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Abstract  

The d i s c r e t e  model x ~ + ~  = Ax f o r  t h e  dynamics of t he  age composition 
t 

of populations wi th  constant  age-speci f ic  v i t a l  r a t e s  over time leads t o  

t h e  l imi t ing  r e s u l t  

t 
l i m  x t / r  = u(v,xO) . 

Necessary and s u f f i c i e n t  condit ions f o r  the  v a l i d i t y  of 

t lim[xt - r u(v,xo)] = 0 , 
t+=' 

which is  s t ronger  f o r  populations with r > 0, a r e  given i n  Theorem 4; 

the  s u f f i c i e n t  condit ion . l<l f o r  h # r holds empirical ly f o r  human 
J j 

populations, and f u r t h e r  j u s t i f i e s  use  of the  approximation. 

i n  demographic work. Consideration of t he  two l i m i t s  makes it c l e a r  

t h a t  t he  behavior of x should be discussed separa te ly  f o r  t he  cases 
t 

Because of the  preference of many demographers and b io log i s t s  f o r  

t h e  continuous vers ion of s t a b l e  population theory, analogous r e s u l t s  

f o r  t h e  b i r t h  densi ty  b ( t )  a r e  presented i n  Theorem 7. 



611. In t roduct ion 

The approximat ion 

t 
x L r u(v, x0) , t (1 

r o u t i n e l y  used i n  demography, expresses age d i s t r i b u t i o n  x a t  time t i n  t 

terms of an i n i t i a l  age d i s t r i b u t i o n  xo and t h e  p o s i t i v e  e i g e n v a l u e r  and 

corresponding p o s i t i v e  eigenvectors u and v of a populat ion p ro jec t ion  

matrix.  J u s t i f i c a t i o n  f o r  t h e  use of t h i s  approximation is provided by a 

t 
theorem concerning t h e  asymptotic behavior of t h e  sequence [ x  / r  3 of t 

normalized vectors ,  which a s s e r t s  t h a t  t h e  r e l a t i v e  e r r o r  of t h e  

approximation becomes a r b i t r a r i l y  small  a s  t increases .  For populat ions 

wi th  r > 1, a s t ronger  l i m i t  theorem given i n  63  a s s e r t s  t h a t  when i ts  

condi t ions  a r e  s a t i s f i e d ,  t h e  absolute  e r r o r  of the  approximation tends 

t o  zero  as t increases .  The theorem is  t r i v i a l  mathematically, and 

depends f o r  i t s  s ign i f i cance  on the  empir ica l  observat ion t h a t  i t s  

s u f f i c i e n t  condi t ion  holds f o r  every populat ion p ro jec t ion  matr ix  con- 

t a ined  i n  the  compendia of Keyf i t z  and F l i e g e r  ([1968], [1971]). 

To d i scuss  t h e  dynamics of a closed populat ion with constant  age- 

s p e c i f i c  b i r t h  and death  r a t e s  i n  terms of t h e  d i s c r e t e  formulation 

X 
t+l = Axt 9 t = O , l ,  ... 

is l a r g e l y  a matter  of t a s t e ;  an e n t i r e l y  equivalent  d iscuss ion would 

a r i s e  from considera t ion of t h e  continuous formulation 
t 

b ( t )  = g ( t )  + I l ( s ) b ( t - s ) d s  , t > O  
0 

f o r  t h e  b i r t h  dens i ty  b ( t )  i n  terms of the  funct ions  g ( t )  and l ( t ) ,  

wi th  t h e  approximation 

Because of t h e  popular i ty  of t h i s  l a t t e r  formulation of the  problem 

among both demographers and b i o l o g i s t s ,  s u f f i c i e n t  condi t ions  f o r  the  



continuous analogues of d i s c r e t e  r e s u l t s  t o  hold a r e  given i n  t h e  f i n a l  

s e c t i o n  of t h i s  paper. 

$2. Prel iminar ies  f o r  t h e  d i s c r e t e  case  

In equation (2)) A i s  a populat ion p ro jec t ion  matrix, defined i n  

terms of i t s  elements a i j  by 

(0  , otherwise 

where b .>o, b >O and O<s <1. Proper t ies  of such matr ices  have been d i s -  
J n j - 

cussed i n  d e t a i l  r e c e n t l y  by a number of authors, among them Goodman 

[ 19671, Keyf i t z  [1.968], Pol lard  [1973], and Sykes [1969 3. Although the  

simple s t r u c t u r e  of populat ion p ro jec t ion  matrices makes t h e  r e s t r i c t i o n  

t o  f i n i t e  dimensional spaces unnecessary mathematically, it appears 

eminently reasonable b io log ica l ly ,  and t h e  d i s c r e t e  model (2) has enjoyed 

considerable popular i ty  i n  t h e  l i t e r a t u r e .  See F e l l e r  ([1968], Chapter 

XIII )  f o r  t h e  extension of the  theory t o  the  denumerable case.  

Right and l e f t  eigenvectors of A w i l l  be denoted respec t ive ly  by u 
j 

and v and t h e  corresponding eigenvalues of A by A i .e. ,  
j' j ' Auj = hjuj  

and v .A = A v where A i s  a s o l u t i o n  of the  c h a r a c t e r i s t i c  equation 
J j jJ j 

wi th  

Equation (5) has exac t ly  n roots ,  none of which i s  zero because p b >O, 
n n 

and hence t h e  eigenvectors u and v e x i s t .  In general ,  the  r o o t s  
j j 



hlJ.. . , ) ~ n  are complex numbers; if a given is not real, then its 
j 

complex conjugate is also a root. From the eigenvector equations, it 
j 

follows that if u. and v correspond to h then Ti and7 are the 
J j j' j j 

eigenvectors corresponding to Although it is not necessary for the 
j ' 

t 
discussion of the limiting behavior of the sequences {x ]and {x /r ], it t t 

is convenient to keep in mind the expressions given by Goodman [I9671 for 

the elements of the eigenvectors, in which the first element of each 

right eigenvector u is taken as unity, and left eigenvectors are 
j 

normalized to give Cu. v = 1; these expressions are i ji ji 

and , 

where 

n -k 
v.. = I .  pkbkxj / P j~ji J1 k-1 

By convention, r = A denotes the positive root of equation (5), and the 
1 

eigenvectors corresponding to r are denoted by unsubscripted u and v when 

they appear alone. 

