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PREFACE

THIs book is the substance of lectures I have given during the past
six years to the Natural Philosophy Class A in the University of
Glasgow.

It is intended primarily as a class-book for mathematical students
and as an introduction to the advanced treatises dealing with the
subjects of the different chapters, but since the analysis is kept as
simple as possible, I hope it may be useful for chemists and others
who wish to learn the principles of these subjects. It is complementary
to the text books in dynamics commonly used by junior honours
classes.

A knowledge of the calculus and a good knowledge of elementary
dynamics and physies is presupposed on the part of the student.

A large proportion of the examples has been taken from examination
papers set at Glasgow by Prof. A. Gray, LL.D., F.R.S., to whom
I must also express my indebtedness for many valuable suggestions.
The proofs have been read with great care and thoroughness by
Dr. John M‘Whan of the Mathematical Department.

R. A. HOUSTOUN.
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INTRODUCTION TO MATHEMATICAL PHYSICS.

CHAPTER I
ATTRACTION.

§1. AccorpiNG to Newton’s law of gravitation every particle of
matter attracts every other particle with a force proportional to the
product of their masses and inversely proportional to the square of
the distance between them. Thus if m and m’ be the masses of two
particles and d the distance between them, F the attraction between

them is given by -

a’

where k is the gravitational constant. Newton was at first led to
this law by astronomical considerations; he found that it completely
explained the motions of the planets. Afterwards, by calculating the
force necessary to retain the moon in her orbit, he found that it was
this same force that operated between the planets that caused a stone
to fall to the earth, and so he was led to postulate the law for all
matter. Since Newton’s time the law has been repeatedly verified
for two bodies on the surface of the earth by such experiments as the
Cavendish experiment, and at the same time the value of % has been
determined. If F, m, m' and ¢ are measured in dynes, grammes and
centimetres, the numerical value of %, according to Poynting, is
6:6984 x 1078, Experiments have been made to determine whether
the attraction on a crystal depends on the orientation of its axis or
whether % varies with the temperature of the bodies, but all such
experiments have led to negative results.

Two point charges of electricity act on one another with a force
varying as the product of the charges and inversely as the square of
the distance between them. Also, if we have two long thin magnets,
the poles of which may be considered to be concentrated in points
at the ends, there is a force between each pair of poles proportional
to the product of the pole strengths and inversely proportional to the
square of their distance apart. The attraction between electric charges
and between magnetic poles is thus analytically the same as that be-
tween gravitating particles. Consequently any result which holds for

H.P. A

F=



2 ATTRACTION

gravitational attraction can also be interpreted in terms of 'el'ectrostatlc
charges and magnetic poles. The unit quantity of electricity on the
electrostatic system and the unit quantity of magnetism on the electro-
magnetic system are defined so that in the equations analogous to

kermm/
F="z

k, the constant of proportionality, is unity, when the medium in
question is air. Thus, in transferring a result from gravitational
attraction to electrostatics, if the medium is air, the constant & must
be put equal to unity.*

One fundamental difference there is hetween gravitational attraction
and the action between electric charges and between magnetic poles,
namely, as will be explained in Chapter V., that the latter is propagated
with a finite velocity from point to point and the medium transmitting
it is in a state of stress. If we have a point charge of electricity, the
field intensity at a point P, distant  from it, is given by e¢/s%. If by
any possibility the point charge were suddenly doubled in magnitude,
then the field intensity would not double in value at the same instant,
but the increase would take a finite interval to travel out to P. But
for aught we yet know, in the analogous case of gravitational attraction
the intensity would double everywhere instantaneously throughout
the whole field.

We shall now calculate the force of attraction, or more shortly the
attraction, in some particular cases.

§2. Uniform rod at an external point.

Let AB be the rod, P the external point. We suppose that a particle

of unit mass is placed at P and that we are required to calculate the

p attraction of the rod on this particle.

The thickness of the rod is supposed

to be very small in comparison with
2 its length.

Let A be the linear density of the

rod, that is, its mass per unit length.

Let PD be drawn from the point per-

A M N B D pendicular to the rod and let p be the

length of PD. With P as centre and

» as radius draw an arc of a circle.

Let MN be an element of the rod and let PM and PN meet the arc in

Fia. 1.

m and 7.
Then the attraction of MN at P is
EAMN
PMZ
Also, area PMN :area Pma::p. MN :p . mn.

*For the cage of other media see p. 142,
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But area PMN :area Pmn :: PM2 : Pm?, since, of course, the angle MPN
is small. Therefore
MN _mn _mn

MN :mn :: PM2: Pm?2 = =" .
T e P p?

The attraction of MN at P is thus

kmn
E

If we suppose the arc ab uniformly loaded with matter so that its
linear density is the same as that of the rod, then its resultant attraction
is equal to the resultant attraction of the rod.

The direction of the resultant attraction of the arc must bisect the
angle aPb. Let LaPb=2a. Then the attraction due to an element of
the arc of length p d0 at an angular distance 8 from the direction of the
resultant attraction is N do

o
The component of this in the direction of the resultant is
kA db cos 0
P
Hence the resultant attraction of the are, ¢.c. of the rod, is given by

@J“F“ 2kA sin a

cos 0d0=

§ 3. Uniform circular dise at a point on its axis.

Let @ be the radius of the disc and let P be situated a height ¢
above its plane. Let the disc be very thin and let A bhe its surface
density, i.e. the mass of the disc per sq. cm.
of surface. Describe with the centre C two P
adjacent concentric circles, one with radius
CA =7 and the other with radius CB=7+dr.
Then the mass of the ring is 2xArdr.
Every particle in the ring is at a distance
(2 +72) from P; also the resultant attrac-
tion of the ring is along the axis of the
dise. To obtain the component in this

direction of the attraction of every particle, fie. 2
we have to multiply that attraction by (;_I; or — ¢ = Hence the
resultant attraction of the ring is equal to ey

ke Ar dr ¢ - owkAer dr .

(2+12) (+ 7‘2)% (e2+ 7'2)"3’

The resultant attraction of the whole dise is

QW]G)LCJ‘“ﬂﬁﬁ =97kAc l - ;1 .
o (2412 ¢ (C+a)tf
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If we suppose a to become infinite, we obtain for the attraction of
an infinite lamina on an external particle the expression 2wk, which
iS independent of the distance of the attracted particle from the
amina.

§4. Two thin uniform rods AB and CD have lengths 2a and 2¢, and
their linear densities are respectively A and
D ). The midpoint E of AB, and the midpoint
F of CD, are a distance b apart, and AB,
CD and EF are mutually at right angles
F to one another. Determine the attraction
between the two rods.
Consider an element of CD of length dz
€ at the point P, distant z from F. The mass
of this element is A'dz, and the attraction
exerted on it by the rod AB is, by §2,

2kAN dz sin APE . AN dz a
PE SO +a?) J(a? + B2 + a2y

since AEP is a right angle and AP?=AE2+EF2+ FP2 The direction of
the attraction on the element is along PE. By symmetry the resultant
attraction of AB on CD must be along EF; hence we need only
consider the component in this direction of the attraction on the
element. To obtain the compbnent we have to multiply the resultant

Fra. 8.

attraction on dz by cos PEF or \7(62—11172) This gives us
2kAN ab dx
(B +a%) /(a® + b + 22)

The resultant attraction between the rods must therefore be
j‘*‘ ___ YMabde
—e (0P +2?) J(@® + 0% +22)

To evaluate the integral, assume =25 tan 6, so that
der=bsec20df, Db2+a?=02sec?t, J(a*+ 0% +a?)=/(a®+D?sec?t).

This gives for the resultant attraction

¢ dw
o (B2 +22) . J(a? + 02 +2?)

or 476)\/\’abj-

e
tan—1 3 do

e[ )

tan=17 wl(sind)
o A(@+02—a?sin?b)

o i:a‘n--lE
=4kAN {sin‘l ~a—s,-1—l}0—>} 2
1 <\/ (@+0%)/],

— 4V j

— 4N sin-1 ac
4EAN sin A@THEED}
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§ 5. Homogeneous spherical shell at an external point.

A thin spherical shell is a solid bounded by two concentric spheres
of almost equal radius.

Let C be the centre of the shell, ¢ its radius and A its mass per
unit area of external surface. It is required to find the force with
which the shell would attract a particle of unit mass situated at P.
Let CP=c.

Consider the ring cut off from the shell by the rotation about CP of
the angles PCM and PCN, which are respectively equal to 6 and 6 +d#f.
Its radius is asin€; NM=adf.

Hence its mass is 27a?) sin 6d0. N m

From considerations of symmetry,
the resultant attraction of the ring
must be along PC, but the attrac- (G
tion of each individual particle in Q
it is in the straight line towards
that particle. The particles in the
ring are all at the same distance
from P, namely PM. In order to
obtain the component of their attractions in the direction CP, we
multiply by cos CPM or PQ/PM. The resultant attraction of the ring
is therefore

o

F1c. 4.

9wakA sin 0d0 PQ

PMZ  PM

Let us now change the independent variable to #, y being equal
to PM. We have
12=PM2=¢2+a? — 2accos 6.

Therefore ydy=acsin 6d6.

1
Also  PQ=c-acos 9:‘—%(262—~2CLCCOS 6):-)_6(?/2""'2_“2)'

On substituting for 6, the resultant attraction of the ring becomes

Tak\ 2 —a?
<1 + 7 >cly.

c2

To obtain the attraction of the whole shell, we have to integrate
this between the limits y=c—« and y=c+a. The resultis

Ly 1 2 —a? ; n‘(b]ﬁ)x( 2 — a2>0+a
C = s _
jc—a< * .'Z,/~2 ) y ¢ S Y c-u

4mwakh & mass of shell
e T 2 ’

wakA
P

Therefore the shell attracts a particle at an external point as if its
whole mass were collected at its centre.
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§ 6. Homogeneous spherical shell at an internal point.

We proceed as in §5, but the limits of 4 are a —¢ and a+¢. Hence
the attraction of the whole shell is

wakkJ'ﬂ+c<1 N ¢~ a?> du— wak <1 c? - a9>“+0_ 0
¢ Ja-e Uk =g Y Jae

The resultant attraction of the shell at an internal point is therefore
zero.

§ 7. Homogeneous spherical shell at an internal point. Otherwise.

Before entering on this alternative proof it is necessary to define
a solid angle. Let S be a surface which is not necessarily plane. In
order to measure the solid angle subtended at the point P by the
surface 8, we draw a sphere of unit radius with its centre at P. Let
straight lines be drawn from P to every point in the circumference of S.
Then these straight lines will be the generators of a cone, and this cone
will intercept a certain area on the surface of the sphere. The solid
angle subtended by the surface S at P is numerically equal to the area
intercepted on the sphere of unit radins. Thus, if the surface S be
closed and P be an internal point, the solid angle is 47 ; if P be an

L@

Frc. 5. F1a. 6.

external point, it is zero, for the tangents drawn from P will touch S
in points lying on a curve which divides 8 into two parts S, S,, and
the area subtended by the one part S, of the surface on the sphere of
unit radius is numerically equal to and of opposite sign from the area
subtended by the other part S,.
Let fig. 6 represent the shell and let P be the internal point.
With P as vertex draw a cone of small vertical solid angle dv. Let
PQ and PR, the distances of P from the shell
N measured along the axis of the cone, be 7

M
," and 7, ; do is so small that it is not necessary
o —*P  to specify exactly what is meant by the axis of
) the cone. Let dS; and d8, be respectively the

TV i areas intercepted by the cone on the surface of
i & the shell at Q and R.

Now consider fig. 7. In it MT represents the element of surface ds,.

The vertex of the cone is so far away that in the neighbourhood of

ds, the cone may be regarded as a cylinder. With P as centre and PQ
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as radius describe a sphere, and let NV be the portion of the area of
this sphere intercepted by the cone. Then NV—=72dw. But from fig. 6,
if C be the centre of the sphere and 6 be the angle RQC, it is obvious
that 6 is the angle between the normals to NV and MT. Thus

i 2
NV=MTcos 0, n2do=dscosf or ds, 1 dw_
cos 0
.2
Similarly, de, %
2" cos 6

The mass of the portion of the shell intercepted by the cone at @ is
Ar2do/cos 6. The attraction it exerts at P is in the direction PQ and
kAr 2 dw/cos 6

3.2

of amount , Which is equal to k\dw/cos 6. Similarly the

1
attraction exerted by the portion intercepted at R is in the opposite
direction and of the same amount. The resultant attraction of the
ends of the cones is therefore zero. But the whole shell may be
divided up in this way into an infinite number of cones. Hence the
resultant attraction of the whole shell is zero.

§ & Elliptic homeoid. Internal point.

Suppose that in the case of the previous example all lengths in the
direction of the z-axis are increased ¢ times, all lengths in the direction
of the y-axis 0 times and all lengths
in the direction of the #z-axis ¢ times.
Then the inner and outer surfaces of
the shell will become similar, con-
centric and similarly situated ellipsoids,
as shown in fig. 8.  The cone will still
be a cone and the masses intercepted
by its ends remain unaltered. The
ratio of QP to PR also remains the same. Hence the attractions
of the ends at Q and R still balance. A solid bounded by two similar,
concentric, similarly situated ellipsoids of nearly equal magnitude is
called a thin elliptic homeeoid. By dividing up its surface by an
infinite number of cones it can thus be shown that the attraction it
exerts at an internal point is zero.

The converse of this theorem is true and is of importance in electro-
statics. The electric intensity at any point inside a charged conductor
is zero. The charge is situated on the outside. Hence, if the surface
of the conductor be an ellipsoid, the density of the charge is given by
the above theorem, that is, it is proportional to the thickness at the
point of the thin elliptic homeeoid which has the ellipsoid as one of its
surfaces.

Fic. 8.

§9. Attraction at its pole of a homogeneous solid oblate spheroid of
small eccentricity.

Let 20 be the length of the minor axis and 2a that of the major axis
of the generating ellipse. The spheroid may be supposed made up of
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a concentric sphere, the radius of which is 5, and an exterior shell.
The attractions of these portions will be calculated separately.

Take the axis of revolution as the axis of y and the centre of the
sphere as the origin of coordinates, and let a plane be drawn perpen-
dicular to the axis of revolution at a distance y from the origin to cut
the sphere and spheroid in two concentric circles, as in fig. 9. The

i

Fre. 9.

area of the inner circle is given by wNQ>==(02—42). The area of the

2
outer circle is given by wNM?, which equals ma? <1 —%) since M is a

point on the spheroid. The area of the ring is therefore
o’ o2
7T<£LZ— _Z)%_b2+y2> =ﬂ.<a2_52)< _é_2>

Let another plane be drawn parallel to the first at a distance dy
from iv; then the mass of the element of the shell comprised between
the two planes is

T ) (1 - %) dy,

where p is the density of the spheroid.

The distance of every particle in this element from P is given by
PQ, since QM is small. To find the component of the attraction in the
direction NP we multiply by PN/PQ.

PN _ (-9 _ (b-9) 1

PP (gt} {(B-pr+i-p2}F (@ -gpt

The attraction of the whole shell at P is therefore

+
0|y
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In order to integrate this put & —y=2 Then the integral becomes

mhp (a2 - 12) J'zb ord b o whp(a? —82) 9FbE  Swlp(a®—17)
-l N (202% — 2 )(Zz—W T g

38
2;7[)?5

If we suppose ¢ =0(1 +¢), where ¢ is small, we have a2 - §? = 20%.
Hence the resultant attraction of the shell is

167lpeh.
15
By §5 the attraction of the sphere is £wkpb ; therefore the attraction
of the spheroid is Lalipb(1 + 4¢)
EXAMPLES.

1. If a particle be attracted by three uniform rods, joined together at
their ends so as to form a triangle, it will be in equilibrium if placed at the
centre of the circle inscribed in the triangle.

2. Prove that the resultant attraction of a very long rectangular plate
on a particle of unit mass in its plane, in line with one end of the plate,
and at distances @, a’ from its long edges, is in a line inclined at 45° to
these edges, and is of amount ~/2/c log(a'/a), where & is the uniform
surface density of the plate.

3. Show that the resultant attraction of a uniform right circular cylinder
on a particle situated on its axis outside the cylinder at a distance ¢ from its

enda 2mkp[h— N (e+AY+ b2+ (2 + 1%,

where %, b and p are respectively the height, radius and density of the
cylinder.

4, Show that the resultant attraction of a uniform right circular cone on
a particle at its vertex is 9mko(L —cos a)k
|

where 4, a, p are respectively the height, semi-vertical angle and density of
the cone. '

5. TFind the attraction of a segment of a parabholoid of revolution, bounded
by a plane perpendicular to its axis, on a particle at the focus.

Result.  4mkpalog ZT8 where z is the distance of the bounding plane from
the vertex. a

6. Find an exact expression for the change in g produced by descending a
depth A below the earth’s surface, on the supposition that the density of the
whole spherical surface stratum is the same, ¢ say, and derive an approxi-
mate expression for use at a moderate depth. .

In the Harton Colliery experiment A=1260 feet; taking the surface
density as 25 and the mean density as 56, find the number of beats at the
bottom of the mine made in 24 hours by a pendulum which beats seconds at
the surface. (Cf. Gray’s Physics, p. 526.)

7. Suppose that there is a hollow tube through the earth along one of its
diameters and that a particle is dropped down it. How long will it take
to reach the other side? (42 minutes.)
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§10. Theorem of surface integral of normal force.

Let a closed surface be drawn in a region of space containing gravi-
tating matter. Let F be the force on a unit particle at an element s
of this surface, measured positive outwards, and let 6 be the angle which

F makes with the outward drawn normal to dS. Then |Fcos8dS is

the surface integral of normal force. The theorem to be proved may
be enunciated as follows. .
The surface integral of normal force taken over a closed surface in a
field of force due to matter attracting according to the inverse square
of the distance is equal to — 4= times the
quantity of matter within the surface,
O, multiplied by the gravitation constant.
First of all suppose that there is a single
particle of mass m in the field and that it
is inside the surface at P. With P as
p vertex draw a cone of solid angle dw to
A\S, intercept elements of the surface S, ds,.
Let do be small, let ds,, dS, be respectively
distant 7, and 7, from P and let the axis of
the cone make angles 0, and 0, respectively
Fra. 10. with the normals to dS; and dS,. The
vertical angle of the cone is taken so
small that all its generating lines may be considered parallel. Then, as
in §7, ds, cos 0, =7,2dw, dS,cos 0,=7,>dw. The normal force at ds, is

km : ) soq
— 5gcos 0,, and at ds, is ~7£%7 cos 0,. Multiplying the normal force

1 2
at each end by the element of area there, we obtain

km 72do  km 7.2 dw
— 5 608 0, +—— — —— cos 0,2 = — 2km do.
) cos 0 7,7 cos 0,

On dividing up the surface into elements by an infinite number of
cones with their vertices at P, it is clear that the sum of the effects
of the different elements, the surface integral of normal force, is

— 4wkm.

If the particle is outside the surface, the cone cuts the latter in two
clements which are both on the same side of the vertex. The direction
of F is the same on each element, but the direction of the normal is
different ; hence the products have opposite signs and the two ends
cancel one another. Tor an external point the surface integral of
normal force is therefore zero.

Suppose now that the surface has a fold in it so that the cone cuts it
more than twice (cf. fig. 11). Since the surface is closed the cone must
cut it an even number of times. If the point is an internal one, it is
obvious that the effects of the successive elements thus formed will
annul one another except in the case of two elements, while if the
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point is an external one, the annulment is complete. Thus the theorem
still holds if the cone cuts the surface more than twice.

Suppose that instead of one we have several internal particles of
mMasses My, My, ... m,, then the theorem will hold for each of them
separately. Therefore

j(Fl cos 0, 4+ Fycos 0, ... F, cos 0,)dS = — 4ok (m, +m, ... +m,),

F,, Fy, ... F, being the forces at dS due
respectively to m,, m,, ... m, and 0,
0y, ... 0, being the angles which the
normal to dS makes respectively with the
directions of F,, F,, ... F,. For

F,cos 0, + Fycos 0, ... + F, cos 0,

n*

we may write Fcosd, where F is the P
resultant of F , F,, ... F, and 6 the angle
which it makes with the direction of the
normal to ds, and for m, +m, ... +m, we

may write M the total mass inside the Frc. 11.
surface.
Then jF cos 0dS= — 47k,

and the theorem is proved.
‘We shall now make some applications of this theorem.

§11. Solid sphere, the density of which is a function of the distance
from the centre.

If the sphere be divided up into a system of concentric shells of
small thickness, the density of each shell is constant. This includes
as a particular case the homogeneous sphere. Let M be the total
mass of the sphere and @ its radius. It is required to determine the
attraction at an external point P distant » from the centre.

Through P draw a sphere of radius » concentric with the given
sphere and let F be the force on a unit particle at P, measured positive
outwards. Then, from considerations of symmetry, F has the same
magnitude at all points on the surface of the sphere of radius r, and
its direction is everywhere normal to the surface of this sphere. The
surface integral of normal force taken over the sphere of radius 7 is
therefore 4m7?F. The quantity of matter inside this sphere is M.
Hence M

4m?F = —4xkM and F= -

72’

Take now the case of a homogeneous spherical shell, and let P be
distant 7 from the centre of the shell, » being not greater than the
radius of the inner surface of the shell. Let F be the force, if any,
exerted by the shell on a unit particle at P. Through P draw a sphere
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of radius 7 concentric with the shell. Then, from considerations of
symmetry, F must be normal to this sphere, and have the same value
everywhere on its surface. The surface integral of normal force paken
over the sphere of radius » is therefore 4m72F. But the quantity of
matter inside the sphere of radius  is zero. Therefore F=0; that
is, the attraction at any point inside the shell is zero. . ]

Let us now return to the solid sphere of radius @, the density of which
is a function of the distance from the centre, and let P be an internal
point distant » from the centre of the sphere. In order to determine
the attraction of the sphere at P draw through P a sphere of radius 7,
concentric with the given sphere. This sphere divides the given sphere
into two portions, for the inner of which P is an external point and for
the outer of which P is an internal point. The matter contained
between the spheres of radius » and a consequently exerts no action on
a particle at P, and the matter contained inside the sphere of radius r
acts at P as if it were all concentrated at the centre.

§$12. Infinitely long right circular cylinder, the density being a
function of the distance from the axis.

This of course includes the case of the cylinder having a cylindrical
hollow core.

By symmetry the attraction is the same at all points on a cylinder
coaxal with the given cylinder and is directed normally inwards. Let
such a cylinder of radius » be cut by two planes perpendicular to the
axis at unit distance apart and let us take the surface integral of
normal force over the surface of the cylinder of umit length thus
enclosed. On the ends of this cylinder, F is tangential ; consequently
the ends contribute no part to the surface integral. The area of the
convex surface is 2=r. Hence, on applying the theorem,

9
ImF= —47kM and F= - ]CM-

M is the mass per unit length of the given cylinder included within
the coaxal cylinder of radius »; 7 can, of course, be either greater or
less than the radius of the given cylinder.

§13. Uniform lamina bounded by two parallel planes and extending
to an infinite distance in all directions.

By symmetry the attraction will be normal to the lamina, and its
magnitude will be the same at all poiuts equidistant from it, whether
on the same side or on opposite sides of it.

Consider a right ecircular cylinder, the ends of which are parallel to
the surface of the lamina and at equal distances on opposite sides of it.
Let A be the area of the ends and F the outward force exerted by
the lamina on a unit particle situated anywhere on either end. Let M
be the mass of the lamina per unit area of surface. The total mass
contained inside the cylinder is thus AM. The attraction on the
convex surface of the cylinder is tangential to the latter; hence the
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convex surface contributes nothing to the surface integral of normal
force, Then
2AF = —4xfAM  or F= - 2xkM.

Thus F is independent of the distance from the lamina.

§ 14. Potential.

Let m be the mass of a particle situated at Q which attracts according
to the inverse square law and let another particle of unit mass move
along a curve from A to B in the field of the first particle. It is
required to find the work done during the
displacement by the attraction of m.

Take any element of length ds situated at
point P on AB and let QP=7. The attraction
at P is km/? and acts along PQ. Take the
component of ds along PQ and let it be dr.
Then the work done in moving the particle of
unit mass along ds is —kmdr/r72. But the Frc. 12,
whole displacement AB can be divided up into
an infinite number of such elements. Hence the work done in the
whole displacement is

J"‘=BQ km dr

reng 1

the negative sign being taken since dr is negative when the work is
positive. On integration this becomes

% 1 1
(53~ 7a)

It is obvious that this result holds whéther the curve AB lies in one
plane or not. It is also obvious that if the particle of unit mass is
carried round a closed curve the total work done on it is zero.

Displace the point A to infinity and let B coincide with P. Then
the work done in bringing the particle of unit mass from infinity to P
is equal to km/r. This quantity is defined to be the potential at P.

Suppose that instead of one particle of mass m we have a system of
particles of masses m,, m,, ... m, distant respectively r, 7y, ... 7, from
the point P. Then, since the work done by the resultant attraction
of the system in bringing the particle of unit mass from infinity is
equal to the sum of the work done by the attractions of the different
particles, we have in this case for the potential at P the expression

]M_nl_i_kﬁl +7£7ﬁ”.‘—_-2@_
T T T 7
So far the definition has been confined to a system of discrete
particles; it may also be extended to the case of a continuous dis-
tribution of matter. For let p be the density at @', ¥/, 2 and let the
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coordinates of P be , 9, . Then the mass of the element at &', ¢/, 7
is pda'dy'dz’ and its potential at P is
pda'dy dz
7‘ 3
where 7=,/{(x - 2)2+(y—9)2+ (2—#)?}. Consequently the potential
of the whole distribution at P is

j J' j‘ pda' dy' de
r

p being a function of «, ¥, ¢ and the integration being taken
throughout all space where there is matter.

‘We shall denote the potential at z, 7, # by V.

Let X, Y, Z be the components of the resultant attraction of the
system on the particle of unit mass at the point P(z, 7, 2), X, Y, Z being
taken positive in the positive directions of z, 7, 2. Let the particle
of unit mass be displaced through any element of distance ds, the
components of which are dz, dy, dz. Then, from the definition,

av =F'ds,
where F' is the component of the attraction of the system in the
direction of ds. Hence

F :E,
t.e. the attraction in any direction is equal to the rate of increase of

potential in that direction.
Since V is a function of the coordinates, we have

oV oV oV

= dz.
But since the work done by a force is equal to the work done by

the components,
AV =Fds=Xdz+Y dy+Zdz.

This equation and the preceding one hold no matter what the
values of dz, dy, dz are. Hence

oV Y oV
X“—_a, Y=a—'l/, Z=E

§15. Lines of force and equipotential surfaces.

If we start from any point and move always in the direction of
the resultant force of attraction, we trace out a line of force. A line
of force may be defined as a curve to which the resultant force is
everywhere tangential. )

The potential at a point P is a function of the coordinates of that
point. We may express this fact by the following equation,

V=[(@ ¥, 2)-



ATTRACTION 15

Now f(x, y, 2) =¢, where ¢ is a constant, is the equation to a surface.
e see at once that everywhere on this surface the potential has the
same value. Such surfaces are called equipotential surfaces.
The direction cosines of the normal to the surface at the point =, ¥, 2
are proportional to
of °of of orto OV oV v
,a—ma gyj a) a b @) 6;
i.6. t0 X, Y, Z, where X, Y,-Z are the components of the attraction at
z, 9, 2 Hence the resultant attraction at z, , z is at right angles to
the surface f(2, y, 2) = ¢ ; the lines of force and the equipotential surfaces
cut everywhere orthogonally.

b

§16. Consider two consecutive equipotential surfaces. Let the
potential over one of them have the value V and over the other the
value V+8V. Then 8V is the work done on unit particle in bringing it
from any point on the first surface to any point on the second. Let
&n be the distance between the surfaces, measured along a line of force.
The average force along this line of force between the two surfaces is

3v
o
This varies inversely as on.

By means of the equipotential surfaces, therefore, we can represent
the force throughout the whole field in magnitude as well as in
direction. For, if we draw the surfaces

V=¢, V=2 V=3¢ etc,
increasing the constant always by the same amount so as to fill the
whole field with surfaces, the work done in taking unit particle from
any surface to the one next it is always the same. The direction of the
force is given by a curve through the point intersecting the surfaces at
right angles and its magnitude is proportional, or if ¢ be chosen suitably,
equal to the number of surfaces intersected by this curve in unit length.

§17. Tubes of force.

Upon an equipotential surface let a small closed curve be drawn.
The lines of force which pass through this curve mark out a tubular
surface, which is called a tube of force.

Take a portion of such a tube bounded by o Py
two normal sections, which of course will be 20.S;
elements of equipotential surfaces, and apply
to it the surface integral of normal force ‘
theorem. Let the areas of the ends be 8S,, f, 7" ~0S2
88,. The normal force on the side is zero
because the force is there tangential. The
force at the ends is the resultant force there; denote it by F;, F,. If
there is no matter within the portion of tube contained,

F 88, — Fy08,=0 or F,88 =F,3,,
that is, the force varies inversely as the cross section of the tube.

Fi1c. 13.
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Let us suppose the whole field is filled with such tubes and that

for each tube the product
FéS=c,

where ¢ is small and constant. Then it is easy to see that these tubes
represent the field intensity both in magnitude and direction.

The surface integral of normal force over any closed surface is then
equal to ¢ times the excess of the number of tubes which cross the
surface from within over the number of those which cross it from
without. As it also equals —4«kM, M being the quantity of matter

¢
4xk
The end of each tube is thus always associated with the same definite
quantity of matter.

in the enclosed region, one tube starts from every units of mass.

§18. Potential due to a homogeneouns sphere.

Let @ be the radius of the sphere and M its mass. Let 7 measure
the distance of any point P from its centre.

Then, if P be an external point, the attraction at P is &M/ and
the potential of P

Tokm, kM
L 7

If P be an internal point the attraction at P is AMr/a3. The work
done in bringing the particle of unit mass from infinity to the surface
of the sphere is #M/a. The work done in bringing it from the surface

to P is given by
T kM kM
L PRV

The potential at P is thus

2 _ .2 9
kM<1+a 7) or kM<i 7).

a’ 243 % 2°

Hence the equipotential surfaces, both inside and outside the given
sphere, are spheres concentric with the latter.

In the case of a thin uniform spherical shell of mass m and radius a,
the work done in bringing the particle of unit mass from infinity to
the surface of the shell is km/a. Suppose that the particle is taken
through the surface of the shell ; the force acting on it is finite, and
this part of the path is extremely short. Hence the work done on it
can be neglected. There is no force inside the shell. The potential
there is thus everywhere km/a.

The potential inside a thick homogeneous spherical shell of mass m
bounded by spheres of radii  and b, b being less than a, is given by

3m a+d
27 et +ab+ 0¥
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§19. Potential due to infinitely long cylinder.

Let the cylinder be homogeneous, right circular, of radius a, and let

M be its mass per unit length. Let 7 be the distance of any point P
from the axis of the cylinder.

Then, from §12, the attraction at an external point is
kM
r
The work done in bringing a particle of unit mass from infinity to P is
"2
j - @ dr=2kM (log » - log 1),
and is hence infinitely great. In this case we measure the potential
from the axis as a reference point. The attraction at any internal
point P is 2kMr/a? and the potential is thus:
j"’ 2kMr A
dr= —

a2 a2 :

0

On the surface of the cylinder it is — %M, and if P be an external
point, the work done against the forces of the field in taking the
particle from the surface to P is

2kM (log 7 — log a).
Hence the potential there is
— kM + 2/M log ‘Tl

By this time it will be evident that potential is not merely an
aid to studying the energy changes of a certain “particle of unit
mass,” but is an extremely useful way of obtaining an insight into the
distribution of forces in a field. Also, since it is the forces we are
concerned with, it is immaterial from what point potential is measured.
Changing the reference point merely adds a constant which disappears
in the differentiation.

EXAMPLES.

1. Show that a tube of force is refracted when it passes obliquely through
a thin layer of matter.

2. Show that two uniform spheres attract each other as if their masses
were collected at their centres.

3. A sphere of radius o, mass M and density varying directly as the
distance from the centre is built up of matter brought from an infinite
distance; show that the work W done throughout the process, by the
attraction of the matter which has already arrived on that which is brought
up later, is given by W=4£M?/a, where £ is the constant of gravitation,

H.P, B
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Prove that this value of the work would not be altered by supposing the
matter originally uniformly distributed through infinite space.

Show that if the matter is now redistributed so as to form a sphere of the
same radius but of uniform density, work would be done by the mutual
attractions of the parts to the extent of JxW.

4. Show that the equipotential surfaces and lines of force of a uniform
rod are ellipsoids and hyperbolas having the ends of the rod as foci.

5. A slab is bounded by two parallel infinite planes and its density is a
function of the distance from one of these planes. Find the attraction at an
internal point, and show how the potential varies in passing through the slab.

6. Supposing a solid homogeneous sphere of mass M and radius « to be
held together only by the mutual attractions of its particles, find the force
required to separate it into two hemispheres. (3£M?/a?)

§20. Gauss’s theorem of average potential over a spherical surface.

The mean value of V over the whole of a spherical surface is equal
to the value of V at the centre, provided that none of the attracting
matter lies within the surface.

Let m be one of the attracting particles, and let dS be an element of
the spherical surface. Let » be the distance of S from m. Then the
potential at dS due to m is m/r. The average value over the sphere
of the potential due to m is

jﬂ ds
7

j ds
But |7 ds may be regarded as the potential which would be pro-
7 ;

duced at the point where m is situated by a thin spherical shell whose
mass per unit area is m and which coincides with the spherical surface.
We know that this is the same as if the whole mass of the shell were
concentrated at its centre.

Let a be the radius of the sphere, d the distance of its centre from

the particle. Then J- m dratm
—a8
T d _ 2
J' . T dwa? T d

that is, the potential at the centre of the sphere due to the particle.

The theorem thus holds true for a single particle, and as the potential
due to a system is equal to the sum of the potentials due to its parts,
it must hold for the potential due to the whole external distribution.

It follows from this theorem that V cannot have a maximum or a
minimum at a point in empty space. For with such a point as centre
it is possible to draw a small sphere containing no matter, and the
average value of V over this sphere is equal to the value at the centre.
Hence V at such a point cannot be a maximum or minimum,
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Again, if V has a constant value V, in any region of the field, it
must have the same value at every point of the field that can be
reached from this region without passing through attracting matber.
For if not, let P be a point just inside the region, and let a sphere be
drawn with P as centre passing out of the region but not containing any
attracting matter. Then the radius of the sphere can be taken so
small, that on the part of the surface outside the region V has a value
either greater or less than V,. The average value of V over the
surface must therefore be correspondingly greater or less than v,. But
the value at the centre is V,. Hence the value on the part of the
surface outside the region cannot be greater or less than V, that is,
it must equal V,. Similarly the region can be extended by drawing
other spheres until we come up against attracting matter.

§21. Gauss’s theorem.

Let X, Y, Z be a vector, a continuous function of the coordinates.
Let any closed surface be taken. Then if dS is an element of the
surface and I, m, n the direction cosines of the outward drawn normal

s ox oY oz ,
”:Ka + o + §> dadydz= H(lx +mY +nZ)ds,

the surface integral being taken over the whole surface and the
volume integral throughout the region bounded by the surface.

Y

sz as,

12’”2”26 a Gm,

z
Fio. 14.

Consider Ijj%dm dy dz. Divide the space bounded by the surface

into elementary strips by planes parallel to zy and xz. Let ome of

these strips, of cross-sectional area dy dz, be represented in the diagram,

and let it intercept areas dS,, dS, on the surface. Let X, Xy, [mn,,

Lymgn, be the values of X and /, m, 7 at dS; and d8, respectively.
Integrating along the strip, we obtain

Hj X iy dz:ﬂ(xl %) dy da.
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But dydz=1,ds,= —1,ds,, due regard being paid to the sign of I,.
Therefore (X, = Xg) dy dz=1,X; d8 +1,X, dS,.
Integra,ting through the other strips and adding, we thus obtain

jjj 8_;(_ dx dy de = -” IX ds.
Similarly,

oY B2, o
j” e dedydz= .”mY das, jjj = dxdy dz= jjnz das,

and the theorem follows.
§ 22. Divergence of a vector.
oX oY oz
% e
is said to be the divergence of the vector X, Y, Z, and is written
div(X, Y, Z) or divR,
if R is the resultant of X, Y, Z.
§23. Laplace’s and Poisson’s equations.

Let us now identify the vector X, Y, Z with the force of attraction
at a point in a gravitational field. For any closed surface in this field
not containing matter we have, by the surface integral of normal force
theorem, since X +mY +nZ=F cos 0,

.H(ZX +mY +nZ)ds=0.

The expression

Hence, by using Gauss’s theorem, we obtain

oX oY 82
jjj (ax ,7/ > dedy dz=0.

This equation is true no matter what the shape of the surface is. It
is therefore true for every element of volume into which the space
bounded by the closed surface can be divided, and this can only be
true when the integrand itself is zero. Thus, for every point in space

devoid of matter, X Lo v oz 3z -
oy oz
: 9V OV 9%V
which becomes = 4 7 oo = 0,
on substituting for X, ¥ and Z their values av gv d —.  The above
equation is called Laplace’s equation, and is usua,lly “ntten
V2V =0,
B 2 2
V2 being used in this country for the operator ax2+ay2+az2' On

the continent A is used for the same operator.
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Let us now suppose that a closed surface is drawn in a field con-
taining matter of density p, p being a function of the coordinates.
Then, by the surface integral of normal force theorem,

H(lx +mY +nZ)dS= — drkM = — 47rza”jp dudy da.

If X, Y, Z is a continuous function of the coordinates, Gauss’s theorem
can be applied. Hence

oX oY oz
e R

oX oY 0°Z
" j.”<§¢?+§§+@+4#kp>dxdydz=o.

This equation holds no matter what the shape of the closed surface
is. Hence, in the same way as before, and on substituting for X, Y
and Z, we obtain w2 2V D2V

w'FW +W+4ﬁ—k’o=0'

This is Poisson’s equation. It holds for a point at which the density

is p, and includes Laplace’s equation as a particular case.

§24. Change of coordinates.

In the preceding section Laplace’s and Poisson’s equations are
expressed in cartesian coordinates. For many problems it is necessary
to express them in polar or cylindrical coordinates. We can, of course,
change from the one system to the other by the methods given in
the books on the differential calculus. It is much shorter, however, to
use the following physical method.

Suppose that 2, ¥, # the coordinates of P, are expressed as functions
of three new variables &, n, { Let us, for example, write

x=f1($, uh C)s f’/:f2(§’ 7, C)’ Z=f3(£; 7, {)-

If one of the new variables, say & is constant, the point P is
restricted to a surface, and its position on that surface is specified by
n and ¢ By giving £ in succession different values we describe an
infinite family of surfaces. Similarly, there is an infinite family of
and another infinite family of ¢ surfaces. One surface of each family
passes through every point in space, and the values of £, 7, { can be
regarded as the coordinates of that point. If the three families
intersect orthogonally—and this is the only case we have occasion to
consider—these coordinates are said to be orthogonal. Examples of
orthogonal coordinates are of course cartesians, polars, cylindricals and
elliptic coordinates. In cartesians the three families of surfaces are
families of planes parallel to the different coordinate planes. In polars
we have a family of concentric spheres, a family of cones with the same
axis and vertex and a family of planes intersecting in the one straight
line. In cylindricals we have a family of coaxal cylinders, a family of
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planes intersecting in the axis of the cylinders and a family of planes
at right angles to the axis of the cylinders. In elliptic coordinates we
have three families of confocal conicoids, ellipsoids, hyperboloids of
one sheet and hyperboloids of two sheets.
Let the orthogonal coordinates of P be & #, { Draw the surfaces

d d d dr d a¢

E'I’ng‘: g_?ga 77+_"7 7]‘_2]" §+§§5 —7'
Then these surfaces will mark out a volume element which is approxi-
mately rectangular. The length of the

7
side between the £+ %S and £ _%- surfaces

is Adg, where A is a function of &, 7, {
and the lengths of the other sides are
pdn and vd(, p and v being also functions
of & n and { Let A, B, C be the com-
ponents of force at P in the & 7, ¢
Fia. 15. directions, that is, normal to the & 7%, {
surfaces respectively.

Let us find the surface integral of normal force or the total outward
flux of force over the surface of the element. The area of the £ section
through P is pvdnd{ Hence the flux of force through this section

is Awvdnd{. The flux inward over the 5—% end is

C d
Apvdn d - 5% (Apv) ;dn .
S

dg

The flux outward over the £+ end is

0 d
Ay 0+ () % mat
Subtracting, we obtain for the flux outward over these faces
0
% (Apv) dé dn d(.

By symmetry, taking account of the other faces, we find for the
total outward flux of force

{% (Awv) + % (BrA)+ %(C)\/L)} dg dn d¢.

By the surface integral of normal force theorem this must equal
— 47kM, where M is the total mass within the element. But'

M = pAuv d§ d df,
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where p is the density at P. Hence

2
{a‘g (Auv) + a% (ByA) + a%(‘”‘/‘)} dg dnde= — dalephpv dE dy ¢,

or, on dividing out by Auv dg dy dy,
1 (9 G, 0
m{—g (Auv) + % (BvA) + 5% (C/\,u)} + dwkp =0.
We have thus proved Poisson’s equation for orthogonal coordinates.
oxX oY oz 1 °
—t et e=v—2 = :
et A )
Since Ad¢ denotes a displacement in the ¢ direction,

Consequently

1%ov 1ov 1ov
1 o 2/mwav
2\ — -, i
Hence \Y% V_)tpx/Eag()\ a§>.

It should be noticed that this section affords a means of proving
the equations of Laplace and Poisson without using Gauss’s theorem.

§25. Poisson’s equation in polar and cylindrical coordinates.
In orthogonal coordinates the equation runs

1 O /v OV
mza‘g:(Ta_g) iAo,

To change this into polars we have to write 7, 6, ¢ for & m, ( and
1,7, rsin 6 for A, p, v, since the sides of the volume element are dr, r 46
and 7sin 6 d$. On making the substitution, we obtain

L (2(00n0@) 2 (na@, B 1 VY
r2gin 6 ﬁ(r st §_>+@<sm 8-0>+84><sin 98¢> TR

o L2(pAY Lo gon LoV L
” a_r< or) sin086<s n ae) 725in?0 o2 fE=
To change into cylindrical coordinates we have to write 7, 6, z for
& m, (and 1, 7, 1 for A, u, v, since the sides of the volume element are
now dr, rd0 and dz. On making the substitution, we obtain

1 a oV 1 ’aZV 22y B
757‘@ 5) + 25 T g + ATk =0.

§26. Example on Poisson’s equation.

When p is given as a function of the coordinates and the boundary
conditions are known, Poisson’s equation can be used to determine V.

