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Abstract

This dissertation focuses on developing Bayesian survival analysis methodology

for optimizing decision making and treatment methods in a variety of biomedical

applications.

First, we develop a flexible Bayesian nonparametric regression model based on a

dependent Dirichlet process and Gaussian process, DDP-GP, for optimizing precision

dosing of intravenous busulfan in allogenic stem cell transplantation. Our analyses of a

dataset of 151 patients identified optimal therapeutic dosage intervals that maximizes

patient survival outcomes and varies substantively with age and complete remission

status. Extensive simulations to evaluate the DDP-GP model in similar settings

showed that its performance compares favorably to alternative methods. We provide

an R package, DDPGPSurv, that implements the DDP-GP model for a wide range of

survival regression analyses.

The second main contribution of this dissertation is the development of person-

alized dynamic treatment regimes (DTR) in continuous time. Traditional statistical

methods for DTRs usually focus on estimating the optimal treatment or dosage at

each given medical intervention, but overlook the important question of “when this

intervention should happen.” We fill this gap by building a generative model for a

sequence of medical interventions with a marked temporal point process (MTPP)
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and embedding this into a Bayesian joint framework where the other components

model longitudinal medical measurements and time-to-event data. Moreover, we pro-

pose a policy gradient method to learn the personalized optimal clinical decision that

maximizes patient survival by interacting the MTPP with the model on clinical ob-

servations while accounting for uncertainties in clinical observations. A signature

application is to schedule follow-up visitations and assign a dosage at each visitation

for patients after kidney transplantation. We demonstrate that the personalized de-

cisions made by our method are interpretable and help improve patient survival, and

provide an R package, doct, that broadly implements our framework.

Lastly, we introduce a Bayesian semiparametric model for learning biomarker

trajectories and change points in Alzheimer’s disease (AD). Through simulation and

real data studies, we show that our model is able to reliably detect a pre-diagnosis

longitudinal change point, evaluate the probability of AD progression, and account

for heterogeneity by clustering subjects using longitudinal and diagnosis time data.

Primary Reader: Yanxun Xu

Secondary Reader: Mei-Cheng Wang
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Chapter 1

Introduction

1.1 Bayesian Statistics

In Bayesian statistics, we formulate our probabilistic beliefs using prior and pos-

terior distributions. A prior distribution represents to our beliefs about a certain

quantity before we consider information from the data. We then use the data to

update our beliefs and produce a posterior distribution. In the context of statistical

modeling, we are often concerned with the prior and posterior distributions of model

parameters, θ, that model data D. Formally, we compute the posterior distribution

of parameters using Bayes’ rule:

Posterior︷ ︸︸ ︷
p(θ|D) =

Likelihood︷ ︸︸ ︷
p(D | θ)

Prior︷︸︸︷
p(θ)

p(D)︸ ︷︷ ︸
Integrating factor

. (1.1)

Since the integrating factor is a constant, we can ignore it and formulate the
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posterior by considering the proportional relationship

Posterior︷ ︸︸ ︷
p(θ|D) ∝

Likelihood︷ ︸︸ ︷
p(D | θ)

Prior︷︸︸︷
p(θ) . (1.2)

For some cases with a carefully chosen prior distribution, the posterior belongs to

the same family of distributions as the prior, and they are referred to as conjugate

distributions. In complex models with many parameters, the posterior distribution of

each parameter cannot be derived in closed form and instead we rely on alternative

Bayesian inference sampling techniques to approximate the posterior distributions

p(θ | D). The primary class of algorithms to solve this issue are Markov chain Monte

Carlo (MCMC) methods, which establish a Markov chain that has the target posterior

distribution as its equilibrium distribution. One of the most commonly used MCMC

methods is the Metropolis-Hastings algorithm, described as follows for a model with

I parameters (θ1, · · · , θI) and N iterations:

In Algorithm 1, the computation for the acceptance probability can be simplified

by carefully selecting the proposal distributions q(θ∗i | θ
(n−1)
i ). For example, if the

full conditional distribution p(θ∗i | θ−i, D) and the prior p(θ∗i ) are conjugate, then

we can choose the proposal distribution to be the full conditional, q(θ∗i | θ
(n−1)
i ) =

p(θ∗i | θ−i, D). This special case of Metropolis-Hastings is called the Gibbs sampling

algorithm and the acceptance probability always equal to one.

In some complicated models, the full conditional and prior distributions for certain

parameters are not conjugate due to multiple types of data. For example, let the

dataset be composed of both survival and longitudinal data, denoted Ds and Dl,

respectively. Then, the acceptance probability in Algorithm 1 for a shared parameter,
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Algorithm 1 Metropolis Hastings

The following illustrates the Metropolis Hastings algorithm to approximate
the target posterior distributions for each parameter, p(θ1 | D), · · · , p(θI |
D). θ−i represents the most recent values of all other parameters excluding
θi.

1: Initialize θ
(0)
i for i = 1, · · · , I at arbitrary value, i.e. sample from priors.

2: for n:=1 to N do
3: for i:=1 to I do
4: Generate proposal value θ∗i ∼ qi(θ

∗
i | θ

(n−1)
i )

5: A(θ
(n−1)
i , θ∗i )←

p(θ∗i |θ−i,D)

p(θ
(n−1)
i |θ−i,D)

q(θ
(n−1)
i |θ∗i )

q(θ∗i |θ
(n−1)
i )

=
p(D|θ−i,θ∗i )p(θ∗i )

p(D|θ−i,θ
(n−1)
i )p(θ

(n−1)
i )

q(θ
(n−1)
i |θ∗i )

q(θ∗i |θ
(n−1)
i )

6: Ui ← Uniform(0, 1)

7: if Ui < A(θ
(n−1)
i , θ∗i ) then

8: θ
(n)
i ← θ∗i

9: else
10: θ

(n)
i ← θ

(n−1)
i

11: end if
12: end for
13: end for

θi, that models both both data types is

A(θ
(n−1)
i , θ∗i ) =

p(θ∗i | θ−i, Ds, Dl)

p(θ
(n−1)
i | θ−i, Ds, Dl)

q(θ
(n−1)
i | θ∗i )

q(θ∗i | θ
(n−1)
i )

=
p(Ds | θ−i, θ∗i )p(Dl | θ−i, θ∗i )p(θ∗i )

p(Ds | θ−i, θ(n−1)
i )p(Dl | θ−i, θ(n−1)

i )p(θ
(n−1)
i )

q(θ
(n−1)
i | θ∗i )

q(θ∗i | θ
(n−1)
i )

.

For these complex datasets, it’s infeasible to construct a model such that the

full conditional distribution, p(θ∗i | θ−i, Ds, Dl), and prior, p(θ∗i ), are conjugate when

considering both types of data. However, the conditional distribution for one data

type, p(θ∗i | θ−i, Dl), can be conjugate with the respective prior. This conjugacy

allows for a prudently selected proposal distribution q(θ∗i | θ
(n−1)
i ) = p(θ∗i | θ−i, Dl) to

3



significantly simplify the acceptance probability:

A(θ
(n−1)
i , θ∗i ) =

p(Ds | θ−i, θ∗i )
p(Ds | θ−i, θ(n−1)

i )
.

This trick not only allows for easier computation, but also results in a higher

acceptance probability and improved mixing of the MCMC chain.

1.2 Survival Analysis

In many medical applications, we are interested in studying how certain factors

affect the time to a medical event such as disease progression, organ failure, or patient

death. Such medical events are often denoted “survival events” and the time to a

survival event is referred to as the “survival time” or “event time.” Survival analysis

is used to evaluate the relationship between patient characteristics and survival times.

Let T represent a survival time of interest for a patient and f(t) as its corresponding

probability density function (pdf). Then the cumulative distribution function (cdf)

is F (t) = P (T ≤ t) =
∫ T

0
f(u)du. In survival analysis, we are often interested in

modeling the survival function of T , which is the probability of not experiencing the

survival event at time t:

S(t) = P (T > t) = 1− F (t) =

∫ ∞
T

f(u)du (1.3)

Another way to model the survival time T is to use a hazard function, which

measures the instantaneous rate of the survival event, given that the survival event

has not yet been observed. Using this definition, we can derive the relationship

4



between the hazard function and the density and survival functions:

h(t) = lim
dt→0

P (t < T ≤ t+ dt | T > t)

dt
= lim

dt→0

P (t < T ≤ t+ dt)

dtP (T > t)
=
f(t)

S(t)
(1.4)

Survival analysis data can be incomplete when certain patients do not observe

a survival event. For example, let us consider a study of cancer patients where the

survival event is death. When the study concludes at time C, some patients may

still be alive and their survival event is unobserved. We refer to this missing data

phenomenon as right-censoring, and the time at which the study ends is the censor

time. The survival data for each patient is composed of Y = min(C, T ) and an

indicator function for censoring, δ = I(T ≤ C). If the patient survival event is

censored, the only information known is that the survival event is larger than the

censor time. Thus, we can write the likelihood of the survival data (Y, δ) as:

L = f(Y )δS(Y )1−δ (1.5)
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Chapter 2

Bayesian Nonparametric Survival

Regression for Optimizing

Precision Dosing of Intravenous

Busulfan in Allogeneic Stem Cell

Transplantation

2.1 Introduction

Allogeneic stem cell transplantation (allo-SCT) is an established treatment for

various hematologic diseases, including acute myelogenous and lymphocytic leukemia

and non-Hodgkins lymphoma. Intravenous (IV) busulfan has been established as

a desirable component of the preparative regimen for allo-SCT, due to its absolute

bioavailability and dosing accuracy, leading to improved patient survival (Andersson
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et al., 2002; Bredeson et al., 2013; Copelan et al., 2013; Nagler et al., 2013; Wachowiak

et al., 2011). The patient’s busulfan systemic exposure (Bu-SE) represented by the

area under the plasma concentration versus time curve, AUC, is crucial, as serious

adverse events are associated with an AUC that is either very high or too low. Higher

AUC values are associated with neurologic toxicity (grand mal seizures), hepatic

veno-occlusive disease, mucositis, and/or gastro-intestinal toxicity (Dix et al., 1996;

Geddes et al., 2008; Kontoyiannis et al., 2001; Ljungman et al., 1997). Lower AUC is

associated with an increased likelihood of disease recurrence and thus shorter survival

time (Andersson et al., 2017; Bartelink et al., 2009; McCune et al., 2002; Russell et al.,

2013; Slattery et al., 1997).

Consequently, it is important to define an optimal AUC interval of busulfan expo-

sure that maximizes survival while minimizing risk. Studies of fixed-dose oral busulfan

regimens suggest that inter-individual variations in Bu-SE exposure may be as high

as 10- to 20-fold. In contrast, IV delivery of busulfan is more consistent and reliable

for controlling delivered dose (Andersson et al., 2000), and thus is better suited for

obtaining optimal busulfan AUC intervals. Andersson et al. (2002) showed that an

optimal interval of IV Bu-SE had AUC values approximately 950 to 1520 µMol-min

from one representative dose in a typical 16-dose treatment course, or a total course

AUC of 15,200 – 24,400 µMol-min, yielding longer survival times and lower toxic-

ity rates compared with values outside this interval. More recently, Bartelink et al.

(2016) reported that, in children and young adults, the optimal daily AUC range in

a prototype 4-day Bu-based regimen was 78-101 mg*h/L (corresponding to a total

course AUC of about 19,100 – 21,200 µMol-min), regardless of the type or stage of

underlying disease and whether the patients were in complete remission (CR) if they

had an underlying malignancy.
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In this chapter, we account for patient heterogeneity to assess the joint impact

of patient age, CR status, and AUC on patient survival, with the goal to determine

covariate-specific optimal daily AUC intervals. To evaluate possible interactions be-

tween covariates and Bu-SE, and their association with treatment outcome, we an-

alyzed a dataset of 151 patients who underwent allo-SCT for acute myelogenous

leukemia (AML) and myelodysplastic syndrome (MDS). It has been demonstrated

that many different comorbidity conditions may affect the patient’s risk for devel-

oping complications with these procedures (Sorror et al., 2005, 2014). Additionally,

there commonly is a correlation between the severity of comorbidities and patient age.

Therefore, we analyzed the outcome of our patients using age as a continuous covari-

ate. We also included the indicator of whether the patient was in CR or had active

disease at time of allo-SCT, since patients transplanted in CR have, on average, more

favorable outcomes (De Lima et al., 2004; Kanakry et al., 2014). Our goal was to

find patient-specific optimal AUC ranges that maximize expected survival time given

the patient’s age and CR status. The results of this analysis may provide specific

guidelines for so-called “personalized” or “precision” medicine in clinical practice.

Andersson et al. (2002) estimated the optimal AUC range by fitting a Cox pro-

portional hazards regression model for overall survival (OS) time and smoothing a

martingale residual plot, which showed that the hazard of death was approximately

a quadratic function of log(AUC). Bartelink et al. (2016) used a fourth-order polyno-

mial model to estimate the association between AUC and OS. Both of these methods

assumed specific parametric distributions for survival time, and the latter analysis

assumed a specific polynomial function for the relationship between AUC and OS.

For our data set, Figure 2.1 shows histograms and estimated density plots of the

patients’ OS times in weeks, with and without a log transformation of OS. The figure
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clearly presents a long-tailed distribution that might result from a mixture of several

unknown distributions. Alternatively, the long-tailed distribution might be due to

the fact patients who have survived at least four years from transplant are at risk of

death from natural causes, rather than leukemia or transplant related causes. Conse-

quently, the specific models and strong parametric assumptions made by Andersson

et al. (2002) and Bartelink et al. (2016) may not be suitable to fit the current data set

well. In particular, the proportional hazards assumption underlying the Cox model

may not be valid. Even given a survival distribution that fits the data reasonably

well, an additional problem is determining functional relationships between AUC,

prognostic covariates, and the risk of death.

We present a flexible Bayesian nonparametric (BNP) survival regression model to

estimate the relationship between survival time, AUC, and baseline covariates. Based

on our analysis of the allo-SCT dataset, we determined personalized optimal AUC

ranges based on patient’ age and CR status. An important advantage of BNP models

is that they often fit complicated data structures better than parametric model-based

methods because BNP models can accurately approximate essentially any distribu-

tion or function, a property known as “full support.” Another important advantage

of BNP models is that they often identify unexpected structures in a dataset that

cannot be seen using conventional statistical models and methods. BNP models

have been used widely for survival analysis. Hanson and Johnson (2002) proposed a

mixture of Polya tree priors in semiparametric accelerated failure time (AFT) mod-

els, while Gelfand and Kottas (2003) developed the corresponding Dirichlet process

(DP) mixture approach. Zhou and Hanson (2018) presented a unified approach for

modeling survival data by exploiting and extending the three most commonly-used

semiparametric models: proportional hazards, proportional odds, and accelerated
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Figure 2.1: Histograms of overall survival time in weeks (top) and log overall survival
time (bottom), with nonparametric density estimates.
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failure time. Despite the flexibility of these approaches for modeling baseline survival

distributions, they are restricted in the way that covariates may affect the baseline

distribution. Fully nonparametric tree-based survival models have been developed,

such as the use of random forests (Ishwaran et al., 2008) and Bayesian additive regres-

sion trees (Sparapani et al., 2016). De Iorio et al. (2009) proposed an unconstrained

survival regression model with a dependent Dirichlet process (DDP) (MacEachern,

1999) prior in order to incorporate covariates in a naturally interpretable way. Xu

et al. (2016) developed a DDP prior with Gaussian process as the base measure, the

DDP-GP model, to evaluate overall survival (OS) times of complex dynamic treat-

ment regimes including multiple transition times. However, a non-trivial limitation

of the DDP-GP model in Xu et al. (2016) is that it gives the same fixed weight to

all covariates, regardless of their numerical domains, when quantifying dependence

between patients. Such a restriction may yield a sub-optimal posterior contraction

rate, causing less accurate estimations (van der Vaart and van Zanten, 2011).

Building on the work in Xu et al. (2016), in this chapter we propose a flexible

survival regression framework by formulating a DDP with a more general covariance

function for the GP prior that includes an individual scale parameter for each co-

variate and additional hyperparameters for model flexibility and robustness. The

proposed model provides easy-to-implement posterior inferences in settings where

the proportional hazards assumption, specific parametric models such as AFT mod-

els, or semi-parametric models may not fit the data well. Currently, the R package

survival, which is limited to such models, remains a standard tool for statistical

and medical researchers. One of the main contributions of this chapter is to provide

a new, easy-to-use R package, DDPGPSurv, that implements the proposed DDP-GP

survival regression model for a broad range of survival analyses. A major goal is
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that DDPGPSurv will become a new standard computational tool for implementing

this generalized DDP-GP to conduct survival analysis in medical research.

The rest of the chapter is organized as follows. In Section 2.2 we review the

motivating dataset. We present the DDP-GP survival regression model in Section

2.3. Section 2.4 gives a brief introduction to the R package DDPGPSurv. Extensive

simulation studies with comparison to alternative methods are conducted in Section

2.5. We analyze our dataset in Section 6, and conclude with a brief discussion in

Section 7.

2.2 Motivating Study

When total body irradiation was replaced with high-dose oral busulfan (Santos

et al., 1983; Tutschka et al., 1987), it quickly became clear that unpredictable, often

lethal, toxicities limited the use of a busulfan-based conditioning program. Several

retrospective studies indicated an association between systemic drug exposure and

clinical treatment outcome (Dix et al., 1996; Slattery et al., 1997). This spawned

an interest in exploring pharmacokinetic dose guidance, but the erratic bioavailabil-

ity of oral busulfan prevented its successful implementation in a prospective fashion.

The advent of IV Busulfan, which guarantees complete bioavailability with absolute

assurance for systemic dose delivery has changed this. Routine application of ther-

apeutic dose guidance for IV busulfan in pre-transplant conditioning therapy now

makes it possible to accurately deliver a predetermined systemic exposure dose in

terms of AUC, thereby optimizing treatment. This is important, since in (myeloid)

leukemia the cytotoxic drug dose and accurate dose delivery are associated with clin-

ical treatment outcome (Andersson et al., 2002, 2017; Bartelink et al., 2016; De Lima

12



Patients(n = 151)
Age(years)

≤ 25 12 (8%)
26− 35 22 (15%)
36− 45 32 (21%)
46− 55 50 (33%)
≥ 56 35 (23%)

Sex
Male 77 (51%)

Female 74 (49%)

In CR at transplantation
Yes 80 (53%)
No 71 (47%)

AUC quantile
10% 3,928
25% 4,328
50% 5,077
75% 5,754
90% 6,371

Table 2.1: Patient characteristics at time of transplan-
tation.

et al., 2004; Russell et al., 2013). A question that has not yet been resolved satis-

factorily is what optimal systemic exposure dose to target in an individual patient.

To address this decisively, we have retrieved data in The University of Texas MD

Anderson Cancer Center from 151 AML/MDS patients who received a standardized

4-day fludarabine-IV busulfan combination, with both agents administered based on

body surface area. Pharmacological studies of busulfan were performed as an op-

tional procedure, but the information was not used for busulfan dose-adjustments.

The dataset includes overall survival (OS) times and the covariates age, CR status,

and AUC. Table 1 summarizes the characteristics of the study population at baseline.
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2.3 Probability Model

2.3.1 Dependent Dirichlet process-Gaussian pro-

cess prior

Denote the log time to death by Y and censoring time on the log(time) domain by

C, with T = Y ∧C the observed log time of the event or censoring, and δ = I(Y ≤ C).

Indexing patients by i = 1, · · · , n, the observed outcome data for patient i are (Ti, δi),

and we let xi denote the baseline covariate vector, including age, CR status, and AUC.

We construct a Bayesian nonparametric (BNP) survival regression model for F (Y |

x), the distribution of [Y | x], as follows. We start with a model for a discrete random

distribution G(·), then use a Gaussian kernel to extend this to a prior for a continuous

random distribution, and finally we replace the kernel means by a regression structure

to define the desired prior on {F (Y | x), x ∈ X}. The constructions of G(·) and

F (·) are elaborated below, by way of a brief review of BNP models. See, for example,

Müller and Mitra (2013) and Müller and Rodriguez (2013) for more extensive reviews.

First proposed by Ferguson (1973), the Dirichlet process (DP) prior has been

used widely in Bayesian analyses as a prior model for random unknown probability

distributions. A DP(α0, G0) involves a positive scaling parameter α0 and a base

probability measure G0. A constructive definition of a DP is provided by Sethuraman

(1994), the so-called “stick-breaking” construction, given by G =
∑∞

h=1whδθh , where

θh ∼ G0, and wh = vh
∏

l<h(1 − vl) with vh ∼ be(1, α). Here, δθh(·) denotes the

Dirac delta function, which is equal to 1 at θh and is equal to 0 everywhere else. In

many applications, the discrete nature of G is not appropriate. To deal with this, a

DP mixture model extends the DP model by replacing each point mass δ(θh) with
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a continuous kernel, such as a DP mixture of normals G =
∑

hwh N(θh, σ
2), where

N(θh, σ
2) denotes a normal distribution with mean θh and standard deviation σ.

To include regression on covariates, MacEachern (1999), extended the DP mix-

ture model by replacing each mean parameter θh in the sum with a function θh(x)

of covariates x. This is called a dependent Dirichlet process (DDP), obtained by

assuming the regression model

F (y | x) =
∞∑
h=1

wh N(y; θh(x), σ2),

where one can specify a stochastic process prior for {θh(x)}. As a default assumption

MacEachern (1999) proposed a Gaussian process (GP) prior. Here, the GP is indexed

by x. Temporarily suppressing the subindex h, a GP prior is characterized by the

marginal distribution for any n-tuple (θ(x1), . . . , θ(xn)) being a multivariate normal

distribution with mean vector (µ(x1), . . . , µ(xn)) and (n×n) covariance matrix with

(i, j) element C(xi,xj), for any set of n ≥ 1 covariate vectors x1, · · · ,xn. We denote

this model by θ(x) ∼ GP(µ,C). Extensive reviews of the GP are given by MacKay

(1999) and Rasmussen and Williams (2006).

