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ABSTRACT 
 

Droplet microfluidics has found use in many biological assay applications as a 

means of high-throughput sample processing.  One of the challenges of the 

technology, however, is the ability to control and merge droplets on-demand as they 

flow through the microdevices.  It is in the interest of developing lab-on-chip devices 

to be able to program additive mixing steps for more complex multistep and multiplex 

assays.  Existing technologies to merge droplets are either passive in nature or rely 

on open-loop control systems, making them vulnerable to errors during high 

throughput or long duration experimentation.  Herein is described and demonstrated 

a microfluidic valve-based device for the purpose of combinatorial droplet injection 

at any stage in a multistep assay.  Microfluidic valves are used to control fluid flow, 

generate droplets, and inject droplets on-demand, while on-chip impedance 

measurements taken in real time are used as feedback to accurately time the droplet 

injections.  The presented system is compared to open-loop control and its reliability 

is demonstrated over long time durations.  Additionally, the system is shown to be 

able to differentiate between phosphate-buffered saline and deionized water 

droplets, and programmatically inject an arbitrary pattern based on droplet content 

on-demand. 
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1 BACKGROUND 

1.1 Brief History of Microfluidic Devices 

The study of microfluidics at its most fundamental is a study of fluid dynamics on 

the scale of micrometers.  At this size, conventional fluid forces like fluid inertia and 

the effects of gravity become relatively small compared to forces such as fluid 

viscosity and surface tension.  As a result, Reynolds number at this scale are very 

small, leading to an environment dominated by laminar flow.   

A microfluidic device is an apparatus designed with constricting geometries for 

working with and analyzing fluids at the micrometer scale.  The first microfluidic 

devices by this definition were glass capillaries used by Poiseuille to study fluid 

dynamics as early as the 1830s1, but the first microfluidic system by modern 

standards wasn’t created until the late 1970s, when a gas chromatographer was 

fabricated in a wafer of silicon2.  Throughout the 1980s, not much focus was given to 

microfluidic development until a seminal paper by Manz et al. in 1990 summarized 

the benefits that these “miniaturized total analysis systems” (μTAS) could have on 

chemical analysis, such as more efficient gas chromatography, faster electrophoresis, 

and the capability for simultaneous measurements in multiple channels.3  As a result, 

microfluidic platforms began to see more use in these respective areas4.  Capillary 

electrophoresis in particular drew a lot of attention as it had clearly benefitted from 

the higher sensitivities and resolutions possible only with microfluidic flow.5  Also 

during this time, researchers began investigating the use of microfluidics in blood 

rheology since the dimension were at the same scale as the system in vivo6,7.  

However, despite the new interest, microfluidics failed to see widespread use as the 
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device fabrication process was time consuming and required advanced machinery. 

This was because microfluidic devices were a technology transfer from the success of 

the miniaturization of microelectronics.  As a result, the devices were made from the 

same materials, namely silicon, glass, and metals, which required extensive labs to 

work with at the microscale.2,4,6–10 

Through the 1990s, various research groups began investigating alternative 

microfluidic materials that could be casted or molded onto a master template, such 

as plastics and polymers.  This would allow microfluidic devices to be more rapidly 

fabricated and eliminate the issue of single time use.  Polydimethylsiloxane (PMDS), 

which would eventually become the front runner for microfluidic devices, was first 

used in their manufacturing towards the end of the 1990s.11,12  As PDMS became more 

popular, research groups were able to fabricate devices outside of clean rooms by 

ordering a master mold in silicon from a supplier and creating hundreds of copies of 

the device by spin coating PDMS on top of the template in a process called soft 

lithography.  In addition to the time and cost savings, PDMS also had other physical 

properties that benefitted study of biological material.  Its surface chemistry could be 

controlled via well-known techniques13, its permeability to gases like carbon dioxide 

and oxygen enabled cell culturing on-chip14, and its flexibility facilitated the creation 

of extremely useful features like monolithic fluid control valves.15  With decreased 

cost for fabrication and increased accessibility, the number of microfluidics papers 

being published rose quickly after the turn of the millennium.   

However, despite improvements in materials and accessibility, scaling remained 

a problem for microfluidic device application in industry.  Many industrial 
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applications required very high-throughput processing, but device size linearly 

increased with the number of parallel experiments to be run on the same chip because 

parallel analysis required parallel channels.  To remedy this, researchers began to 

investigate droplet based devices in the early 2000s in order to achieve 

parallelization of experiments within single channels.16 

 

1.2 Basic Principles of Droplet Microfluidics Systems 

When two immiscible fluids are mixed together, it is possible to create droplet 

suspensions of one fluid within the other.  Each of these droplets can act as an 

individual reaction chamber as it travels through the device.17  As mentioned 

previously, this gives the benefit of carrying out  parallel reactions without the need 

for parallel fluid channels, conserving device size and increasing throughput.18  When 

compared to conventional minute parallel reaction chambers such as microtiter 

plates, droplet microfluidics drastically reduces material needs and cost while also 

preventing of issues of sample loss from pipetting or non-specific adsorption. 19–21  As 

a result of these benefits, droplet microfluidics devices have found application in 

many areas of study, such as single molecule analysis22, cell sorting23, disease 

detection24, and enzyme kinematics25. 

For some assays, it is enough to simply generate and then detect the droplets, 

but many other assays require additional complexity.  A complete droplet 

microfluidics system might need to be capable of droplet creation, processing, 

reagent addition, and droplet detection.  There are a plethora of approaches to 

accomplish each of these steps and each has benefits and drawbacks depending upon 
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the unique needs of the envisioned application.  Some of the basic technologies are 

described below. 