For example, let the density p be a function only of 7, the distance
from the origin. The attracting matter is distributed therefore in
uniform thin concentric spherical shells. We shall also suppose that
all the matter is a finite distance from the origin.
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It follows from symmetry that V can be a function only of
Expressing Poisson’s equation, therefore, in polar coordinates and

. OV oV . .
putting = = 5= 0, we obtain
19/ ,0V\
T )=~ trhe
On integrating, this becomes
ov 4
g 2
(e 477'7{:}‘0/374 dr+C,
: y ] : ov
C being the constant of integration. Since 72 5= 0 when r=0, C=0.
oV Ak 7
Hence == _TTJ.OM.Q dr,

and on integrating by parts

V= — .rdr {i;kjrprg dr} +D= @rm*z dr — .rzhrk prdr+D.
0 ™ Jo 7 Jo 0

When 7 is o, V=0, since all the matter is a finite distance from the
origin.  When 7 is oo the first term on the right-hand side vanishes,

since rpf‘z dr is finite. Hence D =j dakepr dr.
0 0

We thus obtain the final value of V, namely,
V= ]’;j‘r dmrPpdr +Fk j 4mrp dr.
0 :

But 4mr?pdr is the mass dm of a thin shell of radius 7, thickness dr
and density p, and if m denotes the mass of the whole sphere of radius r,

'r41r7’2p dr =m.
0

Therefore V=—+

km i "‘r:oo d_m
=1
The first term represents the part of the potential at a distance
from the origin due to the matter contained within the sphere of
radius 7. The second term represents the part due to the external
shells. For each of these taken singly the interior is an equipotential
space, and P has consequently the same potential as on its surface.

§ 27. Electrical images. Point and plane.

All the results of the preceding sections hold for electrostatics as
well as for gravitational attraction, if we write k=1 and understand
by p the density of the electrostatic charge. Only, in defining the
electrostatic potential at a point, we have to make a condition; when
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the unit charge is brought from infinity we suppose it does not disturb
the distribution of electricity in the field.

The nature of the problem is, however, in electrostatics somewhat
different. Instead of being given the system of charges and asked
to calculate the attraction, we are given the conductor or dielectric
and have to calculate the distribution of the charge on it, before it is
possible to calculate the attraction.

Suppose that we have a charge +¢ at P and a charge —e at P’
situated a distance 2a apart. Let AB be an infinite plane at right angles
to PP’ bisecting it. Then the potential on this plane is zero ; for if we
take any point @ on the plane, the potential at @ is

L _°
PQ PQ

Since this plane is at potential zero, if we suppose it replaced by an
infinite thin plate of metal connected with the earth, there will be no
alteration of the potential on either side of it, but the field will remain

everywhere the same as if it were due solely to the two electric
charges P and P.

and PQ=PQ.

If now we keep the metal plate in connection .
with the earth and remove the charge P, the potential
to the left of AB will become zero, but on the right Q
it will remain the same as before.
Hence if a point charge is placed at P at a N P

distance ¢ from a plane conductor which is at
potential zero, the electric field will be that due

to the point charge together with that due to an FB 5%
equal and opposite point charge situated at P, a R
distance @ on the other side of the plane. The charge at P’ is said
to be the electrical image of the charge at P.

An electrical image 1s an electric charge or system of charges on
one side of a surface which would produce on the other side of the
surface the same electrical action which the actual electrification of
the surface really does produce.

Let o be the surface density of electricity on the plane in the above
case of a point charge e at a distance @ from an infinite conducting
plane at zero potential. To find o at Q@ we require the electric field
strength at right angles to the plane. The field strength at right
angles to the plane at Q due to the charge at P is equal to

LR
PQ? PQ
and acts from right to left. The field strength due to the charge

on the plane, being equivalent to that due to the image at P, has a
component in the same direction equal to

e PN
PQZ PQ
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Since PQ=PQ and PN=PN, the resultant field strength at right

angles to the plane is % PN
PQ? PQ’
The two components parallel to the plane neutralise one another.

Now suppose a small cylinder drawn as in fig. 17, with its ends
parallel to the plane AN, the area of each end being dS. Apply the
surface integral of normal force theorem to this cylinder. As has
been mentioned, there is no force to the left of AN. The end
contributes a part 92 PN

to the integral; the resultant contribution of the side is zero, since
the field intensity parallel to the plane is zero. The total quantity

of electricity inside the cylinder is odS. Hence, apply-
A ing the theorem,

2¢ PN ¢ PN

ch ~has PQdS—41r(rdS or o= -—g- POE

i As all the tubes of force which start from e end on
the plane, the total charge on the latter is —e. This

EG - may also be found by direct integration.

C The force of attraction produced at P by the surface
distribution of electricity on the plane is the same as would be
produced by the charge —e at P'. The resultant force on the charge
at P is hence

o2 62
PP? "~ 44?7
§28. Point and sphere.

Suppose that we have a charge ¢ at P and a charge —¢' at P';
¢ being less than ¢. Then the equation to the surface of zero
potential is given by

2 apF 2 Q
@~ T gFTs
At Q make L CQP' =, QPP and produce l
QC to meet PP in C. P

Then in triangles CQP’, CQP, L QCP is
common and LCQP =,QPC. Hence the
triangles are similar. Therefore

Fia. 18.
CP_PQ_cQ
cqQ PQ CP
The product of the first and third ratio is equal to the square of
the second, that is CP' /PQ\2 /e\2
o~ (ra) = ()"

Therefore C is a fixed point.
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C; g—g’, CQ2%2=CP.CP or CQ is constant. The surface
of zero potential is therefore a sphere with centre C.

Denote CQ by a and GP by f.

Suppose now that a thin metal sphere connected with the earth is
placed to coincide with the surface of zero potential. It will not
affect the field in any way. There are ¢ tubes of force from the
charge ¢ terminating on the outer surface of this sphere, so that it has
a charge —¢. The inner surface has a charge +¢'.

Let the charge at P’ vanish; the charge on the inner surface of the
sphere will also vanish. The field outside the sphere and the charge
on its outer surface remain, however, unaffected.

Hence, if a point charge e be placed at a distance f from the centre
of a spherical conductor of radius a, the electric field outside the sphere
is that which would be produced by the original charge e together
with a negative charge — ¢ situated on the line joining ¢ to the centre
of the sphere at a distance of a?/f from the latter, ¢’ being equal to ae/f.

The charge — ¢’ at P’ is the image of the charge ¢ at P.

In order to find o, the density of the charge at Q, we have to find
the component of the field intensity along QC The field intensity

Also, since

abt Q due to ¢ is Its components are

Q¥
_QC e PC
~ QP PQ? along QC and +— ar PQ2 along PC.
The field mtens1ty at Q due to ¢’ at P' has components
Qc PC ¢ \
ar QP’2 along QC and - aF apF? along PC.

PC e PC ¢ PC ¢ PC e
QP PQ2 QP QP?_ QP PQZ QP2 PQ

el T fl{>_
‘%(PQfP’Q? N

The resultant component along PC is therefore zero. The resultant
normal component is

QCe’ QCe _qc e __e_)_@)(PQ?_Q e <£_1>
PR PQE <PQ PQ? PQ}/ PQE\PQ PQ*\ a2
Hence, in the same way as in § 27, the numerical value of o is given by

1 ea/f? 1)
PR 47r<a- i

It has of course the negative sign.
The point charge is attracted towards the sphere with a force equal to

’ ’

ee ee e’a e*af

S T
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EXAMPLES.
1. Find the total charge on the plane in §27, and on the sphere in § 28,
by integrating the expression for the density.

2. In §27, if the “point charge” is a small charged sphere of radius b,
the energy in the field is

3. In §28, if the “point charge” is a small charged sphere of radius b,
the energy in the field is

4. In §28, if the sphere is insulated and without charge instead of being
at zero potential, the force on the point charge is an attraction equal to

2ad 22— a?



CHAPTER IL
HYDRODYNAMICS.

§29. HYDRODYNAMICS is that part of physics which deals with the
motion of fluids. In order to simplify the mathematics the fluids dealt
with are usually supposed to be perfect, i.c.

(1) they do not support tangential stress,
(2) their structure is continuous.

If any plane surface is immersed in a fluid, according to the first of
these assumptions the resultant thrust exerted by the fluid on the
surface must be at right angles to it, whether the plane is moving
relatively to the fluid or not. In hydrostatics, that is, when the plane
is at rest relatively to the fluid, we know as a fact of experience that
the” thrust is actually at right angles to the plane. In the case of
relative motion we know as an experimental fact that the resultant
thrust is oblique to the plane and has a component parallel to the plane
which resists the relative motion. The definition of viscosity depends
on this fact. The first assumption is therefore equivalent to neglecting
viscosity.

In deriving the equations of motion, ete., it will be necessary to
consider the motion of small fluid elements. According to the second
assumption, these elements must still possess the properties of the fluid
in bulk. We must never take them so small as to get down to the
individual molecules.

There are two methods of treating the motion of a fluid, the
“Lagrangian” and the “Eulerian.” In the first of these methods we
seek to determine the history of every particle of the fluid. In the
second we fix our attention on a particular point in space, and attempt
to determine the velocity, density and pressure at that point for all
times. Here only the Eulerian method will be used.

§30. Acceleration at a point.

Let u, », w be the components of the velocity parallel to the
coordinate axes at the point #, ¢, # at the time 7. Then u, v, w are
functions of z, ¥, z and 1.

Suppose that P is the point z, , # and that the particle which is at P
at the time ¢ moves to the point Q, the coordinates of which are
&+ 8, y + 8y, 2+ 0z in the interval of time &7
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The acceleration of the particle is the acceleration at P at the time .
The increase in the z component of the velocity of the particle in
moving from P to @ is given by

ou.,, Ou ou ou
815=ESt_+a~x8rc+a—y3y+aSz.

In going from P to @ we are taking a step forward in time and a
step forward in space. The first term on the right is due to the former
and the other three to the latter.

The 2 component of the acceleration of the particle is

Su ?zq_t+’%890+'5_u8y+au8_z_au+uau+v%+wa_u
8 T Ot "o Oydt ozt of | om oy oz
Ltst=0 Ltsi=0

.8 -
since o =1 Similarly, the y and 2 components of the accelera-

= e s
L st=0
tion at P are given respectively by
@M@H&;M@ d ow uaw ow  Ow
Ty % M wt ' a Ty T
Hence if % denote the operator
E +U=+v ° +w E
T T oy o
the three components of the acceleration at P can be written
du dv  dw
dar’ di dt

§31. Angular velocity at a point.

Let p be the density of the fluid. Consider a small sphere of fluid
with its centre at P(z, 7, 2) and take a point Q(z+a, y+ B, £+7) close
to P inside the sphere. Then the velocity at P is %, , w and the
velocity at @ has the components

o Ou

.J_{_ﬁa_u_k i
u+a,am ay 'y,az,...,

The relative velocity of Q to P is therefore
aax—i— aj/ 'y,az, ceey wee

The moment of the velocity of @ about an axis through P parallel
to the z-axis is

ow Qw ow w o0 v
<a§m—+,8@+ya>ﬁ—(aé~w+ﬁa—y+ya—z> ”
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Multiply the ahove expression by p dzdy dz and integrate throughout
the sphere, and we shall obtain the angular momentum of the sphere
about an axis through its centre parallel to the z-axis. The sphere is

so small that the differential coefficients % ete. may be regarded as

constant throughout the field of integration. The product terms such
as j:”a,B dzdydz vanish because to every positive value of af there

corresponds an equal negative one. Also, by symmetry,

J.-”B? dzdy dz= J.‘”y? dw dy dz.

Hence the angular momentum of the sphere about an axis through
its centre parallel to Oz is given by

3 - w
[ B [rss -2

But the moment of inertia of the sphere about this axis is

jjj(ﬁz +y)pdzdyde=2 J-“-BZ pdz dy dz,

and hence the angular velocity about this axis is

1 <’a_w 87;>
2\%y %/
Let the components of angular velocity at the point P be denoted by
&, ¢ Then

_1/ow '5’1)) _l a_u_a_w> (_l o O
t=3Z %) i m) im)

§32. Curl of a vector. Potential vectors. Stream lines.
The vector, the components of which are

w o u_w % _fu
P oF ;= o’ % oy
is said to be the curl of the vector, the components of which are u, v, w.
Hence the angular velocity at any point is half the curl of the velocity
at that point. )
Consider the expression
—dp=udr+vdy+wdz
If the curl is zero, d¢ is a perfect differential,
% ,_ 2, %
7z oy oz
the vector u, v, w is derivable from a potential, and is said to be a
potential vector,
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When 4, v, w denote the velocity at a point, ¢ is called the velocity
potential. Obviously, the condition for the existence of a velocity
potential is that the motion should be irrotational.

If we define stream lines for any given time, as curves the tangents
to which everywhere give the direction in which the fluid is moving at
that time, then the equation to the stream lines is

dz_dy_ de
v v w

_ The stream lines obviously cut the surfaces given by ¢ = constant at
right angles, and the stream lines and velocity potential have the same
properties as the lines of force and force potential in the theory of
attraction. One point, however, calls for attention, the convention
about the sign of the potential is different. In attraction we had

oV
X=o
§33. Equation of continuity.

Consider a rectangular fluid element, the centre of which is
P(%, y, ) and the sides of which are dz, dy, d2. Let p as usual be the
density of the fluid at P and let w, », w
be the components of the velocity at P.

The average value of pu on the face
EFGH is pu—a(a’.;:) %ﬂ
at which fluid enters the element through
this face is

(pu - 6%/;:4) %>dydz )

The average value of puw on the face

Hence the rate

Fic. 19.

ABCD is pu+a(§;&) de Hence the rate at which fluid leaves the
element through this face is

2 {2
<pu + g;“) %)dy B siot vs 55 26 555 e v o 45 B (2)

By subtracting (2) from (1), we find that the rate at which matter is
being gained through these faces is

olpw) ;2 1
- dxdy dz.

Similarly, the rates at which matter is being gained through the
faces parallel to 2z and wy are respectively

opv) 4 a0 ofpw) ,
——a‘zrda. dyds and ~ o da dy dz.
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The total rate at which matter is entering through the surface of the
element is therefore

= {aépzu)+ag;v)+ag§0)} HEEI AR, wnomesmunes v s (3)

The mass of the element is pdzdydz and the rate at which it is
increasing is apd*d ; "
Y T i (4)

Hence, equating (3) and (4), we obtain
%  3(pw)  2(pv)  A(pw) _,

e I —— (5)

the equation of continuity in its most general form in cartesian
coordinates.
It is obvious that (5) may always be written in the form
dp
dt
¢ being the resultant of u, v and w.
If the liquid is incompressible and homogeneous, p is constant, and

+pdivg=0,

if the motion is irrotational, u= —%— etc. Hence the equation of
continuity reduces to :
a2¢ a2¢ a2¢

W'I‘a—y?"}'azZ:O or V2¢=0.

This is the same as Laplace’s equation.

§ 34. Equation of continuity in polar and cylindrical coordinates.

The equation of continuity in cylindrical and spherical polar co-
ordinates may be derived directly from first principles by considering
the rate of flow into an element and the rate at which the mass of
the element increases. Or it may be derived in the same way in the
first instance in' generalised orthogonal coordinates and the transition
afterwards made to polars or cylindricals.

‘We shall here assume the result proved in § 24, namely that

oX oY 9oz 1 G,

a+a_y+§_)\pyz’a_£(/\ﬂv>’ ....................... (6)
X, Y, Z being the components of a vector in the z, 7, z directions, &, 1, {
generalised orthogonal coordinates, Adf, pdy, vd( the lengths of the
sides of the volume element bounded by &, 5, { surfaces and A, B, C
the components of the vector in the &, 5,  directions.

To obtain the equation in polars, write pu, pv, pw, pU, pV, pW,
r, 0, ¢, 1, 7, rsin6 for X,Y,Z, A B, C, &n, { A p, v, and substitute
in (6). Then, by means of (5),

o, L [0 Ussin ) +.S(ovrsin 6) +( wT')}:o )
o Psimo o 36\ 3
H.P. c
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Here U, V, W are the components of the velocity at P in the 7, 0, ¢
0P 1 0P

directions. If the motion is irrotational, U= — =, V= —-=> and
1 2@ or 7 00
W= — TR ® being used as velocity potential to prevent con-

fusion with the coordinate ¢. '
To obtain the equation in cylindricals, write =, 6, 2 for & 7, { and-
1,7, 1 for A, p, v. Then we obtain

P, 1{B . @ ol _
a7+?-{a_r (pUP) 4+ (PV) o (W) L =0, (®)
Here U, v, W are the components of the velocity at P in the 7, 6, 2
directions, and if the motion is irrotational, U= — 84), V= — Lo and
3 or 7 00
w=_2¢
%z

§35. Particular cases can be derived from the general equations (7)
and (8), but it is better to obtain simple cases from first principles.
For example, suppose we have steady radial flow of an incompressible
liquid from a point. Take the point as origin and take as volume
element a shell bounded by spheres of radii » and #+ dr and with the
origin as centre. If v denote the outward velocity at distance 7, the
quantity of liquid entering the element per second is 4w7%, and

the quantity leaving it per second is 4mwr?y + 4w %(7‘%)(11‘. These are

equal. Hence the equation of continuity takes the form
,—aa; (r)=0.

§ 36. Equations of motion.

Consider, as before, a rectangular fluid element with centre at
P(z, 4, #) and sides du, dy, dz

4 Let u, », w be the velocity, p the
pressure and p the density at P,

E B and let X, Y, Z be the components
E A of external force per unit mass at P.
L . C The rate of change of momentum
of the element in the » direction is

du
dx i
0 _ pdudyds % ©
The “body force ” on the element
Z in that direction is

Fia. 20.
pXdudydz. ieceninis (10)

The average pressure on face EFGH is
Op dx

P~
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hence the thrust on that face is

op dz\

and the thrust on face ABCD is

The resultant pressure-thrust in the 2 direction is consequently

op
—admdydz. .............................. (11)
Equating (9) to the sum of (10) and (11) and cancelling out dz dy dz,
we find the z equation of motion

du op u U o U 19p
pﬁz_px—a or ﬁ“‘a_x””af’w@: ~ % soass(12)

The similar y and z equations are

v, v, v, v 1 op
—at+ua~m+va—y+wa—z—Y——P %

ow ow Oow  Ow 1 op

and T ax“’_af“’_az‘z‘;az'

§37. Case of impulsive pressure.

It is possible that we may have an extremely great pressure acting
for a very short time. The diagram illustrating the hydrostatic para-
dox, fig. 21, is a case in point. P and Q are two pistons working in
cylinders fitted into a vessel containing
an incompressible liquid. If the one
piston be driven in smartly by a blow
from a hammer, an impulsive pressure is ¢
transmitted throughout the liquid f

Let o be the impulsive pressure at the

point z, 9, z inside the liquid, i.c. 0= |pdl

for the point taken over the interval of
time = through which the impulsive Fid. o1
pressure acts. Let w, v, w be the com-
ponent velocities at the point before, and ', ¢/, %' the component
velocities immediately after the impulse.

Consider as before a rectangular fluid element with its centre at
7, 9, 2 The increase of momentum produced in the « direction is

(w' —w)p da dy dz.
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The impulsive thrust in the = direction is

ox 2
; T Qw dx
and in the -2 direction (w +5 ?> dy dz.
Hence the resultant impulsive thrust in the o direction is
— % da dy dz.
The equation for the impulsive generation of motion is therefore
e i 2
W —u= S
1 %w
imi P e e s Gz e DT 13)
Similarly ) T (13)
e 1 Qw
L p Oz

The effect of finite forces during = is of course neglected.

Terms may be added to (13) to represent possible impulsive body
forces acting on the liquid, but such forces are only of mathematical
interest.

An interesting result follows from equations (13). If the first,
second and third be differentiated respectively with regard to =, y
and z, and if the right-hand sides and left-hand sides of the equations
thus formed be added, we obtain

ow o ow ou w ow\  1/0% 0 D
<$ oyt az> (aaﬁaf az> ==3 <8x2 T azz>'

The left-hand side of this equation vanishes since the fluid is incom-
pressible, and the equation consequently reduces to

a%+a2w+azm_
0?2 T2 0
Impulsive pressure therefore satisfies the same equation as gravi-

tational potential and is transmitted instantaneously to all parts of an
incompressible fluid.

§ 38. Boundary condition.

At a fixed boundary the normal component of the velocity must be
zero. Hence I+ 1m0+ naw = 0,
where I, m, n give the direction cosines of the normal to the fixed
boundary, the direction outwards from the fluid being positive.

If the boundary is moving with velocity V in a direction making an
angle 0 with the outward drawn normal from the fluid, then we must

have I+ mw +nw =V cos 0,
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If the motion is irrotational, this becomes

o
5= V cos 0,

o denoting a differentiation in the direction I, m, n.
§39. Green’s theorem.
According to Gauss’s theorem, §21,

oX oYy 9z
_”.'K +— = += >(h dy dz= jj(lx +mY + nZ)ds,

where the volume integral is taken throughout a certain region of
space and the surface integral is taken over the surface bounding the
same region, I, m, m being positive outwards and X, Y, Z being a
continuous function of the coordinates.

For X, Y, Z write pu, pv, pw, where p is a scalar and u, v, w a vector
function of the coordinates. Then Gauss’s theorem becomes

ou W ow\, , . op op p)
.[.”p <aa: += B + )[l.’l, dy dz + “‘J.<u 3T wa—?/ +w==)dzdy dz
= J‘Ip (I + mv + nw) ds.

This equation is a special form of Green’s theorem.

§40. Energy equation.

Suppose that X, Y, Z, the external force per unit mass of the fluid, can
be derived from a potential £ which is independent of the time. Then

20 0 o2 22
Y- "% =W

oy’ =0,

and the equations of motion can be written

dw BQ 2_3]2 du aQ a_p dw BQ _op 14
PE= Pm e PEiT Py oy PE PE e A

Multiply the first, second and third of the above equations by u, »
and w respectively, and add the right-hand and left-hand sides of the
three equations thus formed. We obtain as a result the equation

p< du d +wflw> <(IBQ o0 089) ( op  Op Bp>

YT TV "o oyt “a*”—ﬁ“’az
which simplifies to

d o, 40 o o, P
7p£ﬁ(u2+'v2+w)+p% (76%+v@+waz>
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Assume that the density p is constant, multiply by dedydz and
integrate throughout all the region of space occupied by the fluid.
This gives

= _Ijj<ua+way+waz dedyds. .ioiii (15)

Now, by Green’s theorem,

o9p op . Op "
”j'<u@+w§y+w§;> dmdych-jjp (I + mw + naw) dS,

the other term vanishing, because the continuity equation takes the
form %-l_@-l—a_,w

Or Oy Oz
owing to p being constant. Also, the order of the integration and
differentiation in the first two terms of equation (15) is clearly
interchangeable, and T, the total kinetic energy, and V, the total
potential energy of the liquid in the region, are given by

T=%“-jp(u2+vg+w2)dmdydz, V=”jp9dwdydz.

Making these substitutions in (15), we obtain

=),

C%(T—I—V) = —jjp (lw+nw+nw)dS, ....ooovvvnnn (16)

that is, the rate at which the energy of the region is increasing is equal
to the rate at which pressure forces are doing work upon its surface.
If the motion is irrotational, the right-hand side of (16) becomes

”p S_Zj das.

§41. Integration of the equations of motion.

The equations of motion can be integrated whenever a velocity
potential exists, if the forces are derivable from a potential and if p
1s a function of the pressure only. Rewriting them from p. 35 for the
sake of convenience, we have

a—u+u% v% w%—x 15]3
T Ty T T T o
v w w w 19op
e O M e SR N T — 2
" Ty T Py [ CL)
ow ow ow ow 19p
a+tba+”@+@0§—z—;~a—z.
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If the motion is irrotational,
w_ Bu_dw %_ou
oy 0% 2 o’ o oy

Substituting these results in (12) and at the same time writing

9 G 2
%= _B_Z’ V= 8(5 w= —a—q: in the first term of these equations, we
obtain - aqb - = 1 2
W
kT “a TRt %X T s
2 2 . ow 12p
~% ,ay—l' @-l-?l@-l-w@—Y—;@,
0 0¢ v Ow 1op
"t a—z“’* Y%=t r o

Let ¢ be the resultant of u, v, w and let X, Y, Z be derivable, as
in §40, from a potential which is independent of the time. Then
substitute, and the equations become

2 2 a< 2> 20 179

"% ot T S T% o
2B, @ 1y
Yot Toy\2t /)T oy P
_EQ‘E+3<E 2>=_a_9_1§f?
%z O 0z\2 %% p oz

Multiply respectively by dz, dy, dz and add; then, for any definite
value of , % i P
A 2® Dok g HE
d(at>+d<2q) a0
This has the integral

jdp %‘f Q- })q2+ F()y + overerreesiererennns (17)
since the constant of integration is a funection of ¢ Since ¢ is inde-
terminate to an additive function of ¢, we may suppose F(f) included
in %—(’S, in which case the last term of the equation vanishes.

In steady motion, when the fluid is incompressible, the equation

becomes . 1
%=_9_§g2+o, ............................ (18)

C being a constant.
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§42. Bernoulli’s theorem.

Let the motion be steady and let the distance along a stream line be
denoted by s. Then the acceleration along the stream line, at any
point on it, is given by c

T
q of course denoting the velocity along the stream line. By analogy

with the right hand of equation (14), the resultant force per unit mass
at the point in the direction of the stream line is

% 1y
s pos
19p 202 g dp 1,
whence FT el and j-?-—ﬂ—gg +D. e (19)

D being a constant of integration.
Bernoulli employed a different method of proof. We proceed to
give his proof for the case when the fluid is incompressible.
Consider a portion of a tube of flow, i.e. an infinitely narrow tube
the surface of which consists of stream lines, and
B denote the positions of the ends, which are

) normal to the stream lines, by A and B. Let
A the direction of flow be from A to B.
‘ Let the velocity, pressure, cross-sectional area

and force potential at B and A be denoted
respectively by ¢, p, o, & and ¢, p, o, Q.
In each unit of time a mass ¢'o’p enters at A and an equal mass gop
leaves at B. Hence

Fia. 22.

¢’ =qo.
The mass entering per unit of time at A brings with it the energy
go'p(39%+%),
while the mass leaving per unit of time at B takes with it the energy
gop(3g* +9).
The work done per unit of time by the pressure on the mass

entering at A is ¥ 5
< rog,

while the work done per unit of time on the mass leaving at B is
poq.
Hence, since the energy in the tube is constant,
Po'q +qop(§g2 + Q) =pog+gop(§g® + Q),
which simplifies to P 1,
E+Q+§Q=D. .......................... (20)

It should be noted that this equation is not the same as equation (18)
of the preceding section. This equation holds for rotational motion
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and D is constant only so long as we keep to one stream line. Equation
(iS) holds only for irrotational motion, but C is constant throughout
the field.

§43. Applications of Bernoulli’s theorem.

First take the case of liquid flowing in a horizontal pipe of varying
cross-section. The velocity is greatest where the cross-sectional area
is smallest. Apply (20). Since the pipe is horizontal, & may be
taken as approximately constant along the stream lines; hence, when
q is greatest, p is least. The pressure must therefore be-least at the
narrow parts, as is shown by the gauge tubes.

Next consider the case of the efflux of a liquid from a small hole
in the side of a vessel, which is kept filled up to a constant level.
Then the motion is steady. Take the origin in the surface of the
liquid and the axis of ~ vertically downwards. Then Q= - gz.

A

B

— g ‘__"'I_\
—_—— ,

Fia. 28. Fia. 24.

Take a stream line which is on the surface of the jet at B. It may
be supposed to start from the surface of the liquid at A. To determine
the constant D for the stream line, substitute the values for p, @ and
g at A. The velocity at the surface may be supposed to be zero;
hence g=0. Also =0 and p=TI, the atmospheric pressure. Hence
D =1II/p, and throughout the stream line

P 1, I
S+ Q+0=—.
P =%

At B we have p=1I and @ = —gz. Hence the velocity at B is given
by ¢%=2gz.

This result is known as Torricelli’s theorem.

It is a matter of experience that the jet, when it issues, is not
eylindrical in form. The stream lines converge inside the vessel, and
this convergence continues until a point outside is reached, where the
cross-sectional area of the jet is a minimum. This point is called
the wena contracta. At the vena contracta the jet is approximately
cylindrical. The area of the vena contracta depends on the nature
of the hole and on whether it is fitted with a mouthpiece or not;
in the case of a simple hole in a thin wall the area of the vena
contracta is found by experiment to be about 62 times the area of
the hole.
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Owing to the curvature of the stream lines the pressure is not the
same throughout any crosssection of the jet except at the vena
contracta. Consequently only there will the velocity be uniform and
only there is it given throughout the cross-section of the jet by
Torricelli’s theorem. We cannot therefore calculate the rate of efflux
of the liquid unless we know the area of the vena contracta.

EXAMPLES.

1. Fluid is moving in a fine tube of variable section K; prove that the
equation of continuity is

0 0
51 \Kp) + 55 (Kpp) =0,
where v is the velocity at the point s.

2. Find the equation of continuity in a form suitable for air in a tube,
and prove that if the density be f(at—z), where ¢ is the time and » the
distance from one end of a uniform tube, the velocity is

af(at—z)+(V —a)f(at)
flat—z)y
where V is the velocity at that end of the tube.

3. If F(w, y, 2 t) is the equation of a moving surface, the velocity of the
surface normal to itself is

1 dF G (8F>2 (8F>2 <8F)9
—ﬁ %, where Ré= 75‘%‘ + ’(TZ/ -+ a
(proved in Lamb’s Hydrodynamics, p. 7).

4. Establish the differential equation for the equilibrium of a fluid, namely,

dp=p(Xdz+Ydy+Zdz).

A vertical cylinder of gas (section A and height %) has mass M at uniform
temperature. If £ denote py/p,, where p, and p, are corresponding pressure
and density, prove that the density p at depth z below the top of the
cylinder is given by p=Ce?”, where C is a constant to Le found in terms
of A, %, k& and M.

5. If the velocity potential is of the form ¢=zlogr, and if the density
at a point fixed in space is independent of the time, show that the surfaces
of equal density are of the form

7*(log r —§)=2"+7(0p),
where p is the density and r, 6, z are cylindrical coordinates.
6. If a liquid is in equilibrium and the components of the force per unit
mass acting on it are
X=yltye+2% Y=r‘tew+a? Z=22+zy+y?,
show that the density at z, ¥, z must be of the form
yz +zx+x_z[> / .
FEEELE) [ory+a,
where F is an arbitrary function. (Hint: the density is the integrating
factor that makes X dz+Y dy+Z dz a perfect differential.)

7. If an incompressible fluid is at rest under the action of a system of
forces, show that they must be derivable from a potential.
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8. A liguid is in equilibrium under the action of forces X=u(y+z),
Y=p(z+2), Z=u(z-+y) ; show that the surfaces of equal pressure are hyper-
boloids of revolution.

9. Show that if a fluid moves about an axis so that the stream lines are
circles, a velocity potential will exist if the velocity be inversely proportional
to the distance from the axis. Hence prove, that if the axis be vertical and
the fluid be acted on by gravity the equation of a surface of equal pressure
is 7% =¢, where 7 is the distance of a point from the axis, z its distance from
a fixed horizontal plane and ¢ is a constant.

10. A right circular cylinder of radius a, closed by plane faces perpen-
dicular to its axis, is filled with liquid. The axis Oz is the axis of the
cylinder and the liquid is acted on by external forces whose z and ¥
components per unit mass are Az+ By, Cz -+ Dy respectively.

Prove that the liquid will rotate as a whole about Oz with uniform angular
acceleration $(C— B), and if the pressure at the origin is zero and w is the
angular velocity of the liquid, show that the resultant force on each plane
end of the cylinder is Lapot{w?+4(A+D)}.

11. Apply Greeun’s theorem to show that the problem of finding an irro-

tational motion of an incompressible fluid, which has prescribed values of
normal velocity at the boundaries, admits but one solution.

12. Assuming that the equations of motion of liquid in a rotating ellip-
soidal shell (equation #?/a?+y?/b?+422/c?=1) can be expressed in the form

10p oV, 6 _
5624'%4‘0.@"'725/‘{‘92—0,
10p, oV .

;@+a?+]w+ﬁy+fz—o,
1% oV, B
;)'c?z a+g-ﬁ+.ﬁ’lj +‘yZ~O,

so that the component space accelerations are az+hy-+gz he+By+fz
g4+ fy+7yz, show that, if the forces represented by —0V/ow, —0V/0y,
—0V/0z be only those due to the mutual attraction of the parts of the
liquid, the principle of constancy of angular momentum gives f=g=/~A=0.

Hence, taking 0V/0z, OV/dy, 0V/0z=Az, By, Cz, show by integration that
the surfaces of equal pressure are similar coaxial surfaces, and are similar
to the containing surface if

(A+a)a?=(B+B)b*=(C+y)d
so that the external case might be removed.

13. Prove that the accelerations parallel to the axes can be written in

the form Bui

ot

with two similar equations. (By the expression u(w, », w) is meant u?
uw, UW.) )

Prove that if q be the resultant velocity of the fluid at any point and ds
be an element of path in the direction of flow, while ¢’ is the velocity in any
other direction at the same point, the acceleration in this latter direction
at the point can be written 3¢’

+div{w(u, v, w)}—wdiv(y, v, w)
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§44. Two-dimensional motion. The stream function.

If w is zero, and if w, v are functions of z, y only, then the motion
takes place in planes parallel to the zy-plane and is the same in every
one of these planes. When we know the motion for the plane #=0,
we know it everywhere. Consequently this case is said to be one of
two-dimensional motion ; for analytically it is the same as if the motion
were confined to an infinitely thin layer. When we speak of two-
dimensional motion in what follows, we shall be understood to refer
to the above case ; when, for the sake of convenience, we refer to points
and curves in the plane 2=0, we shall understand the lines through
the points parallel to Oz and the surfaces parallel to Oz, of which the
curves are the traces. Finally, when we refer to liquid flowing across a
curve in the plane z=0, we shall understand the quantity of liquid
that flows through that portion of the cylindrical surface parallel to Oz
which has the curve as base, comprised between the planes z=0
and z=1.

Let OP (full line) he any curve through the origin in the zy-plane
and let i denote the quantity of liquid, supposed of unit density, that
flows across OP per unit of time, from right to left. Then

P
Y= j (I + mw) ds,
0

where I, m are the direction cosines of the normal to the element ds,
the normal being drawn to the left of the curve.

0= 0

F1a. 25. Fra. 26.

Let the liquid be incompressible. Then ¢ is a function only of 2, 7,
the coordinates of P. For if any curve represented by the dotted line
be drawn joining OP, ¥ must be the same for both curves, since the
quantity of fluid contained between the two curves remains constant.
Similarly it must be the same for all possible curves drawn between
O and P. Hence it does not depend on the shape of OP, but only on
the position of its end point P, and is thus a function only of the
coordinates of that point.

Let P move from P to P’ along a stream line. Since PP’ is a portion
of a stream line, no liquid flows across it, and ¢ has the same value
for P’ that it has for P. Hence

Y = const.
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is the equation of a stream line. If we were to shift the reference
point O, the only result would be to add a constant quantity to all the

expressions for . We may therefore regard y as indeterminate to
the extent of an additive constant.

Let AB be an element of length ds on the curve OP. Then AC = dz,
CB=dy. Trom fig. 27 it is obvious that

l= —cosABC and m=cos BAC.
Hence dy= —1ds, dz=mds and

‘/’=jp(l“+m?f)d8=—judy+jvd9; or dy=vdz—udy.
0

¥

0 x

Fic. 27.

But since ¢ is a function of the coordinates,

oy,
Ay ==L dx + == dy.
¥ By

o
J
8_5/, u= —a—“b. These expressions hold whether the
o oy
motion is irrotational or not.
They might have been obtained otherwise. For two-dimensional

motion in an incompressible liquid the equation of continuity takes

Hence »v=

the form 3u

@ + a—y — O,
and this is the condition that

vdr—udy

is a perfect differential. We have only to put this equal to di and the
expressions follow.

Now suppose that the motion is irrotational. Then

%_ 3y _ 2b_ o
" oy oy o
¢ Y x o oY _ 0
o oy oy

The two families of curves, ¢ =constant and i = constant, intersect
orthogonally. This again might have been inferred from the definition

of ¢,

U=

and consequently
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§45. Expression for the kinetic energy.
By Green’s theorem

ouw  Ov ’c) 819 op 8]9)
J“.p<ax + 3y a>ddedﬂ+jH P +og gl )dodyd

= J.jp (I + mw + maw) dS.
o B % o O .
On substituting p=¢, u= — S U= T o w=—=; this becomes

Hjtﬁv% d dy de + j j j{@_‘mﬁf o (%n)z .\ (aqb) } ddy e

[t rs

The kinetic energy, T, of the fluid in the volume through which the
integration is taken, the motion being irrotational, is given by

P RO

The density is here assumed to be constant. Hence, by the equation
of continuity,

V=0 and 2T=pj[¢ ¢ds
é% denoting a differentiation in the direction of the outward drawn

normal.
Let us assume now that we are dealing with two-dimensional motion.

Then %‘é= 0, and the volume reduces to a cylinder with its generators

parallel to Oz, the ends being given by the planes =0 and z=1. The
kinetic energy is given by

B p”{ @‘f) 4 (a > }d@ dy,

a surface integral taken over an end of the cylinder.
The surface integral cbg%) ds reduces to j.gbg—;f ds, a line integral

taken round the trace of the cylinder on the plane z=0.
Let I, m be the direction cosines of the outward drawn normal to
this curve. Then

%p_,0p, B¢ B¢ By 0y

TR 7’()J oy "
since —m, [ are the direction cosines of ds, that is, of the tangent to the
curve. The positive direction of s is that in whlch on going > round the
curve, the area enclosed by it is on the left hand.
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In two-dimensional motion, therefore, the kinetic energy is given by

2T = pj¢%%> ds= pjd) .

§ 46. Conjugate functions.

Two real variables are necessary to specify the position of a point P
in a plane. One complex variable z+ ¢y is sufficient, containing as it
does within itself both a real 2 and a real ¥ which can be laid off along
their respective axes.

If z+14y be put equal to 7¢®, 7, which is represented by OP in the
diagram, is said to be the modulus of the complex variable, and the
angle 6, represented by xzOP, is said to be
its amplitude.

A function of both variables # and ¥ is P
said to be a function of z+ ¢y when it has a
differential coefficient with respect to the r
latter. For example, A(z+y)®+ B(z+1) \&

and sin a(z +14y) are functions of @ + 4y, while 0 5=

Az3 + Biy and sin (e + iy) are not.
Now take any function of a complex variable, and separate its real
and imaginary parts, ¢.e. let

Fic. 28.

b b Rl By wan o e e wins masssmmmion (21)
where ¢ and y are both real functions of 2 and 5. We have
op oY . op oY ., ,
a_’_lég_;_f(x—}'?‘y)r ay'l'?’ay_z.f(x-l—?/y)'
b oY O .Y
Hence Z%_%_a_y“a—y'
On equating the real and imaginary parts, this gives
o G S (29)

%3y oy W
It can be shown conversely that if (22) holds, then ¢ +4y is a
function of z+4y. For from (22) it follows that

. (Op  .OY o¢p oY
l(aw + 7/az> = <@ 4 @),
which is the condition that ¢+ iy has a differential coefficient with
respect to z +4y.

It is evident that the families of curves given by ¢ = _constant,
i = constant intersect orthogonally. ~Also, by differentiating (22) with
respect to z and y and adding, it follows that

% V%
e

0,
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and by differentiating (22) with respect to y and # and subtracting, it
follows that O
Rl A ',5'y—2 =0.
The families of curves given by ¢=constant and iy =constant are
said to be conjugate. For (21) can be written in the form

¥+i(- )= - flz+),
where ¢ and — ¢ are respectively the real and imaginary parts of the
function of a complex variable, —if(z +4y), and the roles of the two
functions are now interchanged.

§47. Solution of problems in two-dimensional steady irrotational
motion.

If we are given a special problem in two-dimensional motion and
know that the motion is steady and irrotational, the straightforward
method of procedure is to find a solution of the continuity equation

P 2%
Wt

that satisfies the boundary conditions, and then determine p by means

of the equa,tion 1
P
=, — Q jus o gz + C,

9%V 4 (22’ being substituted for g2 T, h ith
<’a_m> +<a_y> eing substituted for ¢4 , however, we start wit
given boundary conditions, finding a solution may prove a very tedious
or even impossible task.

The more fruitful method of procedure is not to take a particular
problem and try to solve it, but to take a particular class of solutions
of the differential equation and see to what problems they can be
applied.

It has been shown in the last section that the real part ¢ of any
funetion f(z+14y) of a complex variable satisfies the equation for the
velocity potential, and at the same time the imaginary part gives
the stream function. We shall now take some simple functions of a
complex variable and examine the solutions which we get in this way.
Owing to the conjugate property of ¢ and y each solution will have a
second meaning, z.c. we can also take ¢ as potential and ¢ as stream

function.
(1) p+iy=a+1y.
Here ¢ =2 and ¢=y. The equipotential curves are straight lines
parallel to Oy, and the stream lines are straight lines parallel to Oz.
(2) ¢+ ip=(z+1iy)?=0a?—y2+ ny.
Here ¢=2a2—42 and ¢ =22y. The equipotential curves and the

stream lines are represented in fig. 29. The equipotential curves are
rectangular hyperbolas with the axes of coordinates as axes; the
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stream lines are rectangular hyperbolas with the axes of coordinates as
asymptotes.

In going from any curve of the family to the one next above it in
the diagram, the parameter is increased by the same constant quantity.
For example, it is the equipotential curves given by

22-y2=0, 2?-92=02, 22-92=04, ...,
that are plotted. Hence the diagram represents the motion quanti-
tatively as well as qualitatively. The quantity of liquid flowing per

unit of time across the portion of any equipotential intercepted between
any two consecutive stream lines is everywhere the same.

4

Fic. 29.

Any stream line may be taken as a fixed boundary. If, for example,
we take the parts of the curves ay=01 and ay=02 in the first
quadrant as boundaries, the solution represents the flow of a liquid in
a channel with a bend in it.

If we take ¢ as the stream function and ¢ as the potential function,
we obtain the same solution turned through 45°.

R
) ¢+Z¢_x+iy—w2+92
_ = R 9
Therefore cﬁ_zz_l_yz or B4yi-g 0y e i s g scrssemed (23)
and VABIINE JS R, K K . (24)
o+ 4 4

H,P. D
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Equation (23) represents a family of circles with their centres on the
z-axis and with the y-axis as common tangent at the origin. Equation
(24) represents a family of circles with their centres on the 7-axis and
the 2-axis as common tangent at the origin.

(4) ¢+iyp=plog(z+iy)=plogre®=plogr+ pif.

Here ¢=plogr and ¥=pé. The equipotential lines are a system
of concentric circles and the stream lines radii diverging from their
common centre. The solution represents liquid either flowing from,
or to the origin, or, as this fact is usually expressed, it represents either
a two-dimensional source or sink at the origin.

If the réles of potential function and stream function are inter-
changed, the solution represents liquid flowing round a circular cylinder.
In this case the potential at any point is multiple-valued.

, r+w—a
() d)“"“//—:“‘logw_,_z‘y_i_a

Let the distances OA and OA’ in the figure each be equal to @ and let

P be the point z+4y. Then, if we write

%+ 1y — a=re?,

2 g — 1\2 L /2 ol A
?=(z—a)?+19% and O=tan e

Fia. 80.

