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Inelastic neutron scattering measurements are reported for a powder sample of the spin-1 /2 quantum para-
magnet Cu�quinoxaline�Br2. Magnetic neutron scattering is identified above an energy gap of 1.9 meV. Analy-
sis of the sharp spectral maximum at the onset indicates that the material is magnetically quasi-one-
dimensional. Consideration of the wave vector dependence of the scattering and polymeric structure further
identifies the material as a two-legged spin-1 /2 ladder. Detailed comparisons of the data to various models of
magnetism in this material based on the single-mode approximation and the continuous unitary transformation
are presented. The latter theory provides an excellent account of the data with leg exchange J� =2.0 meV and
rung exchange J�=3.3 meV.
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I. INTRODUCTION

Progress toward understanding the cooperative quantum
physics of one-dimensional systems is frequently gated by
the availability of suitable model systems for experiments.
While oxides offer the possibility of carrier doping, coordi-
nation polymer magnets have energy scales that are well
suited for high-magnetic-field experiments that traverse
phase boundaries. Such experiments have been important for
elucidating the fermionic nature of low-energy excitations in
the uniform spin-1 /2 chain1 and their remarkable transition
to a gapped solitonic spectrum upon application of an effec-
tive staggered field.2

A natural next step in the experimental exploration of
one-dimensional spin-1 /2 systems is to examine magnetic
excitations as a function of field and temperature in two-
legged spin-1 /2 ladders. The Hamiltonian of this system has
the form

H = �
i

J�S1,i · S2,i + J��S1,i · S1,i+1 + S2,i · S2,i+1� , �1�

where i indexes the rungs and 1, 2 each leg as illustrated in
Fig. 1. The Lieb-Schultz-Mattis theorem3 allows for a finite
gap in the excitation spectrum and indeed analytical,4–10

numerical,4 and experimental11 work has confirmed that a
spin gap does exist. A key experiment is to close this spin
gap with an external field and explore the predicted quantum
critical high-field phase.12 A rich zero-field excitation spec-
trum that should feature both bound states and continua also
remains to be examined experimentally.10,13

Unfortunately as of now no experimental model system
has been identified to enable neutron scattering experiment
in the high-field phase. �La,Sr,Ca�14Cu24O41 �Ref. 14� and
SrCu2O3 �Ref. 11� are good examples of spin ladders but the
high energy scales for these systems render them unsuitable
for the proposed experiments. The energy scales for

Cu2�1,4-diazacycloheptane�2Cl4 �CuHpCl� �Refs. 15–19�
and �VO�2P2O7 �Refs. 20 and 21� are appropriate and they
were previously identified as spin-1 /2 ladders on the basis of
specific heat and magnetization measurements. However,
further investigations with neutron scattering revealed that
the exchange interactions in these materials do not corre-
spond to spin ladders despite spin-ladder structural motifs. In
the case of CuHpCl there were early indications from mag-
netization measurements that the material is not one dimen-
sional and subsequent neutron scattering experiments
showed that the group velocity for magnetic excitation has
no substantial anisotropy.22 In addition, the molecular bond,
which was thought to be the rung of the ladder, assumes a
frustrated configuration in the ground state. Hence CuHpCl
is now thought to have a complex frustration-induced singlet
ground state.22 �VO�2P2O7 on the other hand is quasi-one-
dimensional but, rather than being a spin ladder, neutron
scattering experiments showed that it is an alternating spin
chain with the chain direction perpendicular to the putative
ladder direction.23–25

These false starts illustrate that bulk measurements, while
sensitive to the magnetic density of states, cannot provide
definite conclusions regarding the geometry of interacting
spin systems with a singlet ground state. With the goal of
identifying spin-ladder systems for high-field experiments,

FIG. 1. Schematic of a two-leg spin-ladder system, indicating
the rung interaction J� and the rail interaction J�. The indexing of
spin sites used in Eq. �1� is also shown.
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we have initiated a project to synthesize potential coordina-
tion polymer spin ladders and subject them to inelastic neu-
tron scattering experiments for verification. Cu�quinoxa-
line�Br2 is the first out of several such candidate materials.26

Susceptibility measurements on this material27 are well de-
scribed by a spin-ladder model with antiferromagnetic ex-
change constants J� =2.61 meV and J�=3.02 meV. Magne-
tization measurements27 show a phase transition from a
nonmagnetic singlet ground state to a magnetized state near a
critical field Hc=14 T, indicating the presence of an energy
gap �=g�BHc�1.7 meV. Furthermore, the square root sin-
gular onset of magnetization above the critical field suggests
that the system is magnetically one dimensional.

