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Abstract

The discrete model X1 = Axt for the dynamics of the age composition
of populations with constant age-specific vital rates over time leads to
the limiting result
lim x /rt =u(v,x )
t )
ta®
Necessary and sufficient conditions for the validity of
. t
llm[xt -ru(vx )] =0,
t»®
which is stronger for populations with r > 0, are given in Theorem 4;
the sufficient condition ]xj|<l for kj # r holds empirically for human
populations, and further justifies use of the approximation.
+ t
X, =T u(v,xo)
in demographic work. Consideration of the two limits makes it clear
that the behavior of x_ should be discussed separately for the cases

t

r 1.

VA

Because of the preference of many demographers and biologists for
the continuous version of stable population theory, analogous results

for the birth density b(t) are presented in Theorem 7.



81. Introduction

The approximation
X, & rtu(v,xo) s (L)
routinely used in demography, expresses age distribution X, at time t in
terms of an initial age distribution X, and the positive eigenvalue r and
corresponding positive eigenvectors u and v of a population projection
matrix. Justification for the use of this approximation is provided by a
theorem concerning the asymptotic behavior of the sequence {xt/rt} of
normalized vectors, which asserts that the relative error of the
approximation becomes arbitrarily small as t increases. For populations
with r > 1, a stronger limit theorem given in 83 asserts that when its
conditions are satisfied, the absolute error of the approximation tends
to zero as t increases. The theorem is trivial mathematically, and
depends for its significance on the empirical observation that its
sufficient condition holds for every population projection matrix con-
tained in the compendia of Keyfitz and Flieger ([1968], [1971]).
To discuss the dynamics of a closed population with constant age-
specific birth and death rates in terms of the discrete formulation
xt+1=Axt s t=20,1,... 2)
is largely a matter of taste; an entirely equivalent discussion would
arise from consideration of the continuous formulation
b(t) = g(t) +‘ro;>(s)b(t-s)ds s t20 3)
for the birth density b(t) in terms of the functions g(t) and ®(t),

with the approximation

b(t) = ae’t . )

Because of the popularity of this latter formulation of the problem

among both demographers and biologists, sufficient conditions for the



4=
continuous analogues of discrete results to hold are given in the £final

section of this paper.

82. Preliminaries for the discrete case

In equation (2), A is a population projection matrix, defined in

terms of its elements a]._j by

o
.

H

]

1, j=1,...,n

[\
i
1]
-
[
]

2,...,n, j =1i-1
0 , otherwise

where bj?O, bn>0 and 0<st1. Properties of such matrices have been dis-
cussed in detail recently by a number of authors, among them Goodman
[1967], Keyfitz [1968], Pollard [1973], and Sykes [19697]. Although the
simple structure of population projection matrices makes the restriction
to finite dimensional spaces unnecessary mathematically, it appears
eminently reasonable biologically, and the discrete model (2) has enjoyed
considerable popularity in the literature. See Feller ([1968], Chapter
XIII) for the extension of the theory to the denumerable case.

Right and left eigenvectors of A will be denoted respectively by uj
and Vj’ and the corresponding eigenvalues of A by lj; i.e., Au, = ljuj

J
and vjA = vaj’ where Xj is a solution of the characteristic equation

T pbat=1 (5)
p.b.y =
i=]_ 1 1
with
1 ,1=1
pi = i-l .
v s, 7 1=2,..10
k=1

Equation (5) has exactly n roots, none of which is zero because pnbﬂ>0,

and hence the eigenvectors uj and vj exist. 1In general, the roots
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Ayse-es A, are complex numbers; if a given Aj is not real, then its
complex conjugate"):j is also a root. From the eigenvector equations, it
follows that if uj and vj correspond to kj, then ﬁj and'Vj are the
eigenvectors corresponding to iﬁ. Although it is not necessary for the
discussion of the limiting behavior of the sequences {xt}and {xt/rt}, it
is convenient to keep in mind the expressions given by Goodman [1967] for

the elements of the eigenvectors, in which the first element of each

right eigenvector uj is taken as unity, and left eigenvectors are

normalized to give Zu, .v.,. = 1; these expressions are
iJiil ‘
u. = =i+l
ji 1]
and
v Z b u._.
ji k=i PrPk}j / e F O
where
[+ n
-k
.= X X pbA
M ier ke KK
n _s
= © ip.b A" .
=1 11

By convention, r = Al denotes the ﬁositive root of equation (5), and £he
eigenvectors corresponding to r are denoted by unsubscripted u and v when
they appear alone.