Hence o+ 4 — a clearly represents the line AP and » + iy + a represents

the line A'P.  Let . )
T4y + a=71,6%.

nol0 o
Then ¢+i¢=,ulog;%i%=,ulog%+,ui(0—01).

Therefore ¢ =plogr/ry and ¥=pu(6—6,). In order to examine the
shape of these curves, let us change them into cartesians.
The first may be written

(@-a)?+y?=B{(z+a)*+3},
where B is a constant. This gives

1 o
x2+y2+a2—2awm=0, ..................... (25)
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The second may be written

y _ Y
tan=1—_ _tan-1 ¥ _const. or w =C.
r—a T+a 1 Y2
tE_#
This gives 2?42 — a2 —L—éy=0. ........................ (26)

Equation (25) represents a system of coaxal circles with the centres
situated on the z-axis and the y-axis as radical axis. The radical axis
intersects the system in imaginary points, and consequently the limiting
points are real. IEquation (26) represents a system of coaxal circles with
the centres situated on the y-axis and the z-axis as radical axis. In
this second system the radical axis cuts the curves in real points and
the limiting points are imaginary.

L
e

Saunl

s
‘-?ﬂ_%

KO
H
%

Fic. 31.

It is obvious from fig. 31 that the solution represents a source and a
sink of equal intensities.

(6) ¢+1ip=cosh! %ﬂ[

Here %+ 1y = ccosh (¢ + 1) = c cosh ¢ cos ¥ + e sinh ¢ sin o,
and on separating the real and imaginary parts, we obtain
z=ccosh ¢cosy, y=csinhpsiny.
On eliminating i, these equations give

22 N P2 ’
¢2cosh?¢ ' ¢2sinhZ$p
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and on eliminating ¢ they give

22 :[/2

ccos?y c?sin?y

The equipotential curves are thus ellipses and the stream lines
hyperbolas.

Both have common foci at x= +¢. If the flat hyperhola, i.c. the
curve for which sin =0, be taken as boundary, the solution represents

G
N

Fic. 82.

the flow of liquid through an aperture in a plane wall. If the réles of
¢ and ¢ be interchanged, the solution represents liquid circulating
round an elliptic eylinder.

§48. Application of the method of images.

The method of images can also be applied to the solution of problems
in hydrodynamics. For example, let AB be a fixed plane, the space to
the right of which is filled with an incompressible liquid, let P be a
fixed point source of strength m and let us suppose we are required to
determine the motion. The liquid of course cannot penetrate through
the plane.

In the case of a point source of strength m alone in an infinite liquid
the velocity potential is m/r, where 7 is the distance of the point in
question from the source, and the stream lines are obviously straight
lines radiating from the source. The total quantity of liquid flowing
from such a source in unit time is 4mm.

The conditions to be satisfied in the given problem are that ¢ is
zero at infinity, that the quantity of liquid flowing in unit time out of
any surface in the fluid is zero unless the surface includes P, when it
becomes 47m, and that the equipotential surfaces cut the plane AB at
right angles. These conditions are satisfied by assuming that the
source has an image of equal strength at P, at an equal distance on
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the other side of the plane AB. The potential at S is thus
mm
SP ' 8P”
An interesting result follows from this. Let S be on the plane

at Q. Then the velocity at Q is 2mQN/PQ? and has the direction QA.
The pressure at Q, according to equation

(18), 1s givenpby 1 A s
P _Q_2p2 Q
. 50*+C.
Assume that there are no body forces, -/_
substitute for ¢2 and we obtain p7 N P
P QN?
==C-2m’_——.
e " PQS B
The pressure on the plane is thus less than Frc. 33,

it would be if there were no source at P.
Writing QN =2 and PN =g, we find that the presence of the source
diminishes the total thrust on the plane by

® 222ma dx ° 1 2
2| T 9 om? = 2
s _L (a? +a?)® 2mpi L {(x2+ a?)? (a2 +a?)? } He?)

= 2wpm? L T ﬂ_sz-
4 a? 202 a?

EXAMPLES.

1. There is a line source and parallel to it a plane through which no liquid
can pass. If the source and plane extend to infinity, find the velocity
potential and the pressure on the plane.

2. Two impenetrable planes meet at right angles. One of the angles thus
formed is filled with liquid, there being a continuous line source parallel to
the line of intersection of the planes and distant respectively ¢ and b from
them. Derive an expression for the velocity potential and the pressure
on the planes.

3. The motion of a liquid is in two dimensions, and there is a constant
source at one point A in the liquid and an equal sink at another point B ;
find the form of the stream lines, and prove that the velocity at a point P
varies as (AP. BP)~1, the plane of the motion being unlimited.

If the liquid is bounded by the planes #=0, z=a, y=0, y=a, and if the
source is at the point (0, @) and the sink at (a, 0), find an expression for
the velocity potential.

4, Liquid is moving irrotationally in two dimensions, between the space
bounded by the two lines = +}= and the curve »3cos 3¢=a®. The bound-
ing curves being at rest, prove that the velocity potential is of the form

¢=r3gin 36.
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§49. Motion of a sphere in an infinite liguid. No forces.
A solid sphere of radius ¢ and density o is moving at a given in-
stant with velocity » in a given direction in an incompressible liquid
of density p. The liquid extends to infinity

Z p and is ab rest there. It is required to
investigate the motion of the sphere and the
liquid.

We shall assume that the motion is irrota-
tional. Take the position of the centre of the
sphere at a given instant as origin of coordinates
and the direction of motion as the positive
z-axis.

The velocity potential at a point P depends
by symmetry only on OP and angle ZOP, z.c. on

R r and 6. Hence we obtain the equation of
continuity in a suitable form by making the % and 83: terms in
equation (7) equal to zero and then writing U= —%—d), V== —l%
This gives i 7

9 9¢ ¢
87(7 sin ¢ >+89<Sm989> 0
3 , B, [ (27)
or < B7>+sm9 80<m686> L

the common factor p being cancelled out.

At infinity the velocity of the liquid is zero and at any point on the
surface of the sphere the normal component is equal to the normal
component at the point of the velocity of the surface. Hence the
boundary conditions are

2
r=c, 5‘5—?:0, r=a, —i:vcosﬁ. .............. (28)

We determine ¢ completely by (27) and (28), and then obtain p by
equation (17), i.e. p 2% 1, .
ri 37“59““:(’5), ........................... (29)
) being put equal to zero, since there are no body forces acting on the
hq'lIl‘lod:s.olve (27) assume ¢=fcos 6, where f is a function of # only.

This expression is suggested by the form of the boundary condition
for r=a. Then, on substituting, the equation reduces to

a/: 7—f~—2f 0.
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In order to solve this, assume f=+". We find on substituting that
m=1or —2. We have therefore
¢ = Ar cos 6+%cos 0,
where A and B are constants. Now

O 2B
E—Acosﬁ— -3 008 0.

To satisfy the condition at infinity A must equal zero and to satisfy
the condition at 7=a we must put

v=2B/al.
Hence ¢=Wi3005 P (30)
93008 0 e

‘We shall now proceed to determine p, the pressure at P.
In order to find g, the velocity at P, we have

_2¢ _wad 1 2¢_vad

o 80 —r g gesinb
AN 1 /04\  [uad\? 1.
g O . L{OPN_ (Y 20 1 = «in20 ).
Therefore ¢ _<67'> B (’(36) <73> (eos 9+4sm 6)

‘We cannot determine %% by differentiating ¢ with respect to ¢, for

equation (30) gives only the value which ¢ takes for one particular
value of ¢.

We know from symmetry that the sphere must move in a straight
line. Let the position of its centre at time 7 be given by (0, 0, y);
“%:w. Then the velocity potential is given by

)
= )
2{a2 g+ (s~ 77}
since in this position — 12=a2+9%+ (2 —y)?

and cos 0= it <
{@+y+ -7
This gives dy dy
3% 3(z—v)2ZL
2 vt 3va? (2~ ) 77

= — 3+ i
G g (- 7)) 2P+ ey}

d
03<z—7)d—7;

I %3

2{22+9+(z - 7))

; ¢ v20®  3v2a3cos?0  adcos 0 dv
which becomes = g h w3

on changing to our former notation.
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On substituting the values of ¢% and %Cf in equation (29), we obtain

p_ v%® 3%Pcos?0 aPeosOdv b/ o 1 .
P t—gg —t 97 g 58 <cos 9+Zsm 0>+C, ...(31)

where C is a quantity depending only on the time. When the pressure
is given at any definite point, C can be determined.

To find the kinetic energy of the liquid we may proceed by either
of two ways. We may divide the fluid into elements, find the kinetic
energy of each element, using the expression for ¢? already found,
and integrate throughout the region occupied by the fluid. Or we
may apply the theorem proved in §45, namely, that

1[4 2as

In the given problem the liquid has two boundaries, one the sphere
of radius @ and another at infinity, which we may also take to be
spherical and of radius R. Now for the boundary at infinity

o¢ va® vad
gba—n= —WCOSG.FOOS 6,
and is of the order R=5. The area of the boundary at infinity is of
the order R%. Hence the integral over the boundary at infinity is
of the order R~3, and vanishes when R is made very large. We obtain,
therefore, for the integral over the whole boundary, taking 27a?sin 6 d¢
as the element of area,

T 3)2 2
[ e amatsin .
0
In the above expression 83: _567:, since the normal is drawn out-
n

wards from the liquid, 4.e. inwards to the sphere. This gives
2T = — mpa®y? r cos?0 d(cos 0) = g Tpaty? = % M'v?,
O ~

where M’ is the mass of the liquid displaced by the sphere. If M be the
mass of the sphere, the total kinetic energy of the liquid and sphere is

1 1,
§ <M + § M > v2
The effect of the liquid is thus equivalent to an addition to the

inertia of the sphere of one half of the mass of the liquid displaced.
If the sphere is being accelerated,
1 ., dv

Tk
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gives the rate at which the kinetic energy of the liquid is being
increased. Consequently

1 ., dv
" @
must be the resultant force with which the sphere acts on the liquid,
d
an 1 i
2 dt

the resultant force with which the liquid acts on the sphere. This
force opposes the motion, and in magnitude and direction is quite
@ _0, th
= e
liquid exerts no force on the sphere. Thus, if a sphere is set in motion
in an ideal liquid and left to itself, it moves forward in a straight line
with uniform velocity.

The resultant force exerted by the liquid on the sphere can also be
derived from the expression for the pressure (31). For r=a, the latter
becomes

independent of the previous motion of the sphere. If

v? acos 6 dv
g=§(9cos29—5)+—2 n+C
Divide the sphere into elemental zones by planes parallel to the
zy-plane. The area of a zone is 2ma?sin 6d6. From the form of p
the resultant force must be in the direction of Oz It is therefore
given by ;.
j‘ p cos 0 2ra? sin 0 d6.
0

Only the cos 6 term in the expression for p requires to be considered
in the integration, because the other terms do not change with the sign
of cos 6, i.e. they are the same both in front of and behind the sphere.
The resultant force is therefore

™ +1
wa3p i cos?f sin 0 d6 =wap L4 cos?0 d(cos 0)
0 dt dt ) 4

2 dv 1 _,dv
2 8 % 1. &
=3P =M gp
the same result as before.

§50. Motion of a sphere in an infinite liquid. Gravity acting.
Take the direction of Oz vertically downwards. The equation of con-
tinuity and the boundary conditions remain unaltered, and the velocity
potential and kinetic energy are represented by the same expressions
as before. Writing — gz for £, the equation for p becomes
p_0¢

1
E——-a—t+gz—§g2+F(t).
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The resultant thrust of the liquid on the sphere is in the direction of 0z,
as before. The effect of the additional term is to give an additional force

T +1
j gpa cos?l . dratsin 0db = ‘)7ra3gpj cos?0 d(cos 0) = % T?gp=My,
0 ~1
acting vertically upwards. This is the force equal to the weight of
liquid displaced, which is given by the prineiple of Archimedes.
If the sphere is allowed to fall under the action of gravity, the rate
of increase of its momentum is
4 o dv
— TA°0 —

3 dt’
The downward force on it due to gravity is
L
3 TAcT(.

The upward forces due to the weight of liquid displaced and to the
communication of kinetic energy to the liquid are respectively

4 . 2 o dv

5 0%y and 3 TP

The equation of motion is therefore

4 . dv 4 2 . odv

371'(00'%—3770/ ((T—p)g—gﬂ'a/[)d—t,
: : dv [(0'—)
hich s )
which gives 7 =

Ttg

for the downward acceleration.

EXAMPLES.

1. Show that the lines of force of a small bar magnet are given by an
equation similar to (30), and interpret the meaning of the constants in this
case.

2. What difference does it make to the results of §49 if we suppose the
sphere fixed and the liquid flowing past it with velocity »?

3. Establish the special form of the equation of continuity suited to an
incompressible fluid in which a right circular cylinder is moving with
uniform velocity in a direction at right angles to its axis.

Find a solution of the equation for this case. Calculate the resultant
velocity of the fluid at a point distant » from the axis and specify its
direction. Find the kinetic energy of the fluid, and prove that if the density
of the cylinder is equal to that of the fluid, the kinetic energy of the fluid
motion is equal to that of the cylinder.

4, Discuss the characteristics of the motion for which

. va? ; R at
W) pri¥ =gz @ iy {origr g Lol

(For solution, cf. Lamb’s Hydrodynamics, p. 72.)
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5. A large sphere of radius b is filled with liquid and a smaller sphere of
radius @ is moving inside it with velocity » along a diameter. Find the
velocity potential and the kinetic energy of the liquid for the time when
the spheres are concentric.

sy b 1 , (B3 +2a®
I:cl) R <7' +W> cosf, T = TaPpv? ((63 = a3))'

6. A cylinder of radius « is surrounded by a coaxal cylinder of
radius b, and the intervening space is filled with liquid. The inner cylinder
is moved with velocity » and the outer with velocity » along the same
straight line perpendicular to the axis of the cylinders; prove that the
velocity potential is

_aPu—b% (uw-—-v)a?b?cos O

¢= g o8 0+W

§51. Let any curve be drawn from A to B. Take an element of
length ds at a point P on the curve and let the direction of g, the
resultant velocity at P, make an angle 6 with ds. Then

B
j gcos Ods
A

is said to be the “flow” along the curve from A to B. Not the time
aspect, only the instantaneous space aspect of the integral is meant.

dr vdy wdz
N _Loer, vey wae.
ow cos 0 qu+qu+gds;

B B
hence J qcos Ods= j (wdz+vdy +wdz),
A A

and, if the motion is irrotational, this reduces to ¢a — ¢g.
If Aand B coincide so that the curve becomes closed, then the integral

A
wdz+vdy +w dz),
¥ Y

taken round the closed curve, is said to be the circulation round the
closed curve or the circulation in the circuit. The circulation round
any closed curve vanishes in a region in which a single-valued velocity
potential exists. If the velocity potential is multiple-valued, the
circulation does not necessarily vanish. For example, if ¢ =u6 and
the circuit goes once round the origin, the circulation is 2pur.

§52. Stokes’theorem. The line integral of the tangential component
of a vector taken round any closed curve is equal to the surface integral
of the normal component of the curl of the same vector taken over
any surface bounded by the curve, or

ow v ou ow o Ow
j(u-dw+vdy+wd5)=”{l<a—y‘@)*”‘(ﬁ‘%%“(’c}_x_a‘y)}ds‘
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Let P(z, 9, #) be the centre of a rectangle ABCD, the lengths of
the sides of which are dz, dy, and let u, v, w be the components of the
vector at P.

At A and B u has respectively the values

oudr oudy Qu dz Oudy

and at B and C v has respectively the values

S ody  ovde Do dy
w2 2 oz 2 oy 2

Y
D c
P
A B
5 X
4
Fia. 85. Fic. 36.
. ou dy
Hence the average value of u on AB is U= and the average
; wdr .. J
value of v on BC is vtz 5 Similarly the average value of w on
DC is u+21w@ and the average value of v on AD is v —@dj The
oy 2 o 2

line integral round the element is therefore

Qu dy v dx Ou dy v dw
<u——~>dz+<7;+ﬁ§>dy—<u+a—y g)dx— \w—a—m§>dy

oy 2
v Ou

Similar expressions hold when the rectangle is parallel to the YZ
or ZX planes.

Now consider the triangular element ABC, the normal to which is
given by [, m, n. Since the contributions from OA, OB, OC cut out,
the line integral round ABC is obviously equal to the sum of the line
integrals round ABO, BCO and CAO, that is to

v Qu Qw ou  Ow
(a_w"aT/)AABO*'(a_y -a>A BCO+<a—a—x>A CAO
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by the result already proved. This becomes

l<%}—@>+m<%—zw>+n<@—?ﬁ A
oy ©2 oz o ox By> ’

where A is the area of ABC. Since the value of the circulation round
ABC is independent of the coordinate system, this result holds for a
triangle with its sides not parallel to the coordinate planes.

Take any surface and divide it up into elementary triangles. The
line integral round the surface is equal to the sum
of the line integrals round the individual triangles,
because, as may be seen from fig. 37, every side
of a triangle not at the same time on the bounding
edge of the surface, is traversed twice during the
integration in different directions, and so con-
tributes nothing to the total. Hence the line Fa. 87.
integral round the surface is equal to

(2T (22 (2P g
% R ”(am_a_;) i
which proves the theorem.

§53. A word requires to be said about the direction of the normal to
be considered positive. An observer walking round the edge of the
surface on the positive side in the direction of the line integration
would have the area on his left. This follows from fig. 35. The
circulation is related to the positive direction of the normal in the
manner typified by a right-handed screw.

It should be added that this rule is bound up with the convention
adopted as to the coordinate axes. We always use in this book what
is known as a right-handed or positive system, d.c. to an observer
situated in succession at X, Y and Z the rotations in the directions YZ,
ZX and XY are all anti-clockwise. The second figure below represents
a left-handed or negative system; the corresponding rotations in it
are clockwise. A reversal of the direction of any one axis changes a
positive system into a negative one or vice versa. In defining the curl

Y z

i, [

/A
z Y, <~

Frc. 38. Fro. 39.

X

of a vector we assumed implicitly that a positive system was used. If
a negative system had been used consistently throughout, it would be
necessary in Stokes’ theorem to consider the other direction of the
normal positive.
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§ 54. Kelvin’s circulation theorem.

If the force is derivable from a potential and if the density is a
function of the pressure only, the circulation in a circuit moving with
the fluid does not alter with the time, that is

d ra
ﬁj‘ (wdz+vdy +wds)=0.
A

dt
d du d °Q 172
S udp) =2 Sl = — e — = = Vdz+udu.
We have dt(udlb) dtdm—*—udth) < = pa$>dm+u(u
Hence
d [~ A (A7 1op oQ 1op 20
E;J‘A(“dwy”d?/"'wdﬁ)ﬁ_[;\(wEa_m_B_w>dm+<—7>8—y ay>dy
<_la£_aﬂ)dz+udu+wdv+wdw
poz Oz
dp 1 >A
=(-1=£-Q+z¢%) =0.
(\ _‘.P +314 A

It should be noted that we have already met the same three quantities
contained in the above bracket in Bernoulli’s theorem, but then they
had all the same sign.

It follows from this theorem that if any finite portion of a perfect
fluid has a velocity potential at any instant, it has had one at all
previous, and will have one at all subsequent times. For if the
circulation is zero, the curl of the velocity is zero, and consequently
the motion is irrotational.

§55. Vortex tubes.

A vortex line is a curve whose tangent at any point coincides with
the direction at the point of the instantaneous axis of rotation of the
element. It is thus the envelope of successive axes of rotation. Its
equation is dx dy ds

& o ¢

If vortex lines be drawn through every point on a small closed
curve, the quantity of fluid enclosed is said to form a vortex or
vortex tube or filament. The tube is taken so thin that the angular
velocity is constant for all points on any one cross-section. Let o be
the angular velocity at any point on the tube and o the cross-sectional
area at that point; then wo is said to be the strength of the tube.

§56. Laws of vortex motion.*

The following are the fundamental laws of vortex motion :

(1) A vortex filament is always composed of the same elements
of fluid.

* These laws form the justification of the assumption of irrotational motion
made in § 49.
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(2) The strength of a vortex filament, wo, is constant (a) with
respect to time, (6) throughout the filament.

(3) Every vortex must either form a closed curve or have its
extremities in the surface of the fluid.

Proof (1). Take any surface in the fluid wholly composed of vortex
lines. By Stokes’ theorem the circulation in any circuit in it is zero.
After a time, owing to the motion of the fluid, the surface will have
taken up a new position. By Kelvin’s theorem the circulation in any
circuit in the surface is still zero; hence the surface is still composed
of vortex lines.

If two such surfaces be considered, their intersection must always
be a vortex line. Hence vortex lines move with the fluid.

(2a) This follows from Kelvin’s theorem, since by Stokes’ theorem
Swo is the circulation in a circuit round the tube.

(26) Helmholtz’s proof : Isolating in imagination a portion of a
vortex bounded by two normal sections and applying Gauss’s theorem
to it, we have

'”. (Ig +mn +n() dS =."”(%§ + %Z + % da dy de.

The integrand on the right-hand side vanishes throughout the
volume, as may be found by actual differentiation of & 7 and { and
the integrand on the left-hand side vanishes over the
surface of the filament, since the normal component of
the angular velocity is zero there. We are left therefore )
with only the surface integral over the ends of the
filament, and consequently it must be zero. It has the
value 0,07, — g0,

w;, 0, o, o, being respectively the angular velocities g, 4,
and cross-sectional areas at the ends of the element.

Hence the theorem follows. The minus sign is accounted for by the
fact that the angular velocity has the same direction and the normal
different directions at the two ends.

(2b) Kelvin’s proof : Apply Stokes’ theorem to the
portion of the surface of the tube bounded by

ABCDEFG.  Since (& +mn + n{)d8=0 for this
surface, j-(u dz +v dy +w dz) taken along the boundary

is also equal to zero. Now if BC and GF are taken
sufficiently close together, the part of the line integral
along BC is equal and opposite to the part of the line Ty T
integral along FG. The whole line integral thus

reduces to the parts round the rings GAB and CDEF. These are equal
respectively to 2v,0, — 2wy0, in the notation of the preceding proof.
Hence the theorem,
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(3) Tf a vortex tube ended in a fluid a closed surface could be
drawn cutting the vortex only once, and '” (1€ +my +n)ds taken over

this surface would not be zero.

§57. The rectilinear vortex. &
P
Let the motion be in two dimensions. Then w=0, §§=0, é;=0a

and consequently =0, 7=0. If vortex lines exist, they must be
parallel to the zaxis. In two-dimensional motion we can always write
%= 2 7}=a—¢ Consequently
oy’ o’ £ y
v ouw_ W
A= oz oy aw*ay

Let us suppose that we have a vortex of circular cross-section at rest
in an infinite liquid which is itself at rest at infinity. Let the radius
of the cross-section be a, let the centre of the vortex be situated at the
origin and let the angular velocity have the constant value { through-
out the vortex. Then v satisfies the equation

oy Py,

AT
inside the vortex and the equation

oy M

AT

outside the vortex. As in this problem we obviously have symmetry
about the axis of the vortex, it is better to take r as independent
variable. The best way of changing to the new independent variable
is in this case by means of the formula (cf. § 24)

s b o< @ ,u.vaV>
V=5 2o (T o)

On retaining only the differentiation with respect to £ and sub-
stituting =17, A=v=1, p=r, the equations become

O _.
H 87 < a7> 26 e (32)
K .
and - 81 < a7> Ol 51 5 o sis s s s s 2 (33)
The radial and tangential components of the velocity are now given

respectively by — ag and fg’:
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Solving (33), we have

O/ oY (6]
@(7‘§;>=0, 1‘8—1':=C and ¢ =Clogr+D,

and solving (32), we obtain

/
%<7%>=2§7“, 7‘%?:{7‘2+A, ¢=%{1'2+A10g9‘+ B.

The radial component of the velocity, it will be observed, is every-
where zero.

We have now to determine the constants of integration. If we
measure ¢ from the origin it must be zero when r=0. Hence, in
the expression for ¥ inside the vortex, A=B=0. At the surface
of the vortex there must be no slipping ; the tangential component of
the velocity must be the same there both inside and outside. The
value inside is (@ and the value outside C/a; hence C={a% Also,
since the two expressions for ¥ must agree for r=a, ${0®=(a*loga + D.
Hence D=14{u? — (u®loga. Substitute m/= for {a? m being the strength
of the vortex. We then have

mr?
= Aral

inside the vortex and
m m
= = logrja+ o
outside the vortex.

These expressions are of the same form as the expressions for
the gravitational potential due to an infinitely long circular cylinder
inside and outside the cylinder. To obtain the latter (cf. § 19) all we
have to do is to substitute — % for .y

As has been mentioned above, the direction of the resultant velocity
at any point is tangential to the circle drawn through the point with
its centre on the axis. Its value inside is given by

° m?  mr
Or 2ma? wa?
and its value outside by
2 o log r/a= =
rw ey
It thus agrees (cf. §116) both in magnitude and direction with the
magnetic intensity due to an electric current of strength m/27 electro-
magnetic units flowing along a homogeneous conductor coincident
with the vortex.
H.P. E
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We can determine the pressure outside by the equation

;)‘ + 50 =% +C,
2
putting aa—q: =0 and ¢2= 7%%7—2 Then
g_IL me
p p 2=w?

II being the pressure at infinity.
In order to find the pressure inside the vortex, write down the
equation of motion for the radial direction. The body force is zero.

. .omir
The acceleration is 5 Hence we have
w204

lop_mPr
por wiat
2,2
This gives ]_7:2777,27 4+E, where P is the pressure at the centre of
the vortex. P “T% P
At the surface of the vortex
o__m —ﬂz_+ a therefore Lol O_ m
p 2x%t 2x%a?’ p o p =

The pressure diminishes all the way from infinity to the centre. If
1T < m?p/(7%a?), p becomes negative for some value of r <a, and in this
case a cylindrical hollow exists in the vortex. It is even possible for
the vortex to be all hollow.

§58. If a liquid of invariable density is moving irrotationally, its
kinetic energy (cf. §45) is given by

T lpj”.g~ dz dy dz= p”‘d)g—i ds.

Let the boundary be fixed. Then g-t:O, and consequently T=0.

But every element of the volume integral is positive. Hence ¢2=0,
i.e. we cannot have liquid moving irrotationally inside a space with
fixed boundaries.

§59. If an impulsive pressure acts on a liquid at rest producing a
velocity w, v, w,
1 Qv

= —— ey 5

p o’
(cf. §37) Let the liquid be incompressible and put ¢ =w/p. Then

u= .., t.c. the motion produced by impulsive pressure in a

aw
liquid at rest is irrotational.
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Conversely, any irrotational motion existing may be imagined pro-
duced by impulsive pressure.

§60. Kelvin’s minimum energy theorem.

The irrotational motion of a liquid occupying a simply-connected
region has less kinetic energy than any other motion consistent with
the same motion of the boundary. (A region is said to be simply-
connected when every closed surface drawn in it can be contracted to a
point without passing out of the region.)

3 0p P o . ¥
Let — = _a_y’ -5, give the irrotational motion. Let «éaz-ru,
—%—3;+7/, ——%%—-l—w' give another possible motion. The motion of the

boundary is the same in both cases ; hence, at a point on the boundary
where the normal is given by 7, m, n, luw' +mv' + ' =0.
The kinetic energy of the other possible motion is given by

1 o N
T—§pjj52<—%+u> dzdy dz

L (((s(2%\ 1s I 2 g I T <9 )
= QPJ‘_HL <ﬁ> da dy dz + 3 p.”jiu dxdy dz — pjhugau dx dy dz.

But by Green’s theorem, since the liquid is incompressible,
j‘”E%% wdedydz= - ”}ngij dxdydz + “-d) (b + mv’ + nw')dS =0,

and .”.[Eu"z dzdydz is essentially positive. Hence the theorem is

proved.

The theorem is a particular case of a more general theorem due to
Kelvin, which is enunciated as follows :

A material system if started from rest by impulses applied to
certain points, adjusted to communicate certain specificd velocities
to these points, has less kinetic energy than any other possible motion
of the system fulfilling the same velocity conditions.

EXAMPLES.

1. Considering the earth as composed of a solid spherical part, of density
symmetrical about the centre, covered by a stratum of water,and disregarding
the attractions of the particles of water on one another, prove that the
equation of the free surface is

S S 2=
\/Z'2+y2+22+2m @+7)=%
where =z, 7, z are the coordinates of the point considered, taken from the

centre as origin (z being taken along the axis), w is_the angular velocity of
rotation, b is the polar radius, and p is a constant to be interpreted.
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Show that if ¢ be the equatorial radius,

a-b 1 ,a%
—_— =t
a 2
Work out this quantity numerically to a rough approximation. (Hint:
The flow along an arc of a meridian terminating at a pole is constant.)

2. An ellipsoidal hollow space (equation #?/a?+y?/b?+2%/c?=1) is filled with
water. The water has vorticity, uniform throughout the mass, of angular
speeds &, 7, { about the principal axes of the surface, and the case is turning
with angular speeds w;, 0y, w; about the same axes. Show by the condition
that the motion must fulfil at the surface of the vessel that the velocity
potential of the irrotational part of the motion of the water at any point of
coordinates 2, 7, z referred to the principal axes is

2 — 2 02— 2 a?—b?
b= *(‘Dl—S)bZTczW—(wz—ﬁ)c—z:_;zm—(wa—f)mxﬂ/-

Prove that the component speeds with reference to fixed axes with which
those of the ellipsoid coincide at the instant are
ool ol —B?
w=2m—y{+(w;—n) c—z_,_—azz'*'(ws—f)m.%
with similar expressions for v, w.
Hence find the component speeds w/, +/, %' of the water at z, 7, z relative
to the moving axes of the ellipsoid, and prove that a given particle remains
on an ellipsoidal surface similar to the containing surface.

3. If the axis of a hollow vortex be the axis of z, measured vertically
downwards, the plane of zy being the asymptotic plane to the free surface,
and if IT be the atmospheric pressure, prove that the equation of the
surface, at which the pressure is II+gpa, is

@+ -a)=¢,
where ¢ is a constant.



CHAPTER III.
FOURIER SERIES AND CONDUCTION OF HEAT.

§61. SUPPOSE that we are given a curve y=f(z). Then in the
equation )
Y =ay+ a,cos & + bsinz,
ty, @, and b, may be determined so that the graph of the equation cuts
the curve in any three points between =0 and z=2x. For it is only
necessary to write down the condition that the ordinates should be
equal at these three points and we have three linear equations for

determining a,, ¢, and ;. Similarly, in the equation

=Gy + @, COS T + 3,08 2% + 4,08 3L + ... ¢,,CO8 NT
0 1 2 3 n
+ by sin @ + bysin 22 + bysin 32+ ... b, sin n.

Qs Oqs Qgy Oy ... Gy by, by, bg ... b, may be determined so that the two
curves cut mn (2n+1) points. If » be made infinitely great, the
two curves will cut in an infinite number of points. This raises the
question whether the curves will not touch throughout the range =0
to =27, whether it is not possible to represent any function through-
out the range by an infinite series of the above type.

§62. Let us assume the possibility of expanding f(z) throughout the
range 0 to 27 in a series of the above type, 7.c. in a Fourier series, and
let us assume that the series may be integrated term by term. Then

J(@)=a,+ a,co8 2 +a,c08 20 ... + by sina + bysin 2. ......... (N
Integrate both sides of the equation with respect to 2 from 0 to 2.
On the left-hand side we have j f(@)dz. On the right-hand every term

disappears except the first, which gives 27a,. Hence

Q= %j:"f(m) B0 s s wws 0k 80 w0 o T 26 F (2)

Multiply both sides of (1) by cosnz, where n is any integer, and
integrate with regard to # from 0 to 2=. Then, on the right-hand side,
we have terms of the following type:

aojcos nz di,

a,
u,nj- cos?nz dz = 7”.[(1 + cos 2nz) da,
2



70 FOURIER SERIES

" ol

@, | COS Mx cosnz di; = 7"‘ {cos (m +n) z + cos (m —n) z} dz,
o = o

o b .
b, \sin nz cos nz do = < |sin 2n dz,
b [ . T ‘
| SIN Mz cos n dw = 22| {sin (m +n)z + sin (m - n)z} dz,

o = w/

m being any integer except m. It is clear, that on integrating and
substituting the limits 0 and 2, every one of these terms will vanish
except the second. It gives a,m. The left-hand gives

r#f () cos nz da.
0

2m
Hence = %j‘ J(@) BOSNE AL, e v cmsn v (3)
0

Similarly, by multiplying both sides of (1) by sinne and integrating
between the same limits, it can be shown that

L{e= .
b= —j f() sin nz dz.
TJo

The two formulae (2) and (3) may be combined into one by writing
the absolute term in the series %0 instead of a,. Here, however, it will
always be written a,. -

It the range is taken from —= to + instead of from O to 2, the
only difference in the formulae for the coefficients is that the limits of
integration are from —# to + .

§63. It is to be noted that in the preceding section we assumed,
but did not prove, that the expansion of f{z) in a series of the required
type was possible. It may be shown by trial, 4.e. by taking particular
cases, calculating the coefficients and comparing the numerical value
of the function with the sum of the first few terms of the series, that
the assumptions are justified. This experimental method of proving
the assumptions is more convincing from the student’s point of view
than the rigorous proof which is due to Dirichlet. Dirichlet’s treat-
ment of the subject is long and will not be given here. In it the
sum of » terms of the series is taken, and it is shown that when n
becomes infinitely great, the sum approaches f(z), provided that f(z) is
single-valued and finte and has only o finite number of discontinavities and
hrning-values from ©=0 to x=2wx. This gives the condition on which
the expansion of f(z) in a Fourier series is possible. If there are no
discontinuities in f(z), the series is equal to f(z) between 0 and 2.
At a discontinuity in f(z) the valde of the series is the mean of the
values of f(z) on both sides of the discontinuity. At 0 and 2=
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the value of the series is the mean of the values of f(z) at these two
points.

It is not necessary that f{z) should have the same mathematical
expression throughout the range. For example, it may consist of
several different and disconnected straight lines.

A Fourier series can always be integrated term by term, but cannot
in general be differentiated term by term. It is easy to see why this
should be. For, if we differentiate the right-hand side of

J(@) =ay+a, cosz+a,cos 22+ agcos 3w ...
+ by sin @ + by sin 224 b, sin 3 ...,
we obtain — @, sin @ — 2a, sin 2z — 3a,8in 3z ...
+ b, cos z+ 20, cos 22 + 3D, cos 3z ... .

A TFourier series converges only because the coefficients of successive
terms decrease. It is obvious that differentiation must either destroy
this convergence or malke it less rapid.

On integrating the same series, we obtain

. ay . a, .
g%+ a; sin . +~Fsin 20+ 22 sin 3z ...
e

3
by b
b, cos 5 cos 2w ——eos3z ...,

and it is obvious that integration increases the convergence.

Ezamples. (1) Let f(z)=2? from =0 to z=2m.

21
Then a,= ?i j 22dr= % w2,
0

am

1 27
a,==| a%cosnzdxz
b

1 . 2 A e 4
=(—a?sinne+ S-wecosnr) ——5—| cosmdr=—;
nr n2mw o M s

12 . .
and b,==1 «?sinnzdz
LI )

(!
1 5 2 ) o 9 2w | 4o
=( ——a?cosnz+ —@sinnr) ——— sinnzde= - —.
I niw 0o Mo n
Hence, from 0 to 2,

4 4 Ao
m2=—72+2ﬁcosm;—2; sin ne.

3
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(2) Let f(z)=2 from =0 to s=7 and f(z)=2— 2= from z=7 to
x=2m (fig. 42).

Here ay=o- U" wd +F"(m - 27r)dw} '
0

m

1 T 2
= jxcosnzdw+j (w—27r)cosmcdx}

m

1 20 2
== zeosnzdy — 2w | cosnzde
w 0 T
1(/z . 2 (2mgin na o . 2m
== <~smf/wc> - daz—(— sin m:) 1=0
= {\n o Jo ® n )

T . 2’"‘ .
j msmm:dm+j (z—27) smm’.dw}
m

1 2T N 2,
- zsinnzdr — 2| sinnz dz

ks

z 2 (2meos e o 2m
—Zcosnz) + dz+—( cos nz
n 0 0 n n —

2 2 - 9 9
—~ 22 cos 207 + == cos 2nw — “— cog mar p == (— 1)L
" n m n

v Y

Fra. 42. Fia. 43.
Hence the series is

: 1. ;
2[311195—55111 2w+%sm 3 J
At z=m there is a discontinuity in f(z), the value changing from
7w to —m On substituting the value == in the series, we find, as
was to be expected, that it gives the mean of = and -, namely zero.
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(3) Let (fig. 43) f(z)= ¢ from 2=0 to z=r,

2’

T 3

= 0 from m=§ to r=

3r

and = —¢ from o= to 2=27

1 er 2%
Then a0=9—{j cdx — j cda;} 0

4T 0 8T

o

]_ 2 2
a,=— cecosnedr—| ccosnady
ke 0 3_"-

2

¢ .onT . . dnw
=— s1n7—s1112'mr+s1n— =0

nir 2
us
1(r2 . o
and b,== csinnrdr—| c¢sinnzdzs
7 Jo 3
2
G  Snar
=—11 —cos—+cos Onm
na 2 2

< nr
2 — 2 cos wr oS —
Tor 2

=alternately ;f_c and 0 if » be even, f_c if n be odd.
m U

Hence the series is

2l . 2 . 1 . T s
— | sinz+=sin 224+ - sin 3z4-=sin 52 ... |.
T 9 3 B

It is obvious from inspection that when 2 is 0 or 2= the series is
zero, that is, the mean of the values which f(z) has for these two points.

§64. Other forms of Fourier’s series.
We had  f(z) =ay+ 0, cosz+a,c08 22+ .7+ b, sinz+ b, sin 2z ...

throughout the range z=0 to x= 27, the coefficients being given hy
1 (2r p) 12 d
t=ge |1 Fds, a2 [ 5@ cosnado

and b, = 1 j-mf () sin nz da.
7 Jo
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It is sometimes necessary to represent f(z) by a series throughout

the more general range z=0 to =23l Write 2="2. Then, when
@ =2m, z=2l, and (1) may be written b

9
f(%z)—c b(2) =y + 0, cos = T +agcosT +b, SmT+b i 27lrz »
21 -
where a0=21lj0 P (2) dz, a":%jo é(2) cos?dz
ol
and bn=%-\- $(2) Sin#dz.
0

Substituting now z for z and f(z) for ¢(z), we find that throughout
the range 2 =0 to z=21.

2 2
f(m):a0+alcos7r7m+azcos 770 by sin +b sn%m..., (4
1 = 1= nars
where Ay=17+ f (z)dz, a,=>| f(®)cos——dz
21 I)o l
sl j n .
Again, cos TZE =cos Mll—m)
The graph of the series
o
o+ @, c0s 7 +a2003T

is therefore symmetrical about the ordinate through the middle of its
range, i.c. the ordinates on opposite sides of z=1! at the same distance
from it are equal and have the same sign. Also

. nmg . (2] — )

By = e B s

The graph of the series
bysin = + by sin 2
l 1

is therefore symmetrical about the middle point of its range, 4.c. the
ordinates on opposite sides of the point =1/, =0 at equal distances from
it are equal in magnitude but opposite in sign. In the Fourier series
representing a function of z symmetrical about the middle ordinate,
therefore, there will be no sine terms, and in the series representing a
function symmetrical about the middle point, there will be no cosine .
and no absolute terms.* In examples 2 and 3 of the preceding section
the functions are symmetrical about the middle point, and we found on
evaluating the coefficients, that the absolute term and cosine terms

*If the origin of coordinates is at the middle of the range, these functions
become rospeomvdy even and odd.
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vanished ; this result might, however, have been inferred from the
nature of the function.

Suppose that f(z) is given from =0 to =1. Then we may expand
it in a series in three different ways. We may first of all suppose that
lis only half the range and fill in the function in the second half so as
to make it symmetrical about the ordinate through z=1I. Then

T

2my

J(@)=ay+a, cos T T UaC0S —— iy i (5)
1 2 1
where a0=;lj f(x)dm:ZJ- f(@)dx
abJo 0
1(% nws 2t nw
and an=7'[0 f(z) cosde=7j0f(a:) cosde.

The second formulae follow since the integrals have the same values
in the first and second halves of the range. The above expansion is
called the half range cosine series.

Y,
Half range
cosine seres.
0

z 27 <l i

Half rangéy / /
ne series.
Swe serle. o l/2l . / 7 / -
¥
Whole range
seres.
X
. AR =Y

1. 44.

‘We may suppose that [ is only half the range and fill in the function
in the second half so as to make it symmetrical about the point &=/,
y=0. Then

2wk . T
f(m):blsin%w+b2sinTa'+bgsm3%x..., .................. (6)
2 0 P L . T
where b,= ! Jf(z)sin " =2 f(z)sin " i,
1) l L) l

This expansion is called the half range sine series. The second
formula for /5, follows since the integral has the-same value in the
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first and second halves of the range. It is of course always the second
formulae that are used in deriving the coefficients in the half range
series.

Finally, we may suppose that ! is the whole range and use (4),
substituting ! for 21.

The difference between the different methods is made much clearer
by consideration of a simple case. Suppose that f(z)=2 from 0 to L
Then the three diagrams on p. 75 represent the three series as functions
of .

" \

()]
0 X
Y

//’——‘\\\~
v
0l .-
. -
P
o 2 g - . i Py
Y
SN
s —
“@)

~— Mt e

Fia. 45.

§65. It is instructive and interesting to plot the first few terms in a
trigonometrical series as curves, and to show how their sum approaches

the value of the function. For example, let f(x) =7—4r from 2 =0 to z=m.

Then, if we use the half range sine series, substituting = for ! in

equation (6), 9 [r o 1
j- = sinnzde= — =—(cosnw — 1)

Z)‘=; o4 20

n

T . : :
=" 1if »is odd, 0 if n is even.
N
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Hence Z:sinaj+%sin 3x+ésin DB s 5
In the accompanying set of figures, the horizontal line represents

y=7£ The heavy curve in (1) represents the first term of the series.

In (2) the dotted curve gives the second term of the series and the
heavy curve the sum of the first two terms. In (3) the dotted curve
gives the third term of the series and the heavy curve the sum of the
tirst three terms. In (4) the dotted curve gives the fourth term of
the series and the heavy curve the sum of the first four terms. We
see from the figures how the sum of the terms gradually approximates
to a straight line.

EXAMPLES.

1. Expand f(#)=x from 0 to Z)_r and =z —& from = to 7 as a half range
sine series. & 2

2 32 52 7z
2. Show by expansion in a half range sine series that
2 (m? 4) . 72 . <7r2 4) :
o o [N e I it B =
& ﬂ_l:( 1~ 13/sina -5 sin z+\ 3 3 sin 3
L (77'2 4) e :l
—Zsm4x+ 5% sin bz ... |
3. Expand f(z)=asina from O to 7 as a half range cosine series.