  

Droplet Creation 

The first design choice of any droplet-based microfluidic system is the method 

used to generate droplets.  This selection depends on the prioritized drop 

characteristics for the system.  The following section will summarize a few of the most 

common methods of droplet generation and their benefits and shortcomings. 

Perhaps the simplest forms of droplet generation are passive systems like 

cross-flow16,26, co-flow27, or flow-focusing systems28.  The size distribution and 

generation frequency of these droplets are dependent on the relative flow rates, as 

well as the densities and viscosities of the two fluid phases.  Droplets are created in 

the dispersed phase through instabilities caused by shear forces, which balance the 

viscous and inertial forces of the fluid against the interfacial forces.29  The resultant 

droplets are highly monodisperse and suitable for high frequency droplet generation.  

However, while the fluid velocities and pressures can be adjusted to control the size 

of the droplets, these modalities lack the ability for droplet creation on demand and 

are difficult to implement in systems where the droplets requires indexing or 

individual labeling. 

 Active droplet generation in contrast introduces much more control over 

droplet generation but requires introducing external energy sources.  Some methods 

of active control only allow for controlled tuning of the droplet size and frequency of 

generation while others facilitate actual on-demand generation.  Methodologies 
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which create on-demand droplets include direct current (DC) pulses30,31, laser-

induced cavitation32, and fluid channel deformation by piezoelectric or mechanical 

valves33–36.  The laser-induced cavitation has the largest throughput potential with 

droplet generation recorded at 10 kHz, but the cavitation could be damaging to 

samples and the optics necessary to operate the microfluidic device would be large 

and expensive.  DC current pulses also add electric charge to the droplets which could 

interfere with assays through electrolysis.  While the microfluidic valves typically 

result in lower throughput, they are highly programmable and do not affect the 

properties of the fluids in any way. 

 

Reagent Addition 

In most droplet microfluidic devices, reagents are added to the droplets during 

droplet formation37, but there many combinatorial or additive assays which require 

reagent addition at a later time point.  Broadly, reagent addition techniques can be 

split into two categories: droplet coalescence and injection.  Coalescence is the 

merging of individual droplets in proximity to each other, whereas injection involves 

adding fluid to a droplet from bulk solution.   

Droplet coalescence has been achieved with device channel geometry38,39, 

electrostatic charge40, electrocoalescence41, surface acoustic wave merging42, 

pneumatic actuators 43, and magnetic fields 44.  However, despite the diversity of 

energy sources, the approach to create coalescence is almost always the same.  The 

droplets to be merged are generated in sequence, and the first droplet is slowed or 

temporarily trapped somewhere in the device, allowing the following droplet to catch 
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up and join it before carrying forward.  One exception is the electrostatic charge 

method in which the droplets are attracted to each by opposing charges.  The main 

benefits of coalescence over injection is a low chance of cross contamination and the 

ability for the droplets to be smaller than the channel width.  However, the major 

downside when compared to injection is that more than one additive step is quite 

complicated to perform and it is very difficult to customize the amount of reagent for 

each droplet. 

Injection of droplets has been achieved with simple cross-flow junctions45–47, 

electrowetting injectors48, and microfluidic valves49,50. T-junctions are the simplest to 

construct, but they are dependent on carefully balanced pressure conditions and are 

passive in nature, preventing programmability.  Electrowetting injectors alter the 

surface tension of droplets, which are normally very stable, so that when the droplets 

come in contact with another fluid the fluids join and mix.48  The downside of this 

system is that it is likely susceptible to cross contamination and it is difficult to 

customize the amount of fluid injected on-demand.  Microfluidic valves have the 

added benefit of being able to inject each droplet with a programmable amount of 

fluid depending on the duration that the valve is open. 

 

Droplet Sensing 

No microfluidic total analysis system is complete without a detection point.  In 

droplet-based microfluidics, this means measuring some property of the droplet 

stream, whether it is just counting the droplets, or measuring the physical properties 

like volume or content.  Modalities for droplet sensing include optical-based detection 
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such as vision systems51 and fluorescence spectroscopy52, or electrode based 

detection such as amperometry53, capacitive sensing54,55, and impedance 

measurements56. 

 Vision systems use algorithms such as edge detection to identify and track 

droplets as they travel through a device.  This is useful for tracking multiple droplets 

simultaneously but loses applicability because of its requirement for a high speed 

camera and calibrated optics.   Fluorescence detection is a more common optical 

method, but it often requires that fluorescent tags be added to the samples, which 

could affect the processing or measurement, and the optical systems aren’t easily 

scalable.  Electronic measurements such as capacitance and impedance are label-free 

and are easily scalable in device design, however it can be very difficult to detect small 

molecular contents. 

 

1.3 Needs in Automation and Feedback Control 

The benefits of droplet-based microfluidics, such as decreased reagent 

consumption, won’t be fully realized until it is successfully implemented in industry 

on large scale batch processing.  However, to replace existing batch processing 

technologies in industry, microfluidic devices need to match them in terms of 

automation and versatility.  In the agricultural industry, for example, there exists a 

need for large scale genotyping for crop selection.  The current state-of-the-art 

technology for high throughput processing is Array TapeTM technology (Douglas 

Scientific).57  In order to compete with this technology, it will be beneficial for 



8 
 

microfluidics to have feedback control automating various device operations so that 

long-term, high-throughput sample analysis can be successfully executed. 