In general, vectors will be considered as elements of(fﬂ an n-
dimensional vector space over the field of complex numbers. The notation
X > 0 means x # 0 and X, 2 0, while x>>0 implies that all elements of x
are positive. For the inmer product of two elements x and y (both con-
sidered as column-vectors) of the space, the standard notation (x,y¥)

will be used, so that

x,y) = i xk?k .
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(This notation has been chosen to make more obvious the analogy between
solutions in the discrete and conAt:inu0us cases; readers unfamiliar with
it may read "(x,y)" as "xy,'" where x is taken as a row- and y as a
column-vector.) Repeated use will be made of the readily verified
properties of inner products that

xy) =0,x) = §,%) >

(kx,y) = k(x,y)

that

for scalar k, and that

(x,My) = M*%,y)
for a matrix M, where M* denotes the conjugate transpose of M. Note
that the first two properties imply that

x,ky) = k(x,y)
and that if xM = Ax for real M, the second and third imply that

(x,My) =X (x,y).
Two vectors are said to be orthogonal (notation: x ALy) if and only if
(x,y) = 0; similarly x is said to be orthogonal to a subspace § of "
if and only if (x,y) = O for every y in S. 1In particular, a right
eigenvector us, corresponding to the eigenvalue Ay of a real matrix M,
is orthogonal to all left eigenvectors of M except Vi, the one corres-
ponding to Ii' Since it is always possible to normalize so that
(ui,Vi) = 1, in general

(uys Vj) =64 >
where 6ij = 0 when 1 # j and 4 iy = 1l when i = j. It can easily be
verified that the expressions given for uj and vj above satisfy

(ui, vj) = 6ij’ and hence these vectors Upseeert and v yeeesVy form a

1
normalized biorthogonal system for €" whenever the eigenvalues of A are

distinct. Note also that for real x, if (x,vj) = 0 then (x,'\-rj) =0, so

that 1if x A vj then x J.Sj, the two-dimensional subspace of Cn spanned by
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v, and 53, and hence x can be written as a linear combination of right

]

eigenvectors u, excluding uj and Ej'

B3. Limit theorems for the discrete case

For a given value of X the solution of equation (2) is
t
X, = A X s t=20,1,... (6)
so that the behavior of the sequence {xt} can be, and usually is, dis-

cussed in terms of that of the sequence {At}. The standard result is

THEOREM 1. Let A be a population projection matrix with positive
eigenvalue r and positive (right and left) eigenvectors uw>>0 and v>>0.
Then

lim At/rt = uv
t-*®

if and only if A is aperiodic.

Because a sufficient condition for aperiodicity (also called "primitivity')
is that fertility be positive for two adjacent age groups (i.e., that

both bj>0 and bj+f>0 for some j = 1,...,n~1), Theorem 1 applies to
matrices A for human populations in practice. When A is periodic with

period d € n, the results are (Cox and Miller [1965] p. 123)

lim Atd+sj/rtd+s - o21is(3-1)/d

pt, 2-) J

M

) u.jvj s 8'=0,...,d-1

| d
(in particular, for s = 0, lim APz = £ u.v. ) and
t=Po j=1



, d-1
11
t=>® = s=0

td+s /rtd+s = uv

where eigenvectors corresponding to eigenvalues with hj‘ = r have been
numbered 1,...,d. Because discussion here is primarily of eigenvalues

satisfying I)\j |<r, strongest results for periodic matrices A are not included.

Theorem 1 implies, but is not necessary for
THEOREM 2. let A be an aperiodic population projection matrix with

positive eigenvalue r and positive eigenvectors u and v, and let

t
x, = A X s where X > 0. Then
1im x_/x° = u(v,x ) .
t o)
tyx

Theorem 2 is taken as justification for the use of the approximation
«  t

X, =T u(v,xo) (L)

given in §l.
A closer look at Theorem 2 will clarify the sense in which the
approximation (1) is a good one. Write
t
e, =X =T u(v,xo) . 7

Then by Theorem 2 the relative error in the i-th element of e
t s e
eti/r ui(v,xo), satisfies
e . b 4
ti
1im - = lim t;i- -1
t-»® ru_ (v,x o
ul( s o) t T ui(v,xo)