In general, vectors will be considered as elements of cn, an n- 
dimensional vector space over the field of complex numbers. The notation 

x > 0 means x # 0 and x > 0, while D>O implies that all elements of x i 

are positive. For the inner product of two elements x and y (both con- 

sidered as column-vectors) of the space, the standard notation (x,y) 

will be used, so that 



(This notat ion has been chosen t o  make more obvious the analogy between 

solutions i n  the d iscre te  and continuous cases; readers unfamiliar with 

it may read "(x,y)" as  "q-,," where x is  taken a s  a row- and y a s  a 

column-vector.) Repeated use w i l l  be made of the readi ly  ver i f ied  

propert ies  of inner products tha t  

(x,Y) = KT = G , K )  , 
t h a t  

(kx,y) = k(x,y) 

f o r  sca la r  k, and that  

f o r  a matrix My where M* denotes the conjugate transpose of M. Note 

t h a t  the f i r s t  two properties imply t h a t  

and tha t  i f  xM = Ax fo r  r e a l  My the second and th i rd  imply tha t  

(%MY) = A (~YY) .  

Two vectors a r e  sa id  to  be orthogonal (notation: x l y )  i f  and only i f  

(x,y) = 0; s imilar ly  x is  said t o  be orthogonal t o  a subspace S of an 
i f  and only i f  (x, y)  = 0 for  every y i n  S. In par t icular ,  a r i gh t  

eigenvector u corresponding t o  the eigenvalue A of a r e a l  matrix My 
i ' i 

is orthogonal t o  a l l  l e f t  eigenvectors of M except T the one corres- 
i ' 

ponding t o  Ti. Since it i s  always possible t o  normalize so tha t  

- 
(uiYvi) = 1, i n  general 

(u,, 7 . )  = 
J "j 

Y 

where6 = 0 when i + j a n d g i j  = 1 when i = j. It can eas i ly  be 
i j 

ver i f i ed  tha t  the expressions given f o r  u and v above s a t i s f y  

- j j 

Y v j )  = gij ,  and hence these vectors ul, . . .,u and vl, . . .,v form a n n 

normalized biorthogonal system fo r  en whenever the eigenvalues of A a r e  

d i s t i n c t .  Note a lso tha t  fo r  r e a l  x, i f  (x,v.) = 0 then (x,v.) = 0, so 
J J 

n t h a t  i f  x J. v . then x I S the two-dimensional subspace of spanned by J j 



and i j  and hence x  can be w r i t t e n  a s  a  l i n e a r  combination of  r i g h t  
j ' 

eigenvectors u  excluding u  and 5: i j j ' 

13. Limit theorems f o r  the  d i s c r e t e  case  

For a  given value of x the  s o l u t i o n  of equation (2) is  
0' 

so  t h a t  t h e  behavior of t h e  sequence { x  ] can be, and usua l ly  is, d i s -  
t 

t 
cussed i n  t e r m s  of t h a t  of the  sequence { A  1 .  The standard r e s u l t  i s  

THEOREM 1. Let A be a  populat ion p ro jec t ion  matrix with p o s i t i v e  

eigenvalue r and p o s i t i v e  ( r i g h t  and l e f t )  eigenvectors u>>O and v>>O. 

Then 

t t 
- 

l i m  A /r = uv 
t-- 

i f  and only i f  A i s  aper iodic .  

Because a  s u f f i c i e n t  condi t ion  f o r  a p e r i o d i c i t y  (a l so  c a l l e d  "primit ivi ty")  

i s  t h a t  f e r t i l i t y  be p o s i t i v e  f o r  two adjacent  age groups (i .e. ,  t h a t  

both b.>O and bj+l>O f o r  some j = 1 .  n - 1 ,  Theorem 1 a p p l i e s  t o  
J 

matr ices  A f o r  human populat ions i n  p rac t i ce .  When A is per iodic  with 

period d  < n, the  r e s u l t s  a r e  (Cox and Mi l l e r  p9651 p. 123) 

d  
(in p a r t i c u l a r ,  f o r  s = 0, l i m  ~ ~ d / r ~ ~  = C U.V.  ) and 

t- j =I J J  



where eigenvectors corresponding t o  eigenvalues with 11. \ = r have been 
J 

numbered 1, ..., d. Because discussion here i s  primarily of eigenvalues 

sat isfying I), . (<r, strongest r e su l t s  for  periodic matrices A a re  not included. 
J 

Theorem 1 implies, but is not necessary for  

THEOREM 2. Let A be an aperiodic population projection matrix with 

positive eigenvalue r and positive eigenvectors u and v, and l e t  

t 
x = A xo, where xo > 0. Then 
t 

Theorem 2 i s  taken as  jus t i f ica t ion  for  the use of the approximation 

t x = r u(v,x0) 
t 

given in  E l .  

