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Abstract 

Chronic kidney disease (CKD) is a global public health problem that affects greater than 10% of 

adults and is associates with multiple complications. Prevention of CKD incidence and early 

progression informed by an accurate understanding of the risk factors and causes is important 

since later risks are high and hard to treat. Previous studies have examined several potential risk 

factors of CKD; however, few studies have evaluated longitudinal change in kidney function as 

an outcome. Furthermore, research addressing the underlying causal relationships and risk 

prediction has been limited. Advances in genomics and proteomics provide new opportunities for 

understanding CKD risk factors. We therefore investigated kidney function at three layers: 

association, causation, and prediction, integrating multiple omics approaches into our 

epidemiological studies. Chapter 1 provides an introduction. In Chapter 2 and 3, we rigorous 

examined risk factors for longitudinal kidney function decline using classical epidemiological 

approaches. We modeled 30-year kidney function trajectories and demonstrated the associations 

of hypertension and obesity with random effects models for kidney function decline over 30-year 

of follow-up. In Chapter 4, we used genome-wide association study (GWAS) results and 

Mendelian randomization methods to examine the causal directions between risk factors and 

kidney function. Not only did we demonstrate strong causal effects of lower kidney function on 

higher blood pressure, we devised a method using multiple markers to triangulate on the subset 

of genes that are likely to reflect kidney function susceptibility. In Chapter 5, we further 

examined the power of genetic susceptibility for kidney function to predict future risk and 

investigated the association between the genetic risk with an intermediate phenotype,  plasma 

proteins. We demonstrated the link between genetic basis of kidney function measured as 

polygenic risk score (PRS) with incidence of CKD, end-stage kidney disease, kidney failure, and 
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acute kidney injury, supporting the use of genetic information as risk factors for kidney diseases. 

We also found that protein associations were stronger with kidney function than its genetic risk. 

Overall, using multiple types of data and methods, this doctoral thesis advances our 

understanding of multiple non-genetic and genetic risk factors for CKD and its progression. 

Advisors: Josef Coresh, MD, PhD; Nilanjan Chatterjee, PhD; Adrienne Tin, PhD 

Readers: Morgan E. Grams, MD, PhD; Elizabeth Selvin, PhD, MPH 

Alternates: Scott L. Zeger, PhD; Jay H. Bream, PhD; Casey M. Rebholz, PhD, MS, MNSP, 

MPH 
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Chapter 1 Introduction 

Chronic kidney disease (CKD), defined as reduced kidney function or abnormalities of kidney 

structure, is a global public health epidemic affecting over 10% of U.S. adults, with similarly 

high rates across the world.1-3 The clinical impact of CKD is substantial: risks of end stage 

kidney disease (ESKD), cardiovascular disease (CVD), and premature mortality are all raised.4-6 

CKD has limited therapeutic options and is associated with high medical costs, which heightens 

the importance of prevention.  

 

Accurate understanding of the risk factors and causes of kidney function decline as well as risk 

prediction are critical for guiding effective and efficient prevention strategies of CKD. Taking 

blood pressure as an example, identifying it as a genetic risk factor, i.e., cause, of kidney 

function decline may encourage earlier treatment.7-10 We recognize that clinical trial data are 

already available and there are multiple risks in addition to CKD progression, yet hypertension 

awareness and control have much room for improvement.11,12 Amassing very strong evidence 

and understanding the full range of risks, including CKD, coupled with identifying individuals at 

high risk of the disease can assist with enhanced prevention and treatment efforts.  

 

Over the past decade, genome-wide association studies (GWAS) have revealed numerous genetic 

loci for kidney function, generating interests in the use of genetic information to examine 

biology, causal relationships and improve prediction of kidney diseases.13-19 Mendelian 

randomization is a method to assess the causality of an observed association. It overcomes the 



2 

 

limitations of confounding and reverse causation in classical epidemiological studies by using 

genetic variants as instruments.20 Polygenic risk scores (PRS) capture the polygenic architecture 

of complex diseases, including kidney diseases, by aggregating genome-wide genetic variation 

into a single score that reflects individual’s disease risk. Both of these GWAS-based methods 

pose a new opportunity for better studying kidney function.  

 

New methodologies for large scale proteomic measurement using aptamer technologies also 

provide an opportunity to assess the impact of genetic susceptibility to low kidney function on 

the plasma proteome.21,22 Proteins are the basic building block of cells. There are reported to be 

around 10,000 to 12,000 proteins detected in human plasma or serum,23,24 which are involved in 

various biological processes, including signaling, vascular and endothelial function, metabolism, 

and immune response.25-27 Protein is a combination of nature, i.e. genetics, and nurture, i.e., 

environment, therefore it is very interesting to examine the balance of genetically predisposition 

vs. secondary influences on proteomic signals,28 which is particularly important for kidney 

diseases since reduced kidney function results in elevations of many protein. 

 

We thus comprehensively investigated kidney function by integrating multiple omics approaches 

into epidemiological studies. We used data from the Atherosclerosis Risk in Communities 

(ARIC) study, the UK Biobank (UKB), and summary statistics of GWAS meta-analysis of 

European-ancestry (EA) participants in the Chronic Kidney Genetic (CKDGen) Consortium, the 

UKB, and the International Consortium for Blood Pressure (ICBP). The ARIC study is a 

prospective population-based cohort (N=15,792; Mean age: 54; % female: 57%) with 30-year 

follow up. It collected blood sample and a rich set of traditional risk factors at baseline and 
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follow-up visits.29 Collaborating with SomaLogic, the ARIC study will be able to assay ~5,000 

proteins at two time points that are around 20 years apart.21 The UKB is a prospective 

population-based cohort (EA: N=458,577; Mean age: 56.8; % female: 54.2%) with deep genetic 

and phenotypic data collected on participants across the United Kingdom.30 The CKDGen 

Consortium is a trans-ethnic consortium (EA: N=567,460; Mean age: 50.1; % female: 51.8%) 

combined >75 epidemiologic studies, mostly population-based, with genome-wide genetic data 

and kidney function measurements.13 The ICBP is an international consortium to investigate 

blood pressure genetics (EA: N=299,024; Mean age: 54.9; % female: 55.1%).31 

 

Using the above-mentioned data, we conducted four studies to shed light on CKD progression, 

causes and genetics. We first rigorously examined the associations between potential risk factors, 

hypertension and obesity, and prospective kidney function decline and related kidney diseases. 

We used longitudinal data from the ARIC study. Kidney function was measured as glomerular 

filtration rate (GFR) estimated by the Chronic Kidney Disease Epidemiology Collaboration 

(CKD-EPI) creatinine equation (eGFRcr) from visit 1 (1987-1989) to visit 6 (2016-2017). We 

modeled long-term kidney function trajectories over 30 years of follow up and use mixed models 

to evaluate the associations of potential risk factors with future decline in kidney function and 

development of CKD and ESKD. The two studies of this step are detailed in Chapter 2 and 

Chapter 3.  

 

The editorial to our Chapter 2 paper summarized our “several important results” and concluded 

that our paper was “a significant addition to the existing literature”. But it also asked an 

important question: “is the association causal”?32,33 To evaluate the causal relation between 
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kidney function and blood pressure, we used GWAS results from the CKDGen consortium, the 

UKB, and the ICBP to conduct a two-sample bi-directional Mendelian randomization (MR) 

analysis.13,31 To obtain robust conclusions from our analyses, we paid particular attention to two 

critical aspects in this MR study. One being the use of serum creatinine for GFR estimation, 

which might link eGFRcr to genetic variants more related to creatinine metabolism than 

glomerular filtration function, making it difficult to interpret any causal findings between 

eGFRcr and blood pressure. To address this issue, we used additional data from large-scale meta-

analysis of GWAS of blood urea nitrogen (BUN) as a complementary kidney function biomarker 

to select genetic instruments that are more likely to be specific to kidney function. The second 

being the assumption of the lack of horizontal  pleiotropy of the genetic instruments, that is the 

genetic instruments must be associated with the outcome through the exposure only. This 

assumption is usually difficult to assess and verify.34 To address this issue, we analyzed the data 

using multiple statistical MR methods and prioritized the method that are known to be most 

robust to the presence of horizontal pleiotropy.35 The details of this study can be found in 

Chapter 4.  

 

After successfully using GWAS results for examining causal relations, we further examined the 

power of genetic susceptibility for kidney function to predict future risk. To better understand 

GWAS results, we also investigated the association between genetically predicted kidney 

function decline with an intermediate phenotype, i.e., plasma proteins. Using large studies and 

new algorithms, we derived a range of PRS for kidney function measured as eGFRcr, including a 

genome-wide score as a weighted average of 1.2 million common SNPs (LDPred PRS).36 We 

investigated the strengths of associations of PRS for kidney function with four incident kidney 
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diseases, CKD, ESKD, kidney failure, and acute kidney injury (AKI), among EA participants in 

the ARIC study. We then examined ~5,000 plasma proteins measured at two time points, visit 3 

(1993-1995) to visit 5 (2011-2013), in relation to both PRS for kidney function and the 

concurrent kidney function itself. This work corresponds to the content in Chapter 5.  

 

Overall, supported by multiple methods and data sources, this doctoral thesis provided a unique 

and comprehensive view of kidney function decline from association to cause to risk prediction.   
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ABSTRACT 

Rationale & Objective: Hypertension is a risk factor for chronic kidney disease progression. 

The relationship between hypertension and change in kidney function over time among 

individuals with preserved kidney function, and whether it differs by race, has not been 

elucidated.  

Study Design: Observational study. 

Setting & Participants: 14,854 participants from the Atherosclerosis Risk in Communities 

(ARIC) study. 

Predictors: Hypertension status was assessed at baseline (1987-89) and was categorized 

following the classification in the 2017 American College of Cardiology/American Heart 

Association Clinical Practice Guideline as: normal blood pressure; elevated blood pressure; stage 

1 hypertension; stage 2 hypertension without medication; or stage 2 hypertension with 

medication. 

Outcomes: Estimated glomerular filtration rate (eGFR) calculated using serum creatinine 

measured at baseline and 4 follow-up study visits over 30 years. 

