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Abstract

With the increase in the amount of data in many fields, a method to consis-

tently and efficiently decipher relationships within high dimensional data

sets is important. Because many modern datasets are multivariate, univariate

tests are not applicable. While many multivariate independence tests have

R packages available, the interfaces are inconsistent and most are not available

in Python. We introduce hyppo, which includes many state of the art multivari-

ate testing procedures. This thesis provides details for the implementations

of each of the tests within a test hyppo as well as extensive power and run-

time benchmarks on a suite of high-dimensional simulations previously used

in different publications. The documentation and all releases for hyppo are

available at https://hyppo.neurodata.io.
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1 Introduction

Technological advancements have enabled the use of large amounts of data

to represent important relationships in nearly every field. Examining and

identifying relationships between sets of high-dimensional variables is critical

to advance understanding and planning of future numerical and physical

experiments. Independence and k-sample testing enables formally testing

models to identify such differences.

Over the last century and a half, many different statistical tests have been

developed to analyze such multivariate data sets. Early non-parametric tests

were introduced in the 1940s and 1950s to test on distributions [1, 2]. In the

1970s and 1980s, nearest neighbor approaches were introduced that could

operate on high dimensional and nonlinear sample data but required careful

tuning of algorithm parameters [3, 4]. Recently, several statistics have been

proposed that operate well on high-dimensional (potentially non-Euclidean)

data, such as distance correlation [5–8] and Hilbert-Schmidt independence

criterion [9–11], which are actually exactly equivalent in Sejdinovic et al. [12]

and Shen & Vogelstein [13]. Heller, Heller and Gofrine proposed another

nonparametric independence test with particularly high power in certain

nonlinear relationships [14]. Multiscale Graph Correlation is a test that has

demonstrated higher statistical power on many multivariate, nonlinear, and

structured data when compared to other independence tests [15, 16], which

combines and extends the nearest neighbors and energy statistics to detect

underlying relationships. The test is statistically efficient, requiring about half

or one-third of the number of samples to achieve the same statistical power
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[17]. In addition, the test provides additional information about the data’s

geometry, allowing for more informed decision making of the underlying

relationships in the data. For each of these tests, p-values can be calculated

using a random permutation test [18–20]. These tests can be modified and

extended to such applications as time-series testing [21].

To approach the problem of two-sample testing, Student’s t-test [22] is

traditionally used, while a few nonparametric alternatives have been pro-

posed that operate well on multivariate, nonlinear data such as Energy [23],

and maxmimal mean discrepency [24], and Heller Heller and Gorfine’s test

[14]. The two-sample testing problem can be generalized to the k-sample test-

ing problem and here analysis of variance [25] or its multivariate analogue,

multivariate analysis of variance [26], can be used, but these statistics either

fail to, or operate poorly upon, multivariate and nonlinear data. In addition,

both tests in particular suffer from fundamental assumptions that are not

generally present in real data [27, 28]. There are a few nonparametric alterna-

tives to analysis and multivariate analysis of variance, such as multivariate

k-sample Heller Heller Gorfine [29], and distance components (DISCO) [30].

Recently, Shen et al. [31] has shown that nonparametric distance and kernel

k-sample tests can be formulated by reducing the k-sample testing problem to

the independence testing problem.

This thesis introduces hyppo, a comprehensive hypothesis package that

provides various tests with high statistical power on multidimensional and

nonlinear data. hyppo is a well-tested, multi-platform, Python 3 compatible

library that allows users to conduct hypothesis tests on their data, and is also
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flexible enough to allow developers to easily add in their own tests. hyppo is

notable as it is one of the few packages in Python that enables such analysis

and contains many uniquely power tests not present in other libraries. It

also provides benchmarks for each of these tests by comparing power over

many statistical models. The contribution of this thesis is therefore to provide:

(1) an overview of notable independence tests implemented in hyppo, (2)

benchmarks of the tests on a suite of diverse challenge problems, and (3)

comparisons of the test statistics and wall times with similar R packages.

2 Preliminaries

2.1 Notation

Let R denote the real line (−∞, ∞). Let FX, FY, and FXY refer to the marginal

and joint distributions of random variables X and Y respectively. Let x and

y refer to the samples from FX and FY and x ∈ Rn×p and y ∈ Rn×q refer to

the matrix of these observations. That is, x = {xi ∼ FX where xi ∈ Rp, i =

1, ..., n} and y = {yi ∼ FY where yi ∈ Rq, i = 1, ..., n}. The trace of an n × n

square matrix is the sum of the elements along the main diagonal; that is, the

trace of n × n matrix x is tr(x) = ∑n
i=1 xii.

2.2 Independence Tests

All independence tests can be generalized into the following form: given

random variables X and Y, which are assumed to be from the joint distribu-

tion FXY = FX|YFY, two variables are considered independent if and only if

FX|YFY = FXFY; that is, the joint distribution is equal to the product of the
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marginals. This idea can be formulated as the following test:

H0 : FXY = FXFY HA : FXY ̸= FXFY.

It turns out any dependency measure can be directly used to test equality of

two or more distributions, i.e., two-sample or k-sample test, see [31].