In the context of modeling each patient’s transition times between successive dis-

ease states in a dataset arising from multi-stage chemotherapy of acute leukemia, Xu

et al. (2016) modeled {θh(x)} ∼ GP(µh(·), C(·, ·)), h = 1, 2, . . . with µh(xi;βh) =

xiβh and C(xi,x`) = exp{−
∑D

d=1(xid − x`d)2} + δi`J
2. Here, D is the dimension of

the covariate vector, with δi` = I(i = `) = 1 if i = ` and 0 otherwise. The term J2 is

jitter added to provide numerical stability by avoiding singular covariance matrices,

with a small value such as J = 0.1 typically used.

A non-trivial limitation of this covariance function is that it gives the same weight

to all covariates, regardless of their numerical domains, when quantifying dependence
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between patients. This implies that different covariates xd and xd′ contribute the same

to the correlation between patients i and l as long as (xid−x`d)2 and (xid′−x`d′)2 are

the same. Furthermore, without including hyperparameters with prior distributions

in the covariance function, the posterior inference using a Gaussian process prior may

yield a posterior contraction rate that is sub-optimal (van der Vaart and van Zanten,

2011). To avoid these limitations, we extend the DDP-GP model by including an

additional scale parameter, λd, for each covariate xd and also an overall multiplicative

scale parameter σ2
0 in the covariance function:

C(xi,x`) = σ2
0 exp

{
−

D∑
d=1

(xid − x`d)2

λ2
d

}
+ δi`J

2. (2.1)

The multiplicative scale parameter σ2
0 accounts for variability in the data that is not

accommodated by the variance σ2 of the normal component distributions.

The model can be summarized as

p(yi | xi, F ) = Fxi(yi)

{Fx} ∼ DDP-GP
{
{µh}, C;α, {βh}, {λ2

d}, σ2
0, σ

2
}
. (2.2)

We use the acronym DDP-GP to refer to the proposed model with the DDP mixture

of normals with this particular GP prior on the mean of the normal kernel. Thus,

Fx(y) =
∞∑
h=0

whN(y; θh(x), σ2) with {θh(x)} ∼ GP(µh(·), C(·, ·)), (2.3)

where h = 1, 2, . . ., µh(xi) = xiβh, and C(·, ·) is defined in (2.1).
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2.3.2 DDP-GP survival regression model

Denote the vector of all model parameters by Θ and the data byDn = {Ti, δi,xi}ni=1.

The likelihood function is the usual form

L(Θ | Dn) =
n∏
i=1

fxi(ti | Θ)δi{1− Fxi(ti | Θ)}1−δi ,

where fx(·) and Fx(·) denote the density and cumulative distribution function of Y

for an individual with covariates x. Given the assumed DDP-GP prior on Fx(·),

shown in (2.2), we complete the model by assuming the priors βh ∼ N(β0,Σ0),

1/σ2 ∼ Gamma(a1, b1), the precision parameter α ∼ Gamma(a2, b2), σ0 ∼ N(0, τ 2
σ),

and the covariate scale parameters λd ∼ iid N(0, τ 2), d = 1, · · · , D. Thus, the DDP-

GP’s hyperparameters are θ∗ = (β0,Σ0, a1, b1, a2, b2, , τ
2
σ , τ

2).

To implement the DDP-GP model, one first must determine numerical values for

the hyperparameters θ∗. We introduce default choices for fixing θ∗ in our DDPGPSurv

package below, although users can define their own preferred values, if desired. We

suggest using an empirical Bayes method to obtain β0 by fitting a normal distribution

for patient response on the log scale, log(Y ) | x ∼ N(xβ0, σ̂
2) and assuming Σ0 to be

a diagonal matrix with all diagonal values 10. Once an empirical estimate σ̂2 of σ2

is obtained, one can tune (a1, b1) so that the prior mean of σ2 matches the empirical

estimate and the variance equals 10 or a suitably large value to ensure a vague prior.

The total mass parameter α in the stick-breaking construction determines the number

of unique clusters in the underlying DP Polya urn scheme. Usually, the DP yields

many small clusters, therefore changing the prior of α does not significantly alter

posterior predictive inference, which we will use for estimating the survival function

and optimal AUC ranges. We assume a2 = b2 = 1 to ensure a vague prior on α.
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Lastly, we assume τ = τσ = 10 so that the ranges of λd’s and σ0 in the covariance

function are large enough to cover variability in the data.

To obtain posterior inference for a DDP-GP survival regression model, we first

marginalize (2.2) analytically with respect to the random probability measures Fx(·).

To do this, we first rewrite (2.3) equivalently as a hierarchical model with a set of

new latent indicator variables γi as

(Yi | γi = h,xi) ∼ N(θh(xi), σ
2) and p(γi = h) = wh, (2.4)

for i = 1, · · · , n. If clusters of patients are defined as Sh = {i : θ̃i = θh},

then the γi’s are interpreted as cluster membership indicators. Posterior simula-

tion makes use of these indicators and the vectors θh = (θh(x1), . . . , θh(xn)). Af-

ter marginalization with respect to Fx, we are left with the marginal model for

{γi, θh(xi); i = 1, . . . , n, h = 1, . . .}. We implement posterior sampling based on

the collapsed Gibbs sampler (Escobar and West, 1995) in the R package DDPGPSurv.

Details of the MCMC computations are provided in Section 2.8.

2.3.3 Personalized optimal AUC range estimation

Let ρn = (S1, . . . , SH) denote the partition of the n patients, determined by the

clusters induced by the γi’s. A key advantage of the proposed BNP model is that we

can easily write down the posterior predictive distribution of the outcome Yn+1 for a
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future patient with covariate vector xn+1, given by

p(Yn+1 | xn+1,Dn) =
∑
ρn

p(ρn | Dn)

∫
p(Θ | ρn,Dn)

×
{H+1∑

h=1

p(Yn+1 | n+ 1 ∈ Sh, θh(xn+1),Θ)p(n+ 1 ∈ Sh | xn+1,Dn, ρn,Θ)
}
dΘ.

(2.5)

The innermost sum averages with respect to the cluster membership for the (n+ 1)st

patient during the MCMC. The term h = H+1 corresponds to the case that this new

patient may form his/her own singleton cluster. The posterior average with respect

to p(ρn | Dn) and p(Θ | ρn,Dn) is evaluated as an average over the MCMC sample.

For the IV busulfan allo-SCT data, x includes the key treatment variable AUC,

which quantifies the patient’s delivered dose of IV busulfan and thus may be targeted

by the treating physician. From (2.5), based on our analysis of the IV busulfan data

using the DDP-GP, we can use the predictive distribution to compute the optimal

AUC for the future patient n+1 as that which maximizes expected log survival time,

ÂUCn+1 = argmaxAUCE(Yn+1 | xn+1,Dn), (2.6)

where xn+1 includes patients’ age, CR status, and AUC. The laboratory-based method

for determining the median specific daily Bu-SE has about a 3% error when sampling

is carried over 12-14 hours (or about 3-4 drug half-lives). However, if sampling is

restricted to 4-6 hours (1.0 - 1.5 drug half-lives), as is done with many PK evaluation

methods, the error increases to at least 6%. Based on these considerations, we de-

cided to use optimal AUC +/- 10% as an reasonable interval for targeting, since it is

not possible to detect any difference in covariate impact on outcome between patients
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with AUC values falling within this narrow Bu-SE interval. Therefore, we define the

optimal AUC interval for future patient n+ 1 as

[
0.9× ÂUCn+1, 1.1× ÂUCn+1

]
,

bearing in mind that ÂUCn+1 depends on the patient’s covariates xn+1.

2.4 R package: DDPGPSurv

One of the main contributions of this chapter is that we have developed an R

package, DDPGPSurv, that implements the proposed DDP-GP model as a general tool

for survival analysis. The functions in the package perform inference via MCMC

simulations from the posterior distributions based on a DDP-GP prior using a col-

lapsed Gibbs sampler (mcmc_DDPGP). The outputs from mcmc_DDPGP are then used

as the inputs for the other functions to evaluate and plot the estimated posterior

predicted density, survival, and hazard functions for new observations/patients. The

package also includes a function for evaluating posterior mean survival for specified

values of the covariate vector. For example, this allows the user to determine the

optimal value of a specific covariate (with the other covariates fixed) that maximizes

posterior expected survival time. The R package DDPGPSurv can be downloaded from

https://cran.r-project.org/web/packages/DDPGPSurv/index.html.

Current standard methods for survival analysis typically involve the Kaplan-Meier

(KM) estimator for unadjusted survival times with independent right censoring, ac-

celerated failure time (AFT) models, or the Cox proportional hazards (PH) model.

The KM estimator is a non-parametric statistic and is constructed using a finite num-

ber of conditional probabilities of survival at successive time intervals. To analyze
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the effects of specific covariates using the KM estimator, the most common approach

is simply to compute the KM for particular patient subsets that may be defined from

x, which reduces reliability. AFT regression models are fully parametric, which may

be problematic if the baseline hazard function does not fit the specified AFT distribu-

tion. Comparisons between the DDP-GP and AFT models via simulations show that

the DDP-GP is more robust, with much more accurate predictions across a range of

various distributions (Weibull, lognormal, exponential). That is, if the distribution

selected for the AFT model does not match the truth, the predictions will be inaccu-

rate. The Cox model, which is semi-parametric, relies on the PH assumption, which

states that the each covariate has a constant effect on the hazard function that does

not vary over time. This assumption may not always be true, and it is not required by

the DDP-GP model. Additionally, as with any BNP model, the DDP-GP accommo-

dates irregularly shaped survival distributions, for example having multiple modes.

Thus, the DDP-GP, implemented by the DDPGPSurv package, provides many advan-

tages over these conventional methods, including robustness and accuracy across a

wide range of possible distributions.

2.5 Simulation Studies

We conducted simulation studies to evaluate the DDP-GP model in terms of es-

timation of survival densities and optimal personalized AUC ranges, with the data

simulated to mimic the structure of the allo-SCT dataset. We generated T=survival

time, the covariates x1 = age, x2 = AUC, and x3 = CR status for each patient,

as follows. Let LN(m, s) denote a log normal distribution with location and scale

parameters m and s, and let xi = (xi,1, xi,2, xi,3) denote the covariates for patient i.
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Patients’ ages and AUC values were sampled with replacement from the actual ages

and AUC values in the allo-SCT dataset. We generated patients’ CR statuses as in-

dependently and identically distributed (i.i.d.) binary variables from a Bernoulli(0.5).

We simulated the Yi’s from a lognormal distribution, Yi | xi ∼ LN(µ(xi), σ
2
0), where

the location parameter is the following function of xi,

µ(xi) = 4−0.1xi,1 +0.7xi,2 +0.3xi,3−0.07x2
i,2−0.1xi,1xi,2 +0.2xi,2xi,3−0.18xi,1xi,2xi,3,

for i = 1, · · · , n, and σ0 = 0.4. We deliberately designed the form of µ(xi) based

on clinical knowledge, including a quadratic term for AUC to reflect the fact that a

Bu-SE that is either too high or too low is associated with shorter survival time. We

also included interaction terms between AUC and covariates so that the relationship

between survival and AUC may vary depending on each patient’s age and CR status.

We considered two scenarios, one with n = 200 observations without censoring

and the other with n = 200 and 25% censoring. For each scenario, B = 100 trials

were simulated, and the proposed DDP-GP survival regression model was fit to each

simulated dataset. The MCMC sampler was implemented for posterior inference and

run for 5,000 iterations with an initial burn-in of 2,000 iterations, thinned by 10.

We used the R package coda (Plummer et al., 2006) to check convergence, and both

traceplots and autocorrelation plots (not shown) to check mixing of the Markov chain,

which showed no convergence problems.

2.5.1 Survival density estimation

For simulated trials indexed by b = 1, · · · , B, let Sb(t | x) = p(Yn+1 ≥ t | xn+1 =

x,Dn) denote the posterior predicted probability that a future patient n + 1 with
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covariate x in trial b survives beyond time t. To estimate Sb(t | x) using our package

DDPGPSurv, we first run the MCMC using the function mcmc_DDPGP. Then, the output

from the function mcmc_DDPGP serves as the input to the function DDPGP_Surv, which

returns the mean and 95% credible intervals for the survival function across the saved

MCMC posterior samples. Using the empirical covariate distribution 1
n

∑n
i=1 δxi to

marginalize w.r.t. xn+1 and averaging across simulations, we get

S(t) =
1

B

B∑
b=1

1

n

n∑
i=1

Sb(t | xi).

For comparators, we considered six alternative methods. First, we fit AFT regres-

sion models using either lognormal or Weibull distributions by assuming

log(Yi) = β0 + β1xi,1 + β2xi,2 + β3xi,3 + β4x
2
i,2 + β5xi,1xi,2 + β6xi,2xi,3 + β7xi,1xi,3 + σεi.

(2.7)

Here, assuming a normal distribution on εi implies that Yi follows a lognormal distri-

bution, while the extreme value distribution assumption on εi implies that Yi follows

a Weibull distribution. We also considered two flexible semiparametric survival meth-

ods that model the baseline survival using a Polya Trees (PT) prior (Hanson and John-

son, 2002) or a transformed Bernstein polynomials (TBP) prior (Zhou and Hanson,

2018), respectively. Both models were implemented in the R package spBayesSurv

(Zhou et al., 2018) . We assumed the AFT regression model as the frailty model in

both the PT and TBP methods with the same setup as in (2.7). Lastly, we com-

pared the proposed DDP-GP model to two fully nonparametric survival models using

random forests (RF) (Ishwaran et al., 2008) and Bayesian additive regression trees

(BART) (Sparapani et al., 2016). We used the R packages randomForestSRC (Ish-
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waran and Kogalur, 2007) and BART (McCulloch et al., 2018) to implement the RF

method and the BART method, respectively.

Figure 2.2 compares S(·) estimated under the DDP-GP model to the simulation

truth,

S0(t) =
1

B

B∑
b=1

1

n

n∑
i=1

S0(t | xi),

the maximum likelihood estimates (MLEs) obtained under each of the two AFT mod-

els, and the estimated survival curves under the PT, TBP, BF, and BART methods.

In each scenario, the true curve is given as a solid black solid line and the posterior

mean survival function under the DDP-GP model as a solid grat line with point-wise

95% posterior credible bands as two dotted gray lines. In both scenarios, the DDP-GP
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(a) n = 200 without censoring (b) n = 200 with 25% censoring

Figure 2.2: Survival function estimates for the simulated data, with survival time
on the log scale. True survival functions are in black compared with the estimated
posterior mean survival functions under the DDP-GP model with point-wise 95%
credible bands as two dashed lines, for n = 200 (left) and n = 200 with 25% censoring
(right). For comparators, we also show the survival function estimates under AFT
regression models using the lognormal and Weibull distributions, TBP, PT, RF, and
BART.
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model based estimate, as well as the RF and BART methods, reliably recovered the

shape of the true survival function, while the four other methods (AFT Lognormal,

AFT Weibull, TBP, and PT) showed substantial bias.

2.5.2 Personalized optimal AUC estimation

For the simulated data, we next evaluated the ability of the DDP-GP survival

regression model to estimate optimal personalized AUC ranges, computed by (2.6).

This estimation can be performed by the function DDPGP_meansurvival in our R

package DDPGPSurv. This function takes the output from mcmc_DDPGP and calculates

the posterior mean survival times and 95% credible intervals for patients of interest.

Figure 2.5 compares the simulated true optimal AUC and the optimal AUC range

estimates for a 30-year old patient with two different CR statuses, under each of seven

models: the DDP-GP model, and the lognormal or Weibull AFT models in (2.7),

TBP, PT, RF, and BART. Since the RF and BART methods do not have closed-

forms for mean survival times and only provide the estimated survival probabilities

at the time points observed in the original data, we estimated the mean survival

time as the area under the survival curve in the interval (0, tmax), where tmax is the

largest observed time point in the data. In Figure 2.5, the numbers in parentheses

in the legend represent the simulated true optimal AUC and the optimal AUC range

estimated by the DDP-GP survival regression model. The figure shows that the DDP-

GP model accurately estimates the mean survival function and identifies the optimal

AUC, with the simulated true AUC being in the estimated optimal AUC range. In

contrast, the mean survival functions and the optimal AUC estimates given by the

AFT models, PT, and TBP are considerably different from the simulation truth.

For instance, when CR=No with 25% censoring, the AFT models with lognormal
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or Weibull distributions estimate the optimal AUC to be 4.4 and 4.5, respectively,

while the true AUC is 3.9. While the RF and BART methods are able to accurately

estimate the survival function, the estimates of mean survival are biased, especially

when the data are censored.

In summary, the DDP-GP is more robust than alternative methods in the sense

that it can better fit the survival functions and more accurately estimate personal-

ized optimal AUC ranges, even while only including the main effects (β0 + β1xi,1 +

β2xi,2 +β3xi,3) in the mean of the Gaussian process prior. In contrast, the alternative

parametric and semiparametric models which do not perform as well as the DDP-GP,

include not only main effects but also quadratic terms and interactions between co-

variates as in (2.7). This illustrates an important advantage of the DDP-GP model.

It allows one to include covariates as simple linear combinations, but still is able to

identify quite general interactions that are not limited to conventional multiplicative

interaction terms, such as β1AUC × age + β2AUC ×CR, that typically are included

in the linear components of conventional Cox or AFT models. Such a construction is

extremely useful especially when the covariates are high-dimensional, in which case

including all the interactions among covariates in the regression model is infeasible.

2.5.3 Additional Simulation Studies

In this additional simulation study, we evaluate whether the proposed DDP-GP

model is stable under a setting with a larger number of covariates and show the

necessity of the covariate-specific scale parameters λd’s in the covariance function.

For this purpose, we compared our DDP-GP model to a simpler version with only

one single scale parameter, λsingle, called naive DDP-GP. The naive DDP-GP has an
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identical setup except that the covariance function is modified to:

C(xi,xl) = σ2
0 exp

{
−

D∑
d=1

(
xid − xld
λsingle

)2}
+ δilJ

2.

Let LN(m, s) denote a lognormal distribution with location and scale param-

eters m and s. We assume each patient i has a 10-dimensional covariate xi =

(xi,1, xi,2, xi,3, xi,4, xi,5, xi,6, xi,7, xi,8, xi,9, xi,10). Patients’ ages (xi,1) and AUC (xi,2)

values were sampled with replacement from the ages and AUC’s given in our IV

busulfan allo-SCT dataset. We generated the patients’ CR status (xi,3) as a bi-

nary variable from a Bernoulli(0.5), which also mimics the IV busulfan dataset. The

remaining seven covariates were independently sampled from a standard normal dis-

tribution N(0, 1). We simulated the Yi’s from a lognormal distribution with location

parameters that vary with xi, where the covariates xi,9 and xi,10 were not related to

the response.

Yi | xi ∼ LN(µ(xi), σ
2
0),

µ(xi) = 4− 0.1(xi,1− xi,4 + 1) + 0.7(xi,2 + xi,5− 1) + 0.3(xi,3− xi,6)− 0.07(x2
i,2 + x2

i,7)

−0.1xi,1xi,2(xi,8 + 0.5) + 0.2xi,2xi,3 − 0.18xi,1xi,2xi,3,

for i = 1, · · · , n, and σ0 = 0.4.

The survival density estimation was computed for two scenarios: one scenario

with n = 200 observations without censoring and the other with n = 200 and 25%

censoring. For each scenario, B = 100 trials were simulated, then the DDP-GP model

and the naive DDP-GP model were fitted to each trial with 5,000 MCMC iterations

and 2000 burn-in. From Figure 2.3, we can see that both models are able to recover

the shape of the true survival function, with the naive DDP-GP model having a
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slightly larger credible interval.
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Figure 2.3: Survival function estimates for the simulated data, with survival time
in log scale. True survival functions are in black and the estimated mean survival
functions under the naive DDP-GP model and the DDP-GP model are in brown and
green, respectively, with the point-wise 95% credible bands as the dotted lines, for
n = 200 (left) and n = 200 with 25% censoring (right).
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Figure 2.4 compares the simulated true optimal AUC and the optimal AUC range

estimates under the DDP-GP model and the naive DDP-GP for a patient with the

following covariate:

xi,1 = −1.14706 (30-year old)

xi,3 = 0 (CR=No)

xi,4 = xi,5 = xi,6 = xi,7 = 0

xi,8 = 0.5, xi,9 = xi,10 = 1.

In Figure 2.4, the numbers in parentheses in the legend represent the simulated

true optimal AUC and the optimal AUC range estimated by the DDP-GP model.

We can see that the proposed DDP-GP model recovers the true mean survival curve

accurately under this complex setup with 10 covariates. In contrast, the naive DDP-

GP model yields a poor estimate for the mean survival. Therefore, the proposed

DDP-GP model is robust under a large number of covariates. Also, the inclusion of

the covariate-specific scale parameters λd’s in the model are necessary for accurate

survival estimation and mean survival estimation.

