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Abstract

A constitutive model is a relationship between material stimuli and responses.
Calibration of model parameters within well-defined constitutive models is thus key to
the generation of accurate model-based predictions. One limitation of traditional material
calibration is that only a few standardized tests are performed for estimating constitutive
parameters, which makes the calibration process eminently deterministic. Moreover,
measurements taken during standardized tests are usually global readings, which
implicitly assume a ‘homogeneous’ material composition, smearing out the influence of
any local effects. This work introduces the Functional Bayesian (FB) formulation as a
probabilistic methodology for the calibration of constitutive models that incorporates
material random responses and local effects into the assessment of constitutive
parameters. This particular calibration process is known as the probabilistic solution to
the inverse problem. Estimates of the statistics required for the Bayesian solution are
obtained from a series of standard triaxial tests which are coupled with 3-Dimensional
(3D) stereo digital images allowing for the capturing of material local effects. In addition,
the probabilistic method includes the spatial representation of elemental ‘material’
properties by introducing spatially varying parameters within a 3D Finite Element Model
(3D-FEM) to reproduce to the extent possible the actual heterogeneous response of the
material. The sampling of spatial ‘material’ realizations is performed by the Polynomial
Chaos (PC) method, which permits the simulation of multi-dimensional non-Gaussian
and non-stationary random fields. Integration of the random parameters is performed via

Markov Chain Monte-Carlo and Metropolis-Hastings algorithms. The calibration of a soil
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sample is presented as a case study to illustrate the applicability of the method when the
soil response lies within the linear elastic domain. Calibration results show a probabilistic
description of the spatially distributed parameters and of the coefficients of the chaos
representation that defines it. Inferences retrieved from the MCMC sampling include the
analysis of the ‘material’ properties and of the coefficients of the PC representation
which enhances understanding of the randomness associated with the material

composition and response.
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1. Introduction

1.1. Problem Statement

A constitutive model is a mathematical formulation that defines a particular
relationship between material stimuli and responses. The appeal of a constitutive model
lies in its capacity to reproduce all possible combinations of the material stress-strain
paths, to minimize the effort invested in parameter calibration, and to provide a clear
physical understanding of parameter variation. In addition, when the model is embedded
into analytical or numerical mechanistic predictive models such as Finite Elements, it is
possible to extrapolate elemental material predictions to significantly more complex
structures. Compared to the equilibrium and compatibility conditions, constitutive models
are not as simple to define. Calibration of model parameters within a well-defined
constitutive model is therefore a key process for the generation of accurate model-based

predictions.

Traditional calibration is carried out by performing a limited number of standardized
tests from which the constitutive parameters are estimated. This process is known as the
solution to the inverse problem. The inverse problem is solved when parameter estimates
generate predictions that are in good agreement with experimental observations. This
means that the constitutive model is calibrated and that parameters estimates can be used
to obtain predictions that go beyond the experimental conditions from which they were

obtained. On the other hand, the forward problem is solved when the calibration consists



only in tuning constitutive parameters until model predictions are consistent with actual

observations.

In this context, the calibration process is eminently deterministic in the sense that no
statistical information is incorporated into the assessment of parameters. Moreover, in
standardized tests, measurements such as axial stresses, axial strains, and global
volumetric changes, represent global readings only. When these readings are used for the
calibration of the constitutive parameters, a “homogeneous’ composition of the material is

assumed smearing out the influence of any intrinsic local effects.

The present work introduces a different approach. Normally the experiment required
for parameter calibration is repeated several times under identical conditions in order to
determine to the extent possible the nature of the material response. However, if the
material response is random, experimental uncertainty can be associated with the
experiment observations. This uncertainty is usually associated with different sources
including the inherent variation in the material, the variation due to the measuring
devices, the variation induced by the operator, or a combination of these. Hence, in the
presence of random observations it is expected that random constitutive parameters will
be retrieved. This means that the solution to the inverse problem requires a probabilistic

formulation.

One of the first probabilistic adaptations for the solution of inverse problems was the
Bayesian paradigm (Dale, 1999). In this setting, the Bayesian paradigm defines the joint

probability density function (pdf) of the material parameters using a-priori knowledge of



the constitutive parameters or prior, and the measure of the predictive model performance
or likelihood; yielding the formulation of a joint pdf known as the posterior. The
posterior can be interpreted as the probability of occurrence of the constitutive parameters

once an update on observations has been introduced.

The Bayesian approach was not fully exploited until recently due to the unavailability
of computational resources for its implementation when modeling multivariate
phenomena. This limitation has been recently overcome with surging of more efficient
numerical formulations. The most significant property of the Bayesian paradigm is that it
introduces a complete solution for ill-posed problems by integrating the conjunction of a-
priori information associated with experimental, theoretical and even subjective sources.
This permits the probabilistic formulation of constitutive parameters. It is worth noting
that the Bayesian approach can be applied only when the calibration of constitutive
models makes use of reliable observations and a robust predictive model capable of
generating accurate predictions. The conditions of existence, stability and non-uniqueness
are also accounted for in the Bayesian solution. This yields a set of suitable parameters

with particular marginal pdfs and correlation structure.

A unique feature of the probabilistic calibration approach is the final description of
the model parameters. This is given by their corresponding pdfs and correlation structure
as opposed to the results obtained with classical statistical methods such as least squares
and maximum likelihood estimation, where parameters are interpreted as expected or
mean values with uncertainty measures given by their variances. Hence, by following the

Bayesian approach, the constitutive parameters are not considered deterministic entities.
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Instead, they are random variables, which can also be referenced in space and time
(random processes) carrying the uncertainties from the a-priori state of information

throughout their final probabilistic descriptions.

Because of the difficulty in formulating multivariate posteriors, and considering the
simplifications of the formulation of the Bayesian estimators with specific properties
such as unbiasedness and minimum variance, Fitzpatrick (1991) proved the following.
He showed that the Thikonov’s regularization method (widely used for strongly ill-posed
problems) and the Bayesian paradigm, converged when the Bayesian maximum a-
posteriori is estimated under the assumption that errors between observations and the
predictions show Gaussian properties and if they are independent of each other. This
convergence is demonstrated by following a Bayesian weighted least squares form or
what is known as the maximized posterior. The implementation is straightforward and
allows for a smooth incorporation of multiple parameters that can be easily referenced in

space and time if necessary.

In the case of multivariate processes, the representation of the parameters defining
inherent Gaussian random fields may assume the form of finite series such as the
Karhunen-Loeve’s (K-L) expansions (Van Trees, 2001). The K-L expansions enable the
simplification of the numerical implementation by using the process eigen-quantities.
Taking advantage of these properties, McLaughlin and Townley (1996) re-parameterized
the posterior by defining the parameters Gaussian field in terms of K-L expansions, and

then maximizing it with respect to the series coefficients. This enabled the estimation of



a smooth parameter field and its marginal Gaussian pdfs by a functional form of the

posterior.

The Functional Bayesian (FB) method introduces a generalized approach for the
solution of inverse problems that allows for the representation of spatio-temporal non-
Gaussian and non-stationary constitutive parameters, by using the Polynomial Chaos
(PC) method (Sakamoto and Ghanem, 2002a and 200b) within a Bayesian framework.
Multi-dimensional Hermite polynomials representing the fields of the constitutive
parameters are embedded into the prior and likelihood definitions, such that the posterior
integrates the series coefficients. This creates a sub-hierarchy of estimators (chaos
coefficients) lying below the space of the constitutive model or ‘physical’ parameters.
Consequently, more inferences about the calibration can be generated, enhancing the
understanding not only of the constitutive parameters themselves but the estimators that

control them.

The integration of the posterior is required to define the marginal pdfs of each of the
constitutive parameters and to assess its correlation structure. For this purpose, it is
necessary to define the a-priori marginal pdfs and the correlation structure of the
constitutive parameters, so that the prior can be formulated. It is also necessary to define
the covariance matrices of the observations and the predictions, so that the likelihood can
be formulated. As mentioned above, these components of information rely on inferences
from observations obtained from the same experiment that is repeated several times, and
on the predictions of the same model based on multiple simulations. Once the prior and

likelihood are properly defined, the posterior is integrated via Markov-Chain Monte
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Carlo (MCMC) and Metropolis-Hastings (M-H) algorithms (Robert and Casella, 2004).
Both of these are widely used because of their computational sampling efficiency. They
have both been shown to be particularly useful for the integration of non-analytical and

high dimensional posteriors.

