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INTRODUCTION.

M. Appell, in a brief note in the *“ Annales de la Faculté des Sciences de
Marseilles,” gives as an example of a function of three variables having a true
period and a quasi-period, analogous to the &-functions, the function

@ (’U y Y, Z) — m§m pdm* + dxm3 4= 6ym?2 - 4zm ,

M—=—w

where, in order that the series may be convergent, the real part of ¢ is to be
negative.
This function evidently satisfies the conditions

T

?(3’1""‘2“) Y, z):go(:v, y"f‘%) Z>:90(93: Y, Z+%):Sp(%; Y, z)

e@4a, y+2v 4 a, 24 3x 4 3y 4 ¢) =e*T+u+g (z, y, 2),

de _ d% 99 _ g0y
“ov T ayo oy SoF

Moreover, as M. Appell shows, these conditions are sufficient to determine
¢ (%, y, z) to within a constant factor.

The object of the present paper is to investigate the properties of this
function and of functions derived from it, as well as of others similar to it,
pointing out, as far as possible, their analogy to those of the @-functions. As
1s not surprising, some of the properties of the latter seem to have no analogues
in the case of the functions here considered. In such instances it has been
endeavored to assign the reason, as far as possible.

The great difficulty throughout the preparation of this thesis has been the
utter poverty of known theorems holding for functions of more than one complex
variable. As a consequence, this work has been rather of a tentative nature.

In this, the assistance rendered me by Professor Craig, at whose sugges-
tion this subject was selected, was invaluable, my appreciation of which it is
only proper that I express here. I desire also to acknowledge the debt of
gratitude I owe to both Professor Craig and Professor Franklin for their
interest manifested in my work throughout my entire conneection with the
Johns Hopkins University.
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I.

Let f (v, y, 2) be a holomorphic function satisfying the conditions

fl@t o, y, )=fl@, y+ o5, 2) =f(2, y, 24 @) =f(=, y, 2), (1)
| 2aw, Sxw, 3awy 20w; | Bz 5 , 20w;
S m L) +a)1 +7rip’z+ wzp' y +7T1§ )

:6—-ap4_2ni(£p3+£ép2+£p)f(x’ Y, Z), (2)

af __ Wy Y af s wy OFf (3)

Jx — 2miw; Qyoz’ Oy — 2miw, Oz

where w;, w;, w; are any quantities, real or imaginary,

p any given integer,
@ a constant whose real part is negative.

The most general entire function of x, y, z satisfying conditions (1) is given
by the Fourier series,

< (S S Zm
f(fl?, Y, z): _2 _2 Olc,l,m 6277 (Ek+wzz+w3 ) (4)

where O, 1, 1s independent of @, v, z. In order that f(x, vy, 2) also satisfy
conditions (3), we must have

k—Im and [=m?

or

k= m? [—=m"

and we now have only the simply infinite series

m = . y e
flo, y, )= 3 G ™ a™ram, (&)

M = —n

Finally, from (2) we have, on multiplying both sides of the equation by

am4 - apt 428 (2 p3 4 Y p2 o Zp)
6 (0] () wg

and properly collecting the terms

5 Qo (P [ () I (mtp)r A D)5 gy ot 2 (- mit mi )
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In order that this equation be satisfied, it is evidently necessary and sufficient
that, for all values of m,

Gm: m—-p*

Hence the most general function of =, y, z satisfying the conditions (1), (2),
(3) will be given by

L Y 2
f(w, Y, Z): 2 O;neam‘l-}—Zm(-w_l7)L3+L_u_;m2+w_3m) (5)

with
O‘)n a— Gm+p .

Since by hypothesis the real part of a is negative, this function is holomorphic
for all values of @, v, 2.

If we write

R, (v, y, 2) = G R e P G e U i C R I

kp 4= 2)4 4 2w [ 2 (& A 2
Ro(x, y, 2)= 3@V oD+ = o +0+ O (42

LA AR A A A U . 0 ® @ 0 & 06 2 8 8 0 ¢t s o w . i

a (kp 4 p)* =+ 2mi [i (kp 4 3+ Yy (Fep = )2 = Z_(k + )] % (6)

RP (w) ?/7 Z): 26 Wy / L'U; 74 R g ‘D p
Ly i ! }L ¢ f. ¢

R,(z, vy, 2)= zea(kp)4+2 il (7cp)“+m2 (kp)2+ = (7p)]

it is clear that f(x, y, #) will be a linear homogeneous function of R, R,,....,
R,,.... B,. Moreover, the latter are linearly independent, as may be seen at
once from their development. They can, however, be replaced by simpler
functions. Write

"3 4 (%o Y 2
sp(w’ y, Z): 2 eam +2m(w1 m +w2 mz+w3m) . (7)
M= —w

Then, for 4, ¢, v any integers, we have

X ¥ 2 27t
SD(Q’}—’—%, ]' /lz()l)z, y { V;j)g):zeam‘i-{—Qm(g]- m?-l-;)-;m?-{-a;m)-{-—};-(Am3+,umﬂ+vm)
or
A (e 0, 2mi v) 27 (8 - 4 4 20)
o@—+—, y+—, 2 3)=6p(+“+ R1+6p( TEEYR 4.
p P P (8)

27
+6~13~(/\P3+/L92+VP)RP+ oo +R,.
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Giving to 4, p, v each separately all values from O to p — 1 we get p® equa-
tions of the type (8) to be satisfied by the p quantities B. Of these p® equations,
only p can be independent. Moreover there ar¢ p independent ones among
them, viz. as we shall see, those obtained by putting 2= =0 and letting v
take all integer values from O to p —1; these are

2niy 2mipy
¢z, v, z—f—y—w'?’):ep B+ ....4+e¢er R+ .... + R,
P (9)
yv=0,1, ...., p—1.
For the sake of brevity we shall introduce the following notation. Write
¢ (@, y, 2)=[0, 0, O]
A _
¢ (@ + %) y, 2)=[4, 0, 0]
¢ @, 3/'{"/1—‘;@) 2)=[0, ¢, 0]
¢ (@, ¥, z-{—%):[o, 0, v]
A .
¢ (@ ”‘]‘(g‘l’ ?/‘l"%%: 7 =[4, ¢, 0]
2 .
‘Sp(m'f‘%) y_'_/fg_z, Z"I‘)%):D: 1y v].
Also write
[0, 0, v]=Co (2, 9, 2) =0
Our equations (9) may then be written
0, 0, 0]=¢,= R,+ R, R,+....+ R,
:(), (), 1: — CH::::7¢PZQI.-_'Tblgkl_"_ oo s e "—'7?LZBP'—*' cves ""7}yl€p
0, 0, 2]=C=niR+ ik +.... + p0i SRR + 75 By -(10)

[0, 0, p—1]=C =17 B4+ ""Bt.... 4+ R+.... +157'B,

where

2m1 4mi 2pme

71:61’,‘"[2:617,...-,7‘):617, °...,7p=1.

