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Abstract

In this thesis we extend signal processing techniques originally formulated in the context

of image processing to techniques that can be applied to signals on arbitrary triangles

meshes.

We develop methods for the two most common representations of signals on triangle

meshes: signals sampled at the vertices of a finely tessellated mesh, and signals mapped

to a coarsely tessellated mesh through texture maps.

Our first contribution is the combination of Lagrangian Integration and the Finite Ele-

ments Method in the formulation of two signal processing tasks: Shock Filters for texture

and geometry sharpening, and Optical Flow for texture registration.

Our second contribution is the formulation of Gradient-Domain processing within the

texture atlas. We define a function space that handles chart discontinuities, and linear

operators that capture the metric distortion introduced by the parameterization.

Our third contribution is the construction of a spatiotemporal atlas parameterization for

evolving meshes. Our method introduces localized remeshing operations and a compact

parameterization that improves geometry and texture video compression. We show

temporally coherent signal processing using partial correspondences.

Primary reader and advisor: Michael Kazhdan.

Secondary reader: Hugues Hoppe.

Auxiliary reader: Laurent Younes.
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Chapter 1

Introduction

1.1 Motivation

The rapid integration of depth, motion, and georeference sensors on our conventional

cameras is changing the nature of images and videos. These new devices allow us to

record not just the light but also the geometric properties of the space being captured.

This additional geometric data has opened a door to applications like image-based nav-

igation systems, augmented reality, and improved facial recognition.

From the signal processing point view we can raise several questions regarding the repre-

sentation and analysis of these multimodal signals: What kind of data structures should

be used to fuse geometric and photometric measures? How should we process geometric

and photometric data to generate new meaningful signals? While these questions have

inspired a significant amount of research over the last decades, we believe that the in-

creasing accessibility to devices that allow the creation and manipulation of this kind of

data revives the discussion and encourages the development of new techniques like the

ones described here.

1.2 Objective

The theory, methods, and algorithms introduced in this thesis are under the scope of

the following question:

How should a signal defined on a parameterized surface be processed to produce a new

signal in a manner consistent with the surface geometry?
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To address this question, we start by looking back to traditional image processing tasks.

In particular we choose three problems that have been well studied within the image

processing community: Shock Filters, Optical Flow and Gradient-Domain Processing.

For each of these problems we analyze the original formulation and proposed solutions

in the context of image processing. We show how to formulate solutions to analogous

problems for signals defined on arbitrary 3D surfaces.

1.3 Overview

This thesis is divided into five chapters. Chapter 2 introduces the mathematical tools

that allow us to analyze signals on parameterized surfaces. We also introduce the data

structures and notation used in subsequent chapters.

Chapter 3 proposes a Lagrangian formulation of one of the pioneering works in image

sharpening. The original Shock Filters method [1] evolves a signal according to a PDE

that preserves the critical points and accentuates concavity. We simplify this PDE in a

way that admits a simple Lagrangian integration, without compromising the quality of

the obtained solution. Our Lagrangian method works for signals defined on traditional

images and extends to signals defined on triangles meshes. We show applications of our

algorithms for sharpening colors and geometry. We highlight its simple implementation,

efficiency and stability.

In Chapter 4 we study the classical formulation of the optical flow problem: computing

a vector field that aligns a pair of images. Our solution to the optical flow problem for

meshes builds on top of standard image-based optical flow [2]. Of particular interest in

this chapter is the study of vector field regularization operators. We show applications

of our mesh-based optical flow for signal interpolation and photometric tracking.

In Chapter 5 we discretize and solve the screened-Poisson equation directly in the tex-

ture atlas domain. We propose a method that pulls back the immersion metric to the

parametric domain and produces results that are perceptually continuous across charts.

The partial regularity of the texture atlas parameterization motivates the development

of hybrid multigrid solvers for efficient solution to the screened-Poisson equation. We

show applications of our technique to signal smoothing, sharpening and stitching. We

demonstrate the robustness of our formulation by solving more challenging geometric

problems like geodesic computation and line integral convolution.

In Chapter 6 we introduce the first texture atlas parameterization for meshes whose ge-

ometry, topology and surface attributes change over time. An evolving mesh is obtained
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by applying local remeshing operations between successive frames to ensure precise re-

production of the captured geometry and maximize temporal coherence within the frame

sequence. We extend the traditional notion of atlas, chart, and texture maps, from static

to evolving meshes, and show how the new representation improves signal compression.

We present preliminary results of signal processing within this spatiotemporal paramet-

ric domain, and motivate the exploration of further applications.

The work described in this thesis was introduced in the following publications:

• F. Prada, and M. Kazhdan. Unconditionally Stable Shock Filters for Image and

Geometry Processing. SGP 2015.

• F. Prada, M. Kazhdan, M. Chuang, A. Collet, and H. Hoppe. Motion Graphs for

Unstructured Textured Meshes. SIGGRAPH 2016.

• F. Prada, M. Kazhdan, M. Chuang, A. Collet, and H. Hoppe. Spatiotemporal Atlas

Parameterization for Evolving Meshes. SIGGRAPH 2017.

• F. Prada, M. Kazhdan, M. Chuang, and H. Hoppe. Gradient-Domain Processing

within a Texture Atlas. SIGGRAPH 2018.
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Chapter 2

Preliminaries

2.1 Surfaces and signals in Computer Graphics

2.1.1 Surface discretization

In this thesis we will use triangle meshes to model surfaces. Triangle meshes are arguably

the simplest and most versatile structures to represent 3D surfaces. We can use triangle

meshes to capture complex models using very few triangles. For instance, the output of

a 3D scanner is usually an unstructured collection of millions of points sampled from the

model surface. By processing this point cloud, we can generate an adaptive mesh that

covers regions of low curvature with very few triangles and use finer sampling in regions

of geometric detail. This mesh provides an structured representation of our model that

is both compact and accurate, and consequently it can be rapidly edited, stored, or

analyzed.

Alternatively, we can use triangle meshes to generate complex models using very few

triangles. From a small collection of geometric primitives and a set of subdivision rules,

an artist can design a smooth surface.

Due to its versatility and easy manipulation, triangles meshes are ubiquitous in computer

graphics applications: the simple modeling of extrinsic deformation makes them suitable

for animation; the simple definition of ray intersection, spatial sorting and clipping

operations makes them convenient for rasterization; the simple definition of discrete

differential operators makes them appropriate for Finite Elements simulation.
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Vertex Based Signals

33k vertices 367k vertices 3343k vertices

Texture Map

5k vertices

1M texels

Figure 2.1: Signal representation on a triangle mesh.

2.1.2 Signal discretization

A signal is a function that assigns a property to each point in the surface. Signals are

traditionally used on triangle meshes to represent colors, normals, displacements as well

as other material properties.

In Figure 2.1 we show the two most common ways to represent signals on meshes. The
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simplest and most intuitive way is using vertex based signals (top). Such signals are

specified by values at the vertices, and are reconstructed in the triangle interior through

barycentric interpolation. Since the resolution of the signal is defined by the density of

vertices, we observe that reproducing signal detail requires a very fine tessellation. This

is the case for facial features in the Ballerina model: a uniform triangulation with 33k

vertices is insufficient to capture the details in the mouth and eyes, and those can only

be captured using a finer triangulation.

At the bottom of Figure 2.1 we show an alternative approach to represent signals on

surfaces which is called texture mapping. The idea of texture mapping is to specify

signal values through a conventional image, and define an auxiliary function that tells

each point in the surface from which location of the image to take its value from. The

definition of this surface-to-image function involves the construction of an atlas param-

eterization [3]. Texture mapping can be used to define high resolution signals on very

coarse meshes. For the Ballerina example, using texture mapping on a mesh with only

5k vertices and a texture with 1M texels, we obtain a result that has the same signal

quality as a vertex based signal sampled on a mesh with above 1M vertices.

Texture mapping has significant storage and performance benefits over vertex-based

signals. By moving the signal detail from an irregularly tessellated mesh to a regular

grid, the gain in spatial coherence allows for better compression and efficient memory

access.

In this thesis we will study signals that use a vertex-based representation or a texture

map. It is worth mentioning that there are alternative ways to represent signals on

meshes. Most notable are the extrinsic representations using 3D grids [4]. The advantage

of the extrinsic representations is independence between signal and tessellation: the

same signal can be sampled on any triangulation of the surface. The drawback of this

representation is the requirement of excessive refinement of 3D space to reproduce signal

detail, e.g. in regions of high curvature .

2.2 Notation

In this thesis we will use non-bold letters to represent entities in continuous domains

like points (p), vector fields (X) and flows (Φ). We use bold letters to represent discrete

entities like vectors (b) and matrices (M). In particular, the bold version of a non-bold

symbol represent the array of coefficients with respect to a given basis. For instance if

φ is a function then φ correspond to its array of coefficients.
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Symbol Summary description

S ⊂ R3 surface

M ⊂ R2 parametric domain

Mi ⊂ M chart

p, q ∈ M points

φ, ψ : M → R functions

X,Y : M → TM vector fields

π : M → R3 immersion map

Ψ : M →M diffeomorphism

Φ : M × R→M flow

µ : TM × TM → R≥0 Euclidean metric

g : TM × TM → R≥0 Riemannian metric

B ⊂ L(M,R) function basis

φi ∈ B basis function

M ∈ R|B|×|B| mass matrix

S ∈ R|B|×|B| stiffness matrix

B1 ⊂ L(M,TM) vector field basis

Xi ∈ B1 basis vector field

M1 ∈ R|B1|×|B1| vector field mass matrix

S1 ∈ R|B1|×|B1| vector field stiffness matrix

Table 2.1: Summary of notation.

Table 2.1 summarizes the symbols for the mathematical concepts introduced in this

chapter and studied in more detail in subsequent chapters.

2.3 Mathematical background

2.3.1 Mathematics for a continuous world

2.3.1.1 Surfaces

We think of a surface as the interface between the interior and exterior of an object.

To introduce a formal definition of surface we need to take a look to a broader class of

mathematical objects known as manifolds [5]. An n-dimensional manifold is a set that

locally resembles the euclidean space. More precisely, for any point x in the manifold,

we can find a parametric map π : M ⊂ Rn → S that establish a continuous and bijective

association between a region in the euclidean space and a neighbourhood of the point.

From this definition it follows that a 3D surface, S ⊂ R3, belongs to the class of 2-

dimensional manifolds.
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Parameterization The first step to compute distances, areas, and properties of func-

tions over a surface is to construct a parameterization. The building blocks of a surface

parameterization are the charts. A chart defines a continuous map, πi : Mi → Si from

a region of the plane, Mi ⊂ R2, into a region of the surface, Si ⊂ S. We say that a

collection of charts A= {(πi,Mi, Si)}i form an atlas when they provide a full covering

of the surface, i.e., ∪iSi = S.

Tangent spaces Surfaces for which we can define a tangent plane TS that changes

smoothly as we move along the surface are called regular surfaces [6].

Since the tangent plane at any point of a regular surface is a 2-dimensional vector space,

we augment our parametric domain M with a tangent space TM , which is simply a

copy of R2. The differential of the parametric map dπ ≡ [∂π∂u
∂π
∂v ] : TM → TS provides

an identification between these vector spaces. Thus, for any point p ∈ M , the column

vectors of the parametric map differential, {∂π∂u |p, ∂π∂v |p}, form a basis for the tangent

plane Tπ(p)S.

Diffeomorphisms Given two parameterizations of the same surface patch, (π,M, S)

and (π̃, M̃ , S), the map Ψ := π̃−1 ◦ π : M → M̃ is a differmorphism. This map provide

an identification of points in the two parametric domains that match to a same point

in the surface: by construction, any point p ∈ M and its image p̃ = Ψ(p) ∈ M̃ satisfy

π̃(p̃) = π̃ ◦ (π̃−1 ◦ π)(p) = π(p).

Furthermore, the differential dΨ : TM → TM̃ provide an identification of vectors in

TpM and Tp̃M̃ that are matched to the same tangent direction in the surface tangent

plane: for any vector Xp ∈ TpM and its image X̃p̃ = dΨpXp ∈ Tp̃M̃ , we have dπ̃p̃X̃p̃ =

(dπ̃p̃ ◦ dΨp)Xp = dπpXp ∈ Tπ(p)S.

2.3.1.2 Riemannian manifolds

To carry out computations of angles, lengths, and areas on the domain M ⊂ R2, we

introduce an inner product on its tangent space. The inner product g : TM×TM → R≥0

is referred as the metric. The domain M augmented with the metric g belongs to a class

of objects known as Riemannian manifolds.

Immersion metric When the domain M is associated to a surface patch S ⊂ R3

through the parametric map π : M → S, we can define the immersion metric, that
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matches the euclidean dot product of tangent directions to the surface:

〈X,Y 〉µ := (dπX)>(dπY ) = X>(dπ>dπ)Y (2.1)

The immersion metric allow us to measure geometric properties of the surface on the

parameter domain.

Lengths On the Riemannian manifold (M, g), the length of a curve γ : I ⊂ R → M

is defined as

l(M,g)(γ) :=

∫
I

√
〈γ′(t), γ′(t)〉gdt (2.2)

When π : M → S is a parameterization and µ = dπ>dπ is the immersion metric this

definition matches the length of the curve π ◦ γ on the surface.

Areas On the Riemannian manifold (M, g), the area of a region Γ ⊂M is defined by,

A(M,g)(Γ) :=

∫
Γ

√
|g|dA (2.3)

On a parameterized surface the immersion metric satisfies |µ| = |∂π∂u × ∂π
∂v |, and we can

verify this definition also matches the area of the patch π(Γ) on the surface.

Isometries The fact that we can measure lengths of curves in a Riemannian mani-

fold (M, g) allow us to define a notion of distance: the distance between two points,

d(M,g)(p0, p1), is the minimal length of any curve in M passing through p0 and p1.

We say that two Riemannian spaces (M, g) and (M̃, g̃) are isometric when there is a

map Ψ : M → M̃ that preserve distances:

d(M,g)(p0, p1) = d(M̃,g̃)(Ψ(p0),Ψ(p1))

As expected, given a pair of parameterizations π : M → S and π̃ : M̃ → S, the

diffeomorphism Ψ = π̃−1 ◦ π is an isometry between the Riemannian manifolds M and

M̃ with immersion metrics µ = dπ>dπ and µ̃ = dπ̃>dπ̃ respectively. Furthermore, we

have the following identification of the immersion metrics:
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〈dΨpXp, dΨpYp〉µ̃Ψ(p)
= 〈Xp, Yp〉µp (2.4)

2.3.1.3 Calculus

Gradient The gradient of a function φ : M → R on the Riemannian manifold (M, g)

is a vector field ∇gφ : M → TM that indicates the direction of fastest change of the

function. The gradient can be explicitly computed as,

∇gφ = g−1

[
∂φ
∂u
∂φ
∂v

]

For any curve γ : I = [a, b] ⊂ R→M and φ : M → R, the gradient satisfies,

∫
I
〈γ′(t),∇gφ(γ(t))〉gdt = φ(γ(b))− φ(γ(a))

Curl The curl of a vector field X measures the limit ratio of rotation per unit area. De-

note by Ω a neighbourhood of p, and γ : I → ∂Ω a positively-oriented parameterization

of its boundary. We define the curl by the limit:

(∇g ×X)(p) := lim
Ω→p

∫
I〈γ′(t), X(γ(t))〉gdt∫

Ω

√
|g|dA

(2.5)

For a vector field X = (Xu(u, v), Xv(u, v)) the curl can be expressed in the local coor-

dinate basis as:

∇g ×X =
1√
|g|
( ∂
∂u

(gX)v − ∂

∂v
(gX)u

)

Divergence The divergence of a vector field X measures the limit ratio of outward

flux per unit area:

(∇g ·X)(p) := lim
Ω→p

∫
I〈γ′(t), JgX(γ(t))〉gdt∫

Ω

√
|g|dA

(2.6)
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Here Jg : TM → TM denotes the orthogonal rotation operation on the tangent space

of a 2-dimensional Riemannian manifold. This operator can be explicitly computed as,

Jg =
Jg√
|g|
,

where J : TM∗ → TM represents the 90 degree rotation, J(u, v) = (−v, u).

In local coordinates the divergence of a vector field is given by the expression:

∇g ·X =
1√
|g|
( ∂
∂u

(
√
|g|Xu) +

∂

∂v
(
√
|g|Xv)

)

Laplacian The Laplacian of a function φ is defined as the divergence of the functions

gradient:

∆gφ := ∇g · (∇gφ)

From the divergence product rule,

∇g · (φX) = 〈∇gφ,X〉g + φ(∇g ·X),

and the Divergence Theorem,∫
Ω
∇g ·X

√
|g|dA =

∫
∂Ω
〈γ′(t), JgX(γ(t))〉gdt,

we deduce (by replacing X = ∇gφ) that under natural or free boundary conditions, the

Laplace operator satisfies:∫
Ω
〈∇gφ,∇gφ〉g

√
|g|dA = −

∫
Ω
φ∆gφ

√
|g|dA

This last equation suggests that the Laplacian can be interpreted as a symmetric negative

semi-definite operator that measures the smoothness of a function.

2.3.1.4 Finite Elements

Given a Riemannian manifold (M, g) we construct approximations to the space of func-

tions and vector fields using a finite dimensional basis.

Basis A basis, B = {φi}1≤i≤n, is a set of linearly independent functions that span

a subspace of functions we use to represent signals. By definition, any signal within
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this subspace can be expressed as φ =
∑

i aiφi, where the ai are called the coefficients

of the signal in the basis B. We evaluate the signal at any point p on the surface by

aggregating the scaled values of the basis function, i.e., φ(p) =
∑

i aiφi(p). In general,

the basis functions are piece-wise polynomials with compact support, so the evaluation of

a signal at any point on the surface only requires the evaluation of a few basis functions.

We say that the basis is interpolatory at a set of points {pi}i ⊂ S when φi(pj) = δij .

We say that the basis forms a partition of unity if
∑

i φi(p) = 1 for all p ∈ S.

We denote by B1 = {Xi}i a basis for the subspace of vector fields. From a functional

basis B we can generate two different basis of vector fields: the Gradient basis(BC
1 )

and the Whitney basis(BW
1 ). The Gradient basis is composed by gradients and rotated

gradients of the basis functions:

BC
1 = {∇gφi}i ∪ {Jg∇gφi}i (1 ≤ i ≤ n) (2.7)

The Whitney basis corresponds to the anti-symmetric difference of the product between

pairs of basis functions and their gradients:

BW
1 = {Xij}ij , where Xij = φi∇gφj − φj∇gφi (1 ≤ i < j ≤ n) (2.8)

Operators The use of a basis allow us to evaluate inner products of functions and

vector fields just in terms of their coefficients and discrete operators.

Given φ =
∑

i aiφi and ψ =
∑

i biφi, we compute their inner product as,

∫
φψ
√
|g|dA =

∑
i

∑
j

aibi

∫
φiφj

√
|g|dA = φ>Mψ (2.9)

where the matrix Mij =
∫
φiφj

√
|g|dA is the mass matrix. Similarly, we can compute

the inner product of the gradients of φ and ψ as,

∫
〈∇gφ,∇gψ〉g

√
|g|dA =

∑
i

∑
j

aibi

∫
〈∇gφi,∇gφj〉g

√
|g|dA = φ>Sψ (2.10)

where the matrix Sij =
∫
〈∇gφi,∇gφj〉g

√
|g|dA is the stiffness matrix.

In the case of a pair of vector fields X =
∑
aiXi and Y =

∑
i biXi, the inner product is

given by,
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∫
〈X,Y 〉g

√
|g|dA =

∑
i

∑
j

aibi

∫
〈Xi, Xj〉g

√
|g|dA = X>M1Y (2.11)

where the matrix (M1)ij =
∫
〈Xi, Xj〉g

√
|g|dA is the vector field mass matrix.

2.3.2 Mathematics for a discrete world

2.3.2.1 Simplicial complexes

From the combinatorial point of view a triangle mesh is an instance of a class of objects

known as homogeneous simplicial 2-complexes [7]. This means that a triangle mesh can

be represented by a hierarchical graph of vertices (V ), edges (E) and triangles (T ), where

the edges correspond to a subset of vertex pairs E ⊂
(
V
2

)
, and the triangles correspond

to a subset of vertex triplets T ⊂
(
V
3

)
. The simplicial 2-complex property requires that

the intersection of any two triangles is a common edge, a vertex or the empty set, and

the intersection of any two edges is either a vertex or the empty set. Additionally, it is

called homogeneous since any edge (resp. vertex) strictly belongs to the boundary of at

least one triangle (resp. edge). In Figure 2.2, the first structure (from left to right) is not

simplicial since the intersection of the two triangles is not a common edge or a vertex,

and the second structure is not homogeneous since it has an edge that does belong to

any triangle.

Non – Simplicial Complex Simplicial Complex
Homogeneous

Manifold
Closed

Figure 2.2: Classification of simplicial 2-complexes

When we associate a 3D position to each vertex of the simplicial 2-complex, we can

reconstruct a surface in R3 by taking convex combinations of the vertices within each

triplet. This piece-wise flat surface is what we call a triangle mesh. As we show in

Figure 2.2, a triangle mesh is a 2-dimensional manifold as long as the set of edge-

adjacent triangles around a vertex form a single connected component, and every edge

is shared by at most two triangles. Furthermore, we say that a triangle mesh is closed

when each edge is shared by exactly two triangles.
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Though triangle meshes are not regular surfaces (a unique tangent plane cannot be

defined at edges or vertices), we can extend differential concepts like curvature to triangle

meshes, and preserve important properties like the Gauss-Bonnet Theorem. Please refer

to [8] for an introduction to discrete differential geometry.

2.3.2.2 Triangle mesh parameterization

In this thesis we will use two different kinds of parameterizations of triangle meshes: the

canonical parameterization and the texture parameterization.

Canonical parameterization The canonical parameterization, A = {(πt,Π, St)}t,
is an atlas that associates each triangle to a single chart. The map πt is the unique

affine transformation from the unit triangle Π = {(u, v) : u, v ≥ 0, x+ y ≤ 1}, to the 3D

triangle St spanned by vertices x0
t , x

1
t , and x2

t :

πt(u, v) = x0
t + (x1

t − x0
t |x2

t − x0
t )

(
u

v

)
The differential of the immersion map is constant within each triangle and is given by,

dπt = (x1
t − x0

t |x2
t − x0

t ), (2.12)

The immersion metric tensor corresponds to µt = dπ>t dπt.

Texture parameterization The texture parameterization, A = {(πi,Mi, Si)}i, is

an atlas that maps disjoint polygonal patches in the unit square [0, 1]2 into polygonal

patches on the triangle mesh. Each πi is a piecewise affine map on a triangulation of

Mi ⊂ R2, that maps triangles from the Euclidean plane to triangles on the surface. By

definition each map πi is continuous, but is only guaranteed to be differentiable in the

interior of the triangles that form Mi.

Let Mt ⊂ Mi be the texture triangle spanned by 2D coordinates p0
t , p

1
t , and p2

t , that

parameterizes the 3D triangle St spanned by respective vertices x0
t , x

1
t , and x2

t . The

restriction of the immersion map on triangle t corresponds to,

πi|t(u, v) = x0
t + (x1

t − x0
t |x2

t − x0
t )(p

1
t − p0

t |p2
t − p0

t )
−1
((u

v

)
− p0

t

)
and its differential is given by,

dπi|t = (x1
t − x0

t |x2
t − x0

t )(p
1
t − p0

t |p2
t − p0

t )
−1 (2.13)
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The piece-wise constant immersion metric corresponds to µ|Mt = dπi|>t dπi|t.