2.6 IV busulfan Data Analysis

While an optimal AUC interval has been determined previously for use in all

patients (Andersson et al., 2002), the underlying statistical analyses motivating this

assume homogeneity, and thus do not allow the possibility that the optimal interval

may vary non-trivially with patient characteristics. Here, we approach the problem

differently by estimating mean survival time as a function of (age, CR status, AUC),

allowing the possibility that the effect of AUC on survival may vary with age and

CR.
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Figure 2.4: Optimal AUC estimation for the simulated data, with both survival time
and AUC on the log scale. True mean survival functions versus AUC are in black
and the estimated mean survival functions under the DDP-GP model are in dark
gray with point-wise 95% credible bands as two dotted dark gray lines for n = 200
(left) and n = 200 with 25% censoring (right). Similarly, the estimated mean survival
functions under the naive DDP-GP model are shown in light gray with point-wise
95% credible bands.
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Figure 2.5: Optimal AUC estimation for the simulated data, with both survival
time and AUC on the log scale. True mean survival functions versus AUC are in
black compared with estimated mean survival functions under the DDP-GP model
with point-wise 95% credible bands as two dotted lines for n = 200 (left plots) and
n = 200 with 25% censoring (right plots). For the comparators, we also show the
mean survival function estimates under AFT regression models using the lognormal
and Weibull distributions, TBP, PT, RF, and BART. The numbers in parentheses in
the legend are the true and estimated optimal AUC values.
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The AUC values in our analysis are in units of thousands of mean daily µM/∗min.

An initial analysis of the IV Bu dataset using Kaplan-Meier estimates is given in

Figure 2.6. We divided patients into four groups based on CR status and age, di-

chotomized as being above or below the median age of 49, and plotted their survival

probabilities. Figure 2.6 illustrates the well-known fact that being in CR at transplant

yields higher survival probabilities. Similarly, younger patients are also expected to

have higher survival probabilities. The p-value obtained from the log rank test com-

paring the survival distributions between the four groups is significant, indicating

that CR and age are important covariates for any survival regression model. The

cut-off 49 for dichotomizing age was chosen for convenience, however, as is commonly

done in survival analyses. In addition to loss of information about the joint effect of

age and CR status on survival caused by dichotomizing age, the reliability of each

Kaplan-Meier estimate is reduced because it is based on a subsample.

We fit the DDP-GP survival regression model to the allo-SCT dataset with 10,000

Gibbs sampler iterations and a burn-in of 5,000 iterations. The estimated posterior

survival distributions with 95% credible intervals under the DDP-GP for patients

with different CR statuses and ages 30, 40, 50, or 60, given AUC=5, are shown in

Figure 2.7, respectively. For each (CR status, age) combination, the optimal AUC

range is defined as the AUC value that maximizes estimated posterior mean survival,

± 10%. Given CR status and AUC, Figure 2.7 shows that the estimated posterior

mean survival function decreases for older patients, agreeing with what was seen in

the preliminary Kaplan-Meier estimates.

For the eight combinations of CR status and Age, we calculated predicted pos-

terior mean survival time as a function of AUC, to address the primary goal of the

analyses. These plots are given in Figure 2.8. Our analyses confirm the existence,
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Figure 2.6: Kaplan Meier Plots. The time in weeks (log scale) versus probability
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for comparison between the survival distributions between the four groups is given at
the top of the figure.
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Figure 2.7: Estimated survival functions under the DDP-GP survival regression
model for patients with different CR status (Yes or No) and ages (30, 40, 50, 60).
The patients are assigned AUC=5. The dashed lines represent the point-wise 95%
credible intervals for each survival curve.

for each combination of CR status and Age, of an optimal AUC range that yields

higher expected survival times compared to an AUC that is either below or above

the optimal range. A very important inference is that these optimal AUC ranges

differ substantially between many of the (CR status, Age) combinations. This has

extremely important therapeutic implications when choosing an individual patient’s

targeted AUC. For example, the optimal AUC interval for a patient not in CR with

Age=50 is 4.7 ± 0.47 = [4.23, 5.17] compared with the optimal interval 5.8 ± 0.58

= [5.22, 6.38] for a patient in CR with Age=40. Since these intervals are disjoint,

they suggest that these two patients should have very different targeted AUC values

to maximize their expected survival times.

In contrast with our inferences, (Bartelink et al., 2016) concluded that CR sta-

tus has a negligible effect on the optimal AUC. However, the results reported by

Bartelink et al. (2016) were based on data from a large number of different medical
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Figure 2.8: Mean log survival time estimates under the DDP-GP model, as a func-
tion of AUC, for each of eight (CR status, Age) combinations. The light gray area
in each plot represents the 95% credible interval for estimated mean survival, and
the tick marks on the horizontal axis (rug plot) indicate the AUC values for patients
in the data set. The red area bounded by dashed lines represents the optimal AUC
range, defined as the estimated mean ±10%.
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centers, many different pretransplant conditioning regimens were used, the PK-data

were obtained from different laboratories, with a very heterogeneous pediatric patient

population having a large number of different diagnostic categories, including patients

with malignant and non-malignant genetic disorders. In contrast, our analyses are

based on a much more homogeneous dataset. Our results indicate that CR status is

an important covariate, and that the optimal dose of AUC is higher for patients who

are in CR at transplant. Furthermore, the increased optimal AUC for patients in

CR at transplant versus patients not in CR is much larger in older patients, whereas

these differences appear negligible in adolescents or young adults, similar to what was

reported by Bartelink, et al. (2016). Our results also demonstrate that, across all

ages, mean survival time for patients in CR is larger compared with those not CR.

To further illustrate how the optimal AUC ranges change with both CR and Age,

we plotted the optimal AUC ranges as Age is varied continuously, for CR=Yes and

CR=No, in Figure 2.9. The negative association between optimal AUC and Age

is clearly shown by this figure. It also shows that, while CR status has virtually no

effect on the optimal AUC interval for very young patients with Age ≤ 28, the optimal

AUC for patients in CR at transplant is increasingly higher as Age increases, with

the optimal intervals for CR = Yes versus CR = No becoming completely disjoint for

patients above 55 years of age. Thus, the lower portions of the curves in Figure 2.9

for Age ≤ 28, agree with the conclusion of (Bartelink et al., 2016) for pediatric and

adolescent patients, while the higher portions for Age > 28, provide news insights.

Again, this demonstrates the importance of considering both CR status and Age when

planning a targeted AUC for a patient with a diagnosis of AML or MDS.
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2.6.1 Comparison Models

We compare the mean survival estimates under the DDP-GP with those produced

by the PT, TBP, RF, and BART, shown in Figures 2.10-2.13 respectively. For the

semiparametric models (PT and TBP), we can see that the optimal AUC decreases

as patient age increases, and is larger for CR=Yes comparing to CR=No. However,

most combinations of CR status and Age do not present quadratic patterns, which

do not agree with the clinical knowledge.

The nonparametric models (RF and BART) produce very noisy results, leading to

difficult clinical interpretations. This may be caused by the limitation of the RF and

BART methods mentioned in Section 5 of the main manuscript that they only provide

the estimated survivals at the time points observed in the original data, leading to

potential bias in estimating the mean survival time.
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Figure 2.10: Mean survival time estimates under the PT survival model, as a
function of AUC, for each of eight (CR status, Age) combinations. Mean survival
time is in the log scale. The gray area in each plot represents the 95% credible
interval for estimated mean survival, and the tick marks on the horizontal axis (rug
plot) indicate the AUC values for patients in the data set.
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Figure 2.11: Mean survival time estimates under the TBP survival model, as a
function of AUC, for each of eight (CR status, Age) combinations. Mean survival
time is in the log scale. The gray area in each plot represents the 95% credible
interval for estimated mean survival, and the tick marks on the horizontal axis (rug
plot) indicate the AUC values for patients in the data set.
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Figure 2.12: Mean survival time estimates under the RF survival model, as a
function of AUC, for each of eight (CR status, Age) combinations. Mean survival
time is in the log scale. The tick marks on the horizontal axis (rug plot) indicate the
AUC values for patients in the data set.
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Figure 2.13: Mean survival time estimates under the BART survival model, as a
function of AUC, for each of eight (CR status, Age) combinations. Mean survival time
is in the log scale. The gray area in each plot represents the 95% credible interval for
estimated mean survival, and the tick marks on the horizontal axis (rug plot) indicate
the AUC values for patients in the data set.
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2.7 Conclusions

We have proposed an extended Bayesian nonparametric DDP-GP model for sur-

vival regression having a generalized covariance structure, studied it by simulation,

and applied it to estimate personalized optimal dose intervals for IV busulfan in allo-

SCT for AML/MDS. Our simulations, constructed to mimic the dataset, show that

the DDP-GP model provides more accurate survival function estimates and optimal

AUC range estimates compared with conventional parametric to AFT models. Our

analyses of the IV busulfan allo-SCT dataset identified optimal AUC intervals, vary-

ing with the patient’s CR status and Age, that previously have not been known for

this treatment. Our results may have profound therapeutic implications, since they

provide a basis for personalized medicine by enabling physicians to prospectively as-

sign an optimized therapeutic target interval for each patient based on his/her CR

status and age.

More generally, we have developed an R package, DDPGPSurv, that implements

the DDP-GP model for a broad range of survival regression analyses. While the

DDP-GP is more complex than conventional survival regression models, its robust-

ness and broad applicability make it an attractive methodology for survival analysis.

The DDP-GP based data analysis reported here, while important in its own right,

identified a nonlinear three-way interaction between age, CR status, and AUC in their

joint effect on survival time, as shown by Figures 6 and 7. This pattern was identified

despite the fact, noted above, that only the main effects were included in the mean

of the Gaussian process prior via the linear term β0 + β1Age+ β2CR+ β3AUC. This

is because the DDP-GP is essentially a mixture model, hence it can identify complex

patterns in the data that may be missed by conventional models. For the allo-SCT IV

busulfan data, this may be related to the multi-modality of the survival time distri-
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bution, seen in Figure 1. This illustrates the practical advantage that, when applying

the DDP-GP, one need not guess or search for complex patterns in the linear term

of the covariates, as is done routinely when applying conventional survival regression

models.

2.8 Posterior Inference Details

The following section summarizes the generalized DDP-GP model and contains

derivations for the Gibbs sampling steps.

2.8.1 Probability Model

For each patient i, i = 1, . . . , n, denote Yi and xi to be the log survival time and

patients’ covariates. Let Ti = min(Yi, Ci), where Ci is the censoring time for patient

i. Denote δi = I{Yi≤Ci}. Let f(y), F (y) and S(y) be the probability density function,

the distribution function, and the survival function of Y , respectively.

Denote Θ the collection of all model parameters and Dn = {Ti, δi,xi}ni=1, the

likelihood function is

L(Θ | Dn) =
n∏
i=1

fxi(ti | Θ)δiSxi(ti | Θ)1−δi ,

where fx(·) and Sx(·) denote the density and the survival function of an individual

with covariate x.

We assume the Dependent Dirichlet Process (DDP) mixture model for F :

F (yi | xi) =
∞∑
h=1

whN(yi; θh(xi), σ
2),
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where

wh = vh

∞∏
h=1

{1− vk},

vh ∼ Beta(1, α).

For each h, θh is sampled from a Gaussian Process:

{θh(x)} ∼ GP (µh(·), C(·, ·))

µh(xi; βh) = xiβh

C(xi,xl) = σ2
0 exp

{
−

D∑
d=1

(xid − xld)2

λ2
d

}
+ δilJ

2.

where J usually takes a small value (e.g., J = 0.1).

2.8.2 Collapsed Gibbs Sampler

We use ri = h to indicate that ith patient is assigned to hth cluster. Let H be the

number of clusters, nh be the number of patients in cluster h, and X = (x1, . . . ,xn)′.

Also, we denote θh = (θh(xi), . . . , θh(xn)).

Since

θh ∼ GP (Xβh, C(·, ·)), βh ∼ N(β0,Σ0),

marginalizing βh leads to

θh ∼ GP (Xβ0, XΣ0X
′ + C)

1. Update ri and θi | θ−i, ·.

• When δi = 1,
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p(ri = h | ·) ∝

 n−h φ(ti; θh(xi), σ
2) h ≤ H−,

αφ(ti;uXβ0,u(XΣ0X + C)u′ + σ2) h = H− + 1.

Here u = (u1, . . . , un) with the element ui = 1 and all other elements

being 0; n−h is the number of patients assigned to the hth cluster after

taking out the ith patient; H− is the number of clusters after taking out

the ith patient. φ refers to the normal distribution PDF, while Φ refers to

the normal distribution CDF.

• When δi = 0,

p(ri = h | ·) ∝

 n−h (1− Φ(Ci; θh(xi), σ
2)) h ≤ H−,

α(1− Φ(Ci;uXβ0,u(XΣ0X + C)u′ + σ2)) h = H− + 1.

Once ri has been sampled, we impute yi from a left truncated normal distribu-

tion, that is pri left truncated at Ci:

pri ∝

 N(θri , σ
2) h ≤ H−,

N(0, σ2 + Ai) h = H− + 1,

where A = XΣ0X + C and Ai is the (i,i)-th element of A.

Then,

p(θi | ri = h,θ−i, ·) =

 δθh h ≤ H−

p(θi | yi, G0) h = H− + 1.
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Here

p(θi | yi, G0) ∼ N((
u′u

σ2
+ A−1)−1(

u′yi
σ2

+ A−1Xβ0), (
u′u

σ2
+ A−1)−1).

2. Update βh

p(βh | ·) ∝ p(θh | X,βh)p(βh)

∝ exp{−1

2
(βh − β0)′Σ−1

0 (βh − β0)− 1

2
(θh −Xβh)′C−1(θh −Xβh)}.

Therefore,

p(βh | ·) ∼ N((Σ−1
0 +X ′C−1X)−1(X ′C−1θh + Σ−1

0 β0), (Σ−1
0 +X ′C−1X)−1).

3. Update θh = (θh(xi), . . . , θh(xn))

p(θh | ·) ∝ p(θh | βh)
∏
i:ri=h

f(yi | θh(xi)).

Let Yh be the vector whose entries are the survival times for patients who are

assigned to the hth cluster, i.e., ri = h. Let nh = #{i : ri = h}. Denote U to

be an nh × n matrix: if patient i is the jth element of cluster h, then Uji = 1;

otherwise 0. We have

p(θh | ·) ∝ exp{−1

2
[(θh −Xβh)′C−1(θh −Xβh) +

(Yh − Uθh)′(Yh − Uθh)
σ2

]}

∝ exp{−1

2
θ′h(C

−1 +
U ′U

σ2
)θh + θ′h(C

−1Xβh +
U ′Yh
σ2

)}
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Therefore,

p(θh | ·) ∼ N((C−1 +
U ′U

σ2
)−1(C−1Xβh +

U ′Yh
σ2

), (C−1 +
U ′U

σ2
)−1).

4. Update σ2

σ2 ∼ IG(a1 +
n

2
, b1 +

∑H
h=1

∑
i:ri=h

(yi − θh(xi))2

2
),

where the prior for σ2 is IG(a1, b1).

5. Update σ0 and λd

p(σ0 | ·) ∝
∏
h

exp{−1

2
(θh −Xβh)′C−1(θh −Xβh)}p(σ0).

Here C is a matrix with σ0 as a parameter in each matrix element. Since there is

no closed form for the posterior distribution of σ0, we use a Metropolis-Hastings

step to update σ0. Similarly for λd, d = 1, · · · , D. Here D represents the total

number of covariates. i.e., the dimension of xi.

6. Update α

The prior for α is Gamma(a2, b2). We generate a latent variable η, conditioning

on α and the number of patients,

η | α, n ∼ Beta(α + 1, n).
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Then,

α | η,H ∼ a2 +H − 1

a2 +H − 1 + n(b2 − log{η})
Ga(a2 +H, b2 − log{η})

+
n(b2 − log{η})

a2 +H − 1 + n(b2 − log{η})
Ga(a2 +H − 1, b2 − log{η}).

2.8.3 Predictive Inference

p(yn+1 | xn+1, σ
2) =

H∑
h=1

nh
α+ n

∫
N(xn+1βh + aC−1(θh −Xβh), σ2 + σ2

0 − aC−1a′)

p(θh, σ
2 | Dn)dσ2dθhdβh

+
α

n+ α

∫
N(xn+1β0, σ

2 + σ2
0 + xn+1Σ0x

′
n+1)p(σ2 | Dn)dσ2,

where a = (C(x1,xn+1), C(x2,xn+1), · · · , C(xn,xn+1)).
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Chapter 3

Personalized Dynamic Treatment

Regimes in Continuous Time: A

Bayesian Joint Model for

Optimizing Clinical Decisions with

Timing

3.1 Introduction

In biomedical applications involving long-term personalized care of patients with

chronic health conditions (e.g., diabetes, HIV infections, and chronic kidney dis-

eases), treatments often include a sequence of decision making and must be adaptive

to the uniquely evolving disease progression of each patient. Such scenarios are called

dynamic treatment regimes (DTRs). Patients with chronic diseases are usually re-
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quired to follow up with their physicians from time to time and their clinical data

are recorded longitudinally. Based on these clinical observations, physicians make

clinical decisions such as scheduling follow-up visitations and prescribing the right

dosages to optimize patient outcomes given a patient’s individual characteristics and

treatment history at each clinic visitation. This chapter develops a Bayesian joint

framework consisting of a generative probabilistic model for clinical decisions with

timing and a model for clinical observations (e.g., longitudinal clinical measurements

and time-to-event data): these two models share certain structures and parameters in

order to capture the mutual influence between the clinical observations and decisions.

Furthermore, we propose an optimization method that allows the decision model, by

interacting with the other parts of the joint framework, to learn to make the personal-

ized optimal clinical decision at the right time. Such a joint model and the proposed

optimization method will be useful in many biomedical applications. We elaborate on

one signature application in section 3.1.1, explain why existing methods won’t work

well on it in section 3.1.2, and then give an overview of our method and its technical

novelty in section 3.1.3.

3.1.1 A signature application

A signature medical application of the proposed method would be the kidney

transplantation—the most common type of organ transplantation and the primary

therapy for patients with end-stage kidney diseases (Arshad et al., 2019). Compared

to dialysis, kidney transplantation improves patients’ long-term survival and quality

of life but with a lower healthcare cost (Jarl et al., 2018). Despite significant ad-

vances, a number of complications after surgery still represent important causes of

morbidity and mortality for kidney transplant recipients, such as infection, stroke,
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and graft failure (Bicalho et al., 2019; Lamb and Lodhi, 2011). To prevent graft

rejection, patients are usually hospitalized for a few days initially to monitor signs

of complications, then required to have frequent checkups at an outpatient center

after being released. At each visitation, they are administered immunosuppressive

drugs, such as tacrolimus, to keep their immune systems from attacking and rejecting

the new kidney (Kasiske et al., 2010). One crucial medical decision is to schedule

the patients’ post-transplantation follow-up visitations. While follow-up visitation

frequency varies from 0-12 months (Israni et al., 2014), patients with stable kidney

function usually have less frequent follow-ups compared to non-stable patients. An-

other medical decision is to determine the right dosage of tacrolimus at each follow-up

visitation since a dosage that is either very high or too low may cause serious adverse

events. Higher tacrolimus levels have been reported to associate with adverse effects

such as neurotoxicity, nephrotoxicity, and cancers (Naesens et al., 2009); while lower

tacrolimus levels are associated with an increased likelihood of graft rejection (Staatz

et al., 2001). Therefore, optimizing personalized follow-up schedules and prescribing

the right dosage of tacrolimus tailored to each patient at each visitation (i.e., precision

medicine) are critical and can have a significant impact on patients’ survival.

Large-scale kidney transplantation databases, such as French computerized and

validated data in transplantation (DIVAT), provide us opportunities and challenges to

determine personalized optimal follow-up schedules and tacrolimus dosages. DIVAT

is a database storing medical records for kidney transplantation in several French

hospitals (e.g., Nantes, Paris Necker). Data are collected from the date of transplan-

tation until the graft failure, defined as either returning to dialysis or death with a

functioning graft. At each scheduled follow-up visitation, patients’ creatinine levels,

an important biomarker for measuring kidney function, are collected longitudinally
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to determine the next follow-up time and assign dosages by physicians. For exam-

ple, Figure 3.1 presents one randomly selected patient’s longitudinal creatinine levels,

tacrolimus dosages versus his/her follow-up visitations from DIVAT. In the first sev-

eral visitations after kidney transplantation, this patient’s creatinine levels were high,

indicating the kidney was not functioning well, therefore, the physician scheduled

a high frequency of follow ups and prescribed high dosages of tacrolimus. As time

went by, this patient’s kidney function became stable indicated by slowly decreasing

creatinine levels, then the prescribed tacrolimus dosages were also slowly decreasing

accompanied with a decreasing frequency of visitations. For patients with kidney

transplantation, a major clinical outcome of interest is the graft survival time, de-

fined as the time between the transplantation and the first graft failure. Follow-up

schedules and tacrolimus dosages should be made for the sake of maximizing patients’

graft survival time.

3.1.2 Why not use existing methods?

Although many statistical and machine learning DTR methods have been devel-

oped to optimize sequential clinical decisions (Chakraborty, 2013; Laber et al., 2014;

Luckett et al., 2019; Murphy et al., 2003; Xu et al., 2016), they don’t model, and thus

can’t optimize, the timing of clinical decisions. Most DTR methods regard treatment

schedules as known a priori and only learn to adjust other clinical decisions. For ex-

ample, Xu et al. (2016) developed a Bayesian nonparametric approach building upon

a dependent Dirichlet process and a Gaussian process to determine the optimal treat-

ment regimen containing a front-line chemotherapy and a salvage treatment for acute

myelogenous leukemia patients. However, the timing of the salvage treatment was

pre-defined as the time when patients became resistant to the front-line chemotherapy

53



●
●

●●●
●●
●

●
●
●

●●●●

●

●

●

●

●
●●

●●

●

● ●
●

●

● ●
●

●

●

●
●●

●
●

●

●

●

● ●

0 500 1000 1500

1
2

3
4

5
6

Time (Days)

Lo
g−

sc
al

e 
ob

se
rv

at
io

n
●
●
●
●
●

●

●

●●
●●●●

●
●●●

●●●

●●●● ● ●
●

●

● ● ●
● ● ● ●

●

● ●

● ● ●

●
●

●

Log Creatinine Levels
Log Tacrolimus Levels

Figure 3.1: Example data for one patient’s creatinine and tacrolimus levels on a log
scale over time. The points represent actual visitations.

or achieved complete remission first then relapsed. Clifton and Laber (2020) reviewed

the use of Q-learning, a general class of reinforcement learning methods, in estimat-

ing optimal treatment regimens taking the timing of the treatment as given. Guan

et al. (2019) attempted to optimize treatment schedules: they developed a Bayesian

nonparametric method that learns to recommend a regular recall time for patients

with periodontal diseases. However, their method only picks the recall time out of

a few pre-defined choices (e.g., 3 months, 6 months, and 9 months) and thus is not

applicable to complicated scenarios like the one introduced in section 3.1.1: at each

visitation after kidney transplantation, the next visitation time has to be carefully

scheduled given the current clinical measurement in order to maximize the patient’s
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health outcome. For instance, when patients’ kidney function is relatively stable,

they should be instructed to wait longer until the next visitation compared to those

who are less stable.