The independence of these equations follows at once from the fact that the
determinant of the system



1,1 ,....1 ,....1

72 Te o
d=|711 H  n s B =T (e ity

amP~1  p—1 —1 a1
fl ,/2 ,voavﬁ "ooc/p

is evidently different from zero, the y’s being the p™ roots of unity. Of course
(p—1) (p—2)

the value of £ is (—1) 2 Pr.
Denoting the minor of 7§ in 4 by €, _y, 1, the determinant of the minors is

00,0 701,1 ,~-~-,C},_1,o
Go1 5 Civ 5eveey Gy gy

C{),P*—l’ Q,p—lj tret (]p—-l,p—l

Solving equations (10), we have

R Y
ARl——OO,OCO (]0,151"“"(/70,2’:2""'”_" O,p——lzp-—L )
ARQ::(JI,OCO Q,ICI_—Q,2C2_-""'-—O;.,p—ICp—l

r (11)
ARp: %—1,0@'0“" %—1,1C1+ Qn—l,,zfz"}‘ cees @9._1,;;__1 Cp—1 J

The remaining p* — p functions [4, #, v] for 1, p=1, 2,....... , p—1 and
v=0,1, 2,...., p—1 can now be expressed as linear homogeneous func-

tions of
&y v=0,1, 2,...., p—1.

From (6) it is obvious that

k 2mi )
Rl(m"}"%‘l) Y, z)-—:e/\ p Bi(w, y, 2)=n kB,
R Awy L — P 1
P(m"l“]‘;) y, z)==e€  » B,(v, y, 2)=17% o [ (12)
)L(Ul )\_’p3?£.7i.
B,(x+—, y, 2)==¢" » R,(v, y, z)= R,

P y
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Making these changes in (11) we get the following p systems of p —1 equations
each :

rdRy=C, o[4, 0, 0]+ G 1[4, 0, 1]+ ... +C ,_+[4 0, p—1] (13)

..............................................................

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

ARp:%—l,O[)‘) O) O]‘*"Op—l,lU} O; 1]+ +OP—1:29—1[)" ,p—l](13p)
A=1, 2, ...., p—1.

The determinant of each of the systems of p equations obtained by taking the

A% equation of each of the above sets is D, which is different from zero since 4
is.

Hence we can solve for the p*— p quantities [4, 0, v]for Ai=1, ...., p—1
and y=0, 1, ...., p— 1 in terms of Ry, R,,...., E,, which, in turn, can
be expressed linearly in terms of

£, yv=0,1, .... p—1.
Thus, taking the system

AR =C) [4, 0, 0]4+C, .1 [%, 0, 1]+ .... + G, p 1[4, 0, p—1]
7PAR,=C; 4[4, 0, 0] +C; 1[4, 0, 1]+ ... +C ,_[4, 0, p—1]

............................................................ :
‘padR :O__l 0[)\ O O +Cp 1, ][)\ O 1]+ +OO_1 73_.1[) ,p 1]
AdR,=C,_; o[2,0,0], G_1,:[4 0, 1+ 4G p—il4, 0, p—1]
and remembering that the minor of C; , in D is ¥, , 47~*, we have
[4, 0, v]= 2 fVR
And finally, from (11)
p=p j=p—1
A4, 0, v] = % 2, r};\BT;Op——l,j:j (14)
p=1 4§=0
A=—=1, 2,...., p—1 v=0,1, 2,...., p—1.
In exactly the same way we get
p=p j=p-1 .
A[0, py, vl= 5 3 TﬁT;Op—LJ’Cj (15)
p=1 j=0

vp=1, 2,...., p—1 v=0,1, 2,...., p—1



or
pP=2P p=2p

410, p, v]= ZITZQT;CL--LO [0, 0, 0]+ X Tﬁ?T;C'p--hl[O: 0, 1]+ ....
i

p= p=

+ ... +27ﬁ27’:0p—1, -0, 0, ]+ .... +27’227';q>-—1,p—1[07 0, p—1].
p=1p

A[2, py v]= 3 Tﬁgrzq_1,o[)‘) 0, O]+27'ﬁg7’;q,_1,1[;(> 0, 1]4....

p=1

+ ... +27’ﬁ27’20p-—1,a["{> 0, ]+.. ”‘l“ZTﬁg?’:Omep-q[)‘: 0, 10_1]'

Whence, from (14) we have

p=0p p=p j=p-—1

LAy py v]= Elrfr:q,_l,o > 3 K0, ¢ (16)

p== p/ =1 j=0

2 Tff'f;cp—l, 1 2 2 Ti/srp’qﬂ—l, JC7

+ 2 1SS0 1 G

+ 20, e 220,56

by p=1, 2,...., p—1 yv=0,1, 2,...., p—1.

If we write (14) in the form

1 PP Jj=p—1 1 j=p—1

[)‘) O) p]_'—_‘—é-j-u 2 2 7‘6\37’:;0,,__1,3':7':7 2 A‘g'):),,c]‘ (17)

p=1 g=0 j=0

the determinant of any of the systems of p equations obtained by keeping -
fixed and allowing v to take all values from 0 to p—1 is seen at once on
writing it out, to be

75\13+23+...-+p8>24

P
or since D= dr—1,
1
0 ( NP = _—_
plap (P41 = piAy:)V
Similarly, writing (15) in the form
1 p=p j=p—1 1 j=p—1
[Oz M, ”]:7‘951 jin 7227:0p_1,jcj57 jEO BJ(',:L)V :j (18)

the determinant of any of the systems of p equations obtained by keeping u
fixed is found to be

1
ya i Bj(ff)v I

(124202 L., oy __ =1 @p—1) __
ff(u -+ 22 4- +p)___7/M 6 —
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Finally, (16) may be put in the form
\ 1 k=p—1 j=p—1 '
o=z B RS (19)
— im

The coefficients here are, to within the factor — the clements of the deter-

minant obtained by taking the produect

pp+1H,  pp—1) @p-—-1)
zm] ~+ 5 .

A
| AP || BW, | = dw L

We have thus expressed all of the p?* quantities

[4, o, v] Ay o v=0,1, 2, ....p—1

as linear homogeneous functions of the p linearly independent ones

[0, 0, v]=v¢, yv=0,1, .... p—1.