= 03
i.e., given A and X s for each € > 0 we can find a value T such that

t
| eti/r ui(v,xo)|<€ for all t > T. In other words, the approximation (1)
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To simplify discussion of {et}, assume further that the eigenvalues
of A are distinct, so that the eigenvectors uj are linearly independent
(Gantmacher [1959], p. 72). Then an arbitrary vector X, considered as

n .
an element of C , can be written

where the coefficients atj of X, relative to the basis Upseeerty are

found by noting that

(Vj’xt) = (xt’vj)

]

({‘atiui) Vj )

since (ui’vj) = Gij' On the other hand,

(Vj: xt)

t

t
A.(v.,x
A 5%,
since A is real, so that

AT )
X, = s (Vv.,x Du,
€ o1 3TN

(Equation (8) follows equivalently, and more usually in the literature,
from the similarity of A to a diagonal matrix if its eigenvalues are
distinct.) From equations (7) and (8),

g t
®t ~ j=2lj (Vj’xo)uj

(Note that e, is thus an element of an (n-1)-dimensional subspace of
Qn, which is spanned by Uy, ...,un.)

It i8 clear from equation (9) that {et} may diverge if IXj‘Z 1 for

(8)

9)
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A £ r, but that it will not if (vj,xo)~= 0 for each eigenvector
corresponding to an eigenvalue different from r for which |hj| 2 1.
Because r is the only positive eigenvalue of A, such.kj £ 1, and so it
also follows that if {et} converges, it converges to the zero vector.

These considerations provide the motivation for

THEOREM 3. Let A be an aperiodic population projection matrix with
distinct eigenvalues, and let X, = Atxo, where X > 0. Then {et}
defined by equation (7) converges if and only if, for each A £ r,
either |hj| <1lor (vj,xo) = 0; under‘this condition,

. t
lim [x, - T u(v,xo)] = 0.
to9»

Proof: 1f, for j =2,...,n, either ij|<1 or (vj,xo) = 0, then
1im.ljt(vj,xo) = 0, and so sufficiency is established. For the necessity
of the condition, suppose that {et} converges to some vector e in the
subspace spanned by LPTRERFL ST Because L YRRREL are linearly inde-
pendent, the coefficients aj of e with respect to them are uniquely
determined, and hence lim Ajt(vj,xo) = aj exists for each of j = 2,...,n.
But lim xjt(vj,xo) exists only if either |xj\<1 (since lj £1) or

(v.,xo) = 0, and in either case a:.I = 0, which implies that e = O.

J

Modifications necessary in Theorem 3 to include periodic matrices are
minor. |

Although Theorem 3 was stated without reference to the value of r,
it is trivial when r < 1, since by the Perron-Frobenius theorem the
sufficient condition Ilj|<1 holds then. Three cases may thus be dis-
tinguished, according as to whether r é 1; when r S 1, the requirement

of distinct eigenvalues in Theorem 3 is unnecessary. Furthermore, because
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t t. *t
X -T u(v,xo) =r [ ;E --u(v,xo)] s (10)

which of Theorems 2 and 3 is the stronger depends also on the value of
r; if r S 1, Theorem 2 implies Theorem 3, while if r = 1 the reverse
implication is true.

Note that when r > 1, the well-known results concerning proportional

age structure c_ = xt/Ex birth and death rates bt and dt’ and the one-

t tk’

step rate of natural increase--ft = bt - dt follow from the weaker
Theorem 2. Indeed, for the population in the n reproductive age groups,

¢ = 1lim ¢

> t

X /rt
. t

= lim t
B Palt

= u/Z :
ok
similarly, '
b = lim bt

to=

R
= lim ——t=

to> z'xtk
= r/Z‘.uk
and, taking s, = o,

d =1lim d
tY e

=1-1r+ r/Z‘,uk :
finally

P = limPt
>

= 1lim (b, - d
tvo t t

)

=r -1 ,
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each independently of initial age structure X5 On the other hand,

convergence of the age structure x_, and in particular of the "birth"

t
sequence{:xtﬁ , to a sequence which depends on initial age structure
only through the scalar (v,xo) requires Theorem 3 when r > 1. Similarly,
when r < 1 the above results require the stronger Theorem 2, while con-

vergence of the age structure (to the zero vector!) follows from

Theorem 3.