3.1.3 Why use our method?

To the best of our knowledge, the proposed approach is the first general methodol-

ogy for estimating personalized optimal clinical decisions with timing. The method is

cutting-edge because (1) we build a generative probabilistic model that properly han-

dles clinical decisions with timing; (2) we embed this decision model into a Bayesian

joint framework that also models clinical observations; (3) we train it using a policy

gradient method to generate personalized treatment schedules alongside other clinical

decisions that would optimize patients’ health outcomes.

Our decision model is a marked temporal point process (MTPP) (Aalen et al.,

2008), which is a natural tool to model discrete events in continuous time. It has

been widely applied and become increasingly popular in various domains, including

social science (Butts and Marcum, 2017), medical analytics (Liu et al., 2018), finance

(Hawkes, 2018), and stochastic optimal control (Tabibian et al., 2019). In our example

application of section 3.1.1, each follow-up visitation is an event: the visitation time

is assumed to be stochastically scheduled according to the probability distribution

characterized by the proposed MTPP; and the assigned tacrolimus dosage, when the

visitation happens, is treated as the corresponding “mark.”

The proposed MTPP for clinical decisions is then embedded into a Bayesian joint

framework where it shares certain structures and parameters with the other compo-

nents modeling clinical observations, including longitudinal creatinine measurements

and patient survival in the example application of section 3.1.1. Such design allows
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our model to capture the complicated mutual influence between clinical observa-

tions (e.g., creatinine levels) and decisions (e.g., treatment schedules and tacrolimus

dosages).

Next, we fit the proposed Bayesian joint model on clinical observations and de-

cisions to the data, and then let the decision model interact with the observation

model in an optimization procedure. This technique is known as “reinforcement

learning” (Sutton and Barto, 2018): the decision model (also called the “policy”)

is reinforced, by the feedback from the observation model (also called the “environ-

ment”), to give personalized optimal treatment schedules and dosages that would

improve the expected health outcome for each patient. The Bayesian nature of our

joint framework allows the learning to account for parameter uncertainties in the ob-

servation model. Figure 3.2 illustrates the proposed Bayesian joint framework and

how its components interact. The R package doct (short for “Decisions Optimized in

Continuous Time”) implementing the proposed model and algorithm is available at

https://github.com/YanxunXu/doct.

The rest of the chapter is organized as follows. In section 3.2, we present the pro-

posed Bayesian joint model consisting of the decision model (for visitation schedules

and dosages) and the observation model (for clinical longitudinal measurements and

patient survival). In section 3.3, we elaborate on our optimization procedure for the

decision model. We evaluate the proposed method through simulation studies in sec-

tion 3.4 and applying it to the DIVAT kidney transplantation dataset in section 3.5.

Lastly, we conclude the chapter with a discussion in section 3.6.
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Figure 3.2: Illustration of the proposed method.

3.2 A Bayesian Joint Model

In this section, we describe the proposed Bayesian joint framework that models

both clinical decisions and observations. In section 3.2.1, we introduce the clinical

decision model for follow-up visitation schedules and dosages; in section 3.2.2, we

introduce the clinical observation model for longitudinal measurements and time-

to-event data, which are linked to the decision model through parameter sharing.

To facilitate our presentation and readers’ understanding, we will use the kidney

transplantation example and the DIVAT data to illustrate the model. However, the

proposed method is applicable to general medical settings since the patterns that the

method can capture are not tied to this particular application.
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3.2.1 Modeling clinical decisions

Modeling event data with marker information is important to learn the latent

mechanisms that govern the observed stochastic event patterns over time in many

domains, such as social science (Butts and Marcum, 2017) and medical analytics (Liu

et al., 2018). Marked temporal point processes (Aalen et al., 2008) are a general

framework for modeling such event data. Formally, a marked temporal point process

is a random process, the realization of which consists of a sequence of events localized

in time, i.e., H = {(t0, d0), (t1, d1), . . . , (tJ , dJ)} with the occurrence time of event j

being tj ∈ R+ and dj is the associated mark. In our application, tj represents the time

when a patient visits an outpatient center and dj represents the tacrolimus dosage

assigned by the physician. The first event is defined as the day of transplantation at

t0 = 0 with an initial dose d0.

Denote the event history up to time t to be Ht = {(tj, dj) ∈ H | tj < t}.

Under MTPP, the instantaneous rate of the event is characterized by a conditional

intensity function λ(t), namely λ(t) = limdt→0
Pr{event happens in [t,t+dt)|Ht}

dt
. Common

forms of the conditional intensity function λ(t) include Poisson process (Zhu and

Li, 2018), Gamma process (Shibue and Komaki, 2020), Hawkes process (Hawkes,

1971). However, these common models cannot capture complicated patterns in many

medical applications. For instance, as shown in Figure 3.3(a) that plots the empirical

intensity of the amount of time between visitations for different ranges of creatinine

levels in the DIVAT data, the elapsed time between follow-up visitations is correlated

with the creatinine level. Also, the empirical intensities of visitations are observed to

quickly rise to a peak and then fall down accompanied by moderate oscillations. Such

complication is beyond the capacity of the Poisson process that assumes a constant

intensity and the Gamma process whose intensity function is monotonic. The Hawkes
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process assumes that the past events always elevate the intensities of future events

and this “self-exciting” effect is additive—it is also apparently not the dynamics that

the visitations in the DIVAT data actually follow. Its neural extensions (Du et al.,

2016; Mei and Eisner, 2017) are flexible enough to fit complex data but unable to

explicitly incorporate human expert knowledge.
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Figure 3.3: Panel (a) shows the empirical intensity plot for the amount of time
(in days) between follow-up visitations. Panel (b) plots an example of how cre-
atinine levels and model parameters affect the visitation intensity, where k = 2,
βα = (10,−1.8)T , µ = −4.4, ν1 = 1.5, and ν2 = 1.

We propose a flexible conditional intensity function that also incorporates hu-

man intuition: it takes longitudinal clinical measurements into account and captures

patients’ heterogeneity. Denote yi,j to be the longitudinal clinical measurement of

interest: in our kidney transplantation application, it is the logarithm of the creati-

nine level (µmol/l), for patient i at the j-th follow-up visitation occurring at time ti,j

(days), i = 1, . . . , I, j = 0, . . . , Ji. Note here ti,0 = 0 denotes the transplantation date

of patient i, and yi,0 denotes the initial creatinine level. Our conditional intensity
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function makes use of a Gamma density function as follows:

λi(t) = exp(µ)︸ ︷︷ ︸
Baseline Intensity

+ αi,j (t− ti,j)κ−1e−γ(t−ti,j) γκ

Γ(κ)︸ ︷︷ ︸
Gamma density

for t ∈ (ti,j, ti,j+1], (3.1)

where αi,j > 0, γ > 0, κ ≥ 1. The parameter αi,j is patient-specific so that our

intensity function λi is personalized. We set κ = exp(ν2) + 1 > 1 so that the intensity

rises to a “global peak” and then decreases: it would eventually approach to the

“baseline level” exp(µ) unless the next visitation happens and sets up a new intensity

curve. For easy interpretation, we parameterize γ as γ = exp(ν2 − ν1) such that

the “peak time” (i.e., when the peak of the intensity function occurs) can be easily

computed as κ−1
γ

= exp(ν1). Moreover, since the intensity level is often correlated

with the clinical measurement (e.g., as in Figure 3.3(a), a higher creatinine level

implies a higher intensity), we condition the parameter αi,j, which controls the peak

intensity for patient i between time ti,j and ti,j+1, on the clinical measurement taken

at the j-th visitation:

αi,j =
ξ

1 + exp((1, yi,j)βα)
.

This design reflects the human intuition that the time of “next visit” is usually deter-

mined based on the clinical measurement of “this visit.” Note that our design allows

incorporating other covariates (i.e., measurements) by simply augmenting them to

the vector (1, yi,j). Figure 3.3(b) shows how the visitation intensity under our model

is affected by the most recent creatinine level yi,j (and thus the magnitude parameter

αi,j) given a specific set of parameter values.

Next, we model the dosage di,j at the j-th visitation of patient i as the “mark” of

the visitation event: in the kidney transplantation application, it is the logarithm of

the tacrolimus level (ng/ml). Generally speaking, the physician would assign a dosage
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based on the patient’s current clinical measurement yi,j and potential risk factors xi.

We assume the following dosage model reflecting this knowledge:

di,j = (1, yi,j,xi)βd + ζi,j, (3.2)

where ζi,j ∼ Normal(0, σ2
d). In the kidney transplantation application, xi includes

baseline risk factors that would affect graft failure such as the patient’s age when re-

ceiving the transplantation and the donor type. Thus, the probability of the i-th pa-

tient’s sequence of visitations and assigned dosages ei,Ti = {(ti,0, di,0), . . . , (ti,Ji , di,Ji)}

up to time Ti can be written as

p(ei,Ti | yi,xi,βv,βd, σ2
d)

= exp
(
−
∫ Ti

0

λi(t | yi,βv)dt
)

︸ ︷︷ ︸
Prob. of no visits at t∈[0,Ti]\{ti,j}

Ji
j=1

Ji∏
j=0

p(di,j | yi,j,xi,βd, σ2
d)︸ ︷︷ ︸

Prob. of dosage

Ji∏
j=1

(3.1)︷ ︸︸ ︷
λi(ti,j | yi,j−1,βv)︸ ︷︷ ︸
Prob. of a visit at ti,j

,
(3.3)

where yi = (yi,0, . . . , yi,Ji), βv = {µ, ν1, ν2, ξ,βα}.

3.2.2 Modeling clinical observations

In this section, we introduce the clinical observation model of the Bayesian joint

framework that handles longitudinal measurements and time-to-event data. In the

kidney transplantation application, the longitudinal measurement is the creatinine

level and the time-to-event data is the graft survival time. We will also show how it is

linked to the MTPP model proposed in section 3.2.1 by carefully designing parameter

sharing in order to capture the mutual influence between clinical observations and

decisions. Shortly in section 3.3, we will leverage this joint framework to optimize
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clinical decisions with the goal of maximizing patients’ survival.

Our clinical observation model is composed of two submodels—a linear mixed

effects model for longitudinal clinical measurements (e.g., creatinine levels) and a

time-to-event model for patient survival (e.g., graft survival time after kidney trans-

plantation). The two submodels are then connected by sharing random effects (Ri-

zopoulos et al., 2014). Recall that yi,j = yi(ti,j) denotes the longitudinal measurement

value for patient i at j-th follow-up visitation at time ti,j, i = 1, . . . , I, j = 0, . . . , Ji.

Let y∗i (t) be the underlying true but unobserved longitudinal process at time t ≥ 0.

We assume

yi(t) = y∗i (t) + εi,j = zi(t)βl + ri(t)bi + εi,j, (3.4)

where εi,j ∼ Normal(0, σ2
l ) and bi ∼ Normal(0,Σb). The covariate vectors zi(t) and

ri(t) are associated with fixed and random effects respectively:

zi(t) = (1, di(t),xi, t, t
2) and ri(t) = (1, di(t), t),

where di(t) at time t is the dosage assigned by the physician at the most recent

visitation, i.e., di(t) = di,j for t ∈ (ti,j, ti,j+1]. The temporal dependence of z and r on

the dosage d captures the drug effect on the longitudinal measurements of interest: in

the kidney transplantation application, it is supposed to capture the suppressive effect

of tacrolimus on the creatinine level. Denote di = (di,0, . . . , di,Ji), the probability of

the observed sequence of creatinine measurements yi is

p(yi | di,xi,βl, σ2
l , bi) =

Ji∏
j=1

p(yi,j | ti,j, di,j−1,xi,βl, σ
2
l , bi). (3.5)

Next, we construct the time-to-event submodel depending on the underlying true
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longitudinal trajectory y∗i (t) and the MTPP that models clinical decisions. We con-

sider a Weibull proportional hazards model as follows:

hi(t) = exp
(
− ( βs1y

∗
i (t)︸ ︷︷ ︸

longitudinal effect

+ βs2di(t) + βs3Toxi(t)︸ ︷︷ ︸
dosage effect

+ βs4αi(t)︸ ︷︷ ︸
visitation effect

+h0)
)
ωtω−1,

(3.6)

where ω is the shape parameter of the Weibull baseline hazard. The dependence on

y∗i (t) reflects the domain knowledge that the survival event is usually associated with

the underlying health condition reflected by longitudinal measurements. The dosage

effect term in equation (3.6) measures the overall drug effect on the patient: βs2di(t)

is the “instantaneous” effect while βs3Toxi(t) is the “accumulated” effect:

Toxi(t) =

∫ t

0

di(τ)ηtox exp(−(t− τ)/ηtox)dτ,

where the parameter ηtox controls the rate of the exponential weighting for the past

dosages. In practice, the instantaneous effect is usually beneficial (e.g., tacrolimus

reduces the likelihood of graft rejection or death) while the accumulated effect is often

toxic (and that is why we name it Tox): e.g., a prolonged high dosage of tacrolimus

might have adverse effects on kidneys, central nervous system, and gastrointestinal

tract, thereby worsening a patient’s survival (Randhawa et al., 1997). We also link the

survival submodel with the visitation model by defining αi(t) = αi,j for t ∈ (ti,j, ti,j+1]

since a high visitation intensity (i.e., larger αi,j) typically implies a higher risk, e.g.,

graft failure and thus shorter expected survival time.

Let Ti and Ci denote the survival and censoring times for patient i, respectively.

We observe only T̃i = min(Ti, Ci) and the censoring indicator δi = 1(Ti ≤ Ci).

Denote fi(t) and Si(t) to be the corresponding density and survival functions of the

hazard function (3.6): Si(t) = exp(−
∫ t

0
hi(u)du), fi(t) = hi(t)Si(t). We can write the
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survival likelihood for patient i as

p(T̃i, δi | yi,xi, ei,T̃i ,βl, bi,βs) = fi(T̃i | yi,xi, ei,T̃i ,βl, bi,βs)
δi

×Si(T̃i | yi,xi, ei,T̃i ,βl, bi,βs)
1−δi , (3.7)

where βs = {ω, βs1, βs2, βs3, βs4, h0, ηtox,βα, ξ}.

In summary, we propose a joint model consisting of an MTPP for clinical decisions

including follow-up visitation schedules and dosages, a linear mixed effects model for

longitudinal clinical measurements, and a time-to-event model for the patient survival;

they are inter-connected by sharing structures and parameters. The joint probability

of the clinical observations and decisions can then factor as

I∏
i=1

p(yi, ei,T̃i , T̃i, δi | xi,βl,βd,βv,βs, bi, σ
2
l , σ

2
d)

∝
I∏
i=1

(
p(ei,T̃i | yi,xi,βv,βd, σ

2
d)︸ ︷︷ ︸

(3.11)

p(yi | di,xi,βl, σ2
l , bi)︸ ︷︷ ︸

(3.12)

p(T̃i, δi | yi,xi, ei,T̃i ,βl, bi,βs)︸ ︷︷ ︸
(3.13)

)
.

(3.8)

We complete the model by imposing the following priors: βd ∼ Normal(βd0,Σβd),

σ2
d ∼ InverseGamma(πd1, πd2), βl ∼ Normal(βl0,Σβl), σ

2
l ∼ InverseGamma(πl1, πl2)

for conjugacy. We assume a flat prior for Σb. When conjugacy is unattainable for the

visitation and survival parameters, we assume βs1, βs2, βs3, βs4, h0 ∼ Normal(βs0, σ
2
s0),

ηtox ∼ Gamma(πs1, πs2), ω ∼ Gamma(πs3, πs4), µ, ν1, ν2 ∼ Normal(βv0, σ
2
v0), βα ∼

Normal(βα0,Σβα), and ξ ∼ Gamma(πv1, πv2). We carry out posterior inference using

the Markov chain Monte Carlo (MCMC) sampler. The details are included in Section

3.7.
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3.3 Optimize Personalized Clinical Deci-

sion

Our goal is to optimize personalized clinical decision including scheduling a pa-

tient’ follow-up visitations and prescribing dosages to maximize the patient’ health

outcome, e.g., the graft survival time in the kidney transplantation application. In

this section, we first formally define our optimization problem, then propose a policy

gradient method using stochastic gradient descent (SGD) (Ruder, 2016) to optimize

personalized clinical decision.

Let θ = (ν1, ν2, µ,βd, σ
2
d) denote the set of “policy” parameters related to clinical

decisions, i.e., the parameters that only appear in the conditional intensity function

(3.1) and the mark distribution (3.2), which control patients’ follow-up schedules and

dosages at follow-up visitations. Let φ = (βs, bi,βl, σ
2
l ) denote the set of “observa-

tion” parameters, i.e., all other parameters in the joint model (3.8). Our goal is to

find, for each patient i, the optimal “policy”, i.e., the intensity function and mark

distribution with the optimal parameter θ̃i that maximizes the patient’s expected

survival time. Note here we have index i for θ̃i since the optimal parameters may

be different for patients with different baseline covariates, yielding personalized opti-

mal clinical decision. We borrow the term “policy” from reinforcement learning (RL)

since the setting is similar: in RL, the “policy” refers to the distribution from which

an intelligent agent samples its actions and that distribution is optimized to achieve

the highest expected reward (Kaelbling et al., 1996; Sutton and Barto, 2018). In

the kidney transplantation application, we define a personalized reward function Ri

as the log-scaled median survival time to optimize patients’ survival: Ri = log(T̂i),

where Si(T̂i) = 0.5. If desired, other reward functions can be considered. For ex-
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ample, if a physician or patient would like to take into consideration the healthcare

cost per visit, we could penalize the number of visitations in the reward function,

e.g., Ri = log(T̂i) + η0Ci, where η0 is a tuning parameter and Ci is the number of

visitations.

Without loss of generality, we assume that each patient i receives an arbitrary

stochastic reward that is a function of the survival time: Ri(Ti), which depends on

the MTPP ei,Ti for clinical decisions, the longitudinal process yi, and the survival

time Ti. Formally, denote the expected reward for any patient i to be

Gi(θ) =

∫
E(yi,Ti,ei,Ti )∼p(yi,Ti,ei,Ti |θ,φ)[Ri(Ti)]p(φ | D)dφ, (3.9)

where p(yi, Ti, ei,Ti | θ,φ) is the joint distribution of (yi, Ti, ei,Ti) in (3.8), D denotes

the observed data, and p(φ | D) is the posterior distribution of φ. The expectation

is taken over all possible realizations of (yi, Ti, ei,Ti). We aim to find the optimal

clinical decision, represented by θ̃i, to maximize the expected reward Gi(θ) for patient

i after integrating out the uncertainty in the longitudinal process and the survival

distribution:

maximizep(ei,Ti |θ)Gi(θ),

where p(ei,Ti | θ) is the probability density of the MTPP.

To find the optimal clinical decision parameter θ̃i for patient i, we use stochastic

gradient descent (SGD) (Robbins and Monro, 1951), i.e.,θi,m+1 = θi,m+si,m∇θGi(θ) |θ=θi,m ,

which requires computing the gradient of the expected reward: ∇θGi(θ). As the ex-

pectation is taken over realizations of the joint distribution p(yi, Ti, ei,Ti | θ,φ), it

is intractable to directly compute ∇θGi(θ). Fortunately, we can indirectly compute

this gradient by taking the expectation of the reward-weighted gradient of log-policy.
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Precisely,

Proposition 3.3.1 For the i-th patient with baseline covariates xi, given a joint

distribution p(yi, Ti, ei,Ti | θ,φ), the gradient of the expected reward Gi(θ) with respect

to θ is:

∇θGi(θ) =

∫
E(yi,Ti,ei,Ti )∼p(yi,Ti,ei,Ti |θ,φ)[Ri(Ti)∇θ log p(ei,Ti | yi,xi,φ,θ)]p(φ | D)dφ,

where p(ei,Ti | yi,xi,φ,θ) is the probability of the i-th patient’s sequence of visitations

and assigned dosages in (3.11).

Proof:

The expected reward function in Proposition 3.3.1 can be re-written as:

E(yi,Ti,ei,Ti )∼p(yi,Ti,ei,Ti |θ,φ)[Ri(Ti)] = EJi

[
E(yi,Ti,ei,Ti )|Ji [Ri(Ti)|Ji]

]
=

∑
J

P (Ji = J)×
( J∏
j=1

∫
ti,j ,di,j

λi(ti,j | yi,j−1,θ,φ)p(di,j | yi,j,xi,θ,φ)
)

× exp
(
−
∫ Ti

0

λi(t | yi,θ,φ)dt
)
×
( J∏
j=1

∫
yi(ti,j)

p(yi(ti,j) | di(ti,j−1),xi,φ))
)

×
∫
Ti

p(Ti | xi,yi, ei,Ti ,φ)Ri(Ti)dTi

J∏
j=1

dti,jddi,jdyi(ti,j).