Hence we see that every holomorphic function of x, y, z satisfying con-
ditions (1), (2), (3) can be expressed as a linear homogeneous function of these

p quantities. KFrom which follows that there can be only p such functions

which shall be linearly independent.

We have obviously
5@, y, )=¢(x, v, z+]%)
S,y 2t w) =7 (2, ¥, 2) (20)

5@, v, z+k%>:~@j+k(w7 Y, 2)

N /_..______/

If for brevity we write
ap' + 25i [+ 0 pt o+ Pl =E(p)

Wy Wy

and if we denote the substitution

Q0 3 3 :
W-JIP: y -+ fvwgp ~+ - m.u2p2, 24 P o P T
1

(@ ¥y, 25+ e (V4 e (Vg
by S,, we also have
61 4 - _E(.p>y )
0 5 (2, ¥, z)_e (e, v, 2) (21)
—EQ)—p 2 &
(1) —pJ > Cj(w7 Y, z) )

8, (x, y, z)=e
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In general, if

A 0) 0,
Inouw oy Ty Y, 2)==¢(x Mﬁl’y_*_fﬁﬁ,z-{-??l),then
;{)\, TN v(w——(ul’ y’ z):ZA, I v(m’ y+a)2’ z>:':X)\, [T V(:B, y’ z+a)3)::{f\, TN v('/r’ y’ 2’)
A w o w. )
Xl\, M,V(w-- pl’ y+L}—9—g’ 2T _Eﬁ):xr\-{-)\/,u-}-u’,v-}-v’ (CU, Y, Z)

Sﬂ%)\,,u.,v(m’ y’ z)—'——e_E(p)X)\,y,, v(w7 y? Z)

while the effect of the substitution S,, where p £ 0 (mod p), is to change
Yx, v, » (@5 ¥, 2) into some other function altogether, in general.

1I.

Let us consider now, in connection with the function

n—= w P Y 4
- L amé - 27t (< m3 4 =2 m? 4 — i)
Lo=¢(@, ¥y, 2)= 3 ¢ w; wy ws (1)

M=

the functions obtained by increasing z by (Z—‘i” s @2—3 and by

30,

1 respectively.

We may write these functions briefly

¢ (@, Y, Z)-':gﬁo(a;, Y, ;): S eflm

N == — 0

(@, y, 2+ P =gi(e, y, )= (" "™
" (2)

4 (x: Y, z—{—%) = @ (cv, Y, z)::E(—-—l)meE(m)

¢ (@, y, Z+—4—f)=903(m, y, 2) =3 (—i)mefm™

From what has preceded, it is plain that the functions obtained by adding to «
and to y, respectively, in (1) any multiples of the quarter periods corresponding
to them, will be linear homogeneous functions of the four funetions (2). In
particular, it is obvious that

W,

gﬂ(&?—'—%, Yy, 1) =¢(«, ?/"l"“é‘) )= ¢ (@, ¥, ‘5+“23)-:*§02(7’) Y 2)
and (3)

¢ (2, 3/""'%27 z 4 (“%g):‘,p (37+f§'1“: Y z+£%3):90(m+%1 Y+ %37 2)==¢0(, Y, 2)
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Further, we have manifestly

o (@t w, y, 2)=¢;(@, Y+ 0y, )==¢; (%, Yy, 2+ 0)=¢;(z, ¥y, 2)
S ¢; (%, vy, z):(—' i)! ¢~ F M) oz, ¥, 2) (4)
Sp%(m) Y, z>:(‘“‘i)jp6mp)%(x: Y, 2)
j=0,1, 2, 3.
If we apply the substitution

. . . a @, | Brw, |, 3aw, Ywg | 3TW; |, AW,
Sz}g-—(w; Y, %5 m"“"’"‘“ ' Z+J ] +

a0 I Qw, ' 4mi’ w, ' 4o, ' 4m

we shall get entirely new functions, for

; m=cw L. y z 1
—H (%) a( e 2mi [— (M4 P34+ = (m 4§24 — (m+ 3]
Sipo(, ¥, 2)==e¢ —~ 2 ¢ S T g wg !
M= —ow
—FE (1) nm  a(n 14 L 2t r % 1\3 ¥ 112 a )
Sy (e, v, )=¢  *3()"e m - )¢ 4 2 Pt +oomt D) +w3(m+%] \ (5)

—FE (%) 14 L ogi [ 2 ) Y . z .
Siou (@, 4y, 2)=e 03 (—1) " T DIF IS b O it e m o 3]

—E(3) W o (m 34 4 2 [ s 1 Y v 2 .
S%‘Pg(fv, Y, Z):‘-G ) 2(_7/) p + - t[wl(m-l-a) +w2 (m == 1) +w3(m+§)] J

This suggests the following functions, which may be written briefly

M= A
do(@, y, )= X e"™"+d
M= — o
di(@y y, 2)=3 (1) e+ } (6)

e, 3, D= (et
(763 (.’17, Y, Z):E <___.7:>meE(m+é)

> o, 8 S
Writing
el — ) et — 17
we find at once
‘%"j(a’“‘ W, Y+ wy, z+‘”3):/:‘7!’j+1(539 Y, 2) )
9/jj(:c"" Wy, Y y R ):/a¢j+1(a’19 Y, z)
Sbj(m y Y Wy, 2 ):7’.%’(3’) Y, z)
J; (x y Y y 2T ‘U:s):‘“%‘(w) Y, 2)

: (7)

J; (w y Y ) z-—--%):p%_,_l(w, Y, 2) ]
J=20,1, 2, 3 and ¢,=¢,

. w .
while ¢, (x-l-—Q-I, ¥, z) and ¢; (z %, Y, z) are entirely new functions not

expressible as linear combinations of any of the functions ¢, or ¢;.
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It will be seen from these equations, that the periods of ¢; are not the same
as those of ¢;; for, in the case of the former,

8w, is the period corresponding to fc]
40)2 o« 13 1 14 y (8)
2(03 € <« ¢¢ 11 ‘< zf

although each of the substitutions
(@, 9, 25 o440y, y,2), (@, y,2; ¢, y+ 20, 2), (@, 9,25 2,Y, 2+ @) (8)

operating on ¢; has only the effect of changing its sign. The effect of the sub-

stitution S, on ¢; (=, vy, 2) is the same as that on ¢, (2, v, 2), viz:
81¢s (@, y, 2) =(—1)/ e FV ¢y (e, y, 2) } (9)
Sp (e, y, 2) =(—)P e ¥P (2, y, 2)

But while 1
Syei(e, y, o)== "9 (z, ¥, 2)

Sy ¢ (=, y, 2)=(—1)' e P ¢, (z, y, 2)
(10)

we have

SQr—l-l J; (93: Y, 2) = (— i)j(r_l-l) e~ i+ 3 2 (wﬁ Y, z)
2

In general, the effect of S, is to change £ (m) into K (m -+ 1), while S, changes
E(m) into E(m -4 p). Hence the effect of S, on our functions is the same as
that of 87, to within an exponential factor which may be taken out from under

the sign of summation. Similarly S, changes £ (m) into E'(m 4 &), and S,  ,
2
changes F (m) into & (m 4 r - 4). Hence we see here also that, to within an

exponential factor as above, the effect of S, is the same as that of S}, and finally,
that of S,, , , the same as that of S7"+*, or of §7§;, or of S, §;.