In the present paper, we report inelastic neutron scattering
experiments on a deuterated powder sample of Cu�quinoxa-
line�Br2 to determine whether this material is indeed a spin
ladder and to establish the strength of the relevant exchange
interactions. The comparison of wave-vector- and energy-
dependent magnetic neutron scattering data to comprehen-
sive model calculations carried out as a function of rung
and leg exchange constants strongly indicates that
Cu�quinoxaline�Br2 is a coordination polymer spin ladder,
with weak interladder interactions. Final verification will re-
quire inelastic scattering experiments from single crystals.

The crystal structure of Cu�quinoxaline�Br2

�Cu�C8H6N2�Br2� is monoclinic with space group C2/m
and lattice constants a=13.1745�15� Å, b=6.9293�8� Å, c
=10.3564�12� Å, and �=107.699�2�°.27 Quinoxaline
�C8H6N2� has a tendency toward polymeric structures where
quinoxaline forms a bridge between metal atoms.28 In
Cu�quinoxaline�Br2, Cu2Br4 dimers are linked to adjacent
dimers by bridging quinoxaline molecules along the mono-
clinic b axis as shown in Fig. 2�a�. The interdimer spacing
along the b axis is 6.929 Å. Hydrogen-bond-mediated inter-
actions may exist between molecular units displaced by d1
= �a±b� /2 and d2=c �see Fig. 2�. If these are sufficiently
strong, the material could be a two-dimensional bilayer sys-
tem as in BaCuSi2O6,29 an alternating spin chain as in
Cu�NO3�2 ·2.5D2O,30 or a three-dimensional system of inter-
acting spin pairs as in TlCuCl3 �Ref. 31� and KCuCl3.32,33

II. EXPERIMENTAL TECHNIQUES

A. Sample and neutron instrumentation

The neutron scattering sample consisted of 27 g of deu-
terated powder in an annular aluminum can with inner diam-
eter 2.42 cm, outer diameter 2.92 cm, and height 10 cm. The
powder was obtained through precipitation of a 1:1 molar
solution of anhydrous CuBr2 and deuterated d4 quinoxaline
dissolved in a small amount of 95% ethanol. Prompt � neu-
tron activation analysis and NMR measurements showed that
58% of the hydrogen sites in our sample were occupied by
deuterium. This is less than the 2/3 deuteration level of the
d4 quinoxaline starting material, indicating some hydrogen-
deuterium exchange with the solvent.

Inelastic neutron scattering measurements were per-
formed using the disk chopper time-of-flight spectrometer34

at the National Institute of Standards and Technology Center

for Neutron Research �NCNR� in Gaithersburg, Maryland. A
disk chopper system was used to select a 167 Hz pulsed
neutron beam with an energy of 4.87 meV and a pulse width
of 79 �s from the NCNR cold neutron source. The 0.65 sr

FIG. 2. �Color online� Structure of Cu�quinoxaline�Br2 pro-
jected along four different directions to illustrate potential interact-
ing spin models. �a� The molecular ladder structure of
Cu�quinoxaline�Br2 �Ref. 27�, which the ladder extends along the
monoclinic b axis. Interactions along the �a±b� /2 and c directions
could lead to two-dimensional dimer models in the a−b or b−c
planes �b� and �c� or a three-dimensional dimer model �d�. Color
coding is as follows: Pink, Cu; green, Br; blue, C; red, H; and gray,
N.
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detection system probed inelastic scattering with energy
transfer −4.17����3.84 meV and momentum transfer
0.13�Q�3.40 Å−1. The full width at half maximum
�FWHM� elastic energy resolution was ����0.18 meV.