2.2.1 Pearson’s Product-Moment Correlation Coefficient (PEARSON), RV,
and Canonical-Correlation Analysis (CCA)

PEARSON is a measure of the linear correlation between two univariate random

variables [32]. Given sample data x and y where p = q = 1, the sample

PEARSON correlation is

PEARSONn(x, y) =
ˆ︃cov(x, y)

σ̂xσ̂y
, (1)

where ˆ︃cov(x, y) is the sample covariance, σ̂x and σ̂y are the sample standard

deviations of x and y respectively.

RV is a multivariate generalization of the squared PEARSON coefficient

[33, 34]. The derivation is as follows: assuming each column in x and y are

pre-centered to zero mean in each dimension, then the sample covariance

matrix is Σ̂xy = xTy, and the RV coefficient is

RVn(x, y) =
tr
(︁
Σ̂xyΣ̂yx

)︁
tr
(︂

Σ̂
2
xx

)︂
tr
(︂

Σ̂
2
yy

)︂ . (2)

Another similarly defined tool is CCA, which finds the linear combinations

with respect to the dimensions of x and y that maximize their correlation [35].

It seeks a vector a ∈ Rp and b ∈ Rq to compute the first correlation coefficient
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as

max
a∈Rn,b∈Rm

aTΣ̂xyb√︁
aTΣ̂xxa

√︂
bTΣ̂yyb

. (3)

One can keep on deriving the second and the third canonical correlation

coefficients in a similar manner until the end, and CCA can also be generalized

to more than two random variables ([36]). Therefore, CCA can be used to define

a test statistic for dependence, and usually people take the first correlation

coefficient or the sum of all correlation coefficients as the statistic.

2.2.2 Kendall (KENDALL) and Spearman (SPEARMAN)

KENDALL and SPEARMAN are rank-based correlation coefficients that are robust

univariate test statistics [37, 38]. To formulate KENDALL, define (xi, yi) and

(xj, yj) as concordant if the ranks agree: xi > xj and yi > yj or xi < xj and

yi < yj. They are discordant if the ranks disagree: xi > xj and yi < yj or

xi < xj and yi > yj. If xi = xj and yi = yj, the pair is said to be tied. Let nc

and nd be the number of concordant and discordant pairs respectively and

n0 = n(n − 1)/2. In the case of no ties, the test statistic is defined as

KENDALLn(x, y) =
nc − nd

n0
, (4)

Further define n1 = ∑i
1
2 ti(ti − 1), n2 = ∑j

1
2 uj(uj − j), ti = number of tied

values in the ith group of ties in the first quantity, and uj = number of tied

values in the jth group of ties in the second quantity. In the case of ties, the

statistic is calculated as in [39]

KENDALLn(x, y) =
nc − nd√︁

(n0 − n1) (n0 − n2)
, (5)
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SPEARMAN can be thought of as closely related to PEARSON, whose statistic is

listed in Equation 1. Suppose that rgxi
and rgyi

are the respective ranks of n

raw scores xi and yi, ρ denotes the PEARSON coefficient but applied to rank

variables, cov(rgx, rgy) denotes the covariance of the rank variables, and σ̂rgx

and σ̂rgy
denote the standard deviations of the rank variables. The statistic is

SPEARMANs(x, y) = ρrgx,rgy
=

cov(rgx, rgy)

σ̂rgx
σ̂rgy

. (6)

2.2.3 Heller, Heller, and Gorfine’s (HHG)

dy(yi, ·) ≤ dy(yi, yj) dy(yi, ·) > dy(yi, yj)
dx(xi, ·) ≤ dx(xi, xj) A11(i, j) A12(i, j) A1·(i, j)
dx(xi, ·) > dx(xi, xj) A21(i, j) A22(i, j) A2·(i, j)

A·1(i, j) A·2(i, j) n − 2

Table 1: The cross-cross classification table used to calculate the Pearson’s chi squared
test statistic involved in the HHG test statistic calculation.

HHG is a consistent multivariate test of associations based on the rank of the

distances [14]. For every sample point j ̸= i, denote a point in the joint sample

space as (xj, yj). Let dx(xi, xj) be equivalent to the norm distance between

samples xi and xj and dy(yi, yj) is similarly defined. The indicator function is

denoted by I{·}. The cross-classification between these two random variables

can be formulated as in Table 1, where

A11 =
n

∑
k=1,k ̸=i,j

I
{︁

dx(xi, xk) ≤ dx(xi, xj)
}︁

I
{︁

dy(yi, yk) ≤ dy(yi, yj)
}︁

,

and A12, A21, and A22 are defined similarly. A·1, A·2, A1·, and A2· are the

sums of the column and row respectively. Once this table is generated, the
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Pearson’s chi square test statistic can be calculated using

S(i, j) =
(n − 2)(A12A21 − A11A22)

2

A1·A2·A·1A·2
.