2
Changing z into — 2 and 2z into — z simultaneously has the effect of chang-
ing m into —m in ¢, and m into —m —1 in ¢ ; hence it

leaves ¢,, ¢, and ¢, unaltered,
interchanges ¢; and ¢g,
changes ¢, into — ¢(¢5,
¢5 into ¢, and
&y Into — ¢y

Consequently, as regards = and z simultaneously, we see that

Coy o, Po, ©1¢s, Y15 are even, and
Oq 1s odd.



14

Changing the sign of @ or of z alone, or of y changes the values of all the funec-
tions in such a way that no conclusions as to parity can be drawn in these cases.

In the case of each of these functions we may find those zeros which, like
the zeros of the @-functions, cause the vanishing of the function by the cancella-
tion in pairs of the terms of the series defining it. This we can accomplish by
the examination of the function ¢, (z, vy, 2). We have, in fact,

¢2(O) Y, 0):2 ("'—"1)7"“ e% (M~ §)4 + 2mi ZZ_/; (m 4= 1)3 .

m

Changing m into —m —1 we get

d2(0, ¥, 0)=§(~—1)"’""“1 g m + b o 2mi L o 2

4 omi Y 2
2( 1)mea(m+%)+ ?«wg(m+i).

m

Hence
$2(0, y, 0)=0.

Or, from (8'), we have more generally

o (dhw , y, lwy) =0

where h and [ are any integers and y is anything at all.

Finally, applying the substitution S,, ¢, (2, y, 2) is reproduced multiplied
by the finite factor (—1)? ¢ %@ which is different from zero. Hence we have
iy (4has, -+ 22;01 ¢, y 12wy q + 3‘_‘% ¢, o+ ?.(?/525’_3. g 412w, g* + 2??3’3 ) =0.
The most general set of zeros of ¢, is then, without loss of generality, from (8),

o 2w, )
v = 4how, + —q
y=y+ 2o, + 220} (11)
. 2y | 2wia 4
2 == lwy + @, 9 i q )

From the second and fifth equations of (7) and the second equation of (10)
we can write the following table of zeros where, as above,

h, k, I, q, are any integers,
Y anything whatever.
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Zeros
of T =
Y= g —
(4h +2) @, + 2aw, 3
_ + Qk ) a(02 9
oo Lo 1 Yy wy + 9 g + 2 % g + 20wy 4
(Uz ﬂ‘fi
4hw, 4 200, 3
. y + 2kw AWz o2
Tl 2 T 1 q ({44 )(ug-{—Qy Ws +2a‘f)3qs
b
4] 20w
(4 Ul oy 2L g : 2
¢1 | or g 3 2y (02 g+ Z;Ua 3
4how, 4+ 2af')1 36&0)
i Y+ o+ ¢ (4 3) oy 4 2y g 4 200
¢y 4hw, 200, 3a ), = -
. a
) y "," 2k(u2 -+- 2 2 Z(Ug + zy Wy + gg‘(gg 3
i
4h 2aw
(#ht3) ot ]y + 2oy 4 20222 o g sy 2
¢3 or “s + 2?/ ()2 + T%US
4h(01+ 26&(01 3 7
; y + 2kw AWy o2
7 -+ (I8 os+ 2 20 + 20
Qaw, (2r 4+ 1 : _
¢y |ho, .1< + > ] aws, (2r 41V
) 9 Y+ kwy -+ — < 5 > (43w, + 29 ¢ Wy (27‘ 1> L 2aws (2r+1
Uy ; \ 2 )
20w, (2r 41 i
¢1 | ho, 1( + ) 3w, /2 2
: Y + kw 2 4l + 1 '
T 9 2 g < 9 (l + g + 2,’9 'OF <27 i—zt‘l> 26&(03 (21 + 1>
2a.w4(2r ’
oo |hooy + 22D g ko, 202 (2L ©
S T
2
2a.w,( 2r ’
@3 | hw, - 1( 7+‘1> 3a :
. k 7 Wy 271 + 1 2
w2 [yt ( 2 > (143) w429 @ (2 F 1) 4 200,241
. W, 2 + P (\ 9 )
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Putting h =k —=1[=¢=1r =0 we get the following simple zeros:

Zeros of CU:- _y: Z‘:.:‘.O ~
2w, Y 0
9&0 Or“ w3
0 Y D)
W, Yy
¢ |or s
0 y 4
L 0 Y 0
3w, Y 0
g | or 3w,
0 Y 4
aw, 3aw, | wg | Gws
N Wl A el
A 30wy | w; | aws
ol m | YT |4 T A
by | Saw, awy
¢ 2 YT 4w 47
ahw, 3aw, | 3wg |, aw,
o |\ T (YT & | 4 Tam

The zeros of ¢ (z, vy, z) might have been gotten directly, as follows :

am4 - 271 (i m3 4 ¥ m2 -4 2 m)
w g

oo (2, v, z)::%e 0y 2

a(u—m)t42mi[Z (u—m3 4+ L (u—m)r g 2 (u—m)]
—_— 26 @y Wg Wy .
m

The corresponding terms of these two series will be equal but of opposite
sign for those values of «, y, # which make the exponents of e in the two cases
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differ by an odd multiple of mi for all values of m. Such values of z, y, z
will evidently cause ¢, (2, y, 2) to vanish. We are to have, then

a (¢ —m)* - 2mi [(% (t—m)® g (r—mP -+ = (p— m)]

), W3

— [am® 4 2mi (L 4 ¥ 2 42 m) ] = (2k <+ 1) =z,

(Ul (U? (z‘)s

which on reduction becomes

(s 2m){ (5% - ) (@m— g o 7)o (2 4 20, g 2y
o w, s g
= (2F 4+ 1) =i.
This condition is satisfied if
v is an odd integer, 1
TIX )
o, T =g (12)
T o 2MY  , 2wz o, ; o
(UI/U‘ I W, M Ws “[#2+2(‘+210+l):]2
where 4 and o are any integers.
To obtain the zeros of ¢ (2, y, 2) we need only put
( A ap) )
r=| - — L)
2 %)
y  anything, as before. lf (13)
. [/1 +20+1 py , ap’’
z = : — L e T,
2 wy  Zmwi_ | 7