B. Neutron scattering data analysis

The remnant hydrogen in the sample gives rise to a scat-
tering cross section of 201 barn per formula unit compared to
a total magnetic scattering cross section from Cu2+ of 0.146
barn per formula unit. There are several distinct challenges
associated with strong incoherent nuclear scattering. �1� The
strong elastic scattering cross section reveals tails of the en-
ergy resolution function that can dwarf the magnetic signal
well beyond the FWHM of the resolution function. �2� Pho-
non scattering and multiple-scattering processes involving
phonons produce a strong background even at low tempera-
tures that must be determined accurately in order to isolate
the magnetic scattering. �3� Both magnetic and phonon scat-
tering are frequently preceded or followed by incoherent
elastic nuclear scattering. Because incoherent scattering is
approximately wave vector independent this leads to a
Q-averaged contribution of both types of scattering at any
wave vector. We have developed accurate techniques for
dealing with each of these issues and because they are essen-
tial for this research they are described in the following sec-
tions.

1. Temperature-independent background

The elastic background from the tails of the resolution
function can be determined by utilizing the fact that inelastic
scattering obeys the principle of detailed balance whereas
elastic scattering at sufficiently low temperatures, to a good
approximation, can be approximated as being temperature
independent. Under these circumstances the raw measured
count rate, Ir�� ,T�, for any specific value of wave vector
transfer satisfies

Ir��,T� = B��� + I��,T� , �2�

Ir�− 	�	,T� = B�− 	�	� + I�	�	,T�exp�− �	�	/kT� . �3�

Here B��� is the temperature-independent background and
I�� ,T� represents all inelastic scattering processes that sat-
isfy detailed balance at the temperature T. An underlying
assumption here is that resolution effects can be neglected
for the inelastic scattering. By measuring data at two differ-
ent temperatures T1=1.4 K and T2=60 K and using Eqs. �2�
and �3� it is possible to extract values for B�	�	�, B�−	�	�,
I�� ,T1�, and I�� ,T2� from the corresponding four equations.

2. Subtracting phonon scattering

The above procedure isolates inelastic scattering from
temperature-independent elastic scattering and detector dark
current. However, this scattering intensity still has contribu-
tions from magnetic as well as phonon scattering. To remove
the low-temperature contribution from phonon scattering,
Ip�� ,T1�, and hence isolate low-temperature magnetic scat-
tering, Im�� ,T1�, we use the fact that phonon scattering in

hydrogenous systems dwarfs magnetic scattering for kBT
	��. Hence we make the following approximation for
kBT2
��:

I��,T2� 
 Ip��,T2� + Im��,T2� � Ip��,T2� . �4�

We further assume that one-phonon scattering events
dominate over multiphonon events and we neglect the tem-
perature dependence of the Debye-Waller factor such that35

Ip��,T1� �
1 − exp�− �2���
1 − exp�− �1���

I��,T2� . �5�

The final expression for the magnetic inelastic scattering
as deduced from the measurements at T1=1.5 K and T2
=60 K is therefore

Im��,T1� � I��,T1� −
1 − exp�− �2���
1 − exp�− �1���

I��,T2� . �6�

3. Multiple scattering

Multiple scattering is difficult to avoid when probing
weak magnetic scattering in the presence of strong incoher-
ent scattering. Here we describe how to account for the
dominant double-scattering process that involves incoherent
elastic scattering preceded or followed by a weaker inelastic
process. For simplicity we assume that the incoherent elastic
scattering is isotropic and independent of neutron energy and
we neglect anisotropy introduced by the sample geometry.36

Under those circumstances the incoherent scattering event in
a double-scattering process effectively randomizes the direc-
tion of scattering for the preceding or subsequent inelastic
scattering:

I��Q,�� = T I�Q,�� + �1 − T ��
	ki−kf 	

ki+kf

I�Q�,��
Q�dQ�

2kikf
. �7�

Here ki and kf are the incident and scattered wave vectors,
respectively. The integral implements the average over scat-
tering directions for the inelastic process. T is an “effective”
sample transmission that can be determined through analysis
of phonon scattering. Approximating the intensity of single-
event phonon scattering for a thin sample as Ip�Q ,��
= f���Q2 we find that

