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Abstract

This thesis is compiled from the various projects I completed as a graduate

student at the Johns Hopkins University Physics Department.

The first project studied threshold effects in excited charmed baryon decays.

The strong decays of the Λ+
c (2593) are sensitive to finite width effects. This distorts

the shape of the invariant mass spectrum in Λ+
c1 → Λ+

c π+π− from a simple Breit-

Wigner resonance, which has implications for the experimental extraction of the

Λ+
c (2593) mass and couplings. A fit is performed to unpublished CLEO data which

gives M(Λ+
c (2593)) − M(Λ+

c ) = 305.6 ± 0.3 MeV and h2
2 = 0.24+0.23

−0.11, with h2 the

Λc1 → Σcπ strong coupling in the chiral Lagrangian.

In the second project, by shining a hypermultiplet from one side of the bulk of

a flat five-dimensional orbifold, supersymmetry is broken. The extra dimension is

stabilized in a supersymmetric way, and supersymmetry breaking does not damage

the radius stabilization mechanism. The low energy theory contains the radion and

two complex scalars that are massless in the global supersymmetric limit and are

stabilized by tree level supergravity effects. It is shown that radion mediation can

play the dominant role in communicating supersymmetry breaking to the visible

sector and contact terms are exponentially suppressed at tree level.

The third project studied lepton flavor violation in flavor anarchic Randall-

Sundrum models. All Yukawa couplings and mixing matrices are generated at the

TeV-scale by wavefunction overlaps in the five-dimensional Anti-deSitter geometry

present in this theory, without introducing any additional structure. This leads

to a TeV-scale solution to both the flavor and electroweak hierarchy problems. A

thorough scan of the available parameter space is performed, including the effects
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of allowing the Higgs boson to propagate in the full five-dimensional space-time.

These models give constraints at the few TeV level throughout the natural range

of parameters. Near-future experiments will definitively test this model.

Advisors: Adam F. Falk, David E. Kaplan
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Chapter 1

Introduction

This thesis is a collection of work I have done as a graduate student. The

introduction will review the Standard Model of Particle Physics and some of its

extensions that are considered throughout the thesis, as well as introduce some im-

portant techniques that are used throughout my research. The remaining chapters

contain the material previously published in [1, 2, 3].

1.1 The Standard Model and Its Flaws

The Standard Model of particle physics (SM) provides a wonderful and surpris-

ingly accurate picture of the universe at the smallest scales. However, despite its

successes, we know that it cannot be the entire story. Before going into details, let

us review the SM, count the free parameters and isolate its most severe problems.

The SM is a chiral gauge theory that describes all of the known matter and

interactions that we see in nature, except for neutrino masses. The gauge theory

is SU(3)C × SU(2)L × U(1)Y . The SU(3)C group is the strong interactions of

Quantum Chromodynamics (QCD), and describes interactions with the strong

force carriers called gluons. SU(2)×U(1) is the Electroweak interaction proposed

by Glashow, Weinberg and Salam [4], which describe interactions with electroweak

force carriers W a (weak left isospin) and B (hypercharge Y). Each of these forces

has a coupling constant (gs, g, g′), giving three parameters.
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QCD exibits asymtotic freedom [5]. This means that the strong coupling de-

creases as the energy scale of the interaction increases. To leading order, this is

given by

αs(Q) =
2π

b0 log(Q/Λ)

where b0 = 11−2nf/3, nf is the number of flavors with mass less than Q, and Λ ∼
200 MeV. It is this property of QCD that is believed to enforce the phenomenon of

“confinement”, where all the color-charged particles can only live in bound states

called hadrons.

QCD is special in that it also has an additional parameter called θQCD. This

comes from the following operator:

∆L =
g2

sθQCD

64π2
εµνρσGa

µνG
a
ρσ (1.1)

where Ga
µν is the gluon field strength. This operator is a total divergence, so it

does not affect any perturbative result, but it is generated by non-perturbative

effects and cannot be ignored due to the largness of gs
1. However, it violates

CP symmetry and can give dangerous contributions to the neutron electric dipole

moment, constraining θQCD ≤ 10−10. The reason for the smallness of θQCD is still

an open question and is called the “strong CP problem”.

There must be something that breaks the electroweak symmetry to the weak

force and E&M. This is accomplished in the standard model with the introduction

of a new scalar field2 H = (1, 2)1/2 with mass mH . This field develops a vacuum

expectation value (vev)

〈H〉 =
v√
2

(
0

1

)

which then breaks the EW symmetry, giving masses to the W± and Z gauge

1There are similar operators generated for the other gauge groups, but the non-perturbative
effect goes as e−1/g2

, so only the gluons can have any observable effect.
2The notation (A, B)C refers to how the field transforms under SU(3), SU(2), U(1)

respectively.
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bosons, and leaving behind a massless photon3. This is called the Higgs Mechanism

[6]. The nature of the Higgs field is still an open question in high energy physics,

and will hopefully be better understood after the Large Hadron Collider (LHC)

starts to collect data. The SM Higgs sector introduces two new parameters into

the theory: mH and v.

One of the biggest open questions of particle physics is the nature of electroweak

symmetry breaking (EWSB). Scalar fields typically have quadratically divergent

quantum mechanical mass corrections, so in the simplest model of the Higgs being

a scalar field, we expect quantum corrections push the Higgs mass as high as it can

go. The question of why the Higgs mass is so much lighter than the Planck scale

is known as the “hierarchy problem”. Most particle physicists are hopeful that we

will get a better handle on the solution of this problem one way or another with

the help of the LHC.

The SM fermions organize themselves into five multiplets under the gauge

group:

Qi = (3, 2)1/6

Ū i = (3̄, 1)−2/3

D̄i = (3̄, 1)1/3

Li = (1, 2)−1/2

Ei = (1, 1)1 (1.2)

Each of these multiplets appears three times in what are called “generations”

(i = 1, 2, 3). The first three multiplets are the quarks, matter particles that feel

QCD and are therefore confined to hadrons. Q are the left handed quarks which

form doubets under SU(2)L. They are the up and down (u, d), charm and strange

(c, s) and top and bottom (t, b). The first quark in each pair has electric charge

+2/3 and the second quark has charge −1/3 in units of e. Ū , D̄ contain the right

handed quarks that are singlets under SU(2)L. U i = (u, c, t) and Di = (d, s, b).

3The Z boson is given by cos θW W 3−sin θW B, and the photon is the orthogonal combination,
where cos θW ≡ g√

g2+g′2

.
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The last two multiplets are the leptons, which do not feel QCD and are therefore

free particles. L are the electron and its neutrino (e, νe), the muon and its neutrino

(µ, νµ) and the tau and its neutrino (τ, ντ ). The neutrinos are electrically neutral,

while their partners all have charge −1. E are the corresponding right handed

charged leptons (e, µ, τ); there are no νR in the SM.

The flavor structure of the standard model is very interesting: since there are

three copies of five multiplets, there is an accidental flavor symmetry U(3)5. This

flavor structure is broken only in the Yukawa sector:

LYukawa = −Γij
u Q̄iH̃Uj − Γij

d Q̄iHDj − Γij
e L̄iHEj (1.3)

where i, j are generation indices and H̃ = εH∗. When the Higgs field is set to

its vev, these terms become mass terms for the quarks and leptons. Each Yukawa

matrix is a complex 3 × 3 matrix and therefore introduces 18 parameters each,

but most of these are unphysical. We will discuss the quark and lepton sectors

separately.

The two quark Yukawa matrices contribute 36 parameters in the quark sector;

but some of these parameters can be rotated away by the quark flavor symmetry,

which is U(3)3. This looks like it has the freedom to rotate away 27 parameters,

but the Yukawas still respect an overall baryon-number symmetry U(1)B, so we can

only remove 26 parameters; this leaves 10 parameters left. The Yukawa matrices

are diagonalized by bi-unitary transformations:

Γdiag
u = SQu

ΓuS
†
U

Γdiag
d = SQd

ΓuS
†
D

This transformation diagonalizes the Yukawa matrices, but it introduces a non-

trivial flavor-violating coupling in the gauge sector:

∆L = Q̄i
uS

†ij
Qu

γµSjk
Qd

Qk
dW

+
µ + h.c.

So there is a new unitary (off-diagonal) matrix V ≡ S†
Qu

SQd
called the Cabibbo-
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Kobayashi-Maskawa (CKM) Matrix. It has three mixing angles and a phase4. In

summary, we are left with six quark masses, and the four CKM matrix parameters.

The lepton sector is similar, but in that case there are more symmetries that

survive. Electron-, muon-, and tau- numbers remain, leaving U(3)2 → U(1)3. So

we are free to rotate away 15 parameters in the lepton Yukawas. Since there is

only one complex Yukawa matrix, this leaves 3 parameters left: the three lepton

masses. Notice that in Equation (1.3), the neutrinos are massless. In a very real

sense, neutrino masses are the first evidence of physics beyond the SM! But since I

do not consider neutrino masses anywhere in this thesis, I will not go further into

this very fascinating subject.

These 13 parameters are all hierarchical. We still do not have a good under-

standing of where this hierarchy comes from. This goes under the name of the

flavor puzzle or the “flavor hierarchy problem”.

In summary, the SM has 19 free parameters: the six quark masses and three

lepton masses, the three CKM mixing angles and one CKM phase, three gauge

couplings, the Higgs mass and vev, and θQCD. Neutrino masses add even more

parameters to this list.

1.2 Effective Field Theory of the SM and QCD

One of the biggest practical challenges to computing predictions of the SM is the

effects of QCD. To that end, some very powerful effective field theories (EFT) have

been developed to handle these problems. Here I will briefly introduce some of the

ones used throughout my research: chiral perturbation theory (ChPT) and heavy

quark effective theory (HQET). Not only have these EFT been directly useful,

but the techniques they imploy, such as spurion analysis and naive dimensional

analysis, play a major role in most of what I do.

4In principle, a U(3) matrix has six phases, but we can rotate five of these away by a phase
redefinition of the six left handed quark fields. We cannot remove one phase because the overall
phase of the quarks is redundant.
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1.2.1 Chiral Perturbation Theory

Chiral symmetry is used in context with the “light” quarks (up, down and

strange). If we put the quarks into a three-component column vector:

qL,R =




uL,R

dL,R

sL,R




the chiral symmetry reads:

qL → LqL

qR → RqR

where L and R are 3×3 unitary matrices. Hence the chiral symmetry is SU(3)L ×
SU(3)R. This symmetry is broken by a chiral condensate 〈0| qRqL |0〉 = v 
= 0, since

v → vLR†. However, the symmetry is only partially broken; it is still invariant

under the special transformation:

L = R = V

We write this explicitly as:

SU(3)L × SU(3)R → SU(3)V (1.4)

This symmetry breaking pattern leaves us with 8 Goldstone bosons. Sure enough,

we have eight light pseudoscalar bosons at our disposal with the proper quantum

numbers of isospin and strangeness: three pions, four kaons and an eta. ChPT

will describe interactions between these eight particles at relatively low energies.

We parametrize the Goldstone bosons by the 3 × 3 matrix Σ:

Σab ≡ qRaqLb (1.5)

so that 〈0| qRaqLb |0〉 = vΣab. It is clear from the transformation law of the quark

fields that
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Σ → LΣR† (1.6)

To see how this field parametrizes the Goldstone bosons, we can write out Σ in

terms of the exponential of a “pion matrix”:

Σ = e
2iΠ
f (1.7)

Π =




1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K
0 − 2√

6
η


 (1.8)

where f is called the pion decay constant. To write down the chiral theory, all we

need to do is write down the most general operators that are products of the Σ

and are invariant under the full SU(3)L × SU(3)R chiral symmetry. In addition,

if this is to describe QCD, we need the terms to be parity and charge-conjugation

even. The term of lowest dimension we can write down with all of these properties

is:

L0 =
f 2

8
Tr[∂µΣ∂µΣ†] + · · · (1.9)

One can expand the Σ in powers of the pion matrix (or equivalently in inverse

powers of f) and take the trace to get the all the interactions explicitly in terms

of the Goldstone bosons. The coefficient out in front is to make sure that these

terms are properly normalized.

There is another very convenient parametrization of the Goldstone bosons.

Define:

ξ ≡ e
iΠ
f =

√
Σ (1.10)

Now under SU(3)L ×SU(3)R transformations, ξ → LξU †(x) = U(x)ξR† where

U(x) is a nonlinear transformation on ξ. Under this transformation we can define

two currents called the vector and axial currents:

7



V µ =
1

2
(ξ†∂µξ + ξ∂µξ†) → UV µU † + U∂µU † (1.11)

Aµ =
i

2
(ξ†∂µξ − ξ∂µξ†) → UAµU † (1.12)

Note that V µ transforms like a gauge field while Aµ transforms like an adjoint.

This will be useful later.

In Equation (1.9) the Goldstone bosons are massless. To include masses in

the theory, we go back to full QCD and ask how the mass terms for the quarks

transform:

Lm = −qLMqR − qRMqL (1.13)

where M is the quark mass matrix:

M =




mu 0 0

0 md 0

0 0 ms


 (1.14)

The mass terms then transform under the full chiral symmetry as:

Lm → −qLL†MRqR − qRR†MLqL (1.15)

Lm is not invariant under chiral symmetries. However, we can get around the

problem by pretending that M is not a constant matrix, but rather a field that has

transformation properties; to distinguish it from the constant matrix, I will put a

tilde over it (M̃). This field is called a spurion. If we let

M̃ → LM̃R†

and write the second term in Equation (1.15) in terms of M̃ †, we can make Equation

(1.15) invariant. Armed with this knowledge, we can add terms to the chiral

Lagrangian with masses:

L =
f 2

8
Tr[∂µΣ∂µΣ†] + µTr[M̃ †Σ + Σ†M̃ ] + · · · (1.16)
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where µ is some unknown coefficient with dimension of (mass)3. Now that we

have the form of the massive chiral Lagrangian, we can drop the spurion field and

replace M̃ with the usual quark mass matrix in Equation (1.14). We can now read

off the masses of the pions to lowest order:

m2
π± =

4µ

f 2
(mu + md)

m2
K0 =

4µ

f 2
(md + ms)

m2
K± =

4µ

f 2
(mu + ms)

m2
π0,η =

4µ

f 2


 (mu + md)

1√
3
(mu − md)

1√
3
(mu − md)

1
3
(mu + md) + 4

3
ms




These are precisely the Gell-Mann-Okubo relations in the quark model of hadron

physics. Note that the quark masses are linear while the hadron masses are

quadratic, and there is mixing between the π0 and the η. These relations could be

made better by including higher order terms in the theory.

To get a qualitative idea of how good chiral perturbation is, we must consider

the size of the next to leading order effects, and hope that they are small compared

to the lowest order results. Since this is a low-energy theory, we are expanding in

powers of energy/momentum or equivalently in number of derivatives. Because the

Lagrangian is a Lorentz scalar, we must always have an even number of derivatives

(to contract every index). The leading higher order terms in the chiral Lagrangian

have dimension 4; for example:

L4 = c1Tr[∂µ∂νΣ†∂µ∂νΣ] + c2Tr[∂µΣ
†∂µΣΣ† µ

f 2
M ] + c3Tr[Σ† µ

f 2
MΣ

µ

f 2
M ] + · · ·

(1.17)

By dimensional analysis, we can guess that the coefficients ci corresponding to

terms with 2n derivatives and m factors of5 ( µ
f2 )M have the form:

5This quantity has dimensions (mass)2 and is the relevant quantity that appears in the mass
equations.
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ci ∼ f 2

Λ
2(n+m−1)
χ

(1.18)

where Λχ is the chiral symmetry breaking scale. The more derivatives or mass

terms, the larger the exponent of this parameter. Therefore, if we can make this

parameter large, then we can honestly say that the higher dimension operators are

less important.

Unfortunately, we cannot justify making Λχ arbitrarily large. The reason is

that the radiative corrections diverge, requiring renormalization. But this renor-

malization will end up shifting Λχ by large amounts if we make it arbitrarily large.

It is therefore not “natural” to assume such a large value, as it will get thrown

back to a smaller value by quantum effects.

The solution is to apply a technique called naive dimensional analysis (NDA).

In this procedure, we ask what is the “natural” size of the radiative corrections,

and then chose Λχ to be of the same size. We do this by calculating higher order

processes coming from Equations (1.16-1.17) and making sure that the radiative

corrections do not exceed the results from the lowest order calculation. For ex-

ample, we can look at π − π scattering and ask how quantum effects change our

answer. This interaction is described by a quartic operator Aπ4, where A is given

schematically at next-to-leading order by:

A ∼ p2

f 2

[
1 +

1

16π2

(
Λ2

f 2
+

p2

f 2
log(Λ/µ)

)
+

p2

f 2
c1

]
+ O(f−6)

Λ is a cutoff regulator and µ is the renormalization scale. The quadratically di-

vergent piece is just a constant up to the overall tree-level factor p2/f 2, and so it

can be absorbed into the overall normalization of f . The logarithmically divergent

contribution is quartic in momentum, so it has the same form as the first term

in Equation (1.17); it renormalizes the coupling c1 ∼ f 2/Λ2
χ. If we make an O(1)

change in µ we will generate a change in A:

δA ∼ 1

16π2

p4

f 4

This is compensated for by shifting c1:
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c1 ∼ f 2

Λ2
χ

(
1 +

Λ2
χ

16π2f 2

)
(1.19)

If we don’t want this higher order contribution to dominate the leading term,

we cannot take
Λ2

χ

f2 >> 16π2. The most “natural” choice for the symmetry breaking

scale would be when the quantum correction is the same order as the lowest order

term, so we will choose:

Λχ ∼ 4πf ∼ 1GeV (1.20)

Sure enough, this is the scale at which QCD becomes perturbative and we must

abandon ChPT in favor of the full theory of quarks and gluons.

The moral of all of this is that we expect chiral perturbation theory to hold as

long as we’re at energies noticeably less than 1 GeV. Chiral perturbation theory

has told us not only the masses and low-energy interactions of the mesons, but it

has even told us precisely where to start looking for new physics! This shows how

powerful effective theories can be.

1.2.2 Heavy Quark Effective Theory

Chiral perturbation theory discussed the hadrons with light quarks. What if

you have a hadron with a heavy quark? In this discussion, “heavy quark” refers to

either a charm or bottom quark; top quarks do not form hadrons because of their

short lifetime.

To get a feeling for this “heavy quark effective theory” (HQET), consider drib-

bling a basketball on the ground. Conservation of energy and momentum insists

that each time the ball hits the floor, the floor must recoil slightly. Therefore the

Earth is recoiling against the force of the basketball bounce. Needless to say, the

Earth’s recoil will be negligible, and it is a perfectly valid approximation to say

that the ball bounces back with all its energy intact (ignoring friction, etc.).

The analogy goes over quite well for heavy hadrons. In these particles, we have

one heavy quark Q along with one (for mesons) or two (for baryons) quarks that are

light (u, d or s). The light quarks together with any QCD fuzz that occurs inside
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the hadron are often rather off-handedly called the “light brown muck”. In truth,

this brown muck interacts with the heavy quark through non-perturbative QCD

interactions, but because the heavy quark is so much heavier than everything else,

it is safe to assume that to leading order it decouples from the interactions, just like

the Earth interacting with the basketball. Therefore, to a leading approximation,

we can say that the heavy quark just sits there in the hadron with no special

dynamics, while the light degrees of freedom interact in a mush elastically with

the heavy quark.

Because the light brown muck decouples from the heavy quark, we can write

down new conserved quantum numbers, specifically the quantum numbers of the

light degrees of freedom. These are often denoted by an “l” for light. For ex-

ample, the total angular momentum of the light brown muck (spin plus orbital)

is written “Jl”, and we can construct hadrons with angular momentum Jl ⊗ 1
2

when including the heavy quark. This is a bad approximation in general, as QCD

generally prohibits you from specifying the individual quantum numbers of the

quarks. However, thanks to the heavy quark approximation, this becomes a good

description of heavy hadrons.

More quantum numbers means we can get a handle on the hadron spectrum as

well as understand allowed decays by insisting that the HQET Lagrangian respect

the light quantum numbers. Since this is only an effective theory, we know that

the results that follow will not be exactly what we see, but like any effective theory

we should be able to decide precisely how good these approximations are, as well

as roughly what corrections appear to make the picture even more accurate. In

our case, HQET can be derived from full QCD in the limit that the heavy quark

mass mQ becomes infinite. Corrections to any results should therefore go like 1
mQ

.