2.3.2.3 Triangle Finite Elements

𝑡1
𝑡2

𝑡3 𝑡4

𝑡5

𝛼1

𝛼2

𝛼3𝛼4

𝛼5𝛼6

𝛼7𝛼8
𝛼9

𝛼10

𝜙𝑖

Functional basis Our function space on triangle meshes

is spanned by the so called hat basis. As shown in the inset,

each hat function φi is centered at a vertex of the mesh and

has support on its adjacent triangles. The hat functions

are linear within each triangle, interpolatory, and form a

partition of unity. As a consequence, the only supported

basis functions within a given triangle are the hat functions

at its corners, and the evaluation of the basis at a point

p ∈ tijk give us the triplet (φi(p), φj(p), φk(p)) of barycentric coordinates. Also shown

in the inset is the gradient of a hat basis. The gradient is constant on each incident

triangle, and within a triangle is orthogonal to the edge opposite to the vertex.

Since the basis functions are linear within each triangle, the computation of the mass

and stiffness matrix coefficients are usually performed on a per-triangle basis using the

canonical parameterization. To compute these coefficients we integrate and aggregate

the product of functions and gradients over commonly supported triangles. These coef-

ficients can be directly expressed in terms of triangles areas and angles as follow:

Mij =


∑
tk∈Ni

|tk|
6

if i = j

∑
tk∈Ni∩Nj

|tk|
12

otherwise.
, Sij =


∑

αk∈∂Ni

cotαk
2

if i = j∑
αk∈∂Ni∩∂Nj

− cotαk
2

otherwise.

where |t| is the area of a triangle t and Ni (resp. ∂Ni) is the interior (resp. boundary)

of the one-ring neighbourhood of vertex i. Additionally, αk denotes an interior angle at

a corner of ∂Ni.

Vector basis In this thesis we will consider three different representations of vector

fields on triangle meshes: the Triangle basis, the Gradient basis [9], and the Whitney

basis [10]. For a more extensive discussion of representation and processing of vector

fields on triangle meshes please refer to de Goes et al. [11].

As shown in Figure 2.3 the Triangle basis (BT
1 ) specifies a direction in the tangent space

of each triangle and generates a piece-wise constant vector field. This provide a very

simple yet powerful representation that we explore in Chapters 3 and 4.
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𝛻𝜙𝑖 𝐽𝛻𝜙𝑖

Triangle basis

𝑋𝑘

Gradient basis Whitney basis

𝑋𝑖𝑗 = 𝜙𝑖𝛻𝜙𝑗 − 𝜙𝑗𝛻𝜙𝑖

Figure 2.3: Discretization of vector fields on triangle meshes.

The Gradient basis (BC
1 ) is formed by gradients and rotated gradients of the hat func-

tions. This vector space is a subspace of the Triangle basis and provides a decomposition

between curl-free and divergence-free vector fields.

Finally, the Whitney basis (BW
1 ) is an edge-based representation where coefficients in-

dicate the magnitude of the vector field in the direction parallel to the edge.

Vector representation and prolongation For the Triangle Basis, vector fields are

represented using the coordinates of the per-triangle direction in the canonical parame-

terization πt : Π→ St. The vector Xt ∈ Π in parametric coordinates corresponds to the

direction dπtXt in the surface. We encode the entire vector field by concatenating the

array of coordinates on each of the triangles : X = [X1X2 . . . X|T |] ∈ R2|T |.

For the Gradient basis, vector fields are represented by the coefficients of the gradients

and rotated gradients at each vertex. The vector field X =
∑

i κi∇φi +
∑

i ξiJ∇φi, is

represented by the concatenated array X = [κ, ξ] ∈ R2|V |.

For the Whitney basis vectors field are represented by the coefficients at each edge. We

use the notation ωij for the coefficient at edge ~eij to remind us that this coefficient can

be interpreted as an integrated 1-form (i.e. the integral of the vector field along the

edge). The entire vector field is encoded by an array X = ω = [ωij ] ∈ R|E|.

For some applications we require an explicit representation of the vector fields. Thus,

we introduce prolongation operators PC→T and PW→T mapping from the Gradient and

Whitney basis to the Triangle Basis.

From the properties introduced in Section 2.3.1.3, and using the canonical parameteri-

zation on a triangle tijk, it follows that,

(PC→T [κξ])tijk = g−1
tijk

(
κj − κi
κk − κi

)
+ Jgtijk g

−1
tijk

(
ξj − ξ
ξk − ξi

)
. (2.14)

For the Whitney basis, which is not constant per triangle, we take as representative

direction its value at the triangle barycenter,
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(PC→Wω)tijk =
1

3
g−1
tijk

(
2ωij − ωjk − ωki
ωij + ωjk − 2ωki

)
(2.15)

Vector mass operator The mass operator for vector fields (Equation 2.11) in the

Triangle basis, MT
1 ∈ R2|T |×2|T |, is given by the block diagonal operator:

MT
1 :=


1
2

√
|g1|g1 0

1
2

√
|g2|g2

. . .

0 1
2

√
|g|T ||g|T |

 (2.16)

The mass operators for the Gradient and Whitney basis are constructed by composing

with the prolongation: MC
1 = (PC→T

1 )>MT
1 PC→T

1 , and MW
1 = (PW→T

1 )>MT
1 PW→T

1 .

2.3.2.4 Discrete Exterior Calculus

Primal

Dual

0-forms
(vertices)

1-forms
(edges)

2-forms
(faces)

2-forms
(faces)

1-forms
(edges)

0-forms
(vertices)

𝑑0 𝑑1

⋆0 ⋆1 ⋆2

𝑑0
⊤ 𝑑1

⊤

𝑣
𝑣∗

𝑒∗
𝑒

𝑡

𝑡∗

𝛼

𝛽

Figure 2.4: Mesh duality and discrete exterior calculus operators.

Discrete Exterior Calculus (DEC) [12] associates integrated differential forms to elements

of the mesh and provides a discretization of the exterior derivative and Hodge star

operators.

As shown in the diagram of Figure 2.4, 0-forms are sampled at vertices, 1-forms are

sampled at (oriented) edges, and 2-forms are sampled at (oriented) triangles. DEC

defines exterior derivative operators d0 : R|V | → R|E| and d1 : R|E| → R|T | mapping

k-forms to k + 1-forms as follows:

(d0)e,v =


1 if v is the source vertex of e.

−1 if v is the target vertex of e.

0 otherwise.
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(d1)t,e =


1 if e is in the boundary of t and has same orientation.

−1 if e is in the boundary of t and has opposite orientation.

0 otherwise.

This definition satisfies a discrete version of the Stokes’ Theorem. Formally, given a

discrete 0-form ω0 ∈ R|V | and a path γ ⊂ E, we can verify,

∑
v∈∂γ

(ω0)v =
∑
e∈γ

(d0ω0)e.

Similarly, given a discrete 1-form ω1 ∈ R|E| and a region Ω, we obtain,

∑
e∈∂Ω

(ω1)e =
∑
t∈Ω

(d1ω1)t

DEC also introduces Hodge star operators that map primal k-forms to dual 2− k-forms

by scaling according to the ratio between between primal and dual elements of the

triangulation. The Hodge stars ?0 ∈ R|V |×|V |, ?1 ∈ R|E|×|E|, and ?2 ∈ R|T |×|T | are

diagonal matrices satisfying:

(?0)v =
|v∗|
|v| = |v∗|, (?1)e =

|e∗|
|e| =

cotα+ cotβ

2
, (?2)t =

|t∗|
|t| =

1

|t| .
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Chapter 3

Shock Filters

Texture Filtering Geometry Filtering

Figure 3.1: Sharpening of texture and geometry with Shock Filters.

In this chapter we propose a new Lagrangian formulation for Shock Filters and show

its applications in sharpening signals defined over triangle meshes. As shown in Figure

3.1, when applied to color textures, our mesh-based Shock Filters produces a new signal

with sharper edges and regions of constant color. When applied to geometry, we obtain

enhanced contours and piece-wise flat surfaces.

3.1 Introduction

Introduced more than two decades ago, Shock Filters [1] formulates image processing

as a PDE which evolves the image towards a steady-state solution which is piecewise

smooth with sharp discontinuities (shocks) forming along edges. The PDE holds extrema

fixed and evolves concave-up (resp. concave-down) regions towards their local minima

(resp. maxima).

Shock Filters have been made more robust in recent works which have included an

unconditionally stable implementation that uses an implicit time-integrator to solve the
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PDE coupled with anisotropic diffusion [13], as well as regularized implementations that

are more stable in the presence of signal noise [14].

In addition to Shock Filters, a variety of methods for edge-aware filtering have been pro-

posed. Anisotropic diffusion [15, 16] smooths an image while constraining the diffusion

not to cross edges. Bilateral filtering [17] replaces a pixel with the weighted average of

its neighbors, adapting the weights so that more smoothing occurs between pixels on

the “same side” of an edge. Laplacian sharpening [18] amplifies high-frequency content.

And, L0 gradient minimization [19] solves for the image which matches the input but

has sparse gradients.

Though initially proposed for image-processing, many of these approaches have since

been adapted to editing surface geometry, including anisotropic diffusion of geometry [20,

21] and normals [22], bilateral mesh denoising [23], and Laplacian/spectral sharpening

[4, 24].

There has also been a significant body of work that leverages priors, learned either from

the image itself, frames of a video, or a large database of images, to perform edge-aware

processing [25–28].

Though unconditionally stable solutions for PDEs have been proposed in numerous

image-processing applications, these are often obtained through the solution of a large

linear system. In contrast, our approach only requires tracing values along flow-lines.

Thus, much like Stam’s Unconditionally Stable Fluids [29, 30], our method can use

arbitrarily large time-steps and easily generalizes to meshes.

3.2 Osher-Rudin formulation

The original Shock Filters work [1] proposes a method to sharpen a signal while preserv-

ing critical points. The most distinctive characteristic of Shock Filters is its preservation

of the range of the input signal. Other techniques like Laplacian sharpening expand the

signal range to increase contrast. This range amplification is effective for creating per-

ceptually sharper signals, but has some drawbacks like numerical overflow, loss of signal

fidelity, and perceptual artifacts like haloing, as shown in the left of Figure 3.2.

Shock Filters evolves convex and concave regions to their locals minima and maxima,

respectively, and pushes the entire signal variation to the inflection points. This produces

sharp edges and piece-wise constant regions as shown in the right of Figure 3.2.
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Laplacian Sharpening Shock Filters
Input Output Input Output

Figure 3.2: Comparison of Laplacian sharpening and Shock Filters.

3.2.1 1D signals

Given an input signal φ0 : R → R, the shock equation solves for a time evolving signal

φ : R≥0 × R→ R that transforms the input into a signal with sharper edges and piece-

wise constant regions. Given the initial condition φ(0, x) = φ0, the shock equation

transforms the signal as,
∂φ

∂t
= −|∇φ|2F (L(φ)) (3.1)

where L(φ) is an operator that capture the local concavity of the signal and F : R→ R
is a sign-preserving modulation function. In the original work the authors suggest using

L(φ) = ∆φ = ∂2φ
∂2x

and setting F to be the identity function.

To understand the behaviour of this equation, we start by analyzing it’s fixed points,

i.e., those points where ∂φ
∂t = 0. These points either satisfy ∇φ = 0 or ∂2φ

∂2x
= 0. The

first case corresponds to the critical points of the signal, i.e., the local maximum and

minimum. The seconds case corresponds to inflection points, i.e., the positions where

the function change concavity, which can also be identified as the precise location of the

edges.

The evolution of non-fixed points is dictated by the concavity of it’s surrounding region.

Points where ∂2φ
∂2x

> 0 belong to convex regions and evolve towards the local minimum.

Points where ∂2φ
∂2x

< 0 belong to concave regions and evolve towards the local maximum.

As we show in Section 3.2.3, a careful discretization of the 1D Shock equation evolves

the signal while preserving monotonicity, total variation and critical points.

3.2.2 2D signals

The shock equation in 2D is defined analogously to the 1D case, using as concavity term

L(φ) = ∆φ = ∂2φ
∂2x

+ ∂2φ
∂2y

, and F as the identity function.
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As expected, this concavity term ensures that convex regions (∇2φ � 0) are evolved

towards the local minima and concave regions (∇2φ ≺ 0) are evolved toward the maxima.

Saddle regions are evolved either to a maxima or minima according to the dominant sign

of the second derivatives.

The effect of Shock Filters in 2D is a signal with piece-wise constant regions and sharp

transitions. As we will see next, the discretization of the 2D equation still guarantees

preservation of local maxima and minima, but monotonicity and total variation are not

preserved anymore.

3.2.3 Eulerian implementation

Osher and Rudin evolve the discrete input signal φ0 using an explicit Eulerian approach.

For the 1D case, the authors update the value at each node according to the minmod of

forward and backward differences. Finite differences are denoted by,

d+φt[i] := φt[i+ 1]− φt[i] and d−φt[i] := φt[i]− φt[i− 1],

and the minmod function is defined by m(x, y) = sign(x) min(|x|, |y|) if xy > 0 and

m(x, y) = 0 otherwise. The signal update rule proposed by Osher and Rudin is given

by:

φt+1 = φt − εt|m(d−φt,d+φt)|F (d−d+φt)

For a stable evolution of the signal, the maximum step that can be taken is given by the

Courant-Friedrichs-Lewy(CFL) condition:

εt ≤
1

2 maxi |F (d−d+φt[i])|

When the CFL condition is met, the evolving signal preserves local minima and maxima,

total variation, and monotonicity.

The update rule in the 2D case is a direct extension of the one dimensional case. Denoting

d
u/v
+/− the forward/backward derivative along the respective coordinate direction, the

update rule in the 2D case is given by

φt+1 = φt − εt
√

(m(dx−φt,d
x
+φt))

2 + (m(dy−φt,d
y
+φt))

2F ((dx−d
x
+ + dy−d

y
+)φt)

The respective CFL condition is given by,
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εt ≤
1

4 maxi,j |F ((dx−d
x
+ + dy−d

y
+)φt[i, j])|

In the 2D case the CFL condition preserves local minima and maxima, but it does not

preserve total variation or monotonicity.

The Eulerian formulation of Shock Filters, as proposed by Osher and Rudin, has a simple

implementation and a single update iteration is computationally efficient. However,

the CFL condition (which guarantees stability of the signal evolution) also imposes a

constraint on the convergence speed. In practice, multiple update iterations are required,

introducing signal dissipation. Our Lagrangian formulation overcomes this limitation

allowing us to take a single step of arbitrary size while still guaranteeing a stable solution.

3.3 Lagrangian formulation

To derive the Lagrangian formulation we start by writing equation 3.1 in the form:

∂φ

∂t
= −〈F (L(φ))∇φ,∇φ〉, (3.2)

Substituting, X := F (L(φ))∇φ, we have:

∂φ

∂t
= −〈X,∇φ〉. (3.3)

What does equation say?. From a finite-difference point of view this equation gives,

φt+1(p) ≈ φt(p)− 〈Xt(p),∇φt(p)〉.

On the other hand, from the Taylor series point of view we know that,

φt(p−Xt(p)) ≈ φt(p)− 〈Xt(p),∇φt(p)〉

Putting these together we conclude,

φt+1(p) ≈ φt(p−Xt(p)).

In other words, we can compute the signal at time t+1 by resampling the signal at time

t at the offset positions given by the vector field Xt. We make this more precise in the

following proposition.
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Proposition 3.1. Denote by ΦX the flow induced by the temporally evolving vector field

X : R≥0 ×M → TM . In other words, ΦX : R≥0 ×M →M is defined by:ΦX(0, p) = p

dΦX
dt = X ◦ ΦX

(3.4)

If the flow at each time step is a diffeomorphism, i.e. ΦX,t := ΦX(t, ·) is bijective and

differentiable, then the signal φt := φ0 ◦ Φ−1
X,t satisfies

∂φ

∂t
= −〈X,∇φ〉

Proof. By definition φt ◦ ΦX,t = φ0. Taking derivative respect to t we get,

0 =
d

dt
(φt ◦ ΦX,t)

∣∣∣
(t,p)

=
∂φt
∂t

∣∣∣
(t,ΦX,t(p))

+
〈
∇φt

∣∣∣
ΦX,t(p)

,
dΦ

dt

∣∣∣
(t,p)

〉
=
∂φt
∂t

∣∣∣
(t,ΦX,t(p))

+ 〈X,∇φt〉
∣∣∣
(t,ΦX,t(p))

Since ΦX,t is a bijection, we conclude, ∂φ
∂t

∣∣∣
(t,p)

= −〈X,∇φ〉
∣∣∣
(t,p)

as desired.

This interpretation of computing the solution to the Shock Filters equation by resam-

pling the input signal at the position given by the negated flow is the key to our imple-

mentation in Section 3.3.1.

Our second major distinction from the original Osher and Rudin formulation is in the

choice of the concavity indicator function. If we think of the second directional derivative

as a measure of concavity for a specific direction, then the Laplace operator, ∆, is

precisely the average measure of concavity along all directions. From our experience, a

more useful measure is given by the second derivative along the gradient direction, i.e.,

the concavity along the perpendicular direction to edges. More precisely, our concavity

indicator function is given by,

F (L(φ))
∣∣∣
p

:=
d2

d2τ
φ
(
p+ τ

∇φ
|∇φ|

)∣∣∣
τ=0

=
〈∇2φ · ∇φ,∇φ〉

|∇φ|2
∣∣∣
p

=
〈∇|∇φ|2,∇φ〉

2|∇φ|2
∣∣∣
p

(3.5)

Replacing the expression above into Equation 3.2, the Shock Filters equation reduces

to,
∂φ

∂t
= −〈1

2
∇|∇φ|2,∇φ〉 (3.6)
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This is the equation that dictates the evolution of the signal in our Shock Filters imple-

mentation. The function P = 1
2 |∇φ|2 plays a fundamental role in our formulation and

will be called the potential.

3.3.1 Lagrangian implementation

Our implementation of Lagrangian Shock Filters is based on two major routines: Com-

puteFlow and IntegrateFlow.

ComputeFlow takes as input a signal (φ) sampled at the nodes of a grid and returns

a vector field that is constant per grid face. We use parameters αφ and αP to control

the smoothness of the vector field. This facilitates processing noisy input.

ComputeFlow(φ, αφ, αP )

1 φ← Smooth(φ, αφ) smooth input signal

2 P ← 1
2 |∇φ|2 compute per-face potential

3 P ←
∑

f∈N(v) A(f)P∑
f∈N(v) A(f) sample per-node potential

4 P ←Smooth(P, αP ) smooth potential

5 X ← ∇P compute per-face vector field

6 return X

So far we have discussed application of Shock Filters to single-channel functions, but

the approach for multi-channel signals is similar. Rather than defining an independent

potential and vector field for each channel, we create a common one that makes the

sampling process more coherent. For multi-channel signals the face potential corresponds

to the sum of the squared norms of each channel’s gradient: if φ = (φr, φg, φb), then

P = 1
2

(
|∇φr|2 + |∇φg|2 + |∇φb|2

)
.

IntegrateFlow takes as input a position in the image (p), a vector field (X), and an

integration time (t), and returns a new position given by flowing along the vector field.

We use the parameter ε to define the maximum step size.

IntegrateFlow(X, t, p, ε)

1 while t > 0 :

2 ~d← X(p) sample vector field

3 s← min(t, ε/|~d|) compute maximum time-step

4 p← p+ s~d advance step

5 t← t− s decrease time

5 return p

Composing the ComputeFlow and IntegrateFlow routines provides two different

approaches to signal sharpening. The first strategy, which we refer to as the Iterative
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Sampling, updates the signal at the k-th iteration by setting the new flow from φk−1

and sampling from φk−1.

Shock Filters - Iterative Sampling(φ0, t, N)

1 for k = [1 : N ]

2 X ← ComputeFlow(φk−1)

3 for i, j = [1 : H]× [1 : W ]

4 (i′, j′)← IntegrateFlow(−X, t/N, (i, j))
5 φk(i, j)← φk−1(i′, j′) resample signal

6 return φN

Our second approach, which we refer to as the Flow Composition, updates the signal

at the k-th iteration by updating the current flow according to φk−1 and sampling from

φ0.

Shock Filters - Flow Composition(φ0, t, N)

1 for i, j = [1 : H]× [1 : W ]

2 p0
ij ← (i, j) initalize flow position

3 for k = [1 : N ]

4 X ← ComputeFlow(φk−1)

5 for i, j = [1 : H]× [1 : W ]

6 pkij ← IntegrateFlow(−X, t/N, pk−1
ij ) update flow position

7 φk(i, j)← φ0(pkij) resample signal

8 return φN

In the second and third columns of Figure 3.3 we compare both implementation strategies

for a short (t = 4, N = 4) and a large (t = 128, N = 128) evolution period. The

Iterative Sampling strategy exhibits significant loss of detail when a large number

of integration steps is used. This is particularly noticeable in thin structures like the

eyebrows. In contrast, Flow Composition produces a result that effectively sharpens

the original signal, and preserves fine features after many iterations.

The Flow Composition approach resembles the statement of Proposition 3.1: the

output signal can be obtained by sampling the input signal at a position given by the

flow of an evolving vector field. However, there is a major difference between Proposition

3.1 and our implementation of Flow Composition: we approximate the inverse of the

flow induced by a dynamic vector field X as the flow induced by the negated vector field

−X. In other words, we approximate Φ−1
X,t by Φ−X,t. The computation of the inverse

map Φ−1
X,t might require an intricate image space discretization and might not be well

defined on the entire domain. Instead, the map Φ−X,t can be easily computed using our

flow integration routine and is well defined on the entire domain.
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Iterative Sampling Flow Composition Single step

Input

𝑡 = 4,𝑁 = 4 𝑡 = 4,𝑁 = 4 𝑡 = 4,𝑁 = 1

𝑡 = 128,𝑁 = 128 𝑡 = 128,𝑁 = 128 𝑡 = 128,𝑁 = 1

Figure 3.3: Comparison of Iterative Sampling, Flow Composition and Transport-
Based implementation of Lagrangian Shock Filters.

3.3.2 Transport-Based Shock Filters

So far we have reinterpreted the solution to the Shock Filters equation as the integration

and inversion of the flow generated by an evolving vector field (Proposition 3.1). We

simplify this problem by considering a flow generated from a static vector field instead.

In other words, we assume Xt = X0 = 1
2∇|∇φ0|2 at all time values t. Equation 3.3 with

a static vector field is traditionally referred as the Transport Equation [31].

Having a static vector field simplifies the inversion of the flow. Indeed, if ΦX in Equation

3.4 is computed from a static vector field X0, it’s inverse flow is obtained by integrating

the negated vector field. More precisely, if ΨX0 : R≥0 ×M →M is the solution toΨX0(0, p) = p

dΨX0
dt = −X0 ◦ΨX0

(3.7)

then ΨX0,t = Φ−1
X0,t

. From this condition, we compute the evolved signal by sampling

the original one at the position given by ΨX0,t, i.e., φt = φ0 ◦ΨX0,t.

This new approach that sharpens the signal by integrating a static vector field will be

referred as the Transport-Based implementation. This is a particular instance of both

Iterative Sampling and Flow Composition for the case N = 1. For simplicity, we

define an auxiliary Advect routine that outputs the signal transported by a vector field.

In the fourth column of Figure 3.3 we present the result of the Transport-Based

Shock Filters. Despite its simplicity, the result is indistinguishable from the iterative

Flow Composition.
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Advect(φ, t,X)

1 for i, j = [1 : H]× [1 : W ]

2 (i′, j′)← IntegrateFlow(X, t, (i, j)) path integration

3 φ′(i, j)← φ(i′, j′) resample signal

4 return φ′

Shock Filters - Transport-Based(φ, t, αφ, αP )

1 X ← ComputeFlow(φ, αφ, αP ) compute flow field

2 φ← Advect (φ,−X, t) transport signal

3 return φ

In Figure 3.4 we compare our Lagrangian Transport-Based implementation of Shock

Filters to the Eulerian implementation of Osher and Rudin. A close-up on the Osher and

Rudin approach, exhibit jagged patterns due to the Eulerian update rule. These artifacts

are accentuated when many update iterations are applied to the signal (N = 100 for

these examples). Our Transport-Based approach enhance edges without introducing

significant artifacts even for a large integration time (t = 100).