Here we take the expectation with respect to the event history given the number of

events, and then take the expectation with respect to the number of events. Then,
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we can compute the gradient of the expected reward as follows:

∇θE(yi,Ti,ei,Ti )∼p(yi,Ti,ei,Ti |θ,φ)[Ri(Ti)]

=
∑
J

∇θ

(
P (Ji = J)×

( J∏
j=1

∫
ti,j ,di,j

λi(ti,j | yi,j−1,θ,φ)p(di,j | yi,j,xi,θ,φ)
)

× exp
(
−
∫ Ti

0

λi(t | yi,θ,φ)dt
))
×
( J∏
j=1

∫
yi(ti,j)

p(yi(ti,j) | di(ti,j−1),xi,φ))
)

×
∫
Ti

p(Ti | xi,yi, ei,Ti ,φ)Ri(Ti)dTi

J∏
j=1

dti,jddi,jdyi(ti,j)

= ∑
J

∇θ

(
P (Ji=J)

(∏J
j=1

∫
ti,j ,di,j

λi(ti,j |yi,j−1,θ,φ)p(di,j |yi,j ,xi,θ,φ)

)
exp

(
−
∫Ti
0 λi(t|yi,θ,φ)dt

))
P (Ji=J)

(∏J
j=1

∫
ti,j ,di,j

λi(ti,j |yi,j−1,θ,φ)p(di,j |yi,j ,xi,θ,φ)

)
exp

(
−
∫Ti
0 λi(t|yi,θ,φ)dt

)
× P (Ji = J)

( J∏
j=1

∫
ti,j ,di,j

λi(ti,j | yi,j−1,θ,φ)p(di,j | yi,j,xi,θ,φ)
)

× exp
(
−
∫ Ti

0

λi(t | yi,θ,φ)dt
)
×
( J∏
j=1

∫
yi(ti,j)

p(yi(ti,j) | di(ti,j−1),xi,φ)
)

×
∫
Ti

p(Ti | xi,yi, ei,Ti ,φ)Ri(Ti)dTi

J∏
j=1

dti,jddi,jdyi(ti,j)

=
∑
J

∇θ

(
log

(
P (Ji = J)×

( J∏
j=1

∫
ti,j ,di,j

λi(ti,j | yi,j−1,θ,φ)p(di,j | yi,j,xi,θ,φ)
)

× exp
(
−
∫ Ti

0

λi(t | yi,θ,φ)dt
)))

×
( J∏
j=1

∫
yi(ti,j)

p(yi(ti,j) | di(ti,j−1),xi,φ)
)

×
∫
Ti

p(Ti | xi,yi, ei,Ti ,φ)Ri(Ti)dTi

J∏
j=1

dti,jddi,jdyi(ti,j)

= E(yi,Ti,ei,Ti )∼p(yi,Ti,ei,Ti |θ,φ)[Ri(Ti)∇θ log p(ei,Ti | yi,xi,θ,φ)],
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where

log p(ei,Ti | yi,xi,θ,φ)

=
J∑
j=1

(
logλi(ti,j) + log

(
Normal(di,j; (1, yi,j,xi)βd, σ

2
d)
))
−
∫ Ti

0

λi(t)dt.

According to Proposition 3.3.1, in order to compute ∇θGi(θ), we first need to

be able to sample yi, Ti, ei,Ti from p(yi, Ti, ei,Ti | θ,φ) and calculate Ri(Ti) from the

generated samples. We sample the j-th follow-up visitation time ti,j and the survival

time Ti using an inverse transform sampling method: first computing the cumula-

tive distribution function (CDF) of the distribution, sampling a random number U

from Uniform(0, 1), and then inverting the CDF function at U to yield the visita-

tion/survival time (Giesecke et al., 2011). If the j-th visitation time occurs before the

survival time, i.e., ti,j < Ti, we sample yi,j and di,j from their respective distributions

and continue to sample the (j + 1)-th visitation time and the survival time. We iter-

atively sample follow-up visitation times, survival times, longitudinal measurements,

and dosages until the sampled survival event occurs before the next visitation time.

After obtaining samples of yi, Ti, ei,Ti , we can easily compute Ri(Ti). We describe

the sampling process for a general Ri in Algorithm 2 and for the reward being the

log median survival time in Algorithm 3. Comparing these two algorithms reveals

computational and variance-reduction advantages of selecting the log median survival

time as the reward.

Next we compute the gradient of the log-likelihood of the MTPP, ∇θ log p(ei,Ti |

yi,xi,φ,θ), using the parametrization defined in (3.11). The details are described

in Section 3.8. Lastly, we integrate out φ in computing ∇θGi(θ) using the Monte
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Algorithm 2 Sampling yi, Ti, ei,Ti from the joint model and computing Ri(Ti)

Using the superscript s to denote the simulated data, esi,T si =

{(tsi,0, dsi,0), . . . , (tsi,Jsi , d
s
i,Jsi

)} and ysi = (ysi (t
s
i,1), . . . , ysi (t

s
i,Jsi

)) denote the simu-
lated follow-up schedules, dosages, and longitudinal data over Jsi visits until the
survival time, T si .

Input: θ, φ, xi, yi,0
Output: ysi , T

s
i , esi,T si , Ri(T

s
i )

1: Initialize j ← 1, continue ← true
2: tsi,0 ← 0
3: ysi (0)← yi,0
4: dsi,0 ← Normal((1, ysi (0),xi)βd, σ

2
d)

5: while continue do
6: Uv ← Uniform(0, 1)

7: Solve for tsi,j : 1− exp(−
∫ tsi,j
tsi,j−1

λi(x)dx) = Uv

8: Us ← Uniform(0, 1)

9: Solve for T si : 1− exp(−
∫ T si
tsi,j−1

hi(x)dx) = Us

10: if T si > tsi,j then
11: zsi (t

s
i,j)← (1, dsi (t

s
i,j−1),xi, t

s
i,j, t

s
i,j

2), rsi (t
s
i,j)← (1, dsi (t

s
i,j−1), tsi,j)

12: ysi (t
s
i,j)← Normal(zsi (t

s
i,j)βl + rsi (t

s
i,j)bi, σ

2
l )

13: dsi,j ← Normal((1, ysi (t
s
i,j),xi)βd, σ

2
d)

14: j ← j + 1
15: else
16: Jsi ← j − 1, continue ← false
17: esi,T si ← {(t

s
i,0, d

s
i,0), . . . , (tsi,Jsi , d

s
i,Jsi

)} and ysi ← (ysi (t
s
i,1), . . . , ysi (t

s
i,Jsi

))

18: Compute Ri(T
s
i )

19: end if
20: end while

Carlo method since it is analytically intractable. Suppose that we have K MCMC

draws from the posterior distribution of φ and we denote the k-th draw as φk, then

∇θGi(θ) can be approximated as follows:

∇θGi(θ) ≈
∑K

k=1E(yi,Ti,ei,Ti )∼p(yi,Ti,ei,Ti |θ,φk)[Ri(Ti)∇θ log p(ei,Ti | yi,xi,φk,θ)]

K
.

(3.10)

To compute each term of the summation in the numerator of (3.10), we first sample
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Algorithm 3 Sampling yi, ei,T̂i from the joint model and computing Ri = log(T̂i)

Using the superscript s to denote the simulated data, es
i,T̂i

=

{(tsi,0, dsi,0), . . . , (tsi,Jsi , d
s
i,Jsi

)} and ysi = (ysi (t
s
i,1), . . . , ysi (t

s
i,Jsi

)) denote the simu-
lated follow-up schedules, dosages, and longitudinal data over Jsi visits until the

median survival time, T̂i. The simulated survival and hazard functions are denoted
Ssi (t) and hsi (t), where Ssi (t) = exp(−

∫ t
0
hsi (u)du)

Input: θ, φ, xi, yi,0
Output: ysi , T̂i, e

s
i,T̂i

, Ri

1: Initialize j ← 1, continue ← true
2: tsi,0 ← 0
3: ysi (0)← yi,0
4: dsi,0 ← Normal((1, ysi (0),xi)βd, σ

2
d)

5: while continue do
6: Uv ← Uniform(0, 1)

7: Solve for tsi,j : 1− exp(−
∫ tsi,j
tsi,j−1

λi(x)dx) = Uv

8: Ssi (ti,j)← exp(−
∫ tsi,j

0 hsi (u)du)
9: if Ssi (t

s
i,j) > 0.5 then

10: zsi (t
s
i,j)← (1, dsi (t

s
i,j−1),xi, t

s
i,j, t

s
i,j

2), rsi (t
s
i,j)← (1, dsi (t

s
i,j−1), tsi,j)

11: ysi (t
s
i,j)← Normal(zsi (t

s
i,j)βl + rsi (t

s
i,j)bi, σ

2
l )

12: dsi,j ← Normal((1, ysi (t
s
i,j),xi)βd, σ

2
d)

13: j ← j + 1
14: else
15: Jsi ← j − 1, continue ← false
16: es

i,T̂i
← {(tsi,0, dsi,0), . . . , (tsi,Jsi , d

s
i,Jsi

)} and ysi ← [ysi (t
s
i,1), . . . , ysi (t

s
i,Ji

)]

17: Solve for T̂i: exp(−
∫ T̂i

0
hsi (u)du) = 0.5

18: Ri ← log(T̂i)
19: end if
20: end while

Ti, yi, and ei,Ti from p(yi, Ti, ei,Ti | θ,φk) using Algorithm 2 to compute Ri(Ti) for

each φk, then multiply the gradient of the log-probabilities of visitation times and

dosages under the MTPP policy. The entire SGD algorithm for finding the optimal

parameter θ̃i is described in Algorithm 4, where Gi(θi,m) denotes the expected reward

in iteration m. Note that, in the step 7 of Algorithm 4, we subtract the average reward

from each individual reward: this “baseline subtraction” trick significantly reduce the
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variance while still yielding an unbiased estimate of the gradient (Greensmith et al.,

2004; Williams, 1992).

Algorithm 4 Stochastic Gradient Descent for optimizing θ for patient i

Input θ0, φk (k = 1, . . . K), xi, yi,0.

Output θ̃i

1: Initialize θi,1 ← θ0

2: for m:=1 to M-1 do
3: for k:=1 to K do
4: do Algorithm 2(θi,m, φk, xi, yi,0) to sample Ri,k, e

s,k
i,T si,k

, and ys,ki .

5: end for
6: Gi(θi,m)←

∑K
k=1Ri,k
K

7: ∇θGi(θi,m)←
∑K
k=1(Ri,k−Gi(θi,m))∇θ logp(es,k

i,Ts
i,k
|ys,ki ,xi,φk,θi,m))

K

8: θi,m+1 ← θi,m + si,m∇θGi(θi,m)
9: end for

10: m∗ ← arg maxmGi(θi,m)

11: θ̃i ← θi,m∗

3.4 Simulation Study

To demonstrate the advantage of the proposed Bayesian joint model, we compared

it to an alternative model that breaks the connection between longitudinal and sur-

vival processes. Furthermore, to illustrate the benefit of optimizing the personalized

clinical decision, we compared the expected reward under the estimated optimal clin-

ical decision to alternative strategies of scheduling follow-up visitations on a regular

basis, e.g., every three months (Israni et al., 2014).

3.4.1 Simulation setup

We simulated a dataset mimicking the DIVAT dataset composed of longitudi-

nal creatinine measurements, follow-up schedules, tacrolimus dosages, and survival
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events for I = 500 patients. We considered three baseline covariates in xi: donor

age (AgeD), delayed graft function (DGF), and body mass index (BMI). DGF is

a binary variable with 1 indicating that the patient used dialysis within the first

week of the transplant, 0 otherwise. For each patient, the donor age and BMI were

generated from Normal(52.5, 15.82) and Normal(24.3, 4.52), respectively, and then

standardized. Patients’ delayed graft functions were generated from Bernoulli(0.4)

independently. In the MTPP model for follow-up schedules, the simulated true pa-

rameters were set to be ν1 = 2.5, ν2 = 1.5, µ = −4.8, ξ = 2, and βα = (9.5,−1.5)T

so that a higher creatinine level results in a higher visitation intensity; for assigning

dosages, the simulated true βd was set to be (1, 0.2, 0.15, 0.2, 0.15)T and σd = 0.3.

In modeling log-transformed longitudinal creatinine levels, the simulated true pa-

rameters were set to be βl = (5.3, 0.1, 0.3, 0.4, 0.25,−1 × 10−4, 3 × 10−8)T , σl = 0.1,

and Σb =


0.04 0 0

0 0.0049 0

0 0 10−8

. Note that the last two terms in the simulated

true βl were small since the times were recorded in days. Patients’ initial log-

transformed creatinine levels right after transplantation yi,0’s were independently

generated from Normal(5, 0.12). In the survival submodel (3.6), we assumed that

the simulated true parameters were h0 = 5, ω = 1.05, βs1 = 1, βα = −5, βs2 = 0.9,

βs3 = −0.75, and ηtox = 50. The censoring times Ci’s were independently generated

from Weibull(3, 8000). Based on the proposed Bayesian joint model in Section 3.2,

we generated the data yi, ei,T̃i , T̃i, δi for each patient i, i = 1, . . . , I.

The simulated dataset had a total of 14,395 follow-up visitations for 500 patients

with a 10.8% censoring rate. The median survival time was 1,684 days with the short-

est being 24 days and the longest being 10,016 days. Figure 3.4 plots the simulated

longitudinal creatinine levels and follow-up schedules with dosages for four randomly
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selected patients.
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Figure 3.4: Longitudinal measurements (solid lines) and dosages (dashed lines)
over time for four randomly selected patients from the simulated dataset. The points
represent the visitation times.

3.4.2 Results: model fitting

We applied the proposed Bayesian joint model to the simulated dataset. The

hyperparameters were set to be βd0 = βl0 = βα0 = 0, Σβd = Σβl = Σβα = 1002I,

πd1 = πd2 = πl1 = πl2 = πs3 = πs4 = 0.01, πs1 = πs2 = 0.01, βs0 = βv0 = 0,

σ2
s0 = σ2

v0 = 1002, πv1 = 400, πv2 = 200. We ran 20,000 MCMC iterations with

an initial burn-in of 5,000 iterations and a thinning factor of 50. The convergence

was assessed using R package coda, including traceplots of the post-burn-in MCMC
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samples for some randomly selected parameters (Figure 3.5), showing no issues of

non-convergence. We first report on the performance of the proposed joint model in

terms of parameter estimation. Figure 3.6 plots the 95% estimated credible intervals

(CIs) for selected parameters, showing that all 95% CIs are centered around the

simulated true values. As another metric of performance, we computed the mean

squared error (MSE) taken as the averaged squared errors between the post-burn-in

MCMC posterior samples and the simulated true values. Table 3.1 summarizes the

MSE and the standard deviation of squared errors, indicating that the proposed joint

model can accurately estimate parameters.
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Figure 3.5: Post burn-in trace plots for selected parameters in the simulation study.
βl2 is the coefficient associated with the dosage in βl and βd2 is the coefficient as-
sociated with longitudinal measurements in βd. B1,1 represents the variance in the
patient-specific random effect for longitudinal measurements. The red line represents
the parameter’s simulated truth.

As the proposed model represents the first effort in the literature to jointly model
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Figure 3.6: 95% credible intervals for parameters in the dosage, longitudinal, and
survival submodels. The dosage and longitudinal values are in log-scale. The squares
represent the simulated true values.

clinical decisions, longitudinal markers, and the survival event, there is no existing

method we can compare with. To demonstrate the advantage of jointly modeling

longitudinal creatinine levels and the survival event, we compared the proposed model

with an alternative “separate longitudinal and survival (SIS)” model that breaks the
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Truth MSE SD of squared errors
βs1 1 0.0192 0.0220
βs2 0.9 0.256 0.348
βs3 -0.75 0.168 0.2194
βs4 -5 0.0688 0.0922
h0 5 0.678 0.704
ω 1.05 1.34× 10−3 1.57× 10−3

σ2
l 0.01 6.31× 10−8 6.25× 10−8

σ2
d 0.09 1.69× 10−5 9.34× 10−6

µ -4.8 5.12× 10−4 4.99× 10−4

ξ 2 8.99× 10−3 1.32× 10−2

ν1 2.5 2.49× 10−4 3.11× 10−4

ν2 1.5 3.01× 10−3 3.64× 10−3

Table 3.1: MSE and standard deviation of squared errors for randomly selected
parameters in the simulation study.

connection between the longitudinal and survival submodels by replacing the process

y∗i (t) with the observational data yi(t) in the hazard model (3.6). We first compared

the two models by checking their model adequacy using widely applicable information

criterion (WAIC) (Gelman et al., 2014): the joint model has a WAIC value of 226,982

while theSLS model has a WAIC of 226,992, indicating that the proposed joint model

fits data slightly better. Furthermore, we compared the two models in terms of

parameter estimation. Table 3.2 reports the simulated true values of parameters in

the survival submodel, and posterior means of these parameters under the joint model

and the SLS model with 95% CIs, showing that the joint model estimates parameters

more accurately.
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Truth Joint posterior mean (95% CI) SLS posterior mean (95% CI)

βs1 1 1.1(0.92,1.26) 1.19(0.94,1.6)

βs2 0.9 1.25(0.74,1.95) 1.41(0.63,2.3)

βs3 -0.75 -0.92(-1.62,-0.33) -1.03(-1.8,-0.18)

βα -5 -5.01(-5.51,-4.47) -5.16(-6.14,-4.56)

h0 5 4.36(3.44,5.35) 3.89(1.6,5.22)

ω 1.05 1.06(0.99,1.12) 1.06(0.97,1.13)

Table 3.2: Parameter estimation under the joint and SLS models.

3.4.3 Results: personalized optimal clinical deci-

sion estimation

We applied the proposed policy gradient method in Section 3.3 to the simulated

dataset to estimate the personalized optimal clinical decision that maximizes one

patient’s graft median survival time, i.e., Ri = log(T̂i), where T̂i is the median survival

time of patient i. The starting parameter values θ0 in Algorithm 4 were set to be the

estimated posterior means of these parameters from posterior inference, which can be

considered as the estimates of how physicians treated patients in the simulated data.

Therefore, the goal of the optimization procedure is to improve physicians’ current

treatment strategy in terms of prolonging patients’ survival.

We implemented Algorithm 4 with M = 1000 steps to estimate the personalized

optimal parameter θ̃i for two randomly selected patients, denoted as S1 and S2.

Patient S1 had a DGF of 0, donor age of 54.2 years, and BMI of 24, while patient

S2 had a DGF of 1, donor age of 37.4 years, and BMI of 24.8. Figure 3.7(a, b)

plots the expected mean reward versus SGD iterations. For patient S1, the expected
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mean reward increases from an initial value of 7.65 to its maximum in the SGD, 7.69,

which corresponds to a predictive median survival time of 2,209 days, a 4.6% increase

from its initial value 2,111. For patient S2, the expected mean reward goes from an

initial value of 7.69 to a maximum at 7.76. This corresponds to the predictive median

survival time increasing from 2,203 days to 2,383 days, an 8.2% improvement.

To further interpret the estimated optimal “policy” parameters for patients S1

and S2, we compared the initial parameter values of the SGD–posterior means, with

the optimized values by the SGD in Table 3.3. Recall that the dosage model is di,j =

(1, yi,j,xi)βd + ζi,j. Denote βd = (βd1, βd2, . . . , βdL)T , where L is the dimension of βd.

Since xi denotes the baseline covariate and does not change over time, we define the

personalized dosage intercept to be β̃d = (1,xi)(βd1, βd3, . . . , βdL)T so that optimizing

βd is equivalent to optimizing (βd2, β̃d). As shown in Table 3.3, the optimized dosage

parameters β̃d and βd2 for patient S1 were lower than the estimated posterior means,

indicating that patient S1 would benefit from a lower dosage for the same creatinine

level compared to the observed dosages. In contrast, the optimal β̃d and βd2 were

higher than the posterior means for patient S2, indicating the preference for higher

dosages. The optimal dosage errors, σ2
d, for both patients were significantly lower

than the initial value, indicating that a lower variance in the dosing procedure would

benefit patient survival. The optimal baseline visitation intensity µ and the peak

time parameter ν1 were both roughly the same as their posterior means, indicating

that the simulated follow-up schedules were close to optimal. However, the visitation

intensity shape parameter ν2 increased from 1.464 to 1.778 and 2.008 for patients

S1 and S2 respectively and thus implies a higher intensity around the peak time ν1:

intuitively, the optimized policy learns to be more certain about the “optimal peak

time.”
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Figure 3.7: Panels (a, b) plot the expected mean reward versus SGD iterations
for two randomly selected patients S1 and S2. Panels (c, d) plot the density of the
predictive median survival times under our method and the three alternative strategies
for patients S1 and S2.

In addition, to illustrate the advantage of optimizing both follow-up schedules

and dosages, we compared our results to alternative strategies based on regular vis-

its. As studied in Israni et al. (2014), during the first year post-transplant, patients
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Table 3.3: Simulation: Stochastic Gradient Descent Optimal Parameter Results

θ̃0 θ̃S1 θ̃S2

β̃d: personalized dosage intercept S1: 0.864, S2:0.987 0.746 1.316
βd2: dosage effect of creatinine 0.200 0.153 0.307
σ2
d: dosage error 0.0940 0.0217 0.00252
µ: baseline visitation intensity -4.781 -4.821 -4.785
ν1: visitation intensity peak 2.512 2.416 2.519
ν2: visitation intensity shape 1.464 1.778 2.008

were most frequently seen every 1 month or 3 months, depending on their physicians.