A quark is described by a Dirac spinor Q and a Lagrangian:

L = Q(i
D − mQ)Q (1.21)

We can take the heavy quark limit by defining:

Q = e−imQv·x(hv + χv) (1.22)
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where


vhv = hv 
vχv = −χv (1.23)

hv represents the heavy quark while χv represents the off-shell degrees of freedom6;

vµ is the four-velocity of the heavy quark. The heavy quark is nearly on shell, so

we can drop the χv term to lowest order. After plugging Equation (1.22) into

Equation (1.21) and using Equation (1.23) we can write down the Lagrangian that

describes the heavy quark to lowest order:

L0 = hviv · Dhv (1.24)

hv now describes a heavy quark with four-momentum

pµ
Q = mQvµ + kµ (1.25)

where k is called the “residual momentum” and represents how much the quark

is off shell. Since we’re dropping χv we require that |k| << mQ in order for the

theory to be consistent.

At this point, we are able to construct the operators that describe hadrons

with a heavy quark. The heavy quark decouples from the light brown muck, so if

we parameterize the light degrees of freedom by some operator Aj, the hadron in

question looks like

X = Ajhv

The operator X written this way contains two states corresponding to hadrons

with total angular momenta j ± 1
2

respectively.

As an example, consider qahv mesons (a = u, d, s)7. This state has brown

muck quantum numbers8 jPl

l = 1
2

−
. These quantum numbers correspond to the

6Because this is quantum mechanics, a particle that decays can have the “wrong mass” due
to its finite lifetime and the uncertainty principle (∆E∆t ∼ �). Particles with the wrong mass
are said to be “off shell” while particles with their proper masses are said to be “on shell”.

7Here I consider mesons for definiteness, but realize that the theory works just as well for
baryons.

8jPl

l stands for spin-parity quantum numbers of the light brown muck.
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pseudoscalar (Pa) and vector (P ∗µ
a ) mesons with spin 0 and 1 respectively. These

mesons can be combined into a larger 4 × 4 matrix called a superfield:

Ha ≡
(

1+ 
v
2

)
[γµP ∗µ

a − Paγ5]

Similarly, the superfield for heavy mesons with jPl

l = 1
2

+
:

Sa ≡
(

1+ 
v
2

)[
γµγ5P

′µ
a − P ∗

a

]
Note that due to the heavy quark spin symmetry, the fields inside each superfield

have the same mass.

It is convenient to work with superfields in HQET because they have very

nice transformation laws. For example, under heavy quark spin transformations

parameterized by the operator SQ, Ha → SQHa. This is easy to see from knowing

hv → SQhv and the fact that Aj does not transform under heavy quark spin

transformations. Now it is straightforward to write down the Lagrangian for these

mesons:

L0 = Tr
[
Hiv · DH

]
+ Tr

[
S(iv · D − ∆S)S

]
(1.26)

where ∆S ≡ MS − MH .

We wish to write down interactions among these mesons. The trick behind

this is to combine HQET with ChPT. We designed our superfields so that H →
HU †, where U is the nonlinear chiral transformation discussed below Equation

(1.10). Using the axial vector current Aµ from Equation (1.12), we can write

down interactions by insisting on preserving all the symmetries, including Lorentz

invariance and heavy quark spin/flavor symmetry. For example:

Lint = gTr
[
HSγµγ5Aµ

]
+ · · · (1.27)

where g is a coupling constant that can be measured by matching to either the full

QCD or to experiment.

Corrections to this picture should go as 1
mQ

, and will thus automatically violate

the heavy quark flavor symmetry. To see this explicitly, we go back to Equation
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(1.22) and do not drop the χv term. Plugging this into the equations of motion

gives us:

χv =
1

2mQ
i
Dhv + O(m−2

Q ) (1.28)

Notice that each covariant derivative brings down a factor of −ikµ, and we expect

this residual momentum to be on the order of ΛQCD, since this is the typical

energy scale of quarks in hadrons. Therefore, these new terms are order ΛQCD/mQ.

Higher-order corrections correspond to higher powers of this ratio. We can plug

this back into our original Lagrangian in Equation (1.21) and simplify using the

equations of motion to get:

L = hviv · Dhv +
1

2mQ
hv

[
(iD)2 − gsσµνG

µν
]
hv (1.29)

where σµν ≡ i
2
[γµ, γν ]. There is also a term corresponding to the operator h̄v(v ·

D)2hv, however this term vanishes from the field equations for hv to this order.

Let us take a closer look at the new terms in Equation (1.29). The first term

goes like D2 and has no gamma matrices. This means that it does not affect the

spin of the heavy quark and preserves the spin symmetries of the lowest-order

theory, although it does break the heavy flavor symmetry due to its dependence

on mQ. However, the second term does contain gamma matrices in the σµν , and

therefore this term explicitly violates the heavy quark spin symmetry. This is

just like the mass term in the Chiral Lagrangian. Following our intuition from

before, we can calculate the effects on the theory by introducing a spurion field

Φµν = 1
2mQ

σµν [7]. Looking at Equation (1.29), the spurion must transform under

heavy quark symmetry as Φµν → SQΦµνS†
Q. We can now write down operators

using this spurion. For example:

∆L = λHTr
[
HΦµνHσµν

]
+ λSTr

[
SΦµνSσµν

]
+ · · · (1.30)

where the λs are coefficients that can be fit from experiment. These terms are

responsible for the mass shift among the mesons in the superfields (mP ∗−mP ) and
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are therefore noticeable and important. From experiment, we find that λ ∼ ΛQCD

which should not be surprising.

To summarize, heavy quark effective theory is an extremely powerful tool be-

cause it introduces new symmetries (heavy quark spin/flavor symmetry) that tell

you how to write down interactions for the different hadrons. In the spirit of any

effective theory, HQET also tells you where the theory breaks down, and how you

can fix it by introducing new terms through a spurion analysis.

1.3 Supersymmetry

Usually, radiative corrections are controlled by symmetries: fermion masses

are controlled by chiral symmetry, gauge boson masses are controlled by gauge

symmetries. So the natural question to ask is if there is a symmetry that can

control the Higgs mass and thus solve the hierarchy problem. One possible answer

(although certainly not the only one) is supersymmetry.

In supersymmetric theories, every fermion is paired up with a boson of identi-

cal mass and quantum numbers. The minimal extension of the SM is called the

minimal supersymmetric standard model (MSSM) [8]. Each quark and lepton has

corresponding spin-0 bosons called squarks and sleptons; each gauge boson has a

spin-1/2 fermion called a gaugino; and the Higgs boson has a corresponding spin-

1/2 fermionic partner called the Higgsino (actually, there are two Higgs doublets in

the MSSM). Because fermions and bosons in loops contribute with opposite signs,

the quadratic divergence cancells in the Higgs mass correction, and the hierarchy

problem is solved.

There is a problem, however: the universe is not supersymmetric. We have

never seen any signs of squarks, sleptons or gauginos. The explanation for this is

that supersymmetry is spontaneously broken at some scale. This then makes the

squarks, sleptons and gauginos heavy. Model builders have spent the last several

years coming up with ways to explain how this works. There are two steps to

consider: how do you break supersymmetry? And how do you communicate that

breaking to the supersymmetric particles? This second step is called the mediation
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mechanism.

There are a few questions that these models must address:

• Generating soft terms: Mediation mechanisms generate SUSY breaking terms

in the action. It is known that in order for SUSY to continue to solve the

hierarchy problem after it is broken, only “soft” terms can appear. These

are mass terms for the supersymmetric particles and the Higgs bosons and

trilinear couplings between the scalars. Any mediation mechanism must be

sure to not generate any other interactions that might spoil the hierarchy

solution.

• Constraining Parameter Space: Even with the restriction above, there are

over 100 new parameters, including mixings and phases that can generate

dangerous flavor changing neutral currents (FCNC) and CP-violation. Any

viable mediation mechanism must constrain these new terms.

• Radiative EWSB and Fine Tuning: In the MSSM, EWSB and SUSY break-

ing are related. In order for this balance to work, the MSSM is fine-tuned.

For example, the lightest Higgs mass is constrained at treel level to be less

than MZ , but loop corrections from top-stop loops push this bound up log-

arithmically as ∼ log(mt̃1mt̃2/m
2
t ). So in order to have a Higgs mass that is

not too light (and thefore violates the LEP2 bound of 114 GeV [9]), we need

the stop to be much heavier than the top. A good mediation mechanism

must somehow explain this fine tuning.

• µ Problem: The µ term is a supersymmetric mass for the Higgs. However, in

order to facilitate radiative EWSB, µ must be the same order of magnitude

as the SUSY-breaking terms. Since these terms are totally independent of

each other there is no good reason to assume that this is the case. A good

mediation mechanism must explain this relationship.
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1.4 Extra Dimensions, The Randall-Sundrum Model

and the Flavor Puzzle

The hierarchy problem can also be solved by the introduction of extra spacial

dimensions. Such models usually involve a fifth (or more) dimensions that are

hidden from us, but in which gravity can still affect. In d space dimensions,

Gauss’s Law gives us the form of the gravitational potential per unit mass:

Φ(r) =
M1−d

rd−2

where M represents the scale where gravity becomes strong (for d=3, it is just the

Planck mass MP and I use the relation GN = M−2
P )9. But if only three of the

dimensions are infinite in extent, and the rest are compacitified somehow into a

finite volume Vd−3, this changes to

Φ(r) =
M

′1−d

rVd−3

This formula is valid for distances much larger than the size of the extra dimensions.

This solves the hierarchy problem [10] because now we have the relation

M−2 =
M

′1−d

Vd−3

(1.31)

So even if M
′ ∼ TeV, we can still get the scale of M ∼ MP by making an

appropriate choice of Vd−3. So the hierarchy is no longer a mysterious relationship,

but a simple consequence of the geometry of the universe.

The most immediate consequence of extra dimensions that can be tested in

a paricle physics experiment is the existence of an infinite tower of new particles

for each SM field that lives in the extra dimension. This is just a consequence of

the famous “particle-in-a-box” setup of ordinary quantum mechanics. When the

particle has a wavefunction that is constrained to live in a finite volume, there is

a tower of states with higher energy (mass). This tower is called the Kaluza-Klein

(KK) tower, named after the first people who suggested extra dimensions [11]. The

9Throughout this thesis I will use “natural units” where � = c = 1.
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details of this tower depend on the specific geometry of a given model; but if a

model exists where the KK mass can be as low as a few TeV, there is a very good

chance that the LHC will discover it!

A very specific and beautiful model of extra dimensions was proposed by Ran-

dall and Sundrum (RSI) [12]. They propopsed the existence of an extra dimension

compactified on an orbifold 0 ≤ φ ≤ π that is a slice of 5D Anti-deSitter space

(AdS):

ds2 = e−2krcφηµνdxµdxν − r2
cdφ2 (1.32)

3-Branes are placed at the orbifold fixed points. The brane at φ = 0 is called

the Planck (UV) brane, and the brane at φ = π is called the TeV (IR) brane.

In the original model, Randall and Sundrum proposed confining all the particles

in the SM on the TeV brane. Then if the fundamental 5D scale is given by the

Planck scale (MP ), the 4D scale depends on your location in the extra dimension

as M4(φ) = MP e−krcφ. In particular, the energy scale generated on the IR brane is

MP e−kπrc ; thus by choosing krc ∼ O(10), we can generate M4(π) ∼ TeV, solving

the gauge hierarchy problem. This is the origin of the names “Planck brane” and

“TeV brane”.

It would be sad if the above model were the whole story. With all the SM

fields in one place, we are still left with another hierarchy in the flavor sector.

Specifically, we know that all of the Yukawa couplings (except the top) are small

and hierarchical. The above model offers no solution to this additional hierarchy

problem. Not only that, it turns out that the flavor sector in the RSI model is UV

sensitive, and requiring consistency with electroweak precision forces us to chose a

cutoff roughly O(103TeV) to avoid dangerous FCNC as well as contributions to the

S and T parameters. But this presents a problem, since the only cutoff available

to us is the electroweak scale.

There is a way out of these problems. The only requirement to solve the

gauge hierarchy problem is that the Higgs boson should live near the TeV brane.

Therefore, we can consider the case where the other SM fields live in the bulk.

This immediately solves the flavor hierarchy problem since the strength of the

19



couplings to the Higgs (a.k.a. Yukawa couplings) is then a function of how much

of the wavefunction is peaked near the TeV brane. Hense by localizing the fermions

throughout the bulk and keeping the Higgs near the TeV brane, we can generate

a 4D hierarchy in the Yukawa sector, even with anarchic O(1) Yukawa couplings.

These “anarchic RS models” allow us to set all of the Yukawa couplings, including

the off-diagonal elements, nearly equal and all O(1); then all of the 4D structure

comes from the warped geometry. In addition, this automatically raises the scale

of higher-dimension operators living near the Planck brane, relieving the tension

with electroweak precision constraints.

1.5 Outline

This thesis is a collection of papers that have been written while I was a grad-

uate student at Johns Hopkins.

Chapter 2 analyzes the decay of a strong isosinglet baryon with a charm quark

and no strange quark:

Λ+
c1 → Λ+

c ππ

Although this is a three-body decay, it is the most likely channel after eliminating

all others by parity, isospin and spin symmetries. Since the Λc baryon has charge

+1, there are two channels corresponding the π+π− and π0π0. This process likes

to go through a resonance:

Λc1 → Σcπ → [Λcπ]π

where the brackets are to emphasize that these are the daughter particles of the

resonant Σc. This particle comes in charges +2, +1, 0; the +2, 0 charged resonances

are for the charged pion channel, while the +1 resonance is for the neutral pion

channel. However, there is a subtlety in the charged pion channel: the invariant

mass of the Σcπ
± is very close to (or even slightly greater than) the mass of the Λc1;

more precisely, the difference in mass between the initial and final states is smaller

than the “width” of the Λc1. Naively, therefore, the Σc resonance cannot form in

the charged pion channel and the decay has to proceed through a non-resonant
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mode. However, even if there is a mass deficit, it can still be that the resonant decay

occurs if the Σc is off mass shell. However, it is also possible that the original Λc1

itself was off mass shell before it decayed. Such effects could noticeably alter the

results, as the usual Breit-Wigner decay amplitude will no longer be appropriate.

In this analysis, my collaborators and I have recomputed the decay amplitude

directly from the HQET Lagrangian, considering only the dominant decay mode.

From the HQET+ChPT Lagrangian we generate an energy distribution for the

resonant decay of the Λc1 in both the charged and neutral pion channels. We

find that the neutral pion channel resembles a Breit-Wigner distribution while the

distribution for the charged pion channel is distorted, precisely as expected. Fitting

charged pion data to a usual Breit-Wigner would bias the results toward higher

values for the mass. We fit our model to data taken at CLEO and find that the

expected mass changes from ∆Λc1 = (308.9±0.6) MeV to ∆Λc1 = (305.6±0.3) MeV.

For comparison, the neutral pion channel has been fit to the usual Breit-Wigner

and measured at ∆ = (306.3 ± 0.7) MeV. Therefore, we find that our calculation

predicts a closer mass to the measured results of the neutral pion channel. This

result was recently included in the Particle Data Book [13].

In Chapter 3, the mechanism of ”shining” is used to break supersymmetry by

means of boundary conditions in an extra dimension. The model has a single

flat extra dimension compactified on an orbifold. In the extra dimension lives

two supersymmetric hypermultiplets10, and on each brane lives sources for these

fields. The first hypermultiplet feels sources on both branes that give the scalar

fields an exponential profile. The only way to satisfy the boundary conditions

and minimize the energy is to force the size of the extra dimension to a unique

value. This then stabilizes the extra dimension and gives mass to the radion, the

component of the 5D graviton that describes the shape of the extra dimension. The

second hypermultiplet is also used in a similar way, but with different boundary

conditions. The tension between these incompatible boundary conditions breaks

supersymmetry. Upon integrating out the fifth dimension, we then expect the 4D

10A hypermultiplet is a collection of two complex scalars and one Dirac fermion that form a
closed set of fields that transform among each other under 5D SUSY transformations.
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effective theory to have a spontaneously broken SUSY spectrum.

Models like this lend themselves to a gravity-based mediation mechanism called

radion mediated supersymmetry breaking (RMSB), where the radion superfield

aquires a SUSY-breaking vev. This mechanism was developed previously [14] and

is liked because its spectrum closely resembles that of gaugino mediated SUSY

breaking (gMSB), where SUSY breaking is communicated through gaugino loops

that make contact with a new singlet field with a SUSY-breaking vev; this does

a very good job solving several of the problems previously mentioned [15]. Unlike

gaugino mediation, however, RMSB does not need any new singlets, since the

radion plays that role. However, it is very hard to make RMSB the dominant

contribution to the spectrum compared to other mechanisms; the only model that

people knew of that had dominant RMSB was the no-scale model, which is unstable

to radiative corrections. Previous work has been done to try and make RMSB

dominant by modifying the no-scale model so that it was stable but still allowed

for large RMSB contributions [16]. This shining scenario is the first model that

is different from no-scale and still has dominant radion mediation, dispelling the

idea that only no-scale-type models can behave this way.

Chapter 4 considers some phenomenology in the lepton sector of anarchic RS

models that can be tested in upcoming experiments. Because gauge theories in

extra dimensions generate new interactions with the KK gauge bosons, there is

no longer enough symmetry to diagonalize all of the operators, and we expect

flavor violation to occur. We look at this violation in the lepton sector, where

current experiments are probing deeply into rare lepton number violating decays.

Neutrinoless trilepton decays of the µ and τ as well as l → l
′

γ are considered. These

two types of decays turn out to be sensitive to Yukawa parameters in conflicting

ways, so that between the two constraints we can pin down the allowed parameter

space.

It turns out that the current bounds on these decays are very strong, and

for the naive point in parameter space representing “anarchic RS”, the bounds

on MKK , the mass of the Kaluza-Klein particles becomes O(10) TeV. This is

starting to become fine tuned, and is a bad sign for the model. We can lower the
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bound naturally down to ∼ 5 TeV, but it is hard to get any lower. This means

that the LHC may still see these new particles, if they exist. Smaller, upcoming

experiments will be putting even stronger bounds on the branching fractions for

these rare decays, so it might also be that if MKK is low enough we may even

observe these rare decays. We just have to wait and see!
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Chapter 2

Threshold Effects in Excited

Charmed Baryon Decays

The charmed baryon system is a convenient testing ground for the ideas and

predictions of heavy quark symmetry1. This is due to the rich mass spectrum and

the relatively narrow widths of the resonances. The properties of these states are

the subject of active experimental study at both fixed target experiments (FOCUS,

SELEX, E-791) and e+e− machines (CLEO, BaBar, Belle). For a recent review of

the experimental situation, see Ref. [17].

In addition to the usual quantum numbers (I, JP ), the charmed baryon states

can be labelled also by the spin-parity of the light degrees of freedom jπ�

	 , which

are good quantum numbers in the limit of an infinitely heavy charm quark. This

property leads to nontrivial selection rules for the strong couplings of these states

to light hadrons [18]. These predictions are automatically built into an effective

Lagrangian describing the couplings of the heavy baryon states to Goldstone bosons

[19].

The lowest lying charmed baryons are L = 0 states and live in 3̄ and 6 repre-

sentations of flavor SU(3). It is convenient to group them together into superfields

defined as in Ref. [20], a vector Ti =
1+ 
v

2
(Ξ0

c ,−Ξ+
c , Λ+

c )i for the 3̄, and a tensor

Sij
µ = 1√

3
(γµ + vµ)γ5B

ij + B∗ij
µ for the 6. These superfields satisfy the constraints

1This work was originally published in [1].
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from heavy quark symmetry 
vT = T , 
vSµ = Sµ and the condition
1+ 
v

2
γµSµ = 0,

which can be used to restrict the form of their Lagrangian interactions [21]. The

strong couplings of the lowest lying heavy baryons are described by the effective

Lagrangian containing two couplings g1,2 [20] (we use here the normalization of

Ref. [27] for these couplings)

Lint =
3

2
ig1εµνσλ(S̄µ

ikv
νAσ

ijS
λ
jk) −

√
3g2εijk(T̄

iAjl
µ Sµ

kl) , (2.1)

where Aµ = i
2
(ξ†∂µξ − ξ∂µξ†) = − 1

fπ
∂µΠ + · · · is the usual nonlinear axial current

of the Goldstone bosons, defined in terms of ξ = exp(iΠ/fπ) with fπ = 132 MeV.