Feedback control will additionally facilitate more complex device assays.  Using 

the principles described above, droplet based systems have been implemented 

separately in multistep assays and combinatorial assays, but never in a system 

capable of both multiple additive steps, and programmable combinatorial mixing.  On 

demand combinatorial droplets have been demonstrated using on-chip and off-chip 

microfluidic valves49,50, but without an efficient feedback network the droplets must 

be merged during droplet generation which limits these combinatorial assays to 

single step complexity.  There is one group that has demonstrated a feedback control 

system for droplet injecting using fluorescence to locate droplets and 

programmatically merge reagents using picoinjectors.48  However, the need for a 

complex optical detection system mounted on an inverted microscope, in addition to 

the droplet requiring fluorescent molecules to enable detection, reduces the 

applicability and scalability of the system.  Electrochemical methods of measurement 

are an attractive alternative for droplet tracking as electrodes are easy to fabricate 

using the same microfabrication techniques used in soft lithography, they can be 

more easily scaled and more rapidly prototyped as needed. 

In this regard, a system is presented which is capable of tracking droplets in a 

multiphasic environment for the purpose of successful on-demand addition of 

reagents to these isolated sub-microliter droplets with great precision.  This system 

implements microfluidic valves for both droplet generation and droplet mixing, with 

clear potential for scaling. 
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2 FEEDBACK CONTROL SYSTEM DESIGN 

A flowchart of the architecture of the entire feedback control system is shown in 

Figure 1.  The system consists of four main components: A microfluidic device that 

handles the fluids, a pressure controller that manipulates the microfluidic valves, an 

impedance spectroscope that measures the impedance of the on-chip electrodes, and 

a processor that connects the loop by reading the impedance valves and 

simultaneously directing the pressure controller.  Each system component is 

described in more detail below. 

 

Figure 1: Architecture of the impedance-based feedback control system for the 
valve-based droplet microfluidic device.  MATLAB software on a computer manipulates a 

pressure controller through a serial communication interface.  The pressure controller 
changes the states of the valves on the device in order to generate and inject droplets.  
The microfluidic chip controls and processes the droplets.  Finally, the feedback loop is 

completed by the impedance spectroscope that measures the electrode impedance and 
stores the values for access by MATLAB.   
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2.1 Microfluidic Device Operation 

The microfluidic device used in this study and its operations are presented in 

Figure 2, which has an annotated photograph of the prototype device with inset 

illustrations to detail the functional areas.  Figure 2a illustrates the droplet generating 

region of the microdevice, which is capable of generating droplets from any 

combination of three fluid inlets, each moderated by microfluidic valves.  On either 

side of these fluid inputs are two relief valves (not shown) which open during droplet 

creation in order to eliminate a pressure drop across the fluid inlets.  This is necessary 

to maintain accurate droplet volumes because the downstream pressure of the main 

fluid channel changes depending on the amount of droplets in the device.  Figure 2b 

depicts the travel region of the device, which simulates a long processing step that the 

droplet could undergo in a given assay.  For example, it could be necessary to perform 

a series of heating steps in order to perform PCR within the droplet.  The travel region 

also doubles its functionality as a fluid buffer to dampen the effects of rapidly 

changing pressures during droplet creation or injection.  Figure 2c is a schematic of 

the injection region of the microdevice where traveling droplets are merged with 

additional reagents.  In this presented device there are three inlets for up to three 

reagents, but the design could be easily expanded to meet analysis needs.  Just 

upstream of these reagent inlets is a pair of coplanar electrodes that transversely 

cross the fluid channel.  The impedance signal (its phase component shown in Figure 

2c) that is measured across these electrodes is analyzed to detect the presence of a 

droplet.  This information is used to accurately time the actuation the microfluidic 

valves so that successful addition of reagent occurs.   



11 
 

 

 

 

 

 
 
 
 
 

Figure 2: Overview of the microdevice (left) An image of the device with the fluid 
channels dyed green, the valve control channels dyed orange, and where the electrodes 
appear as solid black.  (a) the droplet generation region, with three potential inlets for 

samples to be made into droplets.  The top inlet has a rinsing channel so different 
samples can be more quickly loaded; (b) the travel region, to simulate a long processing 

step that could occur; (c) the injection region, where droplet mixing occurs.  A sample 
phase component of the impedance signal is shown.  This signal is used to locate 

droplets and time injections 
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2.2 Microfluidic Device Fabrication 

The fabrication of the device in this study involves the creation of three 

functional layers: the substrate with electrodes, the PDMS fluid layer, and the PDMS 

valve control layer.  The fabrication steps involved in assembling this device are 

illustrated in Figure 3, with further details of the fabrication steps described below.  

 

Electrode Deposition 

The electrodes are patterned on top of a 75mm by 50mm by 1mm glass slide 

(#2947-75X50, Corning) using election-beam deposition and liftoff techniques.  In 

brief, the glass slides are cleaned in acetone, followed by a rinse in isopropanol, and 

subsequent exposure to oxygen plasma for 3 minutes at 100 watts.  Positive 

photoresist (Microposit® S1813, Microchem Inc.) is spun onto the cleaned glass slides 

at 2000rpm for 30 seconds, soft baked at 115°C for 90 seconds, and exposed to UV 

light at 150 mJ/cm2 intensity for 30 seconds during contact photolithography.  The 

electrode pattern is revealed when the glass slide is then bathed in a developer 

(Microposit® MF® CD-26, Microchem Inc.).  Afterwards, using the e-beam evaporator, 

a 50nm layer of chrome is deposited on top of the photoresist, followed by a 500nm 

layer of gold.  The underlying photoresist is then dissolved in a lift-off process by 

submerging the slide in a bath of acetone for 3 hours.  This leaves the finished 

substrate layer with the patterned electrodes.  
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Template Microfabrication 