A closer look a t  Theorem 2 w i l l  c l a r i fy  the sense in  which the 

approximation (1) i s  a good one. Write 

Then by Theorem 2 the r e l a t ive  error  i n  the i - t h  element of e 
t' 

t e /r ui(v,xo), s a t i s f i e s  
t i  

e 
t i  X 

lim t = l i m  t i  - 1 
t -9- r ui(v,x ) t7" r ui(v, xo) 

0 

i.e., given A and xo, fo r  each C > 0 we can find a value T such tha t  

t ( eti/r  ui(v,xo) I<€ for  a l l  t > T. In other words, the approximation (1) 



To s impl i fy  discuss ion of le t} ,  assume fu r t he r  t h a t  the  eigenvalues 

of A a r e  d i s t i n c t ,  so t h a t  the  eigenvectors u a r e  l i n e a r l y  independent 
j 

(Gantmacher [1959], p. 72). Then an a r b i t r a r y  vector  x considered a s  
t ' 

an element o f C n ,  can be wr i t t en  

where the  c o e f f i c i e n t s  a of xt r e l a t i v e  t o  t he  ba s i s  ul, . . . , u a r e  
t j 11 

found by noting t h a t  

- 
s ince  (u v . )  = 6ij. 

i' J 
On t h e  o ther  hand, 

s ince  A i s  r ea l ,  so  t h a t  

(Equation (8) follows equivalently,  and more usua l ly  i n  the  l i t e r a t u r e ,  

from the  s i m i l a r i t y  of A t o  a diagonal  matrix i f  i t s  eigenvalues a r e  

d i s t i n c t  .) From equations (7) and (8), 

(Note t h a t  e t  i s  thus  an  element of an (n-1)-dimensional subspace of 

anJ which i s  spanned by u2, . . . , un. ) 

It i a  c l e a r  f r a n  equation (9) t h a t  {e ) may diverge  i f  I l  .(> 1 f o r  
t J 



9 k r, but  t h a t  it w i l l  no t  i f  (v xo) .= 0 f o r  each eigenvector 
j ' 

corresponding t o  an  eigenvalue d i f f e r e n t  from r f o r  which 1 A . I > 1 ,  
J 

Because r is  t h e  only p o s i t i v e  eigenvalue of A, such A f 1, and so  it 
j 

a l s o  follows t h a t  i f  {e  ] converges, it converges t o  t h e  zero vector .  t 

These considera t ions  provide t he  motivation f o r  

THEOREM 3. Let A be an aper iodic  population p ro jec t ion  matrix with 

t 
d i s t i n c t  eigenvalues, and l e t  x = A xo, where x > 0. Then {et] t 0 

defined by equation (7) converges i f  and only i f ,  f o r  each A r, 
j 

e i t h e r  I X  . I < 1 o r  (vj,xo) = 0; under t h i s  condition, 
J 

Roo f :  I f ,  f o r  j = 2 ,..., n, e i t h e r  J k j l  <1 o r  (vj, x0) = 0, then 

t 
l i m  A (vj,xo) = 0, and s o  suf f i c iency  is  es tab l i shed .  For t he  necess i ty  

of t h e  condit ion,  suppose t h a t [ e  ] converges t o  some vector  e i n  t he  t 

subspace spanned by u2, . . .,u . Because u2,. . .,u a r e  l i n e a r l y  inde- 
n n 

pendent, the  c o e f f i c i e n t s  a of e with respec t  t o  them a r e  uniquely 
j 
t determined, and hence l i m  A (vj,x0) = a e x i s t s  f o r  each of j = 2, . . . ,no 
j j 

But l i m  A (v jy  xo) e x i s t s  only i f  e i t h e r  11. \<I (since 1 f. 1) o r  
j J j 

(vj,xo) = 0, and i n  e i t h e r  case  a = 0, which implies t h a t  e = 0. 
j 

Modificat ions necessary i n  Theorem 3 t o  include per iod ic  matrices a r e  

minor. 

Although Theorem 3 was s t a t e d  without reference t o  t he  value of r, 

it is t r i v i a l  when r < 1, s ince  by t h e  Perron-Frobenius theorem the  

s u f f i c i e n t  condi t ion I X  .I <l holds then. Three cases may thus be d i s -  
J 

< tinguished, according a s  t o  whether r 5 1; when r < 1, the  requirement 

of d i s t i n c t  eigenvalues i n  Theorem 3 i s  unnecessary. Furthermore, because 



which of Theorems 2 and 3 i s  the  s t ronger  depends a l s o  on t h e  value  of 

r; i f  r < 1, Theorem 2 implies Theorem 3, while i f  r > 1 t h e  reve r se  

impl ica t ion  i s  t r u e .  

Note t h a t  when r > 1, t h e  well-known r e s u l t s  concerning propor t ional  

age s t r u c t u r e  c  = x t / p t k ,  b i r t h  and death  r a t e s  bt and dt, and t h e  one- 

s t e p  r a t e  of n a t u r a l  i n c r e a s e f t  = bt - d fo l low from t h e  weaker 
t 

Theorem 2. Indeed, f o r  t h e  populat ion i n  t h e  n  reproduct ive  age groups, 

c = l i m c  
tam 

t 
t 

x t / r  
= l i m  L. 

s imi la r ly ,  

= r / Z t  

and, taking sn = 0, 

d  = l i m  d t  
t7 - 

Z (l-sk)xtk 
= l i m  
t+'- 

f i n a l l y  



each independently of i n i t i a l  age s t ruc tu re  x . On the o ther  hand, 
0 

convergence of the  age s t ruc tu re  xt, and i n  pa r t i cu l a r  of the  "birth" 

sequence { x 3 ,  t o  a sequence which depends on i n i t i a l  age s t ruc tu re  
t 

only through the  s ca l a r  (v,xo) requires  Theorem 3 when r > 1. Similarly, 

when r < 1 the  above r e s u l t s  require  the stronger Theorem 2, while con- 

vergence of the  age s t ruc tu re  ( t o  the  zero vector!) follows from 

Theorem 3. 