Case i: r < 1. From the Jordan form (Gantmacher [ 19597, pp. 151-3) for

A, or from the fact that r is the spectral radius (Karlin [ 19667, pp. 479-80)

of A, it follows that lim x_ = 0, and of course lim rtu(v,x ) =0, so
tHo t=>o °

l:i.m[;xt - rtu(v,xo)] =0
ts®

follows trivially from a theorem on the limit of sums. The conclusion
of Theorem 3 holds for any population projection matrix with r < 1, and
although Theorem 2 also applies, note that by equation (10) the absolute
error of the approximation (1) is less than the relative error when

r < 1. It is also true in this case that Zx_, converges (Feller [1968],

t tl
p. 330), and so the strongest result when r < 1 is
@ (v,xo)
X ., =
t=1tl 1l -N

where N = Zpibi is the net reproduction rate implied by A.

Case ii: r = 1. Theorems 2 and 3 are equivalent when r = 1, both give

lim X, = u(v,xo) .
t>o

Stronger results may be found in Feller ([1968], Chapter XIII).

Case iii: r > 1. By equation (10), when r > 1 the relative error of

approximation (1) is less than the absolute error, and so Theorem 3 is
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stronger than Theorem 2. Only in this case do the eigenvalues of A
other than r play an important role in detefmining the behavior of {et}.

Three general types of behavior for {et}, and hence of {xt}, are
thus possible. They are illustrated by Figures 1-3, which show values
of {etl}, the errors in the discrete "birth" sequence, for 100 five-
year steps (point values have been connected by straight lines even
though calculations were made only at integer values of t) using the
net maternity function for Japan, 1964, adjusted to give, respectively,
ma:;r |le <1, =1, and > 1 (details of the calculations may be found
Ai the Appendix). It is perhaps unneéessary to point out that Theorem 2
guarantees that {et/rt} always behaves like {eé in Figure 1. If r S 1,
{et} converges to zero in the damped oscillatory manner of Figure 1, as
is also the case when r > 1 but ij‘< 1 or (vj,xo) = 0 for lj # r. Then
also {xt} converges to {rtu(v,xo)}- If r > 1 and |kjl = 1 for one or

more kj # r, then {et} remains bounded and eventually oscillates around

zero; for example, if only one of Ags++-A  satisfies |lj| = 1, then for
any norm,

lim ||e || = v.,x )| .

Um o] = | (x| o

as illustrated by Figure 2. It follows that in this case {xé} will
oscillate around{ rtu(v,xo)}- Finally, when r > 1 and 'lj‘ > 1 for one
or more kj #r, then { et} diverges without bound, and hence {xt} will
depart farther and farther from {rtu(v,xo)} as t increases (see Figure 3).
The curious fact that matrices A corresponding to human populations
satisfy the sufficient condition 'ljl <1, kj # r, of Theorem 3 was
apparently first noted by Lotka ([1939], p. 66), although it is difficult
to imagine that the number of cases available for his inspection was large.
Somewhat stronger evidence is provided by the data given by Keyfitz and

Flieger ([1968], 11971]) for a large number of human populations.
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Calculation of all eigenvalues of each of the matrices given there (and
of several others) produced none, other than the positive eigenvalue 1,
which was as large as unity in absolute value. It thus appears reason-
ably safe to assume that the conclusion of Theorem 3 applies to human
populations, so that {xt} converges to {rtu(v,xo)}.

It is perhaps worth noting that, although the sufficient condition
on the eigenvalues of A holds for human populations, the condition that
X, be orthogonal to one or more of the left eigenvectors ACYERETE is
also easy to describe. Recall that if Ak and.xulare complex conjugates,
then so are Vi and v and so any vector x6>0 which can be written
x, = .Zajuj is orthogonal to the subspace spanned by Vi and v It is

jk;m
easily verified that such vectors may be positive; an important example
is the one-~dimensional subspace of vectors x which satisfy x = ku, where
k > 0, for which X, = rtku for all finite values of t. 1In practical
questions regarding convergence of {xt} to {rtu(v,xo)}, it appears to be
the case frequently that X is "almost orthogonal' to one or more left
eigenvectors, so that {xt} converges quite rapidly regardless of the

proximity of max|xj| to the unit circle.