This can be readily verified, for, putting these values in ¢ (z, v, 2), we have

"ol amtami [(S— ) me g Lo (ARZeck Ty anty ]
e Wq 9 Wy _J

2 e 2 2m1
M == ==
Z a(mt —2m3u = mud) 4- 2re Ym (M =) == 271 (3_;_ m3 4. )_‘_:*:_Qdﬂ.i‘_.l m)
=2 @3 : :
. ont m a(m——.ff)‘l—--:‘ia(m-u) w2m ~- Qwi:y_(m—-u) m
—e¢ 16 E (—-—*1) € 2 2 Wq
because

en-i (A2 A4=2p41)m — (_____1)77@’

since for 4 even, Am?* -+ A 4 20 4+ 1 is odd
Aodd, /m®-4 4+ 2041 iseven or odd according as m is even or odd.
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When m is replaced by p—m, the expression above is only altered by having
(—1)™ replaced by (—1)*—™. Since p is an odd integer,

(ml ),u—— m— (___“l)m,

i. e. for the above values of the variables, the function is equal to its negative,
and is hence equal to zero.

In the above it was stated that y may be taken arbitrary. As a matter of
fact, either y or z may be so chosen, since these two variables are, from (12,
subjected only to the one condition

27t )

N :I//J.—-{—

( (Vg

e= (A4 20+ 1) 7l + ail, (14)

If 2z be taken arbitrary, our zeros will be

A .
v=(5—%)o 7
__(A+2041 | @y 2 > - (15)
S = ( on o )
z = anything )

For, on substituting these values, we get

Zeam‘i -+ 2n1 [(»g— — %)m3 + (’L‘*_‘;EPZ*:_I_ 4 apd i) m2 4 2 m]

27?i fLirg. OF
m

__apt a (m -— _’i)‘i—-_a; m2ne (m— ) — 2 g (m2 — p) 4 wiAm3 = m2xi i‘_'j_".?i'_tl
—e 16 3¢ 2 2 g "
The effect of changing m into ;— m is to replace the factor ¢ in the above

by
elA (e —m)3 = (A =20 1) u =2 (A 4 2p -} 1) m] i

which may be written, for brevity, ¢*.
1f A is even, L is odd
/4 is odd, ™™ = (—1)", and el™ = (—1)+—m,
So that for all values of 2

‘ 6Lm} — 6)\771,31ri .

Which shows us, in the same way as before, that (15) is also a set of zeros.

The fact that 2 in (13) and in (11) contained the arbitrary quantity y might
have also assured us that we could so choose y as to give z any value we please,
and still have the resulting value of the function zero.

The zeros of ¢;, ¢,, ¢; and those of ¢y, ¢y, ¢y, &5 can also be calculated
directly in the same way we have just found those of ¢,(x, ¥y, z), or they can
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be derived from those of ¢, in a manner similar to that used in obtaining the
zeros of all the rest from those of ¢y,

A comparison of our set of zeros for ¢, obtained by the two methods, which,
in fact however, are the same in principle, will manifestly show them to be
identical, if account be taken of (3).

By the first method, the simplest zeros were first obtained, and from these
we determined the most general zeros, by observing what operations could be
performed upon the function without altering its value, except, perhaps, as to a
finite factor different from zero. By the second method we obtain the most
general set of zeros at once. The simplest zeros ave then gotten by putting

A= p=0 p=—1.

I say that (13), for example, is the most general set of zeros possible of the
kind here considered, for all the operations which leave the value of the func-
tion unaltered, or unaltered except as to a finite factor other than zero, are there
provided for.

Thus / so enters, that a change in it by an even integer amount corre-
sponds to a change in @ and z by some multiple of @, and w; respectively ;
while the change in £ will be an odd integer when 2 and 2z are increased or

diminished by the same odd multiple of %— and %‘i respectively, which by (3)

does not alter the value of the function.

The presence of p permits a change in z alone by any multiple of w;.

y so enters in the value of z that if changed by an integer multiple of
wy, z will be changed by an integer multiple of «w;, and if altered by an odd
(g
5

Finally, ¢ being an odd integer, it represents the result of the operation of
S,, where p is any integer, the effect of which is, as we saw, to leave the value
of the function unaltered except as to a finite factor other than zero.

In the zeros we have found, namely those which cause the cancellation, in
pairs, of the terms of the series, only y or z (but not both simultaneously) may
be taken arbitrary, while x cannot be taken arbitrary at all, since it enters alone
in one of the equations of condition (12). No way of discovering other zeros
has suggested itself; and it remains a question whether other zeros exist or all
the zeros are confined within the above restrictions.

multiple of ©2, the effect on z will be to change it by an odd multiple of
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I11.
The quotients

%o C1 L3 o O y s
b T T T DN -

902 Ly 2 Co 2 Ly @y

are doubly periodic functions, the substitutions

S, and (v, 2y oo, ¥4 Jo,, 24 yws) leavmg 90 unaltered.
S “ (e, y, 25 v+ 0wy, Y4 Joy, 24 yws) Z—— and £ gﬁ (é
Sy ¢ (w, y, z; w4 8uwy, Y443y, 24 2yws) él) «
2>
S, ¢ ({b’, Y, %, & -+ 8wy, Y 4‘8(()2’ 2 - QT(US) “« gg <
P
Sy “(, y, 25 v H8awy, Yy 445w, 242 cg) ¢ %andg’- ‘«
R 1

o, {#, y being any integers.

[f now we turn our attention to the derivatives of these quotients with respect
to @, y or z and inquire whether, analogously to the elliptic functions, these
derivatives are expressible in terms of any combination of the quotients them-
selves, it would seem that such is not the case.

We shall first consider the derivatives with respect to z. ¥or convenience
of reference, the following tables may be of service.

We saw, page 13, that

Coy ¢y Yo, @1 @, ¢y g3 are even as to x and z jointly, and that
g is odd.

Consequently
aa‘f;o, aa?’ aaio, a(%lz%)’ @ﬁ% Js) are odd, and
aa"j/;_ is even.
9%%‘ (@ + o, y, z):‘éa;% (@, ¥+ o, z):_—_é%%(x, Y, 2+ wy) = é%%‘ (%, ¥, 2)
Rl = T S
S, aai7 = (—1)) e~ ¥ aadz (;Z ‘/":/: , Sy %é_: (-—=1) e ¥ E%%"‘% %1 ’

j=0, 1, 2, 3.
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The effect of adding multiples of w,, ws and w; to 2, y and z respectively in

a% is the same as given in (7) in the case of ¢;.