From here, the HHG test statistic is simply

HHGn =
n

∑
i=1

n

∑
j=1,j ̸=i

S(i, j). (7)

2.2.4 DCORR

DCORR is a powerful test to determine linear and nonlinear associations be-

tween two random variables or vectors in arbitrary dimensions. The test

statistic can be determined as follows: let Dx be the n × n distance matrix of

x and Dy be the n × n distance matrix of y. Let H = I − 1
n J denote the n × n

centering matrix where I is the identity matrix and J is the matrix of ones.

The distance covariance (DCOV’) and distance correlation (DCORR’) can then

be defined as [7],

DCOV’n(x, y) =
1
n2 tr(HDxHHDyH). (8)

DCORR’n(x, y) =
DCOV’n(x, y)√︁

DCOV’n(x, x) · DCOV’n(y, y)
∈ [−1, 1]. (9)

The statistics presented in equations (8) and (9) are biased; fortunately, unbi-

ased distance correlation test statistics have also been developed [40]. Define

another modified matrix Cx such that,

Cij
x =

{︄
Dx

ij − 1
n−2 ∑n

t=1 Dx
it − 1

n−2 ∑n
s=1 Dx

sj +
1

(n−1)(n−2) ∑n
s,t=1 Dx

st i ̸= j

0 otherwise
,
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and define Cy similarly. Then, the unbiased distance covariance (DCOV) and

unbiased distance correlation (DCORR) is [40],

DCOVn(x, y) =
1

n(n − 3)
tr(CxCy). (10)

DCORRn(x, y) =
DCOVn(x, y)√︁

DCOVn(x, x) · DCOVn(y, y)
∈ [−1, 1]. (11)

Since the statistics presented in equations (10) and (11) provide similar empir-

ical results to the biased statistics [17], from now on any reference to distance

correlation will refer to the unbiased distance correlation. In fact, this formula-

tion of k-sample DCORR is exactly equivalent to energy distance [31].

2.2.5 HSIC

Hilbert-Schmidt independence criterion (HSIC) is a closely related test that

exchanges distance matrices Dx and Dy for kernel similarity matrices Kx and

Ky. In fact, they are exactly equivalent in the sense that every valid kernel has

a corresponding valid semimetric to ensure their equivalence, and vice versa

[12, 13]. In other words, every DCORR test is also an HSIC test and vice versa.

Nonetheless, implementations of DCORR and HSIC use different metrics by

default: DCORR uses a Euclidean distance while HSIC uses a Gaussian kernel

similarity.

2.2.6 MGC

Building upon the ideas of DCORR, HSIC, and k-nearest neighbors, MGC pre-

serves the consistency property while typically working better in multivariate
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and non-monotonic relationships [17]. The MGC test statistic is computed as

follows:

1. Two distance matrices Dx and Dy are computed, and modified to be

mean zero column-wise. This results in two n × n distance matrices Cx

and Cy (the centering and unbiased modification is slightly different

from the unbiased modification in the previous section, see [15] for more

details).

2. For all values k and l from 1, . . . , n,

(a) The k-nearest neighbor and l-nearest neighbor graphs are calculated

for each property. Here, Gk(i, j) has value 1 for the k smallest values

of the i-th row of Dx and H l(i, j) has value 1 the l smallest values

of the i-th row of Dy. All other values in both matrices is 0.

(b) The local correlations are summed and normalized using the fol-

lowing statistic:

ckl =
∑ij Dx(i, j)Gk(i, j)Dy(i, j)H l(i, j)√︁

(Dx(i, j))2Gk(i, j) ·
√︁
(Dy(i, j))2H l(i, j)

,

3. The MGC test statistic is the smoothed optimal local correlation of
{︁

ckl}︁.

Denote the smoothing operation as R(·) (which essentially set all isolated

large correlations as 0 and connected large correlations same as before,

see [15]), MGC is

MGCn(x, y) = max
(k,l)

R(ckl(xn, yn)). (12)
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2.3 Two-sample and k-sample Tests

Consider the two-sample problem: we obtain two datasets: ui ∈ Rp for

i = 1, . . . , n and vj ∈ Rp for j = 1, . . . , m. Assume that each ui is sampled

independently and identically (i.i.d.) from FU and that each vj is sampled

i.i.d. from FV (and also that each ui and each vj is independent from one

another). The two-sample testing problem tests whether the two datasets

were sampled from the same distribution, that is,

H0 : FU = FV , HA : FU ̸= FV . (13)

Eq. (13) can also be generalized to k samples: let xji ∈ Rp for j = 1, . . . , k

and i = 1, . . . , nj be k datasets that are sampled i.i.d. from F1, . . . , Fk and

independently from one another. Then,

H0 : F1 = F2 = · · · = Fk, HA : ∃ j ̸= j′ s.t. Fj ̸= Fj′ (14)

2.3.1 HOTELLING

HOTELLING is a generalization of Student’s t-test in arbritary dimension [41].