Input

Eulerian Shock Filter

Lagrangian Shock Filter

Figure 3.4: Comparison of Eulerian and Lagrangian (Transport-Based) Shock Filters
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3.4 Extension to meshes

In this section we explore the extension of the Transport-Based Shock Filters al-

gorithm to sharpening signals on triangle meshes. We evaluate its convergence, noise

robustness, and performance.

3.4.1 Implementation

The pseudo-code for the implementation of Transport-Based Shock Filters in triangle

meshes is identical to the one described for images. Signals are still sampled at vertices

and vector fields are constant per face (in this case triangles rather than cells). Due

to the distinct domain discretization, the are subtle differences in the computation of

gradients (bilinear gradient vs. linear gradient), face to vertex prolongation (uniform

weighting vs. area weighting), and signal sampling (bilinear interpolation vs. barycentric

interpolation).

Integrate Flow The first major difference is the integration of vector fields. In par-

ticular, given a position p and a direction ~d ∈ TpM we compute the new position p+ s~d

by successively unfolding triangles. As shown in Figure 3.5, once the partially integrated

vector field hits a triangle edge the trajectory is continued by unfolding the adjacent

triangle. We continue traversing (unfolding) triangles along the current direction until

we reach the max step distance ε or we complete the total integration time. We set the

max step distance ε to be the average edge length of the mesh.

𝑠 Ԧ𝑑 ≤ 𝜖Scale Advance Unfold Advance

Ԧ𝑑
𝑝 + 𝑠 Ԧ𝑑

𝑝

Figure 3.5: Path integration in triangle meshes.

Smooth Signals The second major difference between the image and mesh Shock

Filters algorithms is the implementation of the smoothing operators. In the image

domain, we can smooth the signal by convolving with a Gaussian. On meshes, the

irregular connectivity and the non-homogeneous sampling make this problem harder.

We smooth a signal on a mesh following the gradient-domain approach, i.e., given an

input signal φ we obtain a smoothed signal ψ by solving a least squares problem that
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trades off between gradient attenuation and signal fidelity. The solution to this problem

is the output of our Smooth operator on meshes:

Smooth(ψ, α) := argmin
φ
||ψ − φ||2 + α||∇φ||2 (3.8)

The optimal solution to this problem is given by φ = (M + αS)−1Mψ where M and S

are the mass and stiffness matrices (Section 2.3.1.4).

Images vs Meshes In Figure 3.6 we compare side-by-side the results of our La-

grangian Shock Filters on a regular image and on a triangle mesh. The procedure is

analogous for both domains and the differences come from the discretization. In the

middle rows we visualize the two vector fields that we compute with our formulation:

the gradient of the input signal and the flow field (which is the gradient of the po-

tential). For both domains, the vector fields are constant per face (cells and triangles

respectively). Note how the flow field points towards the signal edges. The new signal

value at each node is obtained by flowing in the opposite direction and sampling the

input signal. Thus, for nodes on opposite sides of an edge, we flow in opposite directions

and sample far apart values, thereby increasing the edge contrast.

3.4.2 Geometry sharpening

The Gauss map, N : M → S2 assigns a normal direction to each point on the surface.

On triangle meshes, the normal field is usually represented at each vertex by a 3D

vector (nx, ny, nz), and it is extended to the interior of the triangles using barycentric

interpolation.

We run our Lagrangian Shock Filters method on the Gauss Map to compute a sharper

normal field. In this case the potential P = 1
2 |∇N |2 = κ2

1 + κ2
2 is a measure of the total

curvature of the surface. The local minimum of the potential corresponds to regions

of low curvature, while the local maximum corresponds to geometric features such as

edges and corners. Our Shock Filters method flows along the negated gradient of the

potential and samples new normals from low curvature regions. This creates a new

normal field with larger flat regions and increased contrast around the features of the

initial geometry.

We compute new geometry that closely match the sharpened normal field by following

the approach of Yu et al. [32]. Specifically, we compute new vertex positions p by solving
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Gradient 
field

Figure 3.6: Comparison of the discretization of Lagrangian Shock Filters on images
and triangles meshes.

the screened-Poisson equation,

min
p
||p0 − p||2 + α||(∇p0 − 〈∇p0, N〉N)−∇p||2, (3.9)
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where N denotes the sharpened normal signal and p0 the original vertex positions. The

first term of this energy (the screening term) is a regularization term that encourages the

reconstructed positions to remain close to the input. The second term of the energy (the

gradient term) encourages the gradient of the new positions to be close to the projection

of the input positions gradient onto the plane perpendicular to the computed normal.

3.4.2.1 Results

In this section we compare the effect of the two main parameters that guide the sharp-

ening process: the flow integration time (t) and the flow field smoothing (αφ, αP ).

In Figure 3.7 we compare results for the Gargoyle model (872K vertices) using different

flow times. For this example we compute a common flow field (we set αφ = αP =

0.01) and show the reconstructed surface from the transported normal field for times

t = 1, 4, 10, and 106. Since our flow lines attract each sample in the surface to a critical

point of the potential, as we increase the flow time, the target normal field gets sampled

from smaller regions (eventually just the normal at the critical points). Thus, as the time

increases, the target normal field becomes piece-wise constant, as is effectively captured

by the reconstruction. For t = 1 we obtain a sharper geometry without sacrificing the

details of the input model. For larger flow times we accentuate large scale features at

the cost of losing fine detail. We observe the stability of our approach by showing the

result for t = 106, where the flow of all the samples have converged to a critical point.

Under each result we also report the running time (in seconds) of the IntegrateFlow

routine. Even for very large flow times our method terminates quickly. A more detailed

analysis of performance is presented in Section 3.4.3.1.

Input 𝑡 = 1 𝑡 = 4 𝑡 = 10 𝑡 = 106
(0.21) (0.58) (1.02) (3.26)

Figure 3.7: Comparison of geometry sharpening for different flow integration times.

In Figure 3.8 we compare results for the Chinese Dragon model (1.3M vertices) using

different smoothing parameters for the flow field. For this example we compute flow

fields by setting αφ = αP = 0, 10−4, 10−3, and 10−2 and show the reconstructed surface

from the transported normal at the full convergence time t = 106. By increasing the

smoothing weight we remove the local critical points in the potential, and produce a

target normal field with fewer and larger constant patches. As observed from Figure
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3.8, when no smoothing is enabled the local flow is sufficient to sharpen the crests of

the model (see the contour of the ear, mouth and eyebrows) without losing much detail.

For larger smoothing weights we preserve the dominant critical features and reconstruct

a model with stronger contours and piece-wise flat regions.

Input 𝛼 = 0 𝛼 = 10−4 𝛼 = 10−3 𝛼 = 10−2
(0.29) (0.46) (0.84) (2.49)

Figure 3.8: Comparison of geometry sharpening for different magnitude of smoothing
of the flow field.

3.4.3 Evaluation

3.4.3.1 Performance and convergence

To evaluate the performance and convergence of our method, we consider the simple

scenario of sharpening a blurred step function on a sphere. In Figure 3.9 we report the

running time (in seconds) and visualize the sharpened signal for different combinations

of flow time (increasing from left to right) and mesh resolution (increasing from top to

bottom). For all the results we use the common set of smoothing parameters αφ = αP =

10−4. First, it is interesting to observe that for a fixed flow time (i.e., any column in

Figure 3.9) the quality of the reconstruction is similar across all resolutions. This is an

expected result, which demonstrates that the construction of our flow field depends on

the input signal and the intrinsic geometry of the surface, but not on the tessellation.

Second, we highlight that the increase in flow time produces a sub-linear increase in

running time. This situation can be understood from the early flow termination of some

of the samples. Since our flow field is the gradient of a potential, each flow line has

a termination point (due to the compactness of the surface), which can be reached in

finite time (at least in the discrete setting). Once a sample reaches its termination point,

flowing for larger time has no effect1. Comparing the quality of the reconstructed signal

and the running time between t = 10 and t = 106, we can conclude that by t = 10

almost all samples have reached their termination point (in this case, the poles of the

sphere).

1In practice, when our vector field does not vanish, the flow jitters within an ε-radius of the termi-
nation point
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𝑡 = 0.1 𝑡 = 1 𝑡 = 106

0.01 0.03 0.16

56.310.32.030.40 30.4

0.29 1.37 3.89 7.390.08

|𝑉| = 655𝑘
CompFlow=41.9

|𝑉| = 164𝑘
CompFlow=5.14

0.02 0.05 0.18 0.50 1.07

0.06

𝑡 = 10𝑡 = 0.01

< 0.01

|𝑉| = 10𝑘
CompFlow=0.12

|𝑉| = 41𝑘
CompFlow=0.69

Shock Filter Convergence: Resolution vs. Flow time

Figure 3.9: Evaluation of Shock Filters convergence as a function of resolution and
flow integration time.

Third, we notice a super-linear increase of running time with respect to resolution. In

our experiment, the number of samples (i.e., mesh vertices) increases by a factor of 4

between consecutive rows, but the running time increases by a factor closer to 8. Observe

that increasing resolution increases the number of paths to be integrated by a factor of

4. If the cost of integrating each path were independent of resolution we would have

linear scaling of running time. However that is not the case: as we increase resolution

the number of triangles that a sample path traverse increases by a factor of two. The

4-fold increase in the number of paths combined with the 2-fold increase in the number

of triangles along a path together explain the 8-fold increase in running time.

3.4.3.2 Robustness to noise

In Figure 3.10 we compare our approach to the methods of Solomon et al. [33] on two

noisy Frog models (10K vertices). We show the results of bilateral filtering and mean-

shift in the second and third column resp., and the result of our method with smoothing
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disabled and enabled in the fourth and fifth column resp. For low amplitude noise (top

row), all three successfully clean the data, and Shock Filters additionally sharpens the

edges. For larger amplitude noise (bottom row), bilateral filtering and Shock Filters

(with signal smoothing disabled) fail to clean the data. When enabling the smoothing

of the normal field (we use two passes of Laplacian smoothing) we get a signal that is

successfully sharpened with Shock Filters.

Noisy Input

(𝜎 = 0.8 ; 𝑡 = 4) (𝑡 → ∞)

Bilateral

(𝜎 = 0.8 ; 𝑡 = 2)

Mean-Shift Shock Advection
(Smoothing Disabled)

Shock Advection
(Smoothing Enabled)

(𝜎 = 0.8 ; 𝑡 = 4)

(𝜎 = 0.8 ; 𝑡 = 2) (𝑡 → ∞) (𝑡 → ∞)

(𝑡 → ∞)

Figure 3.10: Comparison of Shock Filters robustness to noise.
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Chapter 4

Optical Flow

Source Target

Optical flow interpolation

Linear blend

Figure 4.1: The alignment of a pair of textures using our mesh-based optical flow
produce ghosting-free interpolation, as shown by the Reporter model.

Optical flow is the problem of estimating the motion of features captured in a sequence

of images. The most simple formulation involves the alignment of a pair of images,

where the goal is to compute a vector field that associates points from the source image

to corresponding points in the target. As shown in Figure 4.1, we study the pairwise

alignment problem for signals sampled at the vertices of a triangle mesh and describe

how the techniques originally developed for images can be extended to meshes.

4.1 Introduction

In this chapter we introduce the variational formulation of optical flow proposed by Horn

and Schunck [2]. This contains the fundamental principles of optical flow: the brightness

constancy constraint and motion regularization. These principles have been adopted by

most of the work in the area, and we also follow them in our mesh-based formulation.
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Due to its locality, the Horn-Schunck method provides poor motion estimation on sce-

narios with large displacement. Subsequent works on optical flow introduced multi-scale

decomposition to compensate for this. Of particular interest is the linear scale space

approach of Alvarez et al. [34] which we extend to signals on meshes.

Optical Flow has been an active research area in Computer Vision for over 35 years and

state-of-the-art results in flow estimation are far beyond the capabilities of the work

by Horn and Schunck. State-of-the art methods [35] relay on segmentation, feature

matching, and even learning techniques. Adapting these methods to irregular and non-

homogeneous domains like triangle meshes seems a promising research direction, and is

not discussed in our current work.

Despite its simplicity, our extension of the Horn-Schunck method to optical flow on

triangle meshes provides robust results. We demonstrate this with applications in texture

interpolation and photometric tracking.

4.2 Horn-Schunck formulation

The variational formulation of Horn-Schunck represents the time varying signal as a

function φ : R≥0 × R2 → R, and solves for a flow Φ : R≥0 × R2 → R2 that tracks the

motions of each point in the signal domain. For simplicity, we denote the signal and

flow at a fixed time t by φt and Φt resp.

The Horn-Schunck formulation has two major components: the characterization of valid

deformations through the brightness constancy constraint, and the introduction of a

regularization term to compensate for the Aperture Problem.

4.2.1 Brightness constancy

The brightness constancy constraint states that the intensity of each point in the scene

is invariant across all temporal instances of the signal. More formally, for each point p

in the scene and any time t we have:

d

dt
(φt ◦ Φt)

∣∣∣
(t,p)

= 0 (4.1)

Following Proposition 3.1, the total derivative of this equation at time t = 0 gives us

the brightness constancy constraint:
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(∂φ
∂t

+

〈
dΦ

dt
,∇φ

〉)∣∣∣
(0,p)

= 0 (4.2)

This equation establishes that the temporal change of intensity at any point of the

domain (∂φ∂t ) must be explained by the local intensity model of the signal (∇φ) and the

direction of motion (dΦ
dt ). Both ∂φ

∂t and ∇φ are known values derived from the input and

X ≡ dΦ
dt is the motion differential we wish to solve for.

Equation 4.2 provides a necessary but not sufficient condition to solve for the motion

differential X. If ∇φ is non zero, then X = −∂φ
∂t
∇φ
|∇φ|2 is a solution to the equation, but

so is any offset in the direction orthogonal to the gradient. The fact that we cannot

solve for the motion by just looking at local (spatial and temporal) changes in intensity

is known as the Aperture Problem [36]. In the next section we describe how to overcome

it.

4.2.2 Motion regularization

Intuitively, the motion differential X should be piecewise smooth, i.e., neighbouring

points belonging to the same object should be moving at roughly the same speed in the

image plane. Following this intuition, Horn and Schunck add a regularization term that

enforces smoothness of the motion differential. Denoting by ∇X the Jacobian of the

motion differential, Horn and Schunck estimate the motion by minimizing the energy:

E(X) :=

∫
Ω

(∂φ
∂t

+ 〈X,∇φ〉
)2
dA︸ ︷︷ ︸

Data Term

+ ε

∫
Ω
|∇X|2FdA︸ ︷︷ ︸

Smoothness Term

(4.3)

By adding this regularization term, the computation of the alignment vector field be-

comes a global optimization problem. The Taylor expansion of the energy gives us the

condition:

E(X+Y ) = E(X)+2

∫
Ω

〈
∂φ

∂t
∇φ+ (∇φ∇φ> − ε∆)X,Y

〉
dA+

∫
Ω
〈(∇φ∇φ> − ε∆)Y, Y 〉dA︸ ︷︷ ︸

≥0

(4.4)

Since the third term of equation 4.4 is non-negative, a sufficient condition for the optimal

solution X∗ of equation 4.3 is:

∂φ

∂t
∇φ+ (∇φ∇φ> − ε∆)X∗ = 0 (4.5)

Inverting, the optimal solution is given by:
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X∗ = −(∇φ∇φ> − ε∆)−1∂φ

∂t
∇φ (4.6)

Scale correction In practice, the regularization term |∇X|2F induces shrinkage in the

alignment vector field X∗. We compute an appropriate scale by solving for the factor α

that minimizes the Data Term of Equation 4.3,∫
Ω

(∂φ
∂t

+〈αX∗,∇φ〉
)2
dA =

(∫
Ω
〈∇φ∇φ>X∗, X∗〉dA

)
α2+2

(∫
Ω
〈∂φ
∂t
∇φ,X∗〉dA

)
α+O(1)

(4.7)

The optimal scale factor is given by,

α∗ = −
(∫

Ω
〈∇φ∇φ>X∗, X∗〉dA

)−1(∫
Ω
〈∂φ
∂t
∇φ,X∗〉dA

)
(4.8)

Finally we reassign the optimal motion differential as X∗ ← α∗X∗

4.3 Pairwise alignment

The simplest instance of the optical flow problem consist of the alignment of a pair

of images φ0 and φ1, which we call source and target respectively. In this section we

compare the two main alternatives to represent motion between a pair of images, we

described the naive iterative flow correction algorithm, and its improved version using

multiresolution techniques.

4.3.1 Motion representation

The traditional goal of optical flow algorithms is to compute a forward vector field X

that matches each point in the source image to its respective position in the target:

φ0(p) ≈ φ1(p+X) (4.9)

This alignment formulation is very intuitive due to the temporal nature of the motion

and it is the one used for evaluation in optical flow benchmarks [37].

An alternative formulation is given by the halfway alignment approach [38, 39] where

the computed vector field should satisfy:

φ0(p−X/2) ≈ φ1(p+X/2) (4.10)
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In the next sections we describe the implementation of our optical flow algorithm us-

ing the halfway alignment approach. In contrast to the forward approach, the halfway

approach can represent motions with partially or totally occluded regions using continu-

ous vector fields. Additionally, the symmetric role of source and target signals make the

halfway representation more convenient for applications like image interpolation [38].

4.3.2 Iterative flow correction

Our approach iterates between warping source and target signals to a half way alignment,

and updating the halfway vector field to decrease the alignment error. More precisely,

given signals φ0, φ1 and a current estimate of the alignment vector field X, we define

partially aligned signals φ̃0(p) = φ0(p − X/2) and φ̃1(p) = φ1(p + X/2). We compute

a smooth vector field that provides a better alignment between the partially aligned

signals by taking a Taylor expansion of the signal difference:

φ̃1(p+ Y/2)− φ̃0(p− Y/2) ≈ (φ̃1 − φ̃0)(p) + 〈∇(
φ̃0 + φ̃1

2
)(p), Y 〉

Then, we solve for he correction field Y that minimizes:

∫
Ω

(
(φ̃1 − φ̃0) + 〈∇(

φ̃0 + φ̃1

2
), Y 〉

)2
+ ε||∇Y ||2dA (4.11)

This is precisely the Horn and Schunck regularized optical flow energy 4.3 for the halfway

alignment formulation: ∂φ
∂t = φ̃1 − φ̃0, and ∇φ = ∇( φ̃0+φ̃1

2 ).

We compute the regularized correction vector field X∗ as in Equation 4.6, and estimate

the optimal scale α∗ given by Equation 4.8. Finally, we update our estimation of the

halfway alignment field by setting X ← X + α∗X∗. The entire process is summarized

in the IterativeFlowCorrection algorithm.

IterativeFlowCorrection(φ0, φ1; ε,N)

1 X ← 0

2 for i = 0, . . . , N − 1:

3 φ̃0 ← φ0(p−X/2) source halfway alignment

4 φ̃1 ← φ1(p+X/2) target halfway alignment

5 X∗ ← EstimateFlow(φ̃0, φ̃1, ε) local correction(Equation 4.6)

6 α∗ ← GetScale(φ̃0, φ̃1, X
∗) correction scale (Equation 4.8)

7 X ← X + α∗X∗ update vector field

8 return X
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The IterativeFlowCorrection algorithm for the forward alignment formulation is al-

most identical. In the next table we summarize the minor implementation differences

between these two approaches:

Method Forward Alignment Halfway Alignment

Objective φ0(p) ≈ φ1(p+X) φ0(p−X/2) ≈ φ1(p+X/2)

Warping φ̃0 ← φ0 , φ̃0 ← φ0(p+X) φ̃0 ← φ0(p−X/2) , φ̃1 ← φ1(p+X/2)

Discretization ∂φ
∂t = φ̃1 − φ̃0,∇φ = ∇φ̃1

∂φ
∂t = φ̃1 − φ̃0,∇φ = ∇( φ̃0+φ̃1

2 )

Table 4.1: Alignment implementation comparison

4.3.3 Multiscale

Due to its local nature, the IterativeFlowCorrection algorithm has very slow con-

vergence and is unable to provide correct alignment in the case of large motion. This

weakness of single-resolution optical flow estimation was already pointed in the seminal

work of Lucas and Kanade [40].

Several multiscale approaches have been proposed to compensate for the locality of the

optical flow estimation. The work of Glazer [41] was the first to suggest the use of image

pyramids within the Horn-Schunck model. This was realized in the works of Enk [42]

and Anandan [43] which develop a complete system for optical flow estimation in natural

images using image pyramids.

The image pyramid approach downsamples the source and target images to a coarse res-

olution where local displacements corresponds to large motions at the input resolution.

Starting from the coarsest level, the alignment vector field is iteratively improved using

a similar strategy to the one described in IterativeFlowCorrection. Once a satisfac-

tory alignment is obtained at a given level, the alignment vector field is upsampled and

corrected in the next finer level.

Alvarez et al. [34] proposed an alternative multiscale approach to optical flow based on

linear scale-space theory. Rather than downsampling source and target images to coarser

resolutions, each scale level is defined by applying a low pass filter to the input images.

Formally, given a collection of Gaussian filters {Gσi}Li=0, with standard deviations σ0 >

σ1 > . . . > σL = 0, a hierarchical representation of the signals is obtained by convolving

with these filter. In other words, {Gσi ∗ φ0}Li=0 and {Gσi ∗ φ1}Li=0 are the hierarchical

representation of source and target signals. As in the pyramid case, the computation of

the alignment vector is done using an iterative correction approach, starting from the

coarsest representation of the signals and progressively moving to finer representations.
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Our mesh-based optical flow algorithm follows a similar linear scale-space approach

to the one described in [34]. For completeness we present the pseudo-code for the

ScaleSpace-IterativeFlowCorrection algorithm, which extends the single-resolution

IterativeFlowCorrection algorithm. Observe that the only modification is the specifica-

tion of a family of smoothing filters {Gσi}Li=0 that are successively applied to source and

target signals:

ScaleSpace-IterativeFlowCorrection(φ0, φ1; ε, {Gσl}Ll=0)

1 X ← 0

2 for l = 0, . . . , L− 1:

3 φ̃0 ← (Gσi ∗ φ0)(p−X/2) source halfway alignment

4 φ̃1 ← (Gσi ∗ φ1)(p+X/2) target halfway alignment

5 X∗ ← EstimateFlow(φ̃0, φ̃1, ε) local correction(Equation 4.6)

6 α∗ ← GetScale(φ̃0, φ̃1, X
∗) correction scale (Equation 4.8)

7 X ← X + α∗X∗ update vector field

8 return X

4.4 Extension to meshes

In this section we describe our extension of the Horn-Schunck algorithm to compute a

halfway alignment between a pair of signals φ0 and φ1 sampled at the vertices of mesh.

We start with an overview of the algorithm and then proceed with a detailed discussion

of its components.