0z

Let us now consider

0 0
9 <d/> ‘r”zé‘zsﬁz‘—&l’zfgé% .

02\ ¢ - 2

2

If the numerator of the second member is expressible rationally in terms
of ¢; and ¢y (j, k=0, 1, 2, 3) it will be a linear combination of quadratic
functions of these, for it has no infinities for finite values of the variables, and
the effect of the substitution S is to reproduce it multiplied by ¢=2#%. More-
over it is even as to = and z jointly, and is changed in sign when z is changed
into z 4+ wg. Finally it is reproduced multiplied by the factor ¢—2#® when
operated on by S; .

Of all the 36 combinations of ¢, and ¢, taken two at a time, only one,
¢y ¢ satisfies all these requirements. Besides

is zero whenever ¢, and whenever ¢; is. Hence it would seem that we could
write

a?z__ ) 0P __
2D az 0—3_ AS&O (,)0

where, since this relation must hold when operated on by S, and when z, vy, 2
are altered by multiples of w,, w,, w, respectively, A is a constant and equal to

0.0, 0,09 ¢, (0, 0, 0
% (0, 0, 00,0, 0

So that we have finally

0, 0, 0 0, 0, O
0 [ ¢ (%, y, z):}_‘/z( )a (05 : ‘rp( )y;z) ‘:)O(w:f‘/’z) (1)
0z P2 (Pc: Y, %) ¢ (0, 0, 0)  ¢0(0, O, 0) ¢ (@, v, 2)

If now we apply the substitution

(@, ¥y, 25 2+ w, ¥, 2)
we shall get

o
0, 0, O)Zd,(0, 0, O
502( ) ) )dzs’.&( ) ) >. 9&()(53, Y, Z) Sbl(w, Y, Z)
) ¢ (0, 0, 0) ¢e (0, 0, 0O) SDS(‘U) v, 2)

a ds (2, y, z)]
503(317 Y, )
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which must hold for all values of #, v, 2. Substituting the first set of zeros
for ¢ given on page 16, this equation is satisfied. But using the second set we
get

620, 0, 02 ¢3(0,0,0) (0, 0,02 ¢,00, 0, 0)
70,0, 0] (0, 0,0 %0, 0,0) (0, 0, 0)

which is manifestly not true, for

¢1(0, 0, 0)==¢4(0, 0, 0)

¢O(Oﬁ O; O)i‘ ‘7%(03 O; 0)

as may be seen from the definition of these functions. Hence we must conclude
that a relation of the form (1) does not exist.
Again, if we consider the numerator of

while

Oio__ 1, UP
;a_<§/_’9\__% az e az
oz Ly _ ‘P%

it will be found that of all the combinations of ¢; and ¢, only ¢, ¢, satisfies all

the conditions that it does. Moreover, the numerator vanishes for all our zeros
of ¢, and of ¢,. But on writing

_@_ 9/'0 (937 Y, z):] — B Lo (Q/: Y, Z) w}/’z (3}5 Y, Z)
oz Lgy (@, ¥, 2) v (v, y, 2)
where, as before, B can only be a constant, we shall find, on substituting the
first set of zeros for ¢,
¢5 (0, 0, O)aa ¢y (0, 0, 0)

g0 0 g 800 0)
—‘PO (0, 0, 0)  ¢,(0, 0, 0)

Using the second set of zeros for ¢y, we get

¢ (0, 0, 0).2 ¢,(0, 0, 0)

B — % .
_—(;52 (07 09 O) ,L/'O (O} 0, 0)

These two values are not the same, since
¢3 (0, 0, 0) = ¢3(0, 0, 0).

Hence we conclude that no relation of the type (3) exists. In the same way,
the expressions for the derivatives of all the various quotients of a ¢ by a ¢ in
terms of the quotients themselves break down.
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The difficulty seems to lie in the fact that the fundamental periods of ¢; are
multiples of those of ¢;. For we can pass from ¢; to ¢; 11 by either of the two
substitutions
(g

(@, ¥, 25 2+ ou Yy 2), (@, Y, 25 @, 4, 24 ).

At the same time ¢; from which ¢; was derived as the result of the substitution
Sy, is left unaltered by the first of these substitutions, and is changed into
¢;j4-1 by the second.

All our relations, arrived at in 2 manner similar to that indicated above,
broke down when subjected to this test.

It should be noted that this test does not apply in the case of the 6- and
f[-functions. As no general theorem analogous to that made use of in this
connection in the case of the &-functions could be established for the functions
here considered, the above method was employed, to show that no such relations
exist.

In a similar way, no quadratic relations between any of the ¢; and ¢,
satisfying all the tests at our command, could be found.

The objection, above mentioned, as holding good against the relations
between the derivatives of the quotients and the quotients themselves, do not
seem to hold in the following cases, where only the quotients of the ¢; or of the
¢ are involved separately. Thus, it was found that

, 0 , ) 2
o 500 Sy Yy 7 ]_‘/2 (5% Y, 2)9;990(3/, Y, ~) ©o (.Cb, Y, z) @z( y Y, z)
GLex(e 4, 2 5 (@ Y,
/’0 O: O: 0) = /2 O O 0
__..9'9( )a dy ( ) (v, Y, 2)— o3 (x, Y, 2) (4)
9’5(0 0 O)"_ (O O O) 909( y Yy A )

and

d
¢O(m, Y, z):}_ssz( » Y Z)gs/} ( > Y z) {/0( » Y z)azsj2(m) Y, Z)_g

ozL¢h (2, ¥, 2) 5 (2, Y, 2 2)
/ =~
__9)0(0, 0, 0) 829’2(0’ 0, 0) P (x, y, 2)—d3(x, ¥, 2) (5)
~¢§(0, 0, 0)—¢i(0, 0, 0) - ¢ (@, 4, ) ’

which may be derived from (4) as the result of operating with S}, together with
the other relations derived from them by all the operations at our command,
satisfy all the tests that were applied to them.

These results are given here, not as proved relations, but as such which
have not been disproved.
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The derivatives with respect to » and y are more complicated than those
with respect to z. Hence it will be at least no easier to establish relations
involving the former than to establish any involving the latter. Thus

1/ Mm—= 1w
000 _ 261 "=7 4 s
Wy Me== —~co
M=
:—-_;2.’_‘?1 g““E(l) 2 m2 6E(m-=|-~1)
Wy m=—cw
y Mm=—uon
p— g_n_?f e— & (1) 2 (77&——1)2 6E(m)
Wy M=
_ %) T 271 on o
— ¢—£1) ZZ’)TI/ eE(’m) 4 ?’ZmeE(m) _+_ / Z,@E\m’)
CU2 (02 OF)
— o—E) aéﬁo 2G’)s 845 90 :}
_ oy ws 02 (02

Similarly

aspo

am

ox a)1 oy w, Oz w,

— o—E ) 8% 3 @2 8% + 3ws a(fﬁo 2“1 900] .