In order to illustrate the applicability of the method, a case study is presented
describing the probabilistic calibration of an elastic model used for simulating the
behavior of a triaxial soil specimen. Estimates of the statistics of the observations
required for the Bayesian formulation are obtained from a control-based experimental
database. This database consists of a series of triaxial tests on sand specimens that
populate both global and local spatio-temporal data. Estimates of the global material
properties are obtained by measurements taken from standard triaxial device; local
spatio-temporal data are captured over the samples surfaces by measurements taken from

a 3D-Digital Image Correlation (3D-DIC) technique.

Estimates of the statistics corresponding to predictions are based on simulations of the
soil response given by a 3D Finite Element Model (3D-FEM) that aims to reproduce the
testing conditions to the extent possible. It does so by incorporating spatially varying
constitutive parameters assigned to prescribed ‘material’ regions, and based on the actual
test initial and boundary conditions. The displacement domain is chosen as the space
where the calibration is performed (where observations and predictions are compared).

This is delimited by the area where 3D-DIC captures the local deformations.



The case study first focuses on the linear elastic response of one particular test taken
from the experimental database. The linear elastic constitutive model is chosen to
reproduce the actual soil behavior. Additionally, constitutive parameters are spatially
distributed following a prescribed spatial ‘material’ arrangement within the 3D-FEM.
The Young’s modulus is the only random parameter considered for the calibration, while
the Poisson’s ratio and density are assumed to be constant for all ‘materials’. The initial
guess of the prior is defined by assuming a random field of the Young’s moduli within
the specimen based on a-priori information, and it is assumed to be stationary (although
this may change during the MCMC sampling). Since the correlation structure of the

‘materials’ is unknown, the correlation parameter is assumed to be random as well.

The FB method is a continuation of previous efforts that have explored the use of PC
representations in the identification of non-random chaos coefficients associated with
model parameters using the maximum likelihood approach (Desceliers et al., 2006), and
for exploring the influence of the amount of information in the convergence of the
parameter estimates using the updating feature of Bayes’ theorem (Ghanem and Doostan,
2006). The emphasis of this work is therefore not on the evaluation of chaos parameters.
Rather, it is on the methodological implementation of a generalized representation of
random material fields defined by the PC, which are controlled by random chaos

coefficients that permit the solution of the inverse problem.



1.2. Thesis Outline

Chapter 2 introduces the theoretical framework for the solution of inverse problems
and presents the development of the Functional Bayesian (FB) method for the
probabilistic calibration of constitutive models. Chapter 3 introduces the theoretical
framework of the PC method for the simulation of multi-dimensional non-stationary and
non-Gaussian process. It also presents three benchmark cases that explain in detail how to
implement the PC method, including the sampling case used in the integration of the FB
posterior. Chapter 4 introduces the experimental methods and results that conforms the
database used to validate the FB Method. Chapter 5 introduces the numerical models
developed for the model calibration making emphasis on the parameters considered for
enhancing the model performance. It also presents a case that serves as a proof of concept
for the implementation of the selected numerical model considered for the probabilistic
calibration. Chapter 6 introduces the elements for the Bayesian formulation and the
statistical estimates needed to integrate the case study presented in chapter 7. Chapter 7
introduces the case study that validates the applicability of the method for the
probabilistic calibration of one test with spatially varying linear elastic constitutive

parameters. And finally, chapter 8 introduces the conclusions of this work.



2. Inverse Problem Solutions

The practical purpose of solving an inverse problem as defined by the calibration of a
constitutive model is to estimate the constitutive parameters @ given some a-priori
information. Common sources of a-priori information are experimental and theoretical,
and even subjective. Regardless, a calibration method capable of transforming the actual
state of information into the estimates of the constitutive parameters is required. This
section introduces a scheme for the rational identification and quantification of the
uncertainty present in the information sources, and the calibration methods that

incorporate this uncertainty in the identification of solutions for inverse problems.

2.1. Uncertainty Quantification

In order to improve the definition of constitutive parameters, the probabilistic
calibration approach includes a systematic identification and quantification of the
uncertainty contained in a-priori information sources. This requires to identify and

characterize the uncertainty associated with the displacement observations d_, and the

Al

displacement predictions d obtained from experimentation and numerical

pred >

simulations respectively. Furthermore, d,, and d ,, represent the two main sources of

obs
a-priori information. Hence, the quantification of their uncertainty becomes a key
element in the calibration since it is expected to propagate throughout the solution of the

inverse problem. Both d ,; and d ,,, are random vectors and consequently the difference

A

that each of them have with respect to the expected or actual displacements d. This



means that the specimen displacements d can be defined with respect to the observations

as:

d=d_, +Ad,, (2.1)
where,
d,,.  isavector containing random experimental displacement fields measured during a

test. Its randomness may be due to sample disturbance, sample manipulation, sample
preservation, inaccuracy or imprecision of testing equipment, operator’s inexperience,
analyst’s limited judgment, inherent variation of soil , or due to a combination of these

Ad , is the vector of random differences between d and d

Similarly, the specimen displacements d can also be defined with respect to the

predictions as:

d=d,,, +Ad,, (2.2)
where,
d,.,= g(0) is a vector of random displacement predictions evaluated at the same spatio-

temporal points as d_, through a mechanistic predictive model g (analytical or

numerical), which describes the physical behavior of the data given a set of random

parameters 0. The evaluation of vector d,,, represents one realization of the forward

problem. Its randomness may be due to model limitations such as under or over-
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parameterization, numerical error of solver, parameter resolution (mesh size inadequacy),

or due a combination of these

Ad ,,, is the vector of random differences between d and d .,

Similarly, the expected vector of model parameters 0 is defined as follows:
(23)

0=0+A0

where,

A

0

is a vector of random model parameters obtained either from global indirect
measurements, from a deterministic inversion process (optimal solution), or from a non-

informative function, all of these representing the inherent variability of the material

A

AO is the vector of random differences between © and

When 0 is defined as a random field 0(X), X represents a point coordinate in the

spatial or spatio-temporal domain. In this case, equation 2.3 is rewritten as:
0(X)=0(X)+A0(X) (2.4)

where é(X) can be interpreted as the large-scale fluctuation component, and Aﬁ(X) can

be interpreted as the small-scale fluctuation component of 9( )

From equations 2.1 and 2.2 it is possible to relate the two sources of uncertainty as:

(2.5)

dobs + Ad obs — dpred + Ad pred

11



yielding four different uncertainty combinations. These possible states of information are

presented in Table 1, where Ad, =0 implies a perfect measuring process free of

uncertainty, and where Ad ., = 0 implies free modeling uncertainty.

Table 1. Schemes of uncertainty propagation

Case Measurement Error | Modeling Error Resulting Relationship
Ad,, = 0 Ad pred — 0 d, =d pred
A d,, =d dpred =d
Ad obs 0 Ad pred — 0 d,, +Ad, =d pred
B Ad, =d—d,, d,, =d
Ad,, =0 Ad,., # 0 d, =d,,+Ad,,
C d,, =d Ad,,, =d-d,,,
Ad, #0 Ad,, #0 d, +Ad, =d, , +Ad,,
D Ad,, =d-d,, Ad pred = d-d pred {Adobs —-Ad pred } = ld pred d,, J
Ad = |_d pred dohs

Cases A and C represent ideal conditions where the measurements are free of

uncertainties Ad, =0 (an assumption that is unrealistic in the case of geomaterials). A

perfect modeling or Ad _, =0 as represented by Case B can be more acceptable if it is

pred
assumed that the constitutive parameters are deterministic and if the uncertainty
attributable to numerical calculations or to parameter resolution is minimal. Case D
synthesizes both sources of uncertainty in only one term, where Ad can be interpreted as
the component that encapsulates all possible states of uncertainty ranging from cases A

through D. This state of information can be defined as:

d, =d,. +Ad (2.6)

obs

12



Considering this particular state of information, the inverse problem solution is given

by the estimate:
é = h(dobs ) = h(dpred + Ad) ( 27 )

which is obtained by identifying an inverse operator /4 that maps the vector of

A

observations d ,, into the vector of parameter estimates 0 .

2.2. Inverse Problem Solutions
Dale (1999) defined three different types of solutions for an inverse problem:

a) The exact solution, also known as the direct solution, aims to find the operator 4

that maps d_,, into 0. Typical applications of this type of solution occur in the case of

physical problems where the parameters are measured directly or have a linear
dependence with the state variables. Another typical application is in the solution of
systems of differential equations where the initial and boundary conditions are sufficient
to reach a closed solution. Inverse problems that cannot be solved by the exact solution

require a numerical approximation.

b) The optimal solution seeks an estimate 0 by minimizing an objective function

hd,,,.d,,). Some probabilistic assumptions may be used to define the form of the

objective function, but the parameter estimates are considered deterministic. Typical
methods identified with this type of solution are the least squares and maximum

likelihood estimation approaches.