Ip��Q,�� = f����ki
2 + kf

2��T Q2

ki
2 + kf

2 + �1 − T �
 . �8�

Figure 3 shows phonon scattering intensity at T=60 K as
a function of Q2 / �ki

2+kf
2�. Data for several values of energy

transfer �� scale in agreement with Eq. �8� and yield an
effective value of T=0.40. For comparison the average trans-
mission through a spherical version of our sample as calcu-
lated considering only incoherent scattering is 0.30. In the
following we shall use Eq. �7� with T=0.40 when comparing
the measured inelastic magnetic scattering Im�� ,T� to theo-
retical models of spin dynamics in Cu�quinoxaline�Br2.

4. Normalized magnetic scattering

Anisotropic self-shielding effects associated with the an-
nular sample geometry were taken into account using a nu-

NEUTRON SCATTERING FROM A COORDINATION… PHYSICAL REVIEW B 74, 094434 �2006�

094434-3



merical integration technique.37 Absolute normalization of
the data was subsequently achieved using elastic incoherent
scattering from the sample, duly considering the hydrogen-
deuterium ratio determined through neutron activation and
NMR analysis.19 The technique is estimated to be accurate to

within 20%. The normalized magnetic scattering intensity Ĩm
is related to the resolution-smeared dynamic spin correlation
function as follows:

Ĩm�Q,�� = 2� dQ�� d��RQ��Q − Q�,� − ���

� �g

2
F�Q���2

S̃�Q�,��� . �9�

Here RQ��Q−Q� ,�−��� is a unity-normalized resolution
function that is peaked on the scale of the FWHM resolution
for Q�Q� and ������, and g�2.12 is the Landé g factor
for Cu2+ in Cu�quinoxaline�Br2.27 F�Q� is the anisotropic
magnetic form factor appropriate for a hole in the 3dx2−y2

orbital.38 Based on bond distances and their coplanarity it
appears that the two short Cu-Br bonds and the two bonds to
the neighboring quinoxaline molecules define the x̂− ŷ plane
for the 3dx2−y2 copper orbitals. We used this assumption to
model the effects of the anisotropic magnetic form factor.
The spherical average of the dynamic spin correlation func-
tion is

S̃�Q,�� =� d�Q̂

4


1

2�
��

���� − Q̂�Q̂��S���Q,�� , �10�

and the dynamic spin correlation function proper is

S���Q,�� =
1

2
�
� dt ei�t 1

N �
RR�

�SR
��t�SR�

� �0��e−iQ·�R−R��.

�11�

Unless specifically stated, we use the notation defined in
Lovesey’s book on thermal neutron scattering.35

III. EXPERIMENTAL RESULTS

Figures 4�a� and 4�b� show raw Q-integrated data at T
=60 and 1.4 K. The range covered is 0.5�Q�1.0 Å−1. The
solid symbols in Fig. 4�b� show B��� as determined by Eqs.
�2� and �3�. It is clear from this analysis that the strong in-
coherent elastic scattering from hydrogen produces intense
tails of scattering intensity well beyond the 0.18 meV
FWHM of the resolution function. The increase of the count
rate beyond 3 meV �see Fig. 4�a�� is attributable to the same
effect through time-of-flight frame overlap.

A small peak is visible in the raw low-temperature data
�Fig. 4�b�� at approximately 2 meV. Following background
subtraction, Fig. 4�d� clearly shows that this peak marks the
onset of a continuum of scattering in the wave-vector-
integrated spectrum. Figure 4�c� shows that this continuum is
not present at T=60 K where, as expected, thermally acti-
vated phonon scattering dominates. The solid line in Fig.
4�d� shows the projected contribution from phonon scattering
at 1.4 K as derived from the data in Fig. 4�c� using Eq. �5�.
While incoherent inelastic phonon scattering produces a

FIG. 3. Scaled wave vector dependence of inelastic neutron
scattering from Cu�quinoxaline�Br2 at T=60 K and for various val-
ues of energy transfer. The scaling behavior is consistent with
double scattering by phonons and incoherent elastic nuclear scatter-
ing as described by Eqs. �7� and �8�.