The master molds for the fluid layer and the valve control layer are fabricated 

on four inch silicon wafers.  For the fluid layer, two steps of photolithography are 

required to make the rectangular fluid channels and the rounded collapsible valve 

channels.  This process was detailed previously by Quake Labs15, but briefly, positive 

photoresist (Microposit® SPR-220, Microchem Inc.) is spun on the wafer at a 

thickness of 20μm, patterned into valve channels 100μm wide, and hard baked.  Then 

a negative photoresist (Microposit® SU-8 2030, Microchem Inc.) is spun to a thickness 

of 20μm, patterned for the remaining channels, and hard baked.  During the 

development process, the positive photoresist leaves behind rounded channels that 

facilitate collapse whereas the negative photoresist results in rectangular channel 

geometry.  The width of the channels range from 50μm in the droplet creation region 

to 200μm in the travel region.  The narrower channel in the droplet creation region 

serves to elongate the droplets to facilitate combinatorial droplet mixing.  With 

regards to the valve control layer, a single layer of negative photoresist (Microposit® 

SU-8 2030, Microchem Inc.) is spun on at a thickness of 20μm and patterned into the 

control channels.  The channels above the valves are 100μm wide so that the 

collapsible intersections are 100μm by 100μm. 

 

Soft Lithography 

PDMS is layered onto the previously manufactured master molds through spin 

coating.  For the valve control layer, the PDMS and curing agent are mixed in a 6:1 

ratio to promote stiffness and spun onto the mold at 100rpm for 2 minutes followed 
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by a 5 minute bake at 80°C.  In parallel, the PMDS for the fluid layer is mixed in a 15:1 

ratio for greater flexibility and spun on at 1300rpm for 1 minute followed by a 4 

minute bake at 80°C.  This results in a thin membrane on top of the fluid layer 

template which is able to collapse during pressurization of the valve control layer. 

 

Chip Assembly 

For the first stage of assembly, the valve control layer is peeled off its 

respective template and aligned on to the fluid layer (Figure 3).  The two layers of 

PDMS are allowed to bond permanently by baking for 7 hours at 80°C.  An additional 

layer of 10:1 PDMS (not shown in Figure 3 for simplicity) is poured on top of the 

bonded layers to increase the PDMS thickness in order to better support the fluid 

connectors when cured.  The layered PDMS assembly is then peeled from the fluid 

template and access ports are created for the valves and channels by punching 

through the PDMS with a needle.  The layered PDMS assembly is then exposed to 

oxygen-plasma (60 seconds at 30W) and bonded to the substrate layer patterned 

with the electrodes.  The complete assembly is then baked for a minimum of 5 hours 

at 80°C to ensure a robust bonding. 

 

Hydrophobic Coating 

Prior to experimentation, the PDMS and glass surfaces are made to be 

hydrophobic through application of a commercial hydrophobic coating agent (Rain-

X® Original, ITW Global Brands).  First, the assembled microdevice is exposed to 

oxygen plasma at 30W for 45 seconds.  Then the fluid channels are perfused with the 
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coating and allowed to set for 5 minutes before being flushed with air at 3psi and 

dried.  Rain-X® consists of PDMS suspended in a bath of ethanol with a mix of sulfuric 

acid to create hydroxyl groups which help it attach to the glass.  The resulting coating 

is essentially a thin coat of PDMS 

 

 

Figure 3: A flow chart of the fabrication and assembly process of the microdevice.  
On the left is the fabrication process for the substrate and electrodes while on the right 

are the paths for the two PDMS layers.  Not shown are the fabrication steps for the 
creation of the master molds.  The final three layers are assembled using a combination 

of heat bonding and oxygen plasma bonding before the device is coated with a 
hydrophobic coating.  
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2.3 Impedance Measurement System 

The electrodes patterned on the glass substrate of the microdevice were 

designed to behave as a coplanar capacitor which is dependent on the dielectric 

properties of the surrounding material.  In reality, the only insulation in between the 

electrodes and the main fluid channel is the hydrophobic coating material, which isn’t 

a perfect insulator.  Therefore, the electrodes don’t behave entirely as a capacitor but 

rather some equivalent combination of capacitors and resistors in series and parallel.  

Regardless, the impedance characteristics of the two electrodes depends on the 

content of the fluid channel.  In order to measure the impedance between these 

electrodes, a four terminal measurement system is implemented, wherein the current 

through the electrodes and voltage drop across them are measured independently to 

increase measurement accuracy.  The entire circuit for measurement is illustrated in 

Figure 4.  Coaxial cables (50 Ω) are used to connect the various components of the 

circuit.  In order to connect the probes of the coaxial cable to the microfluidic device, 

bare copper wires are attached to the electrode pads using electrically conductive 

epoxy (8331S, MG Chemicals).  A high-impedance differential amplifier within the 

spectroscope is used to measure the voltage across the electrodes without drawing 

current, while a trans-impedance amplifier (HF2TA, Zurich Instruments) converts the 

current through the electrodes into a voltage signal for sampling.  A set of commercial 

dual-phase demodulators (HF2IS, Zurich Instruments) read the voltage signals and 

store the real and imaginary components into memory to be accessed at any time by 

a connected computer via USB interface. 
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Figure 4: The circuit architecture for the impedance measurement circuit.  The 
impedance spectroscope (HF2IS, Zurich Instruments) generates a signal internally from a 
numerical oscillator which is transformed into an analog signal by an digital-to-analog 