13



c) The complete solution presents the inversion results in the form of probability
density functions. Typical applications of this type of solution include the Bayesian
paradigm. Under specific circumstances, the optimal and complete solutions converge to

each other.
2.2.1. Optimal Solutions

2.2.1.1. Least Squares Estimation (LSE)

), where

A loss or objective function is defined by L(dpred,dgbs):L(Jdmd -d,,

d,.= g(é) is the theoretical solution for a fixed set of parameters 0 given by a

mechanistic predictive model g. A simple method to solve the inverse problem is Least
Squares Estimation (LSE), which consists in minimizing the loss function defined by the

weighted Euclidean distance function between the displacement observations and

predictions:
_ & [y @)
h(L)\/kZ;W{ T }
_ Z[i:Wk {(d pred dobs );(d pred dobs )}k } ( 28 )
£ | lelo)-a,. ) (6o)-a.. )i
where,
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I, is a scale factor associated with displacement observations and predictions at the

time or deformation stage k

w, is a weight factor associated with the observed and predicted displacements at the
time or deformation stage k

It is worth noticing that LSE considers no probability density function for the 0

sampling, which makes this approach deterministic.
2.2.1.2. Maximum Likelihood Estimation (MLE) with Random Observations

The uncertainty introduced into the calibration by the difference between predictions
and observations Ad, is only due to the observations if the predictions from model g are
assumed to be deterministic Ad ,,,, =0 and the observations are considered to be random
Ad, #0 (Table 1 case B). In addition, if Ad, are spatially and temporally
independent of each other, and if these are normally distributed with zero mean and

covariance C, , then the best estimates of 0 are those that maximize the occurrence of

the observations relative to the predictions (Fadale et al., 1995). In that case, the best

estimate is the one that maximizes the joint pdf of the observations given a set of
parameter estimates® . This transformation is defined by the function / (0;d)= £(d,,, |0)

known as the likelihood function, which defines a joint pdf of a set of observations d=
di, d,, ds, oo dn, given a set of parameters 0,

10;d,,d,,d,,....d, )= f(d,,d,.d;,..d, |0)= f(d|0), with the form:
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where the covariance matrix of the observations at time £ is defined as:

(C s )k =E [(Adobs )k (Adobs ): J

where (Adobs )k = (da;,s )k -E [(dobs )k]

Then, using a support function of the form,

1 (0)=-2mnr(d,, 16)=
mk In(27) + i lnqum H+ @,.-a,)(, )@,.,-d,) =

]+ ki(g(é)_ d,, ):c (Cdm ): (g(é)_ d,, )k

k=1
K

mkIn(27)+ Z lnqum
k=1

(2.9)

(2.10)

(2.11)

and minimizing it with respect to 0, yields the same results as minimizing the objective

function:

16)= 3 (¢6)- (@), ] (€, ), (6)-@,0.),)

-
i

16

(2.12)



since the first two terms in the equation 2.11 remain constant during the optimization. A

particularly appealing property of the likelihood function is that it allows for the finding

of the best estimate of  when the mapping function d _, = g(ﬂ) is nonlinear.

pred

2.2.1.3. Maximum Likelihood Estimation (MLE) with Random Observations and

Random Predictions

A different likelihood function is defined if uncertainty is assumed to arise from both
the observations and the predictions. Uncertainty due to modeling can be minimized by
either increasing the resolution of the predictive model (e.g. finer mesh), by choosing an
efficient numerical solver, or by using a better constitutive model. Yet variability inherent
to the parameters cannot be minimized. Nevertheless, it can be included into the inverse
problem solution by properly formulating the marginal pdfs. One way to incorporate the
parameter variability into the inverse solution is by comparing the observations and the
predictions, and by assuming that both of them carry uncertainty components (Table 1,
case D). Consequently, the uncertainty associated with the observations and predictions

can be defined as:

Ad:ldpred_dobsj (213)

Ifd , and d

pre

and thus Ad are assumed to have Gaussian distributions, and d

obs > pred

and d_, are assumed to be independent of each other, the likelihood function is

formulated as:
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1 (&
PR INE
m | k=1
Jerr [T,
1 & §
K exp Z_E(dpred _dobs ):(CAd)kl(dpred _dobs )k:| = (214)
m L k=1
Jer TTie,
k=1
1 ESm A
% eXp Z_E(g(ﬁ)_dohs )l]; (CAd )kl(g(e)_dobs )k:|
m L k=1
Jerr [T,
k=1

Using a support function similar to the equation 2.11 and minimizing it with respect

t0 @, the objective function takes the form:

ha0)= > {C., }+k§_( 0)-(@,.)) (€)' (e0)-(@,.),) (2.15)

k 1

Furthermore, if it is assumed that E[Ad]= 0, the covariance matrix of Ad is defined

as:

C,. = El{ad- E(ad)liad - E(aq)}" |- El{aa}aa) |-
E[{dpred _dohs}{dpred —d,, }T]z (2.16)
E [(Ad pred XAd pred )r ]+ E [(Ad obs XAd obs )T ]: Cdpm, + Cdm

where C, ~ and C, are the covariance matrices of the predictions and the
pre obs

observations respectively.
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The covariance of the observations C, was defined by equation 2.10. For the

with mean E [9 WWJ

evaluation of C, it is necessary to assume a-priori values 6
pre

prior ?

and covariance C, . Therefore, the covariance of the predictions is defined as:
prior

)))))

c,  =E|ad,,Nad,, )| (2.17)

where Ad pred = dpred - E|.d pred J = g(e prior )_ E|.g (0 prior )J :

From equations 2.9 and 2.14 it is observed that LSE is a particular case of Gaussian
MLE, where the proper decomposition of the covariance matrix Ad may result in the

factors I', and W, defined in equation 2.8.

2.2.2. Complete Solution

The complete solution to an inverse problem is expressed in the form of marginal pdfs
and the covariance of 0. This work considers the Bayesian paradigm as the adequate
venue to formulate a complete solution. The Bayesian approach makes inferences
founded in statements that convey the integration of two main sources of information: the
prior - derived from previous knowledge about the parameters, and the likelihood - based
on the inferences assimilated by the data itself. Both of these are expressed in the form of
probability density functions, which combined give a conditional joint probability

function called posterior, which is itself the solution to the inverse problem.
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2.2.2.1. Bayesian Paradigm

The Bayesian paradigm is an analytical formulation that naturally solves the inverse
problem since it aims to retrieve the causes of the random observations generated by the
constitutive parameters. The Bayes theorem defines the solution to the inverse problem

as:

f(d,, 10)z(0]u) /(d,, 18,g(0))z(6|u) (2.18)

01 d1r.0)= [/(a,,. 10)r(@ uldo [ (d,,. 0,2(0))x(0|u)do

where 7[(9 | u) is the prior, which may be dependant on another set of parameters u
known as hyper-parameters; f(d,, |0) is the likelihood ; and z(8|d,,,u) is the

posterior. Descriptions of each of these components are discussed in the following

sections.
2.2.2.2. Prior

The prior 72(9 | u) represents the a-priori state of information of the constitutive

parameters, and the first of two main sources of information integrated into the solution
of the inverse problem. Press (2003) identified three main types of priors. The most
elemental is the one based on the principle of insufficient reason stated by Laplace, which
suggests that in the absence of any reason to the contrary, all values of the unknown
parameters should be taken to be equally likely. In those cases where there is less than
total ignorance about a set of parameters, more rational procedures can be used to define

them. Objective priors can be implemented when very little is known about the
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parameters (e.g. Vague and Jeffrey’s priors). Subjective priors can be implemented when
there is enough evidence to build a distribution that reflects the analyst beliefs (e.g.
conjugate, maximum entropy, empirical, hierarchical). In this work, it is proposed to
explore the representation of the a-priori information over the parameters using conjugate
priors such as the Gaussian and the log-normal distributions. These are then validated

with experimental evidence.

The multivariate Gaussian prior is defined as:

1 A 1
ﬂ-(ﬂ) = f(e o 0prior ) o exp{— 5(0 o 0prior ) (Cﬂp,w,, )> (e - 9prior )} ( 2 19 )
where 0, and C,  are the parameters mean vector and covariance matrix
respectively.