FIG. 4. The energy dependence of Q-integrated neutron scatter-
ing from Cu�quinoxaline�Br2 at T= �a� 60 and �b� 1.4 K before
detailed balance correction. In both frames solid symbols show the
temperature-independent background determined as described in
Sec. II B 1. Background-subtracted data at T= �c� 60 and �d� 1.4 K
data. The solid line is the phonon scattering contribution at T
=1.4 K as determined by Eq. �5�.
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background contribution that increases with ��, it is appar-
ent that the bounded continuum above a �2 meV spectral
gap is associated with inelastic magnetic scattering. This spin
gap is consistent with the activation energy derived from
bulk measurements.27

Having verified that magnetic scattering can be isolated
from incoherent nuclear scattering through the techniques
described in Sec. II B, the analysis can now be replicated as
a function of wave vector transfer. The results are summa-
rized in Figs. 5 and 6, where the data have furthermore been
normalized to report values for Ĩ�Q ,�� as defined by Eq. �9�.

Figure 5 shows the normalized scattering intensity Ĩ�Q ,��
for Cu�quinoxaline�Br2 at T=1.4 and 60 K after subtracting
the temperature-independent background determined through
Eqs. �2� and �3�. At T=60 K the scattering increases with
wave vector transfer as expected for phonon scattering. Fur-
ther analysis of the Q dependence of these data was provided
in Sec. II B 3. At low temperatures there is a clear onset of
scattering for ��
2 meV and this is consistent with mag-
netic neutron scattering from a quantum paramagnet. How-
ever, a growth in the scattering intensity toward higher Q
confirms the conclusions from the previous spectral analysis
that even the low-T scattering contains significant contribu-
tions from phonon scattering.

Figure 6�a� shows the phonon contribution to low-
temperature scattering derived from the T=60 K data based
on Eq. �5�. Subtracting these data from the data in Fig. 5�b�
concludes the process of isolating the Q- and ��-dependent
magnetic scattering. From these data, which are displayed in
Fig. 6�b�, it is apparent that there is a sharp onset of magnetic
scattering for ���1.9 meV with a finite-Q maximum. In the
following we shall show that these are features of a quasi-
one-dimensional antiferromagnet with a singlet ground state
and that the data furthermore are consistent with a spin lad-
der extending along the b axis.

IV. ANALYSIS AND DISCUSSION

A. Single-mode approximation

For most but not all39 quantum magnets, the dominant
spectral weight resides in a resonant mode. When this exci-
tation is between a singlet ground state and an excited triplet
without magnetic long-range order, it is called a triplon.40 We
prefer to reserve the common term “magnon” for systems
with magnetic long-range order. The single-mode approxi-
mation �SMA� provides an excellent account of the dynamic
spin correlation function for a dominant triplon. The starting
point is the following low-temperature approximation for
S�Q ,��, which concentrates all spectral weight in a resonant
mode:

S���Q,�� = S�Q��„�� − ��Q�…���. �12�

The first-moment sum rule41 links the equal-time correla-
tion function S�Q� to the dispersion relation as follows:

S�Q� = −
2

3

1

��Q�
�Jd�S1,i · S2,i��1 − cos�Q · d��� . �13�

Here we make the simplifying approximation that the mo-
lecular bond with displacement vector d dominates the struc-
ture factor. Within this framework, we examine different
models of magnetism in Cu�quinoxaline�Br2 by varying pa-
rameters in the following phenomenological dispersion rela-
tion which allows for intermolecular interactions along the
�a±b� /2 and c directions. The interaction along a+b is iden-
tical to that along a−b due to a mirror plane lying in the
a−b plane:

FIG. 5. �Color online� Normalized powder inelastic neutron
scattering intensity for Cu�quinoxaline�Br2 at T= �a� 60 and �b�
1.4 K after detailed balance correction as described in Sec. II B 1.

FIG. 6. �Color online� Normalized inelastic scattering intensity
for Cu�quinoxaline�Br2. �a� Phonon scattering intensity at T
=1.4 K. �b� Magnetic scattering intensity at T=1.4 K after subtract-
ing the phonon contribution as described in Sec. II B 1.
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��Q� = �b�k� + 2Bhk cos�2
h�cos 2
k + Bl cos�2
l� .