In this paper we focus on the negative parity L = 1 orbitally excited charmed

baryons. Combining the quark spins with the L = 1 orbital momentum gives

7 Λ-type and 7 Σ-type states without strangeness [25, 26] (see Table 2). In the

constituent quark model, these states fall into two distinct groups, correspond-

ing to the symmetric and antisymmetric irreducible representations of S2. The

symmetric (antisymmetric) states are denoted in Table 2 with unprimed (primed)

symbols. Quark model estimates for the masses of these states [25, 26] suggest that

symmetric states are lighter than the antisymmetric ones. Although the permu-

tation symmetry S2 is not a true symmetry of QCD beyond the quark model, we

will continue to refer to the higher mass charm baryon states as ‘antisymmetric’,

as opposed to the lower ‘symmetric’ states. The properties of these states were

studied in the quark model in Refs. [25, 26, 27, 34] and using large Nc methods in

[29, 30, 31].

The CLEO, ARGUS and E687 Collaborations [22] observed two negative parity

charm baryons, Λ+
c (2593) and Λ+

c (2625). In accordance with the expectations from

the constituent quark model, these states were identified with the Λc1(
1
2
, 3

2
) states

in Table 2. Their average masses and widths are [23]

M(Λ+
c (2593))− M(Λ+

c ) = 308.9 ± 0.6 MeV , Γ(Λ+
c (2593)) = 3.6+2.0

−1.3 MeV

M(Λ+
c (2625))− M(Λ+

c ) = 341.7 ± 0.6 MeV , Γ(Λ+
c (2625)) < 1.9 MeV

(2.2)
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State (I, J) jπ�

	

Λc1(
1
2
, 3

2
) (0, 1

2
), (0, 3

2
) 1−

Σc0(
1
2
) (1, 1

2
) 0−

Σc1(
1
2
, 3

2
) (1, 1

2
), (1, 3

2
) 1−

Σc2(
3
2
, 5

2
) (1, 3

2
), (1, 5

2
) 2−

Σ′
c1(

1
2
, 3

2
) (1, 1

2
), (1, 3

2
) 1−

Λ′
c0(

1
2
) (0, 1

2
) 0−

Λ′
c1(

1
2
, 3

2
) (0, 1

2
), (0, 3

2
) 1−

Λ′
c2(

3
2
, 5

2
) (0, 3

2
), (0, 5

2
) 2−

Table 2.1: The quantum numbers of the expected p-wave strangeless charmed
baryons. The corresponding states with strange quarks can be constructed by
completing the SU(3) multiplets to which the above states belong.

where the bound on Γ(Λ+
c (2625)) is quoted to 90% CL.

Motivated by these data, the lowest lying states Λc1(
1
2
, 3

2
) were studied in

a chiral Lagrangian approach in Ref. [24], where their couplings to Goldstone

bosons were first derived. These states can be grouped together into a superfield

Ri
µ = 1√

3
(γµ + vµ)γ5R

i + R
(∗)i
µ with R

(∗)
i = (Ξ0

c1 ,−Ξ+
c1 , Λ+

c1)i, subject to the same

constraints as the superfield Sµ.

At leading order in the heavy quark expansion, the pion couplings of these states

to the sextet ground state baryons Sµ are given by two terms, corresponding to

S− and D−wave pion emission, respectively

Lint = h2εijkS̄
kl
µ vνA

ν
ljR

i
µ

+ih8εijkS̄
kl
µ

(
DµAν + DνAµ +

2

3
gµν(v · D)(v · A)

)
lj

Ri
ν + h.c. (2.3)

with the covariant derivative DµAν = ∂µAν + [Vµ , Aν ] and Vµ = 1
2
(ξ†∂µξ + ξ∂µξ

†).

This formalism was extended to the other p−wave charmed baryons in Table 2

in Refs. [27, 28], where prospects were given for their discovery. A total of 6

S−wave and 8 D-wave couplings are required for a complete description of the

strong couplings of the states in Table 2.

Knowledge of the pion couplings h2, h8 of the lowest orbital excitations Λc1(
1
2
, 3

2
)

will provide information about the other excited baryons, and could thus help guide
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the search for the missing states. For example, assuming SU(3) symmetry, the

widths of the orbitally excited charm baryons containing strange quarks Ξ′
c1(

1
2
, 3

2
)

can be predicted [28, 27], with results in good agreement with the CLEO data

on Ξ′
c1(

1
2
) [32] and Ξ′

c1(
3
2
) [33]. Furthermore, in the constituent quark model, the

couplings of all unprimed states in Table 2 can be shown to be related to h2, h8

[27, 34]. Assuming that the masses of these states are known, these relations

can be therefore used to predict the decay modes and widths of all these states.

Finally, once determined in the charm system, the same couplings would also give

the properties of the excited bottom baryons. Clearly, a precise determination of

the two couplings h2, h8 is of great interest.

There are a few issues which complicate such a determination, following from

the peculiarities of the actual mass spectrum. The states Λc1(
1
2
, 3

2
) are observed

through their 3-body decays in the Λ+
c π+π− channel. These are resonant decays,

proceeding through intermediate Σ
(∗)
c π states. The masses, and recently the widths

of the Σc baryons have been measured by the FOCUS [36] and CLEO [37] Collab-

orations. The average results of these measurements are [23]

M(Σ++
c ) − M(Λ+

c ) = 167.67 ± 0.15 MeV , Γ(Σ++
c ) = (2.05+0.41

−0.38 ± 0.38) MeV

M(Σ+
c ) − M(Λ+

c ) = 166.4 ± 0.4 MeV , Γ(Σ+
c ) ≤ 4.6 MeV(90% CL)

M(Σ0
c) − M(Λ+

c ) = 167.32 ± 0.15 MeV , Γ(Σ0
c) = (1.55+0.41

−0.37 ± 0.38) MeV

(2.4)

In the heavy quark limit, the only allowed resonant channels are Λc1(
1
2
) → [Σcπ]S,

[Σ∗
cπ]D, and Λc1(

3
2
) → [Σcπ]D, [Σ∗

cπ]S,D, where the subscript denotes the orbital

angular momentum. From (2.2) and (2.4) it follows that the dominant S−wave

decays of the Λc1(2593) proceed very close to threshold. Furthermore, the available

energy in the decay is comparable or less than the width of the decaying state

Λc1(2593)−
[

(Σ0
c(2455) + π+)

(Σ++
c (2455) + π−)

]
∼
(

2 MeV

1.7 MeV

)
≤ Γ(Λ+

c1(2593)) (2.5)
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On the other hand, the decay into the Σ+π0 channel takes place ∼ 7.5 MeV above

threshold, such that it turns out to dominate the width of the Λc1(2593).

The situation with the spin-3
2

state Λc(2625) is somewhat different. For this

case, the decay is dominated by the D−wave channel [Σcπ]D, which is well above

threshold (∼ 45 MeV), while the S−wave accessible modes [Σ∗
cπ]S lie about 30

MeV below threshold and are thus nonresonant.

This suggests that finite width effects are important in the Λc(2593) decays.

The situation is somewhat similar to e+e− → tt̄ production close to threshold,

which is mediated by a very broad toponium resonance. The net effect is a dis-

tortion of the shape of the invariant mass spectrum in Λc1(2593) → Λ+
c π+π− from

a simple Breit-Wigner shape. The resulting line shape depends both on the un-

known couplings h2,8 and on the masses and widths of the intermediate Σc states.

This should be taken into account for the extraction of the mass and width of the

Λc1(2593). The purpose of this paper is to present a detailed calculation of these

effects.

Consider the amplitude for producing the Λc1 resonance, followed by its decay

to a 3-body state Λ+
c1 → Λ+

c ππ, of total momentum pµ = MΛ+
c
vµ +kµ and invariant

mass M(Λ+
c ππ) =

√
p2(Λcππ). This is written in the factorized form

A(i → Λc1X → Λ+
c ππX) =

i

∆ − ∆Λc1 + iΓΛc1(∆)/2
[Ū(∆)

1 + 
v
2

V (∆, X)] , (2.6)

where ∆ = v · k = M(Λ+
c ππ) − M(Λ+

c ) is the residual energy of the propagating

resonance Λc(2593) and ∆Λc1 = M(Λc1)−M(Λ+
c ). Uα(∆) and Vα(∆, X) are spinor

amplitudes parameterizing the decay Λ+
c1 → Λ+

c ππ and its production, respectively.

Uα(∆) depends on the momenta and spins of the Λcππ state, and is calculable in

heavy hadron chiral perturbation theory for values of the residual energy ∆ � 1

GeV. On the other hand, not much is known about the production spinor Vα(∆, X),

which depends on all the details of the production process.

Squaring the amplitude (2.6), adding the phase space factors and summing

over the unobserved states X, one finds the following expression for the Λ+
c ππ

production cross-section as a function of the invariant mass ∆:
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dσ(∆)

d∆
∼ 1

(∆ − ∆Λc1)
2 + ΓΛc1(∆)2/4

[
Ū(∆)

1 + 
v
2

ω(∆)
1 + 
v

2
U(∆)

]
×dLips(Λc1 → Λ+

c ππ) (2.7)

We have introduced here the density matrix ωαβ(∆) parameterizing the pro-

duction of a Λc1 resonance in the process i → Λc1X

ωαβ(∆) ≡
∑
X

∫
dµ(X)Vα(∆, X)V̄β(∆, X)(2π)4δ(pi − pX − pΛc1) (2.8)

The matrix ω depends on the resonance momentum pΛc1 and details of the experi-

mental setup such as the total beam momentum and polarization. Fortunately, the

spin structure of the matrix ω is not required if one sums over the spins and mo-

menta of the final decay products in Λ+
c1 → Λ+

c ππ. If this is done, the amplitudes

in Eq. (2.7) can be written as

∑
sΛc

∫
dLips(Λc1 → Λ+

c π+π−)Uα(∆)Ūβ(∆) =

(
1 + 
v

2

)
αβ

Γ(Λ+
c1 → Λ+

c π+π−) (2.9)

Inserting this into (2.7) one finds that the production cross section as a function

of invariant mass takes the factorized form

dσ(∆)

d∆
∼ Tr

[
1 + 
v

2
ω(∆)

]
Γ(Λ+

c1 → Λ+
c π+π−)

(∆ − ∆Λc1)
2 + Γ2

Λc1
(∆)/4

(2.10)

The dependence on ∆ introduced by the production factor Tr [
1+ 
v

2
ω(∆)] is un-

known, and it can be expected to introduce a slow variation with a characteris-

tic scale ∼ ΛQCD. This can be neglected when compared with the much faster

variation of the denominator. The width Γ(∆) in the numerator is equal to the

spin-averaged partial width of a Λc1 resonance of mass ∆ + M(Λ+
c ) into a specific

channel, e.g. Λ+
c π+π−, while the width in the denominator ΓΛc1(∆) sums over all

allowed channels. These decay widths are given explicitly by [27]
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Γ+− ≡ Γ(Λ+
c1 → Λ+

c π+π−) =
g2

2

16π3f 4
π

MΛ+
c

∫
dE1dE2

{
�p2

2|A(E1, E2)|2

+ �p1
2|B(E1, E2)|2 + 2�p1 · �p2Re [A(E1, E2)B

∗(E1, E2)]
}

(2.11)

where E1, E2 are the pion energies in the rest frame of the Λc1 resonance and we

have defined

A(E1, E2) =
h2E1

∆ − ∆Σ0
c
− E1 + iΓΣ0

c
/2

(2.12)

+h8

(
−

2
3
�p1

2

∆ − ∆Σ∗0
c
− E1 + iΓΣ∗0

c
/2

+
2�p1 · �p2

∆ − ∆Σ∗++
c

− E2 + iΓΣ∗++
c

/2

)
B(E1, E2; ∆Σ

(∗)0
c

, ∆
Σ

(∗)++
c

) = A(E2, E1; ∆Σ
(∗)++
c

, ∆
Σ

(∗)0
c

) (2.13)

The decay rate Γ(Λ+
c1 → Λ+

c π0π0) is given by a similar relation, with an additional

factor of 1/2 to account for the identical pions in the final state, and with the

replacements ∆
Σ

(∗)++
c

, ∆
Σ

(∗)0
c

→ ∆
Σ

(∗)+
c

.

In these expressions we work at leading order in the 1/mc expansion in matrix

elements, but use the exact 3-body phase space. This procedure includes formally

subleading contributions in the 1/mc expansion, which are however enhanced by

kinematics and are required for reproducing the data in other similar situations

[35]. We neglect the radiative decay channel Λ+
c1 → Λ+

c γ, which is expected to

contribute about 20 keV to the total width [29].

After integration over the Dalitz plot, the decay width (2.11) can be written as

Γ+−(∆) = g2
2

{
h2

2a+−(∆) + h2
8b+−(∆) + 2h2h8c+−(∆)

}
. (2.14)

A similar result is obtained for the rate into Λ+
c π0π0 with coefficients a00, b00, c00.

The coupling g2 appears here both explicitly, and implicitly through the Σ
(∗)
c widths

in the denominators of A(E1, E2) and B(E1, E2). These are given by

Γ(Σ(∗)
c ) =

g2
2

2πf 2
π

MΛc

M
Σ

(∗)
c

|�pπ |3 . (2.15)
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Figure 2.1: (a) The partial mass-dependent width of the Λc(2593) in the Λ+
c π+π−

channel (g2
2a+−(∆) - solid line) and in the Λ+

c π0π0 channel (g2
2a00(∆) - dashed

line), as a function of ∆ = M(Λ+
c ππ) − M(Λ+

c ), with g2
2 = 0.34; the curves with

sharp thresholds are computed in the narrow width approximation (Eqs. (2.16),
(2.17)) and are independent on g2; (b) The Λ+

c (2593) resonance shape as seen in
the Λ+

c π+π− channel (solid curve) and in the Λ+
c π0π0 channel (dashed curve). The

results in (b) correspond to ∆Λc1 = 309 MeV and h2
2 = 0.3.

Using the observed masses this gives Γ(Σ++,+,0
c ) = {6.15 , 7.06 , 6.01}g2

2 MeV, and

Γ(Σ++∗,+∗,0∗
c ) = {47.9 , 47.4 , 46.3}g2

2 MeV. The extracted values for g2 from the

Σc and Σ∗
c experimental widths are somewhat different: 〈g2

2〉Σc
= 0.25 ± 0.17, and

〈g2
2〉Σ∗

c
= 0.33 ± 0.15, which can be attributed to an 1/mc effect. Although the

uncertainty in this coupling is rather large, g2
2 = 0.29±0.23, the resulting effect on

our predictions (2.14) is very small, because they are very close to the narrow-width

case for the Σc (see the discussion around Eqs. (2.16), (2.17)).

Our main interest here is in the functional dependence of a+−,00(∆), which

31



Figure 2.2: Fit to the invariant mass spectrum in Λ+
c (2593) → Λ+

c π+π− as ex-
plained in the text.

dominate numerically the rates Γ+−,00. These coefficients are plotted in Fig. 1(a) as

functions of ∆; the qualitative features of these curves can be understood without

a detailed computation, as follows. The coefficients a(∆) give the partial widths

into the [Σcπ]S channel, which start at threshold ∆ = 2M(π+), and rise slowly up

to the threshold for production of [Σ0
cπ

+]S and [Σ++
c π−]S at ∆ = 306.9 MeV and

∆ = 307.2 MeV, respectively. Above this threshold, the rate rises much faster,

which explains the ‘kink’ seen in Fig. 1(a) in the π+π− channel. On the other

hand, the threshold in the neutral pion channel lies lower, at ∆ = 301.4 MeV,

corresponding to the opening of the [Σ+
c π0]S channel. Since the central value of

the Λc1 mass lies around 307 MeV, the rapid variation of a+−(∆) in this region

will likely affect the extraction of ∆Λc1 .

It is instructive to compare these results with those obtained in the narrow

32



width approximation, where the mass-dependent partial widths in (2.11) are ap-

proximated with 2-body widths [28]

ΓNW(Λ+
c1 → Λ+

c π+π−) = Γ(Λ+
c1 → Σ0

cπ
+) + Γ(Λ+

c1 → Σ++
c π−)

= a(π±)|�pπ | (2.16)

ΓNW(Λ+
c1 → Λ+

c π0π0) = Γ(Λ+
c1 → Σ+

c π0) = a(π0)|�pπ | (2.17)

where �pπ is the pion momentum in Λc1 → Σcπ decays. Neglecting isospin violation

in the Σc masses, the a(π) parameters are given in the heavy quark limit by

a(π±) =
h2

2

πf 2
π

MΣc

MΛc1

E2
π , a(π0) =

1

2
a(π±) . (2.18)

In the limit g2 → 0, the exact result (2.11) reduces to the narrow width approxi-

mation in Eqs. (2.16) and (2.17), that is Γ → ΓNW. As one can see from Fig. 1(a),

the narrow width results give a good approximation to the exact widths (computed

with g2
2 = 0.34), for ∆ not too close to threshold.

In Fig. 1(b) we show invariant mass distributions ∆ = M(Λ+
c ππ) − M(Λ+

c )

in Λ+
c (2593) decays, in both charged and neutral pions channels. The shape of

the invariant mass distribution in the charged pions channel Λ+
c π+π− is distorted

towards larger values of ∆ compared to a simple Breit-Wigner curve. In particular,

extractions of the Λ+
c (2593) parameters from the charged pions channel alone could

overestimate the mass of this resonance by a few MeV, which is larger than the

present 1σ uncertainty (2.2) on this parameter. These effects are not present in

the neutral pions channel, for which the shape of the mass spectrum comes closer

to a pure Breit-Wigner resonance.

The first observation of the Λ+
c π0π0 mode has been presented in unpublished

CLEO data [38], where the corresponding invariant mass distribution was used to

extract the mass of the Λ+
c (2593). The result is lower than that obtained from the

Λ+
c π+π− channel (2.2), in agreement with our expectations,

[M(Λ+
c (2593))− M(Λ+

c )]Λcπ0π0 = 306.3 ± 0.7 MeV . (2.19)
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Experimental difficulties connected with the low π0 detection efficiency could limit

the precision of such a determination. We propose therefore that the shape of the

Λ+
c π+π− invariant mass spectrum be fit to the distribution (2.10) with parameters

(∆Λc1 , h2) (instead of a Breit-Wigner curve with parameters (∆Λc1 , Γ)).

In Fig. 2 we show the results of such a fit, performed using the CLEO data pre-

sented in [38] (see Fig. 5.5 in this reference), including detector resolution effects.

The parameters of the Λc(2593) resonance extracted from this fit are 2

M(Λ+
c (2593))− M(Λ+

c ) = 305.6 ± 0.3 MeV , h2
2 = 0.24+0.23

−0.11 , (2.20)

and correspond to a resonance mass in reasonably good agreement with (2.19).

A conventional fit of this same data using a Breit-Wigner function, yields a mass

difference of around 308 MeV, in agreement with the published measurements

[22]. Note that the threshold effects effectively lower the resonance mass (2.20)

compared with the previous determinations (2.2). Our treatment also leads to a

reduction in the uncertainties connected with the poorly measured Σc widths. The

result for the coupling h2
2 is somewhat lower than previous determinations of this

coupling [28] (h2
2 = 0.30+0.21

−0.14) and [27] (h2
2 = 0.33+0.20

−0.13).

In conclusion, we have discussed in this paper the impact of threshold effects on

the determination of the Λ+
c (2593) parameters from its strong decays into Λ+

c ππ,

and we have presented theory motivated fits of the mass and couplings of this

state. Our results suggest that the excitation energy of the Λ+
c (2593) is about 2-3

MeV lower than obtained in previous determinations.