The multivariate log-normal prior is defined as:
1 * T 1 *
7(0)=r0-9,,, )~ exp[— E(m(e)— 0" i ) (Ce )} (1n(0)- 0" i )} (220)

* . .
where 0 - and C.  are respectively the parameter’s mean vector and covariance

prior

matrix of the underlying log-normal parameters 0 .
2.2.2.3. Likelihood

The likelihood represents a measure of the predictive model performance, and the

second one of the two main sources of information integrated into the solution of the
21



inverse problem. By definition it can take any particular shape according to the difference
between observations and predictions. Nevertheless, a good model is expected to err
following a simple and consistent response. Following a similar criteria for the prior
definition, it is propose to explore simple representations which should be validated later.
This is the case of the multivariate Gaussian-type likelihood introduced in sections
2.2.1.2 and 2.2.1.3 corresponding to two different states of information (equations 2.9

and 2.14).
2.2.2.4. Posterior

The posterior 72'(9 | dobs) is the joint probability function between the a-priori states of

information associated with both the prior and the likelihood. Following the previous

prior and likelihood assumptions, the posteriors for the Gaussian and log-normal priors

arc:
7[(9 | d()bs )G oc
LS 1 T -1
z _E(g(e)_dobs )k (CAd )k (g(e)—dobs )k (2.21)
exp| !
1
_—(B_Oprior)r( 0, )l(e—eprior)
and
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72-(9 | dobs )Lag o«

K
1 _
z _E(g(ﬂ)_dobs )Z (CAd )kl(g(e)_dobs )k (2_22)
exp| !
1 . *
— E (ln(ﬂ) - 9 prior )T (C e*p’wr )>l (ln(ﬂ) - 0 prior )
respectively.

2.2.2.5. Maximum A-Posteriori

One particular case to the solution of the inverse problem is the Bayesian maximum a-
posteriori approach, which defined under specific assumptions fulfills the form of the
regularization algorithm developed by Thikonov (1995) for the solution of strongly ill-
posed problems and the corresponding use of sophisticated optimization methods. This

method is an extension of the effort of defining the posterior on a Bayesian setting, where

it is maximized with respect to the unknown parameters 0 (Fitzpatrick, 1991). When the

observations are obtained from independent identically distributed (iidd) Gaussian

samples, the maximization of the posterior with respect to the parameters 0 takes the

form:

hO\d (é) = :1 (g(é)— d()bs ): (CAd ): (g(é)— dobs )k + ﬂ é - epri()r x Hé - eprior ' ( 2.23 )
which is the generalized Thikonov’s regularization function with:
plo-e,.,[<[o-0,.[=6-0,.(c, )(-0,,) (224)
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It is important to note that the parameter estimates in this case represent the MLE of
the posterior, which means that they are not represented by a probability density function
since its solution is a LSE type. Therefore, the maximum a-posteriori approach is a good
proof about the generalization of the applicability of Bayesian methods for the solution of

ill-posed problems with strongly non-linear mechanistic responses.
2.2.2.6. Functional Bayesian (FB)

In the case where constitutive parameters follow a prescribed spatial distribution, for
instance, when regional ‘materials’ are allocated within a 3D-FEM (predictive model),
the solution of the inverse problem given by the posterior is conditioned on the spatial

parameters X. Moreover, by using a functional representation of the B(X) field, such as

the PC representation (Sakamoto and Ghanem, 2002a, 2002b), the solution of the inverse

problem can be improved.

The benefits of this particular implementation are: the sampling of local ‘material’
heterogeneities that can extend to non-stationary and non-Gaussian conditions; the
construction of a hierarchy of parameters, extending the statistical inferences from the

constitutive parameters to the hyper-parameters (chaos coefficients) that govern them.

Under the previous assumptions, the posterior assumes a FB form, which in the case
of Gaussian likelihood, and Gaussian and log-normal posteriors like those introduced in

equations 2.21 and 2.22, evolve into the following expressions:
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S L (elox)-a.. ) (€0)] (cl0x)-a.,), (225)

exp

> _%(g(e(u(x)))_ d,,,); (C.0) (2(0(u(X))-d,,), (226)

exp
I Ow(x) 0" WX (C,. ) (0 X)) 0" ()
respectively.

2.2.2.7. Posterior Integration

The integration of the posterior becomes a challenge for a multivariate and multi-level
Bayesian definition like equations 2.25 and 2.26 due to the number of samples needed to
converge to the target joint pdf of 0. To overcome this problem, it is proposed to use the
Markov Chain Monte Carlo (MCMC) method, which is a numerical procedure that
allows for the sampling of a posterior. An important property of the MCMC method is
that it converges to the target joint density as the sample grows. The decision rule that
selects the samples is the Metropolis-Hastings (M-H), which is a generalized form of the

Metropolis and Gibbs methods (Robert and Casella, 2005).
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During the posterior integration, the MCMC “state’ of the chain at the s + 1 iteration is
obtained by sampling a candidate point Y from a proposal distribution q(- | és ) The latter
is conditioned only by the previous set of parameters @, and can take any form subject to

the regularity conditions of irreducibility and aperiodicity.

The candidate point Y is accepted or rejected as the next step of the chain with

probability given by:

5 4 e AV 14,006, 1Y)
a(ﬂs d )— mm{l, n(és a, )q(Y | 65 )} (2.27)

For the MCMC sampling the distribution of interest f ( |d ) appears as a ratio, so

obs
that the constant of proportionality cancels out. Also the evaluation of the posterior
requires discarding the first iterations called the burn-in points, before it reaches the

stationary condition, from which the statistical inferences are generated.

Metropolis-Hasting Algorithm

i) Initialize the chain with 0, at s =0
i1) Generate a candidate point Y from q(- | ﬁs)

iii) Generate U from a uniform (0,1) distribution

) If U< a(és,Y) then set ém =Y, else set ém = (A)S. This step implies that the

forward problem should be solved for the candidate point Y and the previous point és as

part of the likelihood embedded in the posterior f ( |d,,, )
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v) Set s=s+1 and repeat steps 2 through 5.
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3. Simulation of Multi-Dimensional Non-Gaussian Non-

Stationary Fields

The previous chapter introduced the Functional Bayesian (FB) method as an
appropriate approach to solve inverse problems, where the constitutive model calibration
permits the incorporation of local random effects as part of the a-priori information. This
method relies on the spatial representation of the constitutive parameters as non-
homogeneous ‘material’ compositions capable of reproducing the actual heterogeneous
specimen deformation responses as captured by the digital images. This section
introduces the PC method as an efficient approach to simulate multi-dimensional non-
Gaussian non-stationary ‘material’ fields. The PC method significantly enhances the
capacity of the FB solution due to the prior sampling flexibility to reproduce a wide range
of random conditions (from stationary Gaussian to non-stationary non-Gaussian). After
presenting the theoretical framework of the PC method, three benchmark cases with
increasingly complex features are introduced to illustrate the implementation of the
method. The third case is the representation of the spatially varying parameters used in

the FB case study discussed in chapter 6.
3.1. Polynomial Chaos (PC) Method

The appealing formulation of the PC method is its ability to sample realizations of
multi-dimensional non-stationry non-Gaussian random fields from the first order

marginal pdfs and the second order correlation functions synthesized from the actual field
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(Sakamoto and Ghanem, 2002a). Like other methods, the PC method involves a non-
linear transformation of some underlying Gaussian process (Grigoriu, 1993, 1995;
Shinozuka and Deodatis, 1991). This transformation is achieved by coupling the
correlation function of the target field with the correlation function of an underlying non-
stationary standard Gaussian field. The non-linear mapping relating both functions is
found using the one dimensional PC decomposition of the target field and the Karhunen-
Loeve (K-L) representation of the non-stationary Gaussian field (Ghanem and Spanos,
1991). After the mapping between correlations functions is established, the target field is

represented as a polynomial with uncorrelated Gaussian random variables.

For this purpose, consider I,(X) one-dimensional Hermite polynomials in the
standard Gaussian random variable ;/(X ) spatially or spatio-temporally referred to point

X. Therefore, any target field or second-order random process m(X ) can be represented

using a series expansion of the form (Sakamoto and Ghanem, 2002a):

m(x)= 3 U, (X, (X)=
U, (X)+U, (X (X)) + U, (X N (x ) -1) (3.1)
F U (X =370+ U, ()X =37(X))+..

th

where U, are Fourier-type coefficients of the i~ order that can be calculated using a

Monte-Carlo sampling of the assimilated field m (X ) as:

Uiﬂz@ (3.2)
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where < > denote the mathematical expectation.

The covariance function of the process m(X) can be defined in terms of the series

expansion introduced in equation 3.1 as:

Cov[m )] = <

ZZUX)U X)< J > (3.3)

i=l j=1

\/
Il

where 71(X)=m(X)- <m(X )> is the residual field.

Due to the orthogonality of the Hermite polynomials with respect to the Gaussian

measure, the cross-correlation of T, (X) is:

<Fi(X2)’Fj(X1)> :i!<7/i(X2)7j(X1)><ri(X2)Fj(Xl)>:O (34)
fori=j.