Results: At baseline, 13.2%, 7.3%, and 19.4% Caucasians and 15.8%, 14.9%, and 39.9% 

African Americans were categorized to stage 1 hypertension, stage 2 hypertension no 

medication, and stage 2 hypertension with medication. Individuals with hypertension had 

significantly greater decline in eGFR over the 30-year follow-up than those without 

hypertension. Adjusted annual difference in eGFR decline compared to normal blood pressure 

was fairly similar across race groups (Caucasians: elevated blood pressure: -0.11 ml/min/1.73 

m2; stage 1 hypertension: -0.15 ml/min/1.73 m2; stage 2 hypertension without medication: -0.36 

ml/min/1.73 m2; stage 2 hypertension with medication: -0.17 ml/min/1.73 m2; African 
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Americans: elevated blood pressure: -0.21 ml/min/1.73 m2; stage 1 hypertension: -0.16 

ml/min/1.73 m2; stage 2 hypertension without medication: -0.50 ml/min/1.73 m2; stage 2 

hypertension with medication: -0.16 ml/min/1.73 m2). The average 30-year predicted probability 

of developing CKD stage G3a+ with normal blood pressure, elevated blood pressure, stage 1 

hypertension, stage 2 hypertension without medication, or stage 2 hypertension with medication 

was 54.4%, 61.6%, 64.7%, 78.1%, and 70.9%, respectively, among Caucasians and 55.4%, 

62.8%, 60.9%, 76.1%, and 66.6%, respectively, among African Americans.  

Limitations: Five eGFR measurements for estimating long-term trajectories; potential 

differential loss to follow-up for participants with hypertension at baseline.  

Conclusions: Hypertension status at baseline was associated with faster kidney function decline 

over 30-year follow-up in a general population cohort.  
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INTRODUCTION 

Hypertension ranks as the top risk factor for chronic disease worldwide.37 People with 

hypertension have an increased risk for myocardial infarction, stroke, heart failure, and kidney 

failure.38 According to the 2017 American College of Cardiology/American Heart Association 

Clinical Practice Guideline, the prevalence of hypertension among U.S. adults was 45.6%.39,40 

Hypertension is a risk factor for kidney disease progression in individuals with CKD,8,41 but few 

studies have addressed the relationship between hypertension and longitudinal change in kidney 

function in the general population.42 Furthermore, the extent to which hypertension precedes 

kidney function decline or is simply a consequence of lower kidney function continues to be an 

area of controversy.43 

 

African Americans have a substantially higher risk of hypertension than Caucasians and, among 

those with hypertension, poorer hypertension control.44-47 There are also profound racial 

disparities in kidney disease, with African Americans approximately being 1.5-times more likely 

to develop CKD and three times more likely to develop end-stage renal disease compared to 

Caucasians.48-51 Racial disparities may in part be explained by a greater burden of risk factors 

among African Americans, including higher prevalence of hypertension, diabetes mellitus and 

the APOL1 genetic risk variant.52-55 However, it is also possible that the risk relationship between 

hypertension may be stronger in African Americans than Caucasians, either due to heightened 

susceptibility to disease or poorer risk factor control.   

 

As such, the purpose of this study was to evaluate the association of hypertension with 

trajectories of estimated glomerular filtration rate (eGFR) and to assess whether the risk of 
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kidney outcomes associated with hypertension varied by race in a community-based cohort of 

14,854 Caucasian and African American adults over 30 years of follow-up. 

 

METHODS 

Study Design & Study Population 

The Atherosclerosis Risk in Communities (ARIC) study is a prospective cohort designed to 

investigate the etiology of atherosclerosis and its clinical consequences as well as to examine 

variability in disease risk according to characteristics of the study population.29 The ARIC study 

enrolled a total of 15,792 middle-aged (45-64 years old at baseline), predominantly Caucasian 

and African American men and women from four communities in the U.S.: Forsyth County, 

North Carolina; Jackson, Mississippi; suburbs of Minneapolis, Minnesota; and Washington 

County, Maryland. The initial examination took place in 1987-1989 (baseline, study visit 1). 

Follow-up examinations occurred at approximately three-year intervals: 1990-1992 (study visit 

2), 1993-1995 (study visit 3), 1996-1998 (study visit 4), more recently, in 2011-2013 (study visit 

5), and in 2016-2017 (study visit 6). During each study visit, an extensive questionnaire was 

administered, a clinical examination was conducted, and blood and urine specimens were 

collected. 

 

In the present study, participants were excluded if they had missing data on hypertension status 

at baseline, missing measurement of serum creatinine at baseline, had eGFR <60 ml/min/1.73 m2 

at baseline, prevalent end-stage renal disease, self-reported race other than Caucasian or African 

American, or missing covariates. After these exclusions, the analytic sample size was 14,854 
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(94% of the original cohort). Study participants provided written documentation of informed 

consent and study protocols were approved by the institutional review board at each study site. 

 

Assessment of Hypertension Status 

Systolic blood pressure (SBP) and diastolic blood pressure (DBP) were measured twice at visit 4 

and three times at other visits using a random-zero sphygmomanometer while seated after resting 

for five minutes in a separate, quiet room. Participants were requested to avoid vigorous physical 

activity, cigarette smoking, and consumption of food, caffeinated beverages, and alcohol for 

twelve hours prior to the study visit. The appropriate cuff size was selected after measuring arm 

circumference. The first and second blood pressure values at visit 4 and the second and third 

blood pressure values at other visits were averaged and used in the analysis. Baseline 

hypertension status was categorized according to the criteria in the 2017 American College of 

Cardiology/American Heart Association Clinical Practice Guideline as normal blood pressure 

(SBP <120 mm Hg and DBP <80 mm Hg), elevated blood pressure (120 mm Hg ≤SBP <130 

mm Hg and DBP <80 mm Hg), stage 1 hypertension (130 mm Hg ≤SBP <140 mm Hg or 80 mm 

Hg ≤DBP <90 mm Hg), stage 2 hypertension without medication (SBP ≥140 mm Hg or DBP 

≥90 mm Hg), and stage 2 hypertension with medication (use of anti-hypertensive medication in 

the last two weeks).40 

 

Assessment of Kidney Function 

Kidney function was assessed by measuring creatinine in serum or plasma specimens collected 

during each study visit, except for study visit 3. In our study, we used five eGFR measurements 

(visits 1, 2, 4, 5, and 6) for the estimation of trajectories. The modified kinetic Jaffe method was 
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used for the measurement of creatinine with standardization to the National Institute of Standards 

and Technology (NIST) standard and calibration across study visits using repeated 

measurements from a sample of 200 ARIC study participants.56-58 The Chronic Kidney Disease 

Epidemiology Collaboration (CKD-EPI) equation was used to calculate estimated glomerular 

filtration rate (eGFR) based on creatinine.59 For those participants who developed incident end-

stage renal disease (ascertained via linkage to the United States Renal Data System), an eGFR 

value of 15 mL/min/1.73 m2 was imputed on the date of initiation of renal replacement therapy 

(transplant, dialysis).  

 

Assessment of Covariates 

Demographic characteristics (date of birth for the calculation of age, sex, race, education, family 

income), lifestyle factor (smoking), and medical history (diabetes, coronary heart disease) were 

ascertained via questionnaire administered by trained interviewers at the baseline study visit. 

Study participants brought medications to the study visit and the names of all medications were 

transcribed, including antihypertensive medications. Body mass index was calculated using 

weight in kilograms divided by the square of height in meters measured during the study visit. 

Blood samples that were collected from study participants during the baseline study visit were 

assayed for the measurement of concentrations of high density lipoprotein cholesterol using an 

enzymatic method after precipitation with dextran sulfate-magnesium and glucose using the 

modified hexokinase/glucose-6-phosphate dehydrogenase method.60 Diabetes was defined as 

fasting glucose ≥126 mg/dL, non-fasting glucose ≥200 mg/dL, self-report of diagnosed diabetes, 

or use of diabetes medication in the past two weeks. 

 



13 

 

Statistical Analysis 

Baseline characteristics of the study population were compared by hypertension status and racial 

group using descriptive statistics and differences were tested using ANOVA for continuous 

variables and χ2 tests for categorical variables.  

 

Mixed models were used to evaluate the association between hypertension status at baseline 

(normal blood pressure / elevated blood pressure / stage 1 hypertension / stage 2 hypertension no 

medication / stage 2 hypertension with medication) and eGFR trajectories using random 

intercepts and random slopes to account for individual variation in eGFR at baseline and its 

change. Because the random slopes had higher variance among African Americans than 

Caucasians, our models were conducted overall and after stratifying by race. Covariates included 

in the adjusted models were age (continuous), sex, body mass index (BMI, continuous), race-

center (Minneapolis, Minnesota, and Washington County, Maryland, where all participants were 

white; Jackson, Mississippi, where all participants were African American; and Forsyth County, 

North Carolina, which recruited both whites and African Americans, and was represented by two 

variables) or center only for race-stratified analysis, smoking (current / former / never), family 

income (annual income ≥$25,000 / <$25,000 / not reported), education (high school graduated / 

not graduated), high-density lipoprotein cholesterol (continuous), diabetes (yes / no), and history 

of coronary heart disease (yes / no) at baseline. We tested for interaction by race by adjusting for 

race and center separately and including a three-way product term of hypertension category, 

race, and time. We examined and plotted the patterns of eGFR change over time (i.e., trajectories 

from best linear unbiased prediction estimates) and estimated the differences in annual eGFR 

decline according to hypertension status.61 Kernel density plots were used to illustrate the 
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distribution of unadjusted and adjusted annual predicted change in eGFR. The average 

probability (absolute risk) of developing different stages of chronic kidney disease (G3a+: eGFR 

<60 mL/min/1.73 m2; G3b+: eGFR <45 mL/min/1.73 m2; G4+: eGFR <30 mL/min/1.73 m2) 

over 30 years of follow-up was estimated for the baseline population based on the baseline 

covariates. These probabilities were expressed using best linear unbiased predictions from race-

stratified models according to hypertension status.62  

 

In a sensitivity analysis, we examined the associations between blood pressure category at 

baseline (SBP <130 mm Hg and DBP <80 mm Hg; 130 mm Hg ≤SBP <140 mm Hg or 80 mm 

Hg ≤DBP <90 mm Hg; SBP ≥140 mm Hg or DBP ≥90 mm Hg) and eGFR trajectory after 

adjusting for hypertension medication status at baseline (yes / no). We also examined the 

associations of interest after imputing the eGFR at the time of initiation of renal replacement 

therapy using information supplied on the 2728 form to test the robustness of our main results. 

All analyses were conducted using Stata statistical software version 13 (StataCorp, College 

Station, Texas) and R version 3.3.3 (R Development Core Team). 