After the first year, stable patients were most frequently referred back between 4-6

months but the follow-up frequency was reported to vary from 0-12 months. We

considered three alternative follow-up strategies: recommend patients to follow up

every 1 month, 3 months, and 6 months. The dosages at follow-up visitations were

still optimized in the same way as the proposed joint model with the policy gradient

method. Figure 3.7(c, d) show the density plots of 100 realizations of the predictive

median survival times under our method and the three alternative strategies for pa-

tients S1 and S2. Comparing the predictive median survival times under the three

regular visitation strategies, we can see that more frequent visitations yield longer me-

dian survival times. The optimized visitation schedule under the proposed method

outperforms the three alternative strategies although it yields a similar overall vis-

itation frequency with the strategy of “regular visits every 3 months” (not shown),

highlighting the importance of optimizing visitation schedules based on longitudinal

clinical measurements to prolong patients’ survival.
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3.5 Application: DIVAT Data Analysis

We extracted data from Nantes University Hospital Centers in the DIVAT cohort

(www.divat.fr), yielding a total of N = 947 patients who received a first or sec-

ond renal graft transplanted from a living or heart-beating deceased donor between

2000 and 2014. All patients in the dataset received an initial maintenance therapy

with tacrolimus and did not experience graft failure or death during hospitalization.

Immediately after transplantation, several baseline covariates as risk factors for graft

failure were collected: donor age (AgeD), recipient age (AgeR), delayed graft function

(DGF) defined as the indicator of the use of dialysis within the first week of transplant

(1=used dialysis, 0=didn’t use dialysis), diabetes history (Diab) with 1 indicating the

patient has a history of diabetes and 0 otherwise, type of donor (Type), and body

mass index (BMI). There were two types of donors: donation after brain death but

with heart beating (Type=1) and donation by a living donor (Type=0). Table 3.4

summarizes patients’ characteristics at baseline immediately after transplantation.

For each patient, longitudinal data were collected from the date of transplantation

until the graft failure or being censored. At each follow-up visitation, the creatinine

level and tacrolimus dosage were recorded. The next follow-up visitation time was

determined by the physician.

3.5.1 Experimental results: model fitting

We first applied the proposed Bayesian joint model to the DIVAT data with

xi = (AgeDi,AgeRi,DGFi,BMIi,Diabi,Typei). The hyperparameters were set to

the same as in the simulation study. We ran a total of 20,000 MCMC iterations with

an initial burn-in of 5,000 iterations, and a thinning factor of 50. The convergence was
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Donor age (years)
Mean ± SD 52.5 ± 15.8

Median 54

Receipient age (years)
Mean ± SD 51.1 ± 14.3

Median 52

Body mass index (BMI)
Mean ± SD 24.3 ± 4.5

Median 23.7

Delayed graft function, n(%)
Yes 329 (34.7%)
No 618 (65.3%)

Diabetes history, n(%)
Yes 140 (14.5%)
No 807 (85.5%)

Type of donor, n(%)
Yes 800 (84.5%)
No 147 (15.5%)

Table 3.4: Patient characteristics at baseline immediately after transplantation.

assessed using R package coda and the trace plots for randomly selected parameters

were shown in Figure 3.8, showing no issues of non-convergence.

We plot the estimated posterior means with 95% CIs for some selected parameters

in the dosage, longitudinal, and survival submodels in Figure 3.9. Figure 3.9(a) plots

posterior means of the linear coefficient βd with respect to the creatinine level and

baseline covariates in the dosage model. DGF was negatively associated with the

dosage, indicating that patients who used dialysis within the first week of transplant

were likely to be assigned lower dosage levels. In contrast, BMI was positively associ-

ated with the dosage since bodyweight-based dosing of tacrolimus is the standard care

for patients after transplantation (Andrews et al., 2017). Diabetes history was posi-
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Figure 3.8: Post burn-in trace plots for randomly selected parameters in the DI-
VAT data analysis. βl2 is the coefficient associated with the dosage in βl and βd2 is
the coefficient associated with longitudinal measurements in βd. B1,1 represents the
variance in the patient-specific random effect for longitudinal measurements.

tively associated with the dosage. While the effect of diabetes on tacrolimus was not

well characterized in the literature, Mendonza et al. (2007) showed that the time to

maximum concentration of tacrolimus in the pharmacokinetics study was significantly

longer in diabetics versus nondiabetics. Furthermore, donor type also increased the

dosage level, indicating that patients who received kidney from a non-living donor

were more likely to be assigned higher dosages compared to that from a living donor.

Figure 3.9(b) plots the estimated posterior means with 95% CIs for the fixed-effects

regression coefficients with respect to the most recent tacrolimus dosage and baseline

covariates in the longitudinal model (3.4). The dosage, donor age, DGF, BMI, and

donor type were positively associated with the creatinine level, which agreed with
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Figure 3.9: Estimated posterior means and 95% CIs for parameters in the dosage,
longitudinal, and survival submodels. The dosages and longitudinal measurements
are in log-scale. The squares represent posterior means.

findings in the literature (Foucher et al., 2016; Gerchman et al., 2009; Katari et al.,

1997). In contrast, the recipient age was negatively associated with the creatinine

level, suggesting that younger patients tend to have lower creatinine levels (Maraghi

et al., 2016). Diabetes history also decreased the creatinine level. Hjelmeseth et al.
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(2010) showed that a low creatinine was associated with type 2 diabetes in a cross-

sectional study. The estimated posterior means and 95% CIs for selected survival

submodel parameters are plotted in Figure 3.9(c). The posterior mean of the param-

eter corresponding to the tacrolimus dosage was positive while that corresponding

to the toxicity was negative, suggesting that a higher tacrolimus drug reduces the

hazard but the accumulated toxicity increases the hazard. These results were consis-

tent with findings in Randhawa et al. (1997) and Böttiger et al. (1999), who reported

nephrotoxicity caused by long-term high dosages of tacrolimus.

3.5.2 Experimental results: personalized optimal

clinical decision estimation

Next, we applied the proposed policy gradient method to estimate the personalized

optimal clinical decision in terms of maximizing a patient’s median survival time.

We initialized the parameters in Algorithm 4 by setting θ0 to be their posterior

means. Algorithm 4 was implemented with M = 1000 steps to estimate θ̃i for two

randomly selected patients, denoted as R1 and R2. Patient R1 at transplantation

was 60 years old with a BMI of 17, no history of diabetes, no DGF, and received

donation from a 61-year-old non-living donor. Patient R2 at transplantation was

28 years old with a BMI of 25.5, no history of diabetes, no DGF, and received a

kidney from a living 29-year-old donor. Patient R1 had an observed survival time of

1,527 days, while patient R2 had a censored survival time of 4,487 days. Figure 3.10

plots the predictive median survival times across SGD iterations for the two patients.

Patient R1’s predictive median survival time increased from 1,793 to 1,895 days at

the maximum, a 5.7% improvement; while patient R2’s predictive median survival
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time increased from 5,191 to 5,628, an 8.4% gain.
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Figure 3.10: The expected mean reward versus SGD iterations for two randomly
selected patients R1 and R2.

To further interpret the estimated optimal parameters in clinical decisions, we

compared their initial values with the optimized values in Table 3.5. Patient R1’s

optimal dosage parameters, β̃d and βd2, were higher than their posterior means, sug-

gesting that assgining a higher dosage level compared to what the physician actually

did for the same creatinine level would improve his/her survival outcome. On the

other hand, patient R2’s optimal dosage parameters were both lower than the initial

values, so lower dosage levels are recommended. The optimal dosage errors, σ2
d, for

both patients were significantly lower than the initial value, meaning that the opti-

mized policy is more certain about its dosing decisions so the variance is lower than

the observed data. The optimal baseline visitation intensities µ for both patients

were lower than the initial value, indicating that they should be instructed to visit

less often without the knowledge of their creatinine measurements. Their optimized

visitation intensity peak times were lower than the posterior mean, indicating that
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they should be scheduled more frequent follow-ups when their creatinine levels are

high. Furthermore, the visitation intensity shapes were significantly higher than the

initial value so the optimized policy is more certain about the optimal peak time for

visitation schedules.

Table 3.5: DIVAT data: optimal parameters estimated by the policy-optimizing
method.

θ̃0 θ̃R1 θ̃R2

β̃d: personalized dosage intercept R1:2.367, R2:2.363 2.788 2.161
βd2: dosage effect of creatinine -0.038 0.076 -0.065
σ2
d: dosage error 0.111 0.035 0.0024
µ: baseline visitation intensity -4.197 -4.617 -4.322
ν1: visitation intensity peak 1.479 1.123 1.311
ν2: visitation intensity shape 0.258 0.864 1.261

3.5.3 Ablation study: optimizing time or dosage

or both

Moreover, to demonstrate the benefit of optimizing the follow-up visitation sched-

ules and dosages together, we compared the predictive median survival times under

the non-optimized initial policy (Non-Opt.) with three versions of optimized poli-

cies: 1) only visitation schedules are optimized (Opt. Visits); 2) only dosages are

optimized (Opt. Dosage); and 3) both visitation schedules and dosages are opti-

mized (Opt. Both). Specifically, Non-Opt. used the parameters estimated from the

proposed Bayesian joint model, mimicking what physicians did as collected in the

DIVAT dataset; Opt. Visits used the optimized parameters from the SGD in the

visitation model (3.1) and the non-optimized parameters in the dosage model (3.2);

Opt. Dosage used the optimized parameters from the SGD in the dosage model and
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the non-optimized parameters in the visitation model; Opt. Both is the fully opti-

mized model obtained in section 3.5.2 which used the optimized parameters in both

the visitation and dosage models. Figure 3.11 plots boxplots for 100 realizations of

the predictive median survival times under each of the four policies. The visitation

schedule optimization accounts for more improvement in prolonging the survival for

patient R1 compared to patient R2 because, as shown in Table 3.5, there was a larger

difference between the optimal parameter values (µ and ν1) in the visitation model

and their initial values for patient R1. The optimized visitation schedule for both

patients, as we have discussed in section 3.5.2, suggested slightly fewer visits over-

all, but more frequent visits when their creatinine levels are high. Comparing Opt.

Visits vs. Non-Opt. and Opt. Both vs. Opt. Dosage, we can see that optimizing treat-

ment schedules is clearly beneficial to these patients, thus empirically strengthening

the motivation of our work. In summary, this analysis reveals that optimizing both

visitation schedules and dosages is necessary to maximize patients’ survival.
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Figure 3.11: The boxplots of the predictive median survival times under different
policies of visitation schedules and dosages for patients R1 and R2.
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3.6 Conclusion

In this work, we developed a Bayesian method that jointly models the clinical ob-

servations (e.g, longitudinal measurements and survival time) and clinical decisions

(e.g., follow-up visitation schedules and dosage assignments). The model components

are connected by sharing certain structures and parameters in order to capture the

mutual influence between the clinical observations and decisions. Moreover, we pro-

posed a policy gradient method that optimized the personalized clinical decision for

better survival, while parameter uncertainties in the clinical observation model are

considered in the Bayesian framework. Through simulation studies, we demonstrated

that the optimized clinical decision obtained from the proposed approach yields longer

predictive median survival times compared to scheduling follow-up visitations on a

regular basis that is commonly used in caring for patients with chronic conditions

nowadays. The analysis of the DIVAT data yields meaningful and interpretable re-

sults, showing that the proposed method has the potential to assist physicians’ de-

cisions on personalized treatment. In addition, we have built an R package doct so

that users can apply the proposed method to datasets in a similar setup that involves

longitudinal decision making and an objective reward to optimize.

There are several potential extensions. Firstly, we consider one longitudinal mea-

surement in the longitudinal process of the joint model. There could be other time-

varying measurements affecting the clinical decision and survival. In our kidney trans-

plantation application, besides creatinine levels, there are other longitudinal measure-

ments recorded such as proteinuria, which represents having protein in the urine and

can be an early sign of kidney disease. The proposed method can be extended to

incorporate other longitudinal measurements by replacing the model in (3.4) with a

multivariate mixed effects model (Chi and Ibrahim, 2006). Secondly, patients may be
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heterogeneous, meaning that patients in different subgroups may respond differently

to the treatment or have different disease progression and survival patterns depending

on their clinical characteristics. We can extend the proposed Bayesian joint model to

account for patients’ heterogeneity by adding index i to all parameters in (3.8) and

considering a Bayesian nonparametric prior, such as the Dirichlet process (Ferguson,

1973). Lastly, patients with chronic conditions may take multiple medicines, e.g., my-

cophenolate mofetil (an immunosuppressive drug) and steroids along with tacrolimus

in our kidney transplantation application. Modeling the effects of multiple types of

drugs (and their interactions with clinical observations) and learning their optimal

dosage-assigning policies in the proposed optimization method will be an interesting

and challenging research topic.

3.7 MCMC Sampling Details

3.7.1 Joint Model Summary

Below we first summarize the proposed Bayesian joint model before presenting the

MCMC details. The joint probability of clinical observations and decisions factors

as:

I∏
i=1

p(yi, ei,T̃i , T̃i, δi | xi,βl,βd,βv,βs, bi, σ
2
l , σ

2
d)

∝
I∏
i=1

(
p(ei,T̃i | yi,xi,βv,βd, σ

2
d)︸ ︷︷ ︸

(3.11)

p(yi | di,xi,βl, σ2
l , bi)︸ ︷︷ ︸

(3.12)

p(T̃i, δi | yi,xi, ei,T̃i ,βl, bi,βs)︸ ︷︷ ︸
(3.13)

)
.
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Here

p(ei,Ti | yi,xi,βv,βd, σ2
d)

= exp
(
−
∫ Ti

0

λi(t | yi,βv)dt
)

︸ ︷︷ ︸
Prob. of no visits at t∈[0,Ti]\{ti,j}

Ji
j=1

Ji∏
j=0

p(di,j | yi,j,xi,βd, σ2
d)︸ ︷︷ ︸

Prob. of dosage

Ji∏
j=1

λi(ti,j | yi,j−1,βv)︸ ︷︷ ︸
Prob. of a visit at ti,j

,

(3.11)

where yi = (yi,0, . . . , yi,Ji), βv = {µ, ν1, ν2, ξ,βα}.

p(yi | di,xi,βl, σ2
l , bi) =

Ji∏
j=1

p(yi,j | ti,j, di,j−1,xi,βl, σ
2
l , bi). (3.12)

p(T̃i, δi | yi,xi, ei,T̃i ,βl, bi,βs) = fi(T̃i | yi,xi, ei,T̃i ,βl, bi,βs)
δi

×Si(T̃i | yi,xi, ei,T̃i ,βl, bi,βs)
1−δi , (3.13)

where βs = {ω, βs1, βs2, βs3, βs4, h0, ηtox,βα, ξ}.

3.7.2 MCMC Sampling Steps

1. Update βl: The prior for βl is Normal(βl0,Σβl), so we have

p(βl|·) ∝ p(βl)
I∏
i=1

(
p(T̃i, δi | yi,xi, ei,T̃i ,βl, bi,βs)

Ji∏
j=1

p(yi,j | di,j−1,xi,βl, σ
2
l , bi)

)
.
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We use the Metropolis-Hastings algorithm by considering the following proposal

distribution:

q(βl|·) ∝ p(βl)
I∏
i=1

Ji∏
j=1

p(yi,j | di,j−1,xi,βl, σ
2
l , bi)

∝ Normal(Cβl

I∑
i=1

Ji∑
j=1

zTi,j(yi,j − ri,jbi)/σ2
l , Cβl),

where Cβl =

(
Σ−1
βl

+
∑I

i=1

∑Ji
j=1 zi,jz

T
i,j/σ

2
l

)−1

. Note that this proposal distri-

bution is the posterior of βl if we were to ignore the survival submodel. The

Metropolis-Hastings acceptance rate is:

a(β∗l ,βl) = min(1,
p(β∗l |·)q(βl|·)
p(βl|·)q(β∗l |·)

) = min(1,

∏I
i=1 p(T̃i, δi | yi,xi, ei,T̃i ,β

∗
l , bi,βs)∏I

i=1 p(T̃i, δi | yi,xi, ei,T̃i ,βl, bi,βs)
.

2. Update bi: The prior for bi is Normal(0,Σb), so we have

p(bi|·) ∝ p(βl)
I∏
i=1

(
p(T̃i, δi | yi,xi, ei,T̃i ,βl, bi,βs)

Ji∏
j=1

p(yi,j | di,j−1,xi,βl, σ
2
l , bi)

)
.

We use the Metropolis-Hastings algorithm by considering the following proposal

distribution:

q(bi|·) ∝ p(bi)
I∏
i=1

Ji∏
j=1

p(yi,j | di,j−1,xi,βl, σ
2
l , bi)

∝ Normal(Cbi

I∑
i=1

Ji∑
j=1

zTi,j(yi,j − zi,jβl)/σ2
l , Cbi),
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where Cbi =

(
Σ−1
b +

∑I
i=1

∑Ji
j=1 ri,jr

T
i,j/σ

2
l

)−1

. Note that this proposal distri-

bution is the posterior of bi if we were to ignore the survival submodel. The

Metropolis-Hastings acceptance rate is:

a(b∗i , bi) = min(1,
p(b∗i |·)q(bi|·)
p(bi|·)q(b∗i |·)

) = min(1,
p(T̃i, δi | yi,xi, ei,T̃i ,βl, b

∗
i ,βs)

p(T̃i, δi | yi,xi, ei,T̃i ,βl, bi,βs)
).

3. Update σ2
l : The prior for σ2

l is InverseGamma(πl1, πl2), so we have

p(σ2
l |·) ∝ p(σ2

l )
I∏
i=1

p(yi|y∗i , σ2
l )

∝ InverseGamma(πl1 +
I∑
i=1

Ji
2
, πl2 +

I∑
i=1

Ji∑
j=1

(yi,j − y∗i,j)2

2
).

4. Update Σb: We assume a flat prior for Σb is flat, so we have

p(Σb|·) ∝ p(Σb)
I∏
i=1

p(bi|Σb) ∝ InverseWishart(I,
I∑
i=1

bib
T
i ).

5. Update β∗s ∈ {βs1, βs2, βs3, βs4, h0}: since their posterior distributions are not in

closed-form, these parameters are updated using the Metropolis-Hastings. The

prior for β∗s is Normal(βs0, σ
2
s0), so we have

p(β∗s |·) ∝ p(β∗s )
I∏
i=1

p(T̃i, δi | yi,xi, ei,T̃i ,βl, bi,βs).

6. Update ηtox: We use the Metropolis-Hastings to update ηtox. The prior for ηtox
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is Gamma(πs1, πs2), so we have

p(ηtox|·) ∝ p(ηtox)
I∏
i=1

p(T̃i, δi | yi,xi, ei,T̃i ,βl, bi,βs).

7. Update ω: We use the Metropolis-Hastings to update ω. The prior for ω is

Gamma(πs3, πs4), so we have

p(ω|·) ∝ p(ω)
I∏
i=1

p(T̃i, δi | yi,xi, ei,T̃i ,βl, bi,βs).

8. Update β∗v ∈ {µ, ν1, ν2}: We use the Metropolis-Hastings algorithm. The prior

for β∗v is Normal(βv0, σ
2
v0).

p(β∗v |·) ∝ p(β∗v)
I∏
i=1

p(ei,Ti | yi,xi,βv,βd, σ2
d).

9. Update βα: We use the Metropolis-Hastings algorithm. The prior for βα is

Normal(βα0,Σβα).

p(βα|·) ∝ p(βα)
I∏
i=1

Ji∏
j=1

p(ei,Ti | yi,xi,βv,βd, σ2
d)p(T̃i, δi | yi,xi, ei,T̃i ,βl, bi,βs).

10. Update ξ: We use the Metropolis-Hastings algorithm. The prior for ξ is

Gamma(πv1, πv2).

p(βα|·) ∝ p(βα)
I∏
i=1

Ji∏
j=1

p(ei,Ti | yi,xi,βv,βd, σ2
d)p(T̃i, δi | yi,xi, ei,T̃i ,βl, bi,βs).
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11. Update βd: The prior for βd is Normal(βd0,Σβd), so we have

p(βd|·) ∝ p(βd)
I∏
i=1

Ji∏
j=1

p(di,j | yi,j,xi,βd, σ2
d)

∝ Normal(Cβd

I∑
i=1

Ji∑
j=1

aTi,jdi,j/σ
2
d, Cβd),

where ai,j = (1, yi,j,xi) and Cβd =

(
Σ−1
βd

+
∑I

i=1

∑Ji
j=1 ai,ja

T
i,j/σ

2
d

)−1

.

12. Update σ2
d: The prior for σ2

d is InverseGamma(πd1, πd2), so we have

p(σ2
d|·) ∝ p(σ2

d)
I∏
i=1

Ji∏
j=1

p(di,j | yi,j,xi,βd, σ2
d)

∝ InverseGamma(πd1 +
I∑
i=1

Ji
2
, πd2 +

I∑
i=1

Ji∑
j=1

(di,j − ai,jβd)2

2
).
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3.8 Gradient Computation Details

To calculate ∇θ log p(ei,Ti | yi,xi,θ,φ), we compute the gradient with respect to

the five parameters in θ = (ν1, ν2, µ,βd, σ
2
d).

1.

∂ log p(ei,Ti | yi,xi,θ,φ)

∂βd

=
∂

∂βd

1

2

(
− Jlog(2π)− Jlog(σ2

d)− 1/σ2
d

J∑
j=1

(di,j − ai,jβd)2
)

=
∂

∂βd

(
− 1

2σ2
d

J∑
j=1

(−2di,jai,jβd + (ai,jβd)
2)
)
.

Let βd,l and ai,j,l refer to the l-th dimension of βd and ai,j = (1, yi,j,xi). Also,

let βd,−l and ai,j,−l refer to the other dimensions, excluding the l-th dimension

of βd and ai,j. Then, we have

∂ log p(ei,Ti | yi,xi,θ,φ)

∂βd,l
=

∂

∂βd,l

(
− 1

2σ2
d

J∑
j=1

(−2di,jai,j,lβd,l + (ai,j,lβd,l)
2)
)

=
J∑
j=1

di,jai,j,l − a2
i,j,lβd,l

σ2
d

.
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2.