Case i: r < 1. From the Jordan form (Gantmacher [ 19591, pp. 151-3) f o r  

A, o r  from the  f a c t  t h a t  r i s  the  spec t r a l  radius  (Karlin C19661, pp. 479-80) 

t 
of A, i t  follows t h a t  lim x = 0, and of course lim r u(v,x ) = 0, so  

t 0 
t 3 w  t 3 m  

t 
lim [ xt - r u (v, xo)] = 0 

t - m  

follows t r i v i a l l y  from a theorem on the  l i m i t  of sums. The conclusion 

of Theorem 3 holds fo r  any population project ion matrix with r < 1, and 

although Theorem 2 a l so  applies,  note t h a t  by equation (10) the  absolute 

e r r o r  of the  approximation (1) is l e s s  than the  r e l a t i v e  e r r o r  when 

r < 1. It is a l s o  t r u e  i n  t h i s  case t h a t  a t  converges (Fel ler  [ 19683, 
t 

p. 330), and so the  s t rongest  r e s u l t  when r < 1 is 
w - (v, xo) 

=t1- 1 - N t=l 

where N = Qibi  is the  ne t  reproduction r a t e  implied by A. 

Case ii: r = 1. Theorems 2 and 3 a r e  equivalent when r = 1, both give 

l i m  xt = u (v, xo) 
t+- 

Stronger r e s u l t s  may be found i n  Fe l l e r  ([1968], Chapter XIII) .  

Case iii: r > 1. By equation (lo),  when r > 1 the r e l a t i v e  e r ror  of 

approximation (1) is l e s s  than the  absolute e r ror ,  and so Theorem 3 i s  



s t ronger  than Theorem 2. Only i n  t h i s  case do t he  eigenvalues of A 

o ther  than r play an important r o l e  i n  determining t he  behavior of {et} .  

Three general  types of behavior f o r  {et],  and hence of {xt], a r e  

thus poss ible .  They a r e  i l l u s t r a t e d  by Figures 1-3, which show values 

of {etl}, t he  e r ro r s  i n  t he  d i s c r e t e  "birth" sequence, f o r  100 f ive-  

year s teps  (point values have been connected by s t r a i g h t  l i n e s  even 

though ca lcu la t ions  were made only a t  in teger  values of t )  using the  

ne t  maternity function f o r  Japan, 1964, adjusted t o  give, respect ively ,  

max 1 hj1 < 1, = 1, and > 1 (de t a i l s  of t he  calcula t ions  may be found 
A f i  id t he  Appendix). It i s  perhaps unnecessary t o  point  out t h a t  Theorem 2 

guarantees t h a t  { et / r t )  always behaves l i k e  { e ) i n  Figure 1. I f  r < 1, 
t 

{ e  } converges t o  zero i n  the  damped osc i l l a t o ry  manner of Figure 1, a s  
t 

i s  a l s o  the  case when r > 1 but I A .I < 1 o r  (vj, xo) = 0 f o r  A f r. Then 
J j 

t a l s o  {xt} converges t o  { r u(v,xo)} . I f  r > 1 and ( A .  I = 1 f o r  one o r  
J 

more A f r, then {et} remains bounded and eventually o s c i l l a t e s  around 
j 

zero; f o r  example, i f  only one of A 2, . . . ,& s a t i s f i e s  ( A .  ( = 1, then f o r  n J 

any norm, 

a s  i l l u s t r a t e d  by Figure 2. It follows t ha t  i n  t h i s  case {xt} w i l l  

t 
o s c i l l a t e  a round{r  u(v,x )). Final ly ,  when r > 1 and I h j (  > 1 f o r  one 

0 

o r  more A # r, then { et  } diverges without bound, and hence { x } w i l l  
j  t 

t depar t  f a r t h e r  and f a r t h e r  from { r u(v,x )} a s  t increases (see Figure 3). 
0 

The curious f a c t  t h a t  matrices A corresponding t o  human populations 

s a t i s f y  t h e  s u f f i c i e n t  condit ion ( h j  I < 1, . f r, of Theorem 3 was 
3 

apparently f i r s t  noted by Lotka ([1939], p.  66), although it i s  d i f f i c u l t  

t o  imagine t h a t  t he  number of cases avai lable  f o r  h i s  inspection was large .  

Somewhat stronger evidence i s  provided by t he  da t a  given by Keyfitz and 

Fl ieger  ([1968], r19711) f o r  a l a rge  number of human populations. 



- 14- 

Calcula t ion of a l l  eigenvalues of each of t h e  matr ices  given the re  (and 

of s e v e r a l  o t h e r s )  produced none, o the r  than t h e  p o s i t i v e  eigenvalue r, 

which was a s  l a r g e  a s  un i ty  i n  absolute  value.  It thus  appears reason- 

ably  s a f e  t o  assume t h a t  the  conclusion of Theorem 3 a p p l i e s  t o  human 

t 
populations, so  t h a t  { xt} converges t o  [ r u (v, x ) ]  . 

0 

It is perhaps worth not ing t h a t ,  although t h e  s u f f i c i e n t  condi t ion  

on the  eigenvalues of A holds f o r  human populations, the  condi t ion  t h a t  

x be orthogonal t o  one o r  more of the  l e f t  eigenvectors v2, ..., v is  
o n 

a l s o  easy t o  desc r ibe .  Recall  t h a t  i f  hk a n d 1  a r e  complex conjugates, 
m 

then s o  a r e  v and v and s o  any vector  x >O which can be w r i t t e n  
k m' 0 

x = B.u. is  orthogonal  t o  t h e  subspace spanned by vk and vm. It is  
0 j#k:mJ 

e a s i l y  v e r i f i e d  t h a t  such vec to r s  may be p o s i t i v e ;  an  important example 

i s  the  one-dimensional subspace of vec to r s  x which s a t i s f y  x = ku, where 

t 
k > 0, f o r  which xt  = r ku f o r  a l l  f i n i t e  values  of t .  I n  p r a c t i c a l  

t 
ques t ions  regarding convergence of [ x  ] t o  {r u(v,xo)], it appears t o  be t 

t h e  case  f requen t ly  t h a t  xo is  "almost orthogonal" t o  one o r  more l e f t  

eigenvectors,  so  t h a t  { x t ]  converges q u i t e  r a p i d l y  regard less  of t h e  