Consider input samples ui
iid∼ FU for i ∈ {1, . . . , n} and vi

iid∼ FV for i ∈

{1, . . . , m}. Let ū refer to the columnwise means of u; that is, ū = (1/n)∑n
i=1 ui

and let v̄ be the same for v. Calculate sample covariance matrices Σ̂uv = uTv

and sample variance matrices Σ̂uu = uTu and Σ̂vv = vTv. Denote pooled

covariance matrix Σ̂ as

Σ̂ =
(n − 1)Σ̂uu + (m − 1)Σ̂vv

n + m − 2

10



Then,

HOTELLINGn,m(u, v) =
nm

n + m
(ū − v̄)TΣ̂

−1
(ū − v̄) (15)

Of course, since it is a multivariate generalization of Student’s t-tests, it suffers

from some of the same assumptions as Student’s t-tests. That is, the validity

of HOTELLING depends on the assumption that random variables are normally

distributed within each group, and each with the same covariance matrix.

Distributions of input data are generally not known and cannot always be

reasonably modeled as Gaussian [42, 43], and having the same covariance

across groups is also generally not true of real data.

2.3.2 MANOVA

MANOVA is a procedures for comparing more than two multivariate samples

[27, 44]. It can be thought as a multivariate generalization of the univariate

ANOVA [27] using covariance matrices rather than the scalar variances. As

in Rencher [45]: consider input samples x1, x2, . . . , xk that have the same

dimensionality p. Each xi, where i ∈ {1, . . . , k} is assumed to be sampled from

a multivariate distribution N(µi, Σ) and so each sample is assumed to have

the same covariance matrix Σ. The model for each p-dimensional vector of

each xi is defined as follows: for j ∈ {1, . . . , ni},

xij = µi + ϵij.

In MANOVA, we are testing if the mean vectors of each of the k-samples is the

same. That is, the null and alternate hypotheses are,

H0 : µ1 = µ2 = · · · = µk, HA : ∃ j ̸= j′ s.t. µj ̸= µj′

11



Let x̄i· refer to the columnwise means of xi; that is, x̄i· = (1/ni)∑ni
j=1 xij.

The pooled sample covariance of each group, W , is

W =
k

∑
i=1

ni

∑
j=1

(xij − x̄i·)(xij − x̄i·)
T. (16)

Next, define B as the sample covariance matrix of the means. If N =

∑k
i=1 ni and the grand mean is x̄·· = (1/N)∑k

i=1 ∑n
j=1 xij,

B =
k

∑
i=1

ni(x̄i· − x̄··)(x̄i· − x̄··)T. (17)

Some of the most common statistics used when performing MANOVA in-

clude the Wilks’ Lambda, the Lawley-Hotelling trace, Roy’s greatest root,

and Pillai-Bartlett trace (PBT) [46–48] (PBT is recognized to be the best of

these as it is the most conservative [27, 49]) and Olson [50] has shown that

there is minimal differences in statistical power among these statistics. Let

λ1, λ2, . . . , λs refer to the eigenvalues of (B + W)−1B. Here s = min(νB, p) is

the minimum between the degrees of freedom of B, νB and p. So, the PBT

MANOVA test statistic can be written as [44],

MANOVAn1,...,nk(x, y) =
s

∑
i=1

λi

1 + λi
= tr

(︂
(B + W)−1B

)︂
. (18)

MANOVA is closely related to HOTELLING, and as such, it suffers from the

same assumptions that HOTELLING does.

2.3.3 k-sample Tests as Independence Tests

k-sample tests can be implemented as independence tests as follows: consider

u1, . . . , uk as matrices of size n1 × p, . . . , nk × p, where p refers to the number of
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dimensions and ni refers to the number of samples of ui. Letting N = ∑k
i=1 ni,

define new data matrices x and y such that,

x =

⎡⎢⎣u1
...

uk

⎤⎥⎦ ∈ RN×p,

y =

⎡⎢⎢⎢⎣
1n1×1 0n1×1 . . . 0n1×1
0n2×1 1n2×1 . . . 0n2×1

...
... . . . ...

0nk×1 0nk×1 . . . 1nk×1

⎤⎥⎥⎥⎦ ∈ RN×k.

Additionally, in the two-sample case,

x =

[︃
u1
u2

]︃
∈ RN×p,

y =

[︃
0n1×1
1n2×1

]︃
∈ RN.

That is, x can be thought of as the data matrix (contains all the concatenated

data) while y can be thought of as the label matrix (labels x from whichever

original input the data came from). Therefore, x and y are now paired data ma-

trices, and thus dependence of x on y indicates that the labels are informative;

in other words, that u and v have been sampled from different distributions.

The implication of this idea is that any independence test can be used to

implement a k-sample test [31]. Using this method, ENERGY is equivalent to

two-sample DCORR and two-sample HSIC is equivalent to maximum mean

discrepancy (MMD) exactly [31].
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2.4 Permutation Tests

For many early independence tests, such as Pearson’s, analytical p-values are

available. When such analytic approximations are unknown, permutation

tests permute either of the input data matrices x or y, and calculate test

statistics for each permutation. Doing so many times approximates the null

distribution from which the observed test statistic can be compared to generate

a p-value [51, 52].

In the case of nonparametric tests, permutations can be used to exactly

calculate the p-value since calculations are not dependent upon a reference

distribution [53]. However, in the case of large amounts of data, calculating

every permutation is impractical and often computationally expensive. A fi-

nite number of permutations typically approximates the true null distribution

quite well with a minimal additional computational cost [19, 53]. All tests that

are used in section 3 use this permutation method to approximate a p-value.