2The data shown in Fig. 2 was obtained in Ref. [38] by adding the measured mass difference
to a fixed Λ+

c mass of 2286.7 MeV. Thus, for consistency, we subtracted this value from our fitted
mass to obtain the result (2.20).
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Chapter 3

Shining on an Orbifold

Supersymmetry (SUSY) and extra dimensions are some of the most active areas

of research in high energy physics today1. In addition to their mathematically

aesthetic value, they might be able to solve the hierarchy problems of particle

physics, and both are motivated by string theory. However, the world we live in

is four dimensional and not supersymmetric. Therefore if SUSY exists it must

be broken, probably spontaneously. And if extra dimensions exist they must be

compactified or in some way hidden. These two constraints provide a wealth of

possible phenomenology.

Extra dimensions have another problem. If you naively try to compactify them,

they are inherently unstable due to Casimir forces. Therefore any self-consistent

model with extra dimensions must include a way to stabilize the dimensions against

these quantum fluctuations.

One method of doing just that is known as the Goldberger-Wise (GW) mecha-

nism [40]. This was originally designed to stabilize the extra dimension of the RS1

Model [12]. Goldberger and Wise proposed including a scalar field that lived in the

bulk but that had independent potentials localized on branes at the two orbifold

fixed points. These independent potentials generate a profile for the scalar, and

matching boundary conditions enforces a stabilized extra dimension.

A similar idea that involves supersymmetry was considered in [41]. In this

1This work was originally published in [2].
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paper, the extra dimension is a circle and a hypermultiplet has a source term on a

brane located at y = 0. This hypermultiplet has an exponential profile in the bulk.

Then a “probe brane” is included that interacts with the hypermultiplet. The F-

flatness conditions conspire to stabilize the radius of the extra dimension by fitting

boundary conditions. This method can also be used to break supersymmetry by

fixing the model so that it is impossible to satisfy the F-flatness conditions and the

boundary conditions at the same time. Breaking SUSY in this way is generally

called “shining” [41, 42].

This paper extends this idea to a flat orbifold. A single hypermultiplet lives

in the bulk, and it has sources on branes located at both orbifold fixed points.

Fitting boundary conditions overconstrains the problem and forces the radius to

be stabilized. A very nice side effect of this model is that supersymmetry need

not be broken in order to stabilize the radius. Once we stabilize the radius of

the extra dimension we can break supersymmetry using the same technique. We

shine another hypermultiplet from the brane at y = 0 and find that we cannot

match boundary conditions and preserve supersymmetry at the same time. We

show that that this SUSY breaking does not have any sizeable effect on the radius

stabilization mechanism. This method is improved from [41] since the orbifold

geometry means that we do not need any chiral superfields living on one of the

branes.

Our model is similar to one proposed previously by Maru and Okada, but they

consider the warped case [43]. However, they claim that there is no viable flat

space limit. We show why this is not correct. We will also correct a claim about

the zero modes of the 4D effective theory.

In the next section we will present the model and show how the shining mech-

anism can be used to both stabilize the radius and break supersymmetry. In the

following section we will consider the four-dimensional effective theory that re-

produces the low energy physics. We will also discuss how supergravity effects

help stabilize the flat directions, and how radion [14] and anomaly [44] mediated

supersymmetry breaking can occur.
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3.1 The Model

In this section we will present the model in terms of N = 1 superfields in five

dimensions. We work with a single extra dimension compactified on a flat orbifold

S1/Z2:

ds2 = ηµνdxµdxν − R2dy2 (3.1)

where we are using a mostly minus metric throughout this paper. R is the radius

modulus field, or “radion”, which parameterizes the size of the extra dimension,

and y ∈ [0, π] is an angular variable. The orbifold parity defines a symmetry under

the transformation y → −y. The five-dimensional fields in the theory will be either

even or odd under this parity.

This model consists of two hypermultiplets (Φ, Φc) and (Ψ, Ψc) that are shined

across the bulk from a brane located at y = 0. One of these hypermultiplets will

be used to stabilize the extra dimension while the other one will be used to break

supersymmetry. In the convention that we use, the conjugate superfields are even

under the orbifold parity while the other chiral superfields are odd.

The five-dimensional action for our model is given by [45, 46]:

S =

∫
d4x dy

∫
d4θ ϕ†ϕ

T + T †

2

{−3M3
5 + Φ†Φ + Φc†Φc + Ψ†Ψ + Ψc†Ψc

}
+

∫
d4x dy

∫
d2θ ϕ3 {Φc(∂y + mT )Φ + Ψc(∂y + µT )Ψ} + h.c.

+

∫
d4x dy

∫
d2θ ϕ3

{
Φc[Jδ(y) − J

′

δ(y − π)] + ΨcKδ(y) + αδ(y)
}

+ h.c.

(3.2)

where ϕ is the conformal compensator and T is the radion superfield2 (see Ap-

pendix A). α is a constant superpotential living on the y = 0 brane that will be used

to cancel the cosmological constant after SUSY breaking. Notice that this action

2Notice the T dependence in the bulk mass term for the hypermultiplet. This dependence
was not included in Equations 11-14 of [45]. However their later inclusion of FT in the action
was correct, so this does not change any of their results. Therefore we assume that this is simply
a typo in their paper.

37



has a U(1)R symmetry in the bulk and the y = π brane with R(Ψc) = R(Φc) = +2

and all other superfields neutral. This symmetry is explicitly broken on the y = 0

brane by the α term. This will be important later. Also notice that if we ex-

tend our domain in y to the covering space y ∈ [−π, π] the mass terms contain a

sign function. We leave this out to avoid the cumbersome notation, but it is very

important when going to the four dimensional effective theory.

This model is virtually identical to the model of Maru and Okada [43]. In

that paper the authors stabilized the extra dimension in the case of a warped

background using a hypermultiplet with delta-function sources on both branes.

However they claim that the only way this can be done is in warped space and

that if you take the flat space limit you get a runaway potential for the radion.

This is not the case if you take the appropriate flat space limit. Specifically, they

parameterized their bulk masses in terms of a c-parameter: m = (3
2

+ c)k where

k is the curvature in the warp factor. Then if you naively take the limit k → 0

the bulk masses would vanish and the radion would no longer be stabilized. The

appropriate thing to do is to take the limit as k → 0 while holding the bulk mass

fixed. It is easy to take this limit in their paper and we get the same results

presented here for the radion potential.

As a first step in analyzing the model we ignore supergravity contributions, so

T = R and ϕ = 1; in other words, FT = Fϕ = 0. We will come back to this in

a later section. With these conditions the remaining F-term equations of motion

are:

RF c
Φ = (mR + ∂y)φ +

[
Jδ(y) − J

′

δ(y − π)
]

(3.3)

RF c
Ψ = (µR + ∂y)ψ + Kδ(y) (3.4)

RFΦ = (mR − ∂y)φ
c (3.5)

RFΨ = (µR − ∂y)ψ
c (3.6)

Supersymmetry is maintained if we can find (y-dependent) vevs of the scalar

fields so that all of the above F-terms vanish. Let us first consider the F-flatness

condition F c
Φ = 0. The first delta function gives the boundary condition φ(0) = −J

2
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so there is a unique solution:

φ(y) = −J

2
Θ(y)e−mR|y| (3.7)

where Θ(y) is the Heaviside step function with the convention Θ(0±) = Θ(π∓) =

±1. The boundary condition at y = π then overconstrains the problem and fixes

the radius:

R =
1

mπ
log

(
J

J ′

)
(3.8)

Hence this model stabilizes the size of the extra dimension as long as |J | > |J ′|
and they each have the same sign.

The Ψ sector breaks supersymmetry through the shining mechanism [41]. To

understand how this works notice that if we set F c
Ψ = 0 we can write down the

solution:

ψ(y) = −K

2
Θ(y)e−µR|y| (3.9)

The coefficient is set by the delta function source on the y = 0 brane. Notice

however that there is no source on the y = π brane; combined with the fact that

ψ(y) is an odd field the boundary condition is ψ(π) = 0. This boundary condition

is inconsistent with Equation (3.9), and therefore supersymmetry is broken on the

boundary at y = π.

Finally let us consider the last two F-terms. Setting these equations to zero

gives the general results:

φc = BemR|y| (3.10)

ψc = CeµR|y| (3.11)

The coefficients B and C are arbitrary and represent an indetermination of the

four-dimensional zero modes of these scalars. Hence, upon integrating out the fifth

dimension these fields correspond to flat directions.
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That there are two flat directions in our theory should come as no surprise [47].

ψc is the scalar field in the multiplet that breaks supersymmetry (F c
Ψ 
= 0), so it is

expected to be flat at tree level. That φc is also a flat direction should not surprise

us either. It is due to the fact that the condition F c
Φ = 0 was used to stabilize the

extra dimension, i.e.: give the radion a mass. This leaves over an extra degree of

freedom corresponding to the massless φc. This interpretation of the flat directions

differs from [43]; this difference will be clarified when we discuss the 4D effective

theory.

3.2 4D Spectrum

Now we will consider the four-dimensional effective theory generated by the

action in Equation (3.2). In the first section we will derive the effective potential

for the radion and SUSY breaking by setting all the hyper-scalars to their vevs

from the previous section. In the next section we will consider the contributions

coming from the hyper-scalars and write down an effective superpotential and

Kahler potential that captures these effects. In the third section we will consider

the lowest order effects of supergravity (turning Fϕ and FT back on). In the final

section we will look at how other fields are affected by the shining field. We consider

the specific examples of putting matter on one of the branes, and of putting a gauge

field in the bulk.

3.2.1 Radion Potential

We now wish to construct an effective potential for the radion. In the process

we will also be able to parameterize the size of supersymmetry breaking. In order

to do this we need to compute the four-dimensional effective potential. Ignoring

any contributions from supergravity this potential is given by:

V =

∫ π

0

dyR
[|FΨ|2 + |F c

Ψ|2 + |FΦ|2 + |F c
Φ|2
]

(3.12)

There is a very nice way to understand Equation (3.12) that was presented in
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[41]: think of the extra dimension coordinate y as a (continuous) index for the

chiral superfields. Then the potential is nothing more than the sum of all of

the magnitude-squared F-terms, which is precisely what Equation (3.12) is. FΨ

and FΦ are proportional to the flat directions so they will not contribute to the

effective potential at tree level. We will see how the zero modes of the even scalars

contribute to the effective potential in a later section. This leaves two terms to

calculate.

Supersymmetry is explicitly broken in the F c
Ψ term. To isolate that result we

must consider the full equations of motion for the scalar field upon integrating

out the auxiliary fields. Rather than do that explicitly, we employ the following

trick, which is equivalent. We insist that the boundary conditions on the fields

are sacred; therefore ψ(π) = 0 must be enforced. We have already seen that this

condition cannot be satisfied for F c
Ψ = 0 but we can get as close as possible if we

make the following ansatz:

ψ(y) = −K

2
Θ(y)

[
e−µR|y| − e−µRπf(y)

]
(3.13)

where f(y) is some function that satisfies the boundary conditions f(0) = 0, f(π) =

1. This will enforce the boundary condition but at the cost of introducing a term

into the potential:

∆V =

∫ π

0

dy
K2

4R
e−2µRπ |∂f − µRf |2 (3.14)

Now we can chose this function to minimize the potential. Performing this mini-

mization using variational methods and using the boundary conditions gives:

f(y) =
sinh(µRy)

sinh(µRπ)
(3.15)

We can plug this result back into Equation (3.14) and integrate over y to get:

∆V =
1

2

µK2

e2µπR − 1
(3.16)

F c
Φ vanishes only when R = r0, the stabilized radius defined in Equation (3.8).

For an arbitrary radius, F c
Φ 
= 0 and we can repeat the above steps exactly for φ(y)
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appearing in F c
Φ. We try the ansatz:

φ(y) = −J

2
Θ(y)

[
e−mR|y| −

(
J

′

J
− e−mRπ

)
g(y)

]
(3.17)

where g(y) has the same boundary conditions as f(y). Indeed, upon minimizing

the potential we find that g(y) has the same form as f(y) with µ replaced by m.

Plugging it back into Equation (3.12) and integrating over y we find:

V (R) =
1

2

m(J − J
′

emπR)2

e2mπR − 1
+ ∆V (3.18)

This potential is minimized for the radius given in Equation (3.8). Near this

stabilized radius ∆V ∼ µK2(J/J
′

)−2µ/m does not give a significant correction

relative to the first term due to the exponential suppression for even moderate

values of the parameters. For concreteness, we chose the parameters: J = K =

M
3/2
5 /10, J

′
= M

3/2
5 /100, µ = M5/10 and m = M5/75. Then we find R ∼ 55l5

where l5 is the 5D Planck length. This generates a compactification scale Mc ∼
0.02M5. Using the well-known relation M2

P = M3
5 /Mc, we estimate M5 ∼ 1017

GeV. We estimate the vacuum energy at this radius to be MSUSY = 3×10−5M5 ∼
1012 GeV.

We can take the second derivative of this potential to find the mass of the

radion. After taking into account the normalization of the radion (see Appendix

A) we find mr ∼ 10−3MP ∼ 1015 GeV for the above values of the parameters.

3.2.2 Higher Modes and the Effective Superpotential

To get the effective scalar potential in four dimensions we must do a KK ex-

pansion of the fields. The details of this are reviewed in Appendix B. Here we

quote the results:

φ(x, y) = −J

2
Θ(y)e−mR|y| +

√
2

π

∑
n

φn(x) sin (ny) (3.19)

φc(x, y) = −B(x)e+mR|y| +

√
2

π

∑
n

φc
n(x) sin

[
ny + tan−1

( n

mR

)]
(3.20)
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and similarly for (ψ, ψc) with (B, m, J) → (C, µ, K). The KK masses are given by

the simple relation: M2
n = m2 + n2/R2 (n > 0) for both φ and φc (ψ and ψc) and

MB = MC = 0. The minus sign in front of B(x) is inserted for later convenience.

The first term in Equation (3.19) is a y-dependent vev. There is no zero mode for

the odd field, as explained in Appendix B. This is another correction to [43], who

suggest that the zero mode of the odd field corresponds to the flat direction. This

role is played by the even zero mode B(x), as explained earlier.

To get the 4D effective theory we insert this result into the full five-dimensional

Lagrangian and integrate over y. Since the KK modes all have masses at the

compactification scale or higher they should not seriously affect the low energy

physics; we will see that they decouple below. We also have the (y-dependent) vev

of the odd field; that just gives us the potential previously calculated in Equation

(3.18). We are left with the zero mode for the even field:

L4 =

∫ π

0

dy e2mRy|∂B|2 =
1

2m
(e2mRπ − 1)|∂B|2 + O(∂R) (3.21)

Now define R = r0 +r. We can canonically normalize the field B(x) by making

the field redefinition: B → B
(

2m
e2mπr0−1

)1/2

and we finally have (after including

the ψ-sector):

L4 = |∂B|2 + λ|∂B|2 [2πmr + 2π2m2r2 + · · · ]
+|∂C|2 + λ̃|∂C|2 [2πµr + 2π2µ2r2 + · · · ]+ O(∂r)

−V (r0 + r) (3.22)

where V (r0 +r) is the potential in Equation (3.18) and the terms in brackets come

from expanding 2eπmr sinh(πmr). Using Equation (3.8):

λ =
1

1 − e−2mπr0
=

1

1 − (J ′/J)2
(3.23)

λ̃ =
1

1 − e−2µπr0
=

1

1 − (J ′/J)2µ/m
(3.24)

Equation (3.22) is the four-dimensional effective Lagrangian for the canonically

normalized scalar field zero modes and their lowest order couplings to the radion.
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In addition to Equation (3.22), there are also terms that involve the derivative

of R. These terms are already quadratic in the B field, so they represent other

higher order effects that do not interest us here.

The higher KK modes do not have any problem or ambiguity in their coupling

to the radion, which comes from the KK mass term:

∆L = −
∑

n

φc†
n

{
∂2 +

[
m2 +

n2

r2
0

(
1 +

r

r0

)−2
]}

φc
n

Now we would like to write down the four-dimensional Lagrangian in terms of

superfields. The only relevant fields that appear in the low energy theory are the

B, C scalars and the radion. The kinetic terms and the interaction terms can be

derived from a Kahler potential3:

K4 = B†B
(
emπ(T+T †) − 1

)
+ C†C

(
eµπ(T+T †) − 1

)
(3.25)

where B and C are the four dimensional chiral superfields containing B and C

respectively. We also need to write down a superpotential that gives us Equation

(3.18):

W4 = −
√

m

2

(
J − J

′

emπT
)
B −

√
µ

2
KC (3.26)

This choice for the Kahler potential and superpotential will, after the appropriate

canonical rescaling, reproduce Equation (3.22).

3.2.3 Effects from Supergravity

We are now in a position to incorporate effects from supergravity. We start

with the effective four-dimensional Lagrangian:

L4 =

∫
d4θ ϕ†ϕ

{
−3

2
M3

5 (T + T †) + K4

}
+

∫
d2θ ϕ3 (W4 + α) + h.c. (3.27)

3There is a subtlety here. When writing down the Kahler and superpotential we must match to
the component Lagrangian before rescaling the fields. So Equations (3.25) and (3.26) are actually
found from matching to Equation (3.21) after a field redefinition B → √

2mB, C → √
2µC to

get the dimensions right.
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where the first term is the supergravity contribution derived in [48] and K4 and W4

are given in Equation (3.25) and (3.26) respectively. The constant α is required

to cancel the cosmological constant in order to properly normalize the gravitino

mass [49]. The details of deriving Equation (3.27) from the full 5D theory can be

found in [50]. The superpotential for C is reminiscent of the Polonyi model [51]. In

Polonyi models, the vev of the scalar field is pushed up to the Planck scale. This

will happen here as well, but it does not do any damage to our results [52].

First we integrate out the auxiliary fields to get a scalar potential. After rescal-

ing the fields so they have canonical kinetic terms as in Equation (3.22), we get:

V4(B, C, R) = V (R) +
2R

3M3
5

{
XB̃[B̃ − 〈B̃〉]2 + XC̃ [C̃ − 〈C̃〉]2

}
− U0 + O(M−6

5 )

(3.28)

where V (R) is the potential given in Equation (3.18), U0 = 2R
3M3

5
(XB̃〈B̃〉2+XC̃〈C̃〉2),

and

B̃ ≡ 1√
1 + ε2

(B + εC) (3.29)

C̃ ≡ 1√
1 + ε2

(C − εB) (3.30)

So we find that the B and C fields mix, but they can be redefined to have definite

masses and vevs. These quantities along with the mixing parameter ε are given in

Appendix C. If we remove the C field (no supersymmetry breaking4) but there is

still a cosmological constant (so α 
= 0) then we find that 〈B〉 =
√

m
2

3α
m2πr0J ′ . This

is exactly as we expect from [50].

All of the above masses and vevs depend on the radius, but we have fixed

R = r0, the radius fixed by the Φ-sector given in Equation (3.8). There is also

mixing with the radion, and supergravity will give additional contributions to the

radion mass; this is not very important since V (R) generates a radion mass just

below the compactification scale while supergravity effects are all suppressed by

4This can be thought of as the limit K → 0 since in that case the Ψ sector would have no
odd profile in the bulk.
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powers of the Planck scale. So it is sufficient to fix the radion at r0 since any

radion mixing with the scalars will be very small. This means that there are

actually two sources of supersymmetry breaking: one source comes from the C

field directly (FC 
= 0), and another source from the fact that R = r0 is not the

true minimum of the potential in Equation (3.18). We claim that the second source

of supersymmetry breaking is negligible compared to the first. This can be seen

by letting Rtruevac = r0 + δ, where δ is small from the argument following Equation

(3.18). In fact, a numerical analysis shows that for the values of parameters given,

δ ∼ 0 to a very good approximation. Therefore we need not worry about these

additional contributions.

The masses of the scalars can be computed for the values of the parameters

mentioned below Equation (3.18). We find mB̃ ∼ 1012 GeV, and mC̃ ∼ 107 GeV.

Both of these masses are well below the compactification scale and mr as promised.

Finally, we demand that the cosmological constant be tuned to zero. Fixing the

radion to its classical value and the scalar fields to their vevs gives V (r0)−U0 = 0.

This can easily be solved for α; see Appendix C.