In some respects the functions

By = Yo &2 D, = 01 @ Vo == ¢y &y V=1 ¢4

are simpler than the ¢, and ¢;. Thus, from what was seen before,

@y, @,, ¥, are even as to & and z simultaneously, and

7, is odd.
S Oy—= — 22N @, S, V)= —e2ED ¥
8, D, = e 2EL P, 8 W, = EO P
8,0, = MDY, S, Uy= — ¢ 2E® @,
Si, = &Y S, ¥, = —2E1 @,
Oy (@ + iy Y+ @, 24 ws) = D;(z, ¥, 2)
Pi(w+4 oy, y, z )=0(, v, 2) 7=0, 1
P, ( =, y+wy, z )=&(x, vy, 2
P, ( =, y, 24 wy)=® (v, y, 2 /
Yilw+ o, y =+ o, Z+(’)3):_"7:9F7 1(2, ¥, 2) N
V(e + o, Y, 2 )= ¥q1(, Y, 2) ‘
¥, ( =, Y+, z  )=—Y%(@®,y, 2 ¢ = ]
V,( =, y, z4w)= ¥ (z, vy, 2) ( Vo= ¥,
(@, Y, z“% = ¥4 (, Y, “>J
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while, as before
Y (z + %) Yy, z) and ¥, (v + %: Y, 2)

are entirely new functions, not expressible in terms of @,, @,, ¥,, 7.

D,
aaz — Yo aaéiz + 902 a%
d) 21 7
S aaz — ¢—2EM) o l:a% aif: 0 :I 22 W) o, [a% T: %]
‘ 471
=— 50 [% aa? F ¢, aa‘i‘)] + (f: gy @,
aa(z o—2E (1) [aafo 42”: @0] .
3
Similarly
a(ﬁ —2E (1) [a D, A4mi p ]
. ¢ oz W (pl_
a Vo _ __ emq) [a U, 4w Qfo“
Yo T wg
aZF —2um| 97 47r7}gf]
az az (g !
and
a(D —2E (3) 0%y 2mi g7
t 0z ¢ L O% Wy gfo_
a(pl — —2E (%) f_-a g[/'l 277'6. ]
&2 ??- ¢ | 02 W3 wi_J
a gFO —_ ~-2F (1) a (DO 271'2. _1
S oz ¢ dz W5 d)O_J
a gp‘l —_— —2E (}) a @1 277?:
5, o0z ¢ Jz (W4 ?,

If by aid of these formulz, we attempt to express the derivative with respect to
z of the quotient of any two of our functions @,, @,, ¥,, 7, in terms of any or
all of the quotients, we will meet with the same difficulties as before. Thus if
we take, for example
07, 2%,
d /¥, Dy 0z — % o0z
0z ( ) 7

we shall find that of all the combinations of our functions only @; ¥, behaves
27, 0%,
&, e — ¥, ¥

exactly like when put to the test of all the above operations,
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and besides, the numerator of our expression for the derivative vanishes for all
the known zeros of @, and of #,. But on writing

d| Yz, y,2) | _, P, y, 2 Yz, y, 2
7z L(b() (%, ¥, 2) =¢ O (z, y, 2) (6)

where, as before, (' must be a constant, we shall find that, according as we use
the first set of zeros or the second set of zeros of ¥, (z, vy, z), which are those

of ¢y (x, y, z) and ¢ (x, ¥, 2),

2,0, 0, 0) 27,0, 0, 0
C= #,(0,0,0) ¥,(0,0,0)

or
2,(0, 0,0 27,00, 0, 0
(00(0) O: O) gp¢1(07 09 O).

=

But these two are not the same, since
(0, 0, 0)% #(0, 0, 0).

Hence we conclude that no relations of the type (6) exist.

Quadratic relations between &,, @,, ¥, ¥, also seem not to exist for the
same reason, viz. because the periods of @, and @, are smaller than those of ¥
and ¥,.

It may be mentioned in this connection, that the following symmetrical
quartic relation between the functions @,, @,, ¥, ¥, was discovered in the
course of the work, which, as far as could be tested, satisfied all the conditions
imposed ; viz.

G B— V5 Ni=A[0+ &1 — V3— V4]

when A is a constant whose value can be obtained readily.

IV.
Consider the holomorphic function
k=ow»
; i [59 o 42 -
fi(z, ¥y, 2)= k]__—IO(l + 2 Q12+ 2w (R (2 12+ T8 ot 1) 4 )

where the real part of o is negative. It is obvious that

1
. DT dy 4 4z fl(m} ?/: Z).
1+6‘2a+2m(?ﬁ+&3§+w3)

Sifi (@, y, z) =



Again, writing
fo (@, y, 2) = II (14 ¢ Ck+ D2 —2m [iﬁ’l (27c+1)2__4l(27 41)+ w.o,))
%
we see at once that
3 49 4
S1f2(x’ Y, z):[1+6“2a_2m(x+ /+ ) ]fz( T, Y, 2).

Finally, writing |
F(z, y, 2)=fi(, v, 2)-Jo (2, y, 2)

we have
—-—2a—2m(3_m g 4
St (@, y, Z)_1+32 9 +4;2 2 (2, y, 2)
i (==
14 e+ (u,] +2
or

SiF (z, y, z) = e =7 Z(_+4U+4z ' F(w, y, 2).
We also have

F(w—{—%}, y, 2)=F (z, y—l—(:)f, )= I (z, vy, z—{—%?i):F(m, Y, 2).

If we put

our funection becomes

X (=, y, 2)=
I,}[(1+ g4 (2k+1)8 42 [sTl (Qk-+1)2+ &(2k+1)+ é]) (1+ oA (20e+1)3—2mi [Qﬁl (2k+1)9——g_2(2k+1)+ g_gj)] _

Now we have
X+ 2, y, )=X(@, y+ £, ) =X (2, y, 2+ L)=X (2, y, 2),
and, denoting by T, the resulting form of S, viz.

3A.Q L 4y, | 6482, o 208y | 4xldy 2] 449, 5)
)ylglpl m:P}lgP !le'ﬂip

I=(z, vy,

we have
—_— A =2 ( Y 4
T1X<37, y? Z)__G A 2771,(0].*_92—}—&3 X(CU, y) Z).