5 . 4 _Cosz 2cos2x 2cosdr 2cosdw
Resuli: 1-5"——73 T 5.4 8.6

Basnln é <sm.9; sin 3z sinbx sin7x )
T

4, In the interval O<az < é, f(x)=% {—&, and in the interval % L= l,

fle)y=2— Z L.
20 2z 1 6ww | 1 107z

Prove that f(a,):? (cos T+§ €08 ——+ 52 COS— )

5. Show by expanding sinz in a cosine series that

<1_20032x 2cosdr 2cosbx )

. 2
sSin r=—
™

1.3 3.5 5.7
‘What function does the series represent when  lies between 0 and — %
6. Show that, if « is a fraction,

Zsinmr{sinx 2sin 2z  3sin3z 4sindz }

sinux = - — - — iV
12—2 22—q2 " 32—q2 4297

T

7. Prove that if ——72:<x <75r,

1 1
=cosx—§co:. 3.2,+gcos BT — vees

ISE
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§66. It is known as the result of experiment, that if we have two
parallel planes in a body, distant d apart, one of which is kept at a
temperature v, and the other at a temperature v,, v; being greater
than #,, the quantity of heat that flows across the slab between the
planes, per unit area, per second, is

vy — 0,

k—d ,
where /& is a constant known as the conductivity of the substance for
heat. Suppose that the axis of # is taken perpendicular to the two
planes, and that they are brought close together so that d becomes dx

o . : :
and v; — v, becomes dv. Then = gives the rate at which v increases
2

with 2 at any point and —k% the quantity of heat that flows per

second through a unit of area drawn through the point with its normal
in the direction of the z-axis. The minus sign is necessary because, if

gj is positive, the flow takes place in the —z direction.
%

The conductivity, %, is not strictly constant, but depends slightly on
the temperature of the substance. In what follows, however, it will
be considered constant.

§ 67. Equation for the conduction of heat.

Consider a rectangular element, the centre of which is situated at
P(z, y, #) and the sides of which are dz, dy, de. We shall find an
expression for the rate at which heat

Y| H D is flowing into the element and shall
| equate it to the rate at which the
gl A quantity of heat in the element is
:G P increasing.
e e 4C The “flow” of heat in the =z
F 2 direction at P is —k %Z Its average
0 % value on face ABCD is
Doy
2 oz\ owx/ 2
Z Consequently the rate at which
Fic. 46. heat is flowing out of the element
through ABCD is
v 9/, dv\dx
— <](/ ,a—x-i‘ /a_ﬂ?(k ,a—x> E—) d"[j da. ........................ (7)

The average value of the flow on face EFGH is

]av o k@)dﬂ;
—C'O_x+am< )
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and the rate at which heat is flowing into the element through
EFGH is B B /Be

dx
<~La—x+a—w<ka—m>§>dydz ........................ ®)

On subtracting (7) from (8), we find that the rate at which heat is
being gained by the element through the two “u faces,” ABCD and
EFGH, is

9/,
% <k '5&> dw dy dz.
v 3 9/, v 0/, v . :
Ty, C (6N dwdydeand 2 (5 2\ de dnds &
Similarly, % (]c ay> de dy dz and 5 <k az> dz dy dz give respectively the
rates at which heat is being gained through the y and z faces, and

D/, W\ D/, W\ D/,

{a(]ua—zc>+a/<k—y>+é;<k a>}dﬂ}'dﬁ/d& ............. (9)

gives the total rate at which the element gains heat hy conduction.
Let p be the density of the body and ¢ its specific heat. Then the
quantity of heat in the element is

cpv dz dy dz,
and the rate at which it is increasing is
cp % dzdy dz.
On equating this to (9) and cancelling out dz dy dz, we obtain
v O/, O/, v o/, v
bRy | ) R BT BNl ) W 10
P <k aa) + a;,(k 3y> * 5 <7“ az> (10

If we assume that the body is homogeneous, & does not vary with
7, ¥ and 2, and may consequently be taken outside the differentiation.
If « be written for &/(cp), the equation then assumes its usual form,
ov oW oW % R
a=1\<a—x2+a—y2+@> or —=kV. veevvieinnn... (11)

ot

« is called the diffusivity of the substance.

It is possible that heat may be created inside the element of volume,
for example by the passage of an electric current through it, and in
this case the equation requires modification. ILet A be the quantity of
heat created per second per unit of volume. Then the rate at which
heat is being created inside the element is

Adz dy dz.
We must add this to (9). Hence the equation
w <’<327; % 8%) A

= =x(=— R 2
A ?3:c2+8y2+822 cp 12)
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§68. Equation for the conduction of heat. Otherwise.

Take any closed surface inside the body, and let I, m, n be the
du_‘ection cosines of the outward drawn normal to an element dS of
this surface. The flow in the direction of the outward drawn normal is

B2 m e +n )

\Nzt™ oy %)

The quantity of heat flowing in through dS per second is therefore
v v v

and consequently the rate at which heat is flowing into the region
bounded by the surface is

ov o v

Tf we assume that % is constant and apply Gauss’s theorem, this
becomes 5 : 7
7c<?—v+a—y+@> da dy dz
o Oy 0r2) yae

The rate at which the heat in the region bounded by the surface

is increasing is given by
jjjc,a %’ dz dy dz.

The two volume integrals are equal, no matter what the shape of
the surface is. Hence the integrands must be equal, whence equation.

If % is a function of #, 7, 2, Green’s theorem must be used instead
of Gauss’s.

§69. Equation for the conduction of heat in polars and cylindricals.
It is sometimes necessary to express the equation for heat conduction
in polar or cylindrical coordinates. The equation may be derived
directly in these coordinates from first principles or it may be
derived in generalised orthogonal coordinates and the proper sub-
stitutions made. Here we shall assume the result proved in § 24, that

1 (0 /pvow

s e B | Y E

VU= O <A ag)’
where &, 5, { are the orthogonal coordinates and A, u, v the multipliers.
On writing 7, 6, ¢ for & n, ( and 1, 7, #sin 6 for A, u, v, we obtain
for the equation of heat conduction in polar coordinates,

o B LB sin 0 @> + 2<sin 0 @> Byl i
ot 12gind 87'(7 ' or) " 200 20)T §J)<sin [ E3_¢>

k[0 2@;) 1 3 silﬁa—v> 1 2% »
_172 5’;(7 or +sin9 9< ! 00 +sin29_’dfl SN bR AR ( )
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and on writing 7, 6, z for & », ¢ and 1, 7, 1 for A, p, v, we obtain the
equation in cylindricals,

w_« 2(7@>+3<1§11>+8 o\y} _ (127 v\, 6 10% O
ot r\or\' o) T 36\r 56 a(“a) = ;a(?a)*ﬁw*a?'
§70. Boundary conditions.

At the surface of separation of two media of different conductivities,
k, and k,, the temperature must be the same on both sides of the
surface and as much heat must flow out of the one medium as flows
into the other. Let v, v, denote the temperatures on different sides
of the same element of the surface of separation and let n denote
the direction of the normal to the element. Then, expressing these
conditions mathematically, we obtain

o o,
v, =0, and 7018722702675'

At the surface of separation of a solid and a gas, it is usually
assumed that the temperature of the gas is appreciably constant
throughout, and that the Newtonian law of cooling holds, namely,
there is a loss of heat from the surface of the solid proportional to the
difference of temperature of the surface and the gas. If » denotes
the temperature of the surface of the solid, v, the temperature of the
gas, k the conductivity of the solid and n the direction of the normal
to the surface drawn inwards, then

2]
an]:e(v—vo).

¢ is called the emissivity of the surface. It varies considerably with
the condition and state of polish of the surface. It also varies with the
temperature since the Newtonian law of cooling is strictly true only for
small temperature differences.

If the surface is impervious to heat or is coated with a varnish

impermeable by heat, S—Z =0.

§71. Uniqueness of solution of problem.

When the initial and surface conditions are given, then the state of
the body is fully determined for all subsequent times.
For, if possible, let there be two independent solutions v; and v,.

Then %: «V2y throughout the solid,
v=f(z,9,2) for t=0 and v=d(z,¥,2 1) at the surface.

Let V=uv,—,. Then V satisfies %: «V2V throughout the solid,

v=0 for t=0 and V=0 at the surface.
H.P. ¥
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We shall show that V must be zero everywhere in the solid.

Consider the integral
2
J= .“”V; dx dy dz.

. odJ _ oV ) _ 9 .,
It gives 5= I”v = dz dy dz = Kfjjvv V dx dy dz

e Kj]‘jv% das - Kjf[{(—%’)g + (%)2 + <%\z/>2} da dy dz,

by Green’s theorem. The surface integral is taken over the surface of
the body and the volume integrals throughout its volume.

Since V=0 over the surface, jjjv% ds=0

o [(OV\2 | (OV\Z  (OV\2 -
and = —I{j‘—\.'\-(<%> +<§§> +<§> }dmdydzzo.

But J=0 for {=0.
2
Therefore J=0, e ”:P% dzdy dz=0.

o

As V2 cannot be negative, V must be zero everywhere. Hence v, =1,,
and we can have only one solution.
We shall now proceed to apply the differential equation for heat

conduction to particular cases.

§72. Steady flow in one direction.

In the case of steady flow %:0, and the equation becomes
2% oW & Po 0
a2t teE "

Let the temperature be given for
z=0 Dby v=V,,
and for z=d by wv=V,, forall values of &.

Then obviously the isothermals are planes parallel to the two given
planes and v cannot vary with y or 2. The equation becomes

oW
5= 0.
The integral of this is v= Az + B.

On substituting the values for z=0 and 2 =d, we obtain
Vo=B, V;=Ad+V,.

Hence the solution is v= (Vl—évi)m + V.
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This may be written

v—=Vy Vi -V,
z d

hence the fall of temperature is proportional to the distance from z=0.
The quantltv of heat that flows across area S of any isothermal
in time ¢ is given by

Q= — Ij]—tds L(Vod l)St

The quantity of heat contained in the slab bounded by the planes
2=0 and z=d is given by

d a ]
J cpSv da=cpS [< 1= Vo) & 7 + Vo ] =5 S (Vy +Vy),
where S is the area of a face of the slab.

§73. Steady flow. Symmetry about a point.

We shall next suppose that the lines of flow radiate out from a
point, which we shall take as origin, and that consequently the
isothermals are concentric spheres with this point as centre. Let

v=V, for r=6 and w=V, for r=>0

for all values of . et b be greater than a.
In this case we take the equation of the conduction of heat in polar
coordinates, and as v depends only on 7, the equation reduces to

9/ ,ov
87( 237> 8.

Integrating this, we obtain

ov o A A
2 g —— il = — —
Twmh mTe Y ot B
Substitution of the values for r=g and r =0 gives
A A
Vo= —=+B, V,=-;+B.
o Vb —V,a
Hence A= (Vb . Vrz) Z)—_—d, B= —b——_a—

v,) ab 1 1, V,b—V.a
Yh—-ayr b-a
The curve connecting 7 and » is therefore a rectangular hyperbola.

The quantity of heat that flows across any isothermal in time £ is

ab
(6 ~ay

and p=(V, -

_%2 = At =4l (V, = V)



84 CONDUCTION OF HEAT

The quantity of heat contained between the isothermals »=a and
r=01is

b b o
j cpvdmi? dr = 47rpc_[ {(V,z -V,) (baj) ST bvg — ZV“ 7”2} dr
2 2
- {(V Vb)ab(a+b)+(bvb )(a +c;b+b)]_

§74. Two dimensions. Steady flow.

(1) Suppose we have a thin plate (fig. 47) bounded by the lines
2=0, z=1[, y=0 and y= o, that the temperature on the edge y=0 is
constant and given by f(z), and that the
temperature on the other edges is always zero.
/\/J\/‘ We shall also suppose that heat cannot escape
from either surface of the plate and that the
Z effect of initial conditions has passed away,
that the temperature everywhere is indepen-
dent of the time. The problem then becomes
one of two-dimensional steady flow, and can

be formulated as follows :

0% 32’0
1) R
0 v=f1x) = (2) v=0 for 2=0, v=0 for 2=,

Fic. 417. v=jf(z) for y=0, v=0 for y=o0.

= =0

=0.

Try ¢ TP as a solution.
Then, since a2+ 32=0, either a or 8 must be imaginary. From the
nature of the boundary eondltlons since v=0 for y=c, 3 must be
real and negative. Therefore our solution becomes

v=PAe PUHEE L BpmPY=Z  or  ¢=PY(C cos Bx+14D sin fz),
where A, B, C and D are (’onstants Since »=0 for 2=0 or z=1, only
nm . . ..
the sine term can be used, and B = l , where m is any integer. Giving

m all its possible values and multiplying each term by a constant, we
have therefore .

- . MTr
p=2b¢ ! sin——.

We have now only to satisfy the condition v=f(z) for y=0. We
do this by fixing the values of 0,,, by putting

j‘ f(z) sin m_x da.
Then, when y =

i :L'
m T
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i.e. the half range sine series for ». The solution is therefore

mary
L -2 e
v=2b,¢ ! sin ——
2 [t . mwe
where bm=7J J(@) s1anx.
0

(2) Let us now take the analogous problem of steady flow in a

rectangular plate bounded by z=0, z=1, Y= 0 and y="%, the boundary
conditions being as follows :

v=0 for z=0, v=0 for z=], ¥

=0 for y=0, v=f(z) for y=»h. v=£rx)

If we start with the same solution as ;
before, »=e**+P4 we find that, in order to - % |v-0
satisfy the first and second conditions, it 7
must take the form e

+2  max . =0 x
L 1 Fic. 48.

where m, as before, is any integer. In satisfying the third condition,
mry mary

. + - ’
we are apparently at a stop because neither ¢ ¢ nor ¢ ¢ vanishes
when y=0. Their difference, however, vanishes. We have therefore

v=sinh 7Y sin 77,
l l
Taking every possible value of m and multiplying each term by a
constant 0,,, we find for y=A5,

. o mwh . mre
»=2b,, sinh —— sin ——

l I
This must be the half range sine expansion for f(:z:). Hence
b,, sin hmrh 2I J(z) —dJ:

If we include the sinhﬁll—ﬂ_h in the b,,, the solution can be written

sinh mry

v=3h_ sy TR
h l
sinh 2 5

where j f(a) sin 222 .
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(3) Let us now consider the case of the same rectangular plate with
different boundary conditions, namely
=0  for z=0, v=0 for z=1,
v=¢(z) for y=0, v=f(z) for y=h.

To obtain a solution write »=u 4w, where u satisfies the differential
equation and the boundary conditions,

w=0 for =0, u=0 for z=I,
u=0 for y=0, u=f(z) for y=h,
while w satisfies the differential equation and the boundary conditions,
w=0  for z=0, w=0 for x=1I,
w=d¢(z) for y=0, w=0 for y="h.

Then u +w satisfies the same boundary conditions as ». w satisfies
the same conditions as » in (2), and is hence given by

sinh m__lw_y
% = Zb,, = gin i,
. . mmh l
sinh 7
2 (t . M
where b= 7 J(z) sin S5 d.
0

w satisfies the same conditions as v in (2), if the origin be shifted to
the point 0, 4 and the direction of the y-axis be reversed. Hence

sinh " (b =) -
w=2l,, e
sinh -
, 20 . mme
where U= 7 ¢ () sin - da.
0
EXAMPLES.

1. If the conductivity of copper be 097 for the calorie as unit of heat
and the centimetre and second as units of length and time, find the value
of the same conductivity when the 1b., the degree Fahrenheit, the foot and
the minute are taken as units.

2. Prove the following results for the steady flow of heat symmetrical
about a straight line in an infinite solid.
Temperature at any point distant + from the axis of symmetry,
(Valog b—Vylog a)—(V,—V,)log
logb—loga ’
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\Vhegre V., and V, are the temperatures of the cylindrical isothermals of
radius ¢ and b respectively.
Quantity of heat crossing any isothermal per unit length in time ¢,

27kt (Vo — Vi)
logb—loga

3. The inner and outer surfaces of a conducting shell are concentric
spheres of radii », r, and are maintained at constant temperatures wy, v,
respectively. If the conductivity of the substance is a linear function f(v)
of the temperature, show that the quantity of heat transmitted through
the shell in unit time is the same as if the conductivity had the uniform
value f{1(v; +v,)}.

4. A hollow shell of isotropic material has conductivity ke ¢, where
Iyand ¢ are constants. The internal and external radii are @ and 5. Show
that if the internal surface be maintained at temperature v, and the external
s?rface at temperature zero, the heat conducted across the shell in unit
of time is

drky b“i_ba &g

5. An infinitely long plane and uniform plate is bounded by two parallel
edges and an end at right angles to these. The breadth is s, the end
is maintained at temperature », at all points and the edges at temperature
zero. Show that the steady state as given by

4vy, _y . By
v=""JeVsinz+le ¥sin3z+ ...},
™

where y is taken along one edge and z along the end from one corner as
origin, satisfies all the conditions.
Identify this solution by any process with

i Sinz

sinh gy’

)
v=2-tan
m

[Cf. Byerly’s Fourier’s Series and Spherical Harmonics, § 58.]

6. An infinitely long uniformly thick plate of homogeneous material
is bounded by two parallel edges [ apart, an end at right angles to the edges,
and two plane faces which are coated with varnish impermeable by heat.
The edges are maintained at temperature zero and the end is kept heated
so that the temperature is V at the middle point and diminishes uniformly
to zero at each edge.

Find approximately in terms of V the temperature on the middle line
of the plate at a distance-3//z from the heated end. Find also the rate
of flow of heat across a cross-section at that point.

7. The two edges of an infinitely long rectangular plate are maintained
at temperature zero while the end is maintained at temperature v,sin nz.
The breadth is 7/n and » is measured along the end from one corner. Find
an expression for the temperature when the steady state is established.

8. Find the temperature of the middle point of a thin square plate
whose faces are impervious to heat when three edges are kept at the tempera-
ture 0° C. and the fourth edge at the temperature 100° C. (Answer 25° C.)
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§75. Variable linear flow. No radiation.

(1) Let us suppose we have a bar of length [ and of uniform section,
the diameter of which is small in comparison with the radius of
curvature. We shall also suppose that its surface is impervious/to
heat, that there is no radiation from the sides. Let the initial
temperature of the bar be given and let its ends be kept at the constant
temperature 0°C. Then, if one end of the bar be taken as origin and
distances along the bar be denoted by z,

ov oW
) =~

(2) v=0 when z=0,
v=0 when z=1,
(3) v=f(s) for {=0, w+ow for i=c0.
The boundary conditions suggest that z occurs in the solution as

}for' all values of ;

sin ,nl;-f Trying e sin mev, we find that this satisfies the differential
equation if _—
a= —K <—l-> .

Taking every possible value of m and multiplying each term by a
constant, 0,,, we obtain

mar\2
v=3b,e " (T) ‘sin @
This satisfies the condition for {=cw and for {=0 it reduces to the
half range sine series. Hence the solution is

mw\2
v= Ebme_'( (T) tsin n—lzﬂ,
L
where bm:%j Fa)sin ™7 .

‘We see from the solution that when ¢=c0, v =0 everywhere; all the
heat has escaped from the bar.

(2) Suppose, instead of the ends of the bar being kept at temperature
zero, that they are impervious to heat. Then the statement of the
problem becomes

v
(1) zp=r 555

G2
9y e i
(2) = 0 for z 0,]\

w
a:O for z=1,

(8) w=J(&) for =0, v+#o for {=co.

J for all values of ¢;
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The boundary condition suggests that cos@ is a factor of the

solution, and proceeding as before we obtain for the complete result

M
4 mma
v=0y+2a,¢6 ( )

¢
where ty= %-“ f@)dz, a,= %J- f(@) cos”
0 0

We see from the solution that in this case when {=c0, v=a, the

average initial temperature. This result might have been inferred
directly from the fact that no heat leaves the bar.

(3) Suppose that the ends are kept permanently at different
temperatures, that

ov 3 v
(1) o e
e QJ:O’} for all values of 7;
v=y for z=|,
(3) v=f(z) for =0, v+ for I=w
Assume =1 +w, where u=¢ (zt) and w=(z), and let w satisfy
w
(1) 3g=r
(2) w=p for =0
w=7y for z=I,

Since w is independent of 7, from (1) it must have the form
w=~Az+B. From (2),

’} for all values of /.

B=B, y=Al+B.
Hence w= @m +.
The conditions, which © must satisfy, are then

ou %
W) ="z’

(2) w=0 for z=0
u=0 for z=1,

(3) u:f(m)—@x—ﬁ for t=0, w+w for t=w

But this is the same as the first problem in this section. Hence the
complete solution for v is

nr\?
1J=(_——Y_B)w+,8+2b e_x( ‘)tsm?lzllrf

where b =%[ { (%) — (r- ’B)x B}smmﬂl

’} for all values of ¢;
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§ 76. Equation for variable linear flow with radiation.

Consider a thin rod of uniform cross-sectional area o situated in air
abt temperature zero. Let % be the conductivity of the rod, p its
density, ¢ its specific heat, p its perimeter and e the emissivity of its
surface. Let 2 denote distance measured along the axis of the rod
and let the isothermal surfaces be planes perpendicular to the axis of
the rod.

Consider an element of the rod bounded by the planes z and % + ds.
The rate at which heat is being conducted into it is

— O']C 87} .
The rate at which heat is being conducted out of it is
v O
-—0’]t<§”+a—x2d{1}>-

Hence the rate of gain by conduction is
2,

L
7 o
The temperature of the element is v, the area of its surface is p dz,
and hence the rate at which it loses heat by radiation is
evp dz.
The quantity of heat in the element is wcpodz and the rate at
which it is increasing is Sy

dz.

=3 PO du.
We arrive therefore at the equation
w (o5 oW
a—tcpo-dx = crlch—zdm —evpds or = K5E T ho,
where =2
cpo

In order that the isothermals may be planes, it is necessary that the
rate at which heat is heing conducted out of the element should be
much greater than the rate at which it is being radiated out.

§77. Ingenhousz’s experiment.

Suppose that the flow is steady, that one end of the bar is situated
at the origin and has a fixed temperature, while the other end is ab
infinity and has temperature zero. Then

% ep )
1) éﬁ—k—gv—_o,
(2) v=Viorz=0, v=0forz=c0.
@ Ny

The solution of (1) is v=Ae ke’ ygo Vi,
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From (2), we find that A=0, B=v. Hence
-Je
v=Ve Jk”z

A well known experiment is to coat two similar bars of different
metals with wax, and to fix them up parallel with one end of each
projecting into a vessel in which water can be boiled. The bars are
long enough for the cold ends to be near the temperature of the
atmosphere, when the steady state is reached. Let the conductivities
of the two bars be %;, &, and let the distances along which the wax
is melted be I, l,. Then, where the wax just melts, the temperature
must be the same on each bar. Therefore

\/epl_\/epl or 2 ;ﬁ

since ¢, p and o are the same for both bars.

§78. Despretz’ formula.

One end of a bar is kept at a constant temperature V and heat is
conducted along the bar and escapes by radiation into the air. Then,
when the steady state is established,

P
v=Ve ko

as in last section. Let v, v,, v, be respectively the temperatures
at —d, z and 2 +d. Then

P
—-a i (x+d)
py=Ve "k py,=Ve “F and wy=Ve "t
Denote 11" by 2n. Then
s
@, _Jo,

n=e k7 e T,

op

whence eVt =gt -1

the root with the minus sign being 1mposs1ble. Therefore
—e}}

—d=log,(n+ NnZ-1).

We can determine n experimentally. Hence, in the comparison of
two bars of different materials, if ¢, p, o and d be the same for both
and k,, n, refer to the one bar and %,, n, to the other,

Ey _log,(ny++/n2 1)
o log, (ny + \/n1 —1)
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§79. Consider the case of a finite rod of length /, from which there
is radlatlon both ends of which are kept at zero temperature and the
temperature of which is initially given. The statement of the problem
is as follows:

(1) ——‘K —lw;
(2) v=0 for 2=0, »=0 for z=I;
(8) v=f(z) for t=0, wv+w for t=uw.
Write »=e-"y. Then, by substituting in (1), we find that it
reduces to
u_ o
G

The boundary and initial conditions are the same for v and ». By
comparison with § 75, it will be seen that the problem has been reduced
to the analogous one with no radiation. The solution is therefore

b g e

. mTr

l

where bm=gj. f
Lo

§80. Fourier's ring.

Suppose we have a thin bar of uniform section bent into the form of
a circular ring of radius a. At one point, O, in the ring let a steady
temperature be maintained and let heat be radiated from the ring to
the air. It is required to find the temperature of the ring when the
steady state is established.

Take O as the origin and denote the distance from O, measured
round the ring, by 2. Then

_Py_g,
1) 55"~
(2) v=V for =0, %Z:O for = twa.

The solution of (1) is

B, J 6P
ka

v=AeY k" +Be .

Emn
V=A+B, O= ABJ — J

\/—e;pn-a, +,\/—7m

2 cosh \/ P 2 cosh ,\/ P ra

TFrom (2), we have

whence
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The solution is therefore

V{e Ze-ma) 8—J;—§(w—na)1 Vcosh\/%(w—mu)

v
2 cosh ]]0 wa cosh \/ L
The heat radiated from the ring into the air in time ¢ is
21| appile =2 o,
jo epv dz = 2Vt epko tanh T T

§81. Linear flow in semi-infinite solid. Temperature on face given
as harmonic function of the time.

Let all space on the positive side of the yz-plane be filled with a
homogeneous solid of diffusivity «. Let the temperature on the
yz-plane be given as a harmonic function of the time and let it be
the same for all values of ¥ and 2 It is required to find the tem-
perature throughout the solid when the periodic state is established.

Clearly v is here independent of #, z and the conditions to be
fulfilled are as follows :

) 278
1) 5= "2’
(2) v=Vsinnt for =0, v+w for z2=w.

Try ¢®*F%  Then, in order to satisfy (1), a=«B2 Before, in § 75,
we used the special case of this solution when « was real and negative.
The form then obtained is, however, not suited to the present case.
Suppose here that o is imaginary, i.e. try o= +¢y. Then we obtain

K

:Hvtj:
Now (1 +’L)‘ =2 and (1- z')?— - 2.
Therefore  i= \73 (1+%) and ~-i= \/_ (1-
Hence the expression becomes
iiyti@(1ii)x i@ Bt (ytiJ ZZT)
¢ e =g T,

This satisfies the differential equation. In order to satisfy the
condition for z=w, the sign before the root must be —. We may
now write the expressmn

By i) g, E)

where A and B are constants. The condltlon for =0 requires that

the square bracket should take the form sin <yt — \/ 2—%{@), with y=n.
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The final solution is thus

el
v=\Ve J;‘xsin<nt— ﬁo’) ..................... (14)

2k

This result has an important application to the determination of the
conductivity of the earth’s crust.

The diurnal variation of the temperature of the earth’s surface
cannot be traced below a depth of 3-4 feet, the annual variation cannot
be traced beyond a depth of 60-70 feet. As far as they are concerned,
the convexity of the earth’s surface may be neglected, and we may
regard the phenomenon as the propagation of a plane wave into an
earth with a plane surface.

Let 2z denote distance from the surface measured positive downwards
and let the maximum diurnal or annual variations be measured for
two depths, #; and z,. Let the results obtained be », and »,. Then

e
7 _ e—\/ﬂ(ﬁ—ﬁz)

)

In this expression m=2x/T, where T is either 1 day or 365 days,
according to the case chosen. Kverything is known except «, and
hence « can be determined.

We can determine from (14) the ratio of the depths at which the
annual and diurnal variations are just perceptible. For, denote these
depths by z; and z,, and let the values of the mean annual and daily
surface variation of temperature be A and D. Then

Ac mxlzDe_\/;mg,
and 2,/z, can be calculated when A/D is known.

Of course the above theory is an approximate one. Neither the
annual nor the diurnal variation can be represented as a simple sine
curve. But they can be represented by Fourier series, of which these
sines are the most important terms, and the approximation improves as
we descend into the earth owing to the higher terms of the series
dying away more rapidly.

§ 82. Angstrﬁm’s method of determining the conductivity of bars.

In this method, which according to Lord Kelvin is the best yet
devised, the middle of the bar is subjected to a periodic heating and
cooling, and measurements are made on the velocity of the heat waves
along the bar and the rate of decay of their amplitude. The conditions
may bhe stated approximately as follows :

v oW
(1) 'EZ’\ET;Z_IW’

(2) w=Vsinnt for =0, v+ow for z=w,
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the s)ole difference from the preceding section being the radiation term
in (1).

Assume as a solution v =\Ve-9%sin (nf — fz).

We find on substituting and equating the coefficients of the sine and
cosine terms to zero, that

(?=fH)-h=0 and n-2kgf=0.

Now g and f are determined from the observations and n is known.
Hence « is given by

)
297
EXAMPLES.

1. A rod is surrounded by a medium at temperature zero and its two
ends are maintained at a constant temperature V. Show that, when a
steady state has been reached, the temperature at the middle point will be

V sech (l ,\/166_70>’ where 27 is the length of the rod, % its conductivity, p the
T

perimeter, o the area of the cross-section and e the emissivity of the surface.
2. Show that the series 8;); 2 Lzsin =
w2 Tm
0<x<l/2 and 2(1—a)y/[l for {2 <z <.
Apply the result to the problem of the temperature distribution at time ¢
in a bar of length [, the ends of which are kept at zero temperature, and in
which the temperature originally increased uniformly from zero at one end
to the middle point and thence diminished uniformly to zero at the other
end. The lateral surface of the bar is impervious to heat,

3. It has been proposed to represent the rate of cooling of a surface by
the empirical formula e(v —v,)", where n has the value 1-2. Show that on
this supposition the equation to be satisfied in a long thin rod cooling
laterally is . w ep )

§="'ax2‘c?r(”_”0) »
where » is the temperature at distance # measured along the rod from one
end, v, is the temperature of the medium, « is the diffusivity, p the density,
p the perimeter, ¢ the specific heat and o the area of cross-section of the rod.

4, A bar of length [ is heated so that its two ends are at temperature

zero. If initially the temperature is given hy
cx(l—x)
2
show that the temperature at time ¢ at any point is given by
__]Mj _wkl —— _ Bkt
. B gn Tl W i o
k sin ==+ e sin — +}

5. A uniform cylindrical bar, of length 7 and small cross-section, is kept
at a constant temperature »; at one end and placed in a medium at tempera-
ture zero. If the temperature at a distance z from the end is v~ in the
steady state, prove that the product of half the radius of the bar into the
ratio of the conductivity to the emissivity is a2

. Mmm
i sm?r has the value 2zy/l for

5

_ 8ce 3rx

3

v
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6. Two iron slabs each 20 cm. thick, one of which is at the temperature
0° and the other at the temperature 100° throughout, are placed together
fuce to face, and.their outer faces ave kept at the temperature 0°. Find the
temperature of a point in their common face and of points 10 cm. from
the common face fifteen minutes after the slabs have been put together.
Given k=024 in c.a.s. units.

7. Show that the equation for the conduction of heat in a thin wire in
which an electric current of constant strength vy is flowing, is given by

Oov_ %W v?

I et cpa’C’
where y is the current and C the electrical conductivity, 7.e. the reciprocal
of the resistance per unit cross-section per unit length.

The surface of a uniform wire is impervious to heat, the ends are at the
same temperature and the current y has been flowing long enough for
the steady state to be established. Show that the ratio of the thermal
and electrical conductivities is given by

k 1
c (vg—w1)= B (uy —up)?,

where v, and wu, are respectively the temperature and potential at the middle
of the wire and »;, %, their values for one end.

8. At depths of 6, 12, 24 feet the annual ranges of fluctuation of
temperature are 56° C., 2:8° C,, 07° C. TFind the velocity of propagation
of the temperature wave into the earth.

9. A solid is bounded by the planes =0 and x={. Discuss the follow-
ing cases, where the surface temperatures have been kept at the given values
so long that the distribution of temperature in the solid is purely periodic :

(i) #=0at v=a+bsinpt: x=1 at zero.

(ii) =0 at v=a+bsinpt: &=/, impervious to heat.
(iii) #=0 and z={ at v=a+ b sin pt.
(iv) #=0at v=a+bsinpt: =0 at v=a—0bsin pi.

10. A large ring, of uniform cross-section small in every dimension, is
heated initially so that there is a uniform gradient of temperature round
each half from one point to the diametrically opposite point; it is then
left to itself in a medium at zero temperature. Iind the distribution of
temperature in the ring at any subsequent time.

11. A thin ring surrounded by a medium at temperature zero is heated
at one point by a source of temperature V,. After the temperature of the
ring has assumed a steady condition, the source is withdrawn. Express by
means of a Fourier series the value of the temperature at any point of the
ring at a time ¢ after the suppression of the source.

12. A thin uniform ring of radius « has initially one half of its length at
temperature v, and the other half at temperature zero, and is left to itself
in air at temperature zero: find a trigonometric series to express the
distribution of temperature.

13. Show that after time ¢ the mean temperature of the ring in the

ep
~==t . . oz i
preceding question is %’e ¢ro, in which ¢ is the specific heat, p the density

of the material, o the cross-sectional area, p the perimeter and e the
emissivity of the surface.
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§83. Flow of heat in a sphere. Surface at zero temperature.

_Let the radius of the sphere be @ and let its initial temperature be
given by v=f(r). Then, from considerations of symmetry, flow must
take place only in the direction of the radius. The equation (cf. § 69)

b
ecomes therefore @ kB B
e 5(7 E)
Write 7v=w. Then

RS T R T
oo @ o Tyt A a7-<’ o) o
Hence the conditions that © must satisfy are

ou %
) 5g=*2m

(2) =0 for r=0, w=0 for r=aqa;
(3) u=rtf(r) for t=0, u+ow for t=co.
The problem is thus mathematically the same as that of §75, (1).

§84. Linear flow in doubly-infinite solid. Fourier’s integral.

v O,
(1) 5=+’

(2) w+ow for z= +w for all values of /;
(3) v=f(z), —w<z<+ow, for i=0; v+#w for {=c.

The new feature in this problem is that the temperature is initially
prescribed over an infinite instead of a finite range.

Suppose that instead of extending to infinity both ways, the solid
extends only to £1. Then, as in § 75, the particular solution is

mm\2, .
e_K<T) tsin /mmwy
cos i

[

If we take every possible value of m and multiply as usual the
cosine terms by a,, and the sine terms by 0,,, then when #=0, the
solution will take the form

V=t + 2d,, cos@+2‘bm sin

l

This satisfies the initial conditions if

1 [+
w=g | S

mmx

=

1 > +1
amz%r J@)cos™ i and b,,FH f@)sin ™ .
=i -1

H, P, G
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Substitute £ for z in the formulae for a,, @, and b,,, and write the
values of a,, a,, and b, in the series. Then

Sy =7 | " @ dg 27" 70 cos " dg cos

+E%j Jé 51n~—gd§s

lj f(él: +Zcos mrgcos—l+2 1nm—l§s1 ﬂ;‘-x}dg

mm:

7| @ zens T -0 ag
g [lovezeo (Fe-af rzen {57 o) Ju

—%j_lf(g)[%+2%rcos{mTTr(g—w)}+2%cos{—7—nl£(§—m)}:,d5

When [ is made infinitely large, the square bracket becomes

+w
'\-_ cos o. (£ — ) da,

assuming that the integral is convergent, and thus

7@ =g | e[ r9yosa -0

This is Fourier’s integral. It is the form which the series takes
when the range is made infinite both ways, and it is equal to f(z)
throughout the range. As we have derived it from Fourier’s series,
Jf(z) must here be subject to the same conditions as are necessary for
its expansion in a series.

If we return now to our problem, we see that its solution is

v=ge [ e[ e emtoon n(g - e)in

This result may be put into another form  Changing the sign of a
does not alter the value of ¢-*<* cos a (£ — ), also there is a well known
definite integral,

0 \/‘
e-9?cos bzdez=——e¢ 4“-
.[0 2V ’

hence

4w 0 = _(‘f'-‘”)?‘
j e‘“”eosa(g—m)cla=2j ¢~ kot COSa(£—.’B)(Za=,\/—ite deb
—» 0 K

_(§-ap

and ’U=-1-J‘+wf(§)e wl ge
21\/7TKt —w =
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§85. Other forms of Fourier’s integral.
We have

1) =gz ) a7 @ cosatg -0y da=1 [ de[ (6 cosu(g o) e

since altering the sign of a does not change the sign of cos a (& - ).

Suppose that it is desired to represent f(z) only from z=0 to
z=+cw. Then we can give it any arbitrary form from z= -
to2=0. The integral can he written in the form

Fo  (®
717_] ng.O J(€)(cos af cos az + sin af sin azx) da.

Complete f(z) in the range ©= — o to =0 so that f( - 2)=/(z), so
that it is an even function of 2. Then, if we integrate first with respect
to ¢ the sinaf term will vanish, since its sign changes with the sign
of & and the cosaf term will give the same result from —ow to 0 as
from 0 to +w. Thus the integral becomes

72; j: dgj: S (&) tos o cos oz da.

On the other hand, if we assume that f(z) is filled in on the negative
half of the range so that f( —z)= — f(z), the integral becomes
2 n

7_1_-‘-0 dgj: S(€) sin af sin az do.

These two integrals are analogous respectively to the half range
cosine and sine series; and they might have been derived directly
from the latter.

§ 86. Linear flow in semi-infinite solid.

We shall assume that the temperature on the face of the solid is
zero. Then the statement of the problem is

v %W,
(1) zp=*32’
(2) v=0 for #=0, v#w for x=w;
(3) v=f(z) for t=0, v+ for i=w0.
As in § 84, the particular solution is of the type
sin
a.
cos

¢ — ka¥l .
The sine must be chosen in order to satisfy the condition for 2=0.
Hence the solution is
{) o0

- :j dgr F(£)e-xe* sin af sin axda.
TJo 0
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This expression may be put in the form

”%jwdéff(s)e—mﬂ[eosa@—w)—eosa<€+w>1 i

0
With the aid of the formula
B2

D ‘\/’"

— 2

I e~ cos bz dp=——=¢ 9
0 2@

this reduces to

1 o i (54— ;1)‘2 _(& ;I—-;C)2
I L - & VdE,
v=— ijo Lo S ag

If the face of the solid is impervious to heat instead of being at the
temperature zero, we must take the cosine integral.

§87. The age of the earth.
In the preceding problem let f(z) be constant and —¢. Then

c o _(E-ap o _(E+a?
V=— e o di—) ¢ d}
2\/7TKI5|:_“0 £ jo £

ﬁi

¢ (" hiap_ [ o tags)=—t_ [Foieg
= e 43— e = Kt (]
I/mit [:,‘-—:c j-;—a.- (B:I «/7r/<ij ¢ ('8’

since ¢ % is an even function of B. Write a2= B?/(4t) ; then the
result takes the simpler form

@
9 2Vt
%)

Tables of values of this integral have been drawn up, and hence v
can be determined as a function of the upper limit.

If we descend into the earth we find that after we pass the points
where the diurnal and annual variation cease to be appreciable, the
temperature begins to increase. The rate of incerease varies from place
to place, but may be taken roughly as 1°F. for every 50 feet of descent
for depths up to about 1 mile. This increase of temperature is easily
explained on the assumption that the centre of the earth is at a high
temperature and that heat is flowing outwards.

It we assume that the earth was originally at a uniform temperature
¢ and that its surface has been always at a constant temperature zero,
we can use the above result to find how long it has taken to cool. We
neglect the convexity of the earth’s surface.

We find from (15) that

v 2 - 1 ¢ L

4kt g 4xt_

a:z:/;:rc 2\/K_t=~/1TKt

R T, 15
. e a (15)
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Kelvin found by the method indicated in §81 that « for the material
of the earth’s surface has the value 400, the units of length and time
being the foot and year. Assume that the earth was initially at the
temperature of molten rock, 4.e. about 7000° F. Insert the value for

the gradient at the surface, namely, @ =1°F. for every 50 feet. Then,

writing =0 in the exponential, we Ccl)?otain
Vi _ 7000
50 /7400’
70002 2
i.e. t:% =108 years.
If we write =100 miles,
2 (100x5280)2 3

¢ dxt— g 1600X108 — o 2

At that depth the gradient is only 4% of its surface value after

108 years. We see, therefore, from the first result, that according to
our assumptions 108 years have elapsed since the earth was at a tem-
perature of 7000° F., and we see from the second result that it is per-
missible to neglect the convexity of the earth’s surface. The assumption
throughout all the temperature change of constant conductivity, specific
heat and density is, of course, open to question. Also the earth may
have taken much longer to cool, owing to the liberation of heat due to
the radio-active disintegration of some of its material.

§ 88. Point source of heat.

Consider the expression
a

L (16)

Py
8cp (wxt)*

It may be shown by trial to satisfy the equation for heat conduction
when there is symmetry about the origin, namely,

GG 2 )2 o ]
Eﬁ_ﬁar< 5}"‘>

It therefore represents heat flowing to or from the origin.
The total quantity of heat in the field is given by

J- cpvdmrtdr = J e ety
0 2 (w20
Now we have the well-known result

a0
j e-zgdzzﬁ.
-

0
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On integrating by parts,

=] @ 5L
j e'zzd,*z:(e“zgz) +2J e~z
0 0 0

n /'—
AT n 2
Therefore e=?222dz="", since Lt 5 =0.
0 4 = O

Hence the total quantity of heat in the field

@ 72 B c
o e I g
N 4xt \J 4kt

and is constant.
The temperature
12 3 72
U T P R S L L

8cp (mk)? Scp (wk)®

If 7 is not 0 and ¢ is put =0, the first term in the index becomes
+o and the second term — . As, however, the first term is pro-
portional to the logarithm of the second, it must be very much smaller.
The whole index can therefore be taken as — o, and consequently
v=0 when =0, for 0.

The expression (16) gives therefore the distribution of temperature
that would be produced if a quantity of heat @ were suddenly created
at the origin at the time =0. In other words, it is the distribution
of temperature due to an instantaneous point source of strength @
at the origin at time {=0.

Let us consider the expression (16) in more detail. Tor any given
value of ¢, » diminishes as » increases, and is always 0 when r=o.

9_=_Q_—<_ _ E)
ot 8¢cp <7Tl<t)—;} 4xt2 2%

and is zero when {=cw and when 12=6«f. The first value obviously

gives a minimum since it makes » zero. The second gives a maximum,
2,

as may be shown also by forming the second derivative % Consider

the sphere of radius b with its centre at the origin. Its surface
temperature is zero when ¢=0, it increases until ¢#=05%/6x, and then
decreases and becomes zero again when ¢= .

A source of strength — Q is called a sink of strength Q.

If at any point heat is generated gradually at such a rate as to
give @ units of heat per unit of time, then the point is said to be a
permanent point source of strength Q.