converter (DAC)  In a four terminal configuration, the voltage drop across the electrodes 
in the microfluidic device is measured through a high impedance differential amplifier 
internal to the impedance spectroscope.  This signal is converted with an analog-to-

digital converter (ADC) before being passed into a dual phase demodulator which 
outputs values proportional to the real and imaginary components of the signal.  This 

value is stored in a register of a 32-bit processor in order to be accessed by the computer 
at a later time.  The current through the electrodes is converted to a voltage signal by an 
I/V converter which is essentially a transimpedance amplifier.  Then it is similarly passed 

through an ADC before being split into signal components by a dual phase modular.  
Internally, the dual phase modulators consist of signal multipliers followed by low pass 
filters to get voltage signals proportional to the real and imaginary components of the 

sine waves. 

 

2.4 Microfluidic Valve Control 

The microfluidic valves used in our device are commonly known as “Quake 

Valves” as their design was established previously by the Quake Labs.15  These valves 

are pressure actuated, and therefore require a control system to allow on-demand 

actuation.  The control system implemented in our experiments is described in detail 

by the Quake Laboratories on their website.58  Briefly, each individual microfluidic 

valve is connected to a solenoid valve through a length of Tygon® microbore tubing 

(Cole-Palmer).  Each solenoid valve receives pressurized air from a pressure source 

that is moderated by a pressure control valve.  The architecture of the system can be 

seen in Figure 1 but is elaborated on in more detail in Figure 5.  The current to the 
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solenoid valve is turned on and off by a high-voltage transistor which is connected at 

the base to a digital input-output controller (Elexol USBIO24 R).  The controller is 

connected to the computer via USB cable in order to communicate with the 

programmed software.   

 

Figure 5: Valve Controller Block Diagram. (a) The computer with loaded MATLAB 
software sends commands through the USB to (b) the input-output module for digital 
signals (Elexol USBIO 24 R).  This integrated module sets pin voltages which are connected 
to the base connection of (d) the transistors.  The transistors allow current from (c) the DC 
voltage source (normally wall outlet with an AC to DC converter) to (g) the solenoid valve.  
The pressure for the device is supplied by a (f) pressure source which is regulated by a (e) 
pressure regulator.  This pressure line is connected to the (i) microfluidic device through a 
(h) capillary line which is represented in this block diagram as a constricted orifice. 
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2.5 Software and Threshold Detection Overview 

The software used to automate the microfluidic system was written in MATLAB.  

Its purpose is to complete the feedback loop by controlling the state of microfluidic 

valves on the device and periodically sampling the impedance measurements of the 

electrodes.  Additional functionality of the software includes manual control of the 

valves and also the ability to upload a list of sequential valve commands to be 

executed in order.  A graphical user interface (GUI) was created to allow the user to 

program the feedback control system while observing the impedance measurements 

in real time.  Its layout is shown below in Figure 6. 
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Figure 6: The GUI that the user sees when running experiments with the feedback control system.  The various functionalities include (a) 
setting the operating frequency of the impedance spectroscope, (b) manually operating the microfluidic valves, (c) loading and executing a valve 
sequence written in an external excel file.  (d) Viewing the impedance measurements in real time, and (e) setting the parameters of the injection 
event.  In (e) it is possible to set the boundaries of the threshold, select the graph to base the threshold on, and set the time parameters like 
delay time, open time, and refractory time.. 
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Using the GUI, the user has the ability to set the parameters of the threshold 

detection and subsequent injection.  The steps from detection of a droplet to 

successful injection are illustrated below in Figure 7.  There are seven unique 

parameters that the user has control over to tune the system to optimal working 

conditions.  The first parameter is the valve number for the reagent that the user 

desires to inject into the traveling droplets.  Next is the selection of either the phase 

or the magnitude of impedance for use in creating a threshold.  Two more parameters 

used for the upper and lower bounds of the threshold.  Once the droplet crosses the 

electrode as shown in Figure 7a, the impedance signal will move within the threshold 

boundaries as in Figure 7e.  Once the signal is within the threshold boundaries, a 

droplet detection event occurs.  This begins the timing sequence that consists of three 

programmable time periods: the delay period, the open period, and the refractory 

period.  First, the delay period is the amount of time it takes for the droplet to travel 

from the electrodes to the reagent input channel, as shown in Figure 7b.  This timer 

is dependent on the droplet flow rate and the distance between the electrode and the 

reagent channel.  When the delay period timer is finished, the open period timer 

begins.  This is the amount of time that the reagent valve opens for an injection, as 

shown in Figure 7c.  The user sets this duration based on the amount of injection 

desired.  The final timer is for the refractory period, which occurs after injection is 

finished, and takes place during the events in Figure 7d.  The refractory period is a 

period of time where no droplet detection events can occur and is represented by the 

gaps in the threshold detection in Figure 7e.  The purpose of this period is to prevent 
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false positive detections if the injections are large and cause the droplet to expand 

backwards upstream and across the electrodes.  For most situations, this timer is set 

to zero. 

 

Figure 7: Schematic illustrating the stages of droplet detection and injection. (a) 
The detection event where the droplet initially reaches the electrodes.  This correlates to 
a rise in the impedance phase as depicted in 5(e).  (b) The droplet travel during the delay 
time period.  (c) The open time period where the droplets are merged with reagent. (d) 
The refractory time period where the impedance measurements are ignored to prevent 
false positive detection.  (e) A graph illustrating the impedance phase signal over time.  