We can now use the formula to compute 〈Fφ〉 and 〈FT 〉. We find5:

〈F †
φ〉 =

α

M3
5 r0

−
√

2µK(J
′

/J)µ/m〈C〉
3M3

5 r0

− 〈F †
T 〉

2r0

(3.31)

〈F †
T 〉

2r0
=

3α
2r0

−√µ
2

K
r0

(
1 + µπλ̃r0

)
(J

′
/J)µ/m〈C〉 −√m

2
mπJ

′〈B〉
2r0(1 − λ)m2π2〈B〉2 + 2r0(1 − λ̃)µ2π2〈C〉2 + 3

2
M3

5

(3.32)

The first term in Equation (3.31) cancels the cosmological constant; the second

term comes from the SUSY-breaking F -term (FC); the final term is the radion-

mediated contribution given in Equation (3.32). For the given parameters this

generates |〈FT 〉|
2r0

∼ 106 GeV and m3/2 = 〈Fϕ〉 ∼ 106 GeV. These quantities are the

same order of magnitude due to the large Polonyi vev 〈C〉 which can cancel the

5Notice that 〈B〉 , 〈C〉 are vevs of the original fields before mixing. They can be computed by
inverting Equations (3.29-3.30).
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cosmological constant term in Equation (3.31). Notice that in the limit considered

earlier where C ≡ 0 but there is still a cosmological constant, we find to this order

after plugging in our result for 〈B〉 given below Equation (3.30) that 〈F †
T 〉 = 0 and

〈F †
ϕ〉 = α

M3
5 r0

, again in agreement with [50].

3.2.4 Soft Masses from the Shining Sector

We now ask what happens to the MSSM in our model of SUSY breaking. In

the full 5D theory, supersymmetry is broken near the brane at y = π. Thus, we

can place the MSSM on the brane at y = 0 and ask if this will generate any contact

interactions in the 4D effective theory. Such terms would look like:

Lc =

∫ π

0

dyδ(y)

∫
d4θ

Q†QΨc†Ψc

M3
5

(3.33)

where Q is a chiral superfield in the MSSM.

Now it is sufficient to only consider the zero mode of the hyper-scalar since all

of the KK modes have masses of order the compactification scale or higher, and

these will generate Planck and Yukawa suppressed interactions. In this case:

Ψc(x, y) =

√
2µ

e2µπR − 1
C(x)eµR|y| (3.34)

is the canonically normalized mode. This will generate contact terms of the form:

Lc =

∫
d4θ

µ

M3
5

Q†QC†Ce−2µπr0 (3.35)

and this gives a contribution to the masses of the MSSM scalars:

∆m2
q̃ =

µ|FC |2
M3

5

e−2µπr0 ∼ µM4
SUSY

M3
5

(
J

J ′

)−2µ/m

(3.36)

So these contact interactions will be exponentially suppressed at tree level.

One could have guessed that this would be the case, since the wavefunction of the

zero mode of the even field is an exponentially increasing function of y. Thus the

bulk scalar likes to spend all of its time far away from the visible brane at y = 0.
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However, we generally expect that radiative corrections might spoil this result and

must be checked in models that incorporate this shining mechanism.

Now consider putting a gauge field in the bulk (for simplicity, let it be a U(1)

gauge field, but it does not have to be). This would give an extra contribution to

the action:

∆L4 =

∫
d2θ

T

4g2
5

WαWα + h.c. (3.37)

This term generates a contribution to the gaugino mass through radion mediation

[14]:

∆m
(RMSB)
1/2 =

〈FT 〉
2r0

∼ m3/2 (3.38)

Anomaly mediation also gives a contribution to the gaugino masses. This

formula is complicated somewhat by the fact that the Polonyi model has a Planck-

scale vev [53], but the important point is that ∆m
(AMSB)
1/2 � ∆m

(RMSB)
1/2 due to

a loop factor. So radion mediation is the dominant contribution to m1/2 coming

from supergravity.

We can also have contact interactions between the gauge field and the shining

field:

∆L =

∫ π

0

dy [δ(y) + δ(y − π)]

∫
d2θ

ΨcWαWα

M
3/2
5

(3.39)

We must have the delta functions because N = 2 SUSY forbids such contact

interactions in the bulk. This will introduce a new contribution to the gaugino

mass. The y = π contribution is roughly:

∆m
(C)
1/2 =

|F C |
M5

∼ M2
SUSY

M5

(3.40)

Thus this contact term gives a contribution to the gaugino mass ∆m
(C)
1/2 ∼ 107

GeV, which is comparable to ∆m
(RMSB)
1/2 at tree level.

We can suppress this contribution to the gaugino mass by making use of the

U(1)R symmetry mentioned below Equation (3.2). From Equation (3.37) we see
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that R(Wα) = +1 so that the contact term in Equation (3.39) breaks the R

symmetry by 2 units. Thus it can only be generated on the y = 0 brane where

the α term has already broken the R-symmetry. Thus the generated contact term

in Equation (3.39) only has the delta function at y = 0. Plugging in Equation

(3.34) for Ψc and integrating over y will now generate an exponentially suppressed

contribution to the mass in analogy with Equation (3.36):

m
(C)
1/2 ∼ M2

SUSY

M5

(
J

J ′

)−µ/m

� ∆m
(RMSB)
1/2

So we find that it is possible for the RMSB contribution to dominate the gaugino

mass.

3.3 Discussion

This paper has extended the shining mechanism of supersymmetry breaking to

the geometry of flat orbifolds. This is a very nice way to break supersymmetry via

a hidden sector in extra dimensions. It avoids the need for extra superfields living

on the boundary branes as in [41]. It can easily be extended to other interesting

situations such as matter or gauge fields in the bulk, where radion mediation can

play an important role.

This paper has also clarified some of the issues raised in [43]. In particular,

contrary to their claim, it is possible to fit their model to the flat case and there

is nothing special about the warped geometry. We have also clarified the role of

the zero modes in the low energy theory.

In addition we have shown how supergravity plays the usual role of radiative

corrections in stabilizing the flat scalars. This is because our model is actually a

Polonyi model in disguise, which is a free field theory in the limit M5 → ∞.

This model of supersymmetry breaking only introduces exponentially sup-

pressed contact terms at tree level when the MSSM is put on the brane at y = 0. So

it might be possible to generate realistic soft masses for the squarks and sleptons.

In addition, radion mediated SUSY breaking might play an important part if the

bulk contact terms can be suppressed. Here, this was accomplished by imposing
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an R-symmetry that originally appeared as an accidental symmetry in the bulk

and is broken on the brane at y = 0.

The classic example of a model with radion mediation as the dominant mecha-

nism of SUSY breaking is the “no-scale model” [54], where Fϕ ≡ 0 [45]. This model

is known to be unstable after radiative corrections are included. Recently, it has

been improved by including a general stabilization mechanism and a constraint

was derived to keep the model “almost no-scale” [16]:

〈KT †T 〉 � M3
5

2πr0

where K is a radius-stabilizing Kahler potential. This constraint corresponds to

making sure that Fϕ remains small relative to FT /r0. The model considered here

violates this constraint: both sides of the innequality are the same order of mag-

nitude. This is because our model has Fϕ ∼ FT /r0. Anomaly mediation is then

suppressed by a loop factor, not a small Fϕ. This is what leads to dominant radion

mediation.

Finally, notice that this model, although in flat space, has a Kahler potential

that depends on the exponential of the radion. This is reminiscent of warped

space, and there might be a corresponding reinterpretation of the effective four-

dimensional theory. This could lead to interesting consequences for AdS/CFT,

warped supergravity, etc, and is left for future research.
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Chapter 4

Probing the Randall-Sundrum

Geometric Origin of Flavor with

Lepton Flavor Violation

4.1 Introduction

The Standard Model (SM) of particle physics is a remarkably successful descrip-

tion of nature1. However, it contains several unsatisfactory features. In particular,

there are many hierarchies built into the model that have no à priori explanation.

The most famous of these is the huge separation between the electroweak and

Planck scales. There have been many proposed solutions to this problem. One

possibility is the Randall-Sundrum scenario (RS) [12]. In this model, our four-

dimensional space-time is embedded into a five-dimensional anti de-Sitter space.

The extra “warped” fifth dimension is compactified on an orbifold. This space-time

is described by the metric

ds2 = e−2krcφηµνdxµdxν − r2
cdφ2, (4.1)

where −π ≤ φ ≤ π. Three-branes are placed at the orbifold fixed points φ = 0

and φ = π (and its reflection at φ = −π). The brane at φ = 0 is called the

1This work was originally published in [3].
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Planck or ultraviolet (UV) brane, while the brane at φ = π is called the TeV or

infrared (IR) brane. For sizes of the fifth dimension krc ∼ 11 − 12, the TeV scale

is obtained from the fundamental Planck scale via an exponential warping induced

by the anti de-Sitter geometry: MTeV = Mple
−kπrc . It was shown that this setup

can be naturally stabilized [59]. The original model placed all SM fields on the IR

brane.

This scenario does not explain all unnatural parameters in the SM. The fermion

Yukawa couplings, except for the top quark coupling, are small and hierarchical.

The minimal RS model offers no solution to this flavor hierarchy problem. In

addition, the flavor sector in the RS model is sensitive to ultraviolet physics, and

requires a cut-off of roughly 103 TeV to avoid dangerous flavor-changing neutral

currents. This is problematic, as the only cut-off available is the electroweak scale.

One solution to this problem is to permit some or all of the SM fields to

propagate in the full 5D space [60, 61, 62]. The only requirement for solving

the gauge hierarchy problem is to have the Higgs field localized near the IR brane.

This immediately presents a solution to the flavor hierarchy problem [61, 62], since

the Yukawa couplings of the Higgs field to the fermions become dependent on

the position of the fermion fields relative to the IR brane. By placing fermions at

different positions in the 5D bulk, a hierarchy in the effective 4D Yukawa couplings

can be generated even with anarchic O(1) 5D couplings. These “anarchic” RS

models set all diagonal and off-diagonal Yukawa couplings to O(1). In addition,

allowing fermions to propagate in the bulk suppresses the operators leading to

dangerous flavor changing neutral currents [62, 63]. Some collider [64] and flavor

physics [65, 66, 67, 68, 69] phenomenology of these models has been considered

previously.

Additional work is needed to make this scenario fully realistic. It was shown

that the simplest formulation leads to large violations of the custodial symmetry in

the SM [70]. There are two known solutions to this problem. The first extends the

bulk gauge symmetry to SU(2)L ×SU(2)R; when broken by boundary conditions,

a bulk custodial SU(2) symmetry is preserved [71]. The second model introduces

large brane kinetic terms to suppress precision electroweak constraints [72]. Both
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solutions allow for the masses of the first Kaluza-Klein (KK) excitations to be as

low as 3 TeV, generating interesting phenomenology which may be observable at

the upcoming Large Hadron Collider (LHC).

In this paper we probe the anarchic RS scenario by examining its effects on

lepton flavor-violating observables. We study here a minimalistic model; we assume

the SM gauge group, KK masses of a few TeV or larger, and an anarchic 5D Yukawa

structure. We allow the Higgs boson to propagate in the full 5D space, which

encompasses features found in several recent models [73, 74]. Specific theories such

as those mentioned above with a left-right symmetric bulk or large brane kinetic

terms will predict slightly different effects than we find here, but we believe that our

analysis captures the most important effects. We note that the flavor violation we

study here is completely independent of neutrino physics parameters. We subject

the anarchic RS picture to a complete set of experimental constraints: the rare µ

decays µ → eγ and µ± → e+e−e±, the rare τ decays τ → {e, µ}γ and tri-lepton

decay modes, and µ − e conversion in the presence of nuclei. We find constraints

on the KK scale of a few TeV throughout parameter space. Interestingly, there

is a “tension” between dipole operator decays such as l → l
′

γ and the remaining

processes. They have different dependences on the 5D Yukawa parameters, leading

to strong constraints throughout parameter space. We also find that when the

Higgs field is localized on the TeV brane, the dipole decays l → l
′
γ are UV sensitive

and uncalculable in the RS theory. This does not occur when the Higgs boson can

propagate in the full 5D space-time. We emphasize the important role played

by several future experiments: MEG [75], which will improve the constraints on

µ → eγ by two orders of magnitude; PRIME [76], which will strengthen the bounds

on µ − e conversion by several orders of magnitude; super-B factories, which will

improve the bounds on rare τ decays by an order of magnitude. Measurements

from these three experiments will definitively test the anarchic RS picture.

We briefly compare our work to previous papers on lepton flavor violation in the

RS framework. Reference [77] studied lepton flavor violation in a scenario where

only a right-handed neutrino propagates in the full 5D spacetime. The studies

in [65, 69] allowed all SM fermions and gauge bosons to propagate in the bulk.
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Reference [65] did not incorporate custodial isospin, and therefore considered KK

masses of 10 TeV, while the paper [69] considered a model with structure in the 5D

masses and Yukawa couplings. None of these studies considered a bulk Higgs field.

They also did not address the UV sensitivity of dipole decays in the brane Higgs

field scenario, nor did they discuss the tension between tree-level and loop-induced

processes. We also present a more detailed study of future experimental prospects

than previous analyses.

This paper is organized as follows. In Section 2 we present our notation and

describe the model. We discuss in Section 3 the µ − e conversion and tri-lepton

decay processes, which are mediated by tree-level gauge boson mixing. We discuss

the loop-induced decays l → l
′

γ in Section 4. In Section 5 we present our Monte

Carlo scan over the anarchic RS parameter space. We summarize and conclude in

Section 6.

4.2 Notation and Conventions

In this section we present our notation and describe the model we consider.

The basic action is

S =

∫
d4xdφ

√
G[Lgauge + Lfermion + LHiggs]. (4.2)

The Lagrangian for gauge fields in the bulk, Lgauge, has been studied in [60]. Lfermion

was presented in [61, 62, 64] using an IR brane Higgs boson; we will review the

relevant formulae and discuss the transition to a bulk Higgs below. Our setup of

the bulk Higgs field will follow the discussion in [74].

4.2.1 Brane Higgs field

We begin by considering the case of the Higgs field localized on the IR brane.

The Lagrangian in this case is

LHiggs =
[
DµH(DµH)† − V (H) −LYukawa

] [
δ(φ − π) + δ(φ + π)

]
, (4.3)
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where Dµ is the covariant derivative. LYukawa describes the Yukawa interactions

with the fermions. The Lagrangian for bulk fermions was derived in [61, 62, 64];

it takes the form

Lfermion = iΨ̄EM
A ΓADMΨ − sgn(φ)kcΨΨ̄Ψ. (4.4)

where EM
A is the inverse vielbein. This Lagrangian admits zero-mode solutions.

The cΨ parameters indicate where in the fifth dimension the zero-mode fermions

are localized: either near the TeV brane (c < 1/2) or near the Planck brane

(c > 1/2). The 4D Yukawa couplings of these fermions are exponentially sensitive

to the cΨ parameters. We perform the KK decomposition of the fermion field by

splitting it into chiral components, Ψ = ΨL + ΨR, yielding

ΨL,R(x, φ) =
∑

n

e2krc|φ|
√

rc
ψ

(n)
L,R(x)f

(n)
L,R(φ; c). (4.5)

The c dependence becomes part of the KK wavefunction f
(n)
L,R(φ; c); explicit formu-

las for these wavefunctions can be found in [61, 62, 64].

The SM contains two types of fermions, corresponding to singlets (S) and

doublets (D) under SU(2)L. In the SM, we require that the S fermions are right-

handed while the D fermions are left-handed. However, in five dimensions we

must have both chiralities. To get a chiral zero-mode sector we use the orbifold

parity of RS models. In particular, we choose (SR, DL) to be even under the

orbifold parity (Neuman boundary conditions) and (SL, DR) to be odd (Dirichlet

boundary conditions). The odd fields will not have zero modes, and the even zero

modes will correspond to the SM fermions. We now group these fermions and their

first KK modes into the vectors

ΨI
L = (D

i(0)
L , D

i(1)
L , S

i(1)
L ),

ΨI
R = (S

i(0)
R , S

i(1)
R , D

i(1)
R ), (4.6)

where i is a flavor index (i = e, µ, τ) and I = 1...9. We will show in a later section

that higher KK modes have a negligible effect on our results.

The fundamental 5D Yukawa interaction is

LYukawa =
λij

5D

k
D̄i

LHSj
R. (4.7)
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Using the vectors in Eq. 4.6 and substituting in the KK expansion of Eq. 4.5 yields

LYukawa =
ΛIJ

k
Ψ̄I

LHΨJ
R + h.c., (4.8)

where

Λ =




λ4D λ4DFR 0

FLλ4D FLλ4DFR 0

0 0 0


 . (4.9)

Each internal block is a 3 × 3 matrix, with

FL,R ≡




f
(1)
eL,R/f

(0)
eL,R 0 0

0 f
(1)
µL,R/f

(0)
µL,R 0

0 0 f
(1)
τL,R/f

(0)
τL,R


 (4.10)

These should be evaluated on the TeV brane, since that is where the Higgs is

localized. We find

λij
4D =

ε

krc
f

(0)
i f

(0)
j λij

5D =

√
(1 − 2ci)(1 − 2cj)

(ε1−2ci − 1)(ε1−2cj − 1)
ε1−(ci+cj) × λij

5D, (4.11)

where ε = eπkrc and there is no sum over i, j. It is straightforward to write down

the mass matrix for the fermions:

M =




M0 M0FR 0

FLM0 FLM0FR MKK

0 MKK 0


 , (4.12)

where M ij
0 = v√

2
λij

4D is the zero mode mass matrix. MKK is a diagonal matrix

that contains the KK masses. M0 is not diagonal. We can diagonalize this zero

mode mass matrix in the usual way, by constructing a biunitary transformation

(UL, UR) so that MD = ULM0U
†
R is diagonal. We can embed this rotation into the

full matrix above by multiplying on the left by diag(UL, 1, 1) and on the right by

diag(U †
R, 1, 1). This gives

M =




MD
v√
2
∆R 0

v√
2
∆L ∆1 MKK

0 MKK 0


 . (4.13)
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We have set v√
2
∆R = ULM0FR = MDURFR and v√

2
∆L = FLM0U

†
R = FLU †

LMD.

A factor of v√
2

was extracted to make it easier to match to the Yukawa matrix.

Notice that the middle entry can also be written in terms of the diagonal zero-

mode matrix: ∆1 = FLM0FR = FLU †
LMDURFR. From now on, we will use this

expression. To find the Yukawa matrix Λ in this basis, we just divide Eq. 4.13 by

v√
2

and set MKK = 0. We note that this implies we are considering the exchange of

a complex Higgs boson, which is equivalent to the exchange of the physical Higgs

boson and the longitudinal component of the Z. The diagonalization of this mass

matrix is discussed in the Appendix.

4.2.2 Bulk Higgs field

We now discuss the changes that occur when we allow the Higgs to propagate

in the full 5D space. A new coupling of the Higgs boson to the fermion KK states

exists: HS̄
(1)
L D

(1)
R +h.c. This is not present in the brane Higgs case because the SL

and DR wavefunctions vanish identically on the TeV brane due to the Dirichlet

boundary conditions. The fermion mass matrix becomes

M =




MD
v√
2
∆R 0

v√
2
∆L ∆1 MKK

0 MKK ∆2


 . (4.14)

∆L,R,1 are not the same as in the brane case; they now include overlap integrals

of the KK and zero-mode fermion wavefunctions with the Higgs wavefunction.

∆2 represents the wavefunction overlaps between the first KK modes of the right-

handed doublet and left-handed singlet leptons; the explicit expressions as well as

the details of diagonalizing M can be found in the Appendix. We note that all of

the ∆ are proportional to the 4D Yukawa couplings.

Our discussion of the bulk Higgs field will follow the presentation in [74]. The

5D profile for the Higgs vev is

χH(φ) = NHe2σJν

(
ixT ekrc(φ−π)

)
. (4.15)

Here, xT is the solution of a root equation giving the tachyonic mass, NH is a

normalization factor, σ = krcφ, and ν is the index of the solution. We will simplify
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this further for our discussion by using the asymptotic expansion of the Bessel

function for large index, Jν(z) ∼ zν . Using this expansion gives the following

normalized profile:

χH(φ) =

√
krc(1 + ν)

e2(1+ν)krπ − 1
e(2+ν)σ. (4.16)

This satisfies the constraint

1 = 2

∫ π

0

dφe−2σχ2
H(φ), (4.17)

where the factor of 2 comes from the [−π, 0] integration. In our analysis we will

vary the index ν, without worrying about its dependence on the model parameters

in [74]. This also makes a connection with the A5 composite Higgs models in [73],

which is approximately realized in this framework as ν = 0. We can also make a

direct comparison to the TeV brane Higgs scenario, which is realized by ν → ∞.