�14�

Here Q=ha*+kb*+ lc*. For models that approach the spin-
ladder limit we use the following strong-rung-coupling per-
turbation expansion:42

�b�k� = J��1 +
J�

J�

cos 2
k +
1

4
� J�

J�


2

�3 − cos 4
k�

−
1

8
� J�

J�


3

�2 cos 2
k + 2 cos 4
k − cos 6
k − 3�

+ O� J�

J�


4� . �15�

For models where the dispersion along b is not dominant we
use the simpler form

�b�k� = B0 + Bk cos 2
k . �16�

The spherical average of S�Q ,�� �Eq. �10�� was in general
calculated numerically except for truly one-dimensional
models where we used the analytical result.19

B. One-triplon continuous unitary transformation model

For an ab initio description of the dynamic spin correla-
tion function for the two-leg ladder, we use a particle-
conserving continuous unitary transformation �CUT�.10,43–45

The CUT is realized in a perturbative fashion about the limit
of isolated rung dimers and can yield the spectral weight and
dispersion of the triplon elementary excitations, as well as
the multitriplon contributions. Here we are interested in the
low-energy part of the dynamical structure factor for x
=J� /J��1. In this regime the dynamical structure factor is
dominated by the one-triplon part. Two-triplon contributions
are located at higher energies and carry only a small part of
the total spectral weight �10% for x=0.6�. It is thus justified
to restrict the discussion to the one-triplon part of the dy-
namical structure factor, which is characterized by the one-
triplon dispersion �CUT�Q� and the one-triplon spectral
weight a2�Q�. The high-order series for both quantities are
expressed in terms of an internal parameter of the system, the
energy gap �, instead of x, and quantitative results for x
�1 are obtained by extrapolation.46,47

The dynamic spin correlation function at T=0 K and for
�
0 is given by

SCUT�q̃,�� = −
1



Im

a2�q̃�
�� − �CUT�q̃� + i�

=
1




a2�q̃��
��� − �CUT�q̃��2 + �2 . �17�

Here �=0.02 meV was used to avoid divergences without
introducing broadening beyond the experimental resolution.
The spherical average of the dynamic spin correlation func-
tion is obtained as follows:

S̃CUT�Q,�� =
1

4

�

0




sin �d��
0

2


d�2SCUT�Q�b,��

��1 − cos�dQ� cos ��� . �18�

The integral over � can be computed analytically leading
to

S̃CUT�Q,�� =
2

bQ
�

0

Qu

dy SCUT�y,��

� �1 − J0�d

b
��b2Q2 − y2�
� , �19�

where y=Qb cos � and J0�x� is the zeroth-order Bessel func-
tion. From the structure of the material, we have d=3.75 Å
and b=6.93 Å.

C. Comparison between theory and data

We now compare each of these models of magnetism in
Cu�quinoxaline�Br2 to the observed magnetic scattering in-
tensity. Multiple scattering involving inelastic magnetic scat-
tering followed or preceded by incoherent elastic nuclear
scattering was added to the calculated single event scattering
as described by Eq. �7� with the experimentally determined
effective transmission T=0.4. We also allowed for an overall
additive constant to account for any discrepancies in the
background subtraction.

1. Q and E cuts

For an overview, Fig. 7 shows the energy dependence of
the magnetic scattering averaged over wave vectors from
0.5 to 1.0 Å−1 as follows:

Ĩ��� =
� Q2Ĩ�Q,��dQ

� Q2dQ

; �20�

here the Q2 weighting is such that the integral approximates
an average of scattering over the three-dimensional wave
vector space. These data are a measure of the magnetic den-
sity of states and are sensitive to the dimensionality of the
spin system. The dashed line in Fig. 7 shows a fit to the
one-dimensional CUT spectrum. The peak in the data is
broader than in this truly one-dimensional �1D� model. The
dotted line shows the spectrum for a two-dimensional model
where B0=3.82 meV and Bhk=1.02 meV, which produce a
gap in the spectrum that is consistent with the data. This 2D
model does not produce a peak at the spectral onset as ob-
served in the experiment. A quasi-one-dimensional model
�solid line in Fig. 7� with B0=3.82 meV, Bk=1.84 meV,
Bhk=0.08 meV, and Bl=0.14 meV on the other hand yields
an acceptable fit. From this we may conclude that
Cu�quinoxaline�Br2 is magnetically quasi-one-dimensional.