By substituting equation 3.4 into equation 3.3, the covariance m(X ) is redefined in

terms of the Gaussian process y(X) as:
Cov[m(Xz )a m(Xl )] = ZUI' (Xz )Ui (Xl )i!<7(X2 )7(X1 )>l (3.5)

This system of algebraic non-linear equations can be solved iteratively after properly
discretizing the spatial domain. Very similar results can be obtained by using the

normalized covariance function or correlation function of the process p(m(X,),m(X,))
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as the covariance function of the Gaussian process y(X),
<7/(X (X, )> = p(m(X,),m(X,)) (Sakamoto and Ghanem, 2002a and 2002b). The latter

approach is less computationally intensive and easier to implement.

Once the covariance function of the Gaussian process y(X) is evaluated it follows to
evaluated its corresponding K-L expansion. This is populated by sampling the Gaussian

process y(X) as:
(%)=L (X (3.6)

where A, and f, are the i"™ eigenvalues and eigenfunctions respectively, and {51} are a

set of uncorrelated Gaussian random variables, which will help to populate the process

m(X)

A representation of m(X ) as a series expansion in a set of uncorrelated random

variables has the form:

Mm=;mmau> (3.7)

where {‘Pl. (X )} represents a set of multi-dimensional Hermite polynomials with a set of

standard Gaussian uncorrelated variables {&, }.

By substituting the K-L definition into ;/(X ) and setting equation 3.1 and 3.7 equal to

each other, the chaos coefficients u,(X) are calculated using the expression:
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Y,

1

ui(X):<p!2>Up(X)]i!:\/T(j)fk(j)(X) (3.8)

where p is the order of the polynomial ¥,, U, (X ) are the coefficients of the one-
dimensional expansion introduced in equation 3.1, A4, and f, are the eigenvalues and

eigenfunctions respectively of the Gaussian process »(X), and {¥,(X)} are the

multidimensional Hermite polynomials.

Once both coefficients U(X) and u(X) of the one and multidimensional Hermite
polynomials are evaluated, simulations of the process m(X ) can be populated by

sampling the standard Gaussian uncorrelated variables {£,} as defined in equation 3.7.

3.2. PC Benchmark Case I: Simulation of a 1-D Field

The first benchmark case illustrates the applicability of the PC method for a 1D local
variation field of data captured from a soil deforming specimen, where X = y is the local
spatial domain defined as the normalized vertical height of the soil specimen, and
m(X = y) is the random field under study defined as the average of the 3D vertical
displacement field captured by the stereo digital images over the samples surface
calculated along the specimen axial direction at 0.2 % of axial strain. A detailed
explanation about the application of this particular field is given in section 5.4. The field

m(y) is measured in mm.
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One data sample containing 13 observations is provided from which statistics are
retrieved for the m(y) field simulation (Figure 3.1). For computational simplicity each
data profile is interpolated at 20 equally distributed points, which are considered enough
as to capture local variations of the field and to facilitate the assessment of the spatial

statistics.

The target values for estimating the field PC simulations are the data empirical first
order marginal cumulative density functions (cdfs) and second order correlation statistics.
The field profiles of the mean and standard deviations are presented in Figures 3.2 and
3.3 respectively. The mean shows a smooth monotonic behavior while the standard
deviation captures different degrees of uncertainty showing local maximums and
minimums, following an increasing trend from the bottom to the top of the spatial

domain. The Non-Stationarity condition of m(y) field is evidenced by the variability of

both the mean and standard deviation along the spatial domain.

The field empirical covariance Cov[m(y, ),m(y,)] and the normalized covariance or

correlation ~ function  p(y,,y,)= Covm(y, ) m(y,))/ \/Var[m(yz )]\/Var[m(y1 ) are

introduced in Figures 3.4 and 3.5 respectively. Both functions represent the linear
correlation structure of m(y) between any two points y, and y, along the spatial
domain. In the covariance function, when both spatial reference points are the same
(values lying over the diagonal), the square root of the covariance shows the same local
maxima and minima as in the profile of the standard deviation presented in Figure 3.3. A

similar interpretation can be applied to other coordinate combinations. In the case of the
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correlation function, the highest values lie over the diagonal, meaning that the highest
correlation is associated with the variation of the data values found at the same spatial
position, whereas values close to zero are found between the farthest reference points,
meaning that there is no recognizable pattern between the variations of data located at
bottom and the top of the domain. For this particular field, it is shown that as the distance

between any two data points y, and y, increases, the correlation decreases continuously

from a maximum value of 1 to a minimum of 0.

One of the goals of this case it to contrast the ability of the PC method to simulate
non-stationary non-Gaussian processes as compared with the Gaussian simulations only.
With this purpose in mind, the spatial data ensemble (Figure 3.1) is assumed to follow a
Gaussian behavior at each point over the space domain. Based on this assumption, the K-

L expansion can be formulated to simulate the m(y) field, such that

m(y)= z\/i_*, f *i(y)é, where A« and f'r are the eigenvalues and eigenfunctions
i=l1

respectively estimated from the empirical covariance function introduced in Figure 3.5.
The eigenvalues and the corresponding first five eigenfunctions of m(y) are presented in
Figures 3.6 and 3.7 respectively, illustrating the order of magnitude and trends of the first
set of eigen-quantities (5 eigenvectors only). Typical realizations obtained by the K-L
expansion are introduced in Figure 3.8 showing good agreement with the actual
observations (Figure 3.1). This can be corroborated in Figure 3.9, which shows the

synthesized marginal cdf of the data ensemble and the synthesized K-L cdfs following
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20,000 realizations at control points y = 0.22 and y = 0.72. By definition, the synthesized

K-L covariance and correlation functions converge to the targets.

The PC expansion requires first that the eigen-quantities associated with the

correlation function of the m(y) field (Figure 3.5) be evaluated. As mentioned above,

this assumption allows for the simplification of the non-linear mapping of the original
correlation structure to the Gaussian-type process. The corresponding eigenvalues and the

first five eigenfunctions are presented in Figures 3.10 and 3.11 respectively.

The second component required for the PC formulation is the definition of the first
order marginal pdfs at each point over the spatial domain y. This allows for the

coefficients U,(y) and u,(y) to be evaluated. In this example, the U, (y) coefficients are

estimated using the raw data ‘sample’ as indicated by equation 3.2 for the first to the

sixth polynomial order. Once the U,(y) coefficients are assessed, the m(y) field is

populated for each order to find the best one-dimensional expansion that fits the data
marginal cdfs. For instance, Figures 3.12 and 3.13 show the marginal cdfs at control
points y = 0.22 and y = 0.72 (as above) after performing 20,000 PC realizations for each
polynomial order. From these figures it is observed that the sampling from the ‘raw data’,
which represents the sampling of ‘discrete’ marginal functions weight the data behavior
in a limited way, resulting in a poor representation of the observations. To overcome this
problem, a continuous linear fit to the empirical data cdfs is proposed to smooth the data.
By using a continuous linear fit of the empirical cdf, a new set of chaos coefficients are

evaluated and new marginal densities are generated also following the generation of
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20,000 PC realizations. The synthesized cdfs of the PC expansion at control points y =
0.22 and y = 0.72 are introduced in Figures 3.14 and 3.15 respectively. These show a

significant improvement on the synthesized PC cdfs patterns.

Typical convergence behavior of the evaluation of the chaos coefficients U, (y) is

presented in Figures 3.16 and 3.17 at control points y = 0.22 and y = 0.72 respectively.
These figures show the evaluation of U, (y) for the PC expansions of orders i = 0, 1 and
2 (although i = 3, 4 and 5 were also calculated) during a sample of 20,000, at which point
marginal cdfs domains show clear convergence patterns for all coefficients. Once the

U,(y) coefficients are estimated, u,(y) can be computed using equation 3.8. The
resulting profiles of the first five Ul.(y) and ui(y) coefficients (i = 0, 1, 2, 3, 4)

corresponding to the fifth order one-dimensional PC expansion are presented in Figures

3.18 and 3.19 respectively.