We can easily derive the temperature distribution for a permanent
point source of strength @ at the origin, for we have only to multiply
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(16) by dt and integrate from 0 to w. An infinite time is necessary
for the permanent state to be established. Then

0 2
v ——Q j E_mdt

N 8cp (771\‘)% 0 i
Substitute z for . © .
RN
: — 0
Then dz= — l—ili_.) and v=- ? j e Pdnm > 3, @8 5 (17)
47 2cpmrrd w dakr
. SN
since e-«*‘dz:-—2— and k=cpx.
0

This result might have been obtained from §73. For there
ab 1 V,b-Va
O L) oty

and. the quantity of heat that flows across any isothermal in the unit
of time, here denoted by Q, is given there by

ab
~L7rk(Vm — Vb) (Z)——[t)‘
Q Vob-vae
H s g MR Vg
enee U= Tl b—a

which agrees with (17) to a constant term. In §73, it is to be
remembered, the temperature on two concentric spheres was arbitrarily
defined. In this section the temperature is defined, so that it is zero
at infinity.

§89. Plane source of heat.

It may be shown in the same way as in § 88 that

€-ap

_ Q Tkt

V= —¢
20,0«/ TKL

is the distribution of temperature due to an instantaneous plane source
of strength Q given by z=¢  The quantity Q is in this case the
amount of heat instantaneously generated per unit area of the given
plane. It is, however, more instructive to derive the result from the
expression for the temperature in the doubly-infinite solid, namely,

o  _(E-ap
v=§-\/lT_Kt_[+ L T | T — (18)

-

Suppose that a quantity of heat Q is suddenly given to the space
bounded by the two planes & and £+ 8¢ for every unit area of the
planes. Then the temperature of this space becomes

Q

T
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and the temperature of the rest of the solid is of course zero, i.c.

f(g):%éz between & and £+ 8¢, and is elsewhere 0. Substituting in
the formula, we obtain

£ —a)? [
1 J.E'i's‘f Q 6_(§4KL) Q T dkt

Y= — dé= — )
INTKL ) ¢ cpdE § QCPN/WKZ
when 8¢ is made infinitely small.

We can thus regard (18) as the solution for an instantaneous heat
source of strength ¢pf(£)8¢ per unit area on every plane &

§90. Doublets.
Suppose that we have an instantaneous point source of strength Q
and an instantaneous point sink of strength @ situated respectively at

;1::%, y=0, =0 and z= —%,7 y=0, 2=0,
where [ is small, then the source and sink together are said to
constitute a doublet of strength Q.

The temperature distribution due to the doublet is by (16) obviously

given by

- Q@ @ _ QT
Scp(ﬁKt)% 8cp (TFKt)%
Q Jﬁ+#+zﬂ)[ -5 ﬁ]
_ ( /)n o Mt |k _g Akt |
8cp(wrl)*

Since [ is small, the square bracket becomes

e ) f ) ]

[
‘ll—{-—z'-(-t—- , — \ll—TJ =2K{

Qlz ‘41‘;
Hence PR
7 Wt'ﬁ'

16cpm™i*t*

This expression might have been derived from the solution for a
point source by differentiating with respect to . Since the differential
equation for the conduction of heat is linear in v, we can differentiate
any particular solution any number of times, and the result will still
be a solution.
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§9 . Two and three-dimensional Fourier series and integrals.
Consider the following problem :

(1) @_K 921;4_8;2” ¢
3 (aa;ﬂ By2>’

(2) v=0 for =0, »=0 for x=q,
for all ¢;
=0 for y=0, v=0 for y=b,

(3) v=f(x,vy) for =0, wv+ow for {=o0.
The b undary conditions suggest sines ; therefore write

.M .y
sin —— sin —=
a b
for the part of the particular solution into which z and y enter, n and
1 being integers, and try e+ as a time factor. By substituting in (1),
we find that .

R (CORICINE

Hence the particular solution is

( (mm\2, (ar\2) -
P ) S R 1
v=e¢ )+ sin — = Jsm—b‘y-

This satisfies the condition for f=w. We have now only to satisfy
the condition for ¢=0.

When we consider the latter, we find a new feature, the temperature
being given as an arbitrary function of z and y instead of 2 only. Also
the series which we obtan by multiplying all the particular integrals
by constants and adding, namely,

w2, (w2
S%h,.e " ()5 “sin ™ sin ’ﬂ_zﬂ,
" a

s

is a doubly infinite one, d.c. for every value of m there are an infinite

number of values of n and vice versa. The question therefore arises,

whether for =0 we can represent such a function by such a series?
Let us first of all regard y as constant. Then f(z, y) can be expanded

: . : . o
in terms of sin —— by the half range sine series. The expansion is
a

mmw

b

f(a'ﬁ ?/)y:const. = Ebm sin

20 mm
2 ;
where by = - J- J(=, y) sin = da.
0

After the integration with respect to @ is performed and the limits



106 CONDUCTION OF HEAT

subsbituted regard b,, as a function of y and let it be expanded in erms
of sin 7Y b by the half range sine series. Thus

b,,=2b,,, sin n%/’

4 (® G e AT MY
where e = jo dy L J(z, y) sin 5 ST dx.

Substitute this value of 0, in the original series and
mmx nwy

f(xi y) = “Ebnm' P b 2

where b, has the value given three lines above.
We have therefore shown the possibility of expanding f(x, #) from
=0to z=0 and from y=0 to y=05 by such a doubly infinite series,
and the solution of the problem is

/U—EVbn (m—n—) (7711') }L oy 2 777,71’91 i 7%761'?/’

where 0,,, has the above mentioned value.

Similarly it can be shown that f(z, y, ) can be expanded within the
range £=0 to a=a, y=0 to y=b, 2=0 to #=c¢ by the triply infinite
series

ZZED,p Si11 %Tm' sin 7Y smﬂw—” >

b
where  0,,,= B j J j g . Y pﬂ-z in.
abe 7 ]

We can also expand f(z, y) and f(.z, 7, z) in terms of the products of
cosines or of cosines and sines.

If the range is infinite, these two and three-dimensional series become
two and three-dimensional integrals. The most formidable in appear-
ance, the three-dimensional doubly infinite one, is as follows:

l ] e} w0 +
Sofoae[lan [ ar [ ae [ [ rigm
cosa (& —x)cos B(n~y)cosy ({—=z)d
It represents f(z, 4, ) throughout all space.

EXAMPLES.
22
- Q
dreprt
represents an instantaneous point source of strength @ in an infinite thin

plate, the surfaces of which are impervious to heat. Also show that the
maximum value of » at a point distant » from the source is

Q e
weprie
After what time is this maximum attained ?

1. Prove that
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2. A quantity of heat @ is imparted at a given instant to an infinite
uniform solid at a point 0. Find the radius of the sphere which separates
the region for which the temperature is rising from the region for which
the temperature is falling. Show that its rate of increase is inversely
proportional to its magnitude.

3. Two semi-infinite solids of the same material, bounded by the plane
+=0, are initially at temperatures uniform throughout, one at temperature
vy, the other at temperature —v,. If conduction takes place across the
boundary, find the temperature and gradient of temperature at any sub-
sequent time, for any point in either,

Taking the foot and year as units of length and time, and the value
of the diffusivity as 400 and of v, as 10,000° F., find the gradient at the
surface after 200,000 years.

4. Two uniform thin bars of the same material and cross-section are
infinitely long in one direction. One is throughout at temperature V and
the other at temperature zero, when they are put in contact end to end.
Find on the supposition of zero lateral loss of heat the temperature at any
point in either after the lapse of any interval of time.

5. A bar of uniform cross-section is covered with impermeable varnish
and extends from the point #=0 to infinity. The bar being throughout
at temperature zero, the extremity is brought at time =0 to temperature
vy and kept so ever after. Find the distribution of temperature in the bar
at any subsequent time ¢, and verify that your expression gives the obvious
solution for ¢=o.

6. A rectangular plate bounded by the lines #=0, y=0, x=a, y=0 has
an initial distribution of temperature given by

v=Asin =" sin 7.
a b

The edges are kept constantly at zero temperature and the plane faces
are impermeable to heat. Find the temperature at any point and time,
and show that very close to any corner of the plate the lines of equal
temperature and flow of heat are orthogonal systems of rectangular
hyperbolas.

Show that the heat lost by the plate across the edges up to time ¢ is

11y,
4;::»6{1 ., —K(E‘l'm)ﬂ’ t},

where s is the thermal capacity of the plate per unit area.

7. If the temperature of an infinite solid has different uniform values
V, V' on opposite sides of a given plane, prove that at any subsequent time
the temperature is given by the expression

2 U

2 being measured from the plane towards the side where the temperature
wasg initially V.

r
V4V V‘V'fz—*/fte"”d,\
)
0
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8. A conducting sphere initially at zero temperature has its surface
kept at a constant temperature ¢ for a given time, after which it is kept
at zevo. Find the temperature at any time in the second stage.

9. If the surface of a rectangular parallelopiped is kept at the tempera-
ture zero and the initial temperatures of all points of the parallelopiped
are given, then for any point of the parallelopiped

e (M7, . i
v=m D =0 PEme B K (az+bz+cz)ﬂin7n_ﬂ'fsin%l/sinﬁl’
m=1 n=1 p=1 v o ¢

b .
where B, nm:(_iz_cﬁacm]o d;‘//ﬁcf(x, ¥, z)sin %‘sin 7121/ sin]%dz.



CHAPTER IV.
WAVE MOTION.

§92. Transverse vibrations of a stretched string.

WE suppose that the string is perfectly flexible, that it offers no
resistance to bending and that it is stretched between two points by a
constant stretching force T, so great that gravity can be neglected in
comparison with it. Then the string is capable of executing vibrations
of two kinds,

(1) transverse vibrations, in which every particle moves at right
angles to the length of the string, and

(2) longitudinal vibrations, in which every particle moves parallel
to the length of the string.

If the string is displaced and left to itself we have vibrations of
both kinds occurring together, but the longitudinal vibrations can
usually be neglected in comparison with the transverse vibrations.
We shall assume, in what follows, that this is the case, that the trans-
verse displacement is a small quantity of the first order and that the
longitudinal displacement is a small quantity of the second order in
comparison with the length of the string.

0 X
Fia. 49,

Let the string be uniform and let its mass per unit length be
denoted by p. Take its undisturbed position as a-axis and suppose
that the motion is confined to the zy-plane.

Consider the motion of an element, PQ, of length ds. Its transverse
%y

rate of change of momentum is pds 5z The resultant stretching

forces at P and Q act along the tangents at these points. The transverse
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’ 0
component of the stretching force on the element at P 1is —T%

g/ being the sine of angle PMz and the transverse component of
the stretching force on the element at Q is Tg‘/ g <T ag>d9 The

resultant of these two forces is a force of amount

%
% < > ds

parallel to Oy and in the direction of Oy. The stretching force may be
regarded as constant throughout the string, also since the displacement

is small we may write 2— for g_l-/ in the above expresswn The resultant

force on the element may therefore be written T yds Equating the
rate of increase of momentum to this, we obtain o

o _ %y
P ™" 22

for the equation of motion of the string. If we write % for T/p, this
takes the form Fy L,
=" aﬁ‘

§93. Let us change the independent variables in the above equation
to z; and z,, these quantities being given by

X =x-0 Xy=a+v
° 0 Oxv,, 9 Om, O o)

Toem % o, w om, on  ow, " omy
Py %y o% %
Therefore o w2 T o om + 0,2
8 © Oz, © Oom, 0
— %, ot Tom, ot "ow, T By
DY 2 % 2
P _ 22 92 OY 22
and consequently = =" 3 W amla%-{-v o
On substituting these values, the original equation reduces to
% _
O, Om,

The most general solution of this is obviously

y=1@)+ /().

Hence the most general solution of the original equation is
Y=, (@ ~ot) +y(e+ o).
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Now, if f,(z—»f) be plotted as a function of 2, it is exactly the same
as fy(x) in shape, but every point on it is displaced a distance vt to the
right of the corresponding point in f,(2). It thus represents an
irregular wave travelling towards the right with uniform velocity ,
the shape of the wave at time ¢=0 being given by y=7,(z). Similarly
y=fy( +vt) represents a wave travelling towards the left with uniform
velocity #.  The general solution is the sum of these two waves.

Let the string have one end fixed at the origin, let the other end be
a great distance off in the direction of Oz, and suppose that a wave
given by y=f(vt+x) is approaching the origin. At the origin the
displacement must be zero; hence the reflected wave must have the
form y= - f(vf — ), since the sum of this and the original expression
is zero at =0 for all values of . The transverse wave in a stretched
string is therefore inverted by reflection.

§94. Harmonic waves.
Consider the expression

= 52—7 t—w>—cos‘)n-<z—g—“'>

By plotting it as a funetion of 2 for successive values of ¢, it may be
shown to represent an infinite train of progressive harmonic waves.
The waves are said to be harmonic because the displacement has the
cosine form, the train is infinite as the expression gives real values for
the displacement throughout the whole range — w <z < +w, and the
waves are said to be progressive because as ¢ increases the whole wave
profile moves bodily forward in the direction of positive z. The wave-
length, the distance hetween two successive crests at any instant, is
given by A; the period, that is the time taken by a complete wave to
pass a fixed point, is given by .

Let us suppose that the, progressive wave travelling from right to

left and given by i
Y =Cos 27r<;+ X)

is reflected at the origin. Then the reflected wave must be given by

iz
Y= —cos 2#(;—X>.

The resultant displacement at any point on the string due to the
superposition of the two waves is given by

LY. 0s 2 2 rc>_ ‘)sin@singmc
y=cos2m(-+3)-cos2m(-~F)=—2sin— =

By plotting this expression as a function of « for successive values of
£, it may be shown to represent an infinite train of stationary harmonic

L g, A, :%A, ..., which are called
nodes, the displacement is always zero. The points midway between

waves. At the points given by z=0



112 WAVE MOTION

the nodes are called loops, and at the loops the displacement varies
between + 2 and — 2.
A good example of a solitary wave, as opposed to an infinite train,
is given by the expression
Y= g—c(:c—‘vt)z’

which can easily be shown graphically to represent a solitary maximum
moving in the direction of positive .

§95. String of length 1.

Let us suppose that the length of the string is I and that its initial
displacement and velocity are given. Then the problem may hbe
stated as follows :

5 0% T

(1) 'az": 57 where 7;2=f—); (2) y=0 for =0, z=1;

(8) y=F@), L=(a) for 1=0

As in the case of the diﬂ'erentml equation for the conduction of heat,
we build up the solutions from sines and cosines or exponentials. We
know from § 93 that the expression

Pgim (%1—2) n Q@im(% - t) + Re—im(§+t) T Se - un('%—t)

satisfies (1). The constants must be chosen to make it satisfy (2).
If we write S= - P, R= — Q, it becomes

mr .M

Peimt (ez = e—zT> 4 Qe—'zmt (317 _ 2-17)

ma mx

=97 sin —— (pgzmt +Qe- zmz) s1 sin mt)
b and " being constants. This satisfies (2) if m./v:nrr /I, where n is any
integer.

On substituting for m and taking all the possible values of =,

we obtain

n=w n=w

9y = z b, sin "LT cos ﬁﬂi’f + E b’q,sm T in NTTM ......... (1)

We then choose the constants 4, and o', so as to satisfy (3). When
t=0, y is represented by the half range sine series

2b, sin ——~f( )

and g—;/ by the half range sine series

St B 'mw 'n7r x
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Hence, by § 64,

2t . M 2 [ . M

b,==| f(a ——dz = —— : —
L ZJ.o f(z) sin 7 dz and 0, po L ¢ () sin ] dz.
Each of the terms in (1) represents a stationary wave, the wave-
lengths being given by 2I/n, where n is any integer. The frequency, or

number of periods per second, of the fundamental note is % \/I and
21N p

the frequency of its harmonics, as the other terms are called, is given
n T
AN p

The initial conditions, that is the values of f(z) and ¢(z), may be
such as to make some of the constants b,, 0’ vanish. In that case the
corresponding harmonics in the note are awanting.

If the initial displacement and velocity are not confined to one plane,
we resolve them into components in the 2y and zz-planes. The prin-
ciple of the superposition of small vibrations then enables us to treat the
motion in the one plane quite independently of the motion in the other.

§96. Damping.

Vibrations are said to be damped when their amplitude decreases
with time. All vibrations that occur in nature are damped. So far

we have not taken account of damping, and our results are therefore
strictly true only for an ideal string. We can represent the effect of

by the well-known formula

damping by adding an additional term — Qk%g to the right-hand side

of the equation of motion for the stretched string. This term re-
presents a force proportional to the velocity and resisting the motion.
1t is due to friction in the string and to loss of energy by air waves,
hut it is not possible to form a clear picture as to how it acts.
Let us suppose that the boundary and initial conditions are the same
as in § 95, but that instead of (1) we have the equation
Py_ Py 50 a
= 92 s, BJE o e v e wa FES 6 BB B ST 4
a2~ o 2y @
Try etier+ft as a solution. Then
P2 +0%a2 +213=0,
1. B=—L+JIE—1%a> or —LktiJold -
since / is presumably small.
The typical solution is therefore ¢-k+isrxiv@a@=F.  Combining
expressions of this type in the same way as in the last solution,
we obtain

] w2 , . 2202
¢~Hsin E?(b cOoS \/n 7;2 Y 12+ ¥ sin \/ Il‘~z — k%)

as an expression satisfying the end conditions.
H.P. H
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Q2092
The period of the n' component is therefore 2 an Tlrzﬂ -2 It

has been increased by damping. Also the ovértones are no longer
harmonies of the fundamental.

Let us now consider the initial conditions. When (=0 the second
term in the above expression vanishes, and the first term takes the
same value as before. But on differentiating the expression with
regard to ¢ and afterwards putting =0, we obtain

- )
sin””<—bzc+b' [l _k2>.

l I

In order to get rid of the additional term, we must write the
complete solution,

n=w ; er2?
y=ane"“sinnLl'% cos \/gferv — et

n=1

L bk e MTT )\/’7127?27)2 N
+;(bw+w—k2)e sin —=sin 2 — k%,
A

It is obvious that this satisfies the initial conditions when the values
of 6, and ¥, are given by

92 N

Il ¢ () sin =5 da.
0

nr??
2 ~B

1
b, = %J- J(z) sin @lr_x dr and b,=
0
1

§97. Energy of a vibrating string.
Let us assume that the motion is undamped, that the string is of
length 7 and that it is displaced in one plane and let go. Then, when

1=0, y=f(z) and %: 0, and the solution is consequently

l l

We shall now determine the kinetic energy of the string at time 2.
At that time we have

n=om
. mT navl
Y= 2 b, sin €OS ——
n=1

oy 5, nwv . nwx . nrel
a-t~~2bnTsm 7 sin——

n=1

Now the kinetic energy is

Lpe p AN o (e v
2 s g (20 o MTVD 2 MY 0o
Ojopy dz 2Ebn < 7 > sin? — Lsm I da,
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L
for all the integrals of the type j sin ™™ gin ™™ 7 vanish. Also

ol I

L.,  mmx 1 Qnmx l
Lst 7 (Za:=§jo <1—cos 7 >dn;=§.

Hence the kinetic energy is given by

Mg o AV . o0t

4217"< 7 >sn -7

m being substituted for pl, the total mass of the string. The kinetic
energy is thus equal to the sum of the kinetic energies of the different
modes of vibration.

In order to determine the potential energy of the string, we must
find the work done in displacing it from the 2-axis to the actual
position occupied at time # The force per unit of mass in the
0%
02’
Hence the work done in displacing the element through 8y is given by

2
gfz ds 8y.

Suppose that the string is brought to its final position in a number
of steps, 8y for any one step being the same fraction of the final value
of y for every point on the string. Then 8y is a function of z. Writing
ds=dz, we find for the work done in any one step

L 9% Loy o8y
— 2 = Pi— 2 Nk - Y
P -\-0 52 Sy dx=pv L 3 B dz,
integrating by parts, 8y being zero for the ends of the string. This is

equal to pt [t 3(%>2d%’
2 Jo \oz/

The amount of work done in all the steps is therefore

2 [t /op\? 22 (1 b, mw\2 N navt
pi Y _P n L 2 e
3 L <84"_> de= 5 LE< ] > cos [ o8’ o

_pr¥ ,(b,,mr)z o nvt
=y > ] cos? ——

the product terms vanishing, as before, during the integration. Writing
m for pl, we obtain for the potential energy of the string

My o (MT\2  , navt

120 (T) cos? ——

The result might have heen derived by the energy principle from the

expression for the kinetic energy, since the potential energy is zero
when the string is crossing its equilibrium position.

direction of the y-axis according to the equation of motion is +?

_ P;;‘Z
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§98. Longitudinal vibrations in a rod.

The longitudinal vibrations in a rod of any section and torsional
vibrations in a rod of circular section are mathematically the same as
the transverse vibrations in a stretched string. 'We shall proceed now
to deal with these vibrations, neglecting gravity in each case.

Let us suppose we have a uniform rod of density p and cross-sectional
area a. Take the z-axis in the direction of its length, and let E be the
Young’s modulus* of the material of which it is composed.

Consider the element of the rod bounded by the planes A and B,
which are given respectively by = and = +dz. Its mass is padz. Let
a longitudinal wave pass down the rod. Then all its particles will be
displaced in the direction of Oz. ILet & denote the displacement of the
pa,rticles that were originally at . The elongation per unit length at

Gl
Ais a— ; hence the total force exerted on the element from right to
left across the plane A is Ea a—i The total force exerted on the element
from left to right across the plane B is Ea( o¢

5 d9"> Consequently

the resultant force on the element in the z dir ect10n is Eadz a£ The
2
acceleration of the element in the same direction is Z_ﬁ The equation
of motion is therefore
e a’g o% E %
pa dz 5 =Eadx or =

The velocity of the wave is given by VE/p. If one end or point of
the bELl is fixed, then £ must be zero for that end or point. At a free

cnd ~= =0, for there is no force exerted across a free end.

The pcnods of the different overtones and the case of given initial
conditions can be worked out in the same way as for the transverse
vibrations of a stretched string.

It should be noticed that, just as in the case of a stretched wire,
where the rod is stretched, it suffers lateral contraction, and that where
it is compressed longitudinally, it suffers lateral expansion. The cross-
sectional area @ is thus not constant, but the error introduced by
considering it constant can be neglected.

§99. Torsional vibrations in a right circular cylinder.

Lct a be the radius of the cylinder, p the density and = the rlgldltv
modulus of the material of which it is composed. Take the axis of
the cylinder as axis of 2, let the cylinder he vertical and take the
origin in its upper surface. Let the upper surface be fixed and let

*If o wire of length L and cross-sectional area @ is stretched a small distance ¢
by a foree F, then its Young’s modulus
__stretching force per unit area  FL
elongation per unit length  ~ al
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the cylinder be twisted about its axis. Denote by 6 the angle through
which the plane defined by 2 is twisted.

To find the twisting couple in any section of the cylinder, consider
the slice bounded by z and z+dz. Divide it into rings by drawing
coaxal cylinders with Oz as axis, and
consider the ring bounded by » and r+dr. i ;
Its upper surface is twisted through an :
angle ¢ and its lower surface through an E !

1

e 04224 i v aivic th ving ito ((CC_—59)
l =

elements by drawing planes through the

axis of the cylinder and consider any one
of these elements, when the cylinder is
twisted, its lower surface is displaced a

; o0 ' .
distance 0'ada; further round than its upper F1G. 50.

surface. Hach element of the ring therefore (cf. fig. 51) suffers
shearing strain * ¢ given by
=3 .ag
=1 =
the expression for ¢ being obtained by dividing the displacement
r= dx by dz, the distance between the two planes.

The tangential force per unit area on the upper surface of the

element is 77/1'8—0. The moment of this about the axis -
Y . . B —"
is nr? = The total moment about the axis of all the :L
tangential forces on the upper surface of the ring is Iric. 51.

therefore 271%7"38— dr and the resultant couple exerted on the section is
2z

)
2Arn

*When a cube is deformed in the manner illustrated in the diagram, it is’
said to suffer shearing strain. Note that the new position of the upper face,
A’'B'F'E’, is still in the same plane as the old. The
amount of the strain is measured by AA’/AD or the
angle ¢, since ¢ is small.

iy
Such a strain is produced by a system of equal A Y T __!%;fl’/
tangential forces acting on A'F’, CF’ and the two N B i
opposite faces in the directions indicated by the » H g
arrows. Let P be the amount of each of these forces iy )
per unit area of the face on which it acts. Then =, K Y
the modulus of rigidity of the material of which e /
the cube is composed, is defined by D C
B Fia. 52.

N=—

@
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Let us now consider the motion of an element bounded by the
sections » and z+dz. Its mass is pra®de and its rate of increase of
angular momentum about the z-axis is
a? 0%

2 o’
a?/2 being the square of its radius of gyration. The twisting couple

pﬂ'd2 dx —

4
on the upper surface of this element is W?L%%G and it is in the

negative direction about Oz. The couple on its lower surface is
Tnat 86 020

dz) in the positive direction. The resultant couple is

2 Bz ox?
therefore Tt 320
7
The equation of motion of the element is thus
pmat 0%0 wﬁmm‘i c% B %0 _n
2 T W Y T

Torsional waves are therefore propagated along the cylinder with a

velocity ~/njp. At a fixed end of the cylinder 6=0; at a free end
= 0, since the torsional couple there must be zero.
Let us suppose that the cylinder is a thin wire of length J, the upper
end of which is fixed and to the lower end of which a heavy cylindrical
vibrator is attached. Let M be the mass and %* the square of the
radius of gyration of this vibrator. In this case the condition to be
satisfied at the lower end of the wire is that the torsional couple
there should he equal to the rate of increase of angular momentum
of the vibrator. That is, for z=1,

Assuming 6 = (A cos mz + B sin maz)cos mot as a solution, we find from
the condition for z=0 that A must be zero. From the condition
for z =1,

TN el
Bm cos ml= — MEEB(mw)2sinml or tanml==——s—
2 et s 2eEMEEm
This equation gives n.
If ME? be very great, as is the case in the usual experimental method
for determining n, tanml is small, and ml can be written for it. Then

Tt
e CENCINGEECICEIN T EITEIn o 3
REYIE 3)
Also, owing to ml being small, the solution can be written
0 = B cos mut ;

me =



WAVE MOTION 119

that is, the angle of twist of any cross-section is proportional to its
distance from the upper end of the wire. The period of vibration, r,
is equal to 2x/me.  Hence, substituting in (3), we obtain

SrMk2l
7=

T oair? )’

the usual formula for the determination of the rigidity modulus.

EXAMPLES.

1. Find the form at time ¢ of a vibrating string of length /, whose ends
are fixed and which is initially displaced into an isosceles triangle. The
string is vibrating transversely, is under constant stretching force and starts
from rest.

2. A vportion of an infinite isotropic solid is contained between two
parallel planes at a distance [ apart. It is fixed at these planes and vibrates
in a fixed direction parallel to them at points between. Establish the
differential equation for such vibrations, and give the complete solution for
the problem in question.

3. To the bottom of the vibrator of one torsional pendulum is fastened
rigidly a wire which carries at its other end another torsional vibrator.
The two wires are vertical and collinear, and the two vibrators execute
small vibrations in horizontal planes. Supposing that the usual condition
for uniform twist (which is to be stated) is satisfied for each pendulum, find
completely the vesulting motion when each vibrator receives initially «
given displacement but no velocity.

4. The longitudinal displacements of a vertical steel rod, fixed at both
ends, are given by £=asin ?%Z, where { is the length of the rod and » is
measured from an end. Find numerically the maximum values of the terms
in the differential equation and the value of the term due to gravity, which
is neglected, given that ¢='01 mm., /=100 cms., p=7"7 gms./c.c. and
E=3 10° gms./sq. cm.

5. A transversely vibrating string of length 7 is stretched between two
points A and B. The initial displacement of each point of the string is zero,
the initial velocity at a distance » from A is kz({—x). Find the form of the
string at any subsequent time.

6. A torsional vibrator is used to determine n, the rigidity modulus of a
thin wire. Derive an expression for », retaining the first two terms in the
expansion for tanml (cf. §99). Hence find the error caused by the assump-
tion of uniform shear in determining the rigidity modulus of a copper wire
2 metres long, the moment of inertia of the vibrator being 30,000 c.c.s. units
and the period being 7 secs. Take 45 10 gms./sq. cm. for the rigidity
modulus of copper.

7. A string of length 7+ is stretched with tension T between two fixed
points. The linear densities of the lengths 7, I’ are p, p’ respectively ; prove
that the periods 7 of transverse vibrations are given by

P'% tan (QWZP%’/ TT%) = p% tan (le’p”lz/ TT%).
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8. If a uniform hovizontal bar, both of whose ends are fixed, be displaced
horizontally, so that one half is uniformly extended and the other half is
uniformly compressed, prove that the displacement at time ¢ of any particle
whose abscissa is », is

8A 1 @m+Dwvt  (@m+)7w
<F> 2 (2m+1)2 €os o8 ’

2l 2

where 20 is the length of the bar, the middle of which is the origin, and A
is the initial displacement of that point.

9. An elastic rod of length [ lies on a smooth plane, and is longitudinally
compressed between two pegs at a distance I apart. One peg is suddenly
removed ; prove that the rod leaves the other peg just as 1t reaches its
natural state, and then proceeds with a velocity equal to V({—1')/l, where V
is the velocity of propagation of a longitudinal wave in the rod.

§100. Tidal waves.

We pass now to another case of wave-motion represented by the
same differential equation, namely the case of “tidal” or “long” waves
in an incompressible liquid of uniform depth 4. The waves which
oceur on the surface of a liquid owe their propagation to two causes,
surface tension in the liquid-air surface and gravity. If the wave-
length is small, less than two-thirds of an inch or thereabouts, the
influence of surface tension preponderates and the waves are called
ripples. 'We shall only consider waves the wavelength of which is
so great that surface tension can be neglected.

Tidal waves or long waves are a particular case of gravity waves
characterised by a simpler mathematical treatment. Their distinguishing
feature is, as their name implies, that the vertical displacement of the
surface must be small in comparison with the wave-length.

Let the bottom of the liquid be given by y=0. Measure y positive
upwards. Let the free surface in the sy-plane be given by y=/A+m,
h being the depth in the undisturbed state, and let p, be the pressure

on the free surface. The liquid is supposed
7 to be bounded in the z direction by fixed
SR 1 1 B, planes parallel to the wy-plane. The dis-
tance of these planes apart is immaterial,
B for they are perfectly smooth and the liquid
slips along them without experiencing any
x frictional resistance. Tor simplicity we
0 shall suppose that they are unit distance
itk S apart. The problem is then that of long

waves in a uniform canal of breadth unity and depth 2.
We shall make the fundamental assumption that the pressure at the

pointi 5 7.5 glven by P=py+gp(h+m =) i (4)
The validity of this will be discussed later.

Consider the vertical strip which is bounded by z and z+ da before
the motion begins. Its volume is Adz. At a given instant after the
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motion is started, let the elevation of the surface at the top- of the
strip be 5 and let the planes bounding it have moved to z+§ and

¢} . ‘
r+de+ ¢ +a—§_ dx.  The volume of the strip is then (% +7) <daz+%§dm>.
Since the liquid is incompressible, the volume of the strip does not
vary with the time. Hence

- .1 06
hdz=(h+7) <daJ + aﬂ}dm),

which gives et B2 =00 suvmuammmon won e cvm s s 2 s (3)

on neglecting the second order term.
Let us now consider the equation of motion of the stvip. Its rate of
increase of momentum is 2
Ny
phdaz =

To find the resultant force on the strip divide it into elements by
planes parallel to the bottom, and consider one of these elements of
height dy. The force on it towards the right is pdy and the force

towards the left (p+%§dm> dy. The resultant force on the element is

consequently —%J_flm dy or, from (4), — gp’%-zdw dy, since 7 is the only

quantity in the expression for p that varies with z. The resultant
force on the element is independent of #; hence all the elements of
the strip must move with the same acceleration, a fact which we have
already tacitly assumed, and the resultant force on the whole strip is

—gph %g da.
The equation of motion of the strip is therefore
O o4
phd == gph e iBs 5 v i o 5o v0s 554 ahm (6)
But from the equation of continuity, (),
o, 0%
a +1h % =0.
Substituting this in (6) and cancelling out the common factor ph dr,
we obtain finally 2 .
L A (7)
o Oa?

the equation of motion for the propagation of long waves.
The velocity of the wave is given by v=+/gh. Assume the solution

$=Acos27r<l—%>. .............................. (8)

T
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Then %, the elevation of the surface, is given by
o rh . 2w ¥
n= —ha}= —A—sin— <t—5>-
If we extend the definition of 7 to include not only the elevation of
the surface but the vertical displacement of the particle originally at
any point a, ¥, then it is clear from the mode of deriving the principle
of continuity, that » in this wider meaning is given by

I z
77~—ya_w——A~T§mT<t—v>. .................. 9)

Squaring (8) and (9) and eliminéting (t —%), we then obtain

£+ 1T _p

2wy \2 ’
(%)

the equation of an ellipse with its long axis horizontal (cf. §101). As
the wave passes, the particles of the liquid describe ellipses about their
equilibrium positions as centres, the ellipses becoming thinner as we
descend into the liquid and degenerating into straight lines at the hottom.

§101. Condition for long waves.
The equation of vertical motion of the liquid in the canal in the

preceding section is i p
P % = - é‘-y - gp- ...........................

Put the term on the left equal to zero and then integrate the
equation on the assumption that the pressure has the value p; on the
surface, that is, for y=/+7. We obtain then

p=po+gp(hitn—y).

The fundamental assumption which we made in §100 is therefore
equivalent to neglecting the vertical acceleration of the particles.

To examine under what conditions the vertical acceleration may be
neglected, integrate equation (10) again, retaining the left-hand term.

‘We obtain v dv
L P = — PGPl seswms nnnsnven o ven ses (11)

the constant of integration being included in the lower limit of the
integral. Substituting the condition that p=p, for y =7+, we find

T+ d
L npﬁflﬁ = o= gp(h+),
and subtracting this equation from (11),
v dy htn
j Pﬂdy—j P y=—p+ptgp(h+n-y)

c c
Yy
/3

dv
z¢=190+gp(h+n—y)—pj 5 W
+7
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The only terms in p concerned in the wave propagation are the
variable terms gpy and the last term, and in order that the waves may
be long, it is necessary that the term neglected be small in comparison

with the term retained, i.c. that jy d—vdy be small in comparison
with ¢7. by

Let 8 be the maximum value of the vertical acceleration. Then 78
is the maximum value of the integral. Also 8 is of the order 5/t
= being the period. Heuce, if we have 28 small in comparison with
gB7?% our approximation is justified. Since A=+/ghr, this condition is
equivalent to A%/A% small in comparison with 1.

§102. Stationary waves in a rectangular trough.

If a rectangular trough, the length of which is much greater than
the breadth and depth, be filled with water, stationary long waves can
be started by raising one end of the trough a small distance, holding it
until the surface is still and then dropping it sharply. The condition
to he satisfied at the ends of the trough is of course £=0, and the
wwy vk

T C0S——,
The disturbance is of course not simple, consisting as it does of a great
number of harmonics superimposed, but the fundamental vibration is
usually predominant and persists longer. Its period can thus easily
be taken with a stop watch and compared with the theoretical
value 20//gh.

§103. Effect of an arbitrary initial disturbance.

Let us suppose that the canal is unlimited in the direction of +z
and -2 and that the velocity and elevation are given initially, i.c.

5
a‘fz”‘i’ (®) }» for t=0.
i =I(z)

typical solution is £=sin

I being the length of the trough.

Assuming the solution

E=r1(@—vt) +fy(@+ ),
we have ’%—§=v{ =f @ —vt)+fo(x+0t)},
= —h%i: =M i@ —vt)+ [y (@ + vt}

For t=0, therefore, ¢ (2)= —f1(x)+/5(2),
P()= - f1(2) =5 (@),
and consequently f1@)= - @) +¢(2)},
@)= @) -¥@)}

The elevation at all subsequent times is thus given by

D= (o o)+ Yo )} ~ 2+ )~ Yla-+ o).
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This expression represents two waves of different shape moving
: . . - . . 6]
i opposite directions with the same velocity. If a—i:O for 1=0,

¢(z)=0, and the two waves have the same shape. If ¢(z)= =¢(2),
o _

d.e. if for £=0, 5= + h’ there is a wave only in one direction.

§104. Assume £=f(z—uvf). The displacement of a surface particle
is glven by o
n=-h §= = hf'(z—vt).

But a" = —of'(z —vi).
Therefore 8_5 T o
t h

When 7 is positive, g—f is positive. A wave of elevation thus moves

the particles forward and a wave of depression moves them back.

§105. Energy of a harmonic long wave.
9 4
As in §100, let the wave be given by &=Acos %(t - JE> We shall

now determine the kinetic energy and the potential energy in one
complete wave-length in a canal of unit breadth and depth 7.

Consider the strip bounded by z and z+dz; its mass is phdz and
its kinetic energy

of 1., . /2zA o 2 @
3 p/l dﬁ”( ) or §ph d.p(T) sin? 7<t—5>'

To find the kinetic energy in one complete wave-length, we must
integrate this with regard to z through any range A. The position
of the range is immaterial. The result is

ph <7T?A>“)\,

? on using the relation A?=ghr% The kinetic

energy is thus proportional to the square of the amplitude.

To obtain the potential encrgy, consider the accompanying diagram.
The potential energy of the part GHEDCBO is unaltered by the wave ;
the effect of the wave is to lift the portion EDCP’ to GHEF. Divide
these portions into elements. Then to an element at P of mass pydz
will correspond an equal element at P. The work done in lifting the
one element into the position of the other is equal to gpn2dx, n being
the vertical distance between the centroids. If we take the original
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value of the potential energy as zero, the potential energy in one
complete wave-length is given by

J.gpngdfw,

the integration being taken through half a wavelength. As hefore,
the particular p051t10n of the range ‘o integration does not matter.

F
Y ,
] P
6 P H E c
D
0 B =
Fia. 54.
2rh . 9w z
Now 7= —AT snl?(t—;).

Hence the integral is

% 72 %
jz_(/p< W\hA> sin? T<t - —> (m_gph (wA)2.
0 F

The potential energy of the wave is therefore equal to its kinetic
energy.

Now calculate the work done by the pressure in any plane normal
to Oz in one period. Let pdy be the thrust on an element of the plane.

Then = % gives the velocity with which the point of application of this
h ’ag
ot

in the plane and j (h‘J. ggfll/ gives the total work done in one
o

period. As 5 is as often positive as negative, the constant part of p

thrust is moving, dy gives the rate at which work is being done

contributes nothing to the integral, the direction in which it does
work constantly altering. We can therefore substitute gpy for p. The
integrand is then independent of 7, and the integral becomes

AN /27A\ [T . ,2 m 29002,
J qphr]aédz‘_Jph < T )(%)L sin? »—;T<t—5> dt = gp ——(mwA)>%

The particular time at which the period is taken is immaterial, as
may be seen by substituting the limits ¢ and ¢+ for 0 and =. The
work done in one period is therefore equal to the total energy in one
wave-length.

Let us now consider a harmonic train advancing into .still water.
Take a plane on the wave-front. In one period the work dome in
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this plane, that is, the energy that crosses this plane, is sufficient
to build up one wavelength. The head of the train advances therefore
a distance A in time 7 and has the same velocity as the individual waves.

This is not generally true. If a stone is thrown into a pool and
the group of waves that travels out from the point where it enters the
water is watched, it will be noticed that the individual waves travel
faster than the group. They grow up in the rear of the group, pass

Fra. b5.

through it and in turn disappear in the still water in front of the
group. The group velocity in this case is not so great as the wave
velocity. But in the case of long waves the group velocity coincides
with the wave velocity.
The group velocity gives the rate at which the energy is propagated.
Tt should be noted that the case represented in fig. 55 is an artificial
one. A harmonic train could not he regular up to its very front.

§106. Forced waves in a canal.
Consider the equation ?E o

e

where X is a function of 2 and #, but not of 4. Let X have the value
Csin (n¢ +mz) and assume £=Dsin (nf+mz). By substituting in the
equation, we find that D (n? —Pm?) = — ¢,

F Ry oo e s von 68 i g s (12)

and consequently that

E= - o g S (nt + ma).
To the above expression for § there can he added any solution of
the equation o o

o= o

and equation (12) will still be satisfied. This additional part of the
solution is called the free wave anc the former part the forced wave.
The complete solution is thus the sum of the forced and freec waves.

When 2% approaches ¢?m? 4.e. when the velocity of the impressed
force approaches that of the free wave, the amphtude of the forced
wave becomes very great. It does not, however, become infinite as
the formula states, being prevented by viscosity, which is not con-
sidered by our elementary theory.
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If n2 <+?m? the forced wave is direct, that is, it has a maximum
when the impressed force has a maximum; if n?>2m? the forced
wave is inverted and has a minimum when the impressed force has
a maximum.

Equation (12) is of importance in the theory of the tides. For
let there be a uniform canal round the earth’s equator, and suppose
for the sake of simplicity that the earth’s axis is perpendicular to the
ecliptic and that the moon’s orbit is in the ecliptic. Let O be a fixed
point on the earth’s equator, let the distance of P measured round the
equator from O be , let n’ be the angular velocity of the earth relative
to the direction of the moon and let A be the point on the equator
directly under the moon. Then, if ¢ be measured from the instant
when O was at A, the arc AO=an't and the arc AP=an't+z, a being
the radius of the earth.

It is only the component of the moon’s tide-producing force
tangential to the equator that has any effect in producing waves
in the canal. We know from the
equilibrium theory of the tides
that the tide-producing force is
a maximum and vertical at A
and B, and that it is zero at J
and K. The numerical value of
the tangential component must
therefore have a maximum value
at intermediate points, G, H, F
and E; at G and E it is towards
the moon and at H and F it is Fra. 56.
away from it. The tangential
component thus runs through all its values twice as we go once

round the equator, and is hence proportional to sin 2 (n’t+§>. The

impressed force on the canal is therefore of the type considered in
the earlier part of the present section.

§107. Gravity waves, General case.

We shall now let fall the restriction that the waves are long and
consider the general case of waves caused by gravity on the surface
of a uniform canal of depth & As in § 100, the origin will be taken
in the bottom of the canal, Oy will be taken vertically upwards, Ox
along the bottom, and p, the density of the liquid, will be taken
constant.

We shall assume that the motion is irrotational. It will be re-
membered that in this case (c¢f. Chap. IL.) the velocity is derived from
a potential ¢. In the problem under consideration, since it is one
of two-dimensional motion, ¢ satisfies the equation

PP N
w‘l-aTJz: @ siseseaBeeevEeEEa e s e b N e (13)
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At the bottom we have the boundary condition

P

=0 for =0, .oiiiiiiiiiiieriiinnns 14
e 0 for y=0, (14)
and at the surface we have another boundary condition which will he
derived further down.

When ¢ is known, p, the pressure at any point (cf. § 41), is given by
£ 5
o= o 04—+ F(D.

This equation can be simplified for our purpose here. First of all
the term {¢? may be omitted, because in problems of wave motion the
velocities are always supposed to be so small that their second powers
may be neglected. Then the term F(#) may be supposed included in

The equation thus becomes

J_’_ai’_
, 99-

ot

In this equation p and g are constants, £ and 7 being the usual
independent variables. We can, however, take  and p as independent
variables. Then differentiation with respect to ¢ gives

(6] O oy
ot <‘a? > 50

p const. ¥ const.