]
gh. Multiple eigenvalues

The possibility that the characteristic equation (5) may have roots
of algebraic multiplicity greater than one seems largely a nuisance in
population mathematics. Keyfitz ([1968], p. 51) reports that such cases
do not arise among human populations in practice, and this is confirmed
by an examination of the eigenvalues of the matrices given by Keyfitz
and Flieger ([1968], [1971]). While the mathematics necessary to include
matrices with multiple eigenvalues in the theorems of the preceding

section is not difficult, it is rather technical, in that Jordan forms
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replace diagonal matrices and Jordan chains are used to generate the sub-
spaces corresponding to eigenvalues of algebraic multiplicity greater
than one, but geometric multiplicity one. It is also true that the
specialized structure of population projection matrices allows a more
direct proof of theorems like Theorem 4 than one which, like that of
Theorems 1 to 3, treats the behavior of {xt} as a special case of the
theory of irreducible non-negative matrices. For these reasons, although
Theorem 4 extends the result of Theorem 3 to the case of matrices with
multiple eigenvalues, proof is given only of the sufficiency of the
condition ihj|<1, Aj#r. A full proof along the lines of that of Theorem
3, and valid for irreducible non-negative matrices, is available else-
where (Sykes [19757). The statement of Theorem 4 incorporates both the
ad justments necessary for multiple eigenvalues and the points made in

the discussion following Theorem 3.

THEOREM 4. Let A be an aperiodic population projection matrix, with
positive eigenvalue r and positive (right and left) eigenvectors u and v,

and let x = AFxo, where X > 0. Then

(L) if r <, X, is bounded for t 2 0, and

(a) limx_ =0
tow ©

(b) 1lim x /rt = u(v,x_)
te>® t (o]

© (V;xo)
(c) tElxtl = 1 - N

(i1) if r = 1, X, is bounded for t 2 0, and

lim x, = u(v,x )
too £ °
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(iil) if r > 1, X, is bounded on any finite set t = 0,1,...,T,
while xt/rt is bounded for t 2 0,

1im xt/rt = u(v,x)
tHo

. fes t
and in addition {xt -r u(v,xo)} converges and

. t
lim [xt -r u(v,xo)] =0
t>®

if and only if for Aj # r either |xj|<1 or x_ is

orthogonal to the subspace Sj spanned by the left

Jordan chain for A corresponding to Aje
Proof: Proof of all assertions except the last may be found in the pre-
ceding section; the sufficiency of the condition Ixj|<l for the last
assertion is easily shown by considering the matrix B = A -ruv. A
simple induction leads to Bt = At - rtuv, so that equation (7) defining
e, may be written e, = tho' Note that Bx = 0 implies B*x = 0 if and
only if x = 0 or x = ku, and that the eigenvalues of B are those of A
which satisfy Kj # r. Hence if |xj|<1, the spectral radius of B is less

than unity, and so lim e, = lim tho = 0,

Theorem 4 of course includes Theorem 3 as a special case, for when
the eigenvalues of A are distinct, the subspace Sj is simply the one-
dimensional space spanned by vj. As in the simpler case, it is easy to
characterize those vectors X which are orthogonal to a given subspace

Sj; they are given by X, = f;kuk’ i.e., as a linear combination of

|
those u which do not correspond to the eigenvalue Kj' Note again that

the existence of multiple eigenvalues is irrelevant when r < 1. Modifica-

tions of Theorem 4 to include periodic matrices should be obvious.
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The behavior of { e } determined by Theorem 4 is identical to that
given after Theorem 3 with one exception: if max |A.|=1, then {et}
S
diverges but is bounded if the mmltiplicity of kj is one, and diverges

without bound if the multiplicity ofA_j is greater than one.

§5. Limit theorems for continuous stable population theory

In the continuous version of stable population theory (see, for
example, Coale [1972] or Keyfitz[ 1968]), the birth density b(t)
satisfies the integral equation

b(t) = g(t) +1r§ e (s)b(t-s)ds , t 2 0.
This equation is known (Riesz and Sz.-Nagy [ 19557, p. 147) to have a
unique solution, given by a uniformly convergent Neumann series, on any
finite interval on which g and ¢ are bounded. 1In the theory of
probability, the equation plays a prominent role in renewal theory,
where it is possible to extend the domain on which the solutioﬁ is
bounded to the non-negative real line because @ is taken to be a
probability density. Although extensive accounts of renewal theory are
available (Feller [1968J, [1971], smith [1958]), it has remained
customary in the demographic literature to assume the existence of a

solution to equation (1l1) of the form proposed by Lotka:

o T4t
b(t) = X ae
i=0

where Ty is a root of the characteristic equation

Ioo
o€ %P (s)ds = 1

and the numbers a, are constants; necessary and sufficient conditions

(11)