proximity of max .I t o  t h e  u n i t  c i r c l e .  
A jk J 

*4. Mul t ip le  eigenvalues 

The p o s s i b i l i t y  t h a t  the  c h a r a c t e r i s t i c  equation (5) may have r o o t s  

of a lgebra ic  m u l t i p l i c i t y  g r e a t e r  than one seems l a r g e l y  a nuisance i n  

populat ion mathematics. Keyfi tz  ([1968], p. 51) r e p o r t s  t h a t  such cases 

do not  a r i s e  among human populat ions i n  p rac t i ce ,  and t h i s  i s  confirmed 

b y  an examination of t h e  eigenvalues of the  matrices given by Keyfi tz  

and F l i e g e r  (C1968J , C 19711 ). While t h e  mathematics necessary t o  include 

mat r i ces  with mul t ip le  eigenvalues i n  the  theorems of t h e  preceding 

s e c t i o n  is  not  d i f f i c u l t ,  it i s  r a t h e r  technical ,  i n  t h a t  Jordan forms 
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replace diagonal matrices and Jordan chains a re  used t o  generate t he  sub- 

spaces corresponding t o  eigenvalues of algebraic mu l t i p l i c i t y  g rea te r  

than one, but geometric mu l t i p l i c i t y  one. It i s  a l s o  t rue  t h a t  the  

specia l ized s t ruc tu re  of population project ion matrices allows a more 

d i r e c t  proof of theorems l i k e  Theorem 4 than one which, l i k e  t h a t  of 

Theorems 1 t o  3, t r e a t s  the  behavior of {x ] as  a spec ia l  case of the 
t 

theory of i r reduc ib le  non-negative matrices.  For these reasons, although 

Theorem 4 extends the r e s u l t  of Theorem 3 t o  the  case of matrices with 

mult iple  eigenvalues, proof i s  given only of the  suff ic iency of the  

condit ion ih .!<I, h .h-. A f u l l  proof along the  l i n e s  of t h a t  of Theorem 
J J 

3, and va l id  f o r  i r reducible  non-negative matrices, i s  avai lable  e l se -  

where (Sykes [1975]). The statement of Theorem 4 incorporates both the  

adjustments necessary f o r  multiple eigenvalues and the  points  made i n  

t he  discussion following Theorem 3. 

THEOREM 4 .  Let A be an aperiodic population project ion matrix, with 

pos i t i ve  eigenvalue r and pos i t ive  ( r ight  and l e f t )  eigenvectors u and v, 

t and l e t  x = A xo, where x > 0. Then 
t 0 

( i )  i f  r < 1, xt is  bounded fo r  t > 0, and 

(a) lim x = 0 
t+'= 

t 

t 
(b) l i m  x t / r  = u(v,xo) 

t3* 

( t i )  i f  r = 1, xt i s  bounded f o r  t 2 0, and 

l i m  Xt = U(V, xo) 
t9* 



(iii) i f  r > 1, xt i s  bounded on any f i n i t e  s e t  t = 0,1,.  ..,T, 

t 
while x /r i s  bounded f o r  t > 0, 

t 

t 
and i n  add i t ion  { x - r u(v,x )] converges and t 0 

l i m  [X - rCu(v,xO)] = 0 
t 3 W  

t 

i f  and only i f  f o r  A + r e i t h e r  ( A .( <l o r  x i s  
j J o 

orthogonal t o  t h e  subspace S spanned by t h e  l e f t  
j 

Jordan chain  f o r  A corresponding t o  A 
j ' 

R o o f :  Proof of a l l  a s s e r t i o n s  except the  l a s t  may be found i n  t h e  pre-  

ceding s e c t i o n ;  t h e  su f f i c iency  of the  condit ion 1 1 .( <l f o r  t h e  l a s t  
J 

a s s e r t i o n  is  e a s i l y  shown by considering the  matrix B = A  -ruv. A 

t t 
simple induction leads \  t o  B = A' - r uv, so  t h a t  equation (7) def in ing 

t t 
e may be w r i t t e n  e = B xo. Note t h a t  Bx = 0 implies B x = 0 i f  and 
t t 

only i f  x = 0 or  x = ku, and t h a t  the  eigenvalues of B a r e  those  of A 

which s a t i s f y  A f r.  Hence i f  l~.l<l, t h e  s p e c t r a l  r ad ius  of B i s  l e s s  
j J 

t 
than unity,  and s o  l i m  e = l im B xo = 0. t 

Theorem 4 of course includes Theorem 3 a s  a s p e c i a l  case, f o r  when 

t h e  eigenvalues of A a r e  d i s t i n c t ,  t h e  subspace S i s  simply t h e  one- 
j 

dimensional space spanned by v . A s  i n  the  simpler case, it i s  easy t o  
j 

charac te r i ze  those vec to r s  x which a r e  orthogonal t o  a given subspace 
0 

S ' they a r e  given by xo = %uk, i . e . ,  a s  a l i n e a r  combination of 
-i ' 

"ks 
those % which do not  correspond t o  t h e  eigenvalue A Note again t h a t  

j ' 

t h e  exis tence  of mul t ip le  eigenvalues i s  i r r e l e v a n t  when r 1. Modif i ca -  

t i o n s  of Theorem 4 t o  include pe r iod ic  matrices should be obvious. 