To establish the relevant one-dimensional model, we ex-
amine the wave vector dependence of magnetic scattering
averaged over the energy range from 1.85 to 2.65 meV �Fig.
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8�. Ĩ�Q� is sensitive to spatial spin correlations and in par-
ticular the intradimer spin spacing d. The data show a
rounded maximum at Q0�0.8 Å−1, indicating that the spins
forming the dominant correlated spin pairs are separated by

d�
 /Q0=4 Å. For comparison the nearest neighbor Cu-Cu
separation within the Cu2Br4 molecular unit is 3.75 Å. The
solid line in Fig. 8 shows the CUT ladder model prediction.
The excellent agreement with the data is strong support for
the ladder model. Conversely the c-axis alternating chain
model for one-dimensional magnetism in Cu�quinox-
aline�Br2 produces the dashed line, which is clearly inconsis-
tent with the data.

2. Intensity contour maps and global fits

We performed global fits of the dynamic spin correlation
function associated with the models described in Sec. IV to
the Q- and �-dependent magnetic neutron scattering from
Cu�quinoxaline�Br2. The results are summarized in Figs.
7–11. A least-square fit of the ladder single-mode approxi-
mation gave �S1,i ·S2,i�=−0.37�1�, �S1,i ·S1,i+1�=−0.04�1�.
The former value is close to the expectation value of −3/8
for a spin-dimer singlet ground state. We also found J�

=1.98 meV, J�=3.05 meV. The ratio J� /J��0.65 indicates
that the perturbative expression for the dispersion relation in
Eq. �15� is at the limit of applicability. Allowing for interlad-
der coupling through finite values for Bhk and Bl reduced the
�2 from 1.3 to 1.1 for Bhk=0.08 meV and Bl=0.14 meV,
which indicates that there are weak interactions between lad-
ders. Figure 11�b� shows the best fit, which corresponds to
B0=3.82 meV, Bk=1.84 meV, Bhk=0.08 meV, Bl=0.14
meV, and Jd�S1,i ·S2,i�=−1.0 meV.

As opposed to the strong-coupling perturbation expan-
sion, the CUT can provide results for S�Q ,�� for J��J�.
Fits were undertaken for fixed exchange ratios x=J� /J�

ranging from 0.5 to 1. For each value of x, the only adjust-
able parameters were an overall scale factor and the constant
background. J� was selected so as to produce the observed
value of � for each value of x as listed in Table I. Figure 9
shows the x-dependent smallest possible value for the �2

goodness of fit criterion. The best fit was obtained for x
=0.6. The corresponding values of the exchange constants
are J� =2.0�4� meV and J�=3.3�3� meV, which are consis-
tent with those from susceptibility measurement. Although
there is a correlated error bar, the gap is well determined by
the exchange constants from Eq. �15� at k=
. The entire

FIG. 7. Energy dependence of the normalized magnetic scatter-
ing intensity for Cu�quinoxaline�Br2 averaged over wave vectors
0.5�Q�1.0 Å−1. Open circles are experimental data. The dashed
line indicates the one-triplon dynamic spin correlation function
from the continuous unitary transformation theory. The dotted line
shows the spectrum for a two-dimensional model with B0

=3.82 meV and Bhk=1.02 meV. The solid line shows the spectrum
for a quasi-one-dimensional ladder model with B0=3.82 meV, Bk

=1.84 meV, Bhk=0.08 meV, and Bl=0.14 meV. All models were
convolved with the experimental resolution function and an overall
constant was fitted to account for any discrepancies in the back-
ground subtraction procedure.