 

RESULTS 

Baseline Characteristics 

The baseline characteristics of the 14,854 study participants (11,003 Caucasian and 3,851 

African American) according to hypertension status category and racial group are shown in 

Table 2-1. At baseline, 13.2%, 7.3%, and 19.4% Caucasians and 15.8%, 14.9%, and 39.9% 

African Americans were categorized to stage 1 hypertension, stage 2 hypertension no 

medication, and stage 2 hypertension with medication. In both Caucasians and African 
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Americans, participants with hypertension, and particularly those with stage 2 hypertension, had 

higher body mass index (p<0.001). Individuals with stage 2 hypertension were more likely to 

have diabetes, annual family income less than $25,000, and less likely to be high school 

graduates (p<0.001 for all comparisons). Individuals in the stage 2 hypertension with medication 

category were more likely to have a history of coronary heart disease (p<0.001).  Although there 

was a statistically significant difference in baseline kidney function by hypertension status 

(p<0.001), the absolute difference in eGFR values was relatively small.  

 

Average eGFR Trajectories 

There was a steady decline in eGFR over time among both Caucasians and African Americans in 

each of the five hypertension status categories (Figure 2-1). Compared with individuals without 

hypertension, the slopes of the trajectory among participants with hypertension were steeper, 

representing faster eGFR decline. After adjusting for risk factors, individuals with hypertension 

compared to those without hypertension had significantly greater decline in eGFR over the 30 

years of follow-up. The decline in eGFR among individuals in the stage 2 hypertension with 

medication category was similar to that among those in stage 1 hypertension category 

(differences in eGFR decline per year: elevated blood pressure: -0.12 ml/min/1.73 m2; stage 1 

hypertension: -0.14 ml/min/1.73 m2; stage 2 hypertension without medication: -0.39 ml/min/1.73 

m2; stage 2 hypertension with medication: -0.16 ml/min/1.73 m2). Similar results were found 

when examining Caucasians and African Americans separately (Caucasians: elevated blood 

pressure: -0.11 ml/min/1.73 m2; stage 1 hypertension: -0.15 ml/min/1.73 m2; stage 2 

hypertension without medication: -0.36 ml/min/1.73 m2; stage 2 hypertension with medication: -

0.17 ml/min/1.73 m2; African Americans: elevated blood pressure: -0.21 ml/min/1.73 m2; stage 1 
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hypertension: -0.16 ml/min/1.73 m2; stage 2 hypertension without medication: -0.50 ml/min/1.73 

m2; stage 2 hypertension with medication: -0.16 ml/min/1.73 m2) (Table 2-2). There was no 

interaction in the association between hypertension and eGFR decline with race except for the 

stage 2 hypertension with medication category (p for interaction: 0.01). 

 

Variation in Annual Change in eGFR 

Figure 2-2 shows the distribution of eGFR decline by blood pressure category. The unadjusted 

median (IQR) annual eGFR change of Caucasian and African American participants, 

respectively, were -1.32 (-1.51, -1.11) mL/min/1.73 m2/year and -1.79 (-2.07, -1.45) 

mL/min/1.73 m2/year among those with normal blood pressure, -1.48 (-1.67, -1.31) mL/min/1.73 

m2/year and -2.10 (-2.34, -1.77) mL/min/1.73 m2/year among those with elevated blood pressure, 

-1.47 (-1.66, -1.26) mL/min/1.73 m2/year and -2.00 (-2.28, -1.62) mL/min/1.73 m2/year among 

those with stage 1 hypertension, -1.71 (-1.93, -1.51) mL/min/1.73 m2/year and -2.39 (-2.64, -

1.94) mL/min/1.73 m2/year among those with stage 2 hypertension without medication, and -

1.61 (-1.81, -1.40) mL/min/1.73 m2/year and -2.25 (-2.55, -1.79) mL/min/1.73 m2/year among 

those with stage 2 hypertension with medication. Overlap was greater when eGFR trajectories 

were adjusted for baseline covariates. Compared with Caucasians, African Americans had 

similar differences by hypertension status but larger mean and variance of the annual eGFR rate 

of decline.  

 

Predicted Probability of Chronic Kidney Disease 

The predicted probability of chronic kidney disease of 30 years was generally higher among 

people with hypertension (Table 2-3). African Americans had a similar predicted risk of 
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developing stage G3a+ but a greater predicted risk of developing stage G3b+ and G4+ CKD 

compared with Caucasians. The average 30-year predicted probability of developing CKD stage 

G3a+ (eGFR <30 mL/min/1.73 m2) with normal blood pressure, elevated blood pressure, stage 1 

hypertension, stage 2 hypertension no medication, or stage 2 hypertension with medication was 

54.4%, 61.6%, 64.7%, 78.1%, and 70.9%, respectively, among Caucasians and 55.4%, 62.8%, 

60.9%, 76.1%, and 66.6%, respectively, among African Americans; that of stage G4+ was 7.0%, 

9.0%, 10.1%, 15.8%, and 12.4% among Caucasians and 22.3%, 26.0%, 25.4%, 32.5%, and 

27.5% among African Americans. 

 

Sensitivity Analysis 

Replacing hypertension stages with two separate variables, blood pressure categories and 

antihypertensive medication, showed similar results. In the total population, individuals with 

higher blood pressure had significantly greater decline in eGFR over the 30 years of follow-up 

(120 ≤SBP <130 mm Hg and DBP <80 mm Hg: -0.15 ml/min/1.73 m2 per year; 130 ≤SBP <140 

mm Hg or 80 ≤DBP <90 mm Hg: -0.14 ml/min/1.73 m2 per year; SBP ≥140 mm Hg or DBP ≥90 

mm Hg: -0.42 ml/min/1.73 m2 per year), compared to those with normal blood pressure (SBP 

<120 mm Hg and DBP <80 mm Hg), after adjusting for risk factors and hypertension medication 

status (Supplementary Table 2-1). Results were similar when examining Caucasians and 

African Americans separately. After accounting for blood pressure categories, hypertension 

medication was not associated with eGFR decline in the total population or in analyses stratified 

by race (p=0.99 for overall, 0.38 among Caucasians, and 0.21 among African Americans). When 

eGFR at the initiation of renal replacement therapy was imputed from the 2728 form rather than 
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using a value of 15 ml/min/1.73 m2, results were nearly identical to those in the main analysis 

(Supplementary Table 2-2). 

 

DISCUSSION 

In this community-based population of 14,854 middle-aged adults, participants with 

hypertension at baseline experienced faster decline in kidney function than those without 

hypertension over 30 years of follow-up. The risk of developing CKD was greater with 

hypertension, especially stage 2 hypertension in both Caucasians and African Americans. 

Although there was no difference by race in the association between hypertension and eGFR 

decline, African Americans did have higher mean and dispersion in the rate of decline and risk of 

developing CKD stage G3b or worse, which translated into a greater absolute risk difference 

between those with and without hypertension.  

 

The current study adds to existing literature by demonstrating that hypertension is a risk factor 

for eGFR decline over 30 years of follow-up in a population with relatively preserved kidney 

function. We defined hypertension at baseline in order to definitively establish the temporal 

relationship between onset of hypertension and eGFR decline. Other studies suggest that this is a 

conservative approach.63 Previous work in the Chronic Renal Insufficiency Cohort (CRIC) study 

evaluated baseline blood pressure as a predictor of kidney function decline,63 but this study 

included only participants with CKD.64 The Multi-Ethnic Study of Atherosclerosis (MESA) 

demonstrated that higher SBP and variable pulse pressure were significantly associated with 

cystatin C-based eGFR (eGFRcys) decline in participants who attended a 5- and 10-year visit.10 
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High blood pressure was also an independent predictor of age-adjusted annual eGFR decline 

over 10 years among Italian individuals with preserved kidney function and type 2 diabetes.65 

 

Our study demonstrates the variability in slope by hypertension and race among middle-aged 

men and women with preserved kidney function, finding that eGFR decline is more variable 

among African Americans than Caucasians. The higher variability in eGFR decline among 

African Americans resulted in disproportionately greater probability of development of advanced 

CKD, despite relatively small differences in annual eGFR decline. Greater variability in quality 

of medical care or control of risk factors among African Americans may play a role in the greater 

heterogeneity of disease progression.66,67 

 

Our finding that African Americans had similar probability of early stage CKD compared with 

Caucasians but greater probability of late stage CKD is consistent with previous studies which 

found significantly faster renal progression in African Americans compared with Caucasians.68 

Previous prediction models developed among populations of healthy individuals also showed 

higher risk of developing end stage kidney disease (ESKD) for African Americans.69 The 

difference may be attributable to both biological differences and treatment barriers.55,70,71 In 

particular, genetic variants of Apolipoprotein L1 (APOL1) have been associated with worse 

kidney outcomes, and carriers of these variants are overwhelmingly of African descent.55,72 

 

The mechanism underlying the association between hypertension and eGFR decline is not fully 

understood, but may be due in part to higher intraglomerular pressure and progressive 

arteriosclerosis.73,74 However, low GFR may also increase blood pressure due to impairments in 
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salt and water excretion. For this reason, we evaluated blood pressure only at visit 1, in order to 

maintain strict temporality. Others have shown that time-updated blood pressure is more strongly 

associated with kidney disease risk, which may be due in part to this bidirectional association.8 

 

There are several strengths to this study. The ARIC study is a large, prospective cohort with 30 

years of follow-up and representation from 4 US communities with both Caucasians and African 

Americans. The long duration of the study allows for the characterization of kidney function 

decline in a population that was generally healthy at the outset. Multiple established risk factors 

were collected in a research protocolized manner.  

 

There are also several study limitations to acknowledge. There were only up to five eGFR 

measurements for the estimation of long-term trajectories. That said, there are few longitudinal, 

population-based cohorts that have had more frequent measurements of eGFR over 30 years.  

Despite the likelihood that participants are healthier than the general population, some degree of 

misclassification may have occurred due to possible non-compliance with anti-hypertensive 

medication. Hypertension treatment practice has changed over time; however, we chose to use 

baseline rather than time-varying hypertension status as a more conservative approach with a 

clear temporal relationship with subsequent eGFR decline. Furthermore, we were concerned 

about the potential for a bidirectional association between eGFR and hypertension and the 

possibility of introducing time-varying confounding. Participants who develop ESKD are less 

likely to survive to attend subsequent study visits; we included an estimate of their trajectory by 

imputing eGFR at the time of ESKD onset as identified through linkage to the USRDS registry. 