The behavior of { e t ]  determined by Theorem 4 i s  i den t i c a l  t o  t h a t  

given af ter Theorem 3 with one exception: i f  m a x  ( A  .I =1, then [ et ] 
A j k  ' 

diverges but  is  bounded i f  t he  m u l t i p l i c i t y  of A i s  one, and diverges 
j 

without bound i f  t he  m u l t i p l i c i t y  ofA is  g r ea t e r  than one. 
j 

85. Limit theorems f o r  continuous s t a b l e  population theory 

In t h e  continuous vers ion of s t a b l e  population theory (see, f o r  

example, Coale 119721 o r  Keyf i t z  1 19681), t he  b i r t h  densi ty  b ( t )  

s a t i s f i e s  t he  i n t e g r a l  equation 

This equation i s  known (Riesz and Sz.-Nagy 119551, p. 147) t o  have a 

unique solut ion,  given by a uniformly convergent Neumann s e r i e s ,  on any 

f i n i t e  i n t e r v a l  on which g and rp a r e  bounded. In t he  theory of 

probabi l i ty ,  the  equation plays a prominent r o l e  i n  renewal theory, 

where it is poss ible  t o  extend the  domain on which t he  so lu t ion  i s  

bounded t o  t he  non-negative r e a l  l i n e  because T i s  taken t o  be a 

p robab i l i ty  densi ty .  Although extensive accounts of renewal theory a r e  

ava i l ab le  ( ~ e l l e r  ~19683 ,  [1971], Smith [19581), it has remained 

customary i n  t he  demographic l i t e r a t u r e  t o  assume the  exis tence  of a 

so lu t ion  t o  equation (11) of t h e  form proposed by Lotka: 

where ri is a r oo t  of the  c h a r a c t e r i s t i c  equation 

and t h e  numbers a a r e  constants ;  necessary and s u f f i c i e n t  condit ions 
i 



f o r  t he  v a l i d i t y  of equation (12) were given by F e l l e r  [ 19411, and d i s -  

cussed i n  the  spec i a l  context  of demography by Lopez [1961]. Although 

the  assumption t h a t  a so lu t ion  of t h i s  form e x i s t s  i s  qu i t e  r e s t r i c t i v e  

mathematically, Lopez argued t h a t  i t s  requirements were met i n  p r a c t i c a l  

demography (even though it i s  not  i n  f a c t  used i n  numerical work, and 

i t s  use i n  t heo re t i c a l  work has frequently been inva l id ) ;  the  so lu t ion  

has the  add i t iona l  advantage of providing an obvious analogue t o  

equation (8) i n  the  d i s c r e t e  case. 

In equation ( l l ) ,  g is  the  contr ibut ion t o  b made by the  i n i t i a l  

population, and 0 i s  the  ne t  maternity funct ion 

q(a )  = P (a)m(a) 9 

where p (a) is the  proportion of b i r t h s  which survive t o  age a and m(a) 

is an appropr ia te ly  defined f e r t i l i t y  r a t e  a t  a ;  it i s  usual ly  assumed 

t h a t  p i s  continuous, monotonic and non-increasing, s a t i s fy ing  

1 2 p(a) 2 0, and t h a t  m i s  continuous, non-negative and bounded, 

s a t i s fy ing  0 < m(a) < M. Recalling t h a t  x is  the  d i s c r e t e  analogue 
tl 

of b ( t ) ,  and t h a t  normalized u = 1, the  analogy of the  Lotka so lu t ion  
j l  

(12) and the  d i s c r e t e  so lu t ion  (8) can be completed by following 

Goodman [ 19671 i n  defining continuous functions u and vi, f o r  i = 0,1, . . . , 
i 

and 

where 
- r . a  
1 

pi 
= J ,ae rp (a)da 

The exis tence of these  functions f o r  values of a s a t i s fy ing  0 < a < W is 

guaranteed i f  p(a) = 0 f o r  a > cu, a s  is usual ly  assumed i n  demography; 



note  t h a t  t h i s  assumption implies t h a t  cp (a) = 0 f o r  a > UI . A s  F e l l e r  

[1941] pointed out, the  l a s t  assumption is  s u f f i c i e n t  f o r  removing a l l  

the  e s s e n t i a l  d i f f i c u l t i e s  with t he  Lotka so lu t ion .  

By convention, r = r i s  t he  l a rge s t  r e a l  roo t  of equation (12), 
0 

and i ts  only r e a l  r oo t  i f  cp(a) is pos i t i ve  only on a f i n i t e  i n t e rva l ;  

subscr ip t s  w i l l  a l s o  be dropped from a u and v when they appear 
0' 0 0 

alone. Defining the  inner product of two complex-valued funct ions  x and 

y of a r e a l  va r i ab l e  by 

it can be r ead i l y  v e r i f i e d  t ha t  the  functions u o, ul, . . . and vo, vl, . . . 
s a t i s f y  

so  t h a t  these  functions form a normalized biorthogonal system. Follow- 

ing t he  same arguments a s  i n  the  d i s c r e t e  case, i f  a so lu t ion  of t he  

Lotka form (12) ex i s t s ,  then 

a i = (vi,x(o)) 

where x(o) = x(o, a )  is  the  in tegrable  i n i t i a l  age densi ty .  Thus (see 

a l s o  Coale [I9721 , pp. 67-8) 

i n  exact  analogy with the  value of x given by equation (8). By noting 
t l  

t h a t  the  age densi ty  x ( t )  a t  time t s a t i s f i e s  x ( t , a )  = p(a)b(t-a)  f o r  

t > UI, t h i s  analogy can be extended t o  give 

Except f o r  questions of existence, which do not a r i s e  when rp is 

appropr ia te ly  r e s t r i c t e d ,  t he  l imi t ing  behavior of the  Lotka so lu t ion  



thus appears t o  pose no new problems. However, instead of r e s t r i c t i n g  

cp t o  a f i n i t e  in terval ,  the  more general  apparatus of renewal theory, i n  

which cp (and hence p) can have i n f i n i t e  domain, w i l l  be used i n  the  

following discussion of the  behavior of b ( t )  a s  t + =  . 
The continuous analogue of Theorem 2 is  



THEOREM 5. Let b ( t )  given by equation (12) be a so lu t ion  of the  renewal 

equation (11). Then 

Theorem 5 is  known t o  be t r u e  when equation (12) i s  val id ,  and it i s  i n  

f a c t  t r ue  much more general ly  whenever r 2 0, and under condit ions when 

r < 0 ( for  d e t a i l s ,  see  F e l l e r  r 19711, Chapter X I ) .  The theorem seems 

t o  have been taken a s  the  usual  j u s t i f i c a t i o n  f o r  the  use of the 

approximat ion 

i n  demography (Coale [ 19721, Chapter 3))  although there  i s  always a 

suggestion i n  the  l i t e r a t u r e  t h a t  demographers a r e  aware of the  v a l i d i t y  

i n  p rac t ice  of t he  analogue of Theorem 3: 

TLiEOREM 6. Let b ( t )  given by equation (12) be a so lu t ion  of the renewal 

equation (11). Then i f  f o r  each i e i t h e r  ai  = 0 or  Re(ri) < 0, 

l i m  [ b ( t )  - aert] = 0 
t-3- 

(here Re(ri) denotes the  r e a l  p a r t  of r i )  . 