4.4.1 Overview

Our MeshOpticalFlow algorithm has an analogous formulation to the ScaleSpace-

IterativeFlowCorrection algorithm introduced for images:

MeshOpticalFlow(φ0, φ1;αg, αs, ε, L)

1 φ0, φ1 ← SignalPreprocessing(φ0, φ1, αg) remove lighting bias

2 X ← 0

3 for l = 0, . . . , L− 1:

4 φ̃0 ← Advect(Smooth(φ0, αs/4
l),−X, 1/2) source halfway alignment

5 φ̃1 ← Advect(Smooth(φ1, αs/4
l), X, 1/2) target halfway alignment

6 X∗ ← EstimateFlow(φ̃0, φ̃1, ε) local flow correction

7 α← GetScale(φ̃0, φ̃1, X
∗) correction flow scale

8 X ← X + α∗X∗ update vector field

9 return X
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Our algorithm adds a preprocessing step to compensate for the lighting variations on the

input signals. For simplicity, this step was not included on the image-based algorithms,

where the changes of lighting or viewpoint can be more subtle, but can also be included

for a more robust algorithm.

We compute the halfway warping and the scale-space representation of signals using the

flow integration and smoothing operators already introduced for Shock Filters sharpen-

ing.

From a theoretical point of view the most interesting component of extending optical

flow to meshes is the definition of a vector field regularization term. On triangle meshes,

vector fields can be represented using per-vertex, per-edge or per-triangle discretizations.

Section 4.5 explains the constructions of the smoothing operators and the construction

of the mesh-based EstimateFlow routine.

In Section 4.6 we compare the properties, and evaluate the performance of the different

vector field representations in the context of optical flow. We conclude by showing

applications of our mesh-based optical flow.

Source code of our MeshOpticalFlow can be found at https://github.com/fabianprada/

MeshOpticalFlow.

4.4.2 Signal preprocessing

The brightness constancy constraint 4.1 is approximately satisfied when there are low

illumination changes in the signal acquisition process. However, for signals on meshes

this is not generally the case : the object is scanned from multiple view points and each

might have different lighting conditions. To compensate for illumination changes, we

replace the input signals by new signals that vanish on regions of low intensity variation.

This is done by subtracting from each signal a smoothed version of itself. The Smooth

operator we apply on the input signal is the solution to the screened-Poisson equation

already introduced in Equation 3.8.

SignalPreprocessing(φ;αg)

1 φ← φ− Smooth(φ, αg)

3 return φ

4.4.3 Halfway alignment

In the context of images, halfway alignment can be directly represented though a vector

field: given a point p in the image plane and an vector Xp, both p−Xp/2 and p+Xp/2
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correspond to well defined positions on the image domain. However, when p ∈ M is a

point in a curved surface and Xp ∈ TpM is a tangent vector, which points in M are

associated to p−X/2 and p+X/2? A natural answer is to use the exponential map, i.e.,

we could define p±Xp/2 := exp(p,±Xp/2). The exponential map give us the endpoint

of the unique geodesic starting at p with direction Xp and length |Xp|.

An alternative approach, which we prefer instead, is to use the flow induced by X.

We denote this flow by ΦX : M × R → M , with ΦX(p, t) ∈ M the point obtained

by integrating the vector field X starting from position p, for time t. Using the flow

notation, the action of the halfway alignment transformation of vector field X is given

by p±X/2 := Φ±X(p, 1/2).

Our preference for using the flow over the exponential map as alignment transformation

is twofold. First, flow along smooth vector fields define local diffeomorphisms on surfaces:

Φ−X(ΦX(p, t), t) = p (4.12)

This property does not hold on exponential maps unless the vector field is aligned with

geodesic curves.

The second reason is the sensitivity of the exponential map to noise. In surfaces with

large negative curvature a small perturbation in the tangent direction may produce

large variation in the position given by the exponential map. Vector field regularization

is more effective for attenuating this phenomena in the case of flows.

We transform the vector field representation to be constant per triangle (see Section

2.3.2.3) and integrate paths using the sequential unfolding procedure introduced in Sec-

tion 3.4.1.

4.4.4 Linear scale space

In order to support alignment under large motion, we use a direct extension of the linear

scale-space proposed by Alvarez et al. [34]. We use the Smooth operator described in

Equation 3.8. Since the smoothing operators are applied to the source and target signals,

the computation of the entire multiscale representation can be performed before the flow

estimation. The magnitude of smoothing at the coarsest level is defined by the parameter

αs. In our implementation we relax this weight by a factor of 1
4 as we move to finer

levels.
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Multiresolution vector fields The extension of the linear scale space approach

to signals on meshes is achieved by specifying a parametric family of smoothing opera-

tors. In contrast, the extension of the image pyramid approach (i.e., the construction of a

“mesh pyramid”) is more challenging due to the complex topology and non-homogeneous

sampling of triangle meshes. Still, multiresolution methods on meshes have been ex-

plored for applications such as geometric modeling [44, 45], mesh editing [46], and signal

processing [47]. To our knowledge multiresolution methods for vector fields have not

been explored before. Adapting the mesh based optical flow algorithm to multiresolu-

tion meshes is left as an open problem which we believe to be a promising approach for

improving the run-time performance.

4.5 Vector field representation

Horn and Schunck use the Jacobian of the vector field to measure the smoothness of the

alignment transformation. While this is a natural choice for vector fields defined on the

plane, how we can extend this notion of smoothness to vector fields on curved surfaces?

The Jacobian of a vector field on the plane is a linear operator that describes how the

vector field changes in the neighbourhood of a point. An analogous definition in the

case of surfaces is the covariant derivative [6]. Given a vector field, X : M → TM , the

covariant derivative at a point p ∈ M is a linear transformation on its tangent space,

(∇(·)X)p : TpM → TpM , that indicates the tangential change of X as we move in a

particular direction.

The covariant derivative of a vector field X at a particular point p and direction Yp, can

be extrinsically computed in two steps: first, compute the differential of the vector field

X for a curve passing through p with direction Yp, then, project the differential back

to the tangent plane. More precisely, if γ : [−ε, ε] → M is a curve with γ(0) = p and

γ′(0) = Yp, then,

(∇YpX)p ≡ ΠN⊥p

(
(X ◦ γ)′(0)

)
(4.13)

While the previous computation is extrinsic, the covariant derivative is an intrinsic

operator, i.e., it only depends on the first fundamental form.

Discretizing the covariant derivative in simplicial surfaces is a challenging task. Knöppel

et al. [48] provide a discretization of this operator using piecewise linear vector fields

associated to mesh vertices.

Instead of discretizing the covariant derivative we rely on simpler operators that are

defined over more traditional representation of vector fields and are easier to construct.
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As we show in our experiments, these operators capture the smoothness of a vector field

and produce good results when incorporated in the optical flow framework.

We start by introducing an operator that measures smoothness by computing vector dif-

ferences between adjacent triangles. Then, we introduce operators that measure smooth-

ness from the divergence and curl of the vector field.

4.5.1 Vector differences

𝑡𝑖 𝑡𝑗

𝑋𝑖

𝐿𝑖𝑗𝑋𝑗

𝐴𝑖𝑗

𝑙𝑖𝑗

Unfold

𝑋𝑖 𝑋𝑗𝑡𝑖
𝑡𝑗

𝛼

𝛽

Our first smoothing operator aggregates the squared differences be-

tween vectors in adjacent triangles. As shown in the inset, we unfold

adjacent triangles to compare vectors in a common tangent spaces.

We associate to the mesh a dual structure, and normalize the vector

difference by the geodesic distance between the dual centers.

Formally, our measure of smoothness on the Triangle basis is given

by the energy,

VectorDifferences(X) :=
∑
ti∈T

∑
tj∈N(ti)

Aij
|Xi − LijXj |2
|lij |2

(4.14)

where Lij is the linear transformation mapping vectors from triangle tj to triangle ti,

and lij is the distance between dual centers. We modulate the error by Aij which is the

dual area associated to the edge between triangles ti and tj ,

An intuitive choice for the dual structure is the circumcentric dual, which satisfies or-

thogonality between dual and primal edges. For the circumcentric dual the ratio
Aij

|lij |2

reduces to the inverse of the traditional cotangent weights:

Aij
|lij |2

=
1

cotα+ cotβ

However, the use of circumcentric duals has a major drawback: when a triangle and

its unflipped neighbour are concyclic we get |lij | = 0 which makes the energy 4.14

undefined. Furthermore, when the edge is not Delaunay, the weight
Aij

|lij |2 is negative. As

an alternative we use the barycentric duals. On the barycentric dual, dual and primal

edges are not orthogonal anymore, but the ratio
Aij

|lij |2 is well defined.

We denote by ST1 the bilinear operator that measures smoothness of a vector field using

VectorDifferences. More formally, if X are the coefficients of the vector field, then

ST1 is the symmetric matrix that satisfies VectorDifferences(X) = X>ST1X.
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4.5.2 Curl and divergence

An alternative approach to measure the smoothness of a vector field is through its curl

and divergence. To compute the curl and divergence of a discrete vector field we will

rely on the limit approximation introduced in Section 2.3.1.3. From equation 4.17, a

point-wise approximation to the vector field curl is given by,

∇×X
∣∣∣
Ω
≈
∫
δΩX · ds
|Ω| (4.15)

and we can approximate the integral of its squared value by,∫
Ω
|∇ ×X|2dA ≈

(∫
δΩ
X · ds

)2
/|Ω| (4.16)

Partitioning the surface, M = ∪Ωi, we define the curl energy over the surface as∫
M
|∇ ×X|2dA ≈

∑
Ωi

(∫
δΩ
X · ds

)2
/|Ωi| (4.17)

An analogous expression gives the vector field divergence energy,∫
M
|∇ ·X|2dA ≈

∑
Ωi

(∫
δΩ
JX · ds

)2
/|Ωi| (4.18)

We use these expressions for the computation of the squared divergence and curl on two

different representation of vector fields: the Gradient basis and the Whitney basis.

4.5.2.1 Gradient basis

The Gradient basis is the space of vector fields generated by gradients and rotated

gradients of the hat basis function, BC
1 := span{∇φi, J∇φi}i∈V , with J the rotation

by 90 degrees in the tangent plane. Since the hat basis functions are linear within

each triangle, the Gradient basis is a subspace of the vector fields that are constant per

triangle, BC
1 ⊂ BT

1 .

𝑣𝑖 𝑣𝑖
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In order to compute the curl energy we partition the mesh into

per-vertex Voronoi regions. As shown in the inset, we denote

by m0, c0,m1, . . . ,mn−1, cn−1,mn the set of edge midpoints

and triangle circumcenters on the boundary of the Voronoi

region v∗i in positive orientation. Given X ∈ BT
1 , integrating

the vector field along the Voronoi boundary we obtain:
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∫
v∗i

∇×Xdµ =
∑
k

〈−−−→mkck, Xk〉+ 〈−−−−−→ckmk+1, Xk〉 =
∑
k

〈−−−−−→mkmk+1, Xk〉 (4.19)

We denote by ∇φki the gradient of the hat basis at vertex i restricted to the k-th incident

triangle tki . It is known that this vector can be expressed as ∇φki = 1
|tki |
J−−−−−→mkmk+1, or

equivalently that −−−−−→mkmk+1 = −|tki |J∇φki . Using this identity we conclude,

∑
k

〈−−−−−→mkmk+1, Xk〉 = −
∑
k

〈J∇φki , Xk〉|tki | = −
∫
M
〈J∇φi, X〉dA

Expressing the vector field in the Gradient basis, X =
∑

j κj∇φj +
∑

j ξj∇Jφj , and

using the fact that span{J∇φj}j ⊥ span{∇φj}j , we get,

−
∫
M
〈J∇φi, X〉dA = −

∑
j

κj
����������∫
M
〈J∇φi,∇φj〉dA−

∑
j

ξj

∫
M
〈J∇φi, J∇φj〉dA

= −
∑
j

ξj

∫
M
〈∇φi,∇φj〉dA

= −
∑
j

ξjSij

= −(Sξ)i

Letting M be the lumped mass matrix, with per-vertex Voronoi areas on its diagonal,

and applying the discretization given in Equation 4.17, we conclude,∫
M
|∇ ×X|2dA ≈ ξ>(S>M−1S)ξ

The operator S>M−1S is traditionally referred to as the bilaplacian [49]. Following an

analogous procedure we arrive to an identical result for the energy of the vector field

divergence: ∫
M
|∇ ·X|2dA ≈ κ>(S>M−1S)κ

Finally, our measure of smoothness in the Gradient basis is given by the operator SC1 :

CurlAndDiv(X = [κ, ξ]) := κ>(S>M−1S)κ+ ξ>(S>M−1S)ξ

The Gradient basis provide an explicit decomposition between divergence free and curl

free vector fields: the first corresponds to span{J∇φi}i , and the second to span{∇φi}i.
In particular the only vector field that is simultaneously divergence and curl (these are

called harmonic) is the zero vector field.
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However, it is known that the dimension of the harmonic field of a surface is 2g, where g

its is genus [10]. Thus, the Gradient basis cannot contain the harmonic vector fields for

non genus-zero surfaces. The Whitney discretization that we describe next overcomes

this limitation.

4.5.2.2 Whitney basis

Discrete exterior calculus (DEC) provides an alternative way to compute the divergence

and curl of a vector field using differential forms and the so called Hodge Laplacian [10].

Instead of considering an explicit representation of the vector field, DEC uses an implicit

representation by storing the integral of the vector field along the edges of the mesh.

More precisely, to each oriented edge ~eij , we associate a value ωij , such that

ωij =

∫
~eij

X · ds

This definition makes the computation of the integrated curl on a triangle straightfor-

ward. When the triangle tijk is positively oriented we deduce:∫
tijk

(∇×X)dA =

∫
~eij

X · ds+

∫
~ejk

X · ds+

∫
~eki

X · ds = ωij + ωjk + ωki

Following Equation 4.17, the squared integrated curl over the entire mesh is given by,

∫
M
|∇ ×X|2dA ≈

∑
tijk

(ωij + ωjk + ωki)
2/|tijk|

Denoting by ω the array of integrated coefficients, and using DEC notation (Section

2.3.2.4) the expression above corresponds to,

∫
M
|∇ ×X|2dA ≈ ω>(d>1 ?2 d1)ω

We compute the integrated divergence at each vertex, by estimating the integral of

the rotated vector field along the boundary of its Voronoi region. We decompose the

boundary of the Voronoi region into segments ck−1ck, and denote by γk : Ik → ck−1ck

their arc-length parameterization (see the inset in 4.5.2.1). Since J−−−−→ck−1ck and ~eik are
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parallel, we can estimate∫
v∗i

∇ ·XdA =
∑
k

∫
−−−−→ck−1ck

JX · ds

=
∑
k

∫
Ik

〈−J−−−−→ck−1ck
|ck−1ck|

, X(γk(t))
〉
dt

=
∑
k

〈−J−−−−→ck−1ck
|ck−1ck|

,
~eik
|eik|

〉∫
Ik

〈 ~eik
|eik|

, X(γk(t))
〉
dt

≈
∑
k

〈−J−−−−→ck−1ck
|ck−1ck|

,
~eik
|eik|

〉 |ck−1ck|
|eik|

∫
~eij

X · ds

=
∑
k

〈−J−−−−→ck−1ck,
~eik
|eik|2

〉ωik

Using the fact that 〈−J−−−−→ck−1ck,
~eik
|eik|2
〉 =

∫
M 〈∇φi,∇φk〉dA = Sij , we obtain,

∫
v∗i

∇ ·XdA =
∑
k

ωikSik

and following Equation 4.18 we conclude,

∫
M
|∇ ·X|2dA ≈

∑
i

(∑
k

ωikSik

)2
/|v∗i |

From the DEC notation this corresponds to,

∫
M
|∇ ·X|2dA ≈ ω>(?1d0 ?

−1
0 d>0 ?1)ω

We denote by SW1 the discrete operator that measures the smoothness of a vector field

in the DEC representation. Summarizing the previous results, this corresponds to:

HodgeLaplacian(X = ω) := ω>SW1 ω = ω>(d>1 ?2 d1 + ?1d0 ?
−1
0 d>0 ?1)ω

4.5.3 Estimate flow

The EstimateFlow routine of our MeshOpticalFlow algorithm computes the solution

to the mesh-based discretization of Equation 4.3.

As we described in Section 4.3.2, for the halfway alignment formulation, the gradient and

temporal derivative of the signal are discretized by ∇φ = ∇(φ0+φ1

2 ) and ∂φ
∂t = φ1 − φ0
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respectively. In practice, we discretize the data term of Equation 4.3 as an area-weighted

sum of the correction field error evaluated at the triangle barycenter1:

EData(X) :=

∫
M

(∂φ
∂t

+ 〈X,∇φ〉
)2
≈
∑
t∈T
|t|
(

(φ1 − φ0) + 〈Xt,∇(
φ0 + φ1

2
)〉
)2

(4.20)

To represent the previous energy in matrix form, we introduce the following auxiliary

operators:

• MT
0 ∈ R|T |×|T |: diagonal triangle mass operator, (MT

0 )ii = |ti|.

• KT
1 (Y ) ∈ R|T |×2|T |: point-wise inner product with a reference vector field Y ,

KT
1 (Y ) =


Y >1 g1 0

Y >2 g2

. . .

0 Y >|T |g|T |

 (4.21)

• PV→T
0 ∈ R|T |×|V |: vertex-to-triangle signal prolongation.

• D0 ∈ R2|T |×|V |: gradient of a signal in the Triangle basis.

Denoting by δ := φ1 − φ0 and µ = 1
2(φ0 + φ1) the difference and mean of the signal

coefficients, the discrete data term in the Triangle basis can be written as:

EData(X) = (PV→T
0 δ +KT

1 (D0µ)X)>MT
0 (PV→T

0 δ +KT
1 (D0µ)X) (4.22)

The respective data terms for the Gradient and Whitney basis are obtained by transform-

ing them to a per-triangle vector field representation using the prolongation operators

introduced in Section 2.3.1.4. Finally, the flow correction energy we solve at each inner

iteration of MeshOpticalFlow algorithm is given by,

EFlow(X) = EData(Pγ→T
1 X) + εXSγ1X (4.23)

where X is the array of vector field coefficients in the basis B
γ
1 and Pγ→T

1 and Sγ1 are

the respective prolongation and smoothness operators. The energy in Equation 4.23 is

quadratic in X and its optima can be obtained as the solution to a linear system. We

summarize the procedure through the pseudo-code for the mesh-based EstimateFlow

routine:

1This 1-point quadrature estimation of the error has proven to be sufficient in our applications.
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EstimateFlow(φ0, φ1, ε)

1 δ ← φ1 − φ0

2 µ← 1
2(φ0 + φ1)

3 G←KT
1 (D0µ)Pγ→T

1

4 A← G>MT
0G+ εSγ1

5 b← (PV→T
0 δ)>MT

0G

6 X ← A−1b

7 return X

Since the system matrix A depends on the warped signal values, this matrix needs to

be recomputed at each call of ExtimateFlow. Furthermore, since we use a Cholesky

decomposition [50] of A to solve for the correction field, we also need to update the

numerical factorization. Summary of the computation costs of matrix construction,

numerical factorization and substitution for the different vector field representations are

presented in Section 4.7.2.

4.6 Vector field evaluation

In the previous sections we described three different representations of vector fields on

meshes and their respective smoothness operators: the VectorDifferences operator

(ST1 ) for the Triangle basis, the CurlAndDiv operator (SC1 ) for the Gradient basis, and

the HodgeLaplacian operator (SW1 ) for the Whitney basis. In this section we compare

the spectral properties of theses smoothness operators and their performance within the

optical flow setup.

4.6.1 Spectrum

The spectrum of the smoothness operators are obtained by solving the generalized eigen-

value problem,

Sγ1φ = λMγ
1φ (4.24)

with Sγ1 and Mγ
1 the respective smoothness and mass operator (see Section 2.3.2.3).

4.6.1.1 Flat surfaces

In Figure 4.2 we compare the spectrum of our smoothness operators to the analytic

spectrum of the covariant derivative for a Flat Torus (i.e., the [0, 2π]2 domain with
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periodic boundary conditions). On a Flat Torus, the squared Frobenius norm of the

covariant derivative of a vector field X = (u(x, y), v(x, y)) is simply given by,∫
T2

|∇X|2dA =

∫
T2

〈∇u,∇u〉+ 〈∇v,∇v〉dA =

∫
T2

〈u,−∆u〉+ 〈v,−∆v〉dA (4.25)

where the second equality follow from the Divergence Theorem.

From Equation 4.25, it follows that the Fourier basis,

BF
1 :=

{(ei(kx+ly)

0

)
,

(
0

ei(kx+ly)

)}
k,l∈Z

,

provides an eigen decomposition for the Flat Torus spectrum, where vector fields
(
ei(kx+ly)

0

)
and

(
0

ei(kx+ly)

)
have associated eigenvalue k2 + l2. Thus for each n ∈ Z, the dimension

of the eigenspace associated to λ = n is given by 2|{(k, l) ∈ Z × Z : n = k2 + l2}|. For

instance, the dimension of the eigenspace associated to λ = 0 is 2 = 2|{(0, 0)}| and for

λ = 1 it is 8 = 2|{(−1, 0), (1, 0), (0,−1), (0, 1)}|.

In Figure 4.2 we plot the numerical spectrum of our smoothness operators for an irregular

triangulation of a Flat Torus against its analytic spectrum.

We can think of VectorDifferences as a unbiased estimator of the squared Frobenius

norm of the covariant derivative on flat surfaces. To prove this observe that at any point

p ∈ T2 we can verify,

lim
r→0

E
|Y |=r

( |Xp+Y −Xp|2
r2

)
= E
|Y |=1

(|(∇YX)p|22) =
1

2
|(∇X)p|2F

Thus, given a dense sampling {pi}i→∞ ⊂ T2, and directions {Yi}i→∞ → 0, we have that

E(
∑
i→∞
|pi|
|Xpi+Yi −Xpi |2

|Yi|2
) =

∑
i→∞
|pi| E

Yi→0

( |Xpi+Yi −Xpi |2
|Yi|2

)
=

1

2

∑
i→∞
|pi||(∇X)pi |2F

=
1

2

∫
T2

|∇X|2dA

VectorDifferences is an estimator of this form where we take {pi} to be the edge

midpoints of a triangulation and {Yi} the dual edges. Using circumcentric weights we

reproduce the correct spectrum as observed in Figure 4.2. Instead, barycentric weights

distort the precision of the spectrum. This loss of precision might be a consequence of

the lack of orthogonality between the primal triangulation and its barycentric dual [51].

On the other hand, the sum of squared integrated curl and divergence of a vector filed

match the Frobenius norm of its covariant derivative on flat surfaces. Writing X =

53



(Xu(u, v), Xv(u, v)), we get that,

∫
T2

|∇ ×X|2 + |∇ ·X|2dA =

∫
T2

(
∂Xu

∂u
+
∂Xv

∂v

)2

+

(
∂Xv

∂u
− ∂Xu

∂v

)2

dudv

=

∫
T2

|∇X|2dA+ 2

∫
T2

∂Xu

∂u

∂Xv

∂v
dudv − 2

∫
T2

∂Xv

∂u

∂Xu

∂v
dudv

Form the chain rule we deduce,∫
T2

∂Xu

∂u

∂Xv

∂v
dudv =

�����������∫
T2

∂

∂u
(Xu∂X

v

∂v
)dudv −

∫
T2

Xu∂
2Xv

∂u∂v
dudv = −

∫
T2

Xu∂
2Xv

∂u∂v
dudv

and, ∫
T2

∂Xv

∂u

∂Xu

∂v
dudv = −

∫
T2

Xu∂
2Xv

∂v∂u
dudv

Since ∂2Xv

∂u∂v = ∂2Xv

∂v∂u , we conclude,∫
T2

|∇ ×X|2 + |∇ ·X|2dA =

∫
T2

|∇X|2dA

In the Gradient basis, the harmonic vector fields, span(
(

1
0

)
,
(

0
1

)
), cannot be represented

as gradients or rotated gradients of periodic functions. Thus, CurlAndDiv produce a

shifted spectrum of the covariant derivative operator in the Flat Torus.