2.5 hyppo

hyppo is an open source Python package that implements all the afforemen-

tioned tests in an easy-to-use and extensible framework. Links to source code,

documentation, and tutorials can be found here: https://hyppo.neurodata.

io. The modules of hyppo are: independence, ksample, time_series, and sims.

Each module contains a base.py which contains the base abstract class for

each module and a private _utils.py files that contains an input checking

class and other relevant functions used by multiple classes in the module.

Also, a single Python file contains a class corresponding to each independence
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or k-sample test and any other private functions unique to statistic calculation.

The p-value calculation uses a permutation test by default in most modules,

this is overridden when analytical p-values are available for large sample

sizes. Each test within hyppo contains a .test method which the user runs

that returns at least a statistic and p-value in all cases. sims contains a bench-

marks suite of 20 simulations to test statistical power of each of the tests in

hyppo.

Code is released under the Apache v2.0 license on GitHub with releases

available via PyPi. Documentation also details some background behind

calculating each test statistic and links to relevant papers about each algorithm.

Implementation follows PEP8 and has a high level of test coverage (> 85%).

Development undergoes continuous integration and testing on Windows,

Ubuntu Linux, and Mac OS X for Python 3.5+ and can be found on GitHub at

hyppo.

2.6 Evaluating Implementations

To effectively evaluate implementations of each of the included independence

tests, a number of jupyter notebooks have been written to evaluate speed,

correctness, and power. The testing power for a given level of α (Type 1 error

level) test is equal to the probability of correctly rejecting the null hypothesis

when the alternative is true. For a test to be consistent, statistical power must

converge to 1 as the sample size increases to ∞. To this end, a benchmark of

20 different distributions, as developed previously for independence testing,

including polynomial (linear, quadratic, cubic), trigonometric (sinusoidal,
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Figure 1: Benchmarks of hyppo implementations against corresponding R implemen-
tations. Average wall times (over 3 repetitions) (left) are shown for DCORR in energy
and kernlab as compared against hyppo implementations of MGC, DCORR, and FAST

DCORR. Test statistic comparisons (right) between DCORR, MMD, and HHG in hyppo are
compared against their respective reference R implementations. Test statistics are
nearly identical for each implementation.

circular, ellipsoidal, spiral), geometric (square, diamond, W-shaped), and other

relationships [6, 7, 14, 17, 54, 55]. These distributions have been incorporated

in the the sims module in hyppo with modifications made to test for k-samples.

3 Results

3.1 hyppo Benchmarks

3.1.1 Wall Times

Figure 1a shows the computational efficiency of hyppo’s implementations

against existing implementations in commonly used R packages—specifically

energy [56], kernlab [57], and HHG [58]. When comparing performance, wall
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times are averages of p-value computations (1000 replications when permuta-

tion tests are used) 3 trials calculated on a univariate noisy linear simulation

with number of samples increasing from 50 to 10,000. All computations were

performed on an Ubuntu 18.04.3 LTS system with access to 96 cores. When

sample sizes are above a few hundred, all algorithms achieve approximately

quadratic times, with different slopes. HHG was the slowest as expected,

though had comparable speeds to the other algorithms at low sample sizes.

MGC and DCORR are next, and still only requires tens of minutes to run when

sample sizes are around 10,000. At low sample sizes, the energy package’s

DCORR is faster than kernlab’s implementation of MMD (DCORR is equivalent

to MMD for all finite sample sizes [13]) even at a sample size of 10,000. hyppo’s

FAST DCORR is the fastest, even though both energy and kernlab both use

highly optimized C++ versions.

3.1.2 Implementation Validation

Next, we verify that hyppo’s test statistics are equivalent to existing R imple-

mentations of the tests. Specifically, hyppo’s implementations were compared

to: DCORR from the energy package [56]. MMD from the kernlab package

[57], and HHG from the HHG package [58]. The evaluation uses a spiral simu-

lation with 1000 samples and 2 dimensions for each test and compares test

statistics over 20 repetitions. Figure 1b shows the difference between the

hyppo implementation of the independence test and the respective R pack-

age implementation of the independence test. Although a slight numerical

bias exists in the case of MMD due to a transformation from Shen & Vogel-

stein [13] and Shen et al. [31], test statistics are nearly equivalent for each

17



implementation.

3.2 Independence Power

Power curves were created for increasing sample size (Figure 2) and increasing

dimension (Figure 3) for 20 different simulation settings, and were imple-

mented from the equations in Appendix A. In all cases, α = 0.05.

Figure 2 shows the effect of increasing sample size for each simulations

has on the statistic power for each independence test. Number of samples

ranged from 5 to 100 and the fast tests started at 20 samples since that is the

minimum size that the tests need to operate. For each test and simulation,

for all universally consistent tests (including MGC, DCORR, HSIC, PEARSON,

SPEARMAN, CCA, HHG, KENDALL, and RV) it is expected that the statistical power

will converge to one as the number of samples increased except in the case

of simulation 20, where x and y are independent. Better independence tests

converge to one faster. 100 samples was chosen as the maximum because

for most simulations, the power approached or was approaching one. In the

first 14 settings, MGC performs as well or better than all the other tests and

HHG perform best in the last four dependence settings. RV, CCA, KENDALL,

SPEARMAN, and PEARSON perform poorly in all but the five monotonic settings

(in the top row). All tests are valid, as shown in the last panel.