The red regions represent the thresholds used to identify the presence of the droplet and 
the gaps represent the refractory period where the signals are ignored. 

 

3 EXPERIMENTAL METHODS 

During experimentation the prototype microfluidic device is filled with a silicone 

oil mixture (1:4 mixture of PFO in FC-40) for the continuous phase.  The dispersed 

phase consists of a combination of DI water, food dye, and phosphate buffered saline 
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(PBS).  The food dye is present to be able to visually identify the droplets in 

photographs of the device, while PBS was utilized to alter the impedance 

characteristics of droplets for content detection testing.  In order to observe the 

system visually, the microdevice was mounted on an inverted microscope (IX71, 

Olympus), with a camera (70D, CanonTM) affixed to the lens.  Video tracking software 

(Tracker, Douglas Brown) was used to analyze the footage and track the 

instantaneous position and speed of droplets in the microdevice.  Briefly, the tracking 

software works by selecting a subsection of pixels in any given frame and using it as 

an image template to define the position of a virtual point mass.  The software then 

searches nearby in the following frames for a subset of pixels that most closely 

matches the RGB values of the original template and automatically marks the new 

point mass position.  This position is relative to an axis and scale created on top of the 

first video frame, and the velocity of the point mass is derived from its position.  For 

our image template, we selected the leading edge of any given droplet. 

 

3.1 System Characterization 

The preliminary set of experiments was aimed at characterizing this system 

and determining an optimal measurement frequency.  Since impedance is a 

frequency-dependent property, and not all frequencies can be measured 

simultaneously, frequency choice is necessary to conduct real-time measurements.  

DI water droplets were generated at 0.5Hz frequency and transported through the 

microfluidic device before halting the flow so that a droplet was paused directly on 

top of the electrodes.  Thereafter, commercial software included with the impedance 
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spectroscope (ziControl, Zurich Instruments) was utilized to sweep the frequency 

range from 10 kHz to 3 MHz.  The flow was briefly restarted to expose the electrodes 

to only the continuous silicone oil and the frequency sweep was repeated.  

Afterwards, a few select frequencies were chosen to measure the impedance of 

traveling droplets in order to verify measurement consistency with operating 

conditions.   

Since the primary goal of this system is to track droplet position for feedback 

control, a follow up experiment utilized an optimal measurement frequency to 

understand the dependence of the impedance signal on the droplet position above 

the electrodes.  Low pressures are used to dramatically slow down the speed of the 

droplet to approximately 75 μm / second so the effects could be observed.  The 

droplet position was recorded with the mounted camera and the impedance was 

simultaneously measured in order to understand how accurately droplet position can 

be measured.  

 

3.2 Comparison to non-feedback systems 

Following system characterization, a set of trials was designed to demonstrate 

the uncertainty in droplet position that exists in an open-loop control environment.  

The goal was to qualitatively determine the benefits of a feedback control system 

when compared to open-loop systems.  For example, it has been shown in literature 

that the presence of droplets within a microfluidic device affects the resistance to 

fluid flow in pressure driven devices.59  As our device is a pressure driven device, this 

implies that the speed of the droplets, and therefore their predicted positions, would 
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be affected by the amount of droplets in the device.  An open-control system would 

need to account for these dynamics to accurately predict droplet position.  In order 

to understand this effect, a new device was filled with the same silicone oil mixture 

as previous and droplets of DI water were generated at a rate of 0.2Hz.  The speed of 

the droplets within the main fluid channel was measured after each droplet creation 

to determine the relationship between droplet count and droplet speed in this 

particular system.  Also, during a droplet creation event, the transient behavior of 

droplets in the main fluid channel was recorded on video for analysis.   

Finally, a direct comparison of the performance between the open-loop 

control and feedback control was made at steady state operating conditions.  A 

microfluidic device is operating in steady state conditions when the frequency of 

droplets exiting the device is equal to the frequency with which they are created.  This 

eliminates the uncertainties in droplet position stemming from the varying quantity 

of droplets in the device.  When testing the open-loop control system, a periodic 

injection timer was created.  The timing of this injection was initially set to match the 

programmed time between droplet creations, but from there it was finely tuned until 

at least 10 successful injections were made in sequence.  After this point the following 

100 droplets were observed and the number of successful injections recorded on 

video for review later.  The trial was repeated for the system with feedback control to 

compare directly the injection success rate.  
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3.3 Content Detection and Combinatorial Demonstration 

The final set of trials focused on investigating the capabilities of the impedance-

based feedback system for droplet content detection and discretionary injection.  For 

this, two samples were used to generate droplets in the droplet generation region of 

the microdevice.  The first sample was comprised of DI water with green food dye 

while the second sample was a 10x concentration PBS mixed with red food dye in a 

1:10 ratio.  Droplets of these samples were generated at 0.2 Hz in a predetermined 

pattern and the impedance detection was utilized to identify and inject PBS droplets 

in various combinatorial patterns.  Upon completion of the test, the flow was stopped 

in order for a panoramic photograph of the device to be captured. 

 

4 RESULTS AND DISCUSSION 

4.1 System Characterization 

Frequency sweep data of the stationary droplets as compared to the peak values 

observed in traveling droplets are shown in Figure 8a.  The optimal measurement 

frequency to separate the silicone oil mixture and DI water was found to be between 

100 kHz and 200 kHz.  It was observed that the peak measurements of the traveling 

droplets approximately followed the stationary sweeping data.  It is therefore 

suggested that, with new fluids, the proper measurement frequency to distinguish the 

continuous phase from the dispersed phase can be found quickly with a stationary 

frequency sweep.  In Figure 8b, a sample of the impedance signal at 200 kHz is shown 

while droplets travelled across the electrodes.  It was noted that movement of the 

microscope stage or disturbances of the coaxial cables affected the magnitude 
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component of the impedance measurement, while the phase in contrast remained 

undisturbed.  These disturbance scan be seen in Figure 8b in the upper chart.  We 

therefore utilized phase measurement for threshold detection, as it was more reliable 

signal.  

