materials of Machines i2mo, i 00 
Thurston's Materials of Engineering. In Three Parts Svo, S 00 

Part II. Iron and Steel Svo, 3 50 
Part HI. A Treatise on Brasses, Bronzes, and Other AUoys and their 

Constituents Svo, 2 30 
Ulke's Modern Electrolytic Copper Refining Svo, 3 00 

MINERALOGY. 

Barringer's Description ot Minerals of Commercial Value. Oblong, morocco, 2 50 
Boyd's Resotirces of Southwest Virginia Svo, 3 00 

Map of Southwest Virignia Pocliet-book form. 2 00 
Brush's Manual of Determinative Mineralogy. (Penfield.) Svo, 4 00 
Chester's Catalogue of Minerals Svo, paper, i 00 

Cloth, 1 23 
Dictionary ot the Names of Minerals Svo 3 30 

Dana's System of Mineralogy Large Svo, half leather 12 30 
First Appendix to Dana's New " System of Mineralogy." Large Svo, i 00 
Text-book of Mineralogy Svo, 4 00 
Minerals and How to Study Them l2mo. i 30 
Catalogue of American Localities of Minerals Large Svo, i 00 
Manual of Mineralogy and Petrograpliy i2mo, 2 00 

Douglas's Untechnical Addresses on Technical Subjects i2mo, i 00 
Eakle's Mineral Tables Svo, i 25 
Egleston's Catalogue of Minerals and Synonyms Svo, 3 50 
Goesel's Minerals and Metals: A Reference Book i6mo,mor,. 3 00 
Groth's Introduction to Chemical Crystallography (Marshall) i2nio, i 25 
Hussak's The Determination of Rock-forming Minerals. (Smith.).Small Svo, 2 00 
Merrill's Non-metaUic Minerals* Their Occurrence and Uses Svo, 4 00 
* Penfield's Notes on Determinative Mineralogy and Record of Mineral Tests. 

Svo, paper, 30 
Rosenbusch's Microscopical Physiography of the Rock-making Minerals. 

(Iddings.) Svo, 5 00 
* TiUman's Text-book of Important Minerals and Rocks Svo, 2 00 

MINING. 

Beard's Ventilation of Mines i2mo, 2 50 
Boyd's Resources of Southwest Virginia Svo, 3 00 

Map of Southwest Virginia., Pocket-book form, 2 00 
Douglas's Untechnical Addresses on Technical Subjects i2mo, t 00 
* Drinker's Tunneling, Explosive Compounds, and Rock Drills. .4to,hf. mor., 23 00 
Eissler's Modern High Explosives ^""i 4 ' <" 
Goesel's Minerals and Metals: A Reference Book i6mo, mor. 3 0 0 
Goodyear's Coal-mines of the Western Coast of the United States i2mo, 2 30 
Ihlseng's Manual of Mining 8vo, 3 00 
** Iles's Lead-smelting. (Postage gc. additional.). i2mo, 2 so 
Kunhardt's Practice of Ore Dressing in Europe Svo, i 30 
Miller's Cyanide Process i2mo, i 00 
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O'Driscoll's Notes on the Treatment of Gold Ores Svo, 2 oo 
Robine and Lenglen's Cyanide Industry. (Le Clerc.) Svo, 4 oo 
* Walke's Lectures on Explosives Svo, 4 00 
Weaver's Military Explosives Svo, 3 00 
Wilson's Cyanide Processes i2mo-, i 50 

Chlorination Process i2mo, i 50 
Hydraulic and Placer Mining i2mo, 2 00 
Treatise on Practical and Theoretical Mine Ventilation T2mo, i 25 

SANITARY SCIENCE. 

Bashore's Sanitation of a Country House X2nio, 
* OutHnfes of Practical Sanitation i2mo, 
Folwell's Sewerage. (Designing, Construction, and Maintenance.) Svo, 

Water-supply Engineering Svo, 
Fowler's Sewage Works Analyses lamo, 
Fuertes's Water and Public Health i2mo. 

Water-filtration Works i2mo, 
Gerhard's Guide to Sanitary House-inspection i6mo, 
Goodrich's Economic Disposal of Town's Refuse Demy Svo, 
Hazen's Filtration of Public Water-supplies Svo, 
Leach's The Inspection and Analysis of Food with Special Reference to State 

Control Svo, 
Mason's Water-supply. (Consideredprincipallyfrom a Sanitary Standpoint) Svo, 

Examination of Water. (Chemical and Bacteriological.) i2mo, i 25 
Ogden's Sewer Design. i2mo, 2 00 
Prescott and Winslow's Elements of Water Bacteriology, with Special Refer­

ence to Sanitary Water Analysis i2mo, i 25 
* Price's Handbook on Sanitation i3mo, i 50 
Richards's Cost of Food. A Study in Dietaries i2nio, i 00 

Costiof Living as Modified by Sanitary Science i2mo, i oc 
Cost of Shelter i2mo, i 00 

Richards and Woodman's Air, Water, and Food from a Sanitary Stand­
point Svo, 3 00 

* Richards and Williams's The Dietary Computer Svo, i 50 
Rideal's Sewage and Bacterial Purification of Sewage Svo, 3 50 
Turneaure and Russell's Public Water-supplies Svo, 5 co 
Von Behring's Suppression of Tuberculosis. (Bolduan.) i2mo, i 00 
Whipple's Microscopy of Drinking-water Svo, 3 50 
Winton's Microscopy of Vegetable Foods Svo, 7 50 
WoodhuU's Notes on Military Hygiene i6mo, i SJ 
^ Personal Hjrgiene i2mo, i 00 

MISCELLANEOUS. 

De Fursac's Manual of Psychiatry. (Rosanoff and CoUins.). . . .Large i:2mo, 2 50 
Ehrlich's Collected Studies on Immunity (Bolduan) Svo, 0 00 
Emmons's Geological Guide-book of the Rocky Mountain Excursion of the 

International Congress of Geologists Large £vo, i 50 
Ferrel's Popular Treatise on the Winds Svo- 4 00 
Haines's American Railway Management . . . . i2mo, 2 50 
Mott's Fallacy of the Present Theory of Sound i6mo, i 00 
Ricketts's History of Rensselaer Polytechnic Institute, 1824-1S94. .Small Svo, 3 00 
Rostoski's Serum Diagnosis. (Boldixan.) i2mo, i 00 
Rotherham's Emphasized New Testament ^..,. Large Svo, 3 00 

18 



steel's Treatise on the Diseases of the Dog Svo, 
The World's Columbian Exposition of 1893 4to, 
Von Behring's Suppression of Tuberculosis. (Bolduan.) i2mo, 
Winslow's Elements of Applied Microscopy i2mo, 
Worcester and Atkinson. SmaU Hospitals, Establishment and Maintenance; 

Suggestions for Hospital Architecture: Plans for Small Hospital. i2mo. 

HEBREW AND CHALDEE TEXT-BOOKS. 

Green's Elementary Hebrew Grammar „ i2mo, i 25 
Hebrew Chrestomathy. ,^ Svo, -s 00 

Gesenius's Hebrew and Chaldee Lexicon to the Old Testament .Scriptures. 
(TregeUes.) SmaU 4to, h&U.morocco, 5 00 

Letteris's Hebrew Bible Svo, 2 25 
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