Note t h a t  Theorem 6 implies Theorem 5 i f  r 2 0, while the  reverse  

implication is  t rue  i f  r < 0. 

As with the  d i s c r e t e  formulation, stronger r e s u l t s  can be obtained 

i f  separate  consideration i s  given t o  the behavior of so lu t ions  accord- 

ing a s  r s 0, and the  discuss ion of t h i s  sec t ion  i s  su-rized i n  the  > 
following analogue of Theorem 4 f o r  continuous s t a b l e  population theory. 



THEOREM 7. Let b ( t )  s a t i s f y  t he  renewal equation 

and l e t  a so lu t ion  of t he  form 

e x i s t .  Then 

(i) i f  r < 0, 

(a) l i m  b ( t )  = 0 
tl=' 

aD 0) a 
(b) J b ( t ) d t  = - 1 - N' where N = J cp (s)ds 

-rt 
( ~ ) ~ l , i g e  b ( t )  = a  

( i i )  i f  r = 0, 

l i m  b ( t )  = a 
t+- 

(iii) i f  r > 0, 

-rt 
lim e b ( t )  = a 

t+- 

and, i n  addit ion,  i f  f o r  each i e i t h e r  a i  = 0 o r  

r t 
Re(ri) < 0, then f ( t )  = b( t )  - ae e x i s t s  on (0,m) , 
and 

l i m  [b ( t )  - aert] = 0. 
t+- 

Note t h a t  i f  (v,x(o)) ex i s t s ,  then a = (v,x(o)); a general expression 

f o r  the  coef f ic ien ts  a o,al, . . .  was given by F e l l e r  [1941]. A l l  con- 

c lusions  of Theorem 7 except the  l a s t  follow from renewal theory; only 

the  proof of the  l a s t  depends on the  existence of the  Lotka solution,  

as w i l l  appear from the proof given here of Theorem 6. 

Case i: r < 0. A bounded so lu t ion  of the  renewal equation (11) e x i s t s  

fo r  t 0. Conclusions (a) and (b) a r e  always t rue  when r < 0, while 



conclusion (c) requires,  i n  addi t ion t o  the  existence of a negative r e a l  
w -rt 

so lu t ion  t o  equation (12), t h a t  g s a t i s f y d o  e g ( t )d t  <=. Thus a l l  

r e s u l t s  hold i n  demography, without recourse t o  the  existence of the  

Lotka solut ion.  For proofs and fur ther  discussion of the  case 

J cp(t)dt < 1, see F e l l e r  ( [1971], pp. 374-7). 

Case ii: r = 0. A solut ion of equation (11) e x i s t s  f o r  t 2 0, and a l l  

t he  r e s u l t s  of renewal theory apply. Among the weakest of these  i s  ( i i )  

of Theorem 7, the  renewal densi ty  theorem (Smith [1958]). Thus Theorems 

5 and 6 hold when r = 0, without the requirement of the existence of the 

Lotka solut ion;  they a r e  of course equivalent i n  t h i s  case. For proofs 

and stronger r e su l t s ,  see  Smith [I9581 and Fe l l e r  ([19711, Chapter X I ) .  

Case iii: r > 0. A bounded so lu t ion  of equation (11) e x i s t s  fo r  any 

f i n i t e  i n t e rva l  [O,T]. To extend study of t h i s  solut ion t o  t he  non- 

negative r e a l  numbers, it is  usual (Fel ler  [1971], p. 377) t o  consider 

-rt 
ins tead b*(t) = e b ( t ) ,  which reduces t h i s  case t o  the preceding one; 

b*(t) is  bounded fo r  t 2 0, and l i m  e-rtb ( t )  = a .  This change of 
t-7- 

emphasis is not e n t i r e l y  sa t i s fac tory ,  and stronger r e s u l t s  a r e  given 

in Theorem 6. 

To prove Theorem 6, it is convenient t o  introduce 

f ( t )  = b ( t )  - ae rt 

and the  p a r t i a l  sums 

-rt By Theorem 5, lim e f ( t )  = 0, but f ( t )  may i t s e l f  behave i n  any of 
t- = 

t he  ways i l l u s t r a t e d  i n  Figures 1 t o  3; f ( t )  is  "stable" i n  the  sense 

used i n  mechanics i f  lim f ( t )  = 0. When the  Lotka solut ion (12) t o  
t* - 

equation (11) is  val id ,  



formally, and so l i m  f n ( t )  e x i s t s  whenever f  ( t )  does. h e  behavior of 

1 fn ( t ) ]  and of f ( t )  a r e  described by the following 

r .t 
1 

LEMMA. Let b ( t )  = e aie be a solut ion of the renewal equation (11) 
i = O  

on any f i n i t e  interval ,  and define f ( t )  and fn ( t )  by equations (14) and 

(15). Then i f  f o r  each i e i t h e r  ai  = 0 or  Re(ri) 5 0, f ( t )  is  bounded 

f o r  t 5 0 and i s  the uniform l i m i t  of the  sequence of p a r t i a l  sums [ f n ( t ) ] .  