We will now study the effect of the bulk Higgs field on the gauge boson sector.

We begin with the action

Sgauge =

∫
d5x

√−G GMN (DMH)† DNH. (4.18)

Performing a standard KK decomposition, and expanding H = vχH/
√

2rc, we

arrive at the mass matrix

m2
0

2

∑
m,n=0

amnA(m)
µ Aµ(n), (4.19)

with

amn = 4π

∫ π

0

dφ e−2σχ2
Hχ(m)χ(n). (4.20)

The χ(n) are the usual gauge wave-functions, which can be found in [60]. We note

that χ(0) = 1/
√

2π. We show in Fig. 4.1 the elements fi = a0i of this mixing

matrix. The expectation is that as ν → ∞, these should approach the brane Higgs

values of (−1)i+1
√

2πkrc ≈ ±8.42, assuming the value krc = 11.27; this is indeed

what occurs.

We must now study the fermion sector, particularly what form the 4D Yukawa

couplings take in terms of the 5D values. We begin with the action

SffH =
λ5D

√
1 + ν√
k

∫
d5x

√−GH†ψDψc
S. (4.21)
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Figure 4.1: fi, the off-diagonal elements of the gauge boson mass matrix that
describe the mixing of the zero-mode with the i-th KK-mode.

where the ν-dependent prefactor is included to reproduce the correct 4D Yukawa

coupling as ν → ∞. The zero-mode fermion wave-function is e2σf (0)/
√

rc, where

f (0) =

√
krc(1 − 2c)

2 (e(1−2c)krcπ − 1)
e−cσ. (4.22)

Inserting this into the action, and expanding H as before, we find the following

expression for the 4D Yukawa:

λ4D =
λ5D (1 − 2c)

e(1−2c)krcπ − 1

[√
krc(1 + ν)

∫ π

0

dφ χHe−2cσ

]

=
λ5D (1 − 2c)

e(1−2c)krcπ − 1

[
1 + ν√

e2(1+ν)krcπ − 1

e(2+ν−2c)krcπ − 1

2 + ν − 2c

]
. (4.23)

For simplicity, we have only presented the diagonal Yukawa coupling. To reproduce

the brane Higgs diagonal Yukawa coupling in Eq. 4.11, the bracketed integral

should reduce to e(1−2c)krcπ as ν → ∞. It is simple to check that this occurs.

4.2.3 The anarchic RS parameters

We discuss here the parameters of the anarchic RS model and give their natural

values. We first note that Eq. 4.11 relates the diagonal 5D Yukawa couplings to
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the fermion c parameters through the measured fermion masses. The off-diagonal

entries are removed after diagonalization with UL,R. The preferred size of the

Yukawa couplings can be determined by demanding consistency with Z → bb̄

measurements and by the size of the top quark mass; this yields λ5D ≈ 2 [71].

We assume three couplings (Ye, Yµ, Yτ) of this approximate magnitude. The size

of these couplings implies c > 1/2 for all three leptons, indicating that they are

localized near the Planck brane. For simplicity, we take cL = cR. We note that

this range of c is the appropriate one for first and second generation quarks also;

for the third generation, cbL
= ctL ∼ 0.45, while cbR

∼ 0.5 and ctR ∼ 0 [71].

We can also estimate the natural sizes of the UL,R matrix elements. For illus-

tration, we consider here a two-family scenario; it is straightforward to extend this

example to three families. Assuming an anarchic RS scenario, so that all of the

λij
5D ∼ O(1), we can use Eq. 4.11 to write the 4D Yukawa matrix as

λ5D =

(
Y11 Y12

Y12 Y22

)
⇒ λ4D ∼

(
Y11f

(0)2
e Y12f

(0)
e f

(0)
µ

Y12f
(0)
e f

(0)
µ Y22f

(0)2
µ

)
, (4.24)

where we have assumed for simplicity a symmetric 5D Yukawa matrix. Assuming

O(1) Yukawa couplings, the functional dependences of the fermion masses on the

wave-functions are

me ∼ f (0)2
e , mµ ∼ f (0)2

µ , (4.25)

while the mixing matrices take the form

U ∼

 1 −

√
me

mµ√
me

mµ
1


 . (4.26)

We therefore find that |U12| ∼
√

me

mµ
. Including the τ then gives |U13| ∼

√
me

mτ

and |U23| ∼
√

mµ

mτ
. The diagonal entries |Uii| ∼ 1. We will assume mixing matrix

elements of these approximate magnitudes in our analysis.

4.2.4 Operator Matching

We discuss in this subsection the formalism we will use to compare the RS

predictions to the experimental measurements. Our presentation closely follows
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the discussion in [78]. Tri-lepton decays of the form l → l1l̄2l3 and µ−e conversion

are mediated by tree-level mixing with heavy gauge bosons and generate four-

fermion interactions, while l → l
′

γ occurs via a loop-induced dipole operator. We

can parameterize these effects in the following effective Lagrangian:

−Leff = CR(q2)
1

2mµ
ēRσµνFµνµL + CL(q2)

1

2mµ
ēLσµνFµνµR

+
4GF√

2
[g3(ēRγµµR)(ēRγµeR) + g4(ēLγµµL)(ēLγµeL)

+ g5(ēRγµµR)(ēLγµeL) + g6(ēLγµµL)(ēRγµeR)] + h.c. (4.27)

The form factors2 CL,R(q2) and the couplings gi are then computed in a straight-

forward matching procedure. We will discuss this computation in detail in the

following two sections.

4.3 Tri-lepton decays and µ − e conversion

In this section and the next we study the predictions that the minimal RS

model makes for lepton flavor violation. We focus on processes in the muon sector,

such as µ− → e+e−e− and µ− e conversion in the presence of nuclei, and rare tau

decays of the form τ → l1l̄2l3 currently being studied at BABAR and BELLE. The

dipole-mediated decays will be discussed in the next section.

The dominant effects arise from flavor non-diagonal couplings of the zero-mode

Z-boson. Contributions from exchange of the Higgs boson are suppressed by small

fermion masses, and we will show later that those coming from direct KK exchange

are suppressed by a large fermion wave-function factor. There are also contribu-

tions to these processes from the dipole exchanges denoted by CL,R in Eq. 4.27,

but these are loop-suppressed and small in the parameter space of interest. We

also find that KK-fermion mixing effects are sub-dominant in the parameter space

of interest. We derive here the relevant couplings. We denote the physical basis by

Z0, Z1, and the gauge basis by Z(0), Z(1). For simplicity, we restrict our discussion

here to the first KK level; in our analysis we include the first several modes. After

2Note that these form factors are normalized differently than the AL,R in [78]: C = − 8GF m2

µ√
2

A.

61



diagonalizing the gauge boson mass matrix, we find that these are related via

Z(0) = Z0 + f
m2

Z

M2
KK

Z1, Z(1) = Z1 − f
m2

Z

M2
KK

Z0. (4.28)

f parameterizes the mixing between the zero and first KK level. With a brane

Higgs field, f =
√

2kπrc ∼ O(10). A plot of f for a bulk Higgs field is shown in

Fig. 4.1. The couplings between the zero-mode fermions and Z(1) are determined

by the appropriate overlap integral. We define the ratio of these couplings to the

SM couplings as αe, αµ, and ατ , where g(1) = αgSM ; the αi are then given by

αi = 2
√

2π

∫ π

0

dφ eσχ(1)[f
(0)
i ]2. (4.29)

Since the fermion wave-functions are localized at different points in the bulk, the

αi differ, but they are all roughly O(0.1) in magnitude. We present a plot of the

αi in Fig. 4.3. In the fermion flavor basis, the matrix which describes the Z(1)

couplings takes the form

gSM (ēF , µ̄F , τ̄F ) 
Z(1)




αe 0 0

0 αµ 0

0 0 ατ






eF

µF

τF


 . (4.30)

We must first rotate the fermions to the mass basis. As was explained in the last

section, we introduce unitary matrices UL, UR, so that LM = ULLF , RM = URRF ,

where LF denotes the left-handed flavor basis-vector, LM the left-handed mass

basis-vector, etc. The flavor-basis coupling matrices CF
L,R = gL,R diag(αe, αµ, ατ )

are rotated to CL,R = UL,R CF
L,R U †

L,R. The flavor-violating couplings are the off-

diagonal entries of CL,R; we find

g
(1)µe
L,R = gL,R

(
UL,R

11 UL,R∗
21 αe + UL,R

12 UL,R∗
22 αµ + UL,R

13 UL,R∗
23 ατ

)
,

g
(1)τµ
L,R = gL,R

(
UL,R

21 UL,R∗
31 αe + UL,R

22 UL,R∗
32 αµ + UL,R

23 UL,R∗
33 ατ

)
,

g
(1)τe
L,R = gL,R

(
UL,R

11 UL,R∗
31 αe + UL,R

12 UL,R∗
32 αµ + UL,R

13 UL,R∗
33 ατ

)
, (4.31)

where gL,R are the usual SM couplings. We can use the unitarity of UL,R to rewrite
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these as

g
(1)µe
L,R = gL,R

[
UL,R

12 UL,R∗
22 (αµ − αe) + UL,R

13 UL,R∗
23 (ατ − αe)

]
,

g
(1)τµ
L,R = gL,R

[
UL,R

21 UL,R∗
31 (αe − αµ) + UL,R

23 UL,R∗
33 (ατ − αµ)

]
,

g
(1)τe
L,R = gL,R

[
UL,R

12 UL,R∗
32 (αµ − αe) + UL,R

13 UL,R∗
33 (ατ − αe)

]
. (4.32)

Using Eq. 4.28, the couplings to Z0 are obtained via multiplication by −fm2
Z/M2

KK:

gµe
L,R = −fm2

Z/M2
KKg

(1)µe
L,R , etc. The couplings to Z1 are identical to those in

Eq. 4.32, to leading order in the gauge boson mixing.

We now use these to derive the flavor-violating couplings g3−6 of Eq. 4.27:

gµe
3 = 2gR

[
gµe

R + αeg
(1)µe
R

m2
Z

M2
KK

]
,

gµe
4 = 2gL

[
gµe

L + αeg
(1)µe
L

m2
Z

M2
KK

]
,

gµe
5 = 2gL

[
gµe

R + αeg
(1)µe
R

m2
Z

M2
KK

]
,

gµe
6 = 2gR

[
gµe

L + αeg
(1)µe
L

m2
Z

M2
KK

]
. (4.33)

These are for µ − e flavor violation; similar expressions hold for τ − µ and τ − e.

The first term on each line is from the Z0 coupling, while the second is from direct

Z1 exchange. Substituting in the expressions from Eq. 4.32, we find

gµe
3 = −2g2

R

m2
Z

M2
KK

(f − αe)
[
UR

12U
R∗
22 (αµ − αe) + UR

13U
R∗
23 (ατ − αe)

]
, (4.34)

and similar expressions for the other couplings. Since f � |αe|, we can neglect the

direct KK exchange effect.

We will study the decays µ− → e−e+e−, τ− → µ−µ+µ−, τ− → e−e+e−, τ →
µ−e+e−, and τ → e−µ+µ−. The remaining rare τ decays studied at BABAR and

BELLE, τ → e−µ+e− and τ → µ−e+µ−, require an additional flavor-violating

coupling than those above, and are therefore highly suppressed. The relevant
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branching fractions from [78] are

BR(µ → 3e) = 2
(|gµe

3 |2 + |gµe
4 |2)+ |gµe

5 |2 + |gµe
6 |2,

BR(τ → 3µ) = 2
(|gτµ

3 |2 + |gτµ
4 |2)+ |gτµ

5 |2 + |gτµ
6 |2,

BR(τ → 3e) = 2
(|gτe

3 |2 + |gτe
4 |2)+ |gτe

5 |2 + |gτe
6 |2,

BR(τ → µee) = |gτµ
3 |2 + |gτµ

4 |2 + |gτµ
5 |2 + |gτµ

6 |2,
BR(τ → eµµ) = |gτe

3 |2 + |gτe
4 |2 + |gτe

5 |2 + |gτe
6 |2. (4.35)

The µ − e conversion rate is given by [79]

Bconv =
2peEeG

2
F m3

µα3Z4
effQ

2
N

π2ZΓcapt

[|gµe
R |2 + |gµe

L |2] , (4.36)

where GF is the Fermi constant, α is the QED coupling strength, and the remaining

terms are atomic physics constants defined in [79]. Numerical values for titanium,

for which the most sensitive limits have been obtained [80], can be found in [78].

We will present a detailed scan of the anarchic RS parameter space in a later

section. For now, to provide some guidance as to what scales these rare decays

can probe, we perform a few simple estimates. We set the 5-D fermion Yukawas

to the values suggested by 5-D Yukawa anarchy, Ye = Yµ = Yτ = 2. We also use

the intuition described in the previous section to set the mixing matrix entries to

the values

UL,R
11 = 1, UL,R

12 =

√
me

mµ

, UL,R
13 =

√
me

mτ

, (4.37)

and similarly for the remaining rows of UL,R; for this estimate, we set the phases

of these elements to zero. We choose a value of krc = 11.27. We include the

first 3 KK modes in this estimate, and we have checked that adding more does

not affect our results. Employing these approximations, we check what limits

can be obtained on MKK from each process. We impose the following bounds:

BR(µ → 3e) < 10−12, which is the current PDG limit [13]; Bconv < 6.1 × 10−13,

which is the strongest constraint obtained by the experiment SINDRUM II [80].

For the rare tau decays, we employ the strongest constraints from either BABAR

or BELLE, which are BR(τ → l1l̄2l3) < 2 × 10−7 for each mode [81]. We present

the bounds on MKK for both the brane Higgs model and the bulk Higgs scenario
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Brane Higgs ν = 0

BR(µ → 3e) 2.5 TeV 2.0 TeV
Bconv 5.9 4.7

BR(τ → 3µ) 0.62 0.51
BR(τ → µee) 0.55 0.46
BR(τ → 3e) 0.16 0.13

BR(τ → eµµ) 0.14 0.12

Table 4.1: Constraints on the first KK mode mass, MKK , coming from various
measurements for both a brane Higgs field and for the bulk Higgs case with ν = 0.
The bounds on MKK are in TeV.

with ν = 0 in Table 4.1. The limits from BR(µ → 3e) and Bconv already probe the

multi-TeV region, similar to that possible at the LHC. Although the limits from

rare τ -decays are lower, they probe different model parameters which describe the

third generation. These bounds will also improve as the B-factories acquire more

data. We will show that these bounds are generic throughout the entire parameter

space in a later section.

4.4 Dipole operator mediated decays

We now compute the decays of the form l → l
′

γ, which are induced at the

loop level by the diagram shown in Fig. 4.2. For simplicity, we discuss the decay

µ → eγ. It is simple to translate our expressions into results for τ decays. The

dominant contributions to these amplitudes come from exchange of a Higgs boson

and KK fermions. This is because these diagrams contain terms proportional to

the fourth power of the fermion wave-function ratio fe,µ = f
(1)
e,µ/f

(0)
e,µ . For c = 1/2,

this ratio is fe,µ = 2πkrc ≈ 70; it grows rapidly for c > 1/2, the values relevant for

the muon and the electron. This strong dependence on the fermion wave-function

was first noted in [82]. There are also contributions coming from loops of KK

Z bosons and KK fermions. However, as argued in reference [68] for the case of

the KK gluon contribution to radiative quark decays, the flavor structure of this

diagram is approximately aligned with the 4D Yukawa matrix and hence gives a
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Figure 4.2: The Feynman diagram generating the dipole operator which mediates
l → l

′
γ decays. li are the physical KK leptons. We have specialized to µ → eγ in

the figure. There is a similar diagram with L ↔ R.

suppressed contribution. The KK fermion-Higgs diagrams have a different flavor

structure than the 4D Yukawa matrix.

The amplitude for the diagram in Fig. 4.2 is

A(µ → eγ) = ∑
i

∫
d4k

(2π)4
u(p

′

)(iΛe0i)
i(�̂p′+M

(i)
KK

)

p̂
′2−M

(i),2
KK

(ieγµAµ)
i(�̂p+M

(i)
KK

)

p̂2−M
(i),2
KK

(iΛiµ0)u(p) · i
k2−m2

H

= u(p
′
)

[
−eAµ

∑
i Λe0i

∫
d4k

(2π)4
(�̂p′+M

(i)
KK

)γµ(�̂p+M
(i)
KK

)

(p̂′2−M
(i),2
KK

)(p̂2−M
(i),2
KK

)(k2−m2
H

)
Λiµ0

]
u(p)

(4.38)

where p̂(′) = p(′) + k and Λij are the Yukawa matrices. We will assume the exter-

nal lines are massless, which is valid up to subleading corrections in 1/fe,µ. We

have denoted the KK fermion masses by M
(i)
KK . At each KK level, there are two

vector-like fermion pairs for each flavor with masses M
(1)
KK and M

(2)
KK , as is clear

from Eq. 4.6. The splitting of these masses through mixing will be important in

evaluating this contribution. It is straightforward to evaluate this integral to find

A(µ → eγ; q2) =
1

2mµ
u(p

′

)σµνFµνu(p) × (−i)C(q2), (4.39)
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where

−iC(q2) =
iemµ

16π2

∑
i

Λe0i

×
{∫ 1

0

dz

∫ 1−z

0

dy
M

(i)
KK(1 − z)

q2y(1 − y − z) − (1 − z)M
(i),2
KK − zm2

H

}
Λiµ0

(4.40)

We now set q2 = 0 to derive

C(q2 = 0) =
emµ

32π2

∑
i

Λe0i

I(m2
H/M

(i),2
KK )

M
(i)
KK

Λiµ0 , (4.41)

where I(x) = 1 − x + O(x2). The branching fraction becomes [78]

B(µ → eγ) =
12π2

(GF m2
µ)2

[|CL(0)|2 + |CR(0)|2] , (4.42)

where we have inserted the helicity labels L, R on C. These helicity labels dictate

which elements of the Yukawa matrix Λ should be used; we will make this explicit

in the following discussion. We now consider separately the brane and bulk Higgs

field cases. We will find that the brane Higgs prediction for l → l
′

γ is not calculable

because it is sensitive to cut-off scale physics, while for the bulk Higgs case we can

use our 5D effective field theory to make robust predictions.

4.4.1 UV sensitivity for the case of brane Higgs field

The leading contribution in Eq. 4.41, with mH = 0 and I(x) = 1, vanishes up

to factors suppressed by 1/f 2 for a brane Higgs field because of the Yukawa matrix

structure. With mH = 0, we are only considering contributions proportional to

1/M
(1,2)
KK . This mass splitting is cancelled by shifts in the Yukawa couplings to all

orders in v/MKK. The leading result therefore comes from 1/(M
(1,2)
KK )3 contribu-

tions, and we must consider the m2
H terms to obtain these. The diagonalization

of the fermion mass matrix in Eq. 4.14 is discussed in the detail in the Appendix.

The result of this analysis is the following mass splitting:

1

(M
(1)
KK)3

− 1

(M
(2)
KK)3

= − 3∆1

M4
KK

. (4.43)
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This yields the following coefficients of the dipole operator:

CL(0) =
emµm2

H

32π2M4
KK

[∆R∆1∆L]eµ ,

CR(0) =
emµm2

H

32π2M4
KK

[∆R∆1∆L]†eµ . (4.44)

The Yukawa structures entering CL and CR differ by a hermitian conjugate.

However, it turns out that this result is masked by cut-off effects. A simi-

lar ultraviolet sensitivity of Higgs-fermion KK loops was also noted in [68]. The

expected one-loop contribution from a given set of KK modes is finite with size

CKK
L,R

m2
µ

∼ λ2
5D

16π2

1

M2
KK

. (4.45)

For simplicity, we have not included the relevant mixing matrix elements in this

estimate. Although the actual one-loop result for a brane Higgs field vanishes for

mH = 0, we cannot find a symmetry that requires this, and we expect it to be an

accident of the one-loop result. The sum over two independent KK modes would

have given a logarithmic divergence at one-loop:

CKK
L,R

m2
µ

∝ log NKK ∼ log (Λ5D/k) ∼ log
(
Λ̃5D/MKK

)
. (4.46)

Here, NKK is the total number of KK modes in the 5D effective theory, Λ5D is

the 5D cut-off of order 1019 GeV, and Λ̃5D is the warped-down 5D cut-off of order

TeV. Similarly, MKK is roughly the warped-down curvature scale k. To obtain this

logarithmic divergence, it is crucial that KK fermion-Higgs couplings in the sum

are independent of the KK index. We expect that higher-loop contributions are

strongly power divergent because of the increasing number of sums over KK modes,

and are as important as the one-loop result provided the cut-off scale physics is

strongly coupled.