Figure 3 shows the effect of increasing dimensions on statistical power for

sample size fixed at n = 100. The maximum number of dimensions varied for

each simulation settings; it was higher for relatively simple relationships, and

lower for relatively complex relationships. It is expected that power would
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Figure 2: Power vs. sample size curves for each of 20 simulations with one dimension
for both x and y (n = 5 trials). The fast tests require a sample size of at least 20 to
calculate a reliable estimate of the p-value. MGC tends to perform better or the best
among all the independence tests. Under the Multimodal Independence simulation,
all tests achieve a power equal to α, as expected.
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Figure 3: Power vs. dimension curves for each of 20 simulations using 100 samples
for each different dimension (n = 5 trials). The results are qualitatively similar to
those from Figure 2.
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decrease toward 0 as the number of dimensions increase because adding

dimensions increases the complexity of the simulation relationships and thus

leading to more unreliable p-value estimate. Better tests converge to 0 more

slowly. Under these conditions, as before, MGC tends to be either the best or

near the best for most settings, except the last five, where HHG achieve slightly

higher power than MGC for nearly all dimensions. RV and CCA all perform

poorly for any of the non-monotonic settings (all but the top row).

3.3 k-sample Power

3.3.1 Gaussian Simulations

Consider the simplest possible three-sample tests, where in each case, all three

samples are Gaussian with identity covariance matrix (I):

1. None Different All three groups are Gaussian with the same mean:

µ = (0, 0).

2. One Different Two of the Gaussians have the same mean while the

third has a different mean, thus, µ = (0, 0) for two of the Gaussians and

µ = (0, ϵ) for the third Gaussian.

3. All Different The three means form an equilateral triangle with center

(0, 0) and radius ϵ, thus,

µ1 = (0,
√

3/3× ϵ), µ2 = (−ϵ/2,−
√

3/6× ϵ), and µ3 = (ϵ/2,−
√

3/6×

ϵ).

Figure 4 shows (top) scatter plots and (bottom) statistical power for each
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Figure 4: Comparing parametric to non-parameteric tests on three different para-
metric settings. Three two-dimensional Gaussians were generated for three different
cases with 100 samples each (see Section A for details). The top row shows a scatter
plot of each simulation for a given cluster separation, and the bottom row shows the
power curves for each simulation as cluster separation increases (averaged over 5
repetitions). All methods are valid because power is ≤ α (left). Shockingly, even on
in a Gaussian settings in which one would expect MANOVA to be best, DCORR and
HSIC perform as well (middle) or better than MANOVA (right). k-sample MGC adds a
little variance to DCORR and HSIC which reduces it power relatively in these settings
by a little. PYMANOVA performs poorly.

of the three cases, where ϵ is increased from 0 to 1. None Different demon-

strates that each test controls type I error properly. Since there is no difference

in distribution, all tests are expected to have power equal to α (0.05 in this

case). One Different shows that as one distribution separates from the oth-

ers, k-sample DCORR and k-sample HSIC perform similarly to MANOVA while

slightly outperforming both PYMANOVA and k-sample MGC. In All Different,

both k-sample DCORR and k-sample HSIC slightly outperform MANOVA, which

performs similarly to k-sample MGC, and PYMANOVA performs particularly

poorly. These results suggests that even at a simulation setting where the

MANOVA test is expected to perform the best (linear simulation setting, all
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distributions Gaussian, all distributions same covariance), nonparametric k-

sample tests can perform as well, and even a little better! We do not consider

PYMANOVA further.

3.3.2 A Benchmark Suite of 20 Affine Transformations

We consider a benchmark suite of 20 different distributions as developed previ-

ously for independence testing, including polynomial (linear, quadratic, cubic),

trigonometric (sinusoidal, circular, ellipsoidal, spiral), geometric (square, dia-

mond, W-shaped), and other relationships [6, 7, 14, 17, 54, 55, 59] with math

and visualization shown in section A. In each case, we sample n times from

one of these 20 different distributions, and then apply an affine transformation

to the distribution, and sample n times again (so, in the following, n = m for

all simulations). In each case, the noise distribution is determined as described

in Vogelstein et al. [17]. Figure 8 shows an example where we applied a 60

degree rotation to each distribution to obtain two samples with no noise. The

following three figures show power curves for each of the 20 settings. The

bottom right panel illustrates the power under the null, which must be less

than or equal to α to be a valid test.