∂ log p(ei,Ti | yi,xi,θ,φ)

∂σd

=
∂

∂σd

1

2

(
− Jlog(2π)− Jlog(σ2

d)− 1/σ2
d

J∑
j=1

(di,j − ai,jβd)2
)

= − J
σd

+

∑J
j=1(di,j − ai,jβd)

σ3
d

.

3.

∂ log p(ei,Ti | yi,xi,θ,φ)

∂µ
= −

∫ ti,Ji

0

∂λi(t)

∂µ
dt+

J∑
j=1

∂logλi(ti,j)

∂µ
.

= −
∫ ti,Ji

0

∂λi(t)

∂µ
dt+

J∑
j=1

1

λi(ti,j)

∂λi(ti,j)

∂µ

= −
∫ ti,Ji

0

exp(µ)dt+
J∑
j=1

exp(µ)

λi(ti,j)
= −ti,Ji exp(µ) +

J∑
j=1

exp(µ)

λi(ti,j)
.

4.

∂ log p(ei,Ti | yi,xi,θ,φ)

∂ν2

= −
∫ ti,Ji

0

∂λi(t)

∂ν2

dt+
J∑
j=1

1

λi(ti,j)

∂λi(ti,j)

∂ν2

.
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For t ∈ (ti,j, ti,j+1] and Vi,j = (1, yi,j):

∂λi(t)

∂ν2

=
∂

∂ν2

(2(t− ti,j)κ−1e−(κ−1)(t−ti,j)/ exp(ν1) ((κ−1)/ exp(ν1))κ

Γ(κ)

1 + exp(Vi,jβα)

)
=

∂

∂ν2

(
(t− ti,j)exp(ν2) e

− exp(ν2)(t−ti,j)/ exp(ν1)(exp(ν2)/ exp(ν1))exp(ν2)+1

Γ(exp(ν2) + 1)

)
× (

2

1 + exp(Vi,jβα)
)

=
∂

∂ν2

(
(
exp(ν2)

exp(ν1)
)exp(ν2)+1(t− ti,j)exp(ν2) e

− exp(ν2)(t−ti,j)/ exp(ν1)

Γ(exp(ν2) + 1)

)
× (

2

1 + exp(Vi,jβα)
)

=

(((
(exp(ν2)(ν2 − log(exp(ν1))) + exp(ν2) + 1)(t− ti,j)exp(ν2)e− exp(ν2)(t−ti,j)/ exp(ν1)

+ eν2−exp(ν2)(t−ti,j)/ exp(ν1) log(t− ti,j)(t− ti,j)exp(ν2)

− eν2−exp(ν2)(t−ti,j)/ exp(ν1)(t− ti,j)exp(ν2)+1/ exp(ν1)
)( exp(ν2)

exp(ν1)
)exp(ν2)+1

Γ(exp(ν2) + 1)

)
− (

exp(ν2)

exp(ν1)
)exp(ν2)+1(t− ti,j)exp(ν2) e

− exp(ν2)(t−ti,j)/ exp(ν1)φ(exp(ν2) + 1))

Γ(exp(ν2) + 1)

)
× (

2

1 + exp(Vi,jβα)
).

5.

∂ log p(ei,Ti | yi,xi,θ,φ)

∂ν1

= −
∫ ti,Ji

0

∂λi(t)

∂ν1

dt+
J∑
j=1

1

λi(ti,j)

∂λi(ti,j)

∂ν1

.
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For t ∈ (ti,j, ti,j+1] and Vi,j = (1, yi,j):

∂λi(t)

∂ν1

=
∂

∂ν1

(2(t− ti,j)κ−1e−(κ−1)(t−ti,j)/ exp(ν1) ((κ−1)/ exp(ν1))κ

Γ(κ)

1 + exp(Vi,jβα)

)
=

∂

∂ν1

(2(t− ti,j)κ−1e−(κ−1)(t−ti,j)/ exp(ν1) ((κ−1)/ exp(ν1))κ

Γ(κ)

1 + exp(Vi,jβα)

)
=

∂

∂ν1

(
e−(κ−1)(t−ti,j)/ exp(ν1) exp(ν1)−κ

)(2(t− ti,j)κ−1 ((κ−1))κ

Γ(κ)

1 + exp(Vi,jβα)

)
=

∂

∂ν1

(
e−(κ−1)(t−ti,j)/ exp(ν1)e−ν1κ

)(2(t− ti,j)κ−1 ((κ−1))κ

Γ(κ)

1 + exp(Vi,jβα)

)
=

∂

∂ν1

(
e−(κ−1)(t−ti,j)/ exp(ν1)−ν1κ

)(2(t− ti,j)κ−1 ((κ−1))κ

Γ(κ)

1 + exp(Vi,jβα)

)
=

((κ− 1)(t− ti,j)
exp(ν1)

− κ
)
e−(κ−1)(t−ti,j)/ exp(ν1)−ν1κ

(2(t− ti,j)κ−1 ((κ−1))κ

Γ(κ)

1 + exp(Vi,jβα)

)
.
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Chapter 4

A Bayesian semiparametric model

for learning biomarker trajectories

and change points in Alzheimer’s

disease

4.1 Introduction

For many diseases, the manifestation of symptoms can be difficult to identify

due to its slow development. As a result, many subjects that receive a diagnosis

for these gradually developing diseases have already been experiencing its negative

consequences for a substantial time. These detrimental effects can be subtly observed

through longitudinal biomarker data that tracks the subject’s well-being over time.

In contrast to these ”susceptible” or ”uncured” subjects, others may never develop

symptoms nor receive a diagnosis, and we typically refer to such subjects as being
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”immune” or ”cured”.

In this work, we propose a Bayesian framework that addresses several key biomed-

ical questions in such settings. First, we want to understand how the longitudinal

biomarker patterns vary based on subject baseline characteristics and inherent dis-

ease cure status in order to compute the personalized probability of an inherent cure.

For the uncured subjects, we are interested in how the diagnosis time depends on

baseline characteristics and whether we can identify a change point in the evolution

of the biomarker before diagnosis.

There is substantial literature on change point modeling for early detection of

slowly progressing diseases. Hall et al. (2000) introduces a parametric change point

model that detects when the rate of cognitive decline accelerates in people who even-

tually are diagnosed with dementia. Tang et al. (2017) further develops a two-phase

joint longitudinal and survival model where the change point is measured relative

to the survival event of manifestation of Alzheimer’s disease (AD). Within the con-

text of Alzheimer’s disease, we will refer to the susceptible/uncured subjects as non-

progressors and the immune/cured subjects as progressors to reflect whether or not

subjects will eventually progress to developing AD. Although these models are able to

robustly detect change points, they do not account for the possibility of disease non-

progression. Addressing this possibility is difficult because non-progression cannot

be directly observed and we cannot determine non-progression using only baseline

characteristics. However, we can narrow down the subjects eligible for being con-

sidered non-progressors to subjects with right-censored diagnosis times, where the

study ends before diagnosis. By hypothesizing that the progression patterns of the

biomarker vary depending on whether subjects will eventually be diagnosed, we can

make use of the longitudinal biomarker data to help determine inherent cure status
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among the censored subjects.

Embedding a binary cure submodel, which assumes some subjects will never ex-

perience the survival event, into a joint longitudinal survival framework allows us to

group subjects by whether they are non-progressors or progressors. Yu et al. (2004)

developed a joint longitudinal-survival-cure model for the prostate cancer, where the

survival event was clinical recurrence and the cured fraction is modeled as a logistic

function of baseline covariates.

In this work, we develop a flexible semiparametric Bayesian framework that jointly

models longitudinal biomarkers, individual cure status, and the disease diagnosis

time by inferring the change point for AD progression before diagnosis. We apply

our framework to an Alzheimer’s disease context, a prime example of a disease with

slowly developing symptoms. Many subjects who are diagnosed with AD are already

cognitively impaired but these detrimental effects are only observable through cer-

tain longitudinal biomarkers that are difficult to track due to cost and invasiveness.

Our data is collected through the BIOCARD study, which tracks cognitive related

biomarkers for subjects that began as cognitively normal.

4.2 Bayesian Joint Model

In this section, we describe our proposed semiparametric Bayesian framework that

jointly models longitudinal biomarker observations with a change point, diagnosis

event times, and cure status. Section 4.2.1 introduces the cure fraction model for

disease progressor/non-progressor status, section 4.2.2 introduces the time-to-event

model for diagnosis times, and section 4.2.3 introduces the longitudinal model for

biomarker measurements conditional on latent variables. Section 4.2.4 discusses the
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nonparametric Dirichlet Process Mixture model that allows subjects to share certain

structures and parameters within clusters.

4.2.1 Cure Fraction Incidence Model

Cure models are applied in survival analysis when event time data comes from a

mixed population composed of two groups: subjects who will eventually progress and

others who will never progress to the event of interest (Sy and Taylor, 2000). The

primary clinical event of interest in our context is the diagnosis event time, but the

survival event of subject death is also relevant as a censoring mechanism. For subject

i (i = 1, . . . , I), let Ui denote the diagnosis event time, Ci denote the administrative

censoring time, and Di denote the survival event time. We assume that these three

values are independent, and define the survival event time as Ti = min(Ci, Di) and

ci = I(Di≤Ci) to be the survival censoring indicator. If we denote censoring for the

diagnosis event as δi = I(Ui≤Ti), then Ui is observable only when δi = 1.

We define the cure indicator, si, such that si = 1 if subject i is a progressor, and

si = 0 if the subject is a non-progressor and diagnosis time Ui =∞. Then, there are

three possible diagnosis time censoring/cure scenarios for each subject:

1. si = 1, δi = 1 (Ui ≤ Ti)

2. si = 1, δi = 0 (Ti < Ui <∞)

3. si = 0, δi = 0 (Ui =∞)

Only subjects with a censored diagnosis event time are considered for being a non-

progressor. We use a probit link to model the cure probability and define a latent

auxiliary variable s∗:

s∗i = βTcXi,0 + ζi , ζi ∼ N (0, 1),
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where Xi,0 is a vector of baseline covariates that are observed when the subject

initially enters the study at age ti,0. Then the cure status, si, is modeled as an

indicator for whether s∗i is positive:

si =


1 s∗i > 0

0 otherwisex

.

With this cure submodel, the probability of being a disease progressor can be di-

rectly computed as P (si = 1 | Xi,0,βc) = Φ(βTcXi,0), where Φ is the cumulative

distribution function of the standard normal distribution.

4.2.2 Time-to-Event Model

For progressors, we denote the distribution of the diagnosis event times, Ui, as

f(Ui | ·) and assume a linear model:

Ui |Xi,0 = βTuiXi,0 + εi,u , εi,u ∼ N (0, σ2
ui)

If a progressor has a censored diagnosis event (si = 1, δi = 0), then the unobserved

Ui can be imputed from f(Ui | ·)I(Ui≥Ti). In contrast, if subject i belongs to the

non-progressor group we assume a point mass of Ui =∞. Thus, the two cure status

possibilities lead to two models for Ui with different dimensions. To resolve this

change in dimension that complicated posterior simulations, we use the pseudo prior

approach described in Carlin and Chib (1995). This approach involves defining a

prior π(U) for subjects in the non-progressor group to match model dimensions and

simplify MCMC updates. The pseudo prior is chosen by matching first and second

moments with the marginal posterior of U under a model without cure, where si = 1
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for all subjects.

4.2.3 Conditional Longitudinal Model

Denote Yi,j, Xi,j, and Zi,j to be the longitudinal biomarker measurements, fixed

effects covariates, and random effects covariates, respectively, for subject i at the

j-th observation at time ti,j (subject age in years), i = 1, . . . , I, j = 1, . . . , Ji. Our

longitudinal model for each subject is a linear mixed effects model conditional on

cure status and cluster membership for progressors. For the non-progressor group,

we assume:

Yi,j | si = 0,Xi,j,Zi,j = βT1Xi,j + bT1iZi,j + εi,j,

where εi,j ∼ N (0, σ2
1) and b1i∼ N (0,Σ1). On the other hand, the longitudinal

biomarker data for the progressor group is modeled by a separate linear mixed effects

model to avoid identifiability issues in the cure model:

Yi,j | si = 1,Xi,j,Zi,j, Ui = βT2iXi,j + bT2iZi,j + γi(ti,j − Ui + τi)
+ + εi,j,

where εi,j ∼ N (0, σ2
2) , b2i∼ N (0,Σ2), and (ti,j − Ui + τh)

+ = max(0, ti,j − Ui +

τh). Under this model, the longitudinal biomarkers and time to diagnosis event data

depend on each other for progressors: the change point for disease progression allows

the biomarker trend to change at a latent point τh years before the diagnosis event.

We impose a uniform prior on τh to restrict it to a clinically reasonable range.
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4.2.4 Dirichlet Process Mixture Model

In section 2.3, we introduced the Dirichlet Process prior and a nonparametric

Dirichlet Process mixture (DPM) model for survival event times. For our current

framework, we assume a DPM model for selected components of our model to clus-

ter subjects and account for subject heterogeneity. The model parameters that are

shared among clusters include the diagnosis event parameters and linear fixed effects

coefficients and change point parameters for progressors: θi = {βui, σ2
ui,β2i, γi, τi}.

The DPM model can be summarized as:

Yi,j, Ui | θi ∼ F (θi)

θi | G ∼ G

G ∼ DP (G0, α),

where G is the mixing distribution for θ, G0 represents the base distribution, and

α refers to the concentration parameter. We can also represent our model using

stick breaking representations for Ui and Yi,j, both using normal distributions as the

mixture distribution:

Ui |Xi,0 ∼
∞∑
h=1

whN (βTuhXi,0, σ
2
uh)

Yi,j | si = 1,Xi,j,Zi,j, Ui ∼
∞∑
h=1

whN (βT2hXi,j + bT2iZi,j + γh(ti,j − Ui + τh)
+, σ2

2)

wh = vh
∏
k<h

(1− vk) , vh∼Beta(1, α),

where h represents cluster membership. We implement a finite DPM model by setting

an upper bound for the total number of clusters to a finite number H. This DPM
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model allows us to account for heterogeneity among subjects by clustering them using

their diagnosis times and longitudinal measurements.

4.2.5 Joint Likelihood of the Model

In summary, we propose a joint model consisting of a cure model for individual

disease progressor status, time to event model for disease diagnosis time, a condi-

tional longitudinal model that assumes different biomarker evolution patterns based

on subject-specific latent cure status, and a DPM model that clusters subjects based

on their longitudinal and diagnosis event processes. In our context, subjects are not

enrolled if they have been diagnosed with the disease or have died before the ini-

tial recruitment time. Therefore we must modify the likelihood to account for bias

min(Ui, Di) ≥ ti,0 and the full complete data likelihood is

L =
I∏
i=1

p(si = 0 | βc,Xi,0)

( Ji∏
j=1

p(Yi,j | si = 0,β1, b1i, σ
2
1,Xi,j,Zi,j)

)1−si
×((

f(Ui |Xi,0,βuh, σ
2
uh)

Ji∏
j=1

p(Yi,j | si = 1,β2h, b2i, σ
2
2, γh, τh,Xi,j,Zi,j, Ui)

)δi
×

(
f(u |Xi,0,βuh, σ

2
uh)I(u≥Ti)

Ji∏
j=1

p(Yi,j | si = 1,β2h, b2i, σ
2
2, γh, τh,Xi,j,Zi,j, Ui = u)

)1−δi
×

p(si = 1 | βc,Xi,0)

)si

× 1

p(min(Ui, Di) ≥ ti,0 | ·)
,
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where

p(min(Ui, Di) ≥ ti,0 | ·) = p(Ui ≥ ti,0 | ·)× p(Di ≥ ti,0)

=
[
p(si = 1 | βc,Xi,0)p(Ui ≥ ti,0 | si = 1,βuh, σ

2
uh,Xi,0) + p(si = 0 | βc,Xi,0)

]
×

p(Di ≥ ti,0).

To compute this bias adjustment in the likelihood, we can model the death time

using a normal model: Di ∼ N (µd, σ
2
d). However, the modeling of death times is

not necessary for posterior inference because we can treat p(Di ≥ ti,0) as a con-

stant. We complete the model by imposing the following priors: βc ∼ N (mc,Vc),

σ2
uh∼InvGamma(a0, b0), βuh∼N (mu,Vu), β1∼N (m1,V1), Σ1 ∼ InvWishart(S−1

1 , η1),

σ2
1 ∼ InvGamma(a1, b1), β2h ∼ N (m2,V2), γh ∼ N (mγ, σ

2
γ), τh ∼ Uniform(aτ , bτ ),

Σ2 ∼ InvWishart(S−1
2 , η2), σ2

2 ∼ InvGamma(a2, b2). We carry out posterior inference

using the Markov chain Monte Carlo (MCMC) sampler. The details are included in

Section 4.6.

4.3 Simulation Study

To evaluate our model’s ability to identify clusters of similar subjects and individ-

ual cure status while being able to accurately model the underlying event time and

longitudinal processes, we develop a simulated dataset and fit our model.

4.3.1 Simulation Setup

We simulated a dataset mimicking the AD dataset composed of longitudinal mea-

surements, diagnosis events, and survival events for 552 subjects. 52 subjects are left
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truncated (9.4% truncation rate) because their diagnosis or survival event occurred

before the first longitudinal measurement time, leaving us with I = 500 subjects.

We considered four covariates in Xi,j: an intercept, years of education (standard-

ized), sex, and time (age of subject in years). The baseline covariates, Xi,0, and

random effects covariates, Zi,j, are composed of an intercept, education, and gen-

der. For each subject, the years of education was generated from N (17, 2.4) and

sex (female=1) was sampled from a Bernoulli(0.5). Initial age was generated from

N (59, 72) and time (years) between longitudinal measurements was generated from

Exponential(1). Survival time was sampled from a Lognormal(4.4, 0.07) and 438 sub-

jects have an observed survival event.

In the cure incidence model, βc was set to (0.9, 0.3,−0.3), which results in 377

out of 500 subjects identified as progressors. Out of these, 226 subjects have an

observed diagnosis event (40% censoring rate). The progressors were generated from

two clusters, with equal probability of being in either cluster: 182 subjects are in the

first cluster, and 195 are in the second cluster. The diagnosis time model parameters

for these clusters were set to βu1 = (67, 3, 3), βu2 = (70, 3, 3), and σ2
u1 = σ2

u2 = 52.

The median diagnosis time was 70 years, with the earliest diagnosis event occurring

at 52.1 years and the latest at 85.4 years.

For the longitudinal model, the parameters were β1 = (−16, 0.15, 0.8, 1), β21 =

(−16, 0.2, 1, 1.2), β22 = (−20, 0.35, 1.2, 1.4), τ1 = 3 , τ2 = 5, γ1 = γ2 = 0.1, Vb1 =

Vb2 =


0.04 0 0

0 0.01 0

0 0 0.01

, and σ2
1 = 0.22, σ2

2 = 0.32. The simulated dataset had a

total of 8236 longitudinal measurements.
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4.3.2 Results: model fitting and posterior infer-

ence

We applied the proposed Bayesian joint model to the simulated dataset. The

hyperparameters were set to be α = 1, mc = mu = m1 = m2 = 0, Vc = Vu = V1 =

V2 = 1002I, S1 = S2 = 10002I, η1 = η2 = 4, a0 = b0 = a1 = b1 = a2 = b2 = 0.01,

mγ = 0, σ2
γ = 12, aτ = 0, and bτ = 25. The model fitting process under our framework

begins with establishing a pseudo prior for the diagnosis event times. We follow the

recommendations of (Carlin and Chib, 1995) and (Zhang et al., 2010) for constructing

the pseudo prior for U , π(U), using preliminary data analysis under a model without

cure, where all subjects have si = 1. Under this simplified model with no dimensional

change, we ran 10,000 MCMC iterations with an initial burn-in of 5,000 iterations,

and a thinning factor of 10, using a finite DPM with five total clusters. Then, we

assume a normal distribution for π(U) and match the first two moments of this pseudo

prior to the marginal posterior density of U.

After the initial pseudo prior specification, the we fit the data under our proposed

model with five total clusters and 10,000 MCMC iterations with a burn-in of 5000

iterations and a thinning factor of 10. Although it’s common to run into the label-

switching problem with mixture models, our MCMC chain does not yield such issues

because the cluster memberships do not change post burn-in. For our simulation

study with five total clusters, this point estimate gives three empty clusters, two

large clusters with 179 and 198 subjects that correspond to the two true clusters in

the simulated data, and all 123 subjects correctly identified as non-progressors.

The convergence for the MCMC chain was assessed using R package coda and

displayed no issues of non-convergence. The trace plots (Figure 4.1) and summary
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table (Table 4.1) of the change point parameters, τh and γh, and the cure status

regression parameter, βc, show good mixing of the chain and the estimates are close

to the truth.

Cluster 1 Cluster 2
True τh 3 5

τh Post. Mean (95% CI) 3.044(2.634,3.388) 5.081(4.682,5.533)
True γh 0.1 0.1

γh Post. Mean (95% CI) 0.103(0.1,0.106) 0.099(0.096,0.103)

Table 4.1: Change point parameter estimation results
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Figure 4.1: Post burn-in trace plots for change point and cure status parameters.
The red line represents the true value. The last index in βc refers to the dimension
number.

To evaluate the longitudinal model performance, we computed the predictive mean

and 95% credible intervals for selected subjects using the MCMC posterior samples.

The longitudinal measurements and true longitudinal mean across time is plotted in
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Figure 4.2 along with the predictive mean and 95% credible intervals for three ran-

domly selected subjects with different cluster membership and cure status, demon-

strating that our model is able to reliably recover the true longitudinal process with

change points.