After frequency selection was performed, the system was tested for its 

positional accuracy.  The largest change in impedance was found to correlate with the 

moment the front edge of the droplet bridged the gap between the electrodes as 

shown in Figure 9.  The impedance signal continued to drastically change until the 

droplet completely covered the second electrode.  In our device, the electrodes are 

designed to be 15 μm wide with a 10 μm gap in between.  Therefore, if a threshold for 

droplet detection was set somewhere during the large impedance shift, the position 

of the front edge of the droplet would be on top of the second electrode, giving a 

positional accuracy equal to the width of the second electrode.  However, it should be 

noted that the consistency would likely be much higher since this threshold-detected 

location would be nearly identical for the following droplet.  The exact variance of 

positional determination of the droplet was not investigated in this paper, but the 

actual variation was likely to be less than half the width of the second electrode.  It 

should also be noted that these results suggest that the hydrophobic coating utilized 

was not a perfect insulator, instead allowing current to directly pass through the 

droplets.  If the hydrophobic coating was a perfect dielectric, then the signal would 

not change so suddenly upon bridging the gap between the electrodes but would be 

more gradual as the liquid permeated more of the potential electric field surrounding 

the electrodes. 
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Figure 8: These charts illustrate the results of the system characterization trials.  
(a) The frequency sweep of stationary droplets vs the measurements of traveling 
droplets demonstrated that the traveling droplets have a trend that follows the 

frequency sweep but the measurements don’t match exactly.  (b) A sample of the 
impedance signal demonstrating the successful detection of DI water droplets suspended 

in the silicone oil mix.   

 

 

Figure 9: An illustration of the impedance signal as based on droplet position.  The 
chart shows real data collected while a DI water droplet passed over the electrodes and 
was measured at 200 kHz.  The right illustrations show the droplet position that was 
observed at each feature of the impedance change.  (a) When the front edge of the droplet 
first touched the first electrode, the phase began to shift linearly and stopped when (b) 
the droplet covered the entire electrode.  However, the real impedance change occurred 
when (c) the droplet bridged the gap between the electrodes.  This impedance change 
reached a stable point when the droplet covered both electrodes.  
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4.2 Droplet Velocity Uncertainty 

In order for a device to have reliable open-loop control downstream injection 

the droplet position would have to be highly predictable.  We measured the velocity 

of droplets through the device as a function of the number of droplets present and the 

resulting relationship between droplet velocity and droplet count is shown in Figure 

10.  Figure 10a reveals that the speed of the droplets is linearly dependent on the 

number of droplets in the device over a large range.  Therefore, the exact number of 

droplets in the device should be known at all times in order to accurately predict 

droplet travel time over large distances.  Additionally, it was observed that this speed 

change was not instantaneous and had some transience that would have to be 

accounted for as well.  When the relief valves are opened during droplet generation, 

there is a temporary transience in the speed of the droplets throughout the device, as 

shown in Figure 10b.  This change in speed is more dramatic with the droplets closest 

to the relief valves, but the effect is still noticeable for droplets farther away.  

Together, this data reveals the difficulties in predicting droplet position in 

microdevices with long droplet travel.  Finally, it was also observed, but not reported 

on, that as droplets were injected, their larger size also affected the overall flow speed 

in the device. 
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 Figure 10: (a) The linear relationship between droplet count and droplet flow 
velocity in the chip is a strong fit. (b) This graph illustrates the droplet speed profile over 
the duration of a droplet creation event.  Each line corresponds to a different position in 
the travel region.  There is a clear  transient behavior which is difficult to model and is 

dependent upon the droplet’s position in the microdevice (c) This is a schematic 
illustrating the location of rows where the droplet velocity was measured in the device 
travel region.  The droplets were generated above this region and the injection region 

was just below here. 

 

4.3 Feedback vs Non-Feedback in an Optimized Setting 

Although many droplet-quantity-dependent uncertainties exist as revealed 

above, these effects can be minimized if the number and size of droplets within the 

device is kept relatively constant.  It was suspected, however, that even controlling 

for this wouldn’t result in a successful open-loop control system due to numerous 

unknown compounding factors.  We tested a microdevice operating in steady state 

and attempted to inject traveling droplets with an injection that was performed at 

regular time intervals.  The results of this trial are summarized in Figure 11.  

 Figure 11a displays images of droplet injections since the start of the 100-

serial attempts for both open-loop control and feedback control.  After multiple 
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attempts at creating open-loop injection timers, the most optimal results obtained 

were 15 successful consecutive injections before the injections began to miss.  An 

image of each corresponding droplet for the feedback system is shown next in parallel 

for visual comparison.  After over 100 droplets, feedback system never missed an 

injection, as illustrated in Figure 11b.  These results make clear that feedback control 

was necessary to have a successful injection in devices with a lot of travel time. 