This equation holds for any surface for which p is constant, and
hence for the air-liquid surface. Now g—? is equal to the vertical
component of the velocity of this surface and can be put equal to

~9(é, and 4 may be written for k) , since the velocity is
a7/ at » const. (¢] p const.
supposed to be small. We thus have the boundary condition at the

upper surface of the liquid,

2
%;f+(/a/) O fOr 25 s ses ves s son posesn cos o (15)
Assume $=F(y) cos - <t - {,)

F(y) being independent of = and {, and substitute in (13). This gives
TF  f2mN2
&~ () F=0

2y ¢y Do
F(y)=Pcosh —7{'—/ +@sinh —'7/.
Pi

the solution of which is

2‘17, . 2 / _/A
Hence b= <P cosh —)\Q + @ sinh —K7—/> (L‘ - 5)
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From (14) we find that @ must equal zero, and from (15) that

27 2 2 T . 21 2
(—T—> cosh %h =g 277 sinh ;h or = ;L: tanh %h
There are two special cases of this formula. If the waves are long,
hfA is small, 275/ can be written for tan 27h/A and v2= gh, a result we
have obtained already. If Z/A is large, the tangent may be put = 1.

gA

The velocity is then given by 7;2=‘2—7‘_. This is the case of ““deep-sea”

Waﬁzi. &, m denote the displacement of the particle originally at z, ¥.
Then %: —%:—P?cosh?sin?(t—%),
%: —%: - P%\Esinhgl)\'ycos'.?(t—%)

These equations give

P 2oy Ow % P.. 92ry . 2w a:>
§—+Ecosthos7(t—E>, 7;——Esmh—)t—sm -r<t—?; 2
2 2 2
whence 5 — + 1 5 y:%.
5 407 e BT
cosh 3 sinh 5

The path of the particle is thus an ellipse, the longer axis being
horizontal. In the case of deep-sea waves it becomes a circle for
particles on the surface.

§108. Two horizontal dimensions. Stationary waves in a rect-
angular vessel.

Let @ be the length of the vessel, b its breadth and 2 the depth of
the liquid. Then ¢ must satisfy the following conditions :

(1) V2=0;

£
(2) %=O for =0, s=a;
o . :
o¢
o e - =0 s
(3) 3 0 for 2=0, 2=0; ;ﬂ = ,
9 _ -0- )
4) a—y—O for y=0;
9% op

(5) P +g§§=0 for y=h. 2

F16. 57.
cosh cos cos , cos
Assume b= ginh ¥ sin *® sin B2 sin 7
Then, from (1), a®+ 3% - y2=0, hence y= Va2 B2 To satisfy (4) we
must choose the cosh. To satisfy (2) and (3) we must take cos az cos 8z
"2 1
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and write o =mmr/a, B=mnm/b, where m and n are integers. The typical
solution is then

8 soigh m\? /m\?_ mawn  mmzcos [/m\? /m 2—2
=08 2) Tig)myeos = —cos == g Al ) +(3) 7

v being given from (5) (by

o9 By (7})2
v \/WQ—W tanh \/<a> e wh
— ) k=7
<a> <b>
It is obvious that different terms of the above type can be combined

so as to give initially any prescribed value to the elevation on the
surface and to the vertical component of the velocity on the surface.

EXAMPLES.

1. Show that in the case of deep-sea waves each particle of the liquid
describes a circle, and determine the relation of the radius of the circle
to the depth below the surface of the liquid.

2. A straight canal of depth % and length 7 has a rectangular cross-section,
and its ends are vertical and at right angles to its length. Show that the
periods of the longitudinal waves that can be propagated in it are obtained
by giving positive integral values to # in the expression

l nwh
24/ <n_g coth 271 ).

3. Tind a solution of the differential equation for long waves in a canal
of length ¢ closed at one end and communicating at the other with a tidal
sea, the level of which varies according to the equation

n=a cos (nt+ 0).

4. The space between two infinite horizontal planes is filled with two
fluids, one of density p and depth %, and the other of density p’and depth A"
Prove that the velocity of a long wave on the surface of separation is

V g(p—p)hl\
Wp+hp )

5. Waves are propagated in a canal of depth 2. What relation must
exist between 4 and A in order that (1) the formula for long waves, (2) the
formula for deep-sea waves should represent the velocity correctly to
1 per cent.?

6. Discuss the characteristics of the motion for which (cf. § 47)
P+ =AemEH D) gin g,

7. The section of a canal is semi-circular, of radius a. It is full to the
horizontal diameter, and above that the banks are vertical. Prove that

the velocity of propagation of long waves in it is 1 (rga)?.



WAVE MOTION 131

8. A long wave in a liquid of depth % represented by

y=Ff(vi—2)
is reflected by a vertical wall at right angles to its direction of propagation.
Find the thrust, if any, exerted on the wall.

9. Use the formula (cf. § 45)
9T—p [ 22
2 T—p/qb S ds
to investigate the kinetic energy of the motion given by
_ 2y 21( _-ze’)
¢ =P cosh yoeos =0 )
the origin being taken at the bottom, and the surface being given by y=4.

10. Prove that the group velocity of deep-sea waves is half their wave
velocity.

§109. Sound waves in a gas.
We found in § 33 that the equation of continuity for a fluid, when
expressed in its most general form, was

» 9 2 ?
= T35 (P10) + ¥ (pv) + = (pw) = 0.

Also the equations of motion were

au—l-ua—u+’Ja’w+w’a—u—x—19}—)

T T e T oo
with two similar equations. We shall now apply these equations
to the case of wave motion in a perfect gas, and shall make the

following assumptions :
99 a¢ o

(1) The motion is irrotational, i.e. u= — 5 V= & and w= — e

(2) The velocities are so small that their squares and products
can be neglected.

(3) The “body ~ forces, X, Y, Z, can be neglected.

For p write p, (1 +s), where p, is the initial value of the density ;

s1is called the condensation. As the alterations of density in a sound

; : Os Os Os .
wave are slight, s is small, and we can neglect the T terms in

the continuity equation. It then becomes

Os s

E‘Z(l +8) v or a:v%, ..................... (16)
since s is small. To the same order of approximation the first equation
of motion becomes 226 13
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If the two similar equations be written down and the three equations
be multiplied respectively by du, dy, dz and added, we obtain

., dp o (dp 5
ad(i)——f)‘ or a—jp ik sz san e s v e (1()

Let us now assume that Boyle’s law holds and that p=cp. Then
dp =cp,ds, consequently

j@ :jc_ds_ =c¢log(l +5),

P 1+s
o% Ofdp ¢ s
f 1 Sl R | O]
and, from (17), E at_[p T3 5
. . 0% s
This may be written w45t v e e e (18)
since s is small. Combining (16) and (18), we obtain
2
G (19)
This is the general equation for the propagation of wave motion.
Assume ¢=Asin 2—:‘ <t - h’——l_wzj—ﬂ>

It is obvious that this represents a plane wave propagated with
velocity » in the [, m, » direction, for the surfaces of equal phase are
given by

Iz + my + nz =t
Substitute this value of ¢ in equation (19), and we find, since
P+m2+nt=1, that ?=c

But ¢=p/p. Hence v=+/pjp, and the velocity of the wave can be
calculated.

This is the well-known expression derived by Newton for the velocity
of sound in a gas. It did not agree with experiment, the result given
by it being too small. The correct expression was first derived by
Laplace, who showed, that in the case of sound waves the condensation
and rarefaction take place so rapidly, that the heat produced has not
time to disappear by conduction. The temperature of each element of
mass will thus not be constant, but the quantity of heat contained in it
will. The change is not an isothermal but an adiabatic one. In this
case, as is shown in Chapter VI, the relation existing between the
pressure and volume is not p=cp, but p=cp¥, ¢ and  being constants ;
« is the ratio of the specific heat at constant pressure to the specific
heat at constant volume and for air, oxygen, hydrogen and nitrogen it
has the value 1-41.



WAVE MOTION 133

I p=cps,  dp=cpyx(l +s)'°-1(ls
and %hc@ - 1](1 +8)ye-2ds= CK Po - (1+5)K 1
% O (dp 85
Consequently 3 =3t p = crpy<=1(1 +s)x- 2

Now (1+s)<-2 may be put =1 and cpo"“1=po/po. Hence

¢ _ Py s KPO 9
o " “p, 0t Ve,

and the velocity of the wave is */"170/Po This result agrees well with
experiment.

Consider, again, the expression for the velocity potential in the
case of the plane wave travelling in the /7, m, % direction, namely,

2 2
PR
T v
o o 2l 271- I +my +nz
It gives U= —=-=A——00s <t—~07>
with similar expressions for » and w, whence we derive the result that

vy %
I m o

that the velocity is perpendicular to the wave front. The wave is
thus longitudinal.

§110. Transverse waves.
Consider the expressions

n= Z)51n—<t——> {—csm{ <t——) 8}. .......... (20)

They represent two waves being propagated in the positive a
direction. If » and ( denote respectively the displacements parallel to
Oy and Oz of the particle at z, 7, 2, the resultant displacement is trans-
verse to the direction of plopagation and both waves together are said
to constitute an elliptically polarised wave, because, as the wave passes,
the particles describe ellipses parallel to the 4 f/—plane

To find the equation to these ellipses write

)1 .
J[SI = <t——> 0038+cosi:<t—%> sin 8},

{=

2

1.0, < zz0058+cos—w<t——> BIIY B e s s 655 2558 Ko o (21)
c b T
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and eliminate <t = g) between (20) and (21). This gives

2 2 2 9 S 2
<7—7> +< { —ﬁcot8> =1 or 1 T 08 + {

b ¢sind b 7%sin?8  besin?d czsin28=1’

which is of course an ellipse since the asymptotes are imaginary.

The y and zaxes can be chosen so as to make the product term
disappear. Then we have cos 8=0, and the elliptically polarised wave
referred to the new axes can be written in the form

g 2x % _.27?@77]_
7)~bsm7<t—5>, C—csm{7<t—v>i§f

An elliptically polarised wave is the most general type of transverse
wave. When b=c¢, the orbit of each particle is a circle and the wave
is said to be circularly polarised. When the phase difference is zero,
the orbit becomes a straight line and the wave is said to be plane
polarised.

EXAMPLES.

1. A vibration of frequency = is rendered intermittent in frequency m
by the interposition of an obstacle, so that it can be represented by the
expression
(1 + cos 2mmt) cos 2mrnt.

Show that the intermittent vibration is equivalent to three simple
vibrations of definite frequencies, which find.

Apply this to the explanation of the two sounds, one above, the other
below the pitch of a fork, which are produced when the sound of the latter
is intercepted by a perforated revolving screen.

2. A st)und wave is gl.Vell by
277‘( .12)
(b—_A(:()S— t——).

If py, po+08p denote the pressures when the air is at rest and in motion
respectively, the rate at which energy is transmitted across unit area in the

wave front is —(p,+ 0p) g—f Show that 8p=p0%§) and that consequently
the average rate of flow of energy across unit area in the wave front is

2m?A%p,
oT?

3. Find an expression for the velocity potential for stationary waves in a
cylindrical pipe, the wave fronts being perpendicular to the sides of the
cylinder. Assume (1) that the pipe is closed at both ends, (2) that it is open
at one end and closed at the other. (Boundary condition at a closed end

op _ _
5p =0 atan open end ¢p=0.)
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4. Show that = fi—r),

alllld any differential coefficient of it with respect to , 7, z are solutions of
the equation 2 9 2 2
v (a ‘f+a ‘f+a ‘é’)
o2 022" 02 ' Oz
5, Transform the equation of wave propagation

oy 92
az(f =0

to the proper form for symmetry about an axis, namely
),
o2 or?
Adopting the particular solution

. 2 7
7*([)=s1n—1_— (t—~>,

v

show that only at a distance from the source equal to many wave-lengths is
% inversely proportional to the distance, while near the source a different

law holds good.

6. A gas is enclosed within « rigid spherical envelope of radius a and
vibrates symmetrically about the centre. Show that the frequency is given

by %, where # is given by tan na=na.



CHAPTER V.
ELECTROMAGNETIC THEORY.

§111. IT is shown in the elementary text-books, that the attraction
between permanent bar magnets may be explamed by supposing
charges of positive and negative magnetism to reside at the ends of
each magnet and by supposing that like charges repel and unlike
charges attract one another. In the case of a thick magnet these
charges occupy regions near the ends ; these regions are the parts that
the lines of force emanate from, when the field of the magnet is plotted
with a compass needle, and they are called the poles of the magnet.
If the magnets are long, thin and uniformly magnetized, the poles
contract to points exactly at the ends, and we base our definition of
unit quantity of magnetism or pole strength on this case. Two like
poles of equal strength are said to have unit quantity of magnetism,
when they repel one another at a distance of one centimetre with a
force of one dyne, both being in air.

It has been proved by Coulomb with the torsion balance and also by
Gauss by measuring the attraction between two magnets in the “A”
and “B” tangential positions, that the force between two poles varies
inversely as the square of the distance between them. It is thus
analogous to gravitational attraction. In order to define the field
strength or the magnetic intensity (H) at a point in the field of a
magnet or system of magnets, we suppose a positive pole of strength m
placed at that point ; then Hm gives the force with which the field acts
on the pole. 1t should be noted that Hm has the dimensions of force ;
H has not. The potential at a point in the field (V) is the work that
would have to be done against the forces of the field in bringing unit
positive pole from infinity to that point. Thus, in analogy with
gravitational attraction, 2V

H=_E'

The magnetic moment of a bar magnet (M) is equal to the pole-
strength multlphed by the distance between the poles. If the poles do
not occupy points but cover a definite region at each end of the
magnet, the moment is obtained by di V1dlng the total quantity of
magnetism into - elements and by multiplying each typical element
dm by [, the distance between it and the corresponding element at the
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other end of the magnet. Then M=3ldm. The intensity of
magnetization of a magnet (I) is defined as its magnetic moment
per unit volume. If the magnet is a thin cylindrical one of length I,
and cross-sectional area «, the volume is /o and the intensity of
magnetization is given by

I M ml m

e e a’

that is, it is the surface density of magnetism on either end of the
magnet.

§112. Magnetic potential due to a small magnet.

Let A and B represent the poles of a small magnet, m the charge of
magnetism at A and —m that at B. Let C be the middle point of the
magnet and let /=AB. Consider the potential
at a point P, at such a distance from the
magnet that PC is large in comparison with
AB. The potential at P is made up of two
parts; it is the sum of the potentials due to
the positive pole and the negative pole, that is,

it is equal to P

AP BPF
Draw AD and BE perpendicular to CP, write
7 for CP and let angle PCA be 6. Then, since
» is large in comparison with [, triangle DPA Fro. B8,
may be regarded as isosceles. Hence

l
AP=DP=CP - CD=CP —CAcos 0 =7 — 5 cos 0,

and similarly BP =7+ L cos 8. Therefore the potential at P,

2
mo_m_ 1 1 ml cos 6 M cos 0
—_——— =" — = ece—
AP BP ) l o, (Pcos?t 72
7'—50050 1+§cos9 72— T
2cos?

since may be neglected in comparison with 72 It should be

noted that 6 is the angle which the direction of the point makes with
the positive direction of the axis of the magnet, that is, the line drawn
from its negative to its positive pole.

§113. Magnetic shell. Magnetic potential due to a uniform shell.

A maguetic shell is a very thin sheet of magnetizable substance,
magnetized at each point in the direction of the normal to the sheet
at that point.

The strength of the shell (¢) at any point is the product of the
intensity of magnetization at that point into the thickness of the shell
measured along the normal.
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_ If ¢ denotes the thickness of the shell, ¢ =T, Hence ¢ at any point
is the magnetic moment of unit area of the shell at that point.
The shell is said to be uniform when ¢ is constant all over it.
Suppose that it is required to determine the potential due to the
shell at a point P outside it, the distance of P from the shell being
large in comparison with the thickness of the latter.
Consider an element of surface at the point A, of
P area ¢, and by drawing lines normal to the surface
at every point on the boundary of this area, cut a
small magnet out of the shell. BA is the axis of
this magnet. Its pole strength is Is and its length

A 0 - is t. Consequently its moment is Iat or ¢a. If AP
+  be denoted by 7, the potential at P due to this
B ~  clementary magnet is
Fic. 59. d)a cos 0

o
WhE?I‘e 0 has the value shown in the diagram. Now acos € is the
projection of the area of the end of the magnet on a plane at right
angles to AP, and thus ¢ 07?25 ¢ is the solid angle subtended at P by this
area. Let this solid angle be denoted by df2. Then the potential due
to the elementary magnet is b d0

If we suppose now that the shell is divided into a number of such
elementary magnets, it is clear that the potential due to the whole
shell will be ¢80

where  is the solid angle subtended at P by the whole shell.
€ depends only on the shape of the boundary of the shell. From
the method of establishing the result it is evident that the potential is
positive on the positive side of the shell and negative on the other side.

Let ACB be a section of a uniform shell. Let P and Q be two points
close up to the shell on opposite sides of it, P being on the positive
side. Let us suppose that it is required to
determine the difference of potential between

c P
A~ P and Q.
A @ =8 Let V. be the potential at P and V, the
N\ Vi potential at Q. Suppose now that another
S - shell of the same strength and with the same
p T boundary is placed in the position ADB indi-
Fr6. 60. cated by the dotted line. The negative

surfaces of the two shells face one another

and together they may be regarded as constituting one closed shell.
Since P and @ are close together the potential produced at P and
Q by the part ADB is approximately the same. Denote it by V.
Then the resultant potential at P is V, +V and the resultant potential
at @ is Vo+V. But the solid angle subtended at P by the whole
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closed shell is zero, for the one part annuls the other. And the solid
angle subtended at Q is —4w. Hence

Vot V=0, Vyo+V=—4rd,
whence Vp =V =4m¢.
§114. Ampére’s theorem.

In 1820 Oersted discovered that a current-carrying circuit produced
a magnetic field, and in 1823 Ampére enunciated the law that gives
the magnetic intensity at any point in the field of such a circuit.
It runs as follows: “Every linear conductor carrying a current is
equivalent to a simple magnetic shell, the bounding edge of which
coincides with the conductor and the moment of which per unit of
area, 4.e. the strength of the shell, is proportional to the strength
of the current.” The direction of magnetization of the shell is related
to the direction of the current in such a way, that if an observer
stands on the positive side of the shell near the edge facing the
direction in which the current is flowing, the area of the shell is on
his left hand. The best proof of Ampeére’s theorem lies in the fact
that it is the basis of the whole science of electromagnetism. Its
results are thus being compared daily with experience, and no case
has been discovered in which it does not hold.

The electromagnetic unit of current is defined so that when the
current is expressed in it, it is numerically equal to the strength of
the equivalent shell. In other words, the constant of proportionality
becomes unity. We shall, however, use electrostatic units. The
theorem can then be written b=ifc

¢ being the strength of the equivalent shell, ¢ being a constant and ¢
the strength of the current in electrostatic units.

The magnetic intensity in the field of an electric current depends
only on the strength of the current and not on the nature of the
medium filling the field. The magnetic intensity in the field of a
magnet depends on the nature of the medium in the field. Hence
Ampére’s theorem is intended to hold only for a current-carrying
circuit situated in air.

Ampere’s theorem, of course, does not hold for points inside the shell.

§115. Work done in carrying unit positive pole round closed path
in field of current.

Let A be the trace of the wire carrying the current and let AB be a
section of the equivalent magnetic shell. Suppose that the positive
pole is carried round the circuit R. Then the work dome is zero,
because the circuit is analogous to an external circuit in the field of
a mass of gravitating matter. Suppose now that the pole goes from
P to Q. The difference of potential hetween P and @ is 4= 4mifc.
If we were to bring the pole from @ to P through the shell, this
difference of potential would be lost and the resultant work done in
the circuit would be zero. But it must be remembered, Ampére’s
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theorem does not hold for points inside the shell. Consequently,
when the pole arrives at Q, assume the shell removed and let the
pole continue its path from @ to P in air. The length QP is so short,
that the work done on it can be neglected, and thus the whole work
done in the circuit is 4mifc. If the path of the pole is a closed one
threading the wire carrying the current n times, the work done on the

Or

p B

Fia. 61.

ole is 4mnifc. If there are permanent magnets in the field, the result
still holds, for they cannot influence the work done on a closed path.
The theorem proved above is called the “first circuital theorem.”
We have noticed incidentally, that the magnetic potential of a
current-carrying circuit is multiple-valued, while that of the equivalent
shell is single-valued.

§116. Case of a right circular cylindrical conductor.

Suppose that we have a homogeneous, right circular cylindrical
conductor, of radius a, infinitely long, with a steady current flowing
in it, and let the direction of the conductor be perpendicular to the

plane of the paper. There is no magnetizable
matter in the field. It is required to find H,
the magnetic intensity, both inside and outside
the conductor.

The direction of the magnetic intensity will
be in the plane of the paper and everywhere
tangential to circles with their centres in the
axis of the cylinder. Take therefore a circular
path of radius 7, 7 being greater than a. The

Kl 8% work done on the unit positive pole in taking
it round this path is 2=7H. By the first circuital theorem this is equal
to 4mwijc. Hence 9%

H=—.
cr

This gives the value of H in the air outside the conductor.

Suppose now that » is less than . Since the current is uniformly
distributed over the conductor only a fraction (r/a)? will flow then
through the circuit. The work done in taking unit positive pole round
47in?

0 ,and H is given by

the circuit is therefore

Qir
H= rl*..‘
o=

This gives the value inside the conductor. Both values of course
coincide for »=a.
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§117. First circuital theorem. More general form.

Let all space be filled with a conducting medium not necessarily
homogeneous and let there be electric currents everywhere. At the
point z, ¥, z let the components of H be «, B, y, and let the components
of current per unit area be u, v, w. That is, if we set up an area of
1 sq. em. at right angles to the z-axis, « gives the quantity of electricity
measured in electrostatic units which flows through it in one second.

Draw any closed circuit in this medium. Then, by Stokes’ theorem,

j{adm+ﬁdy+ydz} :H{z@; - %) Py @—:‘ - %}) i <%§ _g_;>} as.

The expression on the left is the line integral of the tangential
component of H taken round this circuit; the expression on the right
is the surface integral of the normal component of the curl of H taken
over any surface bounded by the circuit. But, by the first circuital

theorem,
T

j{adﬂ; +Bdy+yde} = %J‘j{lu+ﬂw +mw} dS.

The surface integral on the right gives the total current through the
circuit. Combining this equation with the previous one, we obtain

%r"‘-“{lu +mw +nw}dS = II{Z<%Z - %E) +m <g:’ - g%) +n (%a:@ - %‘;)}ds.

The above equation is true, no matter what the boundaries and shape
of the surface are. It holds true for every element of it, no matter
what values I, m, n may have; we may therefore equate the two
integrands. Thus the equation decomposes into the following three :

47w _Oy OB 4mv_Odu Oy 4rw_2°B Qo

¢ oy o ¢ o2 o ¢ om oy

which hold for every point in the medium. They are equations which
enable us to determine the current when the magnetic intensity is
known.

§118. The displacement current.

If we differentiate the first of the above three equations with respect
to z, the second with respect to 7, the third with respect to 2, and add,
the right-hand side vanishes, and the left-hand becomes

4_7T ’(ZL{,”_E 3_1]+4_7r ai'u_() or a_u+@+a_w——()
c o' ¢ ¢ ;% oz oy o=
if the common factor is cancelled out.
This equation states that the divergence of the electric current is

equal to zero. In hydrodynamics there can be no sources and no sinks
where the divergence of the velocity is equal to zero. The stream
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lines can have no ends; they must all be closed curves. According to
the above equation it is the same with electric currents. They must
all be closed. They can start and end nowhere.

Up to the present we have tacitly assumed the current to be a
conduction current, a procession of electric charges along a wire. If
a battery is connected with a resistance box and a steady current is
sent through the latter, then this conduction current is a closed one.
But if an insulated, uncharged piece of wire is suddenly charged by
connecting one end of it to one side of a battery, then the conduction
current is not a closed one. For, isolate any small portion of the wire
by drawing a sphere round it, and consider any small interval df
during the time that the wire is charging. As the wire is filling up
with electricity, the quantity of electricity on the part inside the
sphere will increase by a definite quantity d@ during this time. Let
o be the area of cross-section of the wire, w the current per unit area of
cross-section and dz the length of the element of wire. Then the rate
at which electricity is flowing into the element is given by ow and the

rate at which it is flowing out by o <u+ggdm> The rate at which it
ou

awdm; this is equal to B_Q Thus for no point

is being gained is —o =

on the wire is a—u=0.
oz

The equation at the beginning of this section is therefore not true
when applied to varying conduction currents. The main feature of
Clerk Maxwell’s theory of electricity is that the conception of electric
current is extended so as to make the equation universally true.

The unit quantity of electricity on the electrostatic system is that
charge which repels an equal and like charge at a distance of one
centimetre with a force of one dyne, both being in air. The force
between two electrostatic charges varies inversely as the square of the
distance between them. In order to define E, the electric intensity or
the field strength at a point in the field of a system of charged
conductors, we suppose a small positive charge ¢ placed at that point
without disturbing the distribution of the charges already in the field ;
then Ee gives the force with which the field acts on the charge. It
should be noted that Ee has the dimensions of force; E has not. The
potential at a point in the field (V) is the work that would have to be
done against the forces of the field in bringing unit positive charge
from infinity to that point. As formerly,
oV
os’

The capacity of a condenser varies with the specific inductive
capacity (k) of the medium between the plates. We define & by
taking it proportional to the capacity of the condenser and making
the value for air unity. Since the capacity varies as [, the difference
of potential between the two plates of the condenser varies inversely

Ee=



ELECTROMAGNETIC THEORY 143

as k. Consequently the electric intensity in the medium between the
plates also varies inversely as k.

We are thus led to the conclusion, that if we have a point charge e
situated in a medium of specific inductive capacity k, the electric
intensity E at a point P distant + from it is given by

e
Jor®

It is now necessary to introduce a new vector, the electric displace-
ment (D) at P, which is defined hy

k

D= I E.

In the case of the above point charge,
e

=i

If the medium is isotropic, as we have tacitly assumed, D has
everywhere the same direction as E. D is independent of the medium
in which the point charge happens to be placed. It is supposed to
measure a state of strain at the point. The energy of the point charge
is stored up in its field, and a state of strain is set up everywhere in
the field. When this state of strain is set up, something is displaced
at the point ; hence the name.

The rate at which the displacement through an area is increasing
gives the displacement current in the direction perpendicular to that
area. The displacement current was introduced by Clerk Maxwell.
The true current is the sum of the conduction and displacement
currents and the latter is to be regarded as

producing a magnetic field in the same way

as the former. For example, a point charge R [\
is moving with velocity v in a straight line. ® >

About this straight line as axis a circle is U

described. If the velocity of the point
charge is small in comparison with the velo-
city of light, the displacement through the circle is proportional to
the solid angle subtended at the point charge by the circle. As the
charge approaches the circle, this angle increases; the displacement
through the circle increases, and there is consequently a displacement
current through the circle, which produces a magnetic intensity
tangential to the latter.

If we return now to the case we were considering earlier in the
section, the charge inside the small sphere has increased by dQ in dt,
i.e. the surface integral of displacement current over the sphere is

F1c. 63.

%‘?’— outwards. This expression also gave the resultant conduction

current into the sphere. Hence the divergence of the true current
is zero.
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Let « denote the conductivity of the medium ; then «E denotes the
resultant conduction current per unit area. E is not the electromotive
force or the difference of potential between the ends of a wire, but the
space rate of change of the latter or the potential gradient. « gives
the quantity of electricity flowing per second through an area of one
square centimetre when the potential gradient at right angles to that
area is unity. Let the components of E be X, Y, Z; then the components
of conduction current are «X, kY, xkZ. The components of displacement

k k k

are — X, ——Y, —- Z, and the components of the displacement current
dr C4m 4w
EoX koY Lk oz
dr Ot 4w Ot’ 4w O
If we substitute the total current for u, », w in the first circuital
equation, we obtain

4rlcx+kax_?l/ o8 4k +74’ oY Qu Oy
c cot oy oz c cot & o
4w _ 1:0Z OB Oa
A e
the first three equations for the electromagnetic field. They may be
summarised as

4rr I OE
TE+E 7t:curl H.
EXAMPLES.

1. Find an expression for the magnetic intensity due to a small magnet
at any point, the distance of which is great in comparison with the size of
the magnet. Show that for a given distance the maximum value of the
intensity is twice its minimum.

2. If the magnetic intensity varies inversely as the 2 power of the
distance, show that if we have two small magnets, the couple on the second
when the first magnet is “end on” to it, is »# times the couple when the
first magnet is “broadside on,” the distance between the magnets being
the same in each case.

3. Two circles of wire, of radii @, b, are placed in parallel planes perpen-
dicular to the line joining their centres which are at a distance v apart.
Show that if y is the current in each circle in electromagnetic units and b/a
is small, the force exerted by either circle on the other is approximately

6riy e’
B
(a?+a%)2
4, An infinitely long right circular solenoid has » turns of wire wound

round each unit of length. The current in the wire is vy electromagnetic
units. Show that the magnetic intensity inside the solenoid is given by

H =dany.
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5. Show that the potential energy of a uniform shell due to its intro-
duction into a magnetic field is —¢N
bl

where ¢ is the strength of the shell and N is the number of lines of magnetic
intensity due to the external system passing through the shell in the
direction of its magnetization.

6. A straight wire extends to infinity from a point A, and carries a
current y (electromagnetic units). From A it is continued in the other
direction to infinity by « plane sheet in the form of a uniform circular
sector of angle 26, which is bisected by the prolongation of the direction
of the wire. Prove that the magnetic field intensity at a point P on a line
through A perpendicular to the plane of the sector and distant @ from it is

HES

7. An insulated straight wire is embedded in an infinite conducting
medium and a current vy (electromagnetic units) flows in it. Show that the
magnetic intensity at any point P is given by

v (cos 6, — cos 6,)
h ’

where £ is the perpendicular distance from P to the wire and 4,, 6, are the
angles which the wire makes with AP, BP the lines joining its ends to P.

8. A point charge of electricity is situated on the axis of a circle of
radius ¢ at a distance ¢ from the plane of the circle. Show that the total
displacement through the circle is

T
2 (a2 _l_cz)%
Hence find the time rate of change of displacement through the circle if

the charge e is travelling with velocity » along the axis, and the correspond-
ing line integral of magnetic intensity round the cirele.

§119. Current induction.

If a coil of wire is connected in circuit with a galvanometer and the
pole of a magnet is thrust into the coil, a current is set up through
the galvanometer. This current endures as long as the magnet is
moving and ceases whenever the magnet comes to rest. If again,
instead of thrusting the magnet into the coil, a current is started
or stopped in a neighbouring circuit, a transient current is set up
in the first circuit. This transient current lasts only as long as the
value of the current in the neighbouring circuit is altering and ceases
whenever the latter attains a steady value. Such currents are called
induced currents and their laws were determined experimentally by
Faraday.

In both the above cases the magnitude of the induced current
depends on the resistance of the circuit, 4.c. on the material of which
the wire is composed. The induced electromotive force, that is the
resistance of the circuit multiplied by the current, is the same no
matter what the material of the circuit is. We shall now proceed

H:Ps K
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to give the mathematical expression for the induced electromotive
foree. This was first obtained by F. E. Neumann in 1845, but from
a different standpoint.

At a point distant » from a magnetic pole of strength m, the medium
being air, the magnetic intensity H is given by m/2. Just as in the
analogous case of the electric charge, the medium in the field of the
magnetic pole is supposed to be strained. This strain is specified at
any point by B, the magnetic induction at that point. B, like electric
displacement, has the same value no matter what the nature of the
medium in the field is. For an isotropic medium B and H have the
same direction, and B=pH, where p is a quantity called the magnetic
permeability, pu being different for different media. If a, 3, y denote
the components of H, then pa, pB, py denote the components of B.
‘When the medium is air B and H have the same value. We shall
confine our attention wholly to isotropic media.

Suppose now that we have an electric circuit in a magnetic field.
At every point in the field B has a definite direction and magnitude.
Draw any surface with the circuit as edge. At every point on this
surface the direction of B is inclined to the normal to the surface.
Divide the surface into elements, and multiply each element hy the
normal component of B at that point. Then the sum of these products
taken over the whole surface may be written

jjp.(la +mf3+ny)ds,

where I, m, n give the direction cosines of the normal to dS. The
integral is consequently the surface integral of normal magnetic in-
duction through the circuit.

If a magnet is moved near the circuit or.if a current is started in a
second circuit in its neighbourhood, the value of the integral undergoes
a change and a current is induced in the first circuit. The induced
electromotive force is proportional to the rate of change of the integral.
If E denotes the electric intensity at any point in the first circuit, then

the electromotive force acting round that circuit is given by |Eds,

where the integration is taken round the circuit. The law of the
induction of currents can then be stated mathematically as follows:

cj-E ds= — %ij (lo. + mpB +ny)ds.

The minus sign means that if the surface integral of normal induction
is increasing, its direction is connected with the line integral of electric
intensity in the manner typified by a left-handed screw. In the usual
statement of Stokes’ theorem, the curl and line integral of the vector
are connected in the manner typified by a right-handed screw (cf. §53).

In the above equation E is measured in electrostatic units and ¢ 1s
the constant of proportionality, which has the same value as in the
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mathematical expression of Ampére’s theorem. On the electromagnetic
system of units the unit of electromotive force is chosen so as to make
¢ unity. The equation thus gives us a means of defining the electro-
magnetic unit of electromotive force. The equation also gives us a
means of defining p.  For suppose we have a primary circuit wound
uniformly round the surface of a cylinder and a secondary circuit
wound round the outside of the primary near the middle of the
cylinder. If the primary current is broken, a current is induced in
the secondary, and the total quantity of electricity passing round the
latter is proportional to the induction through the cylinder, .¢. to
the magnetic permeability of the medium filling the cylinder.

The equation expressing the law of current induction is sometimes
called the second circuital equation.

§120. Currents induced in a mass of metal.

Let a lump of soft iron be placed in a changing magnetic field.
Then the magnetic induction at every point in the iron is changing.
If we imagine a closed curve drawn wholly in the iron, the surface
integral of normal magnetic induction taken over any surface bounded
by the curve is also changing. Consequently there is an induced
electromotive force round the curve. But the curve may be drawn
in an infinite number of positions in the mass of metal. We are
thus led to the conclusion that there is an electric intensity with a
definite magnitude and direction at every point in the metal. 1t is not
necessary that the medium in the field should be iron ; we can imagine
the closed curve drawn in air quite as well. We thus come to the
general conclusion, that whenever there is a changing field of magnetic
induction, at every point in that field there is an induced electric
intensity of definite magnitude and direction at every time during the
change. This electric intensity vanishes whenever the value of the
magnetic induction becomes constant.

The rate of change of magnetic induction can be determined when
the electric intensity is fully known. TFor, by Stokes’ theorem,

N— %ﬁl) -<3_X_9%> <zﬁ_a_x>
OJE(lb_ijll<aj/ o +m 5 " +n = ds.

The expression on the left hand is ¢ times the line integral of the
electric intensity taken round any closed curve; the right hand is
¢ times the surface integral of the normal component of the curl of the
electric intensity taken over any surface bounded by the closed curve.
By combining the above equation with the second circuital equation,
we obtain

a ” pw(lo +mB +ny)dS

ot
o o [[[(E-2)em (2T en(Z-2)
= L_”[Z % +m 5 "5 +n cria st_
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And, in the same way as in deriving the first three equations for the
cleetromavnetw field, this equation decomposes into the following three
equations :

pOa_ (OZ OY\ pOB_  (OX 0Z\ pOy_ <3_Y_'5_X>
cot <§§”a;>’ Eaz_’<az"ﬁ>’ cot \oz oy/)

These are Maxwell’s second three equations for the electromagnetic
field. They may be combined in the equation

4 OH
¢ ot

§121. Tt has been seen that the constant of proportionality in
Ampere’s theorem and in the law of current induction is the same in
both cases. The one law enables us to define the unit of current
on the electromagnetic system and the other enables us to define the
unit of electromotive force on the same system. And yet the unit
of current multiplied by the unit of electromotive force should give one
erg per second. The explanation is, that the law of current induction
is not independent of Ampére’s theorem. It was discovered experi-
mentally but could have been foretold theoretically from the latter.

For suppose we have a linear closed circuit in which there is a
battery of constant electromotive force ¢ and that in this cireuit a
current 4 electrostatic units is flowing. Let there be a pole of strength
m ab a point at which the circuit subtends a solid angle 2. Then by
Ampere’s theorem the potential energy of the pole is miQ/ec. The
current will act on the pole and move it into a position where the
potential is less. Let midQ/c be the change in potential energy of
the pole in time df. Then —midQ/c is work done by the battery. The
rate of working of the battery is ez, but owing to the work done on the
pole, the rate at which heat is produced in the circuit is only

= —curl E.

e
e
<%¥ is negative ). There is thus an induced electromotive force, or
) 00 . . .
back E.M.F. equal to - e . 3 The total number of lines of induction

issuing from the pole is 4=m and the surface integral of normal in-
duetion through the circuit is mf{.  Its rate of increase is thus
o0

b

m

That is, the electromotive force induced round the ecircuit is

T s - . - .
— = times the rate of increase of the surface integral of normal induction.
¢

The second circuital theorem can thus be derived from the first circuital
theorem by means of the principle of energy.

The constant ¢ can best be determined by measuring the capacity
of a condenser both in electrostatic and 0100t10111&01]et10 units. The
dimensions of capacity are the dimensions of charge divided by potential
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and the dimensions of potential are the dimensions of work divided by
charge. The dimensions of capacity are therefore the dimensions of
charge to the second power divided by the dimensions of work. The
unit of work is of course the same on both systems and the units of
quantity are to one another as the units of current. IHence the
numerical value of the capacity on the electrostatic system is ¢ times
its numerical value on the electromagnetic system. The numerical
value on the electrostatic system can be found from the dimensions of
the condenser. In the case of a sphere it is equal to the radius. The
numerical value of the capacity on the electromagnetic system can be
found by experiment. Hence c.

§122. Electromagnetic waves.

Let «, the conductivity of the medium, be zero. Then the equations
of the electromagnetic field become

koX 9y o koY _Ou Oy kOZ_0B Ou

c Ol oy 02 c¢of oz o cot om oy
pou_o2 ¥ _p3/_OX_0Z . _pdy_ 2 23X
¢ . ¢ o Oz Oy

of oy oz’ ¢ of 0z o

Differentiating the first with regard to ¢ and substituting from the
last two, we obtain

EoX @y 2B c<?)2Y PX X azz>

cOF oydl ot p

%oy o T o T owe

A g B Gt B i
- FW @ T op T o %\Tw oy )
9X oY oz . , i
But -t @+ a:O, since we suppose that no charges exist in the
field. Hence

pk X 92X 92X 92X

T o 0P o

This equation states that X is propagated by wave motion, the
velocity of the waves being ¢//puk. We can prove the same for Y, Z,
a, B, v by proceeding in exactly the same way. Hence the electric
and magnetic intensities are propagated in a dielectric with velocity
¢/Npk. In the case of air p=k=1. The numerical value of ¢ as
found in the laboratory by the method described in §121 is 3 1020
ems./sec., and this coincides with the velocity of light in air. We thus
draw the conclusion, that light is an electromagnetic wave.

This striking result was first published by Maxwell in 1865. His
theory of the electromagnetic field was not generally accepted until
Hertz performed his experiments in 1887-88, because, previous to that
time, there were no experiments that could be explained only by it.
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§123. Hertz's experiments.

If the inside and outside of a Leyden jar are connected by a coil of
wire possessing self-induction and having a spark gap at one point in
its length, and if the jar is charged by means of an influence machine,
the difference of potential at the two sides of the gap eventually reaches
a value when the dielectric resistance of the air breaks down and the
jar discharges across the gap producing a bright spark. If the resis-
tance of the wire is not too great and this spark is examined with a
rotating mirror, it is seen to consist of three or four sparks alternately
in different directions. Oscillations are set up; the current does not
merely pass from the positive to the negative side, ceasing when the
original difference of potential is annulled, but it continues until a
difference of potential is produced in the reverse direction, the side
which originally possessed the negative charge now having the posi-
tive charge. Then the direction of the current reverses, and we
have the electricity oscillating from the one side to the other until
finally the heat of the current is no longer sufficient to maintain the
air of the gap in a conducting state and the circuit is broken. The
original electrostatic energy is dissipated in heat in the wire and in
the spark gap.

Here then we have changing conduction currents, and from what has
been said above we would expect displacement currents to be pro-
duced. In the theory of the discharge of a condenser which was given
by Lord Kelvin in 1853, only the conduction current was considered,
and Lord Kelvin’s theory has stood the test of experiment well. The
reason why displacement currents are not in cvidence during the
ordinary oscillatory discharge of a Leyden jar is, that the oscillations
are not fast enough and that the circuit is too “closed.” The displace-
ment is all in the glass of the condenser and does not radiate out into
the field.

According to the theory the period of discharge of a condenser is
given by 9wa/LC, where L is the self-induction of the circuit and C
18 the capacity of the condenser. In Feddersen’s experiments proving
the theory, the average period was 107> secs. By reducing the capacity
and induection so as to bring the period down to about 1078 secs.
and by altering the form of the circuit, Hertz was able to show the
existence of displacement currents and to prove conclusively that the
dielectric played a part in the discharge.

Hertz employed a vibrator consisting of two spheres connected by a
straight rod with a spark gap in its middle, the two sides of the sparlk
gap being connected with the secondary of an induction coil. When
the primary of the induction coil was broken, vibrations of a large
period were set up in the secondary, and the spheres became charged
with electricity of different sign, until the resistance of the spark gap
broke down. Then they discharged across the gap and the electricity
surged backwards and forwards between the two spheres, until the gap
ceased to conduct. The number of complete vibrations was not large,
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about three or four, and they were not isochronous, hecause the resist-
ance of the gap was large and was changing all the time.

The vibrator may be considered apart from the induction coil ; it
cannot discharge hack through the secondary of the coil owing to
the great inductance of the latter. Waves are sent out from the
vibrator, and Hertz demonstrated their presence in the room by means
of a receiver consisting of a circle of wire with a micrometer gap in it.
When the circle was placed so that the magnetic intensity normal to
its plane was altering, sparks passed across the gap, and the sparking
distance gave a means of estimating roughly the intensity of the field.

§124. Hertz’s theory of the electric doublet.

An electric doublet is a system of two equal and opposite electro-
static charges a constant small distance apart. The product of either
charge and the distance between them gives the moment of the doublet.

The following four equations hold in the field of a Hertzian vibrator :

k oE

= 7t=0111l1 Hly o 58 o cow s wos s 520 58 B o (1)
/ OH e

% L (2)
VIE0; won s smsewovrmin s v s s s s s 3)
A B=20s v 2 s o s s sms won = v s s & (4)

The last two equations merely express the condition that there are
no electrostatic charges or magnets in the field. In order to find the
state of affairs in the field we should have to solve the above four
equations together with the appropriate boundary conditions on the
surface of the vibrator and at infinity. It is, however, impossible to
express the conditions for the surface of the vibrator mathematically,
and a rigorous solution is beyond us. Hertz succeeded in obtaining
an approximate solution, which agrees with the result of experiment,
and which is of very great interest from its analogy with the mechanism
of light production.