The function X (z, y, z) which resembles the functions already considered,
in being periodic, and in being reproduced to within a factor on being subjected
to a linear substitution, seems to differ from them in not satisfying any simple
differential equation or equations. There seems also to be more freedom in
obtaining the zeros of this function. Thus, while in the case of the functions
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already considered, only y or z separately could be taken arbitrary, these two
variables having only to satisfy one condition, and = had to be chosen subject to
an independent condition, our present function X (v, v, 2) vanishes whenever
either of the following conditions is satisfied :

—

A2k 1P42m | T@h 1P+ L @41+ 2 | =2+ 1)7i
7 2, 7,

or

R

_
A (2k + 1) — 21 %1(210 - 1) %(275+1)+.;§3_=(25+ 1) i

where [ is any integer, positive, zero or negative, and % is any positive integer,
including zero. The analogy, however, between our functions is made the
more striking by noticing that the zeros we found for ¢, (¢, v, z) are also such
for X (x, y, z). But all the zeros of the latter are not included in the former.

It may be interesting to note still further the similarities and the dissimi-
larities existing between our two classes of functions. For the sake of brevity
write

b

— : 3 sl 2 Y | L2
By (k)= A (2k + 1)° + 274 __E(Qk—}—]) +E(2]C 1) !23-!.

Increasing z by —i'gﬁ we get a new function

X (@, y, e+ DE=X, (0, g, =TI — B ©) (1—oB)],
k

And as before

£ Q L9
X(m+‘2—17 Yy, 2)=X(=, 3/+“2"22 ) =X (, y;z+f2—§)

L4 £ LY
=X+ g+ =X, 9,

o R £ 8 19
2;2 } 2D>:X(x+"‘2“%: y7z+’§>:X(®+”§) ?/+§2’ 2)

=Xz, y,2) =X, (v, v, 2).

The effect of the substitution 7}, is to change

L (k) into E, (k< p), and E, (k) into E, (k— p)

_[14e 0] [14ea0], ... [14 e B@—D] ‘
%XO(xa y) Z)——.llgl—{-@Elw) %Illl::l eEl(l) ]....[1_{__6&71(1)_1) ]Xo(lb,y,Z)

:e_[E1(0)+E,(1)+-~--+El(p“1)]Xo(5U, Y 7).
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And, in the same way
%Xl(m) y, z): (——-—1)37 6"‘[E1 (0)+E1(1)+ e +E1 (p'—'l)] Xl ({I;, y, z).
The effect of the substitution

SAY 208, 348 9 2
.1,3/ : ?212 l 27??:2 I L7 3+/U 3+AQ)

)

A———— [ l
Ii=(»,y,z2; v

is to change
E, (k) into E, (k4 %), and E, (k) into B, (k— 1)

thus giving rise, as before, to entirely new functions, when applied to Xj (2, Y, 2)
and X, (¢, v, 2)

T, Xg(x, y,2) = Ey(z, y, 2) = H[(1+6El<k+%>) (14 e e=1)]

— H[(l + 4 (2k +2)3 + 2mi [—~ (2k + 2)2 + 2k +2) + (—)53-]) (]_ +6A (2%)3 — 21 [Qil (2%)2 — l w])]

2

and
T Xi(@, y, ) = =1 (v, y, 2) = H[(l““eENJ”)) (1 —ef =],

It is noticeable that instead of the periods of & (z, v, ) being multiples of
those of X (z, v, 2) we have

_ 0 - LY -
‘5(517"'_71‘1"’ Y, 2)=2Z (31,3/-1—*?-;2-,2):5(% Y, 24 L5) =Z (v, y, 2).
Again,
Zo(x, y, 2425 )—-—:1(37) Y5 2),

El(m, Yy, 2+ 3) :0(3/; Y, 2);

but there seems no way of passing from Z, (z, y, z) to 5, (z, v, z), OF Vice
versa, by a change in « or y.
As in the case of X (z, v, z), we have

Tp EO (m, Y, Z):@'—[El @D+ED+.... +E(p—P] EO (CL, Y, Z)
1}951(53, Y, z):(__l)pe—[El(%)+E1(§)+v- T+ E (p— ’z)]ul( y Y, Z).
Also

Ty Sy(z, y,2)=1I [(1 4 5 *+1) (1 4 eFs (k—1)]
k

= O X (2, y, 2)=T1 X, (z, y, 2)
Ty SBi(, y,2)= — e BO X (2, y, 2) = T}, Xy (2, v, 2).
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But we had, by definition
T, Xo(zy y, 2) =&, (%, y,2), T, X (x,y,2)=25(z,y,2).

Hence we see that
TNX(,y,2)=T Xz, vy, 2)

and similarly
Tig(m: y,2)=T15(z, ¥, 2)

1. e. the effect of two successive operations of T} is identical with that of a single
application of 73.

Changing the sign of z and z simultaneously interchanges FE, and E,.
From this follows that X and X, are even as to @ and z simultaneously. But
for & (z, vy, z), we have the values changed, thus

In conclusion, it may be mentioned that by taking the logarithmic deriva-
tive of X (=, y, 2) with respect to z, we shall obtain a new function analogous
to the Z-function of one variable. Thus, writing

: ‘ x
Xo(w, yy 2= TL{ Lot @0 i, k)4 o4 0k t%ams 640 os [ 2 g (2h+ 1)+ 5]
we have

9 Xy (%, v, 2)

0z — _
— A(x z) =
Xo(wa Y, z) ( 4 )
o A G Pami k1) sin [2 - (2 1) 3]
Z 7 o 1 vy
9 2 " .
§ k=0 1_*_62A(2k-{—113+47rig;(‘2k+1)+26A <27c+1)3+2ni§”;(2k+1) 00S [27[,9_1 2k+1)2+:93]

This series is uniformly convergent, since the real part of A is negative,
and therefore represents a function. We have, evidently,

Az 4+, y,2)=d(x, y+&, 2) = A (v, y, 2+ &) =4 (z, y, 2)
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and J

—A—2mi (X LY L2
v__[e M(Q +92+93] 272

Tl/l(w,y,z)—az 1 ﬁ—{—/l(w,y,z):-——-—g;—{—/l(m,y,z).

—_—d =i Y E
e~ 4T g +q, Tay

Another differentiation will give us a doubly periodic function, for

éa‘éA (z, ¥, z):g“z/l(x"l“gl; Y, z):”a%*i (@, y+ £, z):éa‘z/l(my Y, 24 &)
and ﬂ“gz‘A(m» Ys Z)Z&A(‘% Y 2)-

The successive derivatives also have the same property.
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