(12)

(13)
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for the validity of equation (12) were given by Feller [ 1941], and dis-
cussed in the special context of demography by Lopez [1961]. Although
the assumption that a solution of this form exists is quite restrictive
mathematically, Lopez argued that its requirements were met in practical
demography (even though it is not in fact used in numerical work, and
its use in theoretical work has frequently been invalid); the solution
has the additional advantage of providing an obvious analogue to
equation (8) in the discrete case.

In equation (11), g is the contribution to b made by the initial
population, and @ is the net maternity function

p(a) = p(a)m(a) ;

where p(a) is the proportion of births which survive to age a and m(a)
is an appropriately defined fertility rate at a; it is usually assumed
that p is continuous, monotonic and non-increasing, satisfying
1 2 p(a) 2 0, and that m is continuous, non-negative and bounded,

satisfying 0 < m(a) < M. Recalling that x is the discrete analogue

tl

of b(t), and that normalized ujl

(12) and the discrete solution (8) can be completed by following

= 1, the analogy of the Lotka solution

Goodman [ 1967] in defining continuous functions uy and Vi for i = 0,1,...,

by
-r;a
u,(a) =e p(a)
and
-r.s
i
v,(a) = I:e @(s)ds/uiui(a)
where ‘
o ~r.a
i
by = J o2 ¢ (a)da .

The existence of these functions for values of a satisfying ng aswis

guaranteed if p(a) = 0 for a > w, as is uéually assumed in demography;
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note that this assumption implies thato (a) = O for a > w. As Feller
[1941] pointed out, the last assumption is sufficient for removing all
the essential difficulties with the Lotka solution.

By convention, r = r, is the largest real root of equation (12),
and its only real root if ¢(a) is positive only on a finite interval;
subscripts will also be dropped from ay ug and v, when they appear
alone. Defining the inner product of two complex-valued functions x and
y of a real variable by

(x,y) =.f: x(s)y(s)ds ;

it can be readily verified that the functions uy, u and vV

17" TR

satisfy

(ui} vj) =5 ij J
so that these functions form a normalized biorthogonal system. Follow-
ing the same arguments as in the discrete case, if a solution of the
Lotka form (12) exists, then

a; = (v;,x(0))

where x(0) = x(0,a) is the integrable initial age density. Thus (see

also Coale [1972], pp. 67-8)

o .t
1
b(t) = Z e (vi,x(o))
i=0
in exact analogy with the value of X1 given by equation (8). By noting
that the age density x(t) at time t satisfies x(t,a) = p(a)b(t-a) for
t 2w, this analogy can be extended to give
» It
x(t) = Z e ui(vi,x(o)), t2w .
i=0

Except for questions of existence, which do not arise when ¢ is

appropriately restricted, the limiting behavior of the Lotka solution
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thus appears to pose no new problems. However, instead of restricting
@ to a finite interval, the more general apparatus of renewal theory, in
which o (and hence p) can have infinite domain, will be used in the
following discussion of the behavior of b(t) as t=> = .

The continuous analogue of Theorem 2 is
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THEOREM 5. Let b(t) given by equation (12) be a solution of the renewal
equation (11). Then

lim e b (t) = a .
tyx

Theorem 5 is known to be true when equation (12) is valid, and it is in
fact true much more generally whenever r 2 0, and under conditions when
r < 0 (for details, see Feller [ 19717, Chapter XI). The theorem seems
to have been taken as the usual justification for the use of the
approximation

b(t) = e"t(v,x(0))
in demography (Coale [ 1972, Chapter 3), although there is always a

suggestion in the literature that demographers are aware of the validity

in practice of the analogue of Theorem 3:

THEOREM 6. Let b(t) given by equation (12) be a solution of the renewal
equation (11). Then if for each i either a; = 0 or Re(ri) < 0,

lim[b(t) - ae"t] =0
t» o

(here Re(ri) denotes the real part of ri).