This divergence structure can be more easily seen using power-counting in the

5D theory. Since the 5D Yukawa coupling has mass dimension [λ5D/k] = [−1],

the loop expansion for µ → eγ has the form

CKK
L,R

m2
µ

∼ 1

16π2

(
λ5D

MKK

)2 [
log

(
Λ5D

k

)
+

1

16π2

λ2
5D

k2
Λ2

5D + ...
]
. (4.47)
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In this expression, we have replaced the scale k ∼ 1018 GeV by its warped-down

value MKK in the overall coefficient. By simple dimensional analysis, the one-loop

contribution can be log-divergent and the two-loop contribution is quadratically

divergent; in KK language, the power divergence at two loops can be seen from the

independent sums over 4 KK modes. The two-loop result is comparable to the one-

loop prediction if the cut-off physics is strongly-coupled: Λ2
5D/k2×λ2

5D/ (16π2) ∼ 1.

Therefore, the KK loop contribution is not calculable in this case.

Based on the above discussion, we also expect the higher-dimensional operators

in the 5D theory coming from physics at the cut-off scale to be important. The

relation between the warped-down 5D cut-off in the Yukawa sector and the KK

scale for a brane Higgs field is Λ̃5D ∼ MKK/ (4π/λ5D) , based on power counting

of the 5D loop factor. To obtain the cut-off operator, we replace MKK in Eq. 4.45

by the cut-off scale Λ̃5D, and the loop factor by ∼ 1, since the cut-off effect has

no loop suppression. This shows that µ → eγ is an UV sensitive observable for a

Higgs field on the TeV brane. We can only parameterize the contribution as:

Ctotal
L,R = a

m2
µ

Λ̃2
5D

× UL,R
12 , (4.48)

where a is an unknown, O(1) coefficient, and we have included the appropriate

mixing matrix element.

We now show that we can reliably calculate dipole induced decays for a bulk

Higgs field. The Yukawa coupling in this case has mass dimension [λ5D/
√

k] =

[−1/2], so the loop expansion is instead

CKK
L,R

m2
µ

∼ 1

16π2

(
λ5D√
MKK

)2 [ 1

MKK
+

1

16π2

λ2
5D

MKK
log

(
Λ5D

k

)

+

(
1

16π2

)2
λ4

5D

M2
KK

Λ̃5D + ...
]
.

From this 5D power-counting, we see that the one-loop KK contribution is finite.

The two-loop result is logarithmically divergent, but is smaller than the one-loop

prediction by ∼ 0.1 provided λ5D
<∼ 4. Three-loop and higher contributions are

power-divergent and comparable to the two-loop result, but are again smaller than

the one-loop effect.
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Thus, in the bulk Higgs case, the KK effect is calculable. The effects from

cut-off scale operators are suppressed, and we can reliably make a prediction using

the RS theory. In our numerical analysis, we will include dipole decays for the

bulk Higgs field case. For the brane Higgs scenario we will simply neglect them,

since we cannot make a reliable prediction.

4.4.2 Contributions from a bulk Higgs field

We now consider the scenario when the Higgs boson is allowed to propagate

in the bulk. In this case, the KK mode result is not overwhelmed by cut-off scale

operators. The mH = 0 limit does not vanish for a bulk Higgs. We make this

approximation in our discussion, since the corrections are O(m2
H/M2

KK). We first

work out the Yukawa structure appearing in Eq. 4.41. Using the results in the

Appendix for the two KK fermions appearing in the diagram of Fig. 4.2, we find

(e0
Ll1R)(l

1

Lµ0
R) =

[
∆R

[
1 +

(
X

4
− ∆2

MKK

)]]
el

(
1

M
(1)
KK

)

×
[[

1 +

(
X

4
− ∆2

MKK

)]
∆L

]
lµ

(e0
Ll2R)(l

2

Lµ0
R) =

[
∆R

[
1 −

(
X

4
− ∆2

MKK

)]]
el

(
− 1

M
(2)
KK

)

×
[[

1 −
(

X

4
− ∆2

MKK

)]
∆L

]
lµ

(4.49)

In this expression we must sum over l = e, µ, τ . To simplify this we use the splitting

between the KK fermion masses derived in the Appendix:

1

M
(1)
KK

− 1

M
(2)
KK

= −∆1 + ∆2

M2
kk

+ O
(

v3

M4
kk

)
. (4.50)

We find the following results for the dipole operator coefficients:

CL(0) =
3emµ

32π2M2
KK

[∆R∆2∆L]eµ

CR(0) =
3emµ

32π2M2
KK

[∆R∆2∆L]†eµ (4.51)

70



We note that in the limit of the Higgs boson being localized on the TeV brane,

∆2 → 0; the result vanishes in this limit, as required.

An identical analysis can be performed for τ → µγ and τ → eγ. We simply

replace mµ → mτ and change the indices of the Yukawa structure appropriately in

Eq. 4.51. We now perform an estimate of the bounds similar to that performed in

the brane Higgs case. We set Ye = Yµ = Yτ = 2, and set the mixing matrix elements

to their canonical values as described before. We also set ν = 0. We impose the

following bounds on each of the three dipole decays: BR(µ → eγ) < 1.2 × 10−11,

as obtained from [13]; BR(τ → µγ) < 9×10−8, the stronger of the bounds coming

from BABAR and BELLE [83]; BR(τ → eγ) < 1.1×10−7, again the stronger of the

bounds coming from BABAR and BELLE [84]. We find the following constraints

for the canonical parameters:

BR(µ → eγ) : MKK > 15.8 TeV;

BR(τ → eγ) : MKK > 1.4 TeV;

BR(τ → µγ) : MKK > 2.4 TeV. (4.52)

The constraints, particularly from BR(µ → eγ), are quite strong. This arises in

part from the large value of the Yukawa coupling, Y = 2, as we now discuss.

4.4.3 Tension between tree-level and loop-induced processes

We now discuss a tension between processes caused by tree-level gauge boson

mixing such as µ− e conversion and l → l1l̄2l3, and dipole operator decays. These

have opposite dependences on the 5D Yukawa couplings, leading to strong con-

straints for all parameter choices. We first give a very simple scaling argument to

motivate this, and then present numerical proof.

Our scaling argument uses the dependence of each process on the zero-mode

fermion wave-function f
(0)
l evaluated at the TeV brane. We will work for simplicity

in the large ν limit, which mimics a brane-localized Higgs field. From Eqs. 4.22

and 4.23, we find that the wave-function scales roughly as f
(0)
l ∼ 1/

√
λ5D. The

wave-function has weak c-dependent factors which we will ignore in this argument.
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The quantity that governs the flavor violation in gauge boson mixing is the differ-

ence between αl’s, as is clear from Eq. 4.34. In the definition of αl in Eq. 4.29,

we can divide the overlap integral into two regions, one near the Planck brane and

the other near the TeV brane, to show that the former is c-independent and that

the latter carries the c-dependence and must be αl|non−universal ∼ [f
(0)
l ]|2TeV brane ∼

1/λ5D. We therefore expect the non-universal part of αl, and hence the flavor vi-

olation, to decrease for larger Yukawa couplings, which is indeed what we observe

in Fig. 4.3. For the dipole mediated decays, recall that in Section 4.4 we claimed

that the operator coefficients CL,R scaled as CL,R ∼ 1/[f
(0)
l ]4 ∼ λ2

5D; this can be

verified using Eq. 4.51 and the results in the Appendix. The constraints com-

ing from l → l
′

γ decays will increase with larger Yukawa couplings, the opposite

dependence of the tree-level processes.

Figure 4.3: The ratios of the zero-mode fermion couplings to Z(1) over their SM
values, for x = e, µ, τ , as functions of the Yukawa couplings Yx.

To exhibit this behavior we present in Table 4.2 the bounds on the first KK

mode mass for canonical mixing angles, ν = 0, and for the two choices of Yukawa

strength Ye = Yµ = Yτ = 1, 2. We show the two most constraining processes, µ− e

conversion and BR(µ → eγ). The dependence on the Yukawa couplings agrees
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with our simple estimate above. We will find in the next section that this leads to

strong constraint throughout the entire model parameter space.

Y = 1 Y = 2

Bconv 6.7 TeV 4.7 TeV
BR(µ → eγ) 8.0 15.8

Table 4.2: Constraints on the first KK mode mass, MKK , coming from µ − e
conversion and BR(µ → eγ), for canonical mixing angles, ν = 0, and for Y = 1, 2.

4.5 Monte-Carlo scan of the anarchic RS param-

eter space

In this section we present our Monte-Carlo scan of the RS parameter space,

to determine in detail how well the RS geometric origin of flavor can be tested by

current and future lepton flavor-violation experiments.

We first describe the ranges over which we scan the various RS parameters. The

scenario introduced in the previous sections contains the following free parameters:

Ye, Yµ, Yτ , the overall Yukawa couplings for the electron, muon, and tau; UL,R
ij , the

elements of both the left and right-handed mixing matrices; the KK mass MKK .

We make the following assumptions in our scan.

• We restrict the Yukawa couplings to the range Yx ∈ [1
2
, 4]. As discussed be-

fore, the natural value is Yx ≈ 2. Values larger than 4 begin to invalidate the

perturbative expansion, while values smaller than 1/2 introduce an unnatu-

ral hierarchy in the model. We explained in the previous section that flavor

violation cannot be removed by making the Yukawa couplings either large or

small, due to tension between tree-level and loop-induced processes.

• We implement the anarchy of 5-D couplings in our scan, which indicates that

UL,R
ii ∼ 1, UL,R

12 ∼ √
me/mµ, UL,R

13 ∼ √
me/mτ , etc. We fix UL,R

ii = 1, and
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define the canonical values

U c
12 =

√
me

mµ

, U c
13 =

√
me

mτ

, U c
23 =

√
mµ

mτ

. (4.53)

We then vary UL
12 = βL

12U
c
12, with βL

12 ∈ [1/4, 4]. We independently vary UR
12,

UL,R
13 , and UL,R

23 in a similar fashion. Again, we restrict the values to these

ranges to insure no unnatural hierarchies in model parameters. We generate

phases for the six independent UL,R in the range [0, 2π].

• We approximately implement unitarity of the mixing matrices by setting

UL,R
21 = −

(
UL,R

12

)∗
, etc. This assures that unitarity is maintained up to

corrections of the level
√

me/mµ,
√

mµ/mτ , which is sufficient for the scan

performed here.

We scan over the following fifteen independent parameters: the three Yx, and the

six complex mixing matrix elements UL,R
12 , UL,R

13 , and UL,R
23 . We generate 1000 sets

of fifteen random numbers, and distribute them in the ranges indicated above for

fixed MKK. We perform two separate scans, one for a brane Higgs field and one

for a bulk Higgs with ν = 0. The ν dependence of the bulk Higgs field bounds is

studied separately.

4.5.1 Scan for the brane Higgs field scenario

We first perform a Monte-Carlo scan of the parameter space of the brane Higgs

scenario. As discussed in Section 4.4, dipole decays of the form l → l
′
γ are UV

sensitive. We do not consider these decays in the brane Higgs case, which leaves

us with µ − e conversion, µ → 3e, and τ → l1l̄2l3.

We first study the muonic processes µ → 3e and µ − e conversion. We show

in Fig. 4.4 scatter plots of the predictions for BR(µ → 3e) and Bconv coming from

our scan of the RS parameter space, for the KK scales MKK = 3, 5, 10 TeV. The

most sensitive probe is the SINDRUM II limit of Bconv < 6.1 × 10−13 [80]. This

rules out a large fraction of the parameter space for MKK < 5 TeV, and restricts

the allowed parameters even at 10 TeV. The PDG limit of BR(µ → 3e) < 10−12 is
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less severe: although it rules out a large fraction of the MKK = 3 TeV parameter

space, most of the MKK = 5 TeV space is still allowed. We note there is an almost

perfect correlation between the RS predictions for the two processes. This is not

surprising; it is clear from Eqs. 4.35 and 4.36 that they depend almost identically

on the same mixing angles.

Figure 4.4: Scan of the µ → 3e and µ−e conversion predictions for MKK = 3, 5, 10
TeV. The solid and dashed lines are the PDG and SINDRUM II limits, respectively.

This result has implications for both the aesthetic appeal of the anarchic RS

flavor picture, and the observation of this physics at the LHC. Although points

with MKK ≤ 3 TeV are still allowed, it is clear from Fig. 4.4 that the model

as formulated in our scan prefers KK masses of 5 TeV or larger. Increasing the

KK scale to these higher values introduces a large fine-tuning in the electroweak

symmetry breaking sector and is therefore not favored [71, 73]. With such large

KK masses, many associated states will also be too heavy to observe at the LHC.

The other method of avoiding these constraints, reducing the UL,R
ij matrix elements

to the appropriate level, implies either some additional structure or fine-tuning in
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the 5-D Yukawa matrix. We have studied the minimal model here, and it seems

likely that more structure in the 5-D Yukawa matrix is needed for a completely

natural description of the first and second generation flavor pattern in the brane

Higgs case.

Another sector of the RS flavor picture to explore is that involving the third

generation τ . This tests different model parameters than the muonic processes. We

show in Fig. 4.5 a scatter plot of the RS predictions for BR(τ → 3e) and BR(τ →
3µ) for MKK = 1 TeV, together with the best limits coming from BABAR and

BELLE. The lowest KK-scale allowed by electroweak precision tests in anarchic

RS models is typically a few TeV. The B-factories are beginning to probe this

region in the mode τ → 3µ. There are plans to build a super-B factory with an

integrated luminosity approaching 10 ab−1 [85]. The projected limits from this

experiment are included in Fig. 4.5. Both the τ → 3µ and τ → 3e modes at a

super-B factory will constrain the anarchic RS parameter space. The LHC also

has sensitivity to rare τ decays [86]; however, the projected sensitivities are slightly

weaker than the current B-factory constraints, and have not been included. The

expected sensitivities to rare τ decays at a future linear collider are also weaker than

the limits set by the B-factories. Although the MKK ∼ 1 TeV scales probed with

τ → l1 l̄2l3 decays are lower than those constrained by µ−e conversion and µ → 3e,

we stress that different model parameters are tested by each set of processes.

4.5.2 Scan for the bulk Higgs field scenario

We now present the results of our scan over the bulk Higgs parameter space.

For the scan we set ν = 0, which mimics the composite (or A5) Higgs model of [73];

we present separately the ν dependence of the most important constraints.

We again begin by considering muon initiated processes. The constraints from

µ → 3e and µ − e conversion are highly correlated, as we saw in the previous

subsection. Since the bounds from µ − e conversion are stronger, we focus on this

and µ → eγ. We show in Fig. 4.6 scatter plots of the predictions for BR(µ → eγ)

and Bconv coming from our scan of the RS parameter space, for the KK scales
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Figure 4.5: Scan of the τ → 3e and τ → 3µ predictions for MKK = 1 TeV. The
solid and dashed lines are the current B-factory and projected super-B factory
limits, respectively.

MKK = 3, 5, 10 TeV. For µ → eγ we include both the current constraint from the

Particle Data Group [13] and the projected sensitivity of MEG [75]. The current

bounds from µ → eγ are quite strong; from the MKK = 3 TeV plot in Fig. 4.6, we

see that only one parameter choice satisfies the BR(µ → eγ) bound. This point

does not satisfy the µ − e conversion constraint. We can estimate that it would

satisfy both bounds for MKK > 3.1 TeV. In our scan over 1000 sets of model

parameters the absolute lowest scale allowed is thus slightly larger than 3 TeV.

Also, a large portion of the parameter set at both 5 and 10 TeV conflict with these

bounds. We again find the need for a KK scale of MKK ≥ 5 TeV or additional

structure in the mixing between the first and second generations to satisfy the

experimental constraints for a significant fraction of model parameter space. In

Fig. 4.7 we present the anarchic RS predictions for τ → µγ and τ → eγ, together

with current and future B-factory constraints, for MKK = 3 TeV. The τ → µγ

mode is currently probing the few TeV range, while τ → eγ will begin to test the

anarchic RS scenario during the running of a super-B factory.

To study the sensitivity of the bulk Higgs field scenario to the location of the
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Figure 4.6: Scan of the µ → eγ and µ−e conversion predictions for MKK = 3, 5, 10
TeV and ν = 0. The solid line denotes the PDG bound on BR(µ → eγ), while the
dashed lines indicate the SINDRUM II limit on µ−e conversion and the projected
MEG sensitivity to BR(µ → eγ).

Higgs boson in the fifth dimension, we show in Fig. 4.8 the dependence of the µ−e

conversion rate and BR(µ → eγ) on ν. We set the mixing angles to their canonical

values, and show results for Yx = 1, 2 and MKK = 5, 10 TeV. The µ− e conversion

results are weakest for ν = 0, and quickly asymptote to the brane Higgs result as ν

becomes large. The variation of µ → eγ with ν is more intricate. The vanishing of

the calculable component of this process as the Higgs boson is moved towards the

TeV brane, discussed in Section 4.4, is clearly seen in Fig. 4.8. However, we expect

cut-off effects to become more important for large ν. There is a strong dependence

of the process on the position of the Higgs field for small ν, with the result varying

by an order of magnitude for 0 ≤ ν ≤ 5. The ν = 0 case is again the most favorable

choice. Since UV sensitivity of the model is reduced for a bulk Higgs field, and

since the experimental constraints are weakest for ν = 0, we conclude that there
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Figure 4.7: Scan of the τ → µγ and τ → eγ predictions for MKK = 3 TeV and
ν = 0. The solid and dashed lines are the current B-factory and projected super-B
factory limits, respectively.

is a preference for models of the type presented in [73].

4.5.3 Future sensitivities of MEG and PRIME

Finally, we emphasize here the importance of future searches for µ − e conver-

sion by PRIME and µ → eγ by MEG. Our analysis has shown that with some

small tuning of parameters, particularly for those describing the mixing of the first

and second generation, KK scales of 3 TeV are allowed by current measurements.

Alternatively, KK scales of 5 TeV are permitted with completely natural param-

eters. Super-B factory searches for rare τ decays will not significantly constrain

scales MKK ≥ 5 TeV. The LHC search reach for the new states predicted by the

anarchic RS scenario is expected to be around 5-6 TeV. It is therefore difficult to

definitively test the RS geometric origin of flavor using data from B-factories and

the LHC.

Searches for µ− e conversion and µ → eγ are already starting to require slight

tunings of the model parameters. The limit on BR(µ → eγ) is projected to improve

from 1.2 × 10−11 to 10−13 after MEG, while the constraint on µ − e conversion
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Figure 4.8: ν dependence of the RS predictions for µ − e conversion and µ → eγ
for canonical mixing angles and for several choices of Yx and MKK . In the right
panel, the Y = 1, MKK = 5 TeV and the Y = 2, MKK = 10 TeV lines overlap.

Figure 4.9: Projected bounds on MKK coming from MEG (left) and PRIME (right)
for ν = 0. We have set the mixing angles to κ times their canonical values, and
have varied κ in the range [0.01, 1] for Yx = 1, 2.

is projected to improve to 10−18 after PRIME. The bounds on MKK that these

constraints lead to are shown in Fig. 4.9. We have plotted the projected bounds as

a function of the overall scale of the mixing angles; we have set UL,R
12 = κ

√
me/mµ,

UL,R
13 = κ

√
me/mτ , etc., and have varied κ in the range [0.01,1]. This tests how far

from the natural parameters these experiments will probe. We observe that MEG

will probe MKK ≤ 5 TeV down to mixing angles 1/10 times their natural sizes.