The third component in the formulation of the PC expansion is the selection of the
polynomial order that best reproduces the marginal empirical cdfs (targets). A first
approach is to define a generalized order for the entire spatial domain. A local analysis at

the variation of the m(y) field is developed for elaborating this particular assessment. An

example of this analysis is presented in Figures 3.20 and 3.21. These figures show the
empirical and synthesized K-L cdfs at control points y = 0.22 and y = 0.72 respectively.
They also show the synthesized PC cdfs for the second (Figure 3.20) and third (Figure
3.12) order polynomials for one-dimensional PC expansions. From these figures it is

observed that the use of the PC expansions fit better the empirical cdfs than the K-L ones,
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proving the adequacy of the method for Non-Gaussian random fields. In addition, it is
observed that there is a tradeoff when assuming a generalized order for each PC
expansion. If the criteria is to ‘better fit the empirical cdfs and to allow smooth transitions
at their tails’, the second order works better for control point y = 0.72 (Figure 3.20) and
the third order for the control point y = 0.72 (Figure 3.21). If the ‘best fit’ is the only

criteria, the previous conclusion should be reversed.

In order to improve the incompatibility in the selection of the polynomial order, and
taking advantage of the PC method definition, it is proposed to assign individual

polynomial orders for each variable m(y) Considering the marginal cdfs as those

presented in Figure 3.20 and 3.21, but for all other y positions, and assuming the first
criteria discussed before of ‘best fit and smooth transition tails’, multi-order expansions
are formulated following the order profile shown in Figure 3.22. The updates of the
empirical and PC synthesized cdfs at the two control points for the multi-order one-

dimensional expansion are presented in Figure 3.23.

The fourth and final component required to ensure the optimal definition of the PC
formulation is the selection of the polynomial dimension. As described in the work of
Sakamoto and Ghanem (2002a, 2002b), the greater the dimension, the better the
approximation to the target correlation structure. To illustrate this effect, Figure 3.24 and
3.25 present the synthesized covariance and correlation functions from the PC expansions
as calculated from multi-order one-dimensional polynomials after 20,000 realizations.
Both functions show significant deviation from their corresponding targets (Figures 3.4

and 3.5). This problem can be overcome by using the multi-order coefficients U, (y) and
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higher order Hermite polynomials. Once the U, (y) coefficients are updated, estimates of
the u,(y) coefficients are obtained for the second, third and fourth dimensions

respectively. Based on these configurations, PC realizations are sampled showing a good
agreement with the actual observations as the polynomial dimensions are increased. This
change is illustrated in Figures 3.26 and 3.27. These show the synthesized covariance
and correlation functions associated with 20,000 PC realizations based on multi-order
four-dimensional estimates. These figures prove that for this particular PC design there is
good agreement with the target functions (Figures 3.4 and 3.5). A set of typical PC
realizations of the field are introduced in Figure 3.28 which fulfill the first order marginal

and second order correlation statistics discussed above.

In summary, for this benchmark case demonstrates the PC simulations are
significantly better than K-L ones. It also shows that the use of discrete ‘raw data’ to

evaluate the chaos coefficients U,(y) is not as effective in terms of performance of the

synthesized PC marginal cdfs when compared to the case where the empirical cdf was
modeled using a continuous function. This case also demonstrates that modeling
empirical marginal cdfs with a generalized order did not provide a consistent criterion
selection for defining the best PC synthesized marginal cdfs. Instead, a method where the
order of the expansion was adjusted for each point over the spatial domain showed better
behavior for the different random responses captured by each marginal cdf. Finally, this
case corroborated that as the dimension of the expansion increases, the difference

between the target correlation and the synthesized PC correlation decreases. In particular,
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the multi-order four-dimensional PC expansion showed good results for the simulation of

the m(y) field.

3.3. PC Benchmark Case II: Simulation of a 1D-T Process

The second benchmark case illustrates the applicability of the PC method for a 1D-T
spatio-temporal process corresponding to the same field m defined in the previous
section, but with the addition of the time reference, such that X = (y,t) id defined as a
point in the spatio-temporal domain, with y representing the spatial dimension and ¢

representing the time dimension, and where m(y,t) represents the averaged vertical
displacement at different stages of deformation (or times ¢). The field m(y,t) is measured

in mm and 7 in seconds.

To illustrate the nature of the field, one data sample is presented in Figure 3.29, while
a data ensemble which includes13 observations from which statistics are retrieved for the

simulation of m(y,t) is presented in Figure 3.30. The four set of data showed in Figure

3.30 correspond to stages of deformation at #,=15 sec, £,=30 sec, 13=45 sec and #,=60 sec.
Also, as in the previous case, the data ensemble is interpolated at 20 equally distributed

points along the y domain to facilitate the computation of the spatio-temporal statistics.

The process mean and variance estimates are presented in Figures 3.2 and 3.3
respectively. These provide a first evaluation of heterogeneous local variations. Both the
vertical displacement means and the variances show global incremental trends and local

changes on both the spatial and time domains. These characteristics confirm the non-
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stationary condition indicating the adequacy of the simulation method. The variation of
the means is smoother than the variation of the variances with respect to time. The mean
process shows a monotonic behavior with respect to space and time. The variances on
the other hand show a general trend to increase from the bottom to the top of the spatial
domain as the progresses in time. They show some periodicity at specific y locations in

the form of local maximums and minimums.

In order to capture the correlation structure between data ensembles at different times,
it is necessary to establish a spatio-temporal relationship with each variable to create a

reference tom(y,t). This allows for the assessment of the covariance and correlation

matrices of the process. A simple way to create this association is by assigning to each
variable a number that increases monotonically from the bottom to the top of the
specimen and that also increases over time. A graphical representation of the variable
assignment is depicted in Figure 3.33 (note that other forms can be used without
changing the process estimates). In this figure, the first twenty variables represent the
displacements of the first data ensemble measured at t;, where variable number 1
represents data at the bottom of the spatial domain and variable number 20 represents the
observations at the top. The following sets of twenty variables are associated with the

data ensembles measured at times ¢, 73 and #4 respectively.

With the variable arrangement described above, it is possible to evaluate the empirical
covariance and correlation matrices considering the four data ensembles. The graphical
representation of the empirical covariance matrix is presented in Figure 3.34. A mosaic

of 4 x 4 = 16 sub-matrices is illustrated in this figure, including 20 x 20 = 400 covariance
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values, for a total of 16 x 400 = 6,400 covariance estimates. The sub-matrices located in
the main diagonal are the covariance functions corresponding to times ¢; through #
respectively. The sub-matrices out of the main sub-matrix diagonal represent the
covariance matrices between data ensembles observed at different times. For instance, the
sub-matrix located in the bottom row and the third column (from left to right), compares
variables 1 to 20 with variables 41 to 60. It represents the covariance sub-matrix between
data observed on the first data ensemble (#;) and the third data ensemble (#;). Similarly,
Figure 3.35 shows the empirical correlation matrix, which follows the same arrangement
as the covariance matrix. As in the previous case, the empirical covariance and the

correlation matrices are considered the ‘target’ values for the PC simulations.

A detailed analysis is developed to define the best polynomial order associated with

each variable m(y,t). An arrangement of the polynomial orders is introduced in Figure
3.36. This arrangement is used to calculate the converging U,(y,t) coefficients

following the evaluation of 20,000 samples. Based on the correlation matrix of the
process, the eigenvalues and eigenvectors are evaluated and presented in Figures 3.37 and

3.38 respectively.

Once the order of each variable is identified, and the coefficients U,(y,#) and the
eigen-quantities are calculated, the u[(y,t) coefficients are evaluated. For this purpose,

the first four dimensions of the Hermite polynomials are tried at the time to define the
optimal polynomial design. This is achieved by simulating 20,000 realizations for each

order, and then by comparing the target and PC synthesized statistics. In this case, the
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multi-order four-dimensional polynomial generates the process estimates that best
approximate better to the observations. The order of magnitude and trend of the first five

coefficients u,(y,t) are presented in Figure 3.39.

The recovered synthesized PC marginal cdfs show good fit to the data trends, as can
be observed at the control point y = 0.98 for the four-time steps included in the process
(Figure 3.40). Also, the synthesized PC covariance and correlation matrices coincide with
the empirical covariance estimates as illustrated in Figure 3.41 and 3.42 respectively.
Finally, Figure 3.43 shows a typical spatio-temporal PC realization generated under the
previous assumptions with the actual observations in the background as a reference. This
simulation shows the PC capability to generate complex data behavior with the same

statistical characteristics than the observations.