Note that Theorem 6 implies Theorem 5 if r 2 0, while the reverse

implication is true if r € 0.
As with the discrete formulation, stronger results can be obtained

if separate consideration is given to the behavior of solutions accord-
ing as r g 0, and the discussion of this section is summarized in the

following analogue of Theorem 4 for continuous stable population theory.
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THEOREM 7. Let b(t) satisfy the renewal equation

. t
b(t) = g(t)-hI o p(s)b(t-s)ds ’
and let a solution of the form
m r,t
b(t) = X a.e
i=o

exist. Then

(i) if r <O,

|
o

(@) lim b(t)
tr>

) _I: b(t)dt = .]-.-—?-—N’ where N =‘] o ©(s)ds

(c)txég.e-rtb(t) = a
(ii) if r = 0,

lim b(t) = a
£ty ®

(iii) if r > O,

lim e % (t) = a
t=>®

and, in addition, if for each i either a, = 0 or
Re(ri) < 0, then £(t) = b(t) - ae™® exists on 0,=) ,
and

lim [b(t) - ae"t] = 0.
t>®

Note that if (v,x(o)) exists, then a = (v,x(0)); a general expression

for the coefficients a_,a . was given by Feller [1941]. All con-

1"
clusions of Theorem 7 except the last follow from remewal theory; only
the proof of the last depends on the existence of the Lotka solution,

as will appear from the proof given here of Theorem 6.

Case i: r < 0. A bounded solution of the renewal equation (11) exists

for t 2 0. Conclusions (a) and (b) are always true when r < 0, while
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conclusion (c) requires, in addition to the existence of a negative real
solution to equation (12), that 8 satisfy,r: e-rtg(t)dt <w. Thus all
results hold in demography, without recourse to the existence of the
Lotka solution. For proofs and further discussion of the case

J o p(t)dt < 1, see Feller ([1971], pp. 374-7).

Case ii: r = 0. A solution of equation (11) exists for t 2 0, and all

the results of renewal theory apply. Among the weakest of these is (ii)
of Theorem 7, the renewal density theorem (Smith [ 1958]). Thus Theorems
5 and 6 hold when r = 0, without the requirement of the existence of the
Lotka solution; they are of course equivalent in this case. For proofs

and stronger results, see Smith [1958] and Feller ([1971], Chapter XI).

Case iii: r > 0. A bounded solution of equation (1ll) exists for any

finite interval [O,T]. To extend study of this solution to the non-
negative real numbers, it is usual (Feller [1971], p. 377) to comsider
instead b*(t) = e_rtb(t), which reduces this case to the preceding one;
b*(t) is bounded for t < 0, andt£;$ e-rtb(t) = a. This change of
emphasis is not entirely satisfactory, and stronger results are given
in Theorem 6.

To prove Theorem 6, it is convenient to introduce

£(t) = b(t) - ae’®

and the partial sums

a.e
1

AORI

i

n e
-

By Theorem 5, lim e-rtf(t) = 0, but £(t) may itself behave in any of
tv e

the ways illustrated in Figures 1 to 3; f(t) is "stable" in the sense

used in mechanics if lim f(t) = 0. When the Lotka solution (12) to
t>»

equation (11) is valid,

(14)

(15)
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£(t)

it
e
»
(1]

formally, and so lim fn(t) exists whenever f(t) does. The behavior of
{ fn(t)} and of £(t) are described by the following
o rit
LEMMA. Let b(t) = X a.e be a solution of the renewal equation (11)
i=0
on any finite interval, and define f£(t) and fn(t) by equations (14) and

(15). Then if for each i either a; = 0 or Re(ri) < 0, f(t) is bounded

for t 2 0 and is the uniform limit of the sequence of partial sums {fn(t)}.