Figure 5 evaluates the tests for varying sample size in two-sample tests

where both x and y are two-dimensional, and FY is rotated 90 degrees relative

to FX. The y-axis shows the power of each test relative to k-sample MGC’s

power (red line), meaning that if a test achieves higher power than MGC its

curve is above the red line, and otherwise its curve is below the red line. In this

setting, k-sample MGC performs as well or better than all other k-sample tests
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Figure 5: Power versus sample size curves for each of 20 two-sample simulations for
a fixed angle (90 degrees), where both x and y are two-dimensional (averaged over
5 repetitions). Power curves are plotted relative to k-sample MGC: those above the
red line outperform k-sample MGC and those under the red line perform worse than
k-sample MGC. k-sample MGC empirically dominates all other tests, meaning it always
achieves as high or higher statistical power for all simulations and sample sizes.

24



0

1
Linear Exponential Cubic Joint Normal Step

0

1
Quadratic W-Shaped Spiral Bernoulli Logarithmic

0

1
Fourth Root Sine 4 Sine 16 Square Two Parabolas

0 90
0

1
Circle

0 90

Ellipse

0 90

Diamond

0 90

Multiplicative

0 90

Independence

CCA
Energy

HHG
MMD

RV MGC Hotelling
Angle

S
ta

tis
tic

al
 P

ow
er

Figure 6: Power versus angle for 20 two-sample tests with fixed sample size (100
samples) in two dimensions (averaged over 5 repetitions). k-sample MGC empirically
dominates the other tests in nearly all of the simulation settings. MANOVA performs
slightly better than MGC for certain sample sizes in both the exponential and cubic sim-
ulations, probably because those settings closely approximate the setting MANOVA was
designed for.
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Figure 7: Power versus dimension for 20 two-sample tests with fixed sample size
(100 samples) and angle (90 degrees) in two-dimensions (averaged over 5 repetitions).
k-sample MGC empirically dominates the other tests in nearly all of the simulation
settings. MANOVA performs slightly better than MGC for certain sample sizes in both the
cubic and Bernoulli simulations, probably because those settings closely approximate
the setting MANOVA was designed for.
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in all simulation settings and sample sizes while properly controlling Type

I error. MANOVA performs similarly to k-sample CCA and k-sample RV. Note

that k-sample MGC outperforms MANOVA even in the linear setting.

Figure 6 shows the same 20 settings, exact the sample size fixed at n = 100

the rotation angle for FY is varied from 0◦ to 90◦. As with Figure 5, power

was plotted relative to k-sample MGC. In this setting, for nearly all angles and

simulation settings, k-sample MGC achieved the same or higher power as every

other test in nearly all settings. Here, however, MANOVA briefly outperforms

k-sample MGC in two simulation settings (exponential and cubic). Visually

inspecting these settings indicates that these settings are approximately Gaus-

sian, where we previously demonstrated MANOVA can achieve higher power

than MGC for certain parameter settings and sample size combinations.

Figure 7 shows the power as the number of dimensions is increasing,

while the sample size and angle are fixed at 100 and 90 degrees, respec-

tively. k-sample MGC outperformed every test in nearly all settings again.

MANOVA performed better in the cubic and Bernoulli simulations; visual in-

spection indicates that these two settings can reasonably be approximated by

Gaussians.

4 Conclusion

We have presented a number of known and novel independence tests that we

have incorporated into a Python package hyppo. hyppo is an extensive and

extensible open-source Python package for multivariate hypothesis testing.

Incorporated within this package are a number of k-sample-tests based on a
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trivial modification of existing independence tests [31]. It is an easy to use

tool for anyone familiar with machine learning and Python. Applications of

this work are far reaching within many fields from machine learning and

artificial intelligence to general chemistry and biology. Hypothesis testing is a

fundamental necessity in data analysis and having one in Python, which is a

very commonly used programming language, is important. As hyppo contin-

ues to grow and add functionality, it will enhance tools scientists use when

determining relationships within their investigations.
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A Simulations

Independence test simulations were generated utilizing the following equa-

tions.

1. Linear(X, Y) ∈ Rp × R:

X ∼ U (−1, 1)p,

Y = wTX + κϵ.

2. Exponential(X, Y) ∈ Rp × R:

X ∼ U (0, 3)p,

Y = exp
(︂

wTX
)︂
+ 10κϵ.

3. Cubic(X, Y) ∈ Rp × R:

X ∼ U (−1, 1)p,

Y = 128
(︃

wTX − 1
3

)︃3

+ 48
(︃

wTX − 1
3

)︃2

− 12
(︃

wTX − 1
3

)︃
+ 80κϵ.

4. Joint Normal(X, Y) ∈ Rp × Rp: Let ρ = 1/2p, Ip be the identity

matrix of size p × p, Jp be the matrix of ones of size p × p, and Σ =[︃
Ip ρJp

ρJp (1 + 0.5κ) Ip

]︃
. Then,

(X, Y) ∼ N (0, Σ) .

5. Step Function(X, Y) ∈ Rp × R:

X ∼ U (−1, 1)p,
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Y = I
(︂

wTX > 0
)︂
+ ϵ,

where I is the indicator function; that is, I (z) is unity whenever z is true,

and 0 otherwise.

6. Quadratic(X, Y) ∈ Rp × R:

X ∼ U (−1, 1)p,

Y =
(︂

wTX
)︂2

+ 0.5κϵ.