In summary, this second benchmark case presents the simulation of a spatio-temporal
process m(y,t). As in the 1D simulation presented in the previous section, the 1D-T
process generated satisfactory results when continuous empirical cdfs where used for the

estimates of the U, (y,t) coefficients and the corresponding marginal cdfs. Assignment of

a variable number was necessary to manage and calculate the empirical covariance and
correlation matrices due to the multidimensional nature of the process. A multi-order and
four-dimensional expansion allowed for an adequate simulation of the process. This was
demonstrated by comparing the target and empirical marginal cdfs and covariance and

correlation matrices.
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3.4. PC Benchmark Case III: Simulation of a 2D Field

The third benchmark case illustrates the applicability of the PC method for a 2D
random field of a synthetic experiment associated with the simulation of spatial varying
material properties. This problem represents a key element for the probabilistic

calibration, where X = X (xnm_m , ymm) is a point in the vertical cross section domain of a

3D-FEM cylindrical specimen normalized with respect to the specimen diameter, and

where m(X )= 6(X) represents the material field as defined in the FB approach described
in the previous chapter (section 2.4.6). In this case, (x,,,,¥,,.,) is dimensionless while
m(x,,..» ¥, ) is associated with the spatial variation of the Young’s modulus which is

measured in MPa. The particular spatial configuration of the spatial domain X is
presented in Figure 3.44. It includes a reference grid that identifies the material random

variables considered for the field simulation.

The conditions defined for the PC material simulation include stationary log-normal
marginal pdfs with mean 92.33 MPa, standard deviation 4598 MPa
(Figure 3.45), and an isotropic correlation function with correlation parameter ¢ = 0.5
(Figure 3.46). Based on these assumptions it is possible to compute the covariance and
correlation matrices (Figure 3.47 and 3.48 respectively), which along with the log-normal
marginal pdfs become the target statistics. The eigen-quantities are estimated from the
empirical correlation estimates. These are presented in Figure 3.49 and Figures 3.50 —

3.52 respectively (only the first three eigenfunctions).
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After analyzing the effect of the polynomial order and dimensionality, it is assumed
that a third order four-dimensional Hermite polynomial is appropriate for the PC

simulation. The projection of the first five terms of the chaos coefficients u(x,,. ,y,.. )

plotted over the normalized vertical cross section is presented in Figure 3.53. In order to
establish that the PC simulations approximate the target functions, a series of 20,000 PC
samples is generated and the corresponding spatial statistics calculated. Figure 3.54
shows the cdf of the synthesized PC simulations corresponding to control points X(-0.25,
1.10) and X(0.25,, 1.10) along with the target empirical and lognormal models. From this
figure it can be observed that the PC simulations show good agreement with the targets.
In terms of the covariance and correlation functions, the synthesized matrices are
presented in Figures 3.55 and 3.66. These also show good agreement with the
corresponding targets. Finally, a typical PC realization of the material field is presented
in Figure 3.57. This illustrates a process sample like the ones to be included into the

probabilistic calibration case study presented in chapter 6.

In summary, the last benchmark case described the simulation of a spatially varying
material which is efficiently sampled using the PC method. By providing first order
statistics information about the stationary marginal pdf and second order statistics about
the correlation function, it was possible to populate the material field using third order
four-dimensional PC expansions. Evidence was presented showing that statistics from the
synthesized PC samples approached the target models. This means that the material

random field representation is efficiently carried out by the PC method.
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4. Soil Experimentation

The previous two chapters introduced the theoretical components of the Functional
Bayesian (FB) method for the solution of the inherent inverse problem (chapter 2), and
the PC method for the simulation of a spatially varying material field (chapter 3). This
chapter discusses an experimental database populated to validate the application of the
FB method for the calibration of soil constitutive models. The experimental evidence
discussed here is obtained by combining a standard triaxial soil testing method and an
advanced non-destructive technique for the measurement of full-field displacements
based on 3D imaging. Together these allow for the definition of 3D-T displacement

fields captured over the surface of a deforming soil specimen.

The experimental database is used to evaluate the performance of the predictive model
(3D-FEM) in reproducing local non-homogeneous responses (chapter 5). It is also used
to identify patterns and causes of the soil random responses by generating the empirical
spatio-temporal inferences (chapter 6) required for the solution of a probabilistic
calibration case study (chapter 7). As mentioned above, although testing included the soil
response until after failure, only data contained within a short deformation range
predominantly associated to a linear elastic response is considered for further analysis.
These are the data that represent the observations, one of the two sources of information

required for the integration of the solution of the probabilistic calibration.
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4.1. Triaxial Testing

It is common practice to rely on triaxial test results for the calibration of soil
constitutive models. Triaxial testing is a standard procedure that aims to capture
relationships between global stress, strain and volumetric change of a soil specimen for
the assessment of its fundamental mechanical properties. The type of triaxial testing
procedure chosen depends on the soil classification and the expected behavior of the
sample. The triaxial test consists of loading (also known as shearing) a soil specimen
until it fails. In this work, an isotropic compression is applied to the specimen to
reproduce prescribed confinement pressure conditions. The soil sample can be either an
undisturbed field sample or a reconstituted sample constructed in the lab. The choice

depends on the objectives of the investigation and the soil nature.

Previous investigations have studied the influence of control variables related to
triaxial soil testing. Though this is not a comprehensive list, studies have been conducted
on specimen characteristics, such as specimen grains arrangement and compressibility
(Oda, 1972; Mahmood, 1976; Kuo et al., 1996; Wang et al., 2003), grain size distribution
(Ghalib and Hryciw, 1999), test repeatability, sample uniformity and homogeneity (Ladd,
1978; Vaid and Negussey, 1988; Al-Shibli et al., 1996; Muhunthan et al., 2000), relative
density range of variation (Passalacqua, 1991), maximum density (Lo Presti et al., 1992;
Cresswell et al., 1999), and minimum density (Naeini and Baziar, 2000). Building on
this previous research, this work attempts to identify and quantify uncertainties associated

with triaxial testing focusing on the influence that they have on the calibration of
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constitutive models. Additionally, numerical modeling details considered as sources of

uncertainty to be incorporated into the calibration are discussed in chapter 5.

The series of triaxial experiments presented in this work are based on the standard test
for Consolidated Drained (CD) compression conditions (ASTM D 4767) with some
modifications. These modifications were implemented to guarantee a controlled testing
environment and to facilitate the incorporation of the digital imaging technique. The
modifications consisted in removing the Plexiglas cell to avoid light reflection during the
capture of the stereo digital images. This required the confinement pressure to be applied

using a vacuum pump instead of with the cell fluid (dry test).

The GeoComp automated system (Geocomp Corporation, 2002) was used to perform
the experiments. It controls and records loads, displacements, cell and pore water
pressures. The system controls the test through a PC connected to the loading frame
(LoadTrac II) and to two pressure pumps (FlowTrac II). The test characteristics are
configured in the software provided as part of the system (Triaxial) and saved in a file
before running the experiment. Some of the test characteristics include the initial sample
geometry (height, diameter), physical properties of the sample (weight, density), area
correction effect, test type (strain or load controlled, drained, undrained), and other
reference information (reading time, units, etc.). The ‘LoadTrac II' device loads the
specimen from the bottom using a micro-step motor. The top is fixed to the loading
frame through a steel rod attached to the top Plexiglas platen at one end and to the load
cell at the other. The triaxial system reads the vertical platen displacements using a

transducer located underneath the loading base. It reads the loads using a load S-shaped
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cell fixed in the upper beam of the loading frame. The only pore pressure readings taken
during the test are given by the gauge attached to the vacuum pump which is maintained
constant throughout each test. A picture showing the GeoComp system is presented in
Figure 4.1, with a) the triaxial base and frame, and b) the automated system, including

the ‘LoadTrac II’ and the two ‘FlowTrac II’ pumps.

4.2. Properties of Soil Specimens

Sieved construction sand was chosen as the testing material because its individual
grains provided an adequate color spectrum suitable for pattern recognition during
imaging analysis. Reconstituted dry sand specimens were prepared using uniform sand.
Some of the sand characteristics included a specific gravity of G, = 2.63 with a mean
diameter Dsp = 0.5 mm and coefficients of uniformity and curvature of C, = 2.34 and C,
= 1.11 respectively. The graphical representation of the sand grain size analysis is

presented in Figure 4.2 highlighting the material uniformity.

Specimens were formed using a standard mold of cylindrical shape of 7.11 cm
diameter and 15.6 cm height. For ensuring the specimen uniform geometry the mold was
conditioned so that the wrapping membrane stayed suctioned to its wall during the grains
placement. Samples were formed in layers using dry pluviation and a vibratory
compaction method. The surface of each layer was compacted uniformly with no
scarification between the layers. Porous stones were included at the ends of the
specimens following the triaxial standard. Figure 4.3 illustrates the sample preparation

process which includes a) mold assembling, b) membrane collocation, c) top platen
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seating d) mold removal (under vacuum pressure) and e) the measurement of sample

properties.