There is the potential for differential loss to follow-up by baseline hypertension status. Our 
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analysis did not attempt to capture acute kidney injury (AKI) occurring over follow-up, 

precluding inferences about the impact of AKI on eGFR decline. For blood pressure 

measurement, we characterized hypertension based on 2 measurements at the same occasion 

rather than ≥2 occasions as stipulated by the 2017 American College of Cardiology/American 

Heart Association Clinical Practice Guideline. Also, blood pressure was measured by random-

zero sphygmomanometer. Lastly, as ARIC only included Caucasians and African Americans, our 

results are not applicable to other ethnic groups.  

 

In summary, hypertension status is an important risk factor for future decline in kidney function 

and the development of kidney disease in community-dwelling Caucasian and African American 

adults. Our study highlights the potential importance of preventing and treating hypertension as a 

strategy to preserve kidney function over time. Population-level efforts to lower blood pressure 

may help to reduce the onset of kidney disease. 
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Table 2-1  Baseline characteristics of the study population according to baseline hypertension status (N=14,854). 

Characteristica Caucasian 

N=11,003 

African American 

N=3,851 

 Normal 

BPb 

N=5,341 

Elevated 

BPb 

N=1,281 

Stage 1 

HTNb 

N=1,448 

Stage 2 

HTN  

without 

MEDb 

N=801 

Stage 2 

HTN  

with 

MEDb 

N=2,132 

Normal 

BPb 

N=859 

Elevated 

BPb 

N=273 

Stage 1 

HTNb 

N=610 

Stage 2 

HTN  

without 

MEDb 

N=573 

Stage 2 

HTN  

with 

MEDb 

N=1,536 

Age, yearsc 53.5 

(5.5) 

56.1  

(5.6) 

55.0  

(5.7) 

56.7  

(5.6) 

56.8  

(5.4) 

52.2  

(5.6) 

54.5  

(6.1) 

52.9  

(5.6) 

54.6  

(5.7) 

55.0  

(5.7) 

Femalec 3052  

(57.1) 

639  

(49.9) 

630  

(43.5) 

381  

(47.6) 

1107  

(51.9) 

537  

(62.5) 

179  

(65.6) 

328  

(53.8) 

277  

(48.3) 

1039  

(67.6) 

Smoking statusc           

   Current 1512 

(28.3) 

322 

(25.1) 

290 

(20.0) 

152 

(19.0) 

458 

(21.5) 

268 

(31.3) 

89 

(32.7) 

179 

(29.3) 

200 

(34.9) 

416 

(27.1) 

   Former 1723 

(32.3) 

456 

(35.6) 

560 

(38.7) 

308 

(38.5) 

826 

(38.8) 

209 

(24.4) 

65 

(23.9) 

161 

(26.4) 

122 

(21.3) 

377 

(24.6) 
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   Never 2103 

(39.4) 

503 

(39.3) 

598 

(41.3) 

341 

(42.6) 

847 

(39.7) 

379 

(44.3) 

118 

(43.4) 

270 

(44.3) 

251 

(43.8) 

742 

(48.3) 

High school 

graduatec 

4573  

(85.7) 

1040  

(81.3) 

1214  

(83.9) 

 637 

(79.5) 

1660  

(77.9) 

587 

(68.4) 

 162 

(59.3) 

377 

(62.1) 

318 

(55.7) 

822  

(53.6) 

Annual family 

income <$25,000c 

1150 

(21.5) 

335  

(26.2) 

345  

(23.8) 

248  

(31.0) 

696 

(32.6) 

456 

(53.1) 

169  

(61.9) 

372  

(61.0) 

389  

(67.9) 

1054  

(68.6) 

Centerc           

   Forsyth county 1772  

(33.2) 

420  

(32.8) 

386  

(26.7) 

243  

(30.3) 

569  

(26.7) 

135  

(15.7) 

46  

(16.8) 

51  

(8.4) 

49  

(8.6) 

170  

(11.1) 

   Jackson 0  

(0.0) 

0  

(0.0) 

0  

(0.0) 

0  

(0.0) 

0  

(0.0) 

705  

(82.1) 

223  

(81.7) 

553  

(90.7) 

518  

(90.4) 

1349  

(87.8) 

   Minneapolis 1879  

(35.2) 

433  

(33.8) 

606  

(41.9) 

303  

(37.8) 

656  

(30.8) 

9  

(1.0) 

4  

(1.5) 

1  

(0.2) 

3  

(0.5) 

5  

(0.3) 

   Washington 

county 

1690  

(31.6) 

428  

(33.4) 

456  

(31.5) 

255  

(31.8) 

907  

(42.5) 

10  

(1.2) 

0  

(0.0) 

5  

(0.8) 

3  

(0.5) 

12  

(0.8) 

Systolic BP, mm 

Hgc 

106.0  

(8.5) 

123.9  

(2.8) 

128.5  

(7.6) 

148.2  

(11.8) 

128.0 

(17.5) 

107.9  

(7.3) 

124.0  

(2.9) 

126.4  

(8.1) 

152.2  

(18.4) 

132.7  

(21.3) 
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Diastolic BP, mm 

Hgc 

65.9  

(7.2) 

71.2  

(6.2) 

79.2  

(6.7) 

84.2  

(10.3) 

75.7  

(10.1) 

69.2  

(6.1) 

72.4  

(5.9) 

81.2  

(5.9) 

91.0  

(12.8) 

81.8  

(12.1) 

BMI, kg/m2 c 25.7  

(4.1) 

27.3  

(4.8) 

27.7  

(5.0) 

28.3  

(5.4) 

29.1  

(5.4) 

27.8  

(5.1) 

29.0  

(6.0) 

29.0  

(6.0) 

29.2  

(6.3) 

31.0  

(6.4) 

HDL-C, mg/dLc 52.4  

(17.1) 

50.8  

(17.0) 

50.0  

(16.5) 

50.1  

(16.8) 

46.2  

(15.5) 

56.0  

(17.4) 

57.4  

(17.2) 

56.8  

(19.2) 

56.8  

(18.9) 

52.8  

(16.2) 

Diabetesc 198  

(3.7) 

88  

(6.9) 

92  

(6.4) 

61  

(7.6) 

326  

(15.3) 

88  

(10.2) 

34  

(12.5) 

65  

(10.7) 

80  

(14.0) 

374  

(24.3) 

CHDc 190  

(3.6) 

60  

(4.7) 

51  

(3.5) 

26  

(3.2) 

234  

(11.0) 

24  

(2.8) 

4  

(1.5) 

16  

(2.6) 

12  

(2.1) 

94  

(6.1) 

eGFR,  

mL/min/1.73 m2c 

101.5  

(11.2) 

99.5  

(10.9) 

99.5  

(11.3) 

99.0  

(11.3) 

96.5  

(12.7) 

114.8  

(15.5) 

115.7  

(14.0) 

114.4  

(15.9) 

113.2  

(15.7) 

109.6  

(18.6) 

a Mean (standard deviation) for continuous variables and % (n) for categorical variables. 

b Normal blood pressure defined as systolic blood pressure <120 mm Hg and diastolic blood pressure <80 mm Hg. Elevated blood 

pressure defined as systolic blood pressure 120 ≤systolic blood pressure <130 mm Hg and diastolic blood pressure <80 mm Hg. Stage 

1 hypertension defined as 130 ≤systolic blood pressure <140 mm Hg or 80 ≤diastolic blood pressure <90 mm Hg. Stage 2 

hypertension defined as systolic blood pressure ≥140 mm Hg or diastolic blood pressure ≥90 mm Hg and this group was stratified by 

use of anti-hypertensive medication in the last two weeks.  
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c P-value for comparing the hypertension groups within each race group < 0.05; P-value calculated by ANOVA for continuous 

variables and χ2 test for categorical variables 

BMI, body mass index; BP, blood pressure; CHD, coronary heart disease; eGFR, estimated glomerular filtration rate; HDL-C, high 

density lipoprotein cholesterol; HTN, hypertension; MED, medication 
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Figure 2-1 Distribution of eGFR (unit: ml/min per 1.73 m2) and unadjusted and adjusted eGFR change over 30 years follow-

up according to baseline hypertension status. (A) unadjusted eGFR change among Caucasian (B) unadjusted eGFR change 

among African American (C) adjusted eGFR change among Caucasian (D) adjusted eGFR change among African American. 

For adjusted eGFR changes, model adjusted for age (centered at 50 years old), sex (reference group: male), center (reference group: 

Forsyth County, North Carolina), baseline smoking status (reference group: current smoker), baseline education level (reference 

group: non-high school graduate), baseline annual family income (reference group: <$25,000), baseline body mass index (centered at 

25 kg/m2), baseline high density lipoprotein cholesterol level (centered at 40 mg/dL), baseline history of diabetes (reference group: no 

diabetes), baseline history of coronary heart disease (reference group: no coronary heart disease), as well as their interaction with 

follow-up time. For adjusted predicted average annual changes among African Americans, African Americans in the Minnesota and 

Washington County cohorts were excluded in adjusted model because of small numbers. The number of participants at each visit are: 

visit 1: Caucasian: N=11,003, African American: N=3,851; visit 2: Caucasian: N=10,297 (93.6% of the original cohort), African 

American: N=3,224 (83.7% of the original cohort); visit 4: Caucasian: N=8,616 (78.3%), African American: N=2,373 (61.6%);  visit 

5: Caucasian: N=4,758 (43.2%), African American: N=1,375 (35.7%); visit 6: Caucasian: N=2,995 (27.2%), African American: 

N=1,013 (26.3%). The total number of eGFR measurements was 49,502, and the median (IQR) of eGFR measurements was 3 (3,4). 

BP, blood pressure; HTN, hypertension; MED, medication 
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Figure 2-2 Distribution of predicted average annual change in eGFR (unit: ml/min per 1.73 m2) within the ARIC population 

using baseline covariates according to baseline hypertension status. (A) unadjusted predicted average annual change among 

Caucasian (B) unadjusted predicted average annual change among African American (C) adjusted predicted average annual 

change among Caucasian (D) adjusted predicted average annual change among African American. 

For adjusted predicted average annual changes, slopes were estimated from a mixed model adjusted for age (centered at 50 years old), 

sex (reference group: male), center (reference group: Forsyth County, North Carolina), baseline smoking status (reference group: 

current smoker), baseline education level (reference group: non-high school graduate), baseline annual family income (reference 

group: <$25,000), baseline body mass index (centered at 25 kg/m2), baseline high density lipoprotein cholesterol level (centered at 40 

mg/dL), baseline history of diabetes (reference group: no diabetes), baseline history of coronary heart disease (reference group: no 

coronary heart disease), as well as their interaction with follow-up time. For adjusted predicted average annual changes among African 

Americans, African Americans in the Minnesota and Washington County cohorts were excluded in adjusted model because of small 

numbers.   