 

Figure 11: (a) A series of images demonstrating the reliability of the feedback 
system in contrast with the performance of the non-feedback system.  The images were 
captured since each control system was initiated.  The best result obtained for an open-
loop control system was 15 successful injections before a ‘miss’ occurred. (b) The non-

feedback and feedback systems were allowed to run for a series of 100 droplets.  The pie 
charts represent the fraction of successful injection as compared to all attempted 

injections. 
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4.4 Content Detection and Discriminatory Injection 

To explore the further capabilities of this system for droplet content detection, 

control droplets (green) and PBS droplets (red) were generated in a pattern of two 

PBS droplets in sequence followed by a single control droplet.  200 kHz was used as 

the measurement frequency and blue food dye was used as the injected reagent.  A 

resulting sampling of the impedance signal demonstrates the difference observed 

between the control droplet and the PBS droplet and is shown in Figure 12a.   

Threshold detection was employed to attempt to inject only the PBS droplets in 

the sequence with blue dye.  After over 100 droplets injection attempts, 100% 

specificity and injection accuracy was observed.  There were no green droplets that 

falsely received the blue injection, and there were no red droplets that missed an 

injection.  The flow of oil was stopped and a panorama photograph of the device along 

with example before and after sequences is shown in Figure 12b.  To additionally 

demonstrate the combinatorial capabilities of this technology, the microdevice was 

flushed with oil and the software was rewritten to only inject the first PBS droplet in 

each repetitive unit with blue dye.  Figure 12c below highlights once again that the 

system had 100% specificity and 100% accuracy.  There were no instances of the first 

PBS droplet not receiving blue dye, and no instances of control droplets of the second 

PBS droplets receiving blue dye as a false positive. 



35 
 

 

Figure 12: This figure illustrates the versatility of this feedback system to inject on 
demand content of the droplets as well as sequencing. In this experiment samples of red 

food dye were mixed with 10x PBS in a 1:10 ratio and compared to control droplets of 
green food dye. (a) A sample impedance signal from the electrode as the droplets pass 

over it.  The difference in impedance is clear.  (b) A panoramic image of the device when 
every PBS droplet was mixed with blue dye along with a sample series of droplets before 
and after the injection region.  On the right side half of the photograph, a second travel 
region allows observation of the injection success.  (c)  A repeat attempt when the only 
the second PBS droplet was injected with blue dye, demonstrating the programmable 

capabilities of the system.  

 

5 CONCLUSION 

In this paper, we’ve presented a novel feedback control system for droplet-based 

microfluidic devices with microfluidic valves.  The system utilized real-time 

impedance measurements of on-chip electrodes to control microfluidic valves for 

accurate downstream injections.  The system was calibrated to track DI water 

droplets and PBS droplets suspended in silicone oil.  Results indicated that the 

droplets were accurately identified and located as they traveled through the 
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microfluidic device.  Furthermore, the uncertainty of droplet dynamics during long 

processing distances was demonstrated to justify the need for feedback control in 

downstream injection sites.  Among the most important of these challenges was the 

resistance to flow as it was dependent on the number of droplets present within the 

device, but even in the absence of this factor it was shown to be near impossible to 

perform injections in an open-loop control system.  The presented feedback system 

was shown to be effective in overcoming these challenges and effectively and reliably 

mixing droplets with the desired reagents.  In addition, it was further presented that 

the functionality of this control system extends beyond basic positional detection to 

provide information about the droplet content as well.  It was demonstrated that 

droplets could be discretionally mixed in a combinatorial manner dependent upon 

their electrical properties. 
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6 FUTURE DIRECTIONS AND PRELIMINARY RESULTS 

6.1 Multiple Electrodes 

Although this feedback control system shows great promise in future 

automation of microfluidic devices, the uncertainty in droplet speed could still 

present challenges in extreme conditions.  For example, until steady state is reached, 

there is a large velocity difference between the first droplets that are generated and 

the final droplets that are generated.  One possibility to eliminate this issue is to use 

a volumetrically driven system instead of a pressure driven device, but it is also 

possible to make this system more robust if the feedback measurements contained 

not only the droplet’s position, but also its velocity.  The current detection scheme 

could be simply expanded upon to derive the velocity of the droplet by adding another 

pair of electrodes.  If the impedance of these pairs could be monitored independently, 

then the speed can be solved for by measuring the time difference between droplet 

detection events.  In addition to speed, this system would also be able to characterize 

the length of the droplet.  If the speed is known, then the width of the impedance 

signal would be indicative of the droplet length.  The basic concept is illustrated in 

Figure 13.  This would allow for accurate injections of systems that could even suffer 

from pressure or velocity variations. 
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Figure 13: An illustration of the four electrode droplet detection system.  The real 
time signal from each electrode is colored respectively and shown in the graph of real 
impedance.  V represents the velocity of the droplet and is the difference between the 
droplet detection for each electrode.  W is the width of the droplet and can be derived 
from the width of the signal. 

 

6.2 PCR Precursor Potential 

The system described in this paper could enable multistep multiplexing assays.  

One type of assay that could benefit from this system is any assay requiring a 

polymerase chain reaction (PCR) amplification step as a precursor to combinatorial 

screening.  Instead of conducting amplification off of the device, this processing could 

occur all on a single microfluidic platform.  One recent development of single 

nucleotide polymorphism (SNP) detection that could benefit from this technology is 

the Invader® assay.  The Invader® assay is a highly specific and accurate system for 

detecting SNPs through fluorescence energy resonance transfer, but it sometimes 
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requires an initial PCR amplification step to obtain enough target molecules.60  

Detection of SNP in a continuous flow microfluidic device would be able to meet the 

needs of industrial applications that require high throughput genotyping systems 

such as disease detection or agricultural crop selection.  It will need to be investigated, 

however, how the hydrophobic coating implemented in this study interacts with the 

PCR chemistry. 
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