7. W-Shape(X, Y) ∈ Rp × R: For U ∼ U (−1, 1)p,

X ∼ U (−1, 1)p,

Y = 4

[︄(︃(︂
wTX

)︂2
− 1

2

)︃2

+
wTU
500

]︄
+ 0.5κϵ.

8. Spiral(X, Y) ∈ Rp × R: For U ∼ U (0, 5), ϵ ∼ N (0, 1),

X|d| = U sin (πU) cosd (πU) for d = 1, ..., p − 1,

X|p| = U cosp (πU) ,

Y = U sin (πU) + 0.4pϵ.

9. Uncorrelated Bernoulli(X, Y) ∈ Rp × R: For U ∼ B (0.5), ϵ1 ∼

N
(︁
0, Ip

)︁
, ϵ2 ∼ N (0, 1),

X ∼ B (0.5)p + 0.5ϵ1,

Y = (2U − 1)wTX + 0.5ϵ2.
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10. Logarithmic(X, Y) ∈ Rp × Rp: For ϵ ∼ N
(︁
0, Ip

)︁
,

X ∼ N
(︁
0, Ip

)︁
,

Y|d| = 2 log2

(︂⃓⃓⃓
X|d|

⃓⃓⃓)︂
+ 3κϵ|d| for d = 1, ..., p.

11. Fourth Root(X, Y) ∈ Rp × R:

X ∼ U (−1, 1)p,

Y =
⃓⃓⃓
wTX

⃓⃓⃓1/4
+

κ

4
ϵ.

12. Sine Period 4π(X, Y) ∈ Rp × Rp: For U ∼ U (−1, 1), V ∼ N (0, 1)p,

θ = 4π,

X|d| = U + 0.02pV|d| for d = 1, ..., p,

Y = sin(θX) + κϵ.

13. Sine Period 16π(X, Y) ∈ Rp × Rp: Same as above except θ = 16π and

the noise on Y is changed to 0.5κϵ.

14. Square(X, Y) ∈ Rp × Rp: For U ∼ U (−1, 1), V ∼ U (−1, 1), ϵ ∼

N (0, 1)p, θ = −π
8 ,

X|d| = U cos (θ) + V sin (θ) + 0.05pϵ|d|,

Y|d| = −U sin (θ) + V cos (θ) .

15. Diamond(X, Y) ∈ Rp × Rp: Same as above except θ = π/4.
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16. Two Parabolas(X, Y) ∈ Rp × R: For ϵ ∼ U (0, 1), U ∼ B (0.5),

X ∼ U (−1, 1)p,

Y =

(︃(︂
wTX

)︂2
+ 2κϵ

)︃
·
(︃

U − 1
2

)︃
.

17. Circle(X, Y) ∈ Rp × R: For U ∼ U (−1, 1)p, ϵ ∼ N
(︁
0, Ip

)︁
, r = 1,

X|d| = r

(︄
sin
(︂

πU|d+1|

)︂ d

∏
j=1

cos
(︂

πU|j|

)︂
+ 0.4ϵ|d|

)︄
for d = 1, ..., p − 1,

X|d| = r

(︄
p

∏
j=1

cos
(︂

πU|j|

)︂
+ 0.4ϵ|p|

)︄
,

Y|d| = sin
(︂

πU|1|

)︂
.

18. Ellipse(X, Y) ∈ Rp × Rp: Same as above except r = 5.

19. Multiplicative Noise(x, y) ∈ Rp × Rp: u ∼ N
(︁
0, Ip

)︁
,

x ∼ N
(︁
0, Ip

)︁
,

y|d| = u|d|x|d| for d = 1, ..., p.

20. Multimodal Independence(X, Y) ∈ Rp × R: For U ∼ N
(︁
0, Ip

)︁
, V ∼

N
(︁
0, Ip

)︁
, U′ ∼ B (0.5)p, V′ ∼ B (0.5)p,

X = U/3 + 2U′ − 1,

Y = V/3 + 2V′ − 1.

These have been plotted previously. We can generate 2 sample simulations

using the following process:
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We do two-sample testing between Z and Z′, generated as follows: let Z =

[X|Y] be the respective random variables from the independence simulation

setup. Then define Qθ as a rotation matrix for a given angle θ, i.e.,

Qθ =

⎡⎢⎢⎢⎣
cos θ 0 . . . − sin θ

0 1 . . . 0
...

... . . . ...
sin θ 0 . . . cos θ

⎤⎥⎥⎥⎦
Then we let

Z′ = QθZT

be the rotated versions of Z.

This is plotted in the figure below:
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Linear Exponential Cubic Joint Normal Step

Quadratic W-Shaped Spiral Bernoulli Logarithmic

Fourth Root Sine 4 Sine 16 Square Two Parabolas

Circle Ellipse Diamond Multiplicative Independence

Orginal Sample Rotated Sample

Figure 8: Simulation settings for two-sample power curves. The first dataset (black
dots) is 500 samples from each of the 20 different noise-free settings from the
hyppo package, the second dataset is the first dataset rotated by 60 degrees. Note
that circle simulation has rotational symmetry so the rotation is not evident in 2
dimensions.
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