PRIME will test MKK ≤ 20 TeV down to mixing angles 1/10 times their natural

sizes, and will probe MKK ≤ 10 TeV down to mixing angles 1/100 times their

canonical values. Together, these experiments will definitively test the anarchic

RS explanation of the flavor sector.
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4.6 Summary and Conclusions

In this paper, we have studied lepton flavor violation with the SM propagating

in a warped extra dimension. The principal motivation for this model is a solution

to the Planck-electroweak hierarchy problem. Interestingly, there is also a solution

to the flavor hierarchy of the SM. The large differences in the quark and lepton

masses and mixing angles can be explained by differing profiles of SM fermions in

the extra dimension, even though the 5D Yukawa coupling are of the same size

without any structure. These profiles can vary substantially with small changes in

the 5D fermion masses; no large hierarchies are required to account for the flavor

hierarchy in the SM. Since the Higgs field is localized near the TeV brane, the

small masses of the first and second generations are explained by their localization

near the Planck brane.

The localization of fermion fields at different points in the extra dimension leads

to flavor violation upon rotation to the fermion mass basis. The assumption of an-

archic 5D Yukawa couplings implies that the mixing angles are related to the ratios

of fermion masses. We can therefore estimate the leptonic mixing angles without

a model of neutrino masses, unlike in the SM. The flavor violating couplings are

proportional to the 4D Yukawa interactions. Therefore there is an analog of the

GIM mechanism in the anarchic RS picture. However, the sensitivities of lepton

flavor violating experiments are large, so we expect significant constraints. Bounds

from electroweak precision measurements currently constrain the KK scale to be

MKK ≥ 3 TeV, approximately.

To derive the implications of lepton flavor violating measurements for the an-

archic RS scenario, we perform a Monte Carlo scan over the natural parameter

space of this model: O(1) Yukawa couplings and O(1) variations of the mixing

angles around their predicted size. We study both the case where the Higgs boson

is localized in the TeV brane and when it is allowed to propagate in the full 5D

spacetime. We study the processes µ → 3e, τ → l1 l̄2l3, µ − e conversion, and

dipole decays of the form l → l
′
γ. In the brane Higgs case, cut-off effects render

the dipole decays uncalculable in the 5D RS theory; this arises from the fact that
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the 5D Yukawa couplings in this case have mass dimension [−1], and cut-off scale

effects are as large as those from KK modes. The bulk Higgs case does not suffer

from this drawback.

We find strong constraints throughout the entire natural RS parameter space.

The minimal allowed KK scale is 3 TeV, and this is permitted only for a very

few points in our scan. In the bulk Higgs case, this occurs partially because of

a tension between the tree-level mediated µ − e conversion process and the loop-

induced decay µ → eγ. These processes have opposite dependences on the 5D

Yukawa couplings, making it difficult to decouple the effects of flavor violation.

There are a couple of possible ways to avoid these constraints. First, the KK

scale can be raised slightly to 5 TeV, which allows large regions of the natural

RS parameter space to be realized. However, this increases the fine-tuning in the

electroweak sector, and will make it difficult to find the KK states present in this

model at the LHC. Another possibility is to reduce the leptonic mixing angles

slightly, implying some structure in the 5D Yukawa matrix and indicating that the

observed flavor structure cannot be generated completely via geometry.

There are also several possible model-building possibilities to relax these con-

straints. Models with custodial isospin based on the gauge structure SU(2)L ×
SU(2)R×U(1)B−L contain an additional Z

′
and possibly additional fermions. The

coupling of the Z
′

to the SM fermions is model-dependent [87], and can possi-

bly be used to cancel some of the flavor-violating contributions we have studied.

These models also contain an additional right-handed neutrino that contributes to

loop-induced dipole decays. There is no zero-mode partner of this right-handed

neutrino, and this contribution is therefore independent of the neutrino mixing

parameters. Even an O(1) suppression suffices to reduce the KK scale to the 3

TeV level, opening up more parameter space for study at the LHC.

The definitive test of whether the observed flavor structure can be explained

by the anarchic RS scenario will come from future lepton flavor violating measure-

ments. B-factories are currently probing mixing in the third generation using rare

τ decays. These constraints will improve by an order of magnitude with data from

a super-B factory, probing KK scales up to 5 TeV. These measurements probe dif-
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ferent model parameters than µ−e conversion and rare µ decays, and are therefore

complimentary to these other experiments. Improvements in the sensitivities of

µ → eγ and µ−e conversion of several orders of magnitude will be accomplished by

the future experiments MEG and PRIME, respectively. They will definitively test

the geometric origin of flavor structure; for example, PRIME will probe KK scales

of MKK ≥ 10 TeV down to model parameters 1/100 of their natural size. These

experiments will either confirm or completely invalidate this geometric origin of

flavor.

In conclusion, the anarchic RS picture is an attractive solution to both the

electroweak and flavor hierarchies in the SM. Measurements at the LHC, at future

B-factories, and with the experiments MEG and PRIME will determine whether

it is indeed realized in nature.
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Appendix A

The Radion Modulus Field

The radion modulus field comes from the gravitational part of the action. To see

how this comes about consider the usual Einstein-Hilbert action in five dimensions:

S5 =

∫
d5x

√−G
{
M3

5R(5) + L(5)M

}
(A.1)

where M3
5 is the five-dimensional Planck scale, G is the determinant of the five-

dimensional metric, R(5) is the five-dimensional Ricci scalar and L(5)M contains

any other fields. We can work in the gauge (coordinate system) where G5µ ≡ 0 so

the differential line element is:

ds2 = GMNdxMdxN = gµν(x, y)dxµdxν − r2(x)dy2 (A.2)

Our convention is that the metric is mostly minus. gµν is the induced four-

dimensional metric which is generally a function of the five-dimensional space-

time, and G55 ≡ −r2 is assumed to be independent of the extra dimension. Then√−G =
√−g × r and upon carefully expanding the Ricci scalar, our action is:

S5 =

∫
d5x

√−g
{
rM3

5 (R̃(4) + δR) + rL(5)M

}
(A.3)

where

R(4) ≡
∫

dyR̃(4)
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is the four-dimensional Ricci scalar and δR[g, r] are the terms in the five-dimensional

Ricci scalar that depend on the fifth dimension explicitly.

In a flat extra dimension the four-dimensional background gµν is independent

of y, so the y-dependence has been completely isolated and we can easily perform

the integral over the fifth dimension1. However, the graviton kinetic term is no

longer canonical. To fix this problem we can do a Weyl rescaling of the metric [55]:

gµν −→ Ω2gµν

gµν −→ Ω−2gµν

Under this transformation:

√−g −→ Ω4
√−g (A.4)

R(4) −→ Ω−2
{R(4) + 6

[
(∂(log Ω))2 + ∂2(log Ω)

]}
(A.5)

It is clear from these equations that in a flat extra dimension S1/Z2 where

y ∈ [0, π]:

Ω2 =
M2

4

πrM3
5

(A.6)

will generate the canonical kinetic term for the four-dimensional graviton, where

M4 is the usual 4D Planck scale. In addition it will also generate a canonical

kinetic term for the radion:

S4 =

∫
d4x

√−g

{
M2

4R(4) +
1

2
(∂ρ)2 + · · ·

}
(A.7)

where I have defined the canonical radion field:

ρ ≡
√

12M4 log

(
r

r0

)
(A.8)

1It is not this simple in general. For example, in the RS model there is also warp factor and
more work needs to be done. However, it is not much harder to handle this case.
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where r0 is the classical radius, assumed to be stabilized. Notice that the canonical

radion of flat space is the logarithm of R, as opposed to the exponential of R in

the warped case [56].

By letting r = r0 + δr and expanding the logarithm the canonical radion field

is related to the usual radion modulus by a constant:

ρ =

√
12M4

r0

δr + O ((δr/r0)
2) (A.9)

So to compute the radion mass in Planck units (M4 ≡ 1) we compute the radion

potential at quadratic order: V (r) = 1
2
µ2

r(δr)
2. Then Mradion = µrr0/

√
12.

Using what we now know it is easy to see how the radion can be incorporated

into the linearized supergravity action by extending into superspace. To see how

this is done notice that the radion modulus appears in a N = 1 chiral superfield

that contains the Z2-even fifth components of the fields that appear in the 5D

supergravity multiplet. This field is called the “radion superfield”:

T (x, θ) = (r + iB5) +
√

2θΨ5
R + θ2FT (A.10)

where B5 is the fifth component of the graviphoton and Ψ5
R is the fifth component

of the right-handed gravitino. This is derived in many places such as [57]. Now all

we have to do is to include the radion superfield everywhere that it should appear

so that we reproduce the correct action in terms of component fields. This was

done in [45, 46] for a general class of theories [58]. It is important to notice that

this matching must be done before the Weyl rescaling, as explained in [48].
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Appendix B

KK Decomposition

In this appendix we will derive the KK decomposition for the model in Chapter

3. For simplicity the analysis will only be done for the Φ-sector. It is exactly the

same for the Ψ-sector.

To perform the decomposition it is necessary to write out the Lagrangian for

the scalar components by integrating out the auxiliary fields from Equation (3.2).

This is given by1:

L = φc†
[
−∂2 + ∂2

5 − m2 − 2m

R
(δ(y) − δ(y − π))

]
φc

+φ†
[
−∂2 + ∂2

5 − m2 +
2m

R
(δ(y) − δ(y − π))

]
φ

−φ (−∂5 + mΘ(y))S − φ† (−∂5 + mΘ(y))S (B.1)

where S = Jδ(y)−J
′

δ(y−π). The extra delta functions in each bracket come from

the fact that the mass term is an odd term. This yields the equations of motion:

[
−∂2 + ∂2

5 − m2 − 2m

R
(δ(y) − δ(y − π))

]
φc = 0 (B.2)[

−∂2 + ∂2
5 − m2 +

2m

R
(δ(y) − δ(y − π))

]
φ = (−∂5 + mΘ(y))S (B.3)

We wish to decompose the fifth dimension so we let:

1Recall: ∂5 ≡ ∂y/R
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φ(x, y) = −J

2
Θ(y)e−mR|y| +

∑
λ

φλ(x)ξλ(y) (B.4)

φc(x, y) = −B(x)e+mR|y| +
∑

λ

φc
λ(x)ξc

λ(y) (B.5)

where the first term in φ is the particular solution to Equation (B.3); it plays the

role of a y-dependent vev. This immediately takes care of the source terms for the

φ field. Notice that this first term is not a zero mode; the coefficient is fixed by

the inhomogeneous source terms on the right-hand side of Equation (B.3) which

eliminate it as a degree of freedom. The even field however does contain a zero

mode. We explicitly include a minus sign so that both φ and φc have the same sign

in the physical region. This is done purely for convenience and does not change

any results.

Now the equations of motion for the KK basis states are:

[
∂2

5 −
2m

R
(δ(y) − δ(y − π))

]
ξc
λ = −λ2ξc

λ (B.6)

∂2
5ξλ = −λ2ξλ (B.7)

where we have dropped the delta functions in the equation for ξλ since it is an

odd field and therefore does not feel the delta functions on the boundary. Then

φn(x), φc
n(x) are the KK modes with masses M2

λ = m2 + λ2.

The equation for ξ(y) is a very easy equation to solve. Remembering that the

odd fields must vanish at the boundaries:

ξλ(y) =

√
2

π
sin (ny) λ =

n

R
(B.8)

The equation for ξc is not any more difficult. It is just the Schrodinger equation

with delta function potentials and symmetric boundary conditions. We find that

λ2 < 0 cannot happen so there are no “bound states”. The final solution is:

ξc
λ(y) =

√
2

π
sin
[
ny − tan−1

( n

mR

)]
λ =

n

R
(B.9)
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These are the modes that appear in Equation (3.19-3.20). They have been normal-

ized so that
∫ π

0
dy ξλξλ′ = δλλ′ . Also notice that the zero mode of φc is orthogonal

to the higher modes, which is easily checked.
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Appendix C

Supergravity Contributions

In this section, we present the masses and vevs of the hypermultiplets from

Chapter 3 after the lowest-order supergravity effects are taken into account. We

make the following definitions:

a =
1

2
m3π2J

′2 (C.1)

b = λ̃πµ2K2(J
′

/J)2µ/m

(
2

r0
+

1

2
µπλ̃

)
(C.2)

d = (mµ)3/2JK(J
′

/J)1+µ/m

(
λ̃ +

2π

µr0

)
(C.3)

f =
6π

r0

√
2
m3/2J

′

(C.4)

g =
6π

r0

√
2
µ3/2(J

′

/J)µ/mλ̃K (C.5)

These parameters are defined up to terms with R 
= r0. Then in terms of these

parameters, the masses, vevs and mixing parameter in the paper are:
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m2
B̃

=
2R

3M3
5

XB̃ =
r0

3M3
5

(
(a + b) +

√
(a − b)2 − d2

)
(C.6)

m2
C̃

=
2R

3M3
5

XC̃ =
r0

3M3
5

(
(a + b) −

√
(a − b)2 − d2

)
(C.7)

〈B̃〉 =
α√

1 + ε2
· f + εg

(a + b) +
√

(a − b)2 − d2
(C.8)

〈C̃〉 =
α√

1 + ε2
· g − εf

(a + b) −√(a − b)2 − d2
(C.9)

ε =
b − a

d
+

√(
b − a

d

)2

− 1 (C.10)

where α is the superpotential parameter that cancels the cosmological constant as

explained in the paper:

α =

√
1

u0

· µK2

e2µπr0 − 1
(C.11)

where U0 = u0α
2 is defined in the text below Equation (3.28)1.

Notice that m2
B̃
, m2

C̃
> 0 for any value of the parameters, so the theory is stable.

1U0 is quadratic in α, so u0 is independent of α.
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Appendix D

Explicit formlas for Overlap

Integrals

In this Appendix, we present expressions for the various parameters that appear

in the Yukawa matrix in Chapter 4. The case where the Higgs was confined to the

TeV brane was considered in the text. Here, we will consider the case of a bulk

Higgs.

Recall the most general expression for the mass matrix in the case of a bulk

Higgs is given by

M =




MD
v√
2
∆R 0

v√
2
∆L ∆1 MKK

0 MKK ∆2


 (D.1)

In this expression, MD is the 3 × 3 diagonal matrix with the masses of the zero-

mode leptons, and MKK is the diagonal matrix with the KK masses to zeroth order

in v (in our case, we are assuming that it is proportional to the identity matrix).

The other entries can be expressed in terms of two matrices containing the overlap

integrals:
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F ij =

∫ π

−π
dφχH(φ)f 0

L(φ; ci)f
1
L(φ; cj)∫ π

−π
dφχH(φ)f 0

L(φ; ci)f 0
L(φ; cj)

(D.2)

Gij
L,R =

∫ π

−π
dφχH(φ)f 1

L,R(φ; ci)f
1
L,R(φ; cj)∫ π

−π
dφχH(φ)f 0

L(φ; ci)f 0
L(φ; cj)

(D.3)

where χH is given by Equation (4.16) and the fn(φ; ci) can be found in [64]. In

terms of these matrices and the diagonal mass matrix MD, we can express the

other submatrices in Equation (D.1):

v√
2
∆ij

R = ULik(U
†
LMDUR)kj × F kj (D.4)

v√
2
∆ij

L = (U †
LMDUR)ikU †

Rkj × F ki (D.5)

∆ij
1 = (U †

LMDUR)ij × Gij
L (D.6)

∆ij
2 = (U †

LMDUR)ij × Gij
R (D.7)

where there is no sum over the indices i, j. Notice that in the expression for ∆L,R,

we cannot use U †
ikU

kj = δj
i because of the way the F matrix elements contribute.

To see how this reduces to the brane Higgs case, we replace the Higgs wave-

function with a delta function on the TeV brane. Immediately, this sets GR = 0

due to the boundary conditions f 1
R(φ = π) = 0; therefore ∆2 = 0 as it should.

Also notice that F ij ≡ F j, since the i flavor cancels out of the ratio in Equation

(D.2), and that Gij
L = F iF j , again matching our results for the brane Higgs. Also

notice that with the first index in F cancelling out, we can once again use the

unitarity conditions on the UL,R. These connections make it clear that the matrix

multiplication presented in the text for the brane Higgs case match the results

here.
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Appendix E

Diagonalizing the Mass and

Yukawa Matrices

The most general mass matrix for the lepton zero mode and first KK mode

considered in Chapter 4 is given in Equation (D.1). The Yukawa matrix is the

same as this matrix divided by v/
√

2 and MKK = 0. We will diagonalize this

matrix in stages. First we will diagonalize the lower 2×2 block containing the KK

masses to leading order in v/MKK; this compensates for mixing between the KK

states. After that, we will diagonalize the entire 3 × 3 matrix to leading order in

v/MKK, which will compensate for mixing between the zero and KK modes. This

later step is not necessary for a TeV brane Higgs, but turns out to be important

for a bulk Higgs. In the mass insertion approximation, it corresponds to a mass

insertion on the external fermion line; such contributions can be shown to be

important.

As a warm-up, consider the simplified 2 × 2 matrix:

T =

(
x 1

1 y

)
(E.1)

where x, y are arbitrary, not equal to each other and smaller than unity. This

matrix is diagonalized to leading order by the following unitary transformation,

up to a phase:
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Ṽ =
1√
2

(
1 + x−y

4
1 − x−y

4

1 − x−y
4

−(1 + x−y
4

)

)
(E.2)

Then Ṽ T Ṽ † is diagonal with eigenvalues ±(1± 1
2
(x+ y)) to leading order in x and

y. Note the difference in the sign of y in Ṽ and the eigenvalue.

We now make this the lower 2× 2 block of a diagonalization matrix V , identi-

fying X ≡ x − y = ∆1−∆2

MKK
, and compute V MV †:

M =




MD
v√
2
∆R

1√
2
(1 + X

4
) v√

2
∆R

1√
2
(1 − X

4
)

1√
2
(1 + X

4
) v√

2
∆L MKK + ∆1+∆2

2
0

1√
2
(1 − X

4
) v√

2
∆L 0 −MKK + ∆1+∆2

2


 (E.3)

Now we may proceed to phase two: capturing the effects of zero-KK mode

mixing. This is again accomplished with a unitary transformation:

Y =




1 − v/
√

2
MKK

∆R
1√
2
(1 − Γ) v/

√
2

MKK
∆R

1√
2
(1 + Γ)

1√
2
(1 − Γ) v/

√
2

MKK
∆L 1 0

− 1√
2
(1 + Γ) v/

√
2

MKK
∆L 0 1


 (E.4)

where Γ = ∆1+3∆2−4M0

MKK
. The mass matrix loses its off-diagonal elements, which

contribute to the eigenvalues at order in (v/MKK)2, so we need not worry about

them; although this will be important for the Yukawa matrix below.

The full diagonalization matrix is Y V . It is a simple matter to apply this

to determine the Yukawa couplings. It is also simple to multiply this with the

appropriate phase matrix, which is P = diag(1, 1,−1).

At this point, we can immediately read off the masses of the KK fermions to

leading order in v/MKK:

M
(1)
KK = MKK +

∆1 + ∆2

2
(E.5)

M
(2)
KK = MKK − ∆1 + ∆2

2
(E.6)
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These expressions for the KK masses are used when computing the amplitude for

µ → eγ. The expression is valid for both the brane and bulk Higgs scenarios.

Let us get the Yukawa matrix in the diagonal basis. The Yukawa matrix Λ in

the flavor basis is obtained by dividing by v√
2

and setting MKK = 0 in Equation

(D.1). Multiplying Y V Λ(Y V )†P , we obtain:

Λ =




λ4D
1√
2
∆R

[
1 +

(
X
4
− ∆2−M0

MKK

)]
− 1√

2
∆R

[
1 −

(
X
4
− ∆2−M0

MKK

)]
1√
2

[
1 +

(
X
4
− ∆2−M0

MKK

)]
∆L · · · · · ·

1√
2

[
1 −

(
X
4
− ∆2−M0

MKK

)]
∆L · · · · · ·




(E.7)

where we do not inlude the lower 2×2 block since we do not need it here. There are

a couple of things to notice about this matrix. First of all, notice that ∆2 � M0,

so we can drop the dependence on the zero mode mass matrix in the off-diagonal

terms. These correspond to subleading contributions of order M0F
2. Secondly, if

we had not included the zero-KK mixing (Y ), we would have only gotten (1±X/4)

in these terms and would have therefore missed the important ∆2 contribution.

So it was important to take this mixing into account, as we expected from the

mass-insertion calculation.
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