The Whitney basis supports the representation of harmonics fields on the Flat Torus :

taking dot product between a constant direction ~v and each edge of the triangulation

to we get the coefficients of the harmonic field parallel to ~v. As observed in Figure 4.2

HodgeLaplacian reproduces the spectrum of the covariant derivative.
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Figure 4.2: Spectral comparison of the smoothness operators in a Flat Torus.
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VectorDifferences
Circumcentric

VectorDifferences
barycentric

CurlAndDiv HodgeLaplacian

-321.364 17.863 4.885 0.000
-321.364 17.863 4.885 0.000
15.212 33.685 12.170 0.000
15.212 33.685 12.170 0.000
29.432 41.425 18.894 0.000
29.432 41.425 18.894 0.000
36.583 43.651 24.300 0.000
36.583 43.651 24.300 0.000
39.471 49.222 30.859 4.880
39.471 49.222 30.859 4.885
43.599 54.888 32.441 12.165
43.599 54.888 32.441 12.177
48.652 59.250 41.433 18.871
48.652 59.250 41.433 18.892
52.497 65.515 50.526 24.269
52.497 65.515 50.526 24.299
59.962 68.860 52.400 30.823
59.962 68.860 52.400 30.858
63.708 74.638 64.312 32.405
63.708 74.638 64.312 32.437

Table 4.2: Spectrum of the vector field smoothing operators on the Fertility model.

4.6.1.2 Curved surface

In Table 4.2 we list the first 20 eigenvalues in the spectrum of the Fertility model depicted

in the top left corner of Figure 4.3. Fertility is a genus 4 surface and has 8 linearly

independent harmonic vector fields (i.e., vector fields with zero divergence and curl).

Only the HodgeLaplacian on the Whitney basis capture the harmonics. CurlAndDiv

on the Gradient basis produces a shifted spectrum compared to HodgeLaplacian, and

provides perfect pairing of eigen-vector fields (related by an orthogonal rotation on the

tangent plane). VectorDifferences on the Triangle basis does not seem to correlate

with the other methods and does not define a positive system in the cases of circumcentric

weights.

Figure 4.3 shows the visualization of the harmonics vector fields of the Fertility model,

computed from the spectrum of the HodgeLaplacian on the Whitney basis. This

visualization is computed using the Line Integral Convolution technique introduced in

Section 5.9.4.
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Figure 4.3: Eigen-vector fields of the HodgeLaplacian on the Fertility model.

4.6.2 Optical flow quality

We compare the quality of the MeshOpticalFlow algorithm using VectorDifferences

(barycentric), CurlAndDiv and HodgeLaplacian for vector field smoothing.

Given a pair of signals φ0, φ1 and alignment vector field X, we define the interpolated

signal at time t as,

Interpolation(φ0, φ1, X, t) := (1−t)Advect(φ0,−X, t)+tAdvect(φ1, X, 1−t) (4.26)

and the alignment error at time t as,

AlignmentError(φ0, φ1, X, t) := |Advect(φ0,−X, t)−Advect(φ1, X, 1− t)|2 (4.27)
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For evaluation purposes we are particularly interested in the interpolated signal and

alignment error at time t = 1
2 . These will be referred as the halfway alignment signal,

and halfway alignment error, respectively.

In Figure 4.4 we compare optical flow for signals over the Torus model using a mesh

with uniform longitude-latitude triangulation. In Figure 4.5 we compare optical flow for

textures over the Breakers model, which has non uniform triangulation.

Source Linear blend Target

CurlAndDiv HodgeLaplacianVectorDifferences

E = 1766.7
S = 0.011

E = 320.8
S = 0.017

E = 4222.0
S = 0.

E = 1825.4
S = 0.006

E = 511.0
S = 0.010

E = 1848.9
S = 0.006

E = 549.1
S = 0.009

Figure 4.4: Comparison of vector field smoothing operators on the Torus model.

In the top part of Figures 4.4 and 4.5, we show the input of our algorithm: the source

signal (left), target signal (right) and the linear blend2(middle) to highlight the mis-

alignment. In the bottom part of these figures we visualize the output of our algorithm

through the halfway alignment signal after one (first row) and seven hierarchical iter-

ations (second row) using the VectorDifferences (left), CurlAndDiv (middle) and

HodgeLaplacian (right) operators. Additionally, we report the halfway alignment er-

ror (E) and vector field smoothness (S) for each configuration, and visualize the halfway

alignment vector field in the zoom-in.

2The linear blend is the halfway alignment signal for X = 0.
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Source Linear blend Target

CurlAndDiv HodgeLaplacianVectorDifferences

E = 3526.8
S = 0

E = 4453.8
S = 0.081

E = 2181.3
S = 0.147

E = 4270.1
S = 0.089

E = 2191.3
S = 0.217

E = 4200.8
S = 0.068

E = 2284.7
S = 0.151

Figure 4.5: Comparison of vector field smoothing operators on the Breakers model.

The results in Figures 4.4 and 4.5 were generated using manually selected regulariza-

tion weights : εT = 104, εC = 5 × 10−7, and εW = 3 × 10−6 for the Triangle, Gradient

and Whitney basis respectively. Our results show the effectiveness of all the three vector

field representation to model the halfway alignment transformation, but are inconclusive

about the qualitative superiority of one representation over the other. After seven itera-

tion both the halfway alignment signal and the halfway alignment vector field generated
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by the three methods are indistinguishable.

It’s interesting to observe that after one iteration of optical flow on the Breakers model

(Fig. 4.5) the halfway alignment error (E) is larger than the original alignment error

given by the linear blend. Though this is the error we want to minimize, the optical

flow algorithm does not guarantee a monotonic decrease of this energy: the alignment

error depends non-linearly on the vector field coefficients and what we solve for at each

iteration is only a linear approximation. We also notice that as we increase the number

of iterations the smoothness of the vector field decreases. This is a consequence of our

scale-space coarse-to-fine approach.

4.7 Performance

4.7.1 Flow correction

In Table 4.3 we report the running time (in seconds) of the major steps involved in the

computation of the correction flow field. These tests were run on an Intel i7-5700HQ

with 4 cores and 16GB of memory.

Smooth and EstimateFlow dominate the running time because they construct and

solve global linear systems. Smooth solves a common linear system for both the source

and target signals, and EstimateFlow solves a linear system for the correction flow

field. Every call to these routines require recomputing a global matrix and updating

the numerical factorization of their Cholesky decomposition. Since the Smooth routine

constructs and solves a smaller linear system3, the running time is shorter than for

EstimateFlow. In Table 4.3, the reported running time of EstimateFlow is given

for the Whitney discretization. A detailed analysis of EstimateFlow for the different

vector field discretizations is presented in Section 4.7.2.

Model |V | Smooth Advect EstimateFlow GetScale

Reporter (Fig 4.1) 56k 0.69 0.042 0.84 0.003

Torus (Fig 4.4) 108k 1.34 0.081 1.68 0.006

Breakers (Fig 4.5) 56k 0.67 0.068 0.85 0.003

Slick (Fig 4.6) 64k 0.78 0.074 0.96 0.004

Table 4.3: Decomposition of the run time of a flow field correction pass.

The Advect routine computes the halfway aligned signals by integrating the flow field

and sampling from the input signals. These tasks are executed concurrently on all

3Non-zero entries of the screened Poisson equation is 7|V | on regular meshes.
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vertices of the mesh. Finally, the GetScale method involves a few matrix-vector mul-

tiplications that are also executed concurrently.

We observe a linear scaling for the running time of the Smooth, EstimateFlow, and

GetScale routines respect to the size of the model. Instead, the Advect routine is data

dependent and its running time varies according to the magnitude of the vector field.

4.7.2 Estimate flow

We analyze the computational efficiency of each vector field representation in solving

for the correction vector field at each iteration of EstimateFlow. Table 4.4 reports the

size of the linear system (number of non-zero coefficients) as a function of the number

of vertices in the input model4.

Method Triangle basis Gradient basis Whitney Basis

System DoF 4|V | 2|V | 3|V |
Data sparsity 2 14 5

Smoothness sparsity 8 ≥ 19 ≥ 11
System sparsity 8 ≥ 26 ≥ 11
System size 32|V | ≥ 52|V | ≥ 33|V |

Table 4.4: System sparsity on a regular triangulation.

Despite having the smallest number of degrees of freedom, the Gradient basis produces

denser systems that are roughly 66% larger compared to the generated with the Triangle

and Whitney basis. This behavior was verified on the test models as reported in Table

4.5.

Smoothness sparsity System size

Model / Basis Tri. Grad. Whit. Tri. Grad. Whit.

Reporter (Fig 4.1) 8 21.84 11.94 1.81M 3.27M 2.03M
Torus (Fig 4.4) 8 22.58 12.19 3.47M 6.40M 3.96M
Breakers (Fig 4.5) 8 21.81 11.93 1.79M 3.22M 2.00M
Slick (Fig 4.6) 8 22.01 12.01 2.07M 3.76M 2.33M

Table 4.5: Smoothness term sparsity and system size in the test models.

In Table 4.6 we report the execution time (in seconds) of the three major steps involved

in the solution of the vector field in the EstimateFlow routine: matrix construction,

numerical factorization and back substitution within the Eigen-PARDISO library [50].

The fastest construction of the linear system and numerical factorization are provided

by the Triangle basis. This is expected since this basis produces the linear system with

4The minimum sparsity and system size are computed from a triangulation where the degree of each
vertex is 6. For irregular triangulations the size of the system can be Ω(|V |2) for the Gradient and
Whitney basis, and its still 32|V | for the Triangle basis.
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Model Triangle Basis Gradient basis Whitney Basis

Reporter (Fig 4.1) 0.16 : 0.19 : 0.32 0.24 : 0.47 : 0.23 0.18 : 0.24 : 0.25

Torus (Fig 4.4) 0.30 : 0.41 : 0.57 0.46 : 1.97 : 0.52 0.31 : 0.58 : 0.48

Breakers (Fig 4.5) 0.12 : 0.18 : 0.31 0.23 : 0.47 : 0.23 0.14 : 0.22 : 0.24

Slick (Fig 4.6) 0.14 : 0.21 : 0.37 0.29 : 0.56 : 0.25 0.16 : 0.26 : 0.28

Table 4.6: System solution. Report of the matrix construction, numerical factoriza-
tion and substitution.

the smallest number of non-zeros. On the other hand, the back substitution is fastest

on the Gradient basis. This is a surprising result and might be consequence of both the

smaller number of degrees of freedom and the solver parallelism.

4.8 Applications

4.8.1 Texture interpolation

A natural application of optical flow is the synthesis of intermediate frames that in-

terpolate the source and target signals. We start by computing the halfway alignment

vector as described by the MeshOpticalFlow method. Then, we use the Interpola-

tion routine introduced in Equation 4.26 to synthesize the intermediate frames for any

time t.

In Figure 4.6 we compare interpolation of a pair of textures on the Slick model using

direct linear blend (i.e., without signal alignment) and using our optical flow approach.

The zoom-ins reveal severe ghosting artifacts on the linear blend result. Instead, our

optical flow result produces a visually smooth transition between the two signals.

4.8.2 Photometric tracking

In Chapter 6 we describe our approach to construct a spatiotemporally coherent pa-

rameterization of a surface in motion. One of the main challenges in this process is

deforming a template mesh to match the surface at each time step. In order to deform

the template mesh to match the target surface we need to identify corresponding points.

This is traditionally done by assigning each point in the template to its closest point in

the target with consistent orientation [52]. However, geometric correspondences alone

introduce drifting when tracking the surface for prolonged time periods, this means, that

the vertices on the template move tangentially on the surface. This situation can be

observed in the top row of Figure 4.7, where averaging the texture of three consecutive

frames of the Ballerina produces a blurred result. In this example the motion of the

61



Linear blend 
Interpolation

Optical flow 
Interpolation

Source

Target

Alignment field

𝑡 = 0

𝑡 = 1

𝑡 = 0.25

𝑡 = 0. 5

𝑡 = 0. 75

𝑡 = 0.25

𝑡 = 0. 5

𝑡 = 0. 75

Figure 4.6: Comparison of texture interpolation on the Slick model.

Ballerina around its rotational symmetry axis makes the closest point method to pro-

vide poor correspondences: points on the dress and the face are matched to the current

position rather than the rotated one.

To attenuate drifting we compute color correspondences using MeshOpticalFlow. Our

tracking algorithm proceeds as follows:

1. Geometry registration: Given the template mesh, Ms, and target mesh, Mt, we use

iterative closest point correspondences to compute an initial deformation where the

template embedding matches the target embedding. We denote by ΦG : Ms →Mt

the closest point map from the template to the target mesh.

2. Texture sampling: We project the texture of the deformed template onto the target

mesh. We denote by Is the projected template texture, and It the target texture.

3. Texture alignment: We run MeshOpticalFlow to compute a vector field X that

aligns the template texture Is to the target texture It.

4. Color correspondences: We compute color correspondences,ΦC : Ms → Mt, by

transporting the closest point correspondences along the alignment vector field X,

ΦC(p) := IntegrateFlow(X, 1,ΦG(p)).
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5. Drift correction: We use the color correspondences to update the template defor-

mation.

The bottom row of Figure 4.7 shows the result of tracking using color correspondences.

For this example we run two cycles of steps 2-5 to improve the quality of the registration.

Despite the fast motion of the Ballerina our method successfully attenuates drifting

artifacts. Having a correct registration is important for texture video compression and

temporal filtering. In this example, the texture video generated by enabling optical flow

improved MP4 compression by 10% over the result with optical flow disabled.

Optical flow disabled

Optical flow enabled

Figure 4.7: Correction of drift artifacts on mesh tracking using mesh-based optical
flow.
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Chapter 5

Gradient-Domain Processing

Figure 5.1: Applications of gradient-domain processing in texture sharpening, stitch-
ing, geodesics computation, and line integral convolution.

In this chapter we introduce a framework to do gradient-domain processing of signals

sampled on a texture atlas. Our contribution is a method that produces results that are

consistent with the surface metric and are seamless across chart boundaries.

We demonstrate the versatility of our approach through texture editing applications

like texture sharpening, smoothing, and stitching. We prove its robustness by solving

challenging geometric problems like computing geodesics distance to a source point and

performing line integral convolution.

64



5.1 Introduction

The work developed in this chapter is at the intersection of two well-studied subjects in

computer graphics: gradient-domain processing and seamless texture representation. In

this section we describe how previous works in both subjects motivate and relate to our

method.

5.1.1 Gradient-domain processing

The objective of gradient-domain processing is to solve for a signal φ that balances

between matching its values to a prescribed signal ψ, and matching its gradients to a

prescribed vector field X. More formally, our output signal φ is the solution to the

screened-Poisson equation,

E(φ;ψ,X, α, g) = ‖φ− ψ‖2g + α‖∇φ−X‖2g (5.1)

where α trades between fidelity to the input signal ψ and target vector field X, and g is

a Riemannian metric on the parameterization domain.

We have already introduced two variations of this equation. In Equation 3.8, we set

X = 0 to defined our metric-aware smoothing operator on meshes. In Equation 3.9 we

set X = ∇p0−〈∇p0, N〉N to solve for vertex positions that match a target normal field.

Applications of gradient domain processing in images and geometry have been broadly

explored. Applications in image processing include smoothing and sharpening [18], dy-

namic range compression [53, 54], and image stitching [55–57]. Applications in geometry

processing include surface fairing [58, 59], deformation [60], detail transfer [32], and pa-

rameterization [61, 62].

In this chapter we describe a discretization of Equation 5.1 in the texture atlas. As we

will see, this has two major challenges: capturing the metric properties of the surface in

the texture domain and supporting chart discontinuities.

5.1.2 Seamless texture representation

A major limitation of texture mapping is the introduction of discontinuities across chart

boundaries. This is an inevitable artifact of the traditional rendering pipeline, since

values on opposite side of a boundary edge are reconstructed as linear combinations of

unrelated texels.
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In practice, three different approaches have been suggested to address inter-chart discon-

tinuity: (1) modifying the rendering pipeline [63, 64], (2) optimizing the chart parame-

terization [65–67], and (3) compute values at boundaries texels to produce a perceptually

seamless transition [68, 69]. Our method belongs to the third class: we solve for a sig-

nal on a fixed texture atlas that is sampled on the surface using the standard bilinear

interpolation provided by the graphics hardware.

Our work is similar to González and Patow [63] which defines a function space that is

continuous across chart boundaries. The authors zipper seams by adding a thin fillet of

triangles over which standard bilinear sampling is replaced with linear sampling. Our

approach also introduces a triangulation but we use refinement rather than zippering,

allowing us to represent the signal using all active texels (including those immediately

outside the chart). In contrast to [63], our intermediate triangulation is created to assist

signal processing and does not redefine the rendering representation.

Carr et al.[65, 66] guarantee exact inter-chart continuity by decomposing the mesh into

charts that are parameterized as axis-aligned rectangular patches with matching num-

bers of texels across boundaries. Our approach does not guarantee exact continuity but

can be applied to arbitrary atlas parameterization.

To perform texture synthesis on multi-chart atlases, Lefebvre and Hoppe [68] pad the

chart boundaries with pointers to “communicate” to texels on the opposite side of a

seam. We also define some notion of adjacency between boundary texels, but we do it

in the more global context of the Finite Elements Method.

The work of Liu et al. [69] defines an inter-chart continuity energy to generate seamless

textures. This inter-chart continuity energy produces visible smearing artifacts when the

signal has a large gradient parallel to a chart boundary, as discussed in Section 5.5.1.

Our approach enforces continuity by construction (rather than by penalization) and it

is free of the aforementioned artifacts.
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5.2 Gradient-domain fundamentals

5.2.1 Screened-Poisson equation

The optimal solution to equation 5.1 can be derived through variational analysis. Ex-

panding the screened-Poisson equation at φ+ ζ and rearranging terms we obtain

E(φ+ ζ;ψ,X, α) =

∫
M

((φ+ ζ)− ψ)2 + α〈∇(φ+ ζ)−X,∇(φ+ ζ)−X〉dA (5.2)

= E(φ;ψ,X, α) + 2

∫
M

(φ− ψ)ζ + α〈∇φ−X,∇ζ〉dA+

∫
M
ζ2 + α〈∇ζ,∇ζ〉dA︸ ︷︷ ︸

≥0

(5.3)

Since the third term of equation 5.3 is non negative, we conclude that a sufficient con-

dition for φ to be the energy minimizer is to satisfy∫
M

(φ− ψ)ζ + α〈∇φ−X,∇ζ〉dA = 0 (5.4)

for any signal ζ. From the Divergence Theorem1 it follows that∫
M
〈∇φ−X,∇ζ〉dA =

∫
M

(−∆φ−∇ ·X)ζdA

Thus, the optimal condition on φ can be rewritten as,∫
M

(
(1− α∆)φ− ψ − α∇ ·X

)
ζdA = 0 (5.5)

for any signal ζ. This is the case when (1− α∆)φ− ψ − α∇ ·X ≡ 0, or equivalently,

φ = (1− α∆)−1(ψ − α∇ ·X) (5.6)

5.2.2 Spectral analysis

Equation 5.6 allows us to compute the analytic solution to the screened-Poisson problem

in terms of the spectrum of the Laplace operator ∆. Letting {(λk, φk)}k be the set of

eigen-value and eigen-vectors of −∆ , and expressing ψ − α∇ ·X ≡ ∑k rkφk, then we

can write the solution to the screened-Poisson problem as,

φ =
∑
k

rk
1 + αλk

φk (5.7)

1Assuming free boundary conditions, 〈∇φ, n〉 = 0 on ∂M .
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Bhat et al. [18] studied the particular case where X = β∇ψ. For this particular case

ψ − α∇ ·X = (1− αβ∆)ψ. Letting ψ ≡∑k skφk be the spectral decomposition of the

input signal, the solution can be expressed as,

φ =
∑
k

(1 + αβλk)

1 + αλk
skφk (5.8)

When β < 1 all frequencies are attenuated and the the output signal φ is a smoothed

version of the input ψ. When β > 1 all frequencies are amplified and the output is a

sharper signal.

5.2.3 Images discretization

𝜓𝑖 𝜓𝑗
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For images, the discretization of equation 5.1 is traditionally done using

staggered grids. As show in the inset, signal values ψ and φ are stored

at the nodes of the grid (N), and differentials at its edges (E). Due to

the homogeneity of the metric, the problem can be simply formulated

as solving for φ minimizing

∑
i∈N

(ψj − φi)2 + α
∑
ij∈E

(ωij − (φj − φi))2 (5.9)

The regularity of the image domain has motivated the use of multigrid methods to

solve equation 5.9. These methods alternate between updating the solution at different

resolutions. At each resolution the solution update is done using efficient relaxation

techniques that exploit parallelism and memory coherence. In Section 5.8 we show the

extension of these techniques to multi-chart atlases.

5.2.4 Mesh discretization

To compute the discretization of 5.1 on meshes we follow the Finite Elements approach

(see Section 2.3.1.4) associating a hat basis function to each mesh vertex. Assuming the

target vector field X is constant within each triangle, we can write energy 5.1 as,

(ψ − φ)>M(ψ − φ) + α(D0φ−X)>MT
1 (D0φ−X) (5.10)

where D0 is the discrete gradient operator (introduced in 4.5.3), and MT
1 is the vector

field mass matrix (introduced in 4.6.1). Since, S = D>0 MT
1D0, the optimal value to
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5.10 is given by,

φ = (M + αS)−1(Mψ + αD>0 MT
1X) (5.11)

Due to the irregular connectivity and non homogeneous sampling of triangle meshes,

the extensions of multigrid methods to meshes have been limited. The construction of

multiresolution meshes and the efficient relaxation at each resolution are challenging

tasks. Instead, general methods like Cholesky factorization are commonly used to solve

these linear systems.

5.2.5 Anisotropy

While most applications of gradient-domain processing use the immersion metric of the

surface, alternate metrics can be incorporated in the formulation. The seminal work

by Perona and Malik [15] demonstrates the power of incorporating anisotropy in the

context of edge-aware image processing. In geometry processing, anisotropic filtering

has also been used for feature-preserving smoothing [20, 22, 70, 71].

In Section 5.9.4 we present an application of anisotropic gradient-domain processing for

line integral convolution, which enable visualization of vector fields on surfaces.

5.3 Overview

In the following sections we introduce our technique for performing gradient-domain

processing directly in the texture atlas. We combine properties of both the image-

domain discretization and the mesh-domain discretizations to produce a method that is

metric-aware, continuous across chart boundaries and computationally efficient.

Discretizing and solving equation 5.1 in a texture atlas poses several challenges:

• Using standard bilinear interpolation, texture maps represent functions that do

not (in general) align across chart boundaries. As a result, continuity can only

be enforced by constraining the texture signal to have constant value along the

seams.

• Evaluating the texture near chart boundaries requires the use of both interior and

exterior texels. Because exterior texels are not associated with positions on the

surface, defining discrete derivatives across chart boundaries is non-trivial.

• Although texels lie on a uniform grid, their corresponding locations on the surface

are distorted by the parameterization. The nonuniform metric must be taken into

account.
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To address these challenges, we use an intermediate representation involving continuous

basis functions that approximate the bilinear basis. Specifically, we introduce:

• A novel function space spanned by basis functions that reproduce the bilinear

reconstruction kernel in the interior of a chart and are continuous across chart

boundaries.

• A basis for cotangent vector fields to represent the target texture differential.

• Metric-aware Hodge stars for constructing the mass and stiffness matrices in the

discretization of Equation (5.1) over texels.

In effect, we form a linear system over the texel values of an ordinary texture atlas,

but using system matrix coefficients derived from an approximating continuous function

space.

To efficiently solve this system, we present a novel multigrid algorithm that exploits

grid regularity within chart interiors while correctly handling irregularity across chart

boundaries.