In order to obtain Hertz’s solution, we suppose that the vibrator is
replaced by an electric doublet, the moment of which varies harmoni-
cally with the time. This is an approximation to the state of affairs
on the vibrator. Take the centre of this doublet as origin and its axis
as Oz Call all the planes through the axis meridian planes. Then by
symmetry the lines of magnetic intensity are everywhere circles round
the axis, and the electric intensity at every point lies in a meridian
plane. )

Starting from equation (4), we have, since y=0,

%a O
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This is the condition that ady - Bdw is a complete differential of

some function of z, y. Write o for this function. Then

ot
o o211 o
otoy T T otow
Equation (1) may be written as
koX _ of oIl koY Yo I

¢ % olowor cof oz oOtoyor
i s e T P
co Oomw Ty  Otca? Otoy?
From this we obtain
orkx UL o/ky oI oskz OUI Ul
e "we) =" e w0 ale tartaE)=C
From the conditions of the problem there can be no part of X, Y

or Z independent of 7; hence, on integrating the above three equations,
the constants of integration are each zero. We have therefore

Ul 2L oI 2211
kX=cm, £Y=cayaz, Z=—C<W+W>'
The first two components of equation (2) are
_pOo_0Z 0¥ poB _oX oz
¢cof dy o Tcot o= om

Substituting the values for o, B, X, Y, Z, which we have already
found, we obtain
p ORI ¢ 0 /oI I\ ¢ %I
T oy ‘E@(WJ"@?)_EW
p oIl ¢ Il ¢ 0 /oI 91
+zm=7amzz+m<ax2 +@?>'
These may be written

2 2 2 2
(G-, (2 5~ L) =0,

oy\ o kup NG
which give on integration
oI ¢?
g _ Sy
I 11+ f (2, ).

We can put f(z, t)=0 without loss of generality because the effect
of f(z, ¢) is merely to add to the expression for Il a term independent
of z and y.¥ The five quantities we are concerned with, a, 5, X, Y, Z,

* This may most easily be seen by adding y(z, t) to II and substituting in the
equation. The substitution of the new term gives a function of z and ¢, x(z, ¢),
which can be arranged to remove the original f{(z, ¢).
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are all obtained by processes involving differentiation of II with
respect to @ or 7, and hence are independent of this additional term.

Since the disturbance is radiated out from the origin, the general
solution must be of the form

=/, 0= o)+ ol + 1)}
where v=c/lu. A solution adapted to the doublet is

II= (/é sin (mr — nt),

where n/m =.

For consider points close enough to the origin for nu to be small in
comparison with 27 This means only that » must be small in
comparison with A. Then

II=- ;t sin nf.
oI el S oar .1 .
TR kY = c%, and in this case AZ = 6z siuce - satisfies
(o2 I NG N RGN

Tmz‘l'w‘l'égg—:o- Now

T _ ot 2 ,
a—=—d)smnt%<%>=+¢smnt op bsinmt

Oz 72y 72 ’

if 6 is the angle 7 makes with the szaxis. At points considerably less
than a wave-length distant from the origin, then, the components of

electric intensity X, Y, Z are obtained by differentiating M)ﬂrllc#osﬂ

with respect to z, ¥ and z But, by analogy with the small magnet,

@.Sln]%ﬂg is the expression for the potential due to an electric

doublet of moment ¢¢ sin n¢ in a medium of specific inductive capacity /.
At distances great in comparison with the length of the doublet but
small in comparison with the wave-length, Hertz’s solution thus gives
the values of the electric intensity which we would expect to get.
Similarly with the magnetic intensity. The magnetic intensity in
the case of a current y flowing in a closed conductor can be calculated
correctly on the assumption that each length ds contributes a part
v sin 0 ds
cr?

But kX =

the equation

at a point distant 7 from it, y being expressed in electrostatic

units, 7 making an angle 0 with ds and the direction of this part being
perpendicular to the plane containing » and /s. Apply this to the
doublet ; yds has the value cné cos nf, since this expression is obtained
by differentiating the moment with respect to the time. The expression

for H is therefore b cosmfisin B

72
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From the value of II, we have

_ L e [ ¢ . ) _mepcosnt Tr
@==r= T \ - sin nh = — 7 oy

We know that the lines of magnetic intensity are circles. Suppose
that the y-axis iIs in the meridian at the point considered. Then
g—;f:z,:sin 6, where 0 is defined as hefore, and 8 hecomes zero.
The two values for the magnetic intensity therefore agree.

Also it is obvious that «, 3, X, Y, Z are zero at infinity. Hence the
solution satisfies the boundary conditions.
¢
=
two types of terms, those with 1/72 as factor and those with 1/r as
factor. At large distances from the origin the terms of the first type
may be neglected. Consider a wave at a large distance from the
origin and choose the gz-plane so as to contain the direction of

propagation of the wave. Then »=x/y2+ 22,

In differentiating * sin (mr — n#) with respect to z, y and 2, we obtain

cpm? . - cpm? . :
kY = — ¢; sin (mo —nf) sin G cos 0, hZ= d)T sin (m — ng) sin? @
m ;
and a= %—— sin (mr — nf) sin 0.

Hence Zcos 0+ Ysin 6 is equal to zero and the electric intensity is
perpendicular to #. At large distances from the vibrator, therefore, we
have the electric and magnetic intensities both perpendicular to the
direction of propagation and to one another.

§125. Poynting’s theorem.

If a conductor receives an electrostatic charge, the energy of the
charge is stored up in the field. This can be shown very well with a
Leyden jar, the inner and outer coatings of which can he detached
from the glass. If the condenser is insulated and charged, and if it
is taken apart with insulating tongs and the two coatings put into
contact with one another, no spark passes between them. But if it is
put together again and then discharged, the spark is as great as it
would have been had the condenser never been taken apart. The
energy of the charge has apparently been stored up in the glass.

The energy of a system of charged conductors can, of course, be
calculated from the work done in bringing each elementary charge
from infinity, in analogy with the method of calculating the potential
energy of a system of gravitating masses. It is found that the same
numerical value can always be obtained by assuming that there is an
amount of electrostatic energy stored at every point of the field

equal to LE2 ED

I‘ —_—
8 2
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per unit volume, E and D heing the electric intensity and displacement
at the point. The assumption is therefore talken to be correct. The
expression ED/2 brings out the meaning of displacement very clearly
owing to its analogy with the formula “half tension by extension ” for
the work done in stretching a spiral spring. ’
Similarly, at a point in a magnetic field, where H and B are respec-
tively the magnetic intensity and induction, we assume that there is a

2
quantity of energy ’Ug—lj per unit volume. This assumption gives the
same value for the energy of a system of electric circuits as is obtained
by using the equivalence of each circuit to a magnetic shell.

We assume, therefore, that the density of the total energy in the
field is given by

o (KE+ iH2).

Suppose now that we have a certain region of space bounded by a
closed surface. The energy in this region is given by

_”J-SL (KE2 + pH?)dx dy dz
T
~ ([ o vz pe s ey dsaya
T

the integration being taken throughout the whole region. The rate of
increase of the energy in the region is obtained by differentiating the
integral with respect to ¢, and is equal to

1 X Y, _0Z\. [ Da. 3B, N} ..
”_[E{k@@+Y@+Z’a_¢>+"<°‘a7+ﬁﬁ”ﬁ)[‘hdﬁ/‘k'
Qa,

Py e
ot
the electromagnetic field, this becomes

¢ oy _9B oz ay> L
‘E.{”{zx<7y N 5) - 2“<@ - = ) fdwdyde

= 4%_{_”{5% (BZ -7Y) +a_8y (yX—oZ)+ 8% (aY - ﬂX)}(Zw dy dz

Substituting for & %, R , ..., from the equations of

_ 4” j (1(BZ ~ 7Y) +m(yX - uZ) + n(a¥ — BX)} dS,

by Gauss’s theorem. The vector, the components of which are 3Z - yY,
yX —aZ and aY — BX, is evidently at right angles to both H and E, and
its numerical value is equal to

((BZ —YY)2+ (yX — aZ)2 + (aY — BX)?} = EH sin ,

where 6 is the angle between the directions of H and E.
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The surface integral is the surface integral of the normal component of
¢EH sin ¢
4w
then to interpret

taken over the surface bounding the region. It is natural

w at a point in space as the rate of flow of
T

energy per unit area at that point. This result is due to Professor

Poynting.

§126. Application of Poynting’s theorem.

Let us apply the theorem to the case of a long straight homogeneous
cylindrical wire of circular section carrying a steady current y. Let 7
be the radius of the wire.

Consider the portion of the wire intercepted hetween two planes
perpendicular to its axis and distant d apart. Let R be the total
resistance of this portion. Let us consider the rate at which energy

is flowing into this portion. We have to form the expression gt sin &

over the side and ends of a cylinder of length d and radius s. o
The lines of magnetic intensity are circles and on the surface of the
cylinder H has the value 2y/(¢r). The lines of electric intensity inside
the cylinder are straight lines parallel to its axis. The total difference
of potential between the two ends of the cylinder is yR; hence the
electric intensity is yR/d. It is everywhere at right angles to H.

The direction of %—S;lle at the ends of the cylinder is parallel to

these ends ; hence no energy enters into the cylinder through the ends.
. 2
On the surface it is perpendicular to the surface and has the value 2}_;;05.

If we multiply this by the total area of the curved surface, we find for
the rate at which energy is flowing into the cylinder

Y’R
dmrd

dmrd x =v?R,
and that of course is the rate at which heat is being produced in the
cylinder.

If the current is produced by an electric battery, chemical energy is
converted into electromagnetic energy in the battery and flows through
the dielectric to the wire where it is converted into heat. It does not
flow along the wire although the latter guides its flow through the
dielectric.

If an alternating current flows along the wire, periodic waves are
therefore propagated in from the surface, the amplitude decreasing
with the distance from the latter. We would thus expect the current
to be denser near the surface of the wire. This result is borne out by
experiment. If «, the conductivity, is very great in comparison with
k, we find that the equations for the propagation of H and E ave of the
same form as the equation for the conduction of heat.
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§127. Propagation of a plane wave.

Consider the expression Y = B cos 2—:— (t - g)

It represents a plane wave of electric intensity propagated in the
direction of the positive z-axis, v being the velocity of the wave, T its
period and B the maximum value of its amplitude. In any planc
parallel to »z at any time the electric intensity has everywhere the
same value. If we fix our attention on a fixed plane, then, as time
progresses, the electric intensity undergoes a simple harmonic variation.
If we fix our attention on a definite time and move the plane instan-
taneously in the direction of the z-axis, then the electric intensity again
undergoes a simple harmonic variation when regarded as a function of
the distance. Its direction, however, always remains parallel to the
y-axis.

Put X=2z=0 and substitute for X, Y and Z in the second three
equations of the electromagnetic field. Then

g, pER . PO W "_T<_Z>
cat—o’ cat_o’ cat_aw_B o i v)

The constants of integration must be zero, as there are supposed to
be no permanent magnets or steady currents in the field. We thus

ohtain . 9 :c
T
a=[B3=0, 7=Bﬁcosj<t—5>.

This represents a plane wave of magnetic intensity, of the same
period and velocity as the former wave propagated in the same direction,
the magnetic intensity in the wave being always parallel to the z-axis.
According to the equations of the electromagnetic field, we cannot have
the one wave without the other. Both together are said to constitute
a plane electromagnetic wave plane polarised in the zz-plane. In the
wave the electric and magnetic intensities are at right angles both to
one another and to the direction of propagation.

Similarly, if we had started out with the wave

2 z
Z=C cos ﬂ_<t—£>,
U

&
T

by substitution in the equations of the electromagnetic field we would
have found associated with it the wave

¢ O &
B= —C/T,Ucos7<t—/l—:>.

Together they constitute a plane electromagnetic wave plane polarised
in the zy-plane. )

Suppose that the plane polarised wave is not propagated in the direc-
tion of one of the coordinate axes but in any direction whatever, the
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direction cosines of which are I, m, n. Then it may be represented by

A 02
X:Acos2_7r<t_lm+my+m>, Y=Bcos£<tﬂlw+7m‘/+n>,
T v T v
7 Cosd <t_lv:;+my+nz>.
v
oX oy oz
Now
+3y o2 =0,

Substituting in this equation and cancelling out the common factor

20 . < s+ my + m>
—sin(f—-—"—);
TV )

we obtain [A+mB+nC=0, i.e. A, B and C are not independent, but
the resultant electric intensity must be at right angles to the direction
of propagation.

Substituting in the second three equations of the electromagnetic
field, we obtain

P Qo or . 2w lz +my + nz)
B (mC — nB) sm (i s
_,ia_/gz(mgm Q_TrS].nizlr ; Za,+my+7z7>
¢ ot T T
P2 g may 2T sin 2:<i Lot W/ 13 ’”)
c ¢t T %
7 2 2
whence = (mC - nB) 2 cos —(t f +m/+n >
T
2w
B=(nA-1IC) % cos ”7 <t ke + i+ m>

¢
=(IB —mA) 5

We see from the form of the coefficients that (a, /3,
angles to both (X, Y, Z) and (I, m, n).

The velocity of the wave is given by ¢/s/kp. It is found that as far
as light waves are concerned, p=1. Also we know that the velocity
of a light wave is given by ¢/n, where n is the index of refraction of
the medium for the particular colour in question. We must therefore
have Jk=mn or k=n2 Hence % cannot be a constant as far as light
vibrations are concerned, but must depend on the frequency of the
vibrations, although in electrostatics it was a constant for any one
medium.

In what follows we shall suppose we are dealing with monochromatic

light.

y) is at right
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§ 128. Energy of a plane wave.

_ Suppose that the wave is propagated in the z direction and that
it 1s polarised in the zz-plane. Then it may be represented by

o a Ui )
Y=Bcos~<t—£>, y:Bicos—~<t—%>.
e v 12 Ty v

By Poynting’s theorem the energy is flowing in the direction of
the z-axis, ¢.e. the direction of the flow of energy is identified with the
ray, and the rate of flow at any time for any value of z is given by

¢cEHsinf ¢
dr 4w

o g2 @
B2cos? — (¢ — o ergs/sq. em., sec.
T

This expression oscillates between zero and a constant positive
value, but never changes sign. The energy flow is therefore always
forward. The period of the oscillations is so small that they cannot
be detected by the eye or any physical instrument; it is the mean
value that is important. Now the mean value of cos?d, between 6=0
and 0=, is 3. Hence the intensity of the wave is equal to

&
SV

2

As all our observations on light are made in air, for all practical
purposes we may put pw=c. The intensity of the wave is therefore
proportional to the square of the amplitude, a result which might have
been derived by analogy from hydrodynamical and other considerations.

§129. Boundary conditions.

It is now necessary to determine the conditions that must be
fulfilled at the boundary of two media when an electromagnetic wave
passes from the one to the other. To fix our ideas, let the ay-plane
be the boundary, let the specific inductive capacity of the upper
medium be &, of the lower medium %/, and take the axis of # positive
downwards. We shall also suppose that as we pass through the
boundary, the speeific inductive capacity changes discontinuously from
the value % to 1. B

Consider the rectangle ABCD, the side ] ~_';_\--_;—---5 X
AB of which is in the one medium and D C
the side CD in the other, both AB and CD /
being extremely close to Oz. Let a unit %
magnetic pole be carried round this rect-
angle. Then the work done against the
field must be zero, because the area of
the rectangle is so small, that the dis-
placement current flowing through it may be neglected. The work
done on the ends AD and BC may be neglected owing to their being
so small. Thus the work done on AB must be equal and opposite
to the work done on CD, or, in other words, the magnetic intensities
along AB and DC are equal. We arrive therefore ab the condition

>

Fic. 64.
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that the tangential component of magnetic intensity must have the
same magnitude and direction on both sides of the boundary, that is,
in this case a and 8 must be the same on hoth sides of the houndary.

Similarly, by taking unit positive electric charge round the rectangle,
it may be shown that X and Y have the same value on both sides
of the boundary.

Suppose now, that instead of representing a rectangular circuit,
ABCD is a section of a flat right circular cylinder, the axis of which
is parallel to Oz, AB and CD being sections of the ends of this cylinder.
Let the area of the ends be a. Take the surface integral of the
normal component of electric displacement over the surface of the
cylinder. Then the part contributed by the side may be neglected
owing to the area of the side being so small. The part contributed

by the upper end is — 7{42(7/ and the part contributed by the lower end
S ™
2 42:, where Z' is the value of Z in the second medium measured

downwards. Since there is no electric charge within the cylinder,

. Za KZ
the whole integral must be zero. Hence — 7§£+7 Z0_ 0 orkz=kZ.

4w 4w
We thus arrive at the condition that the normal component of electric
displacement is the same in both media. Similarly it may be shown
that the normal component of magnetic induction is the same in
hoth media.

§130. Reflection and refraction.

Let a plane polarised plane wave of monochromatic light fall upon
the plane houndary of two transparent media. Take the axis of =z
positive downwards and let the houndary of the two media be given

by #=0. Let the plane of incidence

A be the zz-plane and let the angle

! of incidence be ¢. Let the specific

B # E inductive capacity of the upper

! . medium be & and of the lower
NP » medium &. Asisusual in problems
X7 A in optics, we put the magnetic per-
¥ meability of both media equal to
unity.

Resolve the electric intensity in
the incident wave into two com-
ponents, of maximum amplitude A,
in the plane of incidence and B
perpendicular to the plane of incidence. Then the plane of polarisation
of the incident light makes an angle cot™! B,/A, with the zz-plane.

Resolve A, into components A;cos¢ parallel to Oz and — A, sin¢
parallel to Oz. Then the electric intensity in the incident wave may

be written . . |
X, = A, €S ¢ cos am <t ~ NE{xsin ¢ + 2 cos ¢)}>’
T ¢

-+

44

Fra. 63.
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2[ k it i ~
Y, =B, cos_;l’(t_«/lc{fpsm <;Sc+’cos ¢}>,

9 Tl
Z,= —Alsinqscos?’r(t_\/] {= 1n<ci>+zcos¢>}>’

since the velocity in air is ¢ and the direction cosines of the normal to
the wave front are sin ¢, 0, cos ¢.

To find the magnetic intensity associated with this electric intensity,
substitute for X;, Y,, Z; in the second three equations of the electro-
magnetic field and solve for a;, (;, y,, making the constants of
integration zero. Then we obtain

- o
a; = — B~k cos ¢ cos 77- <t

_\//E{xsin<f)+zcos ¢}>
¢ b

By= +A1J17c05277r <t_~/k{msin¢;+zcos ‘#’}),

2 JEi{zsi
1= +BWEsin ¢ cos —: (t _ vk {sin ¢;+zcos ¢}>'

The above six equations represent the whole incident wave. When
it arrives at the boundary it gives rise to a refracted and a reflected wave.
We shall assume that the maximum values of the electric intensity of
the refracted wave are respectively A, for the component in, and B, for
the component perpendicular to the plane of incidence. We then
obtain the following equations for the refracted wave simply by sub-
stituting for A;, B, £ and ¢:

WK {@sin 6+ cos 6})

bt
Xy = A, cos 0 cos — <t
2 T ¢

_ NE {zsin 0 + 2 cos 0}>

O y
=B, cos —
Ya=By T ( ¢

2 (t_ﬁ{msin 0 + 2 cos 6})
¢ )

. 4T
Zy= —A,sin 0 cos —
-

_ WJF {@sin 6+ z cos 0}>
¢ )

ay= - By cos 8 cos 27 <t
T

9 <t W (zsin 6 +zcos 6}>
¢ b

T

By= + AWK cos

*\/]7{'1 sin 6 + 2 cos 9})

77 271'
yg= +By/k sin 0 cos — <t .

H.P. L
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Similarly, for the reflected wave, we obtain

VE{zsin ¢’ +z cos o,‘:’})
_ - ]

; o
Xy = A4 cO8 ¢’ cos = (t

4

Y3=B3cosg7w<t—\/k{wsm¢ st }>:

~ Jk{zsin ¢’ + 2z cos ¢>’}>‘

- oQr
Z,= —A;sin ¢ cos7<t -

oy = — Byl cos ¢/ COSQ_ﬂ'(t_\//c{msmd) -l—zcosqb})’
T ¢

By= +A,; 760052_;T<t_~/lc{xsm¢ +zcos¢»}>’

c

- 2 k{zsing' +z /
ys = + Bynksin ¢’ cos 77 <t—\/] {zsin ¢c+ cos ¢ }>

In the above A, and B, are put respectively equal to the components
of the maximum electric intensity in and perpendicular to the plane of
incidence. Also, we do not assume that ¢, the angle of reflection, is
equal to ¢, the angle of incidence. It should be noted that ¢’ is the
angle that the normal to the reflected wave front makes with the
positive direction of Oz.

We have now to apply the boundary conditions. A,, B, ¢ are
known, and we wish to determine A,, B,, 0, A;, By, ¢'. It is at once
clear that for z=0, all the components of electric and magnetic
intensity must be proportional to the same function of 2 and ¢,
i.e. NEsin ¢ =n/k sin 6=~Esin¢. This equation contains the laws of
refraction and reflection, for it may be written

sin k ,
sin(g: T PoTg

The laws of reflection and refraction are thus derivable from the
mere fact that there are boundary equations, and they do not depend
on the particular form of the latter.

Since the tangential components of the electric and magnetic in-
tensities are the same on both sides of the boundary, we have
X, +Xg=X, with three similar equations. These give

(A, —Aj)cosp=A,cos 60, B +By=B,,
(B, - By)Vkcos =By cos 6 and (A +A)WE=AE.

‘We have thus four equations for the four unknown quantities, and
conclude that the other two boundary conditions are not independent.



ELECTROMAGNETIC THEORY 163

This conclusion may be verified by trial in the present case. On
solving the equations, we obtain

A A NE cos ¢ — Nk cos 6 B NEcos ¢ — Nk cos 6
S  Fcosp+Ecos8 0 “kcosd /K cos b

B vk cos ¢ & B ok cos ¢
2™ = H o e — «
Nk cos 0+ I cos ¢ VI cos 0+ cos ¢
On substituting > # for k_/, these results become
sin @ k
_, tan(¢-6) B=_Bsin(¢>—€)
87 ltan (¢ + 6) 3 sin (¢ + 6)’
_ 2 sin 0 cos ¢ o 2sinfcos ¢

A Alsin(¢+9)cos(¢—9)’ BBy sin (¢ +6)

The above are called Fresnel’s formulae. They were first obtained
by Fresnel, but not by a satisfactory method. They enable us to
determine completely the reflected and refracted waves when the
incident wave is known.

According to these formulae B, never vanishes, but A; becomes

o

equal to zero when tan (¢+0)=w, i.e. when ¢+6=5. In this case

sin 0 =cos ¢, and if n be put for the ratio of the refractive indices of
both media, .e. if n=\/k’/]c,
sin ¢
Tsinfd bam .

This value of ¢ is called the polarising angle, and this equation
states Brewster’s law. After reflection at this angle of incidence,
natural light is plane polarised in the plane of incidence.

Fresnel’s formulae can be verified very easily with a spectrometer
fitted with two nicols with square ends, one attached to the collimator
in front of its object glass and the other attached to the telescope in
front of its object glass. These nicols can be rotated respectively
about the axes of the collimator and telescope, and are provided with
divided circles for reading their positions. The collimator has a
circular aperture instead of a slit. From Fresnel’s formulae,

B, Bysin(¢-0)tan(p+06) B cos(p-0)

A, A sin(¢+0) tan(p—0) A cos(p+0)

A,/B, is the tangent of the angle which the plane of polarisation
makes with the zz plane before reflection and A,/B; the tangent of
the like angle after reflection. In the experiments of Jamin and
Quincke, A;/B, was put equal to unity, that is, the polarising nicol
was set with its principal plane at 45° to the az plane, then A,/B,
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was determined experimentally for different values of ¢, and the
results compared with thosé given by the formula. The agreement
was very good, only in the neighbourhood of the polarising angle
was there an appreciable difference hetween theory and experiment.
This difference has been shown to he due to the boundary conditions
not being accurate. In deriving the latter, we assumed that the value
of the index of refraction changed discontinuously in passing from
the one medium to the other. If we assume that the change takes
place gradually within a region small in comparison with the wave-
length of light, we obtain more elaborate boundary conditions, and
from these can derive formulae that represent the experimental results
perfectly. From experiments confirming the more accurate theory,
we learn that the transition layer or region in which the index of
refraction changes from the one value to the other has, in the case
of a polished glass surface, a thickness of about ;35 of the wave-length
of sodium light.

§131. Perpendicular incidence.

In the case of perpendicular incidence ¢ and 6 both become zero and
Fresnel’s formulae for A; and B, become indeterminate. If, however,
we use the equations on page 163 immediately above Fresnel’s formulae,
cos ¢ and cos 6 both become equal to 1, and

«/E—J/E_A n-1 e o \//E—\/I?_B 1-n
JE+E e+l P Ve JE tl+w

The fraction of the intensity reflected is therefore the same for
light polarised in and perpendicular to the plane of incidence, namely

A=A,

—1\2 7
(Z-ﬁ) . In the case of reflection from glass to air, n=1'5 approxi-
mately ; hence 4 9 of the incident light is reflected.

§132. Total reflection.

Suppose that £’ is less than %, that the wave, for example, is reflected
internally at a glass-air surface. Then ¢ is the angle of incidence in
the glass, 0 the angle of refraction in the air and sin @ =nsin¢, n of
course having its usual value of 15 or thereabouts. We have

cos 0 =n/1 —sin20 =+/1 — n2sinZ¢.

Where total reflection occurs, n?sin?¢ is greater than 1 and cos 6
becomes imaginary. We may write it in this case,

c0s 0 =ix/n?sin?p — 1.

It is interesting to examine what happens to Fresnel's formulae
when this imaginary value of cos 0 is substituted. Let us confine our
attention to the reflected wave and examine the expression for B,.
For angles of incidence greater than the limiting angle,
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T sin(¢-0) sindcos6—cosPsin b

3 Isin(p+6) “Lsinécos @+ cos¢sin b
5 isin ¢ /02 sin?¢ — 1 —nsin ¢ cos ¢
4 sin ¢ n/n2 sin%¢ — 1 +n sin ¢ cos ¢

_pg "eos ¢ —i/n?sine — 1
"0 cos ¢ +in/n2sinep — 1

On multiplying both numerator and denominator by

this gives
(n?cos?p — n2sin?p + 1) — 2 in cos pa/n2sin?p — 1

By =B, n?—1

The coefficient of B, is a complex quantity, the modulus of which is
found by calculation to be 1 and the amplitude of which is

1 2ncos ¢ VnZsin?é - 1

tan~1- : - ;
n? cos?dp —n?sin?¢ + 1

On writing b for the latter, the equation becomes
By=Be~%,
In order to interpret this result it is necessary to go back somewhat.

o <t_J]E{msin¢+zcos 4)})

Y, =B, cos —
1= T c

represented the electric intensity perpendicular to the plane of incidence
for the incident wave. Instead of the cosine we might have written
.27( '\/E{msind;+zcos¢})
= fmie—————>
Y, =real part of Bje 7 g ;

and we could have made similar substitutions for the other cosines.
This assumption is perfectly legitimate, for the equations of the electro-
maguetic field and the boundary conditions are linear in X, Y, Z, o, 8, y;
they are satisfied by both parts of the complex quantities taken singly,
and must therefore be satisfied by their sum. Had we proceeded in
this way, we should have found for Y, in the above case,

2 «/l?{xsinqﬁ—zcosd)})
Y, =real part of Bye ~ g

'[Qﬂ("‘wb_ﬂ
c

=real part of BlaZ £

B 508 [2?7r<t_x//€{azsin¢;—zcos ¢>}> —b].
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The amplitude of the reflected wave is therefore the same as the
amplitude of the incident wave, 4.e. no light is lost by reflection, but a
phase difference is produced = b and varying with the angle of incidence.

Similar results are obtained on examining the expression for A,.
Let us denote the phase difference produced in this case by a. Both
components of the incident wave were originally in the same phase,
but a relative phase difference has now grown up between them equal
to a—b. The reflected wave cannot therefore be extinguished with
an analysing nicol until this relative phase difference has first been
removed with a compensator. The relative phase difference has been
determined experimentally, and the results agree well with theory.
This method of interpreting the complex amplitude is due to Fresnel.

§133. Absorbing media.

So far, in dealing with electromagnetic waves, we have confined
ourselves to dielectrics. Let us now drop this restriction and assume
that « is not zero.

Then the equations of the field are
dme, BOX_Oy OB dmc, LOV_Ou Dy dnx, ETZ DB _n

¢ cot oy 9 ¢ cot 2 o ¢ cot ox o
poe v Gt giN Gk B pSR N ok
cot oy o cof o o cof oz oy

Let us assume that we are dealing with harmonic plane waves of
period 7, and that exponentials are to be substituted in place of
X, Y, Z, a, B, 7, always on the understanding of course that the latter
are the real parts of the exponentials replacing them. Then, as ¢ occurs

2t

s w . B o e S . 5
in every quantity in the same factor ¢ =, dividing by iZ7 is equivalent
T

to integrating with respect to #, and the first of the above equations
may be written 1 ox oy OB
2k —ior) R =2V
c(]a 12k Ttk
The second and third equations take the same form. If, as is usual
in dealing with light waves, we put p=1, the only effect of the
conductivity of the medium is to replace £ by the complex quantity
k—i2k7. The waves will therefore be represented by terms of the type,
12—”(t _NMk—i2kr (La:—]—my+nz))

real part ¢ ” ¢
On writing I —i2x7 = (N — iK)?,
igrj(t_(r\i—iK)(lz+77zg/—{11};))
this becomes, real part ¢ 7 <

2

"K(L:c-l—my—l—n:) LZ’I(L - N‘(h——’-Lwi'?—))
- TC e T ¢

27K - )
I 2_:;(t _ N(lz+ 7:;1/ + m’)).
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This represents a wave the amplitude of which diminishes as the
wave advances, the energy of which is being absorbed as it progresses.
The exponential factor diminishes as lx+my+mnz increases. In a
conductor we must have therefore absorption of electromagnetic waves.
The constant, which determines the absorption, has been determined
for several metals for wave-lengths in the infrared by Rubens and
Hagen, and has been found to agree with the value calculated from «.
Of course the same difficulty exists in connecting up absorption of light
with conductivity as in connecting up index of refraction with specific
inductive capacity. The quantity of light absorbed by any substance
varies with the wave-length, and the values given for the conductivity
in the tables are for steady currents, 4.c. for infinitely long waves.

EXAMPLES.

1. A copper disc is spun about an axis ab right angles to its plane in a
uniform magnetic field, the lines of force of which are parallel to the axis of
the disc. It is touched at two points by the ends of a wire, in which is
placed an electromotive force which just balances the induced electromotive
force due to the rotation. Find the m.a.r. when the wires touch at any
chosen points of the disc.

2. Show that in the case of the Hertzian vibrator there are longitudinal
waves of electric intensity, near the origin in the direction of the axis.

3. Find an expression for the energy radiated by a Hertzian vibrator in
half a period across a sphere of very large radius with its centre at the
vibrator.



CHAPTER VI
THERMODYNAMICS.

§134. THE science of thermodynamics is founded upon two prin-
ciples. The first principle runs as follows:

When heat is transformed into work or work is transformed into
heat, the quantity of heat lost or gained is proportional to the quantity
of work gained or lost.

This result was founded on Joule’s experiments. It is merely the
priuciple of the conservation of energy, and is fully explained in
the text-hooks of elementary physics.

The second principle, sometimes called the principle of entropy, is
from its nature somewhat difficult to state. An account of it will be
given later. Clausius has enunciated it as follows :

It is impossible for a self-acting machine, unaided by any external
agency, to convey heat from one body to another at a higher tem-
perature. ’

The principles of thermodynamics have been applied with success to
the theory of steam engines, the radiation from an incandescent solid,
the definition of temperature, the phenomena of solution, etc. Thermo-
dynamics is not, therefore, a self-contained part of physics, but rather
an aspect of the whole subject.

§135. Let unit mass of a gas or vapour be contained inside a cylinder

of cross-sectional area A and let it be subjected to a pressure p by
means of a piston. Let » be the volume of the gas.

Suppose now that the piston is displaced upwards

through a small distance d». Since the displacement

is small, we can assume that it does not affect the

Adz pressure appreciably. The force acting on the piston

during the displacement is then pA and the external
work done by the gas during the displacement is
PAdz  or  pdy,
Trc. 66.

where dv is the increase in volume of the gas.

It is obvious that this result holds, no matter what the shape of the
envelope containing the gas is. Tor the surface of the latter can
always he divided into plane elements and, when the volume changes,
each element is displaced in the direction of its normal.
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We have considered p constant throughout the change of volume.
If, however, the latter is large, p is a function of ». If the volume of
the gas changes from », to v,, the external work done during the
change is then 2
pdv.
%

§136. Watt’s indicator diagram.

The state of a gas contained in a cylinder can be represented by two,
variables, » and p, because the temperature # is connected with p and »
by means of the characteristic equation of the gas. The state of a gas
can therefore be represented by a
point P on a coordinate diagram,
v being the abscissa and p the P B
ordinate. Suppose that the volume Q
and pressure of the gas change
gradually, then the point will de-
scribe a curve and arrive finally at : D
some such position as Q. The
external work done by the gas
during the change is 0N M E F v

Fia, 67.

Q
J. pdv=PQMN.
p

If the point representing the state of the gas is originally at A and
if the volume and pressure of the gas are put through a succession of
changes and finally veturn to their original values, the point will
describe a closed curve such as ABCD, returning to the point of
departure A. The gas is then said to be put through a cycle. When
a system starts from a given state and returns to the same state by
passing through a series of intermediate states, it is said to perform a
cycle. The total external work done by the gas during the cycle in
the ahove case is equal to the area of the closed curve ABCD, because
the work done by the gas in moving from A to C is ABCFE, and the
worlk done against the gas in moving from C to A is CDAEF.

The indicator diagram can be applied to other systems as well as to
a gas contained in a cylinder, ¢.g. a wire stretched by a weight. If du
be the increment in length and F the stretching force, the work done
on the wire during the change is Fdz. We only require therefore to
replace p and v as coordinates by means of F and .

§137. The unit mass of gas in the cylinder in §135 was supposed
to be at the same temperature and density throughout. Only then
can its state be truly characterised by » and p; otherwise we would
require a different value of » and p for every element of its mass.
Suppose now the temperature of the gas to be raised. Heat flows in
from outside. While the heat is flowing in, the temperature of the
gas must be unequal. Similarly, if the gas is being compressed, its
pressure during compression will not be the same throughout. In
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order that the working substance, the gas, may be truly homogeneous
during the change, we must assume that the latter takes place infinitely
slowly. We must also assume that the flow of heat from the source
to the working substance does not lower the temperature of the source.
Only then can the change be accurately represented on the indicator
diagram.

1f, during the change, the working substance receives heat from a
source, the temperature of the source must be the same as that of the
working substance, otherwise the change would not be infinitely slow.
We can thus quite as well suppose the heat flowing in the opposite
direction, from the working substance to the source. All changes can
thus be effected in a reverse order. Such changes are said to be
reviarsible, and a cycle consisting of reversible changes is a reversible
cycle.

Reversible cycles and reversible changes are ideal, that is, they
cannot take place in practice. We must always have a finite difference
of temperature or pressure in order to produce the change. But they
constitute a limiting case, which is of very great importance and at the
same time very much simpler theoretically. Reversible changes in
ithermodynamics are somewhat analogous to dynamics with friction
eft out.

Unless the contrary is stated, in what follows, all changes are
supposed to be made in a reversible manner.

§138. Consider now unit mass of a working substance and suppose
a quantity of heat dy, measured in dynamical units, supplied to it.
According to the first principle of thermodynamics this heat is used
for two purposes :

it does external work ;

it increases the intrinsic energy of the substance.
This fact may be expressed mathematically by the equation
dg=dU +dw,

where dU is the increase of intrinsic energy and dW the external work
done.

Suppose that the working substance is brought from state (1) to
state (2); that the intrinsic energy changes from U, to U,, that the
heat supplied is ¢ and the external work done W. Then

g=U,—U; +W.

This change from state (1) to state (2) may be made in different
ways. For each of these ways ¢ and W may be different, but U, —U;
is always the same. For, suppose that the substance is brought from
state (1) to state (2) otherwise and that

¢=U5~-U +W.



THERMODYNAMICS 171

_ Then, carrying it from state (1) to state (2) by the first transforma-
tion and from state (2) to state (1) by the second transformation,

g—q¢=Uy— U’ +W-W.
Sin_ce the initial state is the same as the final state, all the heat
supplied must have gone into external work, 4.c.

g—q¢=W-W'
Hence U, — U, =0, that is, the intrinsic energy depends only on the
state of the substance, and is a function of the coordinates defining

that state. This may be regarded as an alternative statement of the
first principle of thermodynamics.

§139. Carnot’s cycle.

We shall now consider a reversible cycle due to Carnot, which has
played a great part in the development of thermodynamics. To make
matters clearer, we shall assume in this section that the working
substance is a gas, though any substance may be put through a Carnot’s
cycle. '

yThe gas is contained in a cylinder D, the piston and side of which

are non-conductors of heat, but the bottom of which is a perfect con-
ductor of heat. A, B and C are three stands, A being a non-conductor
of heat, but B and C having tops that conduct heat perfectly. B is
kept at the constant temperature # and C is kept at the constant
temperature £,, £; being higher than 7,.

Let the temperature of the gas in D be originally #,. Place D on A
and compress the gas by pushing the piston down. During the
compression no heat is lost or gained by the gas, and the change is
said to be an adiabatic or isentropic one. All the work done on the

A B c

/

7

Source

NN Non-conductor of heat.
v Perfect conductor ol heat.

Frc. 68,

gas thus goes to raising its temperature, and we shall suppose that
the temperature is increased from 7, to #;. If E is the point on the
indicator diagram representing the initial state of the gas, and if, as
the compression proceeds, the point moves along EF, EF is said to be
an adiabatic curve.

When the temperature has become #;, remove D from A, put it on B
and allow the gas to expand by removing weights from the piston.
During this expansion the temperature of the gas remains constant,



172 THERMODYNAMICS

the expansion is said to be an isothermal one and the point in the
indicator diagram moves along the isothermal curve FG. As the gas
does external work during this expansion, it must receive heat from B,
or the source as it is called. Let the quantity of heat received,
measured in dynamical units, be ¢;.

Now place D again on A and allow the gas to expand further. The
expansion is an adiabatic one, and the temperature of the gas will
consequently fall. Let the expansion proceed until it falls to .
During this expansion the point in the indicator diagram moves along
the adiabatic GH.

The temperature is now the same as the initial one. Remove D
from A, place it on C and push down the piston until the volume of the
gas returns to its original value.
This change is an isothermal one,
and during it work is done on the
gas. Consequently the gas must
lose heat to G, and in virtue of this,
C is termed the sink or condenser.
Let the quantity of heat so lost be
¢,, measured in dynamical units.
This final change is represented on
0 T the diagram by the isothermal HE.

Fic. 69. The gas has now returned to its

original state, and the point repre-

senting its condition has travelled through the closed curve EFGHE.

Hence the gas has done an amount of external work W equal to the
area of this curve. By the first principle of thermodynamics,

W=¢—¢-

The efficiency of a substance working in such a cycle, that is, the
ratio of the external work done to the heat supplied from the source, is

W .0~
T T
As Carnot’s cycle is a reversible one, the substance may be put
through it in the reverse order in the direction EHGFE. In this case
work W is done on the gas, heat ¢, is received from the sink and ¢, is
given to the source. Instead of heat heing converted into work,
work is converted into heat.

§140. Application of the second principle of thermodynamics.

If we have two engines working between the same two temperatures
¢, and £, converting heat into work, one, which we shall call A, working
in a reversible cycle, and the other, which we shall call B, working in
an irreversible cycle, then the efficiency of B cannot he greater than
that of A.

For suppose that B is more efficient than A. Let # be the tem-
perature of the source and 7, the temperature of the sink. Let A take
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a quantity of heat ¢, from the source and give up a quantity ¢, to the
sink, and let B take a quantity ¢/, from the source and give up a
quantity ¢, to the sink. We can assume without loss of generality
that both engines do the same amount of work in a cycle, i.c.

h=%=01—15

Also, by supposition, N1 =% 71—
N 41

Now let engine A work backwards converting work into heat, and
suppose that the work done by B is used in working A. Then to
every cycle of B there corresponds a cycle of A; the resultant work
done is zero, but in each cycle a quantity of heat ¢, — ¢', is taken from
the sink and a quantity ¢, —¢'; is given to the source. Now it follows
from the above equation and inequality that ¢ >¢'; and ¢, >¢,.
Hence ¢, — ¢/, and ¢, —¢', are both positive, heat is being conveyed from
the colder to the hotter body of the system, and no external agency
is doing any work on the system. This is contrary to the second
principle of thermodynamices. Consequently B cannot he more efficient
than A.

The above theorem is called Carnot’s principle.

It can be shown by similar reasoning that all engines working in
reversible cycles between the same two temperatures have the same
efficiency, for, if the less efficient engine he reversed so as to convert
work into heat, and if the work done by the more efficient he employed
in working it, the second principle of thermodynamics will be again
infringed.

Since all engines working in reversible cycles between the same
temperatures have the same efficiency, it follows that the efficiency of
the Carnot cycle is independent of the working substance used. It is
independent of ¢,, for if ¢; be increased n times, since

G

al

must remain the same, g, must also increase » times. It is independent
of ¢,, for if we have two engines working in Carnot cycles between
¢, and £, and the first takes » times as much heat from the source as the
second, the second performs in n cycles exactly the same quantity of
external work as the first and gives up exactly the same quantity
of beat to the sink. The efficiency of any substance working in a
Carnot cycle between #, and £, is therefore a function solely of these
temperatures, and may be written f(¢,, ,).

§141. Carnot’s function.

Suppose now that a substance is working in a Carnot cycle between
¢, and ¢, taking in a quantity of heat ¢, from the source, that the
external work done in the cycle is ¢, f(/;, £,) and that the heat given
back to the sink is ¢,{1 - f(, #,)}. Let another substance work in a
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Carnot cycle between the temperatures 7, and f,, using the first sink as
source and taking from it the quantity of heat ¢, {1 - f(#,, £,)} given up
by the first substance. It does external work ¢ {1 —f(f, £)}/(f, 1)
and gives up heat ¢, {1 —f(¢,, £,)} {1 — f(ty, t;)} to a second sink.