Proof: Since the Lotka solution exists, 8 a; is absolutely convergent

i=0
(Feller [1941]), and so
o It
|£)| = |E age |
i=1
. Re(ri)t
< iéllaile
< T |a|
=0 I

implies that f£(t) is bounded for t 2 O under the conditions of the Lemma;
the last inequality follows from a, # 0. To establish uniform convergence
of gfn(t)} to £(t),

HOXEN]

r.t
|E ae l|
i=n+l

< % a,
i=n+l 1| ’

where again a, = 0 if Re(ri) > 0, and so

lim £ (t) = £(t)
n>® "

uniformly in t follows from absolute convergence of'{fn(o)} to £(0).
Under the conditions of the Lemma, £f(t) either remains bounded or

converges; the latter possibility is described by Theorem 6.
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Proof of Theorem 6: Note the stronger restriction on Re(ri) in the

Theorem than in the Lemma. Because of the uniform convergence of f(t),
limiting operations may be interchanged in

lim £(t) = lim 1lim £ (t)
to o tso n-> o O

to give

lim £(t) = lim 1lim £ (t)
t-> np® >l
n rit
=1lim £ lim a.e
n>® i=1t> *

=0 s
where the last equality follows, when a, # 0, from
r.t Re(r.)t
1im|e | = lim e = =0
tow t P

whenever Re(ri) < 0. Necessary conditions for lim f£(t) = OIhave not
t™>

been investigated.
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Appendix

Because no projection matrix with max |Xj| 2 1 could be found for

)\j#r

human populations, an indirect procedure was used in the preparation of

Figures 1 to 3. The three net maternity functions used each have the

same underlying fertility pattern by age, in the sense that {xt/rt}

(and hence {et/rt}) converges identically in each case. This behavior,

which is not illustrated, is similar to that shown in Figure 1, but with

faster convergence. Calculations were based on the following argument

(for details, see Sykes [ 1973]), using n = 10 five-year age classes.

From equation (7), with u; = 1,
_ - t
%1 = ¥e1 T T (%) ’
and from equation (2)
10
X = X b.x
tl 41 1 t-1,1
10
N i=1“’ixt-1, /Py
= . i = >
where P, pibi Noting that xt—l,i pixt-i,l for t 2 10,
10
X .= Le.X .
tl j=1 1t i, 1

is valid at least for t 2 10, and can be made generally so by an

appropriate choice of initial conditions. Introducing'ﬂt = r-tx and

tl
Bi = r-%pi, equation (A2) becomes

10
Te = iilsiﬂt-i
so that
- t -
e =T N, - xo)'_\ .

Finally, if the initial age distribution is x; =k (1,0,...,0), then

(v,xo) = k/H is invariant for all matrices with the same value of

B = (51""’5 10)'

(Al)

(42)

(a3)

(A4)
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Here, the value of B selected was that of Japan, 1964 (Keyfitz and
Flieger [1971], pp. 396-397), and x  was taken as x; = 5.56140 (1,0,...,0)
to make (v,xo) = 1. Three valueé of r were chosen to give the desired
results, and equation (A4) was used in the calculations; the values of
the net maternity functions implied by these choices are shown in the
table below. Note that the eigenvalues of the matrix with net maternity
function ¢ given bycpi = riBi are just r times those of a matrix with

other thaw r
net maternity functiong, and so the various maximal eigenvalues’\are
the product of the appropriate r and 0.89222, the value of the maximal
eigenvalue other than 1 for a matrix with the B of Japan, 1964. Note
also that any value of p = (pl,...,pn) could be selected to form a
population projection matrix corresponding to a given value of ¢; given
r and B, the convergence of {et} is independent of mortality.

The sequence {etl} was calculated and plotted forAeach Figure using

a Hewlett-Packard model HP-9821 calculator with model 9862 plotter.
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Table

Values of the Net Maternity Function ® Used in Calculations

. _ R S
for Figures 1-3. GPi = pibi rg; in each column)

Bi Figure 1 Figure 2 Figure 3
r=1 (£,=1.08) (xr,=1.120797) (r,=1.14)
0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000
00406 .00511 .00572 .00602
12776 117382 .20161 21578
+36532 .53677 64611 70339
34493 54736 .68374 .75711
12618 .21625 .28034 31574
.02725 05044 .06786 .07773
.00426 .00852 .01189 .01385
00024 .00052 .00075 .00089

1.00000 1.53879 1.89802 2.09051
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Figures 1-3. Behavior of €1 = Xy - rt(v,xo) for t = 1,2,...,100,
with (v,xo) = 1 and values of r chosen so that
<

Aj#r

Figure 1. max |Aj| < 1; e ; converges to zero

(r = 1.08, max lkj| = .9636)

Figure 2. max |Aj| = 1; e ; bounded, but oscillates

(r = 1.120797, max |;\j |= 1

Figure 3. max Ile > 1; e,; diverges and is unbounded

(r = 1.14, max |% | = 1.0171)
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