BP, blood pressure; HTN, hypertension; MED, medication 
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Table 2-2 Differences (95% CIs) in eGFR decline (unit: ml/min per 1.73 m2) per year according to hypertension categories in 

the total population and by race. 

 Differences (95% CIs) in eGFR decline (unit: ml/min per 1.73 m2) per year 

Population Normal BPa 

N=6,200 

Elevated BPa 

N=1,554 

Stage 1 HTNa 

N=2,058 

Stage 2 HTN  

without MEDa 

N=1,374 

Stage 2 HTN  

with MEDa  

N=3,668 

Unadjusted Ref -0.22 (-0.16, -0.29) -0.24 (-0.19, -0.30) -0.58 (-0.50, -0.65) -0.49 (-0.44, -0.53) 

Adjustedb,c Ref -0.12 (-0.06, -0.18) -0.14 (-0.08, -0.19) -0.39 (-0.31, -0.46) -0.16 (-0.11, -0.21) 

Caucasian N=5,341 N=1,281 N=1,448 N=801 N=2,132 

Unadjusted Ref -0.17 (-0.11, -0.22) -0.14 (-0.09, -0.20) -0.40 (-0.32, -0.47) -0.30 (-0.24, -0.35) 

Adjustedd Ref -0.11 (-0.05, -0.17) -0.15 (-0.09, -0.20) -0.36 (-0.28, -0.44) -0.17 (-0.11, -0.22) 

African American N=859 N=273 N=610 N=573 N=1,536 

Unadjusted Ref -0.36 (-0.13, -0.59) -0.23 (-0.05, -0.40) -0.59 (-0.40, -0.78) -0.46 (-0.32, -0.61) 

Adjustedd,e Ref -0.21 (0.01, -0.43) -0.16 (0.01, -0.33) -0.50 (-0.31, -0.69) -0.16 (-0.01, -0.31) 

a Normal blood pressure defined as systolic blood pressure <120 mm Hg and diastolic blood pressure <80 mm Hg. Elevated blood 

pressure defined as systolic blood pressure 120 ≤systolic blood pressure <130 mm Hg and diastolic blood pressure <80 mm Hg. Stage 
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1 hypertension defined as 130 ≤systolic blood pressure <140 mm Hg or 80 ≤diastolic blood pressure <90 mm Hg. Stage 2 

hypertension defined as systolic blood pressure ≥140 mm Hg or diastolic blood pressure ≥90 mm Hg and this group was stratified by 

use of anti-hypertensive medication in the last two weeks.  

b Model adjusted for age, sex, race-center, baseline body mass index, baseline smoking status, baseline education level, baseline 

annual family income, baseline high density lipoprotein cholesterol level, baseline history of diabetes, baseline history of coronary 

heart disease, as well as their interaction with follow-up time. 

c P-value for interaction race × elevated blood pressure × time = 0.16, race × stage 1 hypertension × time = 0.95, race × stage 2 

hypertension no medication × time = 0.08, race × stage 2 hypertension with medication × time = 0.01. 

d Model adjusted for age, sex, center, baseline body mass index, baseline smoking status, baseline education level, baseline annual 

family income, baseline high density lipoprotein cholesterol level, baseline history of diabetes, baseline history of coronary heart 

disease, as well as their interaction with follow-up time. 

e African Americans in the Minnesota and Washington County cohorts was excluded in adjusted model because of small numbers. 

BP, blood pressure; HTN, hypertension; MED, medication 
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Table 2-3 Average predicted probability of developing chronic kidney disease over 30 years follow-up according to 

hypertension status among participants based on the baseline covariates. 

Stage of CKD  

(eGFR, 

mL/min/1.73 

m2) 

Caucasian African Americana 

Normal 

BP 

 

Elevated 

BP 

Stage 1 

HTN 

Stage 2 

HTN  

without 

MED 

Stage 2 

HTN  

with 

MED 

Normal 

BP 

 

Elevated 

BP 

Stage 1 

HTN 

Stage 2 

HTN  

without 

MED 

Stage 2 

HTN  

with 

MED 

G3a+ (<60) 54.4 61.6 64.7 78.1 70.9 55.4 62.8 60.9 76.1 66.6 

G3b+ (<45) 22.5 27.8 30.0 41.8 35.0 35.2 41.6 40.1 52.4 44.5 

G4+ (<30) 7.0 9.0 10.1 15.8 12.4 22.3 26.0 25.4 32.5 27.5 

a African Americans in the Minnesota and Washington County cohorts were excluded in adjusted model because of small numbers. 

BP, blood pressure; HTN, hypertension; MED, medication 

  



33 

 

Supplementary Table 2-1. Difference in eGFR decline (unit: ml/min per 1.73 m2) per year according to blood pressure 

categories in the total population and by race. 

 Differences (95% CIs) in eGFR decline (unit: ml/min per 1.73 m2) per year 

 SBP <120 mm Hg 

and DBP <80 mm Hg 

120 ≤SBP <130 mm Hg  

and DBP <80 mm Hg 

130 ≤SBP <140 mm Hg  

or 80 ≤DBP <90 mm Hg 

SBP ≥140 mm Hg  

or DBP ≥90 mm Hg 

Total Population N=7,150a N=2,063a N=3,120a N=2,521a 

Unadjusted Ref -0.26 (-0.32, -0.20) -0.27 (-0.32, -0.22) -0.66 (-0.71, -0.60) 

Adjustedb,c Ref -0.15 (-0.20, -0.09) -0.14 (-0.19, -0.09) -0.42 (-0.48, -0.36) 

Caucasian N=5,961 N=1,625 N=2,055 N=1,362 

Unadjusted Ref -0.19 (-0.24, -0.13) -0.17 (-0.22, -0.12) -0.45 (-0.51, -0.38) 

Adjustedc,d Ref -0.12 (-0.18, -0.07) -0.15 (-0.20, -0.10) -0.37 (-0.43, -0.30) 

African American N=1,189 N=438 N=1,065 N=1,159 

Unadjusted Ref -0.39 (-0.58, -0.20) -0.20 (-0.34, -0.06) -0.64 (-0.79, -0.49) 

Adjustedc,d,e Ref -0.29 (-0.47, -0.10) -0.18 (-0.31, -0.04) -0.55 (-0.70, -0.40) 

Note: Differences (95% confidence intervals) in eGFR decline (mL/min/1.73 m2) per year, compared to SBP <120 mm Hg and DBP 

<80 mm Hg as reference. 
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Abbreviations: BP, blood pressure; DBP, diastolic blood pressure; eGFR, estimated glomerular filtration rate; MED, medication; Ref, 

reference; SBP, systolic blood pressure. 

a The number of participants on antihypertensive MED of each blood pressure category is as follows: SBP <120 mm Hg and DBP <80 

mm Hg, n=905; 120 ≤SBP <130 mm Hg and DBP <80 mm Hg, n=509; 130 ≤SBP <140 mm Hg or 80 ≤DBP <90 mm Hg, n=1,062; 

SBP ≥140 mm Hg or DBP ≥90 mm Hg, n=1,147. 

b Model adjusted for age, sex, race-center, baseline body mass index, baseline smoking status, baseline education level, baseline total 

family income, antihypertensive MED status, baseline high density lipoprotein cholesterol level, baseline history of diabetes, baseline 

history of coronary heart disease, as well as their interaction with follow-up time. 

c P-values for interaction between antihypertensive MED status and follow-up time are 0.99, 0.38, and 0.21 for total population, 

Caucasian, and African American respectively.  

d Model adjusted for age, sex, center, baseline body mass index, baseline smoking status, baseline education level, baseline total 

family income, antihypertensive MED status, baseline high density lipoprotein cholesterol level, baseline history of diabetes, baseline 

history of coronary heart disease, as well as their interaction with follow-up time. 

e African Americans in the Minnesota and Washington County cohorts was excluded in adjusted model because of small numbers. 
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Supplementary Table 2-2. Difference in eGFR decline (unit: ml/min per 1.73 m2) per year according to hypertension 

categories in the total population and by race with imputing the eGFR from the 2728 form. 

 Differences (95% CIs) in eGFR decline (unit: ml/min per 1.73 m2) per year 

Population Normal BPa 

N=6,200 

Elevated BPa 

N=1,554 

Stage 1 HTNa 

N=2,058 

Stage 2 HTN  

w/o MEDa  

N=1,374 

Stage 2 HTN  

w/ MEDa  

N=3,668 

Unadjusted Ref -0.23 (-0.30, -0.16) -0.25 (-0.31, -0.19) -0.60 (-0.68, -0.53) -0.51 (-0.56, -0.46) 

Adjustedb,c Ref -0.13 (-0.20, -0.07) -0.14 (-0.19, -0.08) -0.38 (-0.45, -0.31) -0.17 (-0.22, -0.12) 

Caucasian N=5,341 N=1,281 N=1,448 N=801 N=2,132 

Unadjusted Ref -0.17 (-0.23, -0.11) -0.15 (-0.20, -0.09) -0.41 (-0.49, -0.33) -0.31 (-0.36, -0.26) 

Adjustedd Ref -0.12 (-0.18, -0.06) -0.15 (-0.20, -0.09) -0.36 (-0.44, -0.28) -0.19 (-0.24, -0.13) 

African American N=859 N=273 N=610 N=573 N=1,536 

Unadjusted Ref -0.39 (-0.63, -0.14) -0.23 (-0.42, -0.05) -0.64 (-0.84, -0.44) -0.50 (-0.66, -0.35) 

Adjustedd,e Ref -0.27 (-0.49, -0.04) -0.16 (-0.33, 0.01) -0.50 (-0.69, -0.31) -0.17 (-0.31, -0.02) 

Note: Differences (95% confidence intervals) in eGFR decline (mL/min/1.73 m2) per year, compared to normal BP as reference. 
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Abbreviations: BP, blood pressure; DBP, diastolic blood pressure; eGFR, estimated glomerular filtration rate; HTN, hypertension; 

MED, medication; Ref, reference; SBP, systolic blood pressure. 

a Normal BP defined as SBP < 120 mm Hg and DBP < 80 mm Hg. Elevated BP defined as 120 ≤ SBP < 130 mm Hg and DBP < 80 

mm Hg. Stage 1 HTN defined as 130 ≤ SBP < 140 mm Hg or 80 ≤ DBP < 90 mm Hg. Stage 2 HTN defined as SBP ≥ 140 mm Hg or 

DBP ≥ 90 mm Hg, and this group was stratified by the use of antihypertensive MED in the last 2 weeks. 

b Model adjusted for age, sex, race-center, baseline body mass index, baseline smoking status, baseline education level, baseline 

annual family income, baseline high density lipoprotein cholesterol level, baseline history of diabetes, baseline history of coronary 

heart disease, as well as their interaction with follow-up time. 

c P-value for interaction race × elevated BP × time = 0.16, race × stage 1 HTN × time = 0.94, race × stage 2 HTN w/o MED × time = 

0.08, race × stage 2 HTN w/ MED × time = 0.01. 

d Model adjusted for age, sex, center, baseline body mass index, baseline smoking status, baseline education level, baseline annual 

family income, baseline high density lipoprotein cholesterol level, baseline history of diabetes, baseline history of coronary heart 

disease, as well as their interaction with follow-up time. 

e African Americans in the Minnesota and Washington County cohorts was excluded in adjusted model because of small numbers. 
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ABSTRACT  

Rationale & Objective: Obesity has been related to risk of chronic kidney disease (CKD). 