Our work does not address seamless texturing. Because the output representation, like

the input, is a general texture atlas evaluated using bilinear hardware rasterization, con-

tinuity can only be attained by blurring the signal along chart boundaries. However, we

find that formulating signal processing operations using an intermediate continuous rep-

resentation yields results in which chart seams are usually imperceptible. Our strategy

is more effective than introducing inter-chart continuity constraints (Section 5.5.1).

We demonstrate the effectiveness of our approach in applications including signal smooth-

ing and sharpening, texture stitching, geodesic distance computation, and line integral

convolution.

5.4 Preliminaries

The input to our algorithm is an atlas parameterization of a 2-manifold immersed in 3D.

It consists of a triangle mesh (V, T ) residing in the unit-square, an equivalence relation ∼
on V indicating if two boundary vertices correspond to the same point on the manifold,

and a map π : V → R3 giving the immersion.
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5.4.1 Texture atlas

The mesh atlas induces a partition of triangles into connected components, each defining

a chart domain Mi ⊂ [0, 1] × [0, 1] formed by the union of its triangles. We let M =⋃
Mi denote the parameterization domain. We extend the map π : V → R3 to the

map π : M → R3 by linear interpolation within triangles. We extend the equivalence

relation ∼ to M by linear interpolation along boundary edges, setting p ∼ q if there

exists boundary edges (v1, v2) and (w1, w2) and interpolation weight α ∈ [0, 1] such that

v1 ∼ w1, v2 ∼ w2, p = (1− α)v1 + αv2, and q = (1− α)w1 + αw2.

We say that points p, q ∈M are on opposite sides of a seam if p ∼ q and that a function

φ : M → R is seam-continuous if it is continuous on M and has the same values on

opposite sides of a seam.

𝑀2

𝑀1 𝑀3

Given a W ×H texture image, we partition the unit square

into W ×H cells and compute the dual graph (shown in black

in the inset). As our goal is to define a function space which

mimics the bilinear functions, we define the footprint of a

node to be the four incident quads (the support of the bilinear

kernel centered at the node). We define a texel to be any node

whose footprint overlaps M and denote the set of texels by

T. We assume that the footprint intersects exactly one Mi

and say a texel is interior if its footprint is contained within a chart (green nodes) and

boundary otherwise (red nodes).2

5.4.2 Metric

As described in ??, to integrate functions over the triangulation, we require a Rieman-

nian metric g on M . In the context of gradient domain processing, the metric needs only

be integrable. Therefore we restrict ourselves to the set of piecewise-constant metrics.

That is, given the canonical coordinate frame on the unit square containing M , and

given a triangle t ∈ T , we consider metrics for which the matrix expression of g is the

same for all p ∈ t.

From the parameterization π : M → R3, we construct an immersion metric µ that

captures the intrinsic geometry of the surface. This metric is defined through the inner

product:

〈X,Y 〉µ := (dπX)>(dπY ) = X>(dπ>dπ)Y, ∀X,Y ∈ TM .

2Charts can always be translated by different integer offsets to ensure that the footprint of a texel
intersects exactly one chart.
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Texture Atlas

Quadratic (normalized)

Quadratic

Bilinear

(a) interior texel (b) boundary texel

Figure 5.2: Visualization of interior and boundary basis functions of the Bilinear,
Quadratic, and Normalized Quadratic function spaces.

For most of our applications we assume g = µ. In Section 5.9.4 we construct a new

metric to stretch and shrink distances according to a vector field.

5.5 Functional basis

Our goal is to associate a basis function to each texel t ∈ T so that a set of discrete

texture values can be interpreted as a function that can be evaluated anywhere on M .

Perhaps the simplest approach is to associate texel t∈ Twith the bivariate, first-order

B-spline Bt centered at t. This conforms to the bilinear rasterization performed by

graphics hardware. While such functions are well-behaved for interior texels, they are

not seam-continuous for boundary texels, dropping to zero on the opposite side of the

seam (Figure 5.2, second row).
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𝑇 𝑀 𝐶 𝑇
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Figure 5.3: Notation for the introduced triangulations and polygonizations of the
texture domain.

Φ(𝑀)
𝑀2

𝑀1
𝑀3

Figure 5.4: Boundary cells are tessellated by transferring intersections from opposite
sides of the seam (left). The result is a triangulation of the surface free of T-junctions

(right).

Instead, we define a basis B = {φt}t∈T consisting of seam-continuous functions that

approximate the bilinear kernels {Bt}. Since the bilinear kernels are piecewise-quadratic

polynomials, we define the basis B to be piecewise-quadratic as well.

We proceed in three steps: (1) computing a new triangulation T̂ of the texture domain;

(2) using T̂ to define a seam-continuous basis of piecewise-quadratic functions {Q̃ñ} on

M ; (3) defining bilinear-like seam-continuous basis B as linear combinations of {Q̃ñ}.

(1) Triangulating the texture domain

We decompose the atlas domain M into a set of polygonal cells C by tessellating M using

the texel lattice (Figure 5.3). For each vertex introduced along a seam, we insert a cor-

responding vertex on the opposite side of the seam (shown as dashed lines in Figure 5.4).

Then, we compute a constrained Delaunay triangulation T̂ of these polygons.

(2) Defining a quadratic seam-continuous function basis

We associate a quadratic Lagrange basis function

to each vertex and each edge in the triangulation T̂
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[72]. These functions form a partition of unity, re-

produce continuous piecewise quadratic polynomi-

als, and are interpolatory, i.e. a function centered

at a node evaluates to 1 at that node and to 0 at all other nodes. (The inset shows

elements centered on a vertex and edge of a triangle mesh.) We denote the set of nodes

(vertices and edges) by N and the basis as {Qn}n∈N.

To obtain a seam-continuous function-space, we merge the {Qn} across seams into a

single function. Specifically, let Ñ= N/ ∼ be the set of equivalence classes in Nmodulo

seam-equivalence. (We implicitly treat a node n ∈N as a point on M , using the vertex

position if n is a vertex and the midpoint if n is an edge.) We associate a seam-

continuous function Q̃ñ to each equivalence class ñ ∈ Ñ by summing the quadratic

Lagrange elements associated to nodes in the equivalence class:

Q̃ñ =
∑
n∈ñ

Qn .

These functions also form a partition of unity, reproduce seam-continuous piecewise

quadratic polynomials, and are interpolatory.

(3) Defining a bilinear-like seam-continuous basis of texel functions

Given a texel t ∈ T, we define the function φt : M → R to be the linear combination

of {Q̃ñ}, with coefficients given by evaluating the bilinear function Bt at the node

positions:

φt(p) ≡
∑
ñ∈Ñ

(∑
n∈ñ

Bt(n)

)
· Q̃ñ(p) .

By construction, the {φt} are seam-continuous since they are the linear combinations

of seam-continuous functions. Furthermore, due to the interpolatory property of the

Lagrange elements, the function φt reproduces the bilinear function Bt whenever t is an

interior texel (Figure 5.2a). Generally, the functions φt and Bt agree on the intersection

of M with the footprint of t.3 (Compare Figure 5.2b, second and third rows.)

The limitation of using the functions {φt} is that they do not form a partition of unity.

To address this, we normalize the coefficients by the number of seams on which the node

is located:

φt(p) ≡
∑
ñ∈Ñ

(
1

|ñ|
∑
n∈ñ

Bt(n)

)
· Q̃ñ(p) ,

3A rare exception is if the footprint of a texel contains nodes that are on opposite sides of a seam,
e.g. at the poles of the sinusoidal projection.
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where |ñ| is the cardinality of the equivalence class ñ.

This still associates a seam-continuous, piecewise quadratic function to each texel and

reproduces the bilinear functions at interior texels. However, for a boundary texel t,

the functions φt and Bt no longer agree on the intersection of M with the footprint of

t. (See Figure 5.2b, bottom row.)

For a thorough derivations of these results please refer to the appendix of [73].

5.5.1 Comparison with soft continuity constraints

We compare our construction of a continuous function space B to the approach of Liu

et al. [69] which enforces continuity on the traditional bilinear basis by introducing a soft

constraint EC . For a general function φ, the energy EC(φ; g) measures the integrated

squared difference between the values of φ on opposite sides of a seam. We can include

this continuity energy into Equation (5.1) as an additional term:

E(φ; g, α, ψ,X) + λEC(φ; g) ,

where λ modulates the importance of continuity across the seam.

Figure 5.5 shows examples of signal diffusion using two different diffusion scales (Sec-

tion 5.9.1), comparing the results obtained using the bilinear basis with soft constraints

to the results obtained using our continuous basis. Renderings are obtained using the

texture mapping hardware, with basis coefficients used as texel values. For large-time-

scale diffusion (top), a low continuity weight results in insufficient cohesion between

charts, and colors do not diffuse across chart boundaries. For short-time-scale diffusion

(bottom), a high continuity weight encourages the function to be constant along the

seam, resulting in perceptible color “smearing”. Our continuous basis provides correct

results for both scenarios and does not require any parameter tuning.

5.6 Vector fields

We use the Whitney basis to represent vector fields. As described in Section 2.3.1.4,

each basis element is associated to an unordered pair of adjacent texels and is defined

as the symmetric difference of the product of the scalar function at one texel times the

differential of the scalar function at the other. Because the function basis B forms a

partition of unity, we obtain a discretization of the exterior derivative, given in terms of

finite differences [74].
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Continuous basisInput Discontinuous basis + soft constraint

𝜆 = 10−2 𝜆 = 102𝜆 = 1

𝛼 → 0

𝛼 → ∞

Figure 5.5: Comparison of diffusion using the standard bilinear basis with soft con-
straints and our continuous basis.

Whitney basis Let “≺” be some precedence operator on texels, and let E denote

the set of adjacent texels, i.e. pairs of texels whose basis functions have overlapping

support:

E≡
{

(s, t) ∈ T×T
∣∣ s≺ t and supp(φs) ∩ supp(φt) 6= ∅

}
.

Given the scalar function basis B = {φt}, the Whitney basis, BW
1 = {Xa}, is defined

as:

Xa = φs · ∇gφt− φt · ∇gφs, ∀a = (s, t) ∈ E.

Discrete exterior derivative We denote by d ∈ R|T|×|E| the matrix giving the signed

incidence of texels for adjacent texel pairs:

dr(s,t) =


−1 if r = s

1 if r = t

0 otherwise

∀r ∈ T and (s, t) ∈ E.

We recall that since B forms a partition of unity, the matrix d gives the discretization of

the exterior derivative in the bases B and BW
1 . That is, for a given scalar basis function

φt we have:

∇gφt =

(∑
s∈T

φs

)
∇gφt− φt∇g

(∑
s∈T

φs

)
=
∑
s∈T

(φs∇gφt− φt∇gφs)

=
∑
a∈E

dtaXa .
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2D metric Immersion metric

Figure 5.6: Comparison of geodesic distance computation using the 2D Euclidean
metric and the immersion metric.

5.7 Linear operators

Given a Riemannian metric g we define mass matrices for signals M ∈ R|T|×|T| and

vector fields M1 ∈ R|E|×|E| by:

(M)s,t =

∫
M
φsφt

√
|g| dA ,

(M1)a,b =

∫
M
〈Xa, Xb〉g

√
|g| dA .

We compute the integrals by using the canonical coordinate frame for [0, 1] × [0, 1] ⊃
M and combining the two triangulations described earlier: the parameterized surface

triangulation T and the triangulation T̂ obtained by tessellating M using the texel

lattice.

By assumption, the matrix expression for g is constant on each triangle in T . By con-

struction, the basis B and BW
1 are polynomial on each triangle in T̂ . Thus, computing

a mutual refinement T ⊕ T̂ of the two triangulations (Figure 5.3) and summing the

integrals over the faces of T ⊕ T̂ , the computation of the matrices reduces to integrating

polynomials over 2D polygons.

We compute the integrals over each face in the refinement by triangulating the face and

using 11-point quadrature [75], which is exact for polynomials up to degree six. (Since

φt is a piece-wise quadratic polynomial and Xa is piece-wise cubic, computing the signal

mass matrix M requires integrating fourth-order polynomials and computing the vector

mass matrix M1 requires integrating sixth-order polynomials.)
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5.7.1 Defining the linear system

In our applications, we are interested in computing functions minimizing the quadratic

energy E(φ; g, α, ψ,X) from Equation (5.1). Using the Euler-Lagrange formulation and

discretizing with respect to the function basis, the coefficients of the minimizer φ ∈ R|T|

are given as the solution to the linear system

(M + αS)φ = mass(ψ) + αdiv(X) .

Here S is the stiffness matrices, given by4 S0 ≡ d>M1d , and mass(ψ) ∈ R|T| and

div(X) ∈ R|T| are obtained by integrating against the basis functions:

mass(ψ)t ≡
∫
M
φtψ

√
|g|dA ,

div(X)t ≡
∫
M
〈∇gφt, X

〉
g

√
|g| dA .

When ψ or X can be expressed as a linear combination of basis functions (e.g. in

smoothing and sharpening, stitching, and line integral convolution applications), the

constraints simplify:

ψ =
∑
t∈T

ψtφt ⇒ mass(ψ) = Mψ , (5.12)

X = ∇g
(∑

t∈T
ψtφt

)
⇒ div(X) = Sψ , (5.13)

X =
∑
a∈E

zaXa ⇒ div(X) = d>M1z . (5.14)

When ψ or X cannot be expressed as a linear combination of basis functions (e.g. in

computing single-source geodesic distances), we approximate the integrals using quadra-

ture.

5.8 Multigrid solver

The applications we consider are formulated as solutions to sparse symmetric positive-

definite linear systems. On domains with irregular connectivity like triangle meshes,

these type of systems are commonly solved either through direct methods, like sparse

Cholesky factorization, or through iterative methods, like conjugate gradients. Both

4In practice S is computed directly by integrating the dot products of the differentials of the scalar
functions {dφt}. This is more efficient because |E| ≈ 4|T| and more stable because the integrands are
only second-order polynomials.
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approaches have limitations within an interactive system: Cholesky factorization re-

quires expensive precomputation and the back-substitution is hard to parallelize, while

iterative methods like conjugate gradients converge too slowly.

To support interactivity, we implement a multigrid solver that exploits the regularity of

the texture domain. The challenge in doing so is handling the irregularity that arises

at the seams. We resolve this by using domain-decomposition [76], partitioning the

degrees of freedom into interior, where we leverage regularity, and boundary, where the

system is small enough to be handled by a direct solver. We start by describing the

implementation of the multigrid solver and then discuss performance.

5.8.1 Hierarchy construction

𝑀1

Our input is a texture grid where charts are separated suffi-

ciently so that the footprint of each texel intersects a single

chart. The set of texels in the input grid defines the finest res-

olution of our hierarchy. We construct the coarser levels by

generating a multiresolution grid for each chart independently,

as shown in the inset. We select a texel in the finest resolution

(level 0) as the origin (shown in red in the inset), and define

the texels Tl at the l-th hierarchy level as the subset of finest-

level grid nodes with indices (2lm, 2lk) whose [−2l, 2l]× [−2l, 2l] footprints intersect the

chart. Extending the definitions from Section 5.4.1, we classify texels at coarser levels

of the hierarchy as interior or boundary by checking whether their footprint is entirely

contained within a chart.

ൗ1 4

ൗ1 4ൗ1 4

ൗ1 4 ൗ1 2

ൗ1 2

ൗ1 2

ൗ1 2

1

Each texel of the hierarchy indexes a basis function. Texels at the

finest resolution are associated with the continuous basis {φt} in-

troduced in Section 5.5. We implicitly construct the coarse function

spaces using the Galerkin approach, defining a prolongation matrix

Pl that expresses basis functions at coarser level l+ 1 as linear com-

binations of (at most) 9 basis functions at level l. The coefficients are

given by the bilinear up-sampling stencil, (see inset). The restriction matrix is defined

as Rl ≡ (Pl)>. Then, given a matrix A defined at the finest resolution, we recursively

construct the restriction of this matrix to the coarser levels of the hierarchy, setting

A0 = A and Al+1 = RlAlPl.
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Interior texel neighbors Boundary texel neighbors

Figure 5.7: Visualization of the neighbors of an interior texel and a boundary texel.

5.8.2 Solution update

To solve the system Ax = b (with known constraints b and unknown coefficients x),

we update the estimated solution by performing a V-cycle [77]. Starting at the finest

resolution, we recursively relax the solution and restrict the residual to the next coarser

level. At the coarsest resolution, we solve the small system using a direct solver. Then,

we recursively add the prolonged correction to the estimated solution at the next finer

level, and apply further relaxation.

V-cycle(A, b,x)

R.1 for l = 0, . . . , L− 1 restriction phase

R.2 rli ← bli −Al
ibx

l
b boundary-relative residual

R.3 xli ← GaussSeidelRelax( Al
ii , r

l
i , x

l
i , n )

R.4 rlb ← blb −Al
bix

l
i interior-relative residual

R.5 xlb ← Solve ( Al
bb , r

l
b )

R.6 bl+1 ← Rl
(
bl −Alxl

)
C.1 xL ← Solve( AL , bL ) coarse level solution

P.1 for l = L− 1, . . . , 0 prolongation phase

P.2 xl ← xl + Plxl+1

P.3 rlb ← blb −Al
bix

l
i interior-relative residual

P.4 xlb ← Solve( Al
bb , r

l
b )

P.5 rli ← bli −Al
ibx

l
b boundary-relative residual

P.6 xli ← GaussSeidelRelax( Al
ii , r

l
i , x

l
i , n )

To perform the V-cycle efficiently, we rearrange variables in blocks of interior (i) and

boundary (b) texels, and rewrite the linear system Alxl = bl at each level asAl
ii Al

ib

Al
bi Al

bb

xli
xlb

 =

bli
blb

 .

We update the solution at interior texels by locking the boundary coefficients, adjust-

ing the constraints to account for the solution met at the boundary, and performing
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Julius-1C Julius-4C Julius-28C

Figure 5.8: Comparison of normal-map sharpening using atlases with 1, 4, and 28
charts after one V-cycle.

multiple passes of Gauss-Seidel relaxation over the interior coefficients. Leveraging the

grid-regularity of texel adjacency (Figure 5.7, left), relaxation of interior texels can be

done efficiently using multi-coloring (parallelization) and temporal-blocking (memory

coherence) [78].

As boundary texels have irregular adjacency patterns (Figure 5.7, right), Gauss-Seidel

relaxation is less efficient. However, because the number of boundary texels is small,

these can be updated using a direct solver at interactive rates. This time we lock interior

coefficients, adjust the constraints to account for the solution met in the interior, and

perform a direct solve for the boundary coefficients.

Our V-cycle algorithm performs the interior relaxation before the boundary solution in

the restriction phase, and after in the prolongation phase. (Solve(A, b) computes the

solution to the system Ax = b using a direct solver and GSRelax(A, b,x, n) performs

n Gauss-Seidel relaxations with x as the initial guess.)

5.8.3 Performance

We analyze the performance of our multigrid solver by sharpening normal-maps over

three different chartifications of the Julius model, shown in Figure 5.8. Sharpening is

done by solving the gradient-domain problem in Equation (5.1), setting g = µ (immer-

sion metric), α = 10−4, ψ equal to the input normal map, and X = 3∇gψ, and using

a multigrid system with L = 4 hierarchy levels and n = 3 Gauss-Seidel relaxations per

level. The solutions for the boundary texels and for the full system at the coarsest
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Runtime (seconds)

Figure 5.9: Breakdown of V-cycle computations times.

level are obtained using CHOLMOD [79]. These tests are performed on a quad-core

i7-6700HQ processor.

Runtime Figure 5.9 shows the runtime decomposition for a single V-cycle using

double precision. We plot the aggregate times for interior relaxation, boundary solution,

solution at the coarsest level, and restriction and prolongation. Memory coherence and

parallelism make the average cost of relaxing an interior texel significantly lower than

solving for a boundary texel. Thus, a V-cycle becomes less efficient as the atlas becomes

more fragmented. The cost of solving at the coarse level and the cost of applying

restriction and prolongation is a small fraction of the overall runtime. Evaluating using

texture maps with 0.2M, 0.8M, 3.2M, and 12.8M texels, we found that performance

scales almost linearly with the number of texels, with improved parallelism at higher

resolutions due to the increased per-thread workload.

Comparison to direct solvers Table 5.1 compares the performance of our multigrid

system with two direct solvers: CHOLMOD [79] and PARDISO [80, 81]. All solvers are

run in double precision. For each one, we report three timings:

• Initialization: For direct solvers, this is the symbolic factorization of the fine

system A0. For multigrid, this is the symbolic factorization of the boundary and

coarse systems {Al
bb} and AL.

• Update: For direct solvers, this is the numerical factorization of A0. For multi-

grid, this is the numerical factorization of {Al
bb} and AL as well as the computa-

tion of the intermediate linear systems {Al+1 = RlAlPl}.

• Solution: For direct solvers, this is back-substitution updating the three coordi-

nates separately. For multigrid, this is a single (parallelized) V-cycle pass updating

the coordinates together.
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Model CHOLMOD PARDISO Our multigrid

Julius-1C 3.8 : 1.2 : 0.2 2.8 : 0.8 : 0.2 0.4 : 0.1 : 0.04
Julius-4C 4.0 : 1.4 : 0.2 2.9 : 0.8 : 0.3 0.5 : 0.2 : 0.04
Julius-28C 4.0 : 1.3 : 0.2 3.1 : 0.9 : 0.3 0.6 : 0.4 : 0.06

Table 5.1: Comparison of the time for initialization, update, and solution (in seconds)
of direct solvers to our multigrid method.

Slick Filigree Camel
Girl Bimba Julius-1C
Julius-4C Julius-28C Ballerina
David Head Mime Bunny
Fertility
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Figure 5.10: RMS error as a function of the number of V-cycles (top). RMS after
five V-cycles as a function of authalic and conformal energies (bottom).

As Table 5.1 shows, direct solvers incur heavy initialization and update costs due to

the factorization (symbolic and numerical, respectively) of large system matrices. In

contrast, our approach only requires factorization of small matrices: the ones associated

to the boundary nodes and the one at the coarsest resolution. Our multigrid approach

also updates the solution at interactive rates, five times faster than a direct solver. In

practice, we have found that it takes between two and four V-cycles to obtain a solution

that is indistinguishable from a direct solver’s solution.

5.8.4 Convergence

We assess the convergence of our solver by analyzing how RMS error decreases with

the number of V-cycles. Figure 5.10 (top) shows plots of the RMS error for the models

shown in the paper, using the same linear system (g = µ, α = 10−4, X = 0, and ψ set

to random texture), at the same resolution (texture images are rescaled to have 800K

texels), with ground-truth obtained using a direct solver.
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Figure 5.11: Convergence plots of four different atlases for the Julius head evidence
negative impact of anisotropic distortion and invariance to conformal distortion.

For all models the RMS error decays exponentially up to machine precision. To better

understand the different convergence rates, we analyze the effects of parametric distor-

tion on the solver.

Distortion To measure distortion, we scale each 3D model so that its surface area

equals the area of the triangulation in the parametric domain and then consider the

singular values of the affine transformations mapping 3D triangles into 2D. As in the

work of Smith and Schaefer [82], we use a symmetric Dirichlet energy that equally

penalizes singular values and their reciprocals. Unlike the earlier work, we define this

energy in log-space:

ED(σ1, σ2) = log2(σ1) + log2(σ2).

An advantage of this formulation is that we can express the energy as the sum ED =

EA + EC of authalic and conformal energies:

EA(σ1, σ2) =
1

2

(
log(σ1) + log(σ2)

)2
=

1

2
log2(σ1 · σ2)

EC(σ1, σ2) =
1

2

(
log(σ1)− log(σ2)

)2
=

1

2
log2(σ1/σ2).