Now let another substance work directly from the original source to
the second sink, taking in the same quantity of heat ¢, from the source.
The work done in the cycle is ¢,/(%, #;) and the heat given back to the
sink is ¢, {1 - f(4;, &,)}.

s in each case the maximum quantity of work has been obtained
from the original quantity of heat ¢,, the amount of heat given up to
the second sink is in each case the same. Therefore

7 {1 = f(ty, 1)} {1 =t ta)} =qu{1 = f(ty, B) }

Suppose that £ is constant and #,, #, are varied. Then, since in
that case L, 1) = 1 —f(ll, 15) =E(Z_3_),
T fhy ) F(b)
where F(t,), F(f,) are respectively functions of #, and £, alone, it must
be always possible to write
F(ty)

Flts ) =1- g

If ¢, be the heat given up to the sink at temperature #,, obviously

15 _Fly)
7 F(t)
Carnot’s function is a quantity p, such that the efficiency of 2
reversible engine working between the temperatures £ and ¢ —dt, where
dt is very small, is pdt. If £, — di be put for 1y, f(#,, £,) becomes

_F(—di) _ 1. F(t) —diF'(f) _F'(4) it
F(t) F(h) F(t)

Dropping the suffix, we see that p at temperature 7 is given by
F(&)/F(®).

§142. Kelvin’s scale of absolute temperature.

So far nothing has been said about measurement of temperature.
‘When heat flows from A to B, A is said to be at a higher temperature
than B. Temperature is measured by the expansion of an arbitrary
substance in terms of an arbitrary scale. The temperature readings
of two thermometric substances can be made to agree at any two pre-
arranged temperatures, but then they will in general agree at mno
other temperature. It is immaterial on what scale ¢ has been measured
in the preceding sections, but to fix our ideas we may suppose it to
have been the centigrade mercury-in-glass scale.

Kelvin has introduced an absolute scale based on the properties
of a perfect heat engine working in a Carnot cycle. This scale is
entirely independent of the properties of any thermometric substance.

1
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Let an_engine work in a Carnot cycle between the temperatures ¢,
and #,, taking in a quantity of heat ¢; at #, and giving out a quantity
gy at t,. Then the work done is ¢; —¢,. Let a second engine work
between £, and 7, taking in g, at {4, and giving out g, at #,, and let the
work done by the second engine, ¢, —¢,, be equal to ¢, —¢,. Let a
third engine work between #, and #,, taking in ¢, at #, and giving out
q, at ?;, and let the work done by the third engine, ¢, —q,, be equal
to ¢; —q,- And so on.

It ¢, ¢, and ¢, are given, we can in this way arvive at #, in three
steps and at 7, in (n— 1) steps, and the values of £, and 7, are absolutely
the same, no matter what the working substance may be. We take such
steps as units on the absolute scale.

From the preceding section,

h—%_ F(f) — F(t2)_
T F (%)

Since B~ 93=92~ 33 =95~ 44 etC,,

F(ty) — F(fy) =F(f) - F(f;) =F ({3) — F(¢,) ete.

Consequently the increase of the absolute temperature is propor-
tional to the increase of F(f). We shall denote absolute temperature
by T. Assume that when F(f) is zero, T is zero. This defines the
position of zero on the absolute scale and makes T always proportional
to F(f). We have now only to define the size of the unit on the
absolute scale. We do that by assuming that there are exactly one
hundred of them between 0° and 100° on the centigrade scale.

The efficiency of a substance working in a Carnot cycle hetween T,
and T, is F(4,)

_Ely)_; Ty

F(4) T
Let T, be constant. Then, as T, decreases, the efficiency increases.
At zero on the absolute scale, the efficiency is unity, that is, all the
heat received from the source is converted into work. The efficiency
cannot be greater than unity; T, cannot become negative. Hence
the absolute zero is the lowest temperature that can be attained
by any body. It is not possible to decrease the temperature without
limit; there is one definite temperature, the same for all bodies,
beyond which it is impossible to go. At this temperature they are
entirely devoid of heat. It is found as a result of experiment that the
absolute zero is 273° below zero on the centigrade mercury-in-glass scale.
The efficiency of a substance working in a Carnot cycle between T

G T=~HT 34 _F(-ay_ T-dr_at
F() T T
so that Carnot’s funetion is 1/T when the absolute scale is used.
§143. Entropy.

Entropy bears somewhat the same relation to the second principle
of thermodynamics that energy bears to the first. The name is
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due to Clausius. In this section it is defined only for reversible
transformations.

If a substance works in a Carnot cycle between the temperatures T,
and T,, taking in ¢, at T, and giving out ¢, at T,,

B
T, T, &

This follows from §141 and the definition of absolute temperature.
If heat imparted to the substance be regarded as positive and heat
given out by the body as negative, this equation may be rewritten

G, 9 _
T, +- T,” 0 st 293 e 5 543 o e B 1 1)

Suppose now that the substance is traversing any reversible cycle
not necessarily a Carnot cycle. Then this reversible cycle can be
decomposed into a number of elementary Carnot cycles.

For example, let the working substance be a gas and let the closed
curve (fig. 70) represent the reversible cycle on the indicator diagram.

Draw a number of adiabatic lines so as
Yz to divide the area of the curve into
elements ; let the ends of the elements
be bounded by elements of isothermal
lines. Then every element of the closed
curve is equivalent to an element of an
isothermal followed by an element of
an adiabatic. The temperatures corre-
sponding to the successive isothermal
elements will of course all be different;
0 7 call them T;, Ty, Ty, ..., and let g;, g5,
Fra. 70. g3, ... respectively be the quantities of
heat received at the temperatures Ty,
T,, Ty, ... by the substance working round the equivalent stepped
curve.

Suppose now that we replace the single engine working in the stepped
curve by a number of engines, each working in one of the Carnot cycles
into which the area is divided, and each completing a cycle in the
time taken by the single engine to work round the closed curve.
Then, for the system of engines,

h, %, 9 _

T1+T2+T3"'_O’ .............................. (2)
since equation (1) holds for each engine of the system. But the single
engine reeeives ¢y, gy, gg, --- at temperatures T,, T,, Ty, ..., just as the
system of engines does and does exactly the same quantity of external
work. The single engine and the system of engines are thermo-
dynamically equivalent to one another. IHence equation (2) holds
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for the single engine, i.e. for an engine working once round a reversible
cycle

q_
ET—O,

or, in the limit when the elements are made infinitely small,

dg _
[

It is not necessary that the working substance should be a gas.
The above proof holds for any substance the state of which can be
represented on the indicator diagram, 4.c. which is a function of two
independent variables. The theorem is also true when the state of
the working substance is a function of more than two independent
variables, for the path can still be resolved into elemental isothermals
and adiabatics when it can no longer be represented on a plane. Hence

dg _
f?—‘)

holds for every reversible cyclical process, no matter what the working
substance is.

If A and B denote two different states of a substance, which can be
connected by a reversible transformation, then {IZ_—[] between the limits

corresponding to the two states must always have the same value, since
the cycle may be completed by a definite invariable transformation.
The change of entropy of the substance in passing from state A to
state B is defined by )
S,—S =j <
B A

=
A

Since % depends only on the state of the substance, S, the entropy,

T dep y Py

like U, the intrinsic energy, is a function only of the coordinates
defining the state of the body. During any adiabatic transformation
dq is always zero, and hence also S§;—8,; all adiabatics are therefore
isentropics.

§ 144. Transformation of thermal coefficients.

Let the state of unit mass of a homogenecous substance be denoted
by p, v, t, where p, v, t are connected by the equation

J(p v 1)=0.
This gives Bf dp iz l -dv +5 i ch‘ =0,
’éf
2 2]
and hence <§§>t= = -,5_;;7, ................................ (3)
op
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where the suffix denotes that during the differentiation 7 is to be kept

constant. From (3), I\ /O
IO
with two similar equations. Also
Y Y
ap 8v> _a_z> __wzotop_ 4
GG TTT
Op v Of

Let a quantity of heat dg be given to the substance. Then, in
general, p, v and ¢ will suffer increments dp, dv and df. Since p, »
and £ are not independent, dp, dv and df are not independent ; hence
dg can be written in either of the two following forms:

dg=2y,dt +1l,dv, dy=y,dt+1,dp. ...cocvvvrinnen.n. (4)

In the above equations I, is regarded as a function of » and ¢ and
I, as a function of p and ¢; I, is called the latent heat of expansion
and [, the latent heat of pressure variation. They are different from
the latent heat of change of state. v, and y, are respectively the
specific heats at constant volume and constant pressure. Of course dg
is not a perfect differential.

Equations (4) are quite independent of the laws of thermodynamics.

Similarly, dg =M dv+ N dp.

The six thermal coefficients v,, v;, %, l,, M, N are not independent.
For, eliminating d¢ from (4),

dp= Vo bV — Yol dp’

Yo~ Vv
hence M= l&’ N = VU_Z.P_
Yo~ Vv Yo~ Ve
The first member of (4) can be written
w ov
dg=y,dt+1, <a—t>pdt 4 <@>tdp,
o o
P _ ap _ ap

Hence four relations exist between the six coefficients, and when two
of these are known, the other four can be found.

§145. Carnot’s function. Otherwise.

In deriving Carnot’s function in § 141, both the first and second
principles of thermodynamics were used. Both the principles of thermo-
dynamics were unknown to Carnot, and he derived the function in the
following manner.
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Consider the limiting case of Carnot’s cycle when the heat taken in
becomes infinitesimal. Then ABCD is a parallelogram.

Draw BFP, CEQ parallel to Op. By (4), the heat received from the
source is l,dv. The work done in the cycle

=ABCD =BCEF =BF. PQ.

Now PQ=dv and BF= (%> dt, 7
therefore the work done B

_(
= (ﬁ)vdt dw,
and the efficiency is (%7;) ?: wdt.
v v 0 -
op ¥
Therefore p= <§>ﬂ / ly. Fra. 7L

By substituting experimental values, Carnot was able to show that
1 was independent of the working substance.

§146. The perfect gas.

‘We shall now apply some of the results of the preceding sections to
the case of a perfect gas.

The heat given to a gas may be used conceivably for three purposes :
(1) in external work, (2) in internal work, z.e. in moving the molecules
further apart against their mutual attractions, and (3) in increasing the
kinetic energy of the molecules.

Joule’s law (1845) states, that if the temperature does not alter,
the intrinsic energy of any mass of gas is constant; it does not depend
on the volume or the pressure.

We have already had the equation

dg=duU +dW.
In the case of a gas the only external work done is given by pdv;
hence the equation becomes
dg=d\U +p dv.
In § 144 we had the equation
dg =y, dt+1,dv.

The term dU includes work done against internal forces as well as
increase of kinetic energy of the molecules. In general it depends on
v as well as £.  In general therefore p is not =1,.

For a gas obeying Joule’s law U depends only on 7, dU=y,df and
p=1,. Joule’s law is only approximately fulfilled by actual gases. A
perfect gas is defined as one that obeys

(1) Boyle’s law, (2) Joule’s law.
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§147. Clapeyron’s formula.

Consider unit mass of a homogeneous solid or fluid, the only external
work done being done aga,mst hydrostatic pressure. Then, if 7 be
measured on any arbltrary scale, we have, as in the preceding section,

dg="y,dt+1,dv, dg=dU+pdv.

Hence AU = v, dt + (I, — p) dv,
and since dU is a perfect differential,
vy op_Ol, Oy,
e t(l -p) =N SRR R——— )

The increase of entropy, dS, is given by

W _Yog o

where T is the absolute temperature. Since dS is a perfect differential,

(55 (2)
) ot (
1 ayq, 1%, i, aT l,oT _©l, 9y,

; 10y, 10 b bo 91 Oy O 6
bl Tow To T2l Tol o o ©)

In equations (5) and (6) the right-hand sides are the same ; hence
L G O
Tot ot v <at> or’

which is Clapeyron’s formula.
It should be ohserved, that in deriving Carnot’s function in § 145,
we have already almost proved this formula by another method.

§148. An analogous formula to Clapeyron’s formula will now be
derlved dg =y, dt +1,dp,
AU =dg —pdv="y,dt+1,dp — p de.

Now dv= (’O_) dp + < > dt,

therefore du = {yp _p@t) } dt+ {l]) —-p < p) } dp.

Since this is a perfect differential,

° _J(’_ag) }_a I ez,
3\ (@), ) =22 (@)

2, 2,
Oy @_7;) % Oy, O By Dy e
»

op P, ot “Porep, © o, op O

is= Vgl
Now ds= = dt+ T dp.



THERMODYNAMICS 181

Since d8 is a perfect differential,

o <Lﬂ> 2 l,,)

op\T/) ot <? z
10y, 10, I or or _bor_oy, dl,
Top TOoO T2of T2 o o
Combining (7) and (8), we obtain
e I, oT v\ O
a—tp——?a— or Zp——T<'a—t)pﬁ’

the required formula.

§149. If a gas obeys Boyle’s law and Joule’s law, it must obey
Charles’ law.
According to Boyle’s law, p=c;
hence pdv+vdp=0 or (8_p> =
/g
If a gas obeys Joule’s law, p=1,. Measure the temperature on the
absolute scale and apply Clapeyron’s formula. Then

_ @) op\ _p
@), = (@)

By §144 this is the same as <@> _T Nowin §144 we had the

ap> Bz;> a:> - R " ot
formula (a;— z<§ p<@ e 1. On substituting for <87)>t and (5_10>u

the values already found, this becomes

_p @) T__ (@) 2
v(@tpp" 1 or BE), T e o (9)

which gives v=v, ?—,;—3 when p is constant. This is Charles’ law.
From the form of (9) it is obvious that if any two of the three laws—
Boyle’s, Charles’, and Joule’s laws—are obeyed, the third must also

be obeyed.

A
v

§ 150. Further properties of a perfect gas.

We can now derive the characteristic equation of a gas. Let p, and
v, be the pressure and volume of unit mass at the temperature 273° on
the absolute scale. Let p and v be the pressure and temperature of
unit mass when the absolute temperature is T.

When the temperature is T let the pressure become p,, and at the
same time let the volume become ». Then, by Boyle’s law,

pr=p.
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Now let the pressure be kept constant and decrease the temperature
to 273°. By Charles’ law, o' becomes v, v, being connected with o' by

the equation T
v =1, 775
T
Hence PV =Pyl 573 or pv=RT,

where R is constant.

The modulus of elasticity at constant temperature of a gas is the
limiting value of the ratio of an increase in pressure to the decrease of
volume per unit volume it produces. Let ¢ denote the modulus of
elasticity at constant temperature, let 8p be the increase of pressure
and let &v be the decrease of volume. Then

e= Lt -2 —w(—@>;

8p=08_1) ow
v
The minus sign is necessary since p increases as v decreases. In the
case of a perfect gas, <ap> P
Hence e=p. o0/ v

The specific heats at constant pressure and constant volume are
respectively y, and y,. We have

dU =v,dT,
substituting T for #.
0% y.AdT+pdv v
YR, AT, BTy
But since pv=RT, p a—yﬂ =R.
oT,
Hence Yo —Yo=R.

It should be remembered that y, and y, are here measured in
dynamical units.

We shall next find the relation which must hold between p and »
during an adiabatic change. During an adiabatic change no heat is
received by or escapes from the gas. Hence dg=0 and

VoldT +p dv=0.
But from the equation v =RT,

aT =1 (pdo+vdp),

whence, on substituting for dT,
Yo (p dv+vdp) +Rpdv =0,
dp dv  dp

. dv
6. (7,,,+R)?+y,,,5=0 or 7p?+y05=0_
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On integration this gives y,logv+7,log p=const., or if x be written
for y,/y,, the ratio of the specific heats,

« log v+ log p = const.,
log pre=const. or pre=c.
This is the required relation. In the integration we have assumed

that v, is independent of p. According to Regnault this is the case.
If the volume of the gas changes from », to v,, the external work

done is iy
j P dv.
o

If the expansion is an isothermal one, T is independent of » and

Vo
j- R—wa=RTlogZ2-
gy U v

If the expansion is an adiabatic one,

Uz ) ¢ 1 1

§151. Work done by a perfect gas in a Carnot cycle.
Let the cycle be traversed in the direction ABCD; let pyv;, Py,
pqvs and pw, denote the pressure and volume at A, B, C and D respec-

tively. Let T, denote the temperature on AB and T, the temperature
on CD.

Then, since AB and CD are isothermals and AD and BC adiabatics,
D1V =Po¥s, 19373 =7y ommrsaeTES R (10)
PSS =Py, Doy =Pals"

The work done by the gas during
AB is

%
RT, log e
The work done by the gas during
CD is v,
—RT,log B
The work done during BC is 0
v
Pz"’z’(( i 1 ) Frc. 72.
k—1 ﬂzx—l ﬂ3!:—-1 ’
py," being substituted for the constant ¢, and finally the work done
during DA is pof 11 >
K — 1<W4K—1 Wlx—l ]

On eliminating p,, p,, p5 and p, from equations (10),

g7y = Vg0,
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Hence the total work done on the isothermals can be put into the
form

R(T, - Ty log Y,
&1
The total work done on the adiabatics is

1 o 1 1 o 1 1
PEER Y22 <u—2‘_‘1 = Fi) N e " =1

3 4

1 ey 204"\
=——{m, - +p, -
K_l{PQ 2 1)3,<_1 Dy ,Ul;c-lj

1 .
<"1 {_Pz’”a — PV +Py0, — Py} =0.

§152. Entropy of a perfect gas.

Given the entropy, S,, of unit mass of a perfect gas when its pressure
and volume are p,, v,, it is required to find the entropy, S, when its
pressure and volume are p and v.

d8=@=7”dT +p dv.

T T
Since pv=RT, logp+logv=IlogR+logT.
Hence dp_ dv_ d_T

p v T

. IT . . .
Substitute for % in the expression for dS; then, since the entropy

depends only on the state of the body, the right hand must be
integrable.
On subgtitution,

__dp v dv__dp dv
EZS—‘}/” };'*’;)'{'R?_Y'v‘j; +7177
Hence S=v,logp+7y,logv+C,

where C is the constant of integration. When C is determined by
substituting the initial conditions,

- WO - 2
S SO =% 105_2)0 = Vr IOg ,UO‘

EXAMPLES.

1. Show that, for a perfect gas undergoing an adiabatic transformation,
?Il"_]' 'ng_]'
T, T,
2. Supposing the earth to have been originally a nebulous mass dissipated

through space, show that the heat produced by its condensation is 90 times
the amount required to raise an equal mass of water from 0° to 100° C.
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3. If the sun be contracting in consequence of its own attraction, show
that an annual contraction of 77 10-8 of a diameter is sufficient to maintain
its temperature constant. (The heat emitted by the sun in one year would
raise the temperature of an equal mass of water 2° C.)

4. A gasat p, and v, is allowed to expand into a perfectly empty vessel
and its pressure and volume become p, and »,. No heat is imparted to or

taken from it during the process. Determine the change in temperature and
show that the increase of entropy is

log 22,
Rlog o

5. A vertical cylinder of cross-sectional area A is filled with gas at the
atmospheric pressure p;, the absolute temperature being T;, and closed by a
piston on which is placed a weight w, which pushes it down. No heat passes
in or out of the cylinder. Determine the temperature and increase of
entropy of unit mass when equilibrium is established. (Note that the
change is irreversible and not adiabatic.)

6. Compressed air is contained inside a vessel at a pressure p,, a little
greater than the atmospheric pressure, the temperature of the air being the
same as the temperature of the atmosphere. The vessel is opened for a
moment to allow the pressure to change adiabatically to that of the
atmosphere and then closed. The pressure then rises to p, as the temperature
of the air attains its old value. Show that the ratio of the specific heats of

air is given by Kzlogpo—log P
log p;—logp,
P, being the atmospheric pressure.

7. Calculate the difference between the two specific heats of air, being
given that a cubic metre of air at a temperature of 0°C. and under a
pressure of 76 cms. of mercury, the density of mercury being 13'6, weighs
1'2932 kilogrammes. State any assumptions made in the calculation.

8. The state of unit mass of a perfect gas is represented on a coordinate
diagram by its entropy and its absolute temperature. Show that if the gas
is put through a reversible cycle, the area of the closed curve traced out is
equal to the area of the corresponding curve on the indicator diagram.

9. For any gas whose specific gravity referred to air is p, show that

0069
Yz»:‘/v+—p—'

10. Show that the quantity of heat which must be imparted to a gas
to enable it to expand at a constant pressure p, from the volume v, to the
volume v, is

%pl(?}Z —7).

11. Calculate, in dynamical units, the increase of entropy of a kilogramme
of water which 1s raised in temperature from 0° C. to 100 C. and evaporated
at the latter temperature.

12. A body is surrounded by a medium of unalterable temperature T, and
is cooled to that temperature by the performance of work by a perfect engine
at the expense of its heat. Prove that the whole work done is

U—Uy—To(S—Sy),

where U, U, denote the internal energies, S, S, the entropies, in the initial
and final states respectively.
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13. A system of any bodies isolated from without is imagined divided up
into parts, the thermal capacity of each of which is the same. Show that the
utmost useful work obtainable from the system, by perfect engines working
between its parts, is equal to the product of the thermal capacity of the
whole system by the excess of the arithmetical mean of the temperatures of
the parts of the system over their geometrical mean.

14. If two bodies of equal thermal capacity at absolute temperatures
Ty, T, respectively are brought to the same temperature by a reversible
process, their final temperature is /T, T,.

A rod of length / coated with an opaque substance is heated so that the
temperature at a distance x from an end is a+0bz. The temperatures of
the different parts of the rod are then allowed to beconme equal by conduction ;
find the energy dissipated.

15. A body is put through a reversible cycle of operations consisting of
two opposite isothermal strains of a given type and (equal and opposite)
small changes of temperature at constant strain. Show by the consideration
of the cycle of operations, that if W be the work done by external forces in
the first isothermal strain, the change of the body’s internal energy arising
from that strain is W Taw

“Tor
where T denotes absolute thermodynamic temperature.

16. Show that if y,, v, are the specific heats of a body at constant pressure
and volume respectively, at absolute temperature T,
Oyy_ 0% Oy %
B o B og,— - Tamw
It is stated that the specific heat of carbon dioxide at constant pressure
increases with the pressure, attaining a maximum at about 110 atmospheres,
after which it diminishes. How would you expect the coefficient of
expansion to alter with temperature ?

17. Assuming Nernst’s theorem, that the entropy of all solids is zero at

the absolute zero, show that the specific heat of every solid becomes infinitely
small as its temperature approaches the absolute zero.

§153. The porous plug experiment.

So far the gases considered have been perfect gases. Real gases
do not obey Boyle’s law absolutely. It was shown in 1854 by Kelvin
and Joule in a classic experiment that Joule’s law is also only
approximately fulfilled.

In this experiment a steady stream of gas passed through a copper
spiral in a water bath and then through a tube in which there was
a plug of cotton wool. The pressure of the gas fell considerably
in passing through the plug. The temperature of the gas was read
by two sensitive thermometers before and after its passage through
the plug. The tube containing the plug was surrounded with water
in order to keep its temperature steady.

Immediately on passing through the plug the temperature of the
gas suffered a small change 6 indicated by the difference of the readings
on the two thermometers (any arbitrary scale, positive for an increase).
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But when heat had time to flow in or out, this change disappeared
and the temperature recovered its former value. Let p,, v, be the
pressure and volume of unit mass before passing through the plug,
and p,, v, the pressure and volume of unit mass after passing through
the plug, when equilibrium is re-established. Then, since it is the
volume and not the pressure that alters while the temperature recovers
its original value, the heat escaping from unit mass during this process,
measured in dynamical units, is

¥»0.

Let us now find the work done by external forces on the unit mass
in its passage through the plug. In fig. 73 let the plug be represented
by the aperture ¢. Let o be the cross-sectional area of the tube.
Consider the gas between the two planes A and A'.  After a short time
it will be enclosed between the planes B and B'; A'B'> AB since the
pressure is less to the right of the plug. During the time considered
the external work done on the mass of gas considered is p,cAB; the
external work done by the mass of gas considered is p,cA’B’ and the
quantity of gas that passes through the aperture is cAB/v; =cA'B'/v,.
Hence, when unit mass passes through the plug, the total external
work done on it is

Dy = Dol

>
@
>
s L

Fi1c. 73.

This gives the external work done on it from plane A to plane A,
from the plane where the pressure and volume of unit mass are p,, v
to the plane where they are p,, v,.

Let dU be the increase between the two planes in the intrinsic
energy of unit mass. Then

QU= = 9,0 & (B = Dolp)e o smesemnempnspssonimnsns (11)

The work done against friction in the plug does not enter into this
equation, because it returns to the gas immediately in the form of heat.

If the gas obeys Boyle’s law, p», —p,v,=0, since the temperature
is the same at A and A. Also, if it obeys Joule’s law, dU equals
zero. Hence, for a perfect gas, 0 must be zero. If dU is positive,
it of course represents increase of intrinsic energy due to work done
against internal forces; it is a gain of molecular potential energy.

The advantage of the arrangement employed by Kelvin and Joule
is, that owing to the small thermal capacity of gas 0 is relatively
large and is easier to detect than if the work done against internal
forces were measured by the change in temperature of a mass of
water. Also, owing to a stream of gas being employed instead of a
definite and necessarily smaller quantity, any disturbing action due
to the sides is minimised.
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For air and catbon dioxide vp,0 was found to be negative and
Py~ Py Was also negative but not at all so large; for hydrogen
6 was positive but extremely small and pw, —pyv, positive. For all
three dU is positive.

Let us return to equation (11). Write dg for —v,0, the heat
received per unit mass of gas. If the complete change had been a
reversible one, which it is not, we would have had

dg="y,dt+l,dp ov dg=1,dp,
since here df=0. The increase in intrinsic energy would then have
been given by au =1l,dp —pdv.

But the increase in intrinsic energy depends only on the state of
the gas and not on the manner in which that state is brought about.
Hence the above expression for dU may be substituted in (11). Also,
since the deviation from Boyle’s law is small, p,v, — p;9; may be written
d(pv). Equation (11) thus becomes

dg=1l,dp—pdv+d(pv)=(l,+v)dp
6]
or 6j~(—1)—=lz,+v. ................................. (12)

Here dp is the increase of pressure in passing through the plug.
We have, from § 148, putting =T,

ov o
lp=—-l—§:l:]‘7 or Zﬂ=—m.
On substituting, (12) becomes
w [l
T S 13
o(logT), o (13)
By the porous plug experiment %% can be found as a function of v,

and hence the absolute temperature can be found as a function of the

volume.
Rose-Innes (1901) finds that the largest correction necessitated by

the 'a_g term on the scale of the nitrogen thermometer between 0° and

100° C. is —0-0026°, and that the largest correction on the scale of the
hydrogen thermometer within the same range is only —0-0007°.

We shall now derive the characteristic equation of a real gas on the
basis of the porous plug experiment.

It is found experimentally that % is mnearly proportional to —%
H tting 2L= 2 (18} bacotne '

ence, on writing T (13) becomes

n o)

—==T=——~
T2 oT,



THERMODYNAMICS 189

aT

On multiplying both sides by T this becomes
ndT v
=r=9 (?)
and, on integrating, e (14)
A g, Fogm b e

where H is the constant of integration. Assume that, when T is very
great, the gas has the properties of an ideal gas, for which pv=RT.

Then H =% ; hence (14) becomes
P =RT + 3n__|{72 .............................. (15)

If n be put =0, this reduces to the ordinary form of the characteristic
equation.

§154. Van der Waals’ equation.

Equation (15) is intended to hold only for a gas. Van der Waals
has proposed the following characteristic equation,

as applicable both to the liquid and gaseous states. When p and v are
large, it is obvious that this equation reduces to the ordinary form for
a perfect gas. Van der Waals arrived at the additional terms on the
basis of the kinetic theory of gases. We shall not go into the method
of deriving them here, but merely remark that they look plausible;
when T is zero, the volume does not vanish, but tends towards a
fixed value b, and when the volume is small, the additional term ¢/v?
diminishing the pressure becomes appreciable, and may be supposed
due to the attraction between the molecules.
On rewriting (16), it becomes

If T be regarded as constant, this is the equation to an isothermal.
For a given value of p the equation is a cubicin ». Now a cubic equation
must have either one or three real roots. Hence, for T constant and a
given value of p, the equation gives either one or three values for the
volume of unit mass. We have the one real value in the case of a gas ;
then T is greater than the critical temperature. We have the three
real values in the case when T is less than the critical temperature ;
the greatest of these values gives the volume of the saturated vapour,
the least gives the volume of the liquid into which it condenses,
while the middle value has no practical significance.
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At the critical temperature all three values of v are equal, £ say.
Writing Van der Waals’ equation at length,

ws—v2(b+ir>+7;g—a—b=0,
p r p
and comparing it with the equation

(v—Fk)2=0,
we see that 3k=b+ —RE, 32 = @ and IB= L—d—)-
p P V4

From the second and third of these equations we find that /=30,
and on substituting this value we find altogether for the critical point,

a 8a
v =3, P=grp and sz. .................. (18)
§155. Effect of pressure on the freezing point.
‘We had dg="y,dT + L,dv.

If this equation is applied to fusion or vaporisation, it becomes simply
dg =1,dv,

since during these changes the temperature remains constant. If the
temperature is measured on the absolute scale, Clapeyron’s formula is

_+op
=T oT,

Eliminating [,, and at the same time writing dv=V —», where v
and V are respectively the volumes of unit mass before and after the
change of state, we obtain

G
dg=T a—%(v - ).

Let the equation be applied to vaporisation and let L be the latent
heat of vaporisation. Then

p
L=TaT”(V—'v), ............................ (19)

where v is the volume of unit mass of water, V the volume of unit
mass of saturated steam and T the temperature of change of state.

is

Hence, if V.>w, d.e. if the substance expands on vaporising, P
positive and increase of pressure raises the boiling point. oT,
If the equation be applied to the melting of ice, V- is negative,
gince the volume of unit mass of ice is greater than the volume of unit

mass of water. Hence éa]% is negative ; an increase in pressure lowers
the melting point of ice. This result was deduced by Prof. James
Thomson in 1850 and was subsequently verified by Lord Kelvin. The

amount of the change can readily be calculated from the formula. For,
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putting T=273, L=280 cals. =336 107 ergs, V=100 c.cs., v= 109 c.cs.,

dp =1 atmosphere = 10¢ dynes/sq. cm.,

— 273 10% -09
336 107

Equation (19) can be used for calculating the density of saturated

aT= = -0-0073° C.

steam, which is difficult to determine experimentally. For 2)812? is known

from the relation between the pressure and temperature of saturated
steam, v can be taken as 1 and the value of L at different temperatures
can be found from Regnault’s formula for the total heat of steam,
Q=606'5 - 0-305¢. The total heat of steam at any temperature ¢ is
the quantity of heat necessary to raise 1 gramme of water from 0° to
#° C. and to evaporate it at that temperature.

Equation (19) can be derived very easily from consideration of a
Carnot cycle. Suppose we have some water and aqueous vapour all
at a uniform temperature T contained
by a cylinder and piston, and that 7

the piston is raised so that exactly A T B
1 gramme of water vaporises, the tem-
perature being kept constant all the D T-4dT C

time. The isothermal traversed is
represented on the indicator diagram
by the straight line AB. Next let the
water and vapour expand adiabatically. Q 12,
The temperature will fall to T-dT. Pra. 74

In reality some aqueous vapour also

condenses, but we neglect that. The adiabatic is BC. Next compress
the working substance isothermally so that exactly 1 gramme condenses.
The state of the substance is now represented in the indicator diagram
by the point D. Finally compress adiabatically so that the temperature
rises once more to T.

AB=V —v. The perpendicular distance between AB and DC is %dT.

Hence the whole work done in the cycle, s.e. the area of the paraﬁe].o-
gram, is given by P
— )t T & e mowmas s s e o v 20
(V-1) aTvdT (20)
The heat taken in is L. The efficiency of the cycle is il:[ ; hence the
work done is aT
Lr #evpemsanrns sossunsssunsu sorma (21)

On equating (20) and (21) we get (19) again.
§156. The specific heat of saturated vapour.

The specific heat of a saturated vapour (y') is the quantity of heat
necessary to raise the temperature of unit mass 1° C., keeping it
saturated.
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Consider a mixture of liquid and saturated vapour, the total 0458
of the mixture being 1 gramme and the mass of the vapour being
* grammes. o

Let the temperature be T and let the latent heat of vaporisation
be L. Then the system is completely defined by the two independent
coordinates « and T. Let y be the specific heat of the liquid.

Let a quantity of heat dg be given to the system. Then

dg={(1-a)y+ay}dT+Lds, ds=(=22FY gryLas,
Since this is a perfect differential,

v-vy 1oL L ; oL L
T TTer e ¥ YOYTECT
Everything except 7’ can be easily determined, and hence the latter
can be calculated.
For water y' is negative, i.e. if the temperature of aqueous vapour be
raised, heat must be taken from it in order to keep it saturated. For
ether ' is positive.

§157. Change of temperature produced in a wire by stretching it.

Consider a wire hanging vertically with its upper end fixed and a
pan attached to its lower end for the purpose of holding weights.
Then the state of the wire at any time may he regarded as a function
of two independent variables, F the stretching force and T the absolute
temperature. Let @ denote the vertical displacement of the lower end
of the wire.

If T and F suffer small changes, the heat received by the wire is

given by dg=y AT +GAF. wooooieeeeceree s (22)

In this equation y is not the specific heat, but the thermal capacity
of the whole wire.

The work done on the wire when  is increased is Fdz. Let U he
the intrinsic energy of the wire and S its entropy. Then

(ZU=clg+Fclm:yclT+adF+Fg—_:f_dT+F@dF

oF
:<7+Fa—w>cZT+<a+Fa—x>dF

oT OF

4 @

and ds= = aT + = dF.
Since these are perfect differentials, we have the following two

relations : oy, % T

FTaroT
and Loy Loa 4@ or 9.0 o
' ToF Tor T % AT
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. . . Dy D . .
Eliminating % - % between the two equations, we obtain

or a

Since the wire expands on heating, =T 1s positive, and hence « is

positive. If the wire is suddenly stretched, the change may be
regarded as an adiabatic one, at least approximately. Puftting dg=0

in (22), we obtain IT+adF =0
Y =0.

Now v, @ and dF are all positive ; dT must be negative. Hence, on
stretching the wire, its temperature falls.

A very accurate experimental investigation of this fall in temperature
has been made, and its magnitude has been found to agree with the
formula within the error of observation,

India-rubber contracts when it is heated. Consequently for it a is
negative, and, on its being stretched, its temperature rises.

Equation (23) can also be derived by considering a cycle. For, let

-the wire expand isothermally from A to B at temperature T taking in

Fia. 75.

a quantity of heat dg, let it expand from B to C adiabatically, let it
contract isothermally from C to D at T—dT giving up heat and finally
let it contract adiabatically from D to A. The efficiency of the cycle

at — . :
is - and dg=adF =aJK. Hence the work done in the cycle is

de _adTR‘
TY9= "7

This is equal to the area of

ABCD = KGAB =KJ x BK=KJ % 4T,

On equating, we obtain
adT KJ
T

— Ox
KJ ,ﬁdT=

2

QJIQ)

z S8
=

whence

H.P.
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§ 158. Effect of temperature on the E.M.F. of a reversible cell.

By a reversible cell is meant one like a storage battery, in which all
the chemical changes are gone through in the reverse order, when the
current runs the other way. Let T be the absolute temperature of the
cell and e the quantity of electricity which has passed ‘ohr(}ugh 1t.
Then, according to the laws of electrolysis, these two quantities com-
pletely define its state. When a quantity ¢ passes through the cell,
let 4e be the chemical energy liberated and A¢ the heat absorbed by
the cell.

The cell is to be the working substance. Suppose that it is used to
drive a motor and that the motor works without friction. Let R be
the total resistance of the circuit and E the E.M.F. of the cell ; then the
rate at which energy is being dissipated in heat in the circuit is Ré?,
and the rate at which useful work is being done is Ei—R#? ¢ heing
the current in the circuit. The ratio of these quantities,

R R
E7 — Ri? E—R¢

approaches zero when 7 is made very small. If ¢ is very small, all the
energy is thus spent in useful work, and the transformation taking
place in the cell may be regarded as a reversible one. We shall
suppose ¢ to be very small.

When the temperature of the cell is T, let a quantity of electricity e
pass through it. The heat absorbed is then e and the work done hy
the cell is Ee. Next break the circuit, cool the cell adiabatically to
T—dT and let its B.M.F. become E —dE. Then make the circuit and
work the motor backwards so as to charge the cell isothermally, letting
a quantity e pass through it. The work done on the cell is in this
case (E—dE)e. Finally, break the circuit and suppose that chemical
changes talce place in the cell so that it heats adiabatically again to T.

The efficiency of the cycle is dTT, the heat taken in is Ae¢, and hence

the work done is Ae¢ d—_;_r But the total work done by the cell in the
cycle is
Ee— (E —dE)e=c¢dE.
2E

dT:edE OF A=T o ciiriririinriannneens (24)

Hence e = ==

But, when the temperature of the cell remains constant, Ee is equal
to the heat taken in plus the chemical energy liberated, that is,
Ee= Ae + he.
Thus, on substituting for A in equation (24), we obtain the final result

oE
E=h+Tﬁ-.
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Generally the E.M.F. increases with the temperature; E is then
greater than 7%, .e. heat is absorbed by the cell, and the latter will cool
if no heat is supplied to it.

§159. Second definition of entropy.

Suppose that a substance is working in a Carnot cycle between
temperatures T, and T,, taking in a quantity of heat ¢, at T, and
giving out ¢, at Ty, ¢; and ¢, being measured in dynamical units.
Then the work done in the cycle is ¢, —¢,. Let T, be the lowest
temperature available for a sink. Then g, is heat energy that cannot
be turned into work, or, in other words, it 1s unavailable energy. Now

=T
o= T1 ’
The wholly unavailable energy associated with a given quantity of
heat is thus:

(1) directly proportional to the lowest absolute temperature
available for a sink and

(2) inversely proportional to the temperature of the body which
the heat is leaving.

We may regard % as a measure of unavailability or factor which

only requires to be nllultiplied by any assumed auxiliary temperature
T, in order to give the quantity of unavailable energy relative to that
temperature.

If from any cause whatever the unavailable energy of a body with
reference to an auxiliary medium of temperature T, undergoes any
(positive or negative) increase and if this inerease be divided by the
temperature Ty, the quotient is called the increase of entropy of
the body.

This definition is much more suitable than the former one for
irreversible phenomena. It is easy to see that the two definitions are
identical for the case of a perfect gas and a reversible cycle. Both
definitions define only increase of entropy, and hence involve an
arbitrary constant.

If a system is taken from a state A to a state B by a reversible
transformation, B,

Sg —Sa= E-‘. (_Q
AT

If the transformation is irreversible,

B dj
B~ By B) =
B —SA> jA =

because irreversible changes, for example friction, loss of heat by
diffusion, etc., always involve an increase of unavailable energy. The
summation is to be taken over the different bodies of the system, and 8
here denotes the entropy of the whole system.
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§160. The second principle of thermodynamics.

In §134 we gave the statement of the second principle due to
Clausius. Lord Kelvin has stated it in the following manner :—It is
impossible by means of inanimate material agency to derive mechanical
effect from any portion of matter by cooling it below the temperature
of the coldest of the surrounding objects; and Clerk Maxwell has
given it another enunciation, namely :—T¢t is impossible, by the unaided
action of natural processes, to transform any part of the heat of a body -
into mechanical work, except by allowing heat to pass from that
body into another at a lower temperature. Perhaps the following
enunciation is the most useful of all:—The entropy of an isolated
system of bodies cannot decrease ; it remains constant in the reversible
processes and increases in the irreversible processes that take place
within the system. As a result of this definition, the second principle
of thermodynamics is sometimes referred to as the principle of the
inerease of entropy. It is connected with the doctrine of the dissipa-
tion or degradation of energy.

The second principle of thermodynamics thus states the direction in
which changes in nature are taking place. There is in nature a
quantity which changes always in the same sense in all natural
processes.

If an irreversible change can take place, it will. The reversible
cycles which we have studied are either cases of equilibrium or limiting
cases of irreversible cycles. Irreversible changes, on account of their
complexity, do not lend themselves readily to calculation or illustration.

In the second principle of thermodynamics we have a glimpse of a
very general law, that possibly transcends physics and which is not
yet fully understood. Hence the different ways of stating it.

EXAMPLES.

1. Prove that if T denote absolute temperature, dT the heating effect due
to the flow through the porous plug in Kelvin and Joule’s experiment from
pressure p to pressure p+dp, v the volume of a gramme of the gas, v,, v, the
specific heats at constant pressure and constant volume respectively,

9p
1o1_TPEE, a1
v-pye v—pyy

where ;. denotes %I
Hence, assuming the equation pv=RT for the gas, show that
o]
w=re=p(1-47) 57

Compare this with the result of the ordinary supposition as to the difference
between the specific heats.
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2. Assuming Van der Waals' equation, show that if »;, v, are the specific
volumes of a liquid and its vapour in contact at temperature T, the latent
heat of vaporisation is

RT log, 22—,
v —

3. Show that if y, y, are the thermal capacities of a stretched wire under
constant tension and at constant length respectively, { the length of the
wire at absolute temperature T under stretching force F and « the coefficient

of linear expansion, then 3 OF
Y1=7+dlT =T):
z

4, If F denote the superficial tension of a film of water, experiment has

shown that g—$= —01425 in dynes per cm. per degree Centigrade. Hence

show that about half as much energy must be given to the film in an
isothermal extension to prevent its temperature from sinking as is spent by
external forces in stretching the film.

5. A wire is suspended vertically, the upper end being fixed and the
lower end being stretched by a force F and twisted by a couple L.  If 2 denote
the extension and 6 the angle of twist of the lower end of the wire, show that

aw_o¢
oL oF
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Poisson’s equation, 20, 23.
example on, 23.
Polarising angle, 163.
Porous plug experiment, 186.
Potential, 13.
due to cylinder, 17.
due to sphere, 16.
due to small magnet, 137.
Potential vector, 31.
Poynting’s theorem, 154.
application of, 156.

Reversible cycles, 169.
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Rose-Innes, 188.
Rubens and Hagen, 167.

Saturated vapour,specific heat of, 191.

Shearing strain, 117.

Shell, attraction of a, 5.

Solid sphere, attraction of a, 11.

Sound waves, 131.

Specific inductive capacity, 142.

Sphere, flow of heat in a, 97.

Sphere in an infinite liquid, gravity
acting, 57.

Sphere in an infinite liquid, no
forces, 54.

Spheroid of small eccentricity, attrac-
tion of a, 7.

Stationary long waves in rectangular
trough, 123.

Stationary waves in
vessel, 129,

Stokes’ theorem, 59.

Stream function, 44.

Stream line, 31.

Stretched string, 109-115.

Surface integral of normal force, 10.

rectangular

Temperature change produced in a
wire by stretching, 192.

Thermal coefficients, transformation
of, 177.

Thermodynamics, 168-197.

principles of, 168, 196.

Tidal waves, 120.

Tides, 127.

Torsional vibrations, 116.

Total reflection, 164.

Transverse vibrations of a stretched
string, 109.

Transverse waves, 133.

Tubes of force, 15.

Two and three-dimensional Fourier
series and integrals, 105.

Two-dimensional motion of a liquid,
44-52,

Uniqueness of solution, conduction
of heat, 81.

Van der Waals’ equation, 189.
Velocity potential, 31.

Vortex motion, laws of, 62.
Vortex, rectilinear, 64.
Vortex tubes, 62.

Wave motion, 109-135.
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