However, the associations of different measures of midlife obesity with long-term kidney 

function trajectories and whether they differ by sex and race is unknown. 

Study Design: Observational study. 

Setting & Participants: 13,496 participants from the ARIC study. 

Predictors: Midlife obesity status as measured by body mass index (BMI), waist to hip ratio, 

and predicted percent fat at baseline. 

Outcomes: Estimated glomerular filtration rate (eGFR) calculated using serum creatinine 

measured at 5 study visits and end-stage kidney disease (ESKD). 

Analytical Approach: Mixed models with random intercepts and random slopes for eGFR. Cox 

proportional hazards models for ESKD.  

Results: Baseline mean age was 54 years, median eGFR was 103 ml/min/1.73 m2, and median 

BMI was 27 kg/m2. Over 30 years of follow-up, midlife obesity measures were associated with 

eGFR decline in white and black women but not consistently in men. Adjusted for age, center, 

smoking and coronary heart disease (CHD), the differences (95% CI) in eGFR decline slope 

(unit: ml/min per 1.73 m2 per decade) per standard deviation higher BMI, waist to hip ratio, and 

predicted percent fat were 0.09 (-0.18, 0.36), -0.25 (-0.50, 0.01) and -0.14 (-0.41, 0.13) for white 

men, -0.91 (-1.15, -0.67), -0.82 (-1.06, -0.58) and -1.02 (-1.26, -0.78) for white women, -0.70 (-

1.54, 0.14), -1.60 (-2.42, -0.78) and -1.24 (-2.08, -0.40) for black men, and -1.24 (-2.08, -0.40), -

1.50 (-2.05, -0.95) and -1.43 (-2.00, -0.86) for black women. Obesity indicators were 

independently associated with risk of ESKD for all sex-race groups except white men.  
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Limitations: Loss to follow-up during three decades of follow-up with five eGFR 

measurements.  

Conclusions: Obesity status is a risk factor for future decline in kidney function and 

development of ESKD in black and white women with less consistent associations among men. 
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INTRODUCTION 

Kidney function trajectories have long been used in the estimation of time to end-stage kidney 

disease (ESKD).75 Recently, kidney function decline over time has been related not only to 

ESKD but also to all-cause mortality and cardiovascular disease risk.76-78 Understanding risk 

factors for different patterns of kidney function trajectories is important so that individuals at risk 

for rapid progression may be targeted early for interventions. Successful interventions may 

prevent the development of disease among individuals with normal kidney function and slow the 

progression among those with kidney disease.   

 

Obesity may be a targetable risk factor in the prevention of kidney function decline. Higher 

body-mass index has been associated with increased risk of incident chronic kidney disease 

(CKD), including greater kidney function decline among healthy, young adults.79-81 However, 

BMI may not be the best marker of obesity-related risk, and associations may differ across sex 

and race.82-86 Much less is known about the relationship between other obesity indicators, such as 

waist to hip ratio and the recently developed predicted percent fat,87 and long-term kidney 

function decline.   

 

This study evaluated the associations of midlife obesity with subsequent trajectories of estimated 

glomerular filtration rate (eGFR) and risks of developing ESKD across sex-race groups in a 

community-based cohort of 13,496 middle-aged white and black men and women over 30 years 

of follow-up. We examined several different obesity measures  given controversy over the 

optimal method of estimating obesity, with the goal of defining the etiologic associations 

between obesity and kidney function decline. 
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METHODS 

Study Design & Study Population 

The Atherosclerosis Risk in Communities (ARIC) study is a prospective cohort study designed 

to evaluate risk factors for the development of cardiovascular disease.29 It enrolled a total of 

15,792 middle-aged (45-64 years old at baseline), predominantly white and black men and 

women from four communities in the U.S.: Forsyth County, North Carolina; Jackson, 

Mississippi; suburbs of Minneapolis, Minnesota; and Washington County, Maryland. The first 

examination took place in 1987-1989 (baseline, study visit 1), with follow-up examinations 

initially at approximately three-year intervals: 1990-1992 (study visit 2), 1993-1995 (study visit 

3), 1996-1998 (study visit 4), and more recently, in 2011-2013 (study visit 5) and in 2016-2017 

(study visit 6). During each study visit, an extensive questionnaire was administered, a clinical 

examination was conducted, and blood and urine specimens were collected. 

 

In the present study, we excluded study participants who at baseline had ESKD (n=150), eGFR 

below 60 mL/min/1.73 m2 (n=341), diabetes (n=1,797),  or BMI below 18.5 kg/m2 (n=143). 

Thus, the analytic sample size was 13,496 (85.5% of the original cohort). We excluded 

participants with prevalent diabetes since clinical diabetes can lead to intentional and 

unintentional weight loss. Study participants provided written documentation of informed 

consent and study protocols were approved by the institutional review board at each study site. 

 

Assessment of Obesity Status 
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BMI was calculated as measured weight (in kilograms) divided by measured height (in 

meters) squared. Waist to hip ratio, which has been shown by some studies to be the more 

appropriate metric for obesity-related risk stratification among older adults,88 was calculated 

from the measurements of the circumference at umbilical level (waist) and maximum buttocks 

(hip) to the nearest centimeter. Predicted percent fat was derived using sex-specific 

anthropometric prediction equations including information on age, race, weight, height, and 

waist circumference. The equations were reported to explain a large amount of the variation in 

percent fat (R2 of 0.73 for men and 0.65 for women).87 We evaluated predicted percent fat as an 

indicator of obesity because it was more strongly correlated with obesity-related biomarkers 

compared to BMI in previous studies.87 The anthropometric prediction equations are: 

Men: Percent fat (%) = 0.02 + 0.00*age (year) − 0.07*height (cm) − 0.08*weight 

(kg) + 0.48*WC (cm) + 0.32*Mexican + 0.02*Hispanic − 0.65*Black + 1.12*Other 

ethnicity 

Women: Percent fat (%) = 50.46 + 0.07*age (year) − 0.26*height (cm) + 0.27*weight 

(kg) + 0.10*WC (cm) + 0.89*Mexican + 0.49*Hispanic − 1.57*Black + 0.43*Other 

ethnicity 

We modeled all obesity measurements both as continuous variables and in tertiles.  

 

Assessment of Kidney Function 

Kidney function was assessed by measuring creatinine in serum or plasma specimens collected 

during each study visit, except for study visit 3. A modified kinetic Jaffe method was adapted to 
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measure creatinine level, and it was standardized to the National Institute of Standards and 

Technology standard and calibrated across study visits using repeated measurements from a 

sample of 200 ARIC study participants.56-58 The Chronic Kidney Disease Epidemiology 

Collaboration (CKD-EPI) equation was used to calculate eGFR based on creatinine.59 For those 

participants who developed incident ESKD (ascertained via linkage to the United States Renal 

Data System), an eGFR value of 15 mL/min/1.73 m2 was imputed on the date of initiation of 

renal replacement therapy (transplant, dialysis).  

 

Assessment of Other Variables 

Demographic characteristics (date of birth for the calculation of age, sex, and race) and medical 

history (coronary heart disease (CHD)) were ascertained via questionnaire administered by 

trained interviewers at the baseline study visit. Systolic blood pressure (SBP) was measured three 

times using a random-zero sphygmomanometer. The average of the second and third 

measurements were used in the analysis. Study participants brought medications to the study 

visit and the names of all medications were transcribed. Blood samples that were collected from 

study participants during the baseline study visit were assayed for the measurement of 

concentrations of high-density lipoprotein cholesterol using an enzymatic method after 

precipitation with dextran sulfate-magnesium. Bioelectrical impedance (BIA), measured using 

the BIA 101-F device (Akern/RJL, Florence, Italy), was utilized to measure percent body fat and 

fat mass at visit 5. 

 

Statistical Analysis 
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Baseline characteristics of the study population were compared by baseline BMI tertile, sex, and 

racial group using descriptive statistics and differences were tested using ANOVA for 

continuous variables and χ2 tests for categorical variables. Spearman’s correlations between BIA-

measured percent fat at visit 5 and BMI, waist to hip ratio, or predicted percent fat at visit 5 

were examined within each sex and racial group. Scatter plots of waist to hip ratio and predicted 

percent fat against BMI tertile at baseline were shown by sex and race. We estimated the 

differences in annual eGFR decline slope according to baseline obesity status tertiles61. Kernel 

density plots were used to illustrate the distribution of unadjusted annual predicted change in 

eGFR. Mixed models were used to evaluate the association between obesity status at baseline 

and eGFR trajectories using random intercepts and random slopes to account for individual 

variation in eGFR at baseline and its change. Cox proportional hazards models were used to 

estimate the association between baseline obesity status and ESKD. All models were stratified by 

sex and race (white / black) since the association of eGFR decline showed an interaction with 

baseline obesity across race-sex groups (p<0.001 for all obesity measurements) as well larger 

variance in blacks. Three models were constructed. Model 1 was unadjusted. Model 2 was 

adjusted for age (continuous), center (Minneapolis, Minnesota / Washington County, Maryland / 

Jackson, Mississippi / Forsyth County, North Carolina), current smoker (yes / no), and history of 

CHD (yes / no) at baseline. For Model 3, we further adjusted for hypertension medication use 

(yes / no), SBP (continuous), high-density lipoprotein cholesterol (HDL) (continuous), and eGFR 

(continuous; ESKD model only) at baseline, to assess the associations of obesity and kidney 

function decline independent of other obesity associated comorbidities. As socioeconomic status 

may be associated with both weight change and kidney function, we also additionally adjust for 
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family income (annual income ≥$25,000 / <$25,000 / not reported), education (high school 

graduated / not graduated) and tested their interactions with obesity measurements and time.   