4.3. Triaxial Testing Application

An experimental database was populated with the results of thirteen vacuum-
consolidated drained triaxial compression tests on dense sand specimens that were
prepared in three compacting layers. In addition, one ‘layered’ sample (120704c) was
built, including two compacting layers, the bottom half ‘dense’ and the top half ‘loose’.
The ‘dense’ segment was prepared using the same technique as the other thirteen
samples, and the ‘loose’ segment was prepared placing the sand manually at a zero

height.

The experimental control variables included the specimen height, density, and initial
geometry. Only specimens with relative density varying between 85% and 95% were
considered for testing. In the case of the layered specimen test the relative density was
68.9%. Samples were consolidated to 40 kPa effective stress (using the vacuum pump)
and included non-lubricated ends. All specimens were loaded with a controlled
deformation rate of 0.2 % of axial strain/min. A summary of the main specimen

characteristics is presented in Table 4.1.

A first step for the characterization of the database consists in evaluating some basic
statistics from Table 4.1. For instance, after excluding the data of the layered specimen
test, it is observed that the average height of the specimens is 157.3 mm with standard

deviation of 2 mm; the average density is 1,711 kg/m® with a standard deviation of 7.44
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kg/m’; the average relative density is 91.8% with a standard deviation of 2.03%; and the

average peak friction angle is 48.13° with standard deviation 0.69 °.

Global stress-strain curves for all tests carried out are presented in Figure 4.4. From
the main body of curves (13 tests) it should be noted that although all thirteen tests results
were nominally similar, significant scatter is present in the global soil behavior. The
layered specimen test does not produce the typical behavior of a dense specimen (no peak
stress). Notice that all tests results including the layered specimen test converged to

approximately the same critical state condition, which ranged between 150 and 180 kPa.

As mentioned above, this work concentrates on the linear elastic range to illustrate the
applicability of the calibration method. From the strain-stress curves it is possible to
identify the linear elastic range, which in this case is defined from 0.0 % to 0.2 % of axial
strain. This range was limited after computing the first derivative functions and defining

the extension of the plateau sections common to all tests results.

4.4. Digital Image Correlation (DIC)

The Digital Image Correlation (DIC) technique is an innovative approach aimed at
capturing local phenomena of deforming specimens. Three seminal papers introduce the
use of digital images for the assimilation of displacement fields. Peters and Ranson
(1982) were the first to use principles of continuum mechanics to assimilate deformation
information from images. Sutton et al. (1983) introduced the Digital Image Correlation
(DIC) technique, which is the basis of the imaging method used in this work. Chu et al.

(1985) were the first to design experiments to evaluate the accuracy and precision of the

50



DIC method. A thorough description of the evolution from 2D to 3D DIC analysis can be
found in Sutton et al. (2000). More recently, DIC techniques have proven to be reliable
and accurate tools for investigating local soil deformation phenomena in sands either in
2D (Rechenmacher and Finno, 2004) or in 3D (Rechenmacher and Medina-Cetina, 2006).
These investigations captured hundreds to thousands of displacement vectors obtained

from soil deforming specimens in biaxial and triaxial devices respectively.

4.5. 3-D Digital Image Correlation (3D-DIC)

VIC-3D is based on a DIC technique that relies on the correlation coefficient to match
pixel subsets between pairs of images located at different stages of deformation. This is
possible, since digital images are comprised of a grid of pixels that measure gray
intensity values representing the light intensity of the sample’s surface. In this case they
capture the direct impression of the color variation of the individual sand grains seen

through the wrapping membrane.

The correlation kernel embedded in VIC-3D that helps to find the best match of pixel
subsets between stereo images is the iterative spatial domain cross-correlation algorithm
(Sutton et al., 2000). This algorithm solves for the pixels subsets translation as well as
for its rotations and strains. In this way, once the best matches between subsets are found,
vectors are traced between the pixels subset centroids defining the 3D displacement

fields. A simple representation of this matching is depicted in Figure 4.5.

In this work, 3D-DIC is used to estimate 3D-T spatio-temporal full-field displacement

fields ranging from the actual initial specimen geometry to the assessment of kinematic
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local heterogeneities captured over sample surface at different stages of deformation. In
order for 3D-DIC analysis to be performed, a pre-testing calibration procedure is
required. This calibration consists in taking twenty or more pictures of a standard grid
fixed at different positions so that the system parameters can be evaluated (focal length,
lenses distortion, etc.). Figure 4.6 shows the left and right images of the standard grid

used for the VIC-3D calibration.

During each triaxial test, pairs of digital images are taken simultaneously every 15
seconds (0.05 % of axial strain) using two 14-bit digital cameras Q-Imaging PMI-4201,
with 4.2 Mega pixels of resolution (2024 x 2024 pixels), positioned approximately 25 cm
from each other, and mounted on a tripod whose axis was located approximately at 50 cm
from the sample. In addition, in order to enhance the pixel gray level variation in the
images captured by 3D-DIC, four lamps with equal light intensity were optimally located
and oriented toward the specimen. This tended to enhance the individual grain color

contrasts in the sand. The overall scheme of the equipment set up is shown in Figure 4.7.

The software used to capture the stereo digital images during the triaxial tests is VIC-
SNAP developed by Correlated Solutions (2004). This software allows for the selection
of periodicity in which the images are taken and for enhancing some of the image
characteristics before the beginning of the test. The computer where the VIC-3D controls
the image shooting also serves to store the stereo digital images. No synchronization
between the Triax and VIC-3D timers was designed. A click on each mouse served to

simultaneously start both processes — the image acquisition and the triaxial shearing.
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The software used to measure the 3D full-field displacements is VIC-3D, also
developed by Correlated Solutions (2004). For the correlation analysis to be performed,
VIC-3D requires the selection of an ‘area of interest’ in the first set of images
(undeformed state), that serves as reference for where in the image the displacements will
be quantified. Also, a ‘seed” window on both images must be defined, where common
pixels are clearly identified, so that the correlation starts at the same point in the spatial
reference to help in the correlation convergence. To accommodate the measurements of
non-integer pixel displacements, pixel gray levels are interpolated such that continuous
intensity distributions are matched. Various forms of interpolation functions may be used.

In this work the cubic interpolation was used.

The VIC-3D calibration establishes a 3D spatial reference defined as the orthogonal
3D coordinate system (x, y, z), introducing the depth perception into the analysis that
allows for the definition of the sample 3D shape (Triggs et al., 2000). This means that at
each deformation stage, it is possible to generate the actual geometry of the specimen
using the corresponding stereo digital images. To illustrate this step in the DIC analysis,
Figure 4.8 shows a couple of stereo digital images taken before loading, along with a
measure of the initial specimen geometry as calculated by VIC-3D. This figure also
shows the spatial reference system considered for the 3D-DIC analyses (x, y and z). This

helps to estimate one of the specimens’ initial boundary conditions.

For the calibration purposes discussed, 3D displacement fields are obtained between
the reference stereo images that correspond to the undeformed stage, and the target

images that correspond to subsequent deformation stages that lie within the linear elastic
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range. Once displacement fields are obtained for each deformation stage it is possible to

estimate the sample surface deformed configuration.

An average of 40,000 displacement vectors was found over the sample surfaces for
each stage of deformation. The center to center distance is approximately 0.4 mm, and
covers a digitized area limited by a sector angle of approximately 85°. The area includes
measurements from the bottom to top of the porous stones, except a narrow segment on
the soil-porous stones interfaces (less than 1 mm on each boundary). This constraint
arises because of the limitation in DIC capacity to identify variations in color patterns on

uniformly-colored the porous stones.

To illustrate the application of the 3D-DIC technique, Figure 4.9 presents the stress-
strain curve of test 100203a including marks at 0.2 % and 2.0 % of axial strain. The
corresponding 3D displacement fields u, v and w measured by 3D-DIC (displacements in
the x, y and z directions) are shown in Figure 4.10. This figure illustrates the local
heterogeneous displacement responses observed on the sample surface. The u
displacement field is expected to be symmetric with respect to the center lines traced over
the sample surface on the axial and horizontal directions. Instead, a consistent slight
deviation is observed towards the right and bottom sides at 0.2 % and 2.0 % of axial
strain. The w displacement is expected to show the bulging effect from the initial
deformation stages. Instead, a slight displacement inwards is observed at 0.2% of axial
strain, which is reversed later when the bulging effect takes place at later deformation

stages. This effect is slightly deviated down from the center of the specimens’ surface.
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Deformation on the axial direction seems uniform at all stages of deformation, although

some local non-uniformity can be more easily identified at early stages of deformation.

4.6. Top Platen Motion

A review of the 3D-DIC measurements reveals the identification of a vertical top
platen motion at early stages of deformation. A typical representation of this effect is
portrayed by the v field presented in Figure 4.10 at 0.2