Our model fitting results also allows us to carry out predictive inference for the

cure status and diagnosis times of current or future subjects. The details of predictive

posterior inference is provided in Section 4.6.1. We randomly select a progressor from

our dataset that is female with 20.5 years of education and had a censored diagnosis

event. We sample the predictive probability of being a progressor and plot the density

in Figure 4.3(a). The predictive density covers the true value probability (0.916) and

gives a predictive mean probability of 0.912. The density of the predictive diagnosis

event time conditional on the subject being a progressor is provided in Figure 4.3(b)

and covers the true unobserved diagnosis time of 78.9 years. Thus, we can construct

the predictive density of the diagnosis event time for this subject to be a mixture

distribution with probability 0.088 assigned to the point mass of Ui = ∞ and with

probability 0.912 assigned to the density in Figure 4.3(b).
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(a) Subject 1: Cluster 1, si = 1 (b) Subject 2: Cluster 2, si = 1
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(c) Subject 3: si = 0

Figure 4.2: These panels plot the longitudinal observations (dots) and true longi-
tudinal mean (black line) across time and the predictive mean (red line) and 95%
credible intervals (dashed red lines) for three randomly selected subjects, with differ-
ent cluster membership and cure status.
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Figure 4.3: These panels plot the posterior predictive densities for the diagnosis time
and probability of being a progressor for a randomly selected subject. The red lines
represent the true unobserved diagnosis time and probability of being a progressor.
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4.4 Real Data Analysis

In this section, we analyze the data from the BIOCARD study for for I = 313 sub-

jects that longitudinally tracked biomarkers associated with the development of cog-

nitive impairment, particularly Alzheimer’s disease. Our analysis uses the biomarker

measurements for plasma levels of phosphorylated tau181 (ptau181) in the cere-

brospinal fluid (CSF) of subjects. All subjects in this study started with a normal

cognitive status and several baseline risk factors were initially collected when sub-

jects joined the study: years of education (Educ), sex (female=1), and the presence

of the ε4 allele in the Apolipoprotein E gene (APOE), defined as 1 indicating presence

of the allele, and 0 indicating no presence. Table 4.2 summarizes subjects’ baseline

characteristics.

Years of Education (years)
Mean ± SD 17 ± 2.4

Median 18

Sex, n(%)
Male 131 (41.9%)

Female 182 (58.1%)

APOE, n(%)
Yes 108 (34.5%)
No 205 (65.5%)

Table 4.2: Subject characteristics at baseline.

The subjects’ cognitive abilities are repeatedly diagnosed and the diagnosis event

of Alzheimer’s disease is defined in our context as an onset of mild cognitive impair-

ment (MCI) or dementia. Out of our 313 subjects, 101 have an observed diagnosis

time (67.7 % censoring rate) and the largest age at diagnosis was 97.4 years. The

Kaplan-Meier plot for the diagnosis times by subject age is provided in Figure 4.4
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and suggests that roughly 20% of subjects will not have a diagnosis for AD by age

97.
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Figure 4.4: Kaplan-Meier plot for the Alzheimer’s disease diagnosis event.

4.4.1 Results: model fitting and posterior infer-

ence

We applied the proposed Bayesian joint model to the BIOCARD data with Xi,j =

(1,Educ, Sex,APOE, ti,j), Zi,j = Xi,0 = (1,Educ, Sex,APOE). The hyperparameters

were set to the same as in the simulation study and we ran the same three-step

MCMC inference. In each step, we used a finite DPM with five total clusters and had

10,000 MCMC iterations, an initial burn-in of 5,000 iterations, and a thinning factor

of 10. The first step of assuming no cure to construct a pseudo prior for the diagnosis

event times, U , yielded a marginal posterior density with a mean of 84.2 years and a

standard deviation of 12.3 years.
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After constructing a pseudo prior for U , we fit our proposed model to the data

using another 10,000 MCMC iterations. Using these posterior samples, we sample

from the predictive posterior distributions of diagnosis event times and probability

of being a progressor for two randomly selected subjects and plot the densities in

Figure 4.5. Subject R1 is male with 16 years of education and positive APOE status

while subject R2 is female with 18 years of education and negative APOE status. As

a result of their varying baseline characteristics, these two subjects have significant

differences in the predictive densities for probability of being a progressor and subject

R1 has a predictive mean probability of 0.98 while subject R2 has a probability of

0.54. Subject R1’s predictive density for diagnosis time is a mixture distribution with

a 0.02 probability for Ui = ∞ (non-progressor) and a 0.98 probability assigned to

the predictive density in Figure 4.5(b), which has a mean of 80.3 years. In contrast,

Subject R2’s diagnosis time predictive density is a mixture distribution with a 0.46

probability of Ui = ∞ and a 0.54 probability to follow the density in Figure 4.5(d),

which has a mean of 82.6 years.

Parameter estimation under a mixture model such as the DPM for diagnosis event

times is complicated by the label switching problem, where the unidentifiability of

clusters makes it difficult to interpret parameter estimation results. To resolve this

issue, we construct point estimates of clustering based on the least-squares distances

from the posterior probabilities of subject pairs sharing the same cluster (Vannucci

et al., 2009). We then use these point estimates of clusters to fix the cluster member-

ship of each subject, and continue to run another 10,000 MCMC iterations. The con-

vergence for all three MCMC chains, each with 10,000 iterations, was assessed using

R package coda and showed no issues of non-convergence. Fixing the cluster member-

ship results in 75 subjects (24% of all subjects) being identified as non-progressors.
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Figure 4.5: These panels plot the posterior predictive densities for the diagnosis
time and probability of being a progressor for two randomly selected subjects.

The remaining 238 progressors were clustered into five groups and baseline statistics

and change point estimation results are summarized in Table 4.3. Cluster 5 contains

most of the progressors and the slope change at the change point, γh, is close to zero

and its 95% credible interval covers zero. Thus, we believe these 153 subjects have no

change point. The other four clusters have varying change points between 3 and 13

years before the diagnosis time. Subjects in clusters 1 and 2 experienced a decrease

in the slope at the change point while clusters 3 and 4 had their slopes increase at
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the change point. Compared to the five progressor clusters, the non-progressors had

more education (mean of 17.35 years), a significantly higher percentage of females

(74.67%), and a significantly lower percentage of APOE (2.67%).

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
N 39 16 26 4 153

Mean Educ. 17.14 16.94 16.96 17 16.78
% Female 56.41 37.5 57.69 50 52.94
% APOE 51.28 68.75 46.15 50 39.87

τh Post. Mean 12.83 10.18 7.66 3.54 17.72
τh Post.95% CI (1.64,20.92) (6.75,14.94) (6.26,9.03) (0.57,7.66) (11.52,24.34)
γh Post. Mean -1.17 -2.12 3.4 2.66 0.01
γh Post.95% CI (-2.43,-0.65) (-2.47,-1.82) (2.97,3.81) (1.31,4) (-0.09,0.12)

Table 4.3: Summary of results with fixed clusters

We plot the longitudinal measurements of ptau181 grouped by cluster membership

in Figure 4.6, where the zero on the x-axis is the posterior mean of the change

point. The slopes of the longitudinal process significantly changes at the change point

for clusters 1-4 but remains stable in cluster 5. Figure 4.7 plots the longitudinal

measurements of the non-progressors and progressors. The non-progressors have a

significantly flatter slope and lower variance in the ptau181 longitudinal trajectories

compared to the progressors. These findings agree with studies in the literature that

identify high levels of ptau181 as a diagnostic tool for Alzheimer’s disease (Thijssen

et al., 2020).

Figure 4.8 plots the trace plots for the cure status coefficient, βc, which has a

posterior mean of (0.83,-0.28,-0.83,2.05). Years of education is negatively associated

with being a progressor for AD, which aligns with findings in Sharp and Gatz (2011)

that have shown that low education increases the risk of dementia. Furthermore, our

analysis finds that the presence of the APOE ε4 allele significantly increases the risk

of developing AD, agreeing with previous clinical studies that identify APOE ε4 as
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Figure 4.6: These panels plot the ptau181 biomarker for progressors grouped by clus-
ter membership. Zero on the x-axis is the posterior mean of the change point. Each
line represents the measurements for one subject and the red line segments are mea-
surements after the AD diagnosis, when the subject is experiencing MCI/dementia.
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Figure 4.7: These panels plot the ptau181 biomarker for each subject, grouped by
cure status. The zero on the x-axis is Ti.

the most prevalent genetic risk factor of AD (Safieh et al., 2019)
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Figure 4.8: Post burn-in trace plots for cure status parameters, where the last index
in βc refers to the dimension number.

122



4.5 Conclusion

In this chapter, we developed a semiparametric Bayesian framework that jointly

models longitudinal biomarker measurements, latent cure status, and diagnosis event

times. The model simultaneously identifies a change point in the longitudinal evolu-

tion of a disease that precedes diagnosis time, accounts for the possibility of individual

disease non-progression, and clusters subjects using longitudinal and diagnosis time

data. Through simulation studies, we demonstrated that our model is able to reliably

cluster subjects with similar longitudinal and diagnosis event time patterns, compute

the personalized probability of being a disease progressor, and recover the true under-

lying longitudinal and diagnosis event time processes. We applied our proposed model

to the BIOCARD dataset, yielding clinically relevant results and detecting longitu-

dinal change points in the ptau181 biomarker for select subjects occurring between 3

and 13 years before an official diagnosis for Alzheimer’s disease.

There are a number of possible extensions for our methods. Firstly, we consider

one longitudinal biomarker measurement in the longitudinal process, which can be

expanded to a multivariate analysis of multiple longitudinal biomarkers. Secondly,

we can allow for individual heterogeneity in the change point years before diagnosis

event, τh. In our current setup, this value is fixed and shared among all subjects in

the same cluster.

4.6 MCMC Details

For our finite DPM model, we work with mixtures of a large but finite number

(H) of clusters. We use ri = h to indicate that i-th subject is assigned to h-th

cluster. Let the bias adjustment in the likelihood be denoted as Bi,h(βc,βuh, σ
2
uh) for
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progressors and Bi(βc) for non-progressors. Then for progressors, Bi,h(βc,βuh, σ
2
uh) =

Φ(βTcXi,0)p(Ũi ≥ ti1 | si = 1, ri = h,βuh, σ
2
uh,Xi,0) + (1 − Φ(βTcXi,0)), where Ũi

represents the diagnosis time: either the observed diagnosis time, Ui (δi = 1), or the

imputed diagnosis time for subjects with a censored diagnosis time (δi = 0). For non-

progressors, Bi(βc) = Φ(βTcXi,0)
∑H

h=1whp(Ũi ≥ ti1 | si = 1, ri = h,βuh, σ
2
uh,Xi,0) +

(1 − Φ(βTcXi,0)). Furthermore, let Yi = (Yi,1, . . . , Yi,Ji)
T , ti = (ti,1, . . . , ti,Ji), Xi =

(Xi,1, . . . ,Xi,Ji), and Zi = (Zi,1, . . . ,Zi,Ji).

1. Update ri for i ∈ J0 := {i : si = 0} :

If si = 1 and δi = 0 :

p(ri = h | · · · ) =
whΦ(Ũi | βTuhXi,0, σ

2
uh)p(Yi | ri = h, · · · )Bi,h(βc,βuh, σ

2
uh)∑H

h=1whΦ(Ũi | βTuhXi,0, σ2
uh)p(Yi | ri = h, · · · )Bi,h(βc,βuh, σ2

uh)

where Φ refers to the normal distribution CDF.

If si = 1 and δi = 1 :

p(ri = h | · · · ) =
whp(Ũi | βTuhXi,0, σ

2
uh)p(Yi | ri = h, · · · )Bi,h(βc,βuh, σ

2
uh)∑H

h=1whp(Ũi | βTuhXi,0, σ2
uh)p(Yi | ri = h, · · · )Bi,h(βc,βuh, σ2

uh)
.

2. Update vh for h = 1, · · · , H − 1.

f(vh | · · · ) ∝ Beta(1 +
I∑
i=1

I(ri=h), α +
H∑

k=h+1

I∑
i=1

I(ri=k)) .

3. Update si for i ∈ J0 := {i : δi = 0}

P (si = 1 | · · · ) =
P1

P1 + P0

,

where P1 = Φ(βTcXi,0)
∑H

h=1 whp(Yi | Ũi, si = 1, ri = h, · · · )p(Ũi | βuh, σ2
uh,Xi,0),
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P0 = (1 − Φ(βTcXi,0))p(Yi | Ũi, si = 0, · · · )π(Ũi), and π(·) is pseudo prior for

non-progressors.

4. Update s∗i , (truncated normal),

p(s̃∗i | ri = h, · · · ) =


N (βTcXi,0, 1)I(0,∞) si = 1

N (βTcXi,0, 1)I(−∞,0) si = 0

.

5. Update βc

Ṽc = (V −1
c +

I∑
i=1

XT
i,0Xi,0)−1

m̃c = Ṽc(V
−1
c mc +

I∑
i=1

XT
i,0s
∗
i ) .

f(βc | · · · ) ∝ N (m̃c, Ṽc)
I∏
i=1

p(min(Ũi, Di) ≥ ti1 | βc, · · · )

∝ N (m̃c, Ṽc)
∏
i:si=1

Bi,ri(βc,βuri , σ
2
uri

)
∏
i:si=0

Bi(βc)

We use the Metropolis Hastings algorithm with a proposal distribution ofN (m̃c, Ṽc).

The acceptance probability of the proposed β∗c is:

A(β∗c ,βc) = min

{
1,

∏
i:si=1 Bi,ri(β

∗
c ,βuri , σ

2
uri

)
∏

i:si=0Bi(β
∗
c )∏

i:si=1 Bi,ri(βc,βuri , σ
2
uri

)
∏

i:si=0Bi(βc)

}

6. Update Ũi, for i ∈ J0 := {i : δi = 0}

Given si = 0, we simulate Ũi from pseudo prior π(·). If si = 1, then we want to
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sample from:

p(Yi | Ũi, si = 1, · · · )p(Ũi | ri = h,βuh, σuh)I(Ũi>Ti)

∝ exp
(
− (Ũi − βTuhXi,0)2

2σ2
uh

−
Ji∑
j=1

µi,j − γh(ti,j − Ũi + τh)
+
)2

2σ2
2

)
I(Ũi>Ti)

, where µi,j = Yi,j − βT2hXi,j − bT2iZi. If we let Ki denote the number of visits

after Ti−γh, then we need to sample from a mixture of Ki+1 truncated normal

distributions. If we define ti,0 = 0 and ti,Ji+1 = ∞, the k-th truncated normal

distribution is in the range ti,Ji−k + τh < Ũi ≤ ti,Ji−k+1 + τh:

N (mu, vu)I(Ũi>Ti)
Iti,Ji−k+τh<Ũi≤ti,Ji−k+1+τh

vu =
σ2
uhσ

2
2

σ2
2 + kσ2

uhγ
2
h

mu =
σ2

2β
T
uhXi,0 − σ2

uh

∑Ji
j=Ji−k+1 µi,jγh

σ2
2 + kσ2

uhγ
2
h

Iti,Ji−k+τh<Ũi≤ti,Ji−k+1+τh

The probability of sampling from each of the Ki + 1 truncated normal distribu-

tions is proportional to the integral of their respective normal distribution over

its truncated support.

7. Update βuh

Ṽu =

(
V −1
u + σ−2

uh

∑
i:ri=h,si=1

Xi,0X
T
i,0

)−1

m̃u = Ṽu

(
V −1
u mu + σ−2

k

∑
i:ri=h,si=1

Xi,0Ũi

)
.
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f(βuh | · · · ) ∝ N (m̃u, Ṽu)
∏

i:ri=h,si=1

p(min(Ũi, Di) ≥ ti1 | βuh, · · · )

∝ N (m̃u, Ṽu)
∏

i:ri=h,si=1

Bi,h(βc,βuh, σ
2
uh)

We use the Metropolis Hastings algorithm with a proposal distribution ofN (m̃u, Ṽu).

The acceptance probability of the proposed β∗uh is:

A(β∗uh,βuh) = min

{
1,

∏
i:ri=h,si=1Bi,h(βc,β

∗
uh, σ

2
uh)∏

i:ri=h,si=1 Bi,h(βc,βuh, σ2
uh)

}

8. Update σ2
uh. The full conditional for σ−2

uh is

ã0 = a0 +

∑I
i=1 I(ri=h,si=1)

2

b̃0 = b0 +
1

2

∑
i:ri=h,si=1

(Ũi − βTuhXi,0)2 .

f(σ2
uh | · · · ) ∝ Inv-Gamma(ã0, b̃0)

∏
i:ri=h,si=1

p(min(Ũi, Di) ≥ ti1 | σ2
uh, · · · )

∝ Inv-Gamma(ã0, b̃0)
∏

i:ri=h,si=1

Bi,h(βc,βuh, σ
2
uh)

We use the Metropolis Hastings algorithm with a proposal distribution of

Inv-Gamma(ã0, b̃0). The acceptance probability of the proposed σ2
uh
∗

is:

A(σ2
uh
∗
, σ2

uh) = min

{
1,

∏
i:ri=h,si=1Bi,h(βc,βuh, σ

2
uh
∗
)∏

i:ri=h,si=1Bi,h(βc,βuh, σ2
uh)

}

9. Update β1h, β2h, and γh. The full conditional distributions are in standard
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form, given as

f(β1h | · · · ) ∝ N (m̃1, Ṽ1)

Ṽ1 =

(
V −1

1 + σ−2
1

∑
i:ri=h,si=0

XiX
T
i

)−1

m̃1 = Ṽ1

(
V −1

1 m1 + σ−2
1

∑
i:ri=h,si=0

Xi(Yi − bT1iZi)

)

f(β2h | · · · ) ∝ N (m̃2, Ṽ2)

Ṽ2 =

(
V −1

2 + σ−2
2

∑
i:ri=h,si=1

XiX
T
i

)−1

m̃2 = Ṽ2

(
V −1

2 m2 + σ−2
2

∑
i:si=1

Xi(Yi − bT2iZi − γh(ti − Ũi − τh)+)

)

f(γh | · · · ) ∝ N (m̃γ, σ̃
2
γ)

σ̃2
γ =

(
σ−2
γ + σ−2

2

∑
i:ri=h,si=1

((ti − Ũi + τh)
+)2

)−1

m̃γ = σ̃2
γ

(
σ−2
γ mγ + σ−2

2

∑
i:ri=h,si=1

(ti − Ũi + τh)
+(Yi − βT2hXi − bT2iZi)

)
.
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10. Update b1i for i ∈ J1 := {i : si = 0} and b2i for i ∈ J2 := {i : si = 1},

f(b1i | ri = h, · · · ) ∝ N (m̃b1 , Ṽb1)

Ṽb1 =

(
σ−2

1

∑
i:ri=h,si=0

ZiZ
T
i + V −1

b1

)−1

m̃b1 = Ṽb1

(
σ−2

1

∑
i:ri=h,si=0

Zi(Yi − βT1hXi)

)

f(b2i | ri = h, · · · ) ∝ N (m̃b2 , Ṽb2)

Ṽb2 =

(
σ−2

2

∑
i:ri=h,si=1

ZiZ
T
i + V −1

b2

)−1

m̃b2 = Ṽb2

(
σ−2

2

∑
i:ri=h,si=1

Zi(Yi − βT2hXi − γh(ti − Ũi + τh)
+)

)
.

11. Update Vb1 , and Vb2 ,

f(Vb1 | · · · ) ∝ InvWishart

(S1 +
∑

i:ri=h,si=0

b1ib
T
1i

)−1

, η1 +
∑
i

I(ri=h,si=0)


f(Vb2 | · · · ) ∝ InvWishart

(S2 +
∑

i:ri=h,si=1

b2ib
T
2i

)−1

, η2 +
∑
i

I(ri=h,si=1)

 .

12. Update σ1, and σ2,

f(σ1 | · · · ) ∝ InvGamma(a1 +

∑
i:si=0 Ji

2
, b̃1h)

b̃1h = b1 +
1

2

∑
i:ri=h,si=0

(Yi − βT1hXi − bT1iZi)
T (Yi − βT1hXi − bT1iZi)

f(σ2 | · · · ) ∝ InvGamma(a2 +

∑
i:si=1 Ji

2
, b̃2h)

b̃2h = b2 +
1

2

∑
i:ri=h,si=1

MT
i,hMi,h,
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where Mi,h = Yi − βT2hXi − bT1iZi − γh(ti − Ũi + τh)
+

13. To update change point variable τh, there is no closed form formula, and we

can use Metropolis-Hastings algorithm to generate τ ∗h from Uniform(aτ , bτ ), and

accept it with probability

A(τ ∗h , τh) = min

{
1,

∏
i:ri=h,si=1 f(Yi | τ ∗h , · · · )∏
i:ri=h,si=1 f(Yi | τh, · · · )

}
.

4.6.1 Predictive Inference

The posterior predictive distribution for the diagnosis time of a progressor i with

a censored diagnosis time is given by:

p(Ũi |Xi,0) =
H∑
h=1

Ih
α + Is

∫
N (βTuhXi,0, σ

2
uh)I(Ũi>Ti)

p(βuh, σ
2
uh | Dn)dσ2

uhdβuh

+
α

α + Is

∫
N (βTuiXi,0, σ

2
uh)I(Ũi>Ti)

p(βui)p(σ
2
ui)dσ

2
uidβui

=
H∑
h=1

Ih
α + Is

∫
N (βTuhXi,0, σ

2
uh)I(Ũi>Ti)

p(βuh, σ
2
uh | Dn)dσ2

uhdβuh

+
α

α + Is
ta0(m

T
uXi,0, b0 +XT

i,0VuXi,0)I(Ũi>Ti)
,

where ta0 represents the t-distribution with a0 degrees of freedom, the entire dataset

is denoted Dn = {Yi, ti,Xi,Zi,Xi,0, δi, Ui}ni=1, Ih denotes the number of subjects in

the h-th cluster, and Is denotes the total number of progressors.

The posterior predictive distribution for the probability of being a progressor, pi,
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is given by:

p(pi |Xi,0) =

∫
Φ(βTcXi,0)p(βc | Dn)dβc
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