Proof: Since the  Lotka solut ion ex is t s ,  f a is absolutely convergent 
i 

i =o 
(Fel ler  [1941] ), and so 

implies t ha t  f ( t )  is  bounded for  t 2 0 under the conditions of the Lema; 

the  l a s t  inequal i ty  follows from a. # 0. To e s t ab l i sh  uniform convergence 

where again a i  = 0 i f  Re(ri) > 0, and so 

l i m  f  ( t )  = f  ( t )  
n+  n 

uniformly i n  t follows from absolute convergence of {f,(o)] t o  f (o) .  

Under the conditions of the Lemma, f ( t )  e i t he r  remains bounded or  

converges; the  l a t t e r  poss ib i l i t y  i s  described by Theorem 6 .  



Proof of Theorem 6:  Note t he  s t ronger  r e s t r i c t i o n  on Re(r.)  i n  the  
1 

Theorem than i n  t he  Leunna. Because of the  uniform convergence of f ( t ) ,  

l imi t ing  operations may be interchanged i n  

1 i m  f ( t )  = l i m  l i m  f n ( t )  
t-03 tqCD n - 3 m  

t o  give 

lim f ( t )  = lim l i m  f n ( t )  
t*(" n-3m t-3- 

n r . t  1 
= l i m  C l i m  aie 
n 3 -  i=l t+ 

where t he  l a s t  equal i ty  follows, when a f 0, from 
i 

rit Re(ri) t 
l h ( e  I = l i m  e = 0 

t -> t -03 

whenever Re(ri) < 0. Necessary condit ions f o r  l i m  f ( t )  = 0 have not 
t +  

been investigated.  
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Appendix 

Because no p ro jec t ion  matrix with max 1 A j l  > 1 could be found fo r  

5+= 
human populations, an  i nd i r ec t  procedure was used i n  the  preparat ion of 

Figures 1 t o  3. The t h r ee  n e t  materni ty  funct ions  used each have the  

t 
same underlying f e r t i l i t y  pa t t e rn  by age, i n  t he  sense t h a t  [ x t / r  1 

t 
(and hence { e  /r 1) converges i d e n t i c a l l y  i n  each case.  This behavior, 

t 

which is not  i l l u s t r a t e d ,  i s  s im i l a r  t o  t h a t  shown i n  Figure 1, but  with 

f a s t e r  convergence. Calculat ions were based on the  following argument 

( for  d e t a i l s ,  s e e  Sykes [ 19731 ), using n = 10 five-year age c lasses .  

From equation (7)) with u = 1, 1 

and from equation (2) 
10 

where rp = pibi. Noting t h a t  x - - 
i - 1  i 'ixt-i, 1 

f o r  t > 10, 

is  v a l i d  a t  l e a s t  f o r  t > 10, and can be made general ly  so by an 

- t appropr ia te  choice of i n i t i a l  condit ions.  Introducing V t  = r x and 
t l  - 

p i  = r 5 ,  equation (A2) becomes 

s o  t h a t  

Final ly ,  i f  t h e  i n i t i a l  age d i s t r i b u t i o n  is  x r  = k (1,0, . . . ,0),  then 
0 

(v,xo) = k/p is  invar ian t  f o r  a l l  matrices wi th  the  same value of 
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Here, the  value of j3 se lec ted  was t h a t  of Japan, 1964 (Keyfitz and 

F l i ege r  [1971], pp. 396-397), and xo was taken a s  x '  = 5.56140 (l,O, ..., 0) 
0 

t o  make (v,x ) = 1. Three values of r were chosen t o  give the  des i red 
0 

r e s u l t s ,  and equation (A4) was used i n  t he  ca lcu la t ions ;  the  values of 

t he  n e t  materni ty  funct ions  implied by these  choices a r e  shown i n  the  

t a b l e  below. Note t h a t  the  eigenvalues of t he  matrix with n e t  maternity 

i 
funct ion cp given by cp = r a r e  jus t  r times those of a matrix with 

othcc  ( l ? ~  c 
n e t  maternity f u n c t i o n p ,  and so  the  various maximal eigenvalues a r e  

A 

the  product of the  appropr ia te  r and 0.89222, the  value of the  maximal 

eigenvalue other  than 1 f o r  a matrix with t he  i3 of Japan, 1964. Note 

a l s o  t h a t  any value of p = (p . . . ,p ) could be se lec ted  t o  form a 1' n 

population p ro jec t ion  matrix corresponding t o  a given value of cp;  given 

r and P ,  the  convergence of {e  3 is independent of mor ta l i ty .  t 

The sequence { e  3 was ca lcu la ted  and p lo t t ed  f o r  each Figure using tl 

a Hewlett-Packard model HP-9821 ca lcu la to r  with model 9862 p l o t t e r .  



Table 

Values of the Net Maternity Function cP Used i n  Calculations 

i 
for Figures 1-3. (Ti = pibi = r pi i n  each column) 

Figure 1 
(r:=l. 08) 

Figure 2 
j r 2 = l .  120797) 

0.00000 

0.00000 

.00572 

.20161 

.64611 

.68374 

.28034 

.06786 

.01189 

.00075 

Figure 3 
jr3=1. 14) 



t F igures  1-3. Behavior of e t l  = x - r (v, x ) f o r  t = 1,2, . . . ,100, 
t l  0 

wi th  (v,xo) = 1 and va lues  of r chosen s o  t h a t  

F igure  1. max 11. 1 < 1; e t l  converges t o  ze ro  
J 

(r = 1.08, max ( = ,9636) 
J 

F igure  2. max I lj ( = 1; e bounded, bu t  o s c i l l a t e s  
t l  

( r  = 1.120797, max  la. 1 = 1) 
J 

Figure  3. max l h j  I > 1; e t l  d ive rges  and i s  unbounded 

(r = 1.14, max ( = 1.0171) 3 I 