 

In sensitivity analyses, we categorized the baseline obesity measurements (BMI, waist to hip 

ratio, and predicted percent fat), into tertiles by sex and race and examined their associations 

with eGFR trajectories using the same mixed models as main analysis. We examined the 

associations of interest only among participants with valid information on visit 6 using the same 

methods to test the robustness of our main results. As smoking can lead to weight loss and 

modify the associations with obesity-related health conditions, we conducted a sensitivity 

analysis excluding current smokers.89 As obesity is a risk factor for increased mortality,90 we 

conducted a Fine-Gray competing risks analysis.91 All analyses were conducted using R version 

3.3.3 (R Development Core Team). 

 

RESULTS 

Baseline Characteristics 

The baseline characteristics of the 13,496 study participants (10,222 white and 3,274 black) 

according to baseline BMI tertile, sex, and racial group are shown in Table 3-1. For all four sex 

and racial groups, participants with higher baseline BMI, particularly those in the highest tertile, 

were more likely to have higher waist to hip ratio, predicted percent fat, SBP, and a history of 

coronary heart disease. They were also more likely to take anti-hypertensive medication, have 

lower levels of HDL, and less likely to be current smokers (p<0.001 for all comparisons). 
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Correlations of Obesity Measures 

Percent fat measured by BIA at visit 5 was strongly correlated with all concomitant obesity 

measures overall and in all four sex-race groups (all p<0.001, Supplementary Figure 3-1). 

However, the strength of the correlation and differences between sex-race groups varied 

substantially. BMI and predicted percent fat had the highest correlations with BIA-measured 

percent fat (range 0.62 to 0.85 across sex-race categories). In contrast, waist to hip ratio was 

has a weaker overall correlation of -0.15 (0.18 to 0.46 across sex-race categories). Predicted 

percent fat was the only measurement that captured the sex difference in obesity measurements 

resulting in convergence of regression lines for men and women. Density plots of distributions 

across baseline BMI tertiles showed that while waist to hip ratio and predicted percent fat 

increased with BMI, there was substantial overlap across tertiles indicating the measures would 

not classify the obesity status of individuals identically (Supplementary Figure 3-2) 

 

Variation in Annual Change in eGFR by Race and Sex 

Among women, annual decline in eGFR was more rapid among participants in the 2nd and 3rd 

tertiles of all three baseline obesity measurements; however, there was substantial overlap across 

categories. Black men in the 2nd and 3rd tertiles of waist to hip ratio and predicted percent fat also 

had more substantial decline in eGFR, but we did not observe such trend with BMI tertiles in this 

group (Figure 3-1, 3-2, 3-3). The median (25th, 75th percentile) annual eGFR declines in the low-

tertile, mid-tertile, and high-tertile of baseline waist to hip ratio were 1.31 (1.10, 1.53), 1.37 

(1.16, 1.61), and 1.32 (1.11, 1.52) for white men, 1.32 (1.14, 1.49), 1.43 (1.27, 1.59), and 1.51 

(1.35, 1.67) for white women, 1.61 (1.41, 1.77), 1.69 (1.45, 1.85), and 1.90 (1.60, 2.07) for black 
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men, 1.76 (1.51, 2.02), 1.94 (1.67, 2.18), and 2.10 (1.86, 2.28) for black women, and that for 

baseline predicted percent fat were 1.29 (1.08, 1.51), 1.38 (1.16, 1.62), and 1.34 (1.14, 1.55) for 

white men, 1.32 (1.13, 1.49), 1.44 (1.26, 1.59), and 1.52 (1.36, 1.68) for white women, 1.62 

(1.40, 1.82), 1.70 (1.43, 1.89), and 1.92 (1.66, 2.04) for black men, 1.81 (1.53, 2.07), 1.88 (1.62, 

2.12), and 2.13 (1.88, 2.33) for black women. 

 

Difference in eGFR decline by Markers of Obesity  

In women, all obesity indicators were associated with eGFR decline over 30 years follow-up. In 

black men, only waist to hip ratio and predicted percent fat were associated with eGFR decline; 

in white men, no measures of obesity were associated with eGFR decline. Adjusted for age, 

center, smoking and CHD, the difference (95% confidence interval) in eGFR decline slope (unit: 

ml/min per 1.73 m2 per decade) per SD higher baseline BMI, waist to hip ratio and predicted 

percent fat were 0.09 (-0.18, 0.36), -0.25 (-0.50, 0.01) and -0.14 (-0.41, 0.13) for white men, -

0.91 (-1.15, -0.67), -0.82 (-1.06, -0.58) and -1.02 (-1.26, -0.78) for white women, -0.70 (-1.54, 

0.14), -1.60 (-2.42, -0.78) and -1.24 (-2.08, -0.40) for black men, and -1.24 (-2.08, -0.40), -1.50 

(-2.05, -0.95) and -1.43 (-2.00, -0.86) for black women (Table 3-2). None of the interactions 

between family income or education and obesity measurements with kidney function decline 

were  significant after adjusting for multiple comparison. Results were similar to the main 

analysis in sensitivity analyses that examined the association between tertiles of obesity 

indicators and eGFR decline to check the impact of potential non-linearity (Supplementary 

Table 3-1), that only included participants who attended visit 6 (Supplementary Table 3-2), 

that excluded current smokers (Supplementary Table 3-3) , and that accounting for the 

competing risk of death before ESKD (Supplementary Table 3-4). 
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Risk of Developing ESKD 

All obesity indicators were associated with increased risk of ESKD for all sex-race groups except 

among white men. Adjusted for age, center, smoking and CHD, the hazard ratios (95% 

confidence interval) for ESKD per SD of BMI, waist to hip ratio and predicted percent fat were 

1.26 (0.98, 1.62), 1.12 (0.86, 1.48) and 1.19 (0.91, 1.54) for white men, 1.51 (1.14, 2.01), 1.79 

(1.26, 2.53) and 1.72 (1.31, 2.26) for white women, 1.75 (1.29, 2.36), 1.99 (1.38, 2.87) and 1.86 

(1.36, 2.55) for black men, and 1.68 (1.33, 2.13), 1.78 (1.32, 2.40) and 1.68 (1.32, 2.14) for black 

women. (Table 3-3). The 30-year difference in risk of ESKD across tertiles ranged from 0.8% to 

5.8% (Supplementary Figure 3-3). 

 

DISSCUSSION 

In this community-based population of 13,496 middle-aged adults, we observed obesity status, 

measured by BMI, waist to hip ratio, and predicted percent fat, was generally associated with 

more rapid future decline in kidney function and higher risk of developing ESKD over 30-year 

of follow-up. Associations were observed in white and black women as well as black men; 

however, there was no evidence supporting associations between markers of obesity and eGFR 

decline or ESKD in white men. The more novel measure of obesity - predicted percent fat, a sex-

specific equation that incorporates age, race, weight, height, and waist circumference - was 

highly correlated with BIA-measured percent fat. Our study suggests prevention of obesity in 

midlife may slow future rates of kidney function decline, at least in white and black women and 

black men. Documenting the full range of benefits of obesity prevention is important as obesity 
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prevention may require significant effort and cost which is justified by multiple health benefits. 

The stronger associations with ESKD suggest the overall benefit of obesity prevention will be 

greater for higher risk groups. 

 

The current study adds to the existing literature by demonstrating that midlife obesity is a risk 

factor of kidney function decline and development of ESKD in later life in women and black 

men and by quantifying the mean rate and range of decrease in kidney function over 30 years of 

follow-up. Existing research on kidney function trajectories has been more focused on 

individuals with kidney diseases rather than those with preserved kidney function.92,93 Our study 

addressed this gap by evaluating baseline obesity categories as a predictor of kidney function 

decline among individuals with preserved kidney function. We examined kidney function from 

midlife to older age where the prevalence of kidney disease is highest and ESKD most often 

occurs.  

 

Our study demonstrated that the association of midlife obesity with decline in kidney function 

differed by race and sex. Measures of obesity were not associated with kidney function decline in 

white men, and BMI but not waist to hip ratio or predicted percent fat predicted kidney outcomes 

in black men. Differences by sex in susceptibility to kidney outcomes associated with obesity 

among middle-aged adults has been described in previous literature. For example, previous 

studies have suggested that higher BMI was a significant risk factor for the development of CKD 

in women, but not men, in a Japanese community cohort.85 However, the underlying mechanisms 

for this difference are unknown. The lack of association in white men may be due to the 
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combination of lower obesity and lower kidney disease progression among whites reducing 

power. Alternatively, there may be  greater variation in muscle mass as a non-GFR influence of 

creatinine among men compared to women.94-98 Given the greater magnitude and range of 

measurements of obesity in women than in men, it is also possible that the power to observe 

associations between obesity and future kidney function decline was larger and indeed obesity 

explained more variance in rates of decline in women than in men. 

 

In general, the ARIC cohort follows the expected trends from previous studies with weight gain 

dominating in mid-life and weight loss increasing at older age.99-102 The mix of intentional and 

unintentional weight loss is unknown. Therefore, we focused on baseline weight to provide clear 

temporality and minimize reverse causation. Longitudinal tracking of obesity rank simplifies the 

interpretation of midlife obesity as a risk factor for kidney disease progression over the 

subsequent decades.103  

 

Our study used three indicators to model obesity: BMI, waist to hip ratio, and predicted percent 

fat. BMI has been most widely used in clinical and public health settings; however, whether it is 

the most suitable measure for all scenarios has been debated.82-84 Some studies have proposed 

that waist to hip ratio is more appropriate than BMI for gauging risk in middle to older-age 

adults since generalized obesity in older ages has been thought to provide protection against 

injury, nutritional reserve against illness, and better weight bearing bone formation.104-107 Also, 

BMI has been criticized for not being able to discriminate individuals with different body 

composition of fat mass and lean body mass, which has been suggested as the reason for the 
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“obesity paradox”, a phenomenon that overweight and obese individuals have better health 

outcomes compared with the normal-weight counterparts, in some settings.108,109 In our study, we 

observed high sex/race specific correlations between BMI and BIA-measured percent fat. Waist 

to hip ratio was distinct from BMI and was relatively weakly correlated with BIA-measured 

percent fat, although their associations with kidney outcomes were similar. The novel obesity 

marker, predicted percent fat, appeared to be not only highly correlated with BIA-measured 

percent fat, but also a risk factor with considerable magnitude of both kidney function decline 

and risk of ESKD in women and black men. However, the associations between different 

indicators of obesity and kidney outcomes were in general similar. This is probably because our 

study population was generally healthy while BMI loses its value mostly at advanced disease 

stage when loss of lean mass is important.109-111 Our results suggested that BMI is a good 

measure in a general population cohort for kidney outcomes and the improvement with more 

sophisticated measures in this setting is likely marginal. 