To better understand how distortion affects convergence rates, we plot the RMS error

after five V-cycles against the 99-th percentile distortion in Figure 5.10 (bottom). Sur-

prisingly, convergence is weakly correlated with area (authalic) distortion. Rather, it

is the deviation from conformality, as reflected by larger values of EC , that correlates

strongly with slower convergence.
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Figure 5.12: Convergence of our solver for a single texture atlas using texture images
with 0.2M, 0.8M, 3.2M, and 12.8M texels.

We corroborate this empirical observation by computing an as-rigid-as-possible [83] pa-

rameterization of the Julius head (1C-ARAP). Then, we obtain new charts by apply-

ing a Möbius transformation (1C-ARAP-MOEB), applying an anisotropic scale (1C-

ARAP-ANISO), and partitioning into 28 charts (1C-ARAP-28C). Note that 1C-ARAP,

1C-ARAP-MOEB, and 1C-ARAP-28C have the same conformal distortions while 1C-

ARAP, 1C-ARAP-ANISO, and 1C-ARAP-28C have the same authalic distortions.

Figure 5.11 shows the convergence plots for the four different atlases. As the figure

shows, neither the application of a Möbius transformation nor the introduction of new

seams significantly affects the convergence rate of the solver. In contrast the introduction

of anisotropy significantly degrades the solver’s performance.

Note that though it does not necessarily improve convergence, reducing area distortion is

still important for ensuring that the discretization samples the function space uniformly.

Resolution We also analyze the performance of our multigrid solver as a function

of resolution. Fixing the parameterization, we up-sample the texture map and consider

the convergence of the multigrid solver at different resolutions.

Figure 5.12 shows representative results for four different resolutions of the Julius-28C

atlas. As the figure shows, though the RMS error decays exponentially, the convergence

rate slows as resolution is increased. We do not have a satisfying explanation for this

behavior and intend to continue studying this in the future.

Single precision solver Using single precision, we obtain a roughly 2× speedup for

the interior relaxation and for the restriction and prolongation stages, though numerical

precision limits the achievable accuracy. The error reduction is similar to that of double

precision for the first 5-8 iterations, at which point the single precision solver plateaus

to an RMS error of roughly 10−5.
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Triangle quality Though convergence efficiency depends on the parametric distor-

tion, it is less dependent on the quality of the triangulation. For example, if there is no

distortion, the discretization of the linear system depends only on the parameterization

of the chart boundaries and not on the shapes of the triangles.

5.8.5 Implementation of interior relaxation

The objective of our multigrid method is to provide a fast update of the system solution

by taking advantage of grid regularity. This regularity facilitates coherent memory access

and concurrent processing.

In Figure 5.13 we present a coarse-to-fine view of the elements that form the data

decomposition in our multigrid system. In the top row we show elements we have

already introduced: the system hierarchy, an atlas at a fixed resolution, and a chart in

this atlas.

Charts are decomposed into 2D arrays of overlapping blocks. In the bottom row of

Figure 5.13 we show one of these blocks. Each block is divided into a sequence of rows,

and each row is split into a collection of segments. Each segment is a maximal set of

consecutive interior texels.

Within each hierarchical atlas we index texels one chart a time. For each chart the texels

are indexed from top to bottom and left to right. In this way, texels within a row are

adjacent in memory.

Our relaxation method updates the interior texels of an atlas by iterating across charts,

blocks, rows and segments. Applying Gauss-Seidel relaxation to a segment is straight-

forward. In the hierarchy construction stage, we compute pointers to the first and last

texel of each segment, and pointers to the texels immediately above and below the first

texel. In the solution update stage, we traverse each segment by simultaneously advanc-

ing the pointers to the first texel and to the texels above and below. We terminate when

the central pointer reaches the last texel of the segment5.

The reason why we decompose charts into blocks is twofold. The first is to limit the row

length so we can fit multiple rows in cache. The second is to allow concurrent relaxation

of a chart.

Cache coherence It is desirable that after traversing a row, the next row remain in

cache so it does not need to be reloaded for its own relaxation. By fitting multiple rows in

5We also store the system coefficients and constraint values in memory adjacent locations, so they
can be easily traversed by increasing a pointer.
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Figure 5.13: Components of our multigrid data decomposition.

cache we can further exploit memory coherence through temporal blocking [84, 85] : after

relaxing a row (ri) we relax a small preceding band of in-memory rows (ri−1,ri−2,. . .,ri−k)

before proceeding to the next row (ri+1). In this way multiple Gauss-Seidel relaxation

passes are executed within a single data load.

Concurrent relaxation We want to exploit parallelism by relaxing independent

blocks with different threads. To do this we group blocks into lines, and classify lines

as even or odd. For instance, in Figure 5.13, B(0,0), B(0,1) is the first even line and

B(1,0), B(1,1) is the first odd line. First we process all the even lines in parallel, assigning

a single thread to each line. Then we repeat the process for the odd lines. This task

decomposition avoids race conditions and reduces synchronization.

5.9 Applications

We demonstrate the versatility of our approach by considering a number of applications

of gradient-domain processing. For each of these, the solution is obtained by solving

argmin
φ

E(φ; g, α, ψ,X) ,

with g the metric, α the screening weighting, ψ the target scalar field, and X the target

vector field.
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Smoothing

𝛽 = 0

Sharpening

𝛽 = 2

Figure 5.14: We smooth (left) and sharpen (right) a texture by solving linear systems
that dampen and amplify the local color variation.

We use single precision and, with the exception of the last application, results are ob-

tained using our multigrid solver, with L = 4 hierarchy levels, n = 3 Gauss-Seidel

iterations per level, and using CHOLMOD to solve for the boundary nodes and coars-

est resolution system. Immersions are scaled so the surface has unit area (because the

effects of α and g are scale-dependent). All parameterizations, with the exception of

those shown in Figure 5.11, are obtained using UVAtlas [86]. Please see the appendix

of [73] for performance statistics.

Source code for our gradient-domain applications can be found at https://github.

com/fabianprada/GradientDomainTextureProcessing.

5.9.1 Isotropic filtering

A signal ψ is smoothed and sharpened by solving for a new signal with scaled gradi-

ent. Following the approach of Bhat et al. [18], we compute a filtered signal φ as the

minimizer:

argmin
φ

E(φ;µ, 10−4, ψ, β∇µψ) ,

with β the differential scaling term (and µ the immersion metric). Setting ψ to the

coefficients of the input signal and using Equations (5.12) and (5.13), the coefficients φ

of the minimizer are given by

φ =
(
M + 10−4S

)−1 (
M + 10−4βS

)
ψ .

When β < 1, the differential of the input signal is dampened and the signal is smoothed.

When β > 1, the differential is amplified, and the signal is sharpened. Figure 5.8 shows

results of sharpening a normal map and Figure 5.14 shows results of smoothing and

sharpening a color texture.
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(a) input (b) mask (c) filtered

Figure 5.15: We design a user interface for local filtering. In the middle we visualize
the differential modulation mask used for this example, showing attenuation (smooth-

ing) in blue and amplification (sharpening) in red.

Local filtering Selective removal or enhancement of signal detail is obtained by

allowing β to vary spatially. Figure 5.15 shows an example of local filtering where an

input texture (a) is filtered to produce both sharpening and smoothing effects (c). The

spatially varying modulation mask (b) prescribes that the furrow should be amplified

(red) while the bags under the eyes should be removed (blue). We represent β as a

piecewise constant function, with a value associated to each cell c ∈ C. The minimizer

is given by

φ =
(
M + 10−4S

)−1

(
M + 10−4

∑
c∈C

βcSc

)
ψ ,

where Sc is the stiffness matrix with integration restricted to c,

(Sc)s,t =

∫
c
〈∇gφs,∇gφt〉g

√
|g|dA ,

and βc is the differential modulation factor at c.

We designed an interactive system for texture filtering using a spray-can interface to

prescribe local modulation weights β. We precompute the matrices Sc. Then, at run-

time, the user-specified modulation weights are transformed into linear constraints and

our multigrid solver generates the new texture values at interactive rates, approximately

18 frames per second on the ballerina model (740k texels).

5.9.2 Texture stitching

Previous works in image and geometry processing merge multiple signals by formulating

stitching as a gradient-domain problem [55–57]. These approaches use the input signals

to compute differences between pairs of adjacent elements and solve for a global signal

that matches the differences in a least squares sense. Here, we describe how to use our

framework to stitch together textures obtained by imaging a static object from multiple

viewpoints.
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Figure 5.16: Gradient-domain stitching generates a texture that does not exhibit
discontinuities due to the lighting variance of the partial textures.

Our input is a texture-atlased surface, together with a collection of partial textures {ψk}
and a segmentation mask ζ. Figure 5.16 shows an example with three partial textures.

The partial textures sample the color of visible texels from each camera’s viewpoint, and

the segmentation mask specifies the camera providing the best view. (The quality of a

view is determined by visibility as well as the alignment of the surface normal to the

camera’s view direction.)

A naive solution is to create a composite texture ψ by using the camera with the best view

to assign a texel’s color. As shown in the middle left of Figure 5.16, this reveals abrupt

illumination changes at the transitions between regions covered by different cameras.

These discontinuities are removed by solving for a texture that preserves the differential

within the partial textures and is smooth across the boundaries. To achieve this, we set

the target texel difference to zero for texel pairs residing on different partial textures:

zd ≡

ψt−ψs if ζs = ζt

0 otherwise
∀d = (s, t) ∈ E.
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In regions not seen by any camera, differences are also set to zero to encourage a smooth

fill-in. We construct the associated vector field X =
∑

dzdXd, and solve for the signal

with matching differential:

argmin
φ

E(φ;µ, 10−2, ψ,X) .

Setting ψ to the coefficients of the composite and using Equations (5.12) and (5.14), the

coefficients φ of the solution are given by

φ =
(
M + 10−2S

)−1
(
Mψ + 10−2d>M1z

)
.

Results of gradient-domain stitching are shown in Figures 5.1 (bottom left) and 5.16

(middle right), where lighting differences between the cameras are removed, while details

in the interior are preserved.

5.9.3 Single-source geodesic distances

We demonstrate the robustness of our approach by computing single-source geodesic

distances using the Geodesics-in-Heat method [87]. The approach computes distances

to a source point p ∈ M by solving two successive systems. The first solves for a

short-time-scale diffusion of an impulse δp at the surface point:

argmin
ψ

E(ψ;µ, 10−3, δp, 0) . (5.15)

The second solves for the function whose differential best matches the (negated) nor-

malized differential of the diffused impulse:

argmin
φ

E

(
φ;µ,∞, •,− ∇µψ|∇µψ|

)
. (5.16)

(Setting α→∞, the target scalar field has no effect.)

In the texture domain, we associate the impulse with a texel t ∈ T, defining δt to

be the vector whose coefficients is one at the t-th texel and zero for all others. Using

Equation (5.12) we obtain the coefficients of the smoothed impulse by solving (M +

10−3S)ψ = Mδt.

The coefficients φ ∈ R|T| of the geodesic function are obtained by solving the system

Sφ = −div(∇µψ/|∇µψ|). Leveraging the smoothness of ψ, we use one-point quadrature
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to approximate the values of div(∇µψ/|∇µψ|). Assuming a connected surface, the solu-

tion is unique up to a constant factor and we offset the solution so that the distance is

0 at the source: φ← φ− φt.

Figure 5.17 (top) shows the distance function for a source point selected on the cheek of

the bunny. Note that after three V-cycles (second row), the result is indistinguishable

from the result obtained with a direct solver (third row).

This application is unusual in that the constraint to the second linear system depends

on the solution to the first, and hence evolves with the V-cycle iterations. Nonetheless,

Figure 5.17 (bottom) shows that the RMS error for both ψ and φ decays exponentially.

We also validated the efficiency of our multigrid solver in an interactive application in

which a user picks a source texel and the application displays the estimated geodesic

distances after each multigrid pass. When a source texel is selected the smoothed impulse

and distance functions are initialized to zero. Then, at each frame, one V-cycle is

performed for the impulse diffusion system and a second is performed for the distance

estimation (using the solution from the first V-cycle to define the constraints for the

second). We achieve an interactive rate of 17 frames per second on the bunny model

(670k texels). Please refer to the accompanying video for a demonstration.

5.9.4 Line integral convolution

Last, we consider the application of line integral convolution [88] to surface vector field

visualization. Teitzel et al. [89] achieve this by tracing streamlines over the triangulation

and averaging a random signal over these paths, obtaining a signal defined over the mesh.

Palacios and Zhang [90] interactively project the field onto the view-plane, obtaining a

signal in screen-space. Diewald et al. [91] formulates vector field visualization on images

and surfaces using anisotropic diffusion [15]. We introduce line integral convolution in

the texture domain by using gradient-domain processing with an anisotropic metric.

Given a vector field Y , we first define a metric gY that stretches distances along the

direction perpendicular to Y in proportion to the magnitude of Y . Then, we diffuse a

random texture ψ along the stream-lines by solving

argmin
φ

E(φ; gY , 1, ψ, 0) .

The anisotropic diffusion on the random texture ψ produces a signal φ where texels

along the same integral line have similar color, but the contrast across different integral

lines is low. We run gradient domain sharpening to increase contrast across integral
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Figure 5.17: In a single V-cycle our multigrid solver produces a result very similar to
the exact solution of a direct solver (RMS= 5.2 · 10−3). After three V-cycles, the result

is almost indistinguishable (RMS= 2.7 · 10−4).

lines. The signal φ̃ that we use to visualize vector fields is the solution to

argmin
φ̃

E(φ̃;µ, 10−4, φ, 100∇µφ)

Given a normalized vector field Y , which is constant per triangle in the canonical coor-

dinate frame of M , we define the anisotropic metric by setting

gY (X1, X2) ≡ 104〈X1, JµY 〉µ · 〈X2, JµY 〉µ + 〈X1, X2〉µ ,

for all vector fields X1, X2 ∈ TM . Here Jµ is the direction field perpendicular to Y

(relative to µ).
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Input

Max curvature diffusion

Min curvature diffusion

Figure 5.18: We perform line integral convolution by modifying the surface metric
to diffuse a random signal along the directions of principal curvature.

Figure 5.1 (bottom right) and Figure 5.18 show visualizations of surface curvature on

the Camel and Fertility models. For these we define Y by scaling principal curvature

directions by the absolute difference in principal curvature values. Figure 4.3 shows

visualization of the harmonic vector fields in the Fertility model.

This application highlights the robustness of our finite-elements discretization, which

provides high-quality vector-field visualizations despite significant distortion in the met-

ric.
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Chapter 6

Evolving Meshes

Figure 6.1: Spatiotemporal atlas parameterization of the Clothing sequence.

In the previous chapters we introduce techniques for processing signals on static triangle

meshes. In this chapter, we present the first steps in generalizing these techniques to

evolving meshes, i.e., meshes whose embedding and connectivity change over time.

We start by introducing a spatiotemporal texture atlas parameterization for evolving

meshes. Our method is robust and flexible, performing local remeshing operations in

case of tracking failure, surface stretching and topological changes. The proposed param-

eterization aims to maximize coherence and compactness, improving texture compression

over state-of-the-art methods.
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We close this chapter with preliminary results for gradient domain processing on an

evolving texture atlas. A more comprehensive exploration of temporally coherent signal

processing in the presence of partial correspondences is left for future research.

6.1 Introduction

The goal of surface tracking is to represent a deforming surface using a template mesh

whose vertex positions are updated as the surface moves [52, 92]. The final result is a

sequence of meshes with identical triangulation that establish a perfect correspondence

between surface points at any two frames.

In computer graphics tracking is particularly important since it provides a compact

representation of realistic motion. Additionally, it is a prerequisite for tasks like motion

classification [93], and for applications like motion synthesis [94] and transfer [95].

However, there are multiple challenges that need to be addressed when tracking a surface.

In particular we highlight:

1. Establishing correct correspondences between the template and target meshes.

2. Deforming the template mesh to capture the fine detail in the target.

3. Avoiding degradation of the template mesh triangulation over prolonged tracking.

These kinds of challenges make tracking computationally expensive. Techniques that

provide successful tracking of long temporal sequences require user intervention [96] or

multiple passes over the data [97].

Having a robust tracking algorithm is not necessarily possible: when the target surface

has different topology or presents drastic geometric changes (e.g., occluded regions be-

come visible), it might not be representable by the template mesh. This is the case for

the Clothing capture in the top row of Figure 6.1, where the character takes his shirt

off, drop it to his right, and then puts on the jacket that is to his left. Capturing all

these changes with a single template is extremely challenging.

The work of Collet et al. [98] solves the limitations of single-template tracking by rep-

resenting temporal sequences using multiple keyframes. The authors choose an optimal

keyframe mesh based on topological criteria (largest number of connected components,

smallest genus) and geometric criteria (largest area) and use it to track a window of

frames around it. Whenever the deformed keyframe does not provide a good represen-

tation of the target mesh the process restarts: a new keyframe is selected and locally
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propagated. However, doing a complete re-triangulation increases the storage require-

ments of the sequence, and limits global editing operations.

Evolving meshes addresses the limitations of both the single template and the keyframe

approaches, while preserving fidelity to the deforming surface and providing a compact

representation. The concept of evolving mesh was initially introduced by Wojtan et al.

[99] in the context of fluid simulation. In that work, the authors deform the surface of

a fluid by advancing a differential equation, and applying local remeshing operations to

compensate for topological changes. The mesh is preserved almost everywhere, except

at the critical regions where new triangles are added or removed to capture the changes.

Bojsen-Hansen et al. [100] extended the use of evolving meshes to surface tracking.

In that work remeshing operations are not only used to compensate for topological

changes but also to support possible tracking failures. Furthermore, [100] establish

surface correspondences across remeshing operations to propagate attributes like surface

albedo over mesh vertices during animation.

Our construction of evolving meshes differ from Bojsen-Hansen et al. [100] approach in

the definition of remeshing events. In [100], the authors compare the intersections of the

deformed template and the target mesh against a volumetric grid, and run remeshing

operations to resolve topological inconsistencies. This can introduce remeshing when

both the deformed template and target look similar but are slightly misaligned with

respect to the reference grid. In order to get a more spatiotemporal coherent represen-

tation, we only trigger remeshing events when the deformed template is perceptually a

poor representation of the target. We define our remeshing policy based on visibility

(ambient occlusion), detail (curvature), and correspondences (closest point distance).

In Figure 6.2 we compare tracking the motion of finger with and without remeshing

enabled. The changing topology (fingers touching and separating) and the fast motion

makes this sequence particularly challenging. When remeshing is disabled (middle row),

we observe how tracking failure propagates to subsequent frames. Instead, when remesh-

ing is enabled, tracking failure is resolved, and the updated template provides a good

approximation to the input sequence. In Section 6.3 we provide a brief description of

the integration between tracking and remeshing.

Robust tracking and sparse remeshing are prerequisites for our major contribution: the

construction of a spatiotemporal coherent parameterization for evolving meshes (Figure

6.1). Our construction provides an intuitive extension of standard concepts like charts

and atlas from 2D to 3D. Furthermore, our method parallels the traditional procedure

for texture atlas parameterization, decomposing the process into three major steps:
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Figure 6.2: Comparison of finger motion tracking with remeshing enabled and dis-
abled.

charting, unwrapping, and packing [3, 61]. In Section 6.4, we describe how these steps

are adapted to the context of evolving meshes.

Finally, we are interested in exploring signal processing over evolving meshes. In partic-

ular we are interested in exploiting partial correspondences to generate globally coherent

filtering results. In Section 6.5 we extend the gradient domain formulation of Chapter

5 to show an applications for lighting removal.

6.2 Overview

The input to our algorithm is a temporal sequence of unstructured meshes {Fi = (Ti, Vi)},
where each frame Fi is represented by a triangulation Ti and a set of 3D vertex posi-

tions Vi.

Our goal is to create a time-evolving mesh {F ′i = (T ′i , V
′
i , U

′
i)}, with texture coordi-

nates U ′i , that looks similar to the input sequence but has temporally coherent in con-

nectivity, geometry, and parameterization.

98



The creation of the time-evolving mesh {F ′t} proceeds in 3 steps:

Tracking : Given the new geometry (T ′i , V
′
i ) at time i, we deform its vertex positions, to

obtain the geometry (T ′i , Ṽ i+1) that fits the input geometry (Ti+1, Vi+1) from the next

frame.

Remeshing : We identify regions in the deformed mesh (T ′i , Ṽ i+1) that fail to match

the input and replace these with input geometry, obtaining the remeshed geometry

(T ′i+1, V
′
i+1) for the next frame.

Parameterization: We leverage the temporal coherence of the triangles T ′i in the output

geometry to define coherent texture atlases U ′i for better compressibility.

6.3 Evolving mesh construction

6.3.1 Tracking

Figure 6.3 provides an example of the construction of an evolving mesh by sequentially

deforming a template and applying local remeshing operations. In the top row we show

the input to our algorithm: a temporal sequence of meshes with different connectivity.

We start the tracking process (depicted in the second row) by initializing the template

as a copy of the first mesh in the sequence. Then, we deform the template to match the

second mesh in the sequence. If the deformed mesh provides a satisfactory match to the

target geometry, we continue the tracking process, computing a new deformation that

makes the template match the next target configuration.

When the deformed template does not provide a good match to the target, as high-

lighted by the circled regions in Figure 6.3, we perform a local remeshing procedure

that compensates for the differences. Then, we continue the tracking process using the

remeshed surface as the new template.

Our mesh deformation algorithm is an extension of the algorithm introduced by Sumner

et al. [52]. In that work the authors identify closest point correspondences between the

template and the target, and optimize for a deformation that fits the correspondences

while preserving the local rigidity of the template. We extend this algorithm to do

robust pruning of correspondences using geodesic descriptors, and identify tangential

correspondences (instead of closest point) using mesh optical flow as described in Section

4.8.2. For further details of the tracking process, please refer to [101].
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Figure 6.3: Integration of localized remeshing on the tracking pipeline.

6.3.2 Remeshing

Localized remeshing is the key feature to maximize the persistence of the template

triangulation while providing a faithful reconstruction of the target sequence. In Figure

6.4 we illustrate the major steps of the remeshing process. Our construction is similar

to [99, 100] in its use of a volumetric grid to enforce consistent merging. However, the

way we identify mismatched regions and stitch surfaces is different. Our algorithm can

be summarized as follows:

1. Region selection: We identify as seeds all the vertices in the template and target

mesh that have no good correspondence with any point in the other mesh. In our

implementation, the correspondence score at a vertex is given by its distance to the

other mesh, and is modulated by its ambient occlusion and curvature. Vertices

that have low visibility are less likely to be marked as seeds since they do not

affect the perceptible quality of the reconstruction, and might belong to regions

that are temporally occluded (e.g., surfaces that are in contact with each other).

Vertices with high curvature are more likely to be marked as seeds since they convey

meaningful detail (e.g., finger position, facial features, etc). Finally, we mark as

seeds the vertices of triangles on the template mesh that have excessive distortion
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Figure 6.4: Major steps of the remeshing algorithm.

with respect to the initial configuration. Ensuring that the shape of a triangle is

preserved during the tracking process is a prerequisite for the construction of the

spatiotemporal atlas parameterization in Section 6.4.

2. Volumetric growing: We define a common voxelization to identify consistent

boundaries for surface insertion and deletion operations. We mark the voxels

containing seeds of either the template or target and propagate the marked voxels

until the intersections of both the template and target meshes with the grown

volume boundary are consistent.

3. Trimming and stitching: We clip the meshes against the grown volume, re-

moving from the template the triangles interior to the volume, and inserting the

triangles from the target mesh. Since the boundary curves in the template and

the target are topologically consistent, we do the stitching by first identifying cor-

responding vertices, and then merging them together into their average position.