FIG. 8. Wave vector dependence of normalized magnetic scat-
tering intensity for Cu�quinoxaline�Br2 at 1.4 K, integrated over
energy transfers 1.85����2.65 meV. Open circles are experi-
mental data. The solid and dashed lines indicate the dynamic spin
correlation function of the one-triplon CUT and SMA 1D alternat-
ing spin chain models, respectively, convolved with the experimen-
tal resolution function. Multiple scattering was added to the models
as calculated from Eq. �7� using the experimentally determined
value of T=0.40. Note that data for Q�0.5 Å−1 do not include the
full energy range due to the kinematic limitations of the experiment
�see Fig. 11�.

FIG. 9. �2= �1/Nfree�� j�Ij
obs− Ij

ex�2 /� j
2 versus the ratio of rail to

rung exchange in the comparison of magnetic neutron scattering
data for Cu�quinoxaline�Br2 to the continuous unitary transforma-
tion theory of one-triplon excitations in a b-axis spin ladder.
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powder-averaged dynamic spin correlation function for this
model is shown in Fig. 10�a�. Figure 11�a� compares the
CUT model calculations for x=0.6 to the experimental data.
Figure 10�b� shows that the strong-coupling dispersion rela-
tion obtained from the SMA fits is in fact also in good agree-
ment with that derived from the CUT.

Whether the corresponding scattering cross section is ap-
proximated by the CUT or the SMA, the ladder model
clearly provides an excellent account of the data. The virtue
of CUT in this context is that, apart from the exchange con-
stants and an overall scale factor that in principle can be
determined through the total moment sum rule, there are no
adjustable parameters.

V. CONCLUSION

In summary, we used neutron scattering to determine the
origin of quantum paramagnetism in Cu�quinoxaline�Br2.
The methods of detailed balance correction, phonon subtrac-
tion, and multiple-scattering correction were described and
used to extract the relatively weak magnetic signal from the
strong nuclear incoherent scattering for quantitative compari-
son to theoretical models. The observed spin gap �
�1.9 meV is consistent with magnetic susceptibility and

high-field magnetization measurement.27 The neutron scatter-
ing data are well described by the continuous unitary trans-
formation theory of a spin-1 /2 ladder along the b direction
of Cu�quinoxaline�Br2 with exchange constants J� =2.0
meV and J�=3.3 meV. There is also evidence of interladder
dispersion with a bandwidth of approximately 0.2 meV. A
c-axis alternating chain model was shown to be inconsistent

FIG. 10. �Color online� �a� One-triplon contribution to the
powder-averaged dynamic spin correlation function for a spin lad-
der as calculated by the continuous unitary transformation. Lattice
spacings are those appropriate for Cu�quinoxaline�Br2 and the ex-
change constants were derived by fitting to neutron scattering data
as described in the text. �b� The comparison of triplon dispersion
relation for the best fit between CUT �solid line� and SMA �dashed
line� ladder models.

FIG. 11. �Color online� Comparison of inelastic magnetic neu-

tron scattering Ĩ�Q ,�� from Cu�quinoxaline�Br2 at T=1.4 K �c� to
�a� the one-triplon scattering derived from the continuous unitary
transformation and �b� a quasi-one-dimensional spin-ladder model
in the single-mode approximation. The models were complemented
with incoherent elastic double scattering, according to Eq. �8�, with
T=0.40 and an overall additive constant was fitted to account for
any discrepancies in background subtraction.

TABLE I. Values of ladder exchange constants for which the

one-triplon contribution to S̃�Q ,�� was calculated for comparison
to the data.

J� �meV� J� �meV� x=J� /J� �2

1.56 3.12 0.5 1.39

1.77 3.21 0.55 1.34

1.98 3.3 0.6 1.30

2.22 3.41 0.65 1.37

2.46 3.52 0.7 1.45

2.96 3.70 0.8 1.49

3.29 3.80 0.866 1.48

3.47 3.85 0.9 1.48

3.98 3.98 1.0 1.46
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with the data. While there may exist other models that are
consistent with the present powder data, our results strongly
support the interpretation of Cu�quinoxaline�Br2 as a quan-
tum spin-1 /2 ladder with significant inter-rung coupling
�J� /J�=0.6�. Efforts are now under way to test this conclu-
sion and explore two-triplon dynamics in this interesting
quantum paramagnet through inelastic neutron scattering
from an assembly of small crystalline samples.
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