Finally, we run a pass of mesh simplification and Laplacian smoothing [58] to

improve the quality of the triangulation around the stitching curve.

For further details on the tracking process, please refer to [101]. The implementa-

tion of our remeshing algorithm can be found at https://github.com/fabianprada/

MeshStitching.

101

https://github.com/fabianprada/MeshStitching
https://github.com/fabianprada/MeshStitching


R
em

e
sh

in
g

ev
en

ts
Tr

ac
ki

n
g 

lif
es

p
an

Figure 6.5: Remeshing operations induce a partition of triangles on regions with
identical lifespan.

6.4 Evolving mesh parameterization

Once the tracking process is completed we construct a texture atlas parameterization for

the evolving mesh. Shown in the bottom row of Figure 6.1 is the atlas parameterization

of the Clothing sequence, which is just a standard atlas parameterization for each frame.

As in the standard case, our atlas construction requires decomposing the evolving mesh

into a collection of charts, unwrapping, and packing them into the texture domain.

Since our tracking process aims to preserve most of the triangulation from one frame to

the next, we would like to make our atlas parameterization as temporally coherent as

possible. For instance, if a triangle appears in multiple frames of the evolving mesh, it

is desirable to map it to the same position in the texture domain: this makes the atlas

parameterization more compressible.

In the top row of Figure 6.5 we show the output of our tracking method on a short se-

quence of the Girl capture, highlighting in red the regions modified by localized remesh-

ing. Once the tracking stage terminates we can associate a lifespan to each triangle in

the template, i.e, identify the first and last frame where the triangle appears in the tem-

plate. In the second row of Figure 6.5 we color each triangle in the template according

to its tracking-lifespan. For instance, we color in green the triangles in the pants of the

girl that are added in the second frame and removed in the fourth frame, and we color

in light blue, the triangles that are added in the second frame and persist through the
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Tracking-lifespan charts

Optimized charts

Figure 6.6: Atlas generated from tracking-lifespan charts exhibit excessive fragmen-
tation. Our optimization sacrifice a bit of temporal coherence for improved spatial

coherence.

fourth frame. By construction, the tracking-lifespans induce a partition of the triangles

in the evolving mesh.

Naively we could just use the tracking-lifespan clusters as the charts of our parameter-

ization. However, as highlighted in the circles in Figure 6.5, the tracking process can

produce excessive fragmentation (i.e., too many small patches) which is undesirable for

texture mapping. In Figure 6.6 we compare the atlas parameterization for three frames

of the Girl capture using the charts given by the lifespan clustering (top) and our op-

timized parameterization (bottom). Our result look as temporally coherent as the one

from tracking-lifespan charts, but with significantly less fragmentation.

In determining the partition into charts, we seek to maximize both temporal and spatial

coherence. To measure temporal coherence we introduce the concept of parametric-

lifespan. A parametric-lifespan of a triangle is an interval of frames on which the triangle

use the same texture coordinates. A triangle can have a parametric-lifespan equal to

its tracking-lifespan, or it can have multiple parametric-lifespan if it changes its texture

coordinates. Our measure of temporal coherence is the average parametric-lifespan. We

favor longer parametric-lifespans to reduce the number of stored texture coordinates.

We measure spatial coherence as the average number of charts per frame. We favor

fewer charts to reduce unused gutter space needed to separate charts and to minimize

the presence of texture discontinuity curves on the evolving mesh.

In this section we describe our approach for simultaneously optimizing both objectives,

parameterizing the resulting charts, and assembling them into a 3D texture map.
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6.4.1 Spatiotemporal atlas notation

Let T ′i be the triangles in the remeshed output of frame i. Given triangles ti ∈ T ′i and

ti+1 ∈ T ′i+1, we write ti 7→ ti+1 when triangle ti is deformed into triangle ti+1 by the

tracking.

• A chain is a subset of nodes {ts, . . . , te} with ti 7→ ti+1.

• The lifespan of a chain {ts, . . . , te} is the interval [s, e].

• The neighbor graph on
⋃
T ′i , denoted N, is the graph with an edge between two

triangles/nodes if either they are adjacent in the same frame, or one tracks to the

other (in adjacent frames).

• A chart is a connected subgraph C ⊂ N whose nodes form chains with identical

lifespan, denoted IC = [sC, eC].

• Two charts are neighbors if they are connected by an edge in N.

• The cross-section of a chart at time i is C(i) = C∩ T ′i .

• An atlas is a set of charts that partitions the neighbor graph N.

1 5 732 6 84

Time
𝒩

𝒞1
𝒞2

The top of the inset figure shows a visu-

alization of a neighbor graph with sub-

graphs C1 and C2 highlighted. Though

both are composed of two chains, only C1

is a chart. In the bottom we show two

different atlases on N. The one on the

left maximizes temporal coherence and,

among all such maxima, also maximizes

spatial coherence. The one on the right maximizes spatial coherence and, among all

such maxima, also maximizes temporal coherence.

6.4.2 Charting

To identify a good atlas, we define an energy on the space of atlases, design editing

operators to transform one atlas into another, and greedily choose edits that reduce the

energy.
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Geometric interpretation We think of a chart C as a (right) prism through the

neighbor graph, with time as its axis, and the cross-section at time i given by C(i). This

allows us to define the cap area as twice the average of cross-sectional areas and the side

area as the sum of the perimeter lengths of the cross-sections:

‖C‖C =
2

|IC|
·
∑
s∈IC

|C(s)| and ‖C‖S =
∑
s∈IC

|∂C(s)| ,

where ∂C(s) is the boundary of the cross section C(s).

Optimization energy We define the energy of an atlas A to be the sum of temporal

and spatial coherence terms, summed over the atlas charts. We note that a chart ceases

to be temporally coherent at its temporal boundaries (its two caps). Similarly, it ceases

to be spatially coherent along its spatial boundaries (its sides) and becomes less coherent

as it narrows. Taking these in conjunction, we set:

E(A) =
∑
C∈A

E(C) with E(C) = ‖C‖C + α · ‖C‖S‖C‖C

(We fix α to 10 times the average radius of a triangle.)

Atlas editing operators To support exploration of the space of atlases, we define an

atlas edit operator as the composition of several primitive transformations. The spatial

merge transformation takes two neighboring charts with identical lifespans and joins

them into a single chart. It keeps the temporal coherence energy fixed and improves

spatial coherence by removing boundaries and increasing the cross-sectional area. The

temporal split transformation takes a chart and divides it along a cross-sectional slice.

It worsens temporal coherence, but lets us trim the lifespans of adjacent charts so they

can be merged.

𝒞𝑙

𝒞𝑚

𝒞𝑘

𝒞𝑗

𝒞𝑛

Then, given spatially neighboring charts Cj and Ck,

we construct an edit operator composed of at most two

temporal splits (to align the lifespans of the charts)

followed by a spatial merge of the charts with identical

lifespans. This edit creates at most three charts Cl,

Cm, and Cn and its change in energy is

∆E =
(
E(Cl) + E(Cm) + E(Cn)

)
−
(
E(Cj) + E(Ck)

)
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Figure 6.7: A sequence of merging and split operations on the neighbour graph
produce a more spatially coherent parameterization.

Greedy energy descent We define an initial atlas by computing maximal chains in

the neighbor graph and clustering neighboring chains with identical tracking-lifespan.

The top row of Figure 6.7 show this initialization for a section of the evolving mesh

depicted in Figure 6.5. This atlas minimizes the temporal coherence energy and, of all

such minimizers, it is the one that minimizes the spatial coherence energy.

We optimize the atlas by maintaining a heap of candidate edits, sorted by their associated

change in energy. We pop a candidate edit off the heap, perform the edit if the associated

charts have not been modified already, create new candidate edits between the new chart

and its neighbors, and insert these candidates into the heap if they have negative energy

change ∆E.

In the second row of Figure 6.7 we show the neighbour graph after a sequence of splitting

and merge operations. The small fragments have been absorbed by the large patches

improving the overall quality of the chartification.

6.4.3 Unwrapping

Given a chart decomposition, we unwrap and map each chart into texture space. For

a chart C we take geometry from the first cross-section, C(sC), and use UVAtlas [86]
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to obtain the parameterization of the 2D cross-section. This parameterization is then

extruded across the lifespan of the chart, as shown in the top of Figure 6.8.

We note that even though each chart is connected, we are not guaranteed that the

unwrapping will occupy a contiguous region in texture space because the parameteriza-

tion may divide a chart into multiple components to limit geometric distortion. These

components form a refined chartification, which we call the parameterized atlas.

6.4.4 Packing

Given the unwrapped charts, we pack them into a 3D texture atlas. Our design strategy

aims to support a streamable representation whereby a lightweight client need only store

and access a single frame of texture video per rendered frame. Also, we constrain the

3D texture charts to be right prisms, so vertices have constant texture coordinates over

their lifespans.

To assign texture coordinates to the unwrapped charts, we sort charts by cap area and

incrementally place them in the texture volume. (We also tried sorting by chart volume

and lifespan, but found that cap area gives the most efficient packing.)

Using the fact that the unwrapped charts are extrusions of 2D cross-sections, we can

reduce the placement to a 2D problem. Specifically, given the chart C, we consider all

previously placed charts which overlap the lifespan of C, flatten them onto the 2D plane

and search for locations in 2D that are empty of previously placed charts and can fit the

cross-section of C.

We find such locations by using the approach of [61] which defines horizons for both the

current texture map and the chart to be inserted. The horizon is an envelope defined

around a line, with one horizon contained in the free space of the texture domain and

the other containing the chart. Shifting one horizon along the other provides an efficient

way to identify locations in texture space which can accommodate the new chart.

While a direct implementation successfully places the charts, it is not efficient. This is

because the original method uses a single texture horizon at the top of the 2D domain,

and places the new charts as close to the bottom as possible. As the packing is performed

from bottom to top, the horizon provides a good representation of the remaining free

space. In our context, we perform the packing in 2D texture space, but then extrude the

result into the 3D texture volume, with different charts extruded by different lifespans.

Thus, even if charts appear to be tightly packed at the bottom of one 2D flattening, the

packing may not be tight when flattened onto a different lifespan.
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Instead, we use multiple horizon lines for the 2D texture space, testing each one to

identify candidate locations. Once the locations are identified, we place the chart at the

location closest to the projected center of all the charts already placed into the atlas.

(We use 16 evenly spaced horizontal and vertical lines in our experiments and have found

diminishing returns when using more.)

In the bottom of Figure 6.8 we show the output of the packing process. The extruded

prisms, each representing a different chart, are placed in the 3D atlas, trying to maximize

occupancy and avoiding overlaps. The texture atlas at each frame (shown to the left of

each model) corresponds to a slice of the 3D atlas.

6.4.5 Parameterization results

In Figure 6.1 we show the spatiotemporal texture atlas parameterization for a collection

of captures. For each capture we show the texture atlas at the first frame (left column),

middle frame (center column) and last frame (right column) of the sequence. We color-

code the charts according to its lifespan. Charts with large lifespan have low saturation,

and in particular, charts in gray have full lifespan. The hue of the chart encodes the

midpoint of its lifespan: charts that appear at the beginning of the sequence are colored

in red, charts that appear at the middle are colored in green and charts that appear at

the end are colored in blue.

6.5 Signal processing

6.5.1 Texture videos

The atlas parameterization of the evolving mesh allows us to store high resolution signals

in the form of images that are sampled on the surface using standard texture mapping

techniques. In the top row of Figure 6.10 we show the parameterization of three consec-

utive frames of the Ballerina sequence, and in the second row we visualize the rendered

meshes using the camera re-projected textures.

We call the sequence of textures {Ii} the texture video. On our experiments, the texture

videos generated by our spatiotemporal parameterization had a gain of 12% in MP4

compression over the texture videos generated from the keyframe approach of Collet

et al. [98]. For a more detailed discussion of texture and geometry compression please

refer to [101].
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Figure 6.8: Each chart of the evolving mesh is unwrapped, extruded along its temporal
axis, and packed into the 3D texture atlas.
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Figure 6.9: Spatiotemporal atlas parameterization of the Macarena, Slick, Soccer,
Breakers, and Chair sequences.

It is important to notice that even though a chart can be replicated across multiple

frames, we allow the signal associated to the chart to change frame to frame. While

this might be unnecessary for some applications, in the case of the example in Figure

6.101 this allow us to capture details like the motion of the wrinkles in the clothes and

changing facial expressions.

However, we can see that the sampled textures also capture strong lighting variations

due to the motion of the character. We highlight a patch of the texture atlas, covering

1The textures on the second row of Figure 6.10 were constructed by assigning to each texel the color
from the camera with the best visibility and stitching (see Section 5.9.2).
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part of the Ballerina dress, where these lighting variations are visible. In the next section

we describe how to attenuate these artifacts using gradient domain techniques.

6.5.2 Lighting removal

Our hypothesis is that color variation due to lighting effects occurs smoothly on the

surface but abruptly over time, and consequently it is captured in the low frequencies of

the signal. In order to remove the lighting artifacts, we compute a new estimate of the low

frequencies components by averaging the signal across time. The result of this temporal

smoothing, {Īi}, is shown in the third row of Figure 6.10. In our implementation, we

set the smoothed values at each frame to be the weighted average (using cubic b-spline

weights) of a 10-radius window around the frame. When the lifespan of a chart does

not cover the entire 10 radius window, we just take the weighted average of the covered

subset of frames.

Temporal smoothing is effective in removing the abrupt lighting variations but also

introduces significant blurring. At each frame, we want a signal that captures the low

frequencies of the temporally smoothed signal, Īi, and the high frequencies of the input,

Ii. This can be formulated as the solution to the following screened-Poisson system:

min
I∗i
||Īi − I∗i ||2 + α||∇Ii −∇I∗i ||2 (6.1)

The fourth row of Figure 6.10 shows the solution of this system for α = 5 × 10−6.

Lighting artifacts are removed and texture details preserved.

6.5.3 Temporal screened-Poisson

In the previous application we decomposed the filtering process in two steps: temporal

smoothing and per-frame reconstruction. The formulation allows each frame to be solved

independently and keep the size of the linear system on the order of the texture size.

An alternative formulation could enforce the temporal smoothness as part of the opti-

mization energy. This is an instance of the temporal screened-Poisson energy:

E(φ;ψ,X, ν, α, γ, g) =

∫
‖φ− ψ‖2g + α‖∇φ−X‖2g + γ||∂φ

∂t
− ν||2gdµ (6.2)

Exploring applications of this formulation and efficient solutions through hierarchical

methods is a future research direction.

111



Pa
ra

m
et

er
iz

a
ti

o
n

Sa
m

p
le

d
 t

ex
tu

re
s

Te
m

p
o

ra
l S

m
o

o
th

in
g

Fi
lt

er
ed

 t
ex

tu
re

Figure 6.10: Evolving mesh filtering
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Chapter 7

Conclusions

In this thesis we extended image processing techniques like Shock Filters, Optical Flow

and Gradient-Domain processing to signals defined on static and dynamic surfaces. Our

methods are robust to irregular connectivity, non-uniform sampling, and parametric

distortion. We describe the main properties of our methods and the specific components

that sustain them:

Metric awareness We parameterize 3D surfaces as 2D Riemannian manifolds with

piecewise constant metrics. We use the Finite Elements Method (FEM) and Discrete

Exterior Calculus (DEC) to construct linear operators that capture the geometry of

function and vector spaces. FEM allows efficient construction of mass and stiffness

matrices, sufficient to implement most of the applications described in our work. DEC

provides a framework to operate on discrete differential forms, establishing a separation

between combinatorial operators (e.g. exterior derivatives) and metric operators (e.g.

Hodge stars). We use DEC to define smoothing operators on vector fields (the Hodge

Laplacian) that preserve harmonics.

Quality preservation Signal degradation is a consequence of excessive resampling.

This is particular common of explicit Eulerian integration methods. In this thesis, we

preserved quality by using Lagrangian Integration (for Shock Filters and Optical Flow)

and implicit Euler methods (for Gradient-Domain processing).

Efficient solution Fast signal processing on triangle meshes is specially hindered by

irregular vertex connectivity. We leverage on texture atlas parameterization and the

local regularity of the texture domain to accelerate signal processing on surfaces. We

use domain decomposition to exploit memory coherence and parallelism in the interior
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of charts, and a direct solver to handle arbitrary chart boundaries. We incorporate

the domain decomposition in a multigrid method to reduce computation and accelerate

convergence.

Temporal coherence Processing of temporal signals on surfaces requires information

to flow across multiple frames to ensure temporal coherence (e.g. avoid flickering).

Previous approaches solve for full surface correspondence on the temporal sequence

as a prerequisite for signal processing. We argue that full correspondences are not

always required, and (dense) partial correspondences can be sufficient. We construct a

spatiotemporal atlas parameterization of an evolving mesh to capture (dense) partial

correspondences, and show its usage for temporally coherent signal processing.

7.1 Open Problems

During the development of the methods introduced in this thesis we encountered very

interesting problem that are worth to explore in future research. We highlight the most

relevant problem within each chapter:

Chapter 3: Efficient signal advection on surfaces We represent intra-surface

maps (i.e., within points in a fixed surface) as the flow induced by a vector field. Efficient

integration of these vector field is an interesting computational problem. In particular,

it is important to handle the skew generated by processing paths independently, and

improve memory coherence on the triangle traversal.

Chapter 4: Hierarchical optical flow in meshes Our current formulation of op-

tical flow on meshes uses a linear scale approach to handle large displacement. However,

this requires to recompute the alignment vector field at the finest resolution, a task

that is computationally expensive. Ideally, a multiresolution representation (e.g., via

mesh simplification) should accelerate the process by solving first at coarser resolutions.

Defining such multiresolution methods for vector fields is an open problem that is also

relevant in other applications like vector field design and fluid simulation.

Chapter 5: Vector field processing in the texture atlas We would like to extend

our seamless processing of signals in the texture atlas, to support seamless processing of

vector fields in this same domain. In our current formulation we use the Whitney basis

to represent vector fields. This has two major limitations: some elements of the basis
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does not correspond to elements of the grid (node, edges, or cells) and it defines an over-

complete set (its size is four times the resolution of the grid rather than twice). Besides

overcoming these limitations, a satisfactory vector field representation must enable the

construction of robust curl and divergence operators, and must be easy to integrate.

Finding appropriate representations of vector fields is a prerequisite for extending Shock

Filters and Optical Flow to the texture atlas domain.

Chapter 6: Online atlas parameterization Our current approach to atlas pa-

rameterization of evolving meshes decouples tracking (online) from parameterization

(offline). Having full knowledge of the tracking process allow us to optimize the charting

and packing tasks. However, a more realistic (but harder) scenario is to update the atlas

parameterization on the fly. We think that a compact atlas parameterization can still

be constructed by customizing charting and packing, and developing statistical methods

that anticipate remeshing.
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[10] Matthew Fisher, Peter Schröder, Mathieu Desbrun, and Hugues Hoppe. Design

of tangent vector fields. ACM Trans. Graph., 26(3), July 2007.

116



[11] Fernando de Goes, Mathieu Desbrun, and Yiying Tong. Vector field processing

on triangle meshes. In SIGGRAPH Asia 2015 Courses, SA ’15, pages 17:1–17:48,

New York, NY, USA, 2015. ACM.

[12] Anil Nirmal Hirani. Discrete Exterior Calculus. PhD thesis, Pasadena, CA, USA,

2003. AAI3086864.

[13] L. Alvarez and L. Mazorra. Signal and image restoration using shock filters and

anisotropic diffusion. SIAM Journal of Numerical Analysis, 31:590–605, 1994.

[14] G. Gilboa, N. Sochen, and Y. Zeevi. Regularized shock filters and complex dif-

fusion. In Anders Heyden, Gunnar Sparr, Mads Nielsen, and Peter Johansen,

editors, Computer Vision ECCV 2002, volume 2350 of Lecture Notes in Com-

puter Science, pages 399–413. Springer Berlin Heidelberg, 2002.

[15] P. Perona and J. Malik. Scale-space and edge detection using anisotropic diffusion.

Transactions on Pattern Analysis and Machine Intelligence, 12:629–639, 1990.

[16] Luis Alvarez, Pierre-Louis Lions, and Jean-Michel Morel. Image selective smooth-

ing and edge detection by nonlinear diffusion. ii. SIAM J. Numer. Anal., 29(3):

845–866, 1992.

[17] C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images. In

Proceeddings of the International Conference on Computer Vision, pages 839–846,

1998.

[18] P. Bhat, B. Curless, M. Cohen, and L. Zitnick. Fourier analysis of the 2D screened

Poisson equation for gradient domain problems. In Proceedings of the 10th Euro-

pean Conference on Computer Vision, pages 114–128, 2008.

[19] Li Xu, Cewu Lu, Yi Xu, and Jiaya Jia. Image smoothing via L0 gradient mini-

mization. ACM Trans. Graph., 2011.

[20] Ulrich Clarenz, Udo Diewald, and Martin Rumpf. Anisotropic geometric diffusion

in surface processing. Visualization Conference, IEEE, 0:70, 2000.

[21] Chandrafit L. Bajaj, Guo Liang Xu, Rafit L. Bajaj, and Guoliang Xu T.

Anisotropic diffusion of subdivision surfaces and functions on surfaces. ACM

Transactions on Graphics, 22:4–32, 2002.

[22] Tolga Tasdizen, Ross Whitaker, Paul Burchard, and Stanley Osher. Geometric

surface smoothing via anisotropic diffusion of normals. In VIS ’02: Proceedings of

the conference on Visualization ’02, pages 125–132, 2002.

117



[23] S. Fleishman, I. Drori, and D. Cohen-Or. Bilateral mesh denoising. ACM Trans-

actionson Graphics, 22:950–953, 2003.
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[55] Patrick Pérez, Michel Gangnet, and Andrew Blake. Poisson image editing. ACM

Trans. Graphics, 22:313–318, 2003.

[56] Anat Levin, Assaf Zomet, Shmuel Peleg, and Yair Weiss. Seamless image stitching

in the gradient domain. In European Conf. Computer Vision, pages 377–389, 2003.

[57] Aseem Agarwala, Mira Dontcheva, Maneesh Agrawala, Steven Drucker, Alex Col-

burn, Brian Curless, David Salesin, and Michael Cohen. Interactive digital pho-

tomontage. ACM Trans. Graphics, 23:294–302, 2004.

[58] Gabriel Taubin. A signal processing approach to fair surface design. In ACM

SIGGRAPH Conf. Proc., pages 351–358, 1995.

[59] Mathieu Desbrun, Mark Meyer, Peter Schröder, and Alan Barr. Implicit fairing of
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conformal maps for automatic texture atlas generation. In Proc. ACM SIG-

GRAPH, Jul 2002.

120



[62] Mathieu Desbrun, Mark Meyer, and Pierre Alliez. Intrinsic Parameterizations of

Surface Meshes. Computer Graphics Forum, 2002.
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Teaching Assistant 2010

◦ Teaching assistant of Integral Calculus and Linear Algebra.

Publications

◦ F. Prada, M. Kazhdan, M. Chuang, and H. Hoppe. Gradient-Domain Processing within a Texture
Atlas. SIGGRAPH 2018.

◦ F. Prada, M. Kazhdan, M. Chuang, A. Collet, and H. Hoppe. Spatiotemporal Atlas Parameterization
for Evolving Meshes. SIGGRAPH 2017.

◦ F. Prada, M. Kazhdan, M. Chuang, A. Collet, and H. Hoppe. Motion Graphs for Unstructured
Textured Meshes. SIGGRAPH 2016.

◦ F. Prada, and M. Kazhdan. Unconditionally Stable Shock Filters for Image and Geometry Processing.
SGP 2015.

◦ F. Prada, L. Cruz, and L. Velho. Improving Object Extraction With Depth-Based Methods. CLEI 2013.

Awards
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