  

There are several strengths to this study. The ARIC study is a large, prospective cohort with 30 

years of follow-up. The long duration of the study allows for the characterization of kidney 

function decline in a population that was generally healthy at the outset. Given the inclusion of 

both whites and blacks as well as both men and women from four distinct U.S. communities, we 

were able to examine the association between obesity and kidney outcomes by sex and race. BMI 

was measured and not self-reported. Also, multiple established risk factors were collected in a 

standardized manner according to a research protocol. The main limitation of this study is that 

there were only up to five eGFR measurements for the estimation of long-term trajectories. That 

said, there are few longitudinal, population-based cohorts that have had more frequent 
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measurements of eGFR over 30 years. Participants who develop ESKD were less likely to 

survive to attend subsequent study visits; we included an estimate of their trajectory by imputing 

an eGFR value of 15 mL/min/1.73 m2 at the time of ESKD onset. The potential differential loss 

to follow-up may also occur for people in higher tertiles of obesity at baseline. 

 

In conclusion, we observed in community-dwelling adults that midlife obesity status was a risk 

factor for future decline in kidney function and development of ESKD in all sex-race subgroups 

except for white men. The lack of associations in white men suggests that the role of obesity and 

its optimal quantification for kidney disease risk requires further study.  
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Figure 3-1 Distribution of unadjusted predicted average annual change in estimated glomerular filtration rate (eGFR; unit: 

ml/min per 1.73 m2) within the ARIC population according to baseline body mass index (BMI) tertile by sex and race. (A) 

Unadjusted eGFR change among white men (B) Unadjusted eGFR change among white women (C) Unadjusted eGFR change 

among black men (D) Unadjusted eGFR change among black women. 
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Figure 3-2 Distribution of unadjusted predicted average annual change in estimated glomerular filtration rate (eGFR; unit: 

ml/min per 1.73 m2) within the ARIC population according to waist to hip ratio tertile by sex and race. (A) Unadjusted eGFR 

change among white men (B) Unadjusted eGFR change among white women (C) Unadjusted eGFR change among black men 

(D) Unadjusted eGFR change among black women. 
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Figure 3-3 Distribution of unadjusted predicted average annual change in estimated glomerular filtration rate (eGFR; unit: 

ml/min per 1.73 m2) within the ARIC population according to baseline predicted percent fat tertile by sex and race. (A) 

Unadjusted eGFR change among white men (B) Unadjusted eGFR change among white women (C) Unadjusted eGFR change 

among black men (D) Unadjusted eGFR change among black women. 
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Table 3-1 Characteristics of the study population according to baseline body mass index (BMI) tertiles by sex and race 

(N=13,496 in 1987-1989). 

Characteristica White (N=1,0222) Black (N=3,274) 

Men (N=4,802) Women (N=5,420) Men (N=1,270) Women (N=2,004) 

Low-

tertile 

(N=1,601) 

Mid-

tertile 

(N=1,600) 

High-

tertile 

(N=1,601) 

Low-

tertile 

(N=1,809) 

Mid-

tertile 

(N=1,803) 

High-

tertile 

(N=1,808) 

Low-

tertile 

(N=423) 

Mid-

tertile 

(N=424) 

High-

tertile 

(N=423) 

-Low-

tertile 

(N=668) 

Mid-

tertile 

(N=668) 

High-

tertile 

(N=668) 

BMI, kg/m2  23.5  

(1.5) 

26.8  

(0.8) 

31.4  

(3.1) 

21.6  

(1.2) 

25.3  

(1.1) 

32.2  

(4.2) 

22.7 

(1.7) 

26.9 

(1.1) 

32.2 

(3.5) 

24.2 

(2.0) 

29.3 

(1.4) 

37.4 

(5.2) 

WHRb 0.93 

(0.05) 

0.97 

(0.04) 

1.00 

(0.04) 

0.84 

(0.07) 

0.88 

(0.07) 

0.93 

(0.07) 

0.90 

(0.05) 

0.93 

(0.04) 

0.97 

(0.05) 

0.85 

(0.07) 

0.90 

(0.07) 

0.94 

(0.07) 

Predicted percent 

fat, %b 

25.1  

(2.3) 

28.2  

(2.0) 

32.2  

(3.2) 

35.4  

(1.5) 

39.1  

(1.4) 

45.5  

(3.9) 

22.3 

(2.6) 

25.9 

(2.3) 

30.8 

(4.1) 

36.1 

(2.1) 

40.9 

(1.6) 

48.5 

(4.8) 

eGFR, mL/min/1.73 

m2b 

99.5 

(11.1) 

97.8 

(11.0) 

97.0 

(11.6) 

103.0 

(10.3) 

101.2 

(11.4) 

100.4 

(12.0) 

112.3 

(15.5) 

107.9 

(15.4) 

105.4 

(16.7) 

115.4 

(16.3) 

114.8 

(15.9) 

115.4 

(16.2) 

Age, yearsb 55.3  

(5.7) 

55.1  

(5.7) 

54.9  

(5.6) 

53.9  

(5.7) 

54.5  

(5.6) 

54.5  

(5.7) 

54.6 

(6.0) 

53.8 

(5.9) 

53.6 

(5.7) 

53.3 

(5.8) 

53.4 

(5.6) 

53.2 

(5.7) 

Current smokerb 510  

(31.9) 

358  

(22.4) 

325  

(20.3) 

558  

(30.9) 

438  

(24.3) 

339  

(18.8)   

217 

(51.3) 

157 

(37.1) 

113 

(26.7) 

226 

(33.9) 

158 

(23.7) 

126 

(18.9)   

HTN MED useb 203  

(12.7) 

265  

(16.7) 

380  

(23.9) 

169  

(9.4) 

283  

(15.7) 

471  

(26.2)   

89 

(21.1) 

127 

(30.1) 

166 

(39.4) 

199 

(29.9) 

255 

(38.4) 

310 

(46.8)   
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SBP, mm/Hgb 116.6 

(15.6) 

119.2 

(15.6) 

122.0 

(15.2) 

111.6 

(16.3) 

115.7 

(17.1) 

121.3 

(16.8) 

127.7 

(22.6) 

129.4 

(21.6) 

130.7 

(20.5) 

123.3 

(20.8) 

125.2 

(18.4) 

129.9 

(20.3) 

HDL-C, mg/Lb 47.1 

(13.9) 

42.6 

(11.5) 

39.9 

(10.2) 

64.8 

(17.6) 

58.6 

(16.3) 

51.7 

(14.0) 

57.6 

(20.3) 

50.0 

(14.2) 

46.1 

(12.6) 

63.9 

(18.7) 

59.0 

(17.3) 

55.3 

(14.2) 

Prevalent CHDb 123  

(7.9) 

120  

(7.6) 

132  

(8.4) 

17  

(1.0) 

27  

(1.5) 

35  

(2.0)   

15  

(3.6) 

17  

(4.1) 

22  

(5.2) 

14  

(2.2) 

12  

(1.8) 

12  

(1.8)    

High school graduateb 1329 

(83.2) 

1316 

(82.4) 

1321 

(82.6) 

1625 

(89.9) 

1553 

(86.1) 

1416 

(78.4) 

225 

(53.4) 

253 

(60.0) 

251 

(59.6) 

487 

(73.0) 

411 

(61.6) 

375 

(56.2) 

Annual family income 

<$25,000b 

335  

(20.9) 

284  

(17.8) 

308  

(19.2) 

423  

(23.4) 

496  

(27.5) 

612  

(33.8) 

253 

(59.8) 

217 

(51.2) 

209 

(49.4) 

384 

(57.5) 

440 

(65.9) 

484 

(72.5) 

a Mean (standard deviation) for continuous variables and % (n) for categorical variables. 

b P-value for comparing the BMI groups <0.001; P-value calculated by ANOVA for continuous variables and χ2 test for categorical 

variables 

c The cut-off points between the low- and the mid-tertiles and between mid- and high-tertiles are 25.4 and 28.3 for white men, 23.4 

and 27.5 for white women, 25.1 and 28.8 for black men, and 27.0 and 32.0 for black women.  

CHD, coronary heart disease; eGFR, estimated glomerular filtration rate; HDL-C, high density lipoprotein cholesterol; HTN, 

hypertension; MED, medication; SBP, systolic blood pressure; WHR: waist to hip ratio 
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Table 3-2 Association of estimated glomerular filtration rate (eGFR) decline slope (unit: ml/min per 1.73 m2 per decade) with 

three measures of baseline obesity by sex and race.  

 White (N=1,0222) Black (N=3,274) 

Men (N=4,802) Women (N=5,420) Men (N=1,270) Women (N=2,004) 

 Body mass indexc.d, per standard deviation 

Mean (SD), kg/m2 27.23 (3.86) 26.33 (5.09) 27.28 (4.53) 30.29 (6.36) 

Model 1a,b 0.21 (-0.06, 0.48)e -0.76 (-1.00, -0.52)*** -0.50 (-1.34, 0.34) -1.22 (-1.79, -0.65)*** 

Model 2a,b 0.09 (-0.18, 0.36) -0.91 (-1.15, -0.67)*** -0.70 (-1.54, 0.14) -1.35 (-1.92, -0.78)*** 

Model 3a.b 0.52 (0.23, 0.80)*** -0.27 (-0.53, -0.02)* 0.03 (-0.85, 0.91) -0.85 (-1.45, -0.25)** 

 Waist to hip ratioc.d, per standard deviation 

Mean (SD) 0.97 (0.05) 0.89 (0.08) 0.94 (0.05) 0.90 (0.08) 

Model 1a,b -0.28 (-0.55, -0.01)* -0.87 (-1.09, -0.65)*** -1.58 (-2.4, -0.76)*** -1.54 (-2.09, -0.99)*** 

Model 2a,b -0.25 (-0.50, 0.005) -0.82 (-1.06, -0.58)*** -1.60 (-2.42, -0.78)*** -1.50 (-2.05, -0.95)*** 

Model 3a,b 0.15 (-0.13, 0.43) -0.16 (-0.41, 0.09) -0.40 (-1.32, 0.52) -1.07 (-1.68, -0.46)*** 

 Predicted percent fatc.d, per standard deviation 

Mean (SD), % 28.49 (3.88) 39.99 (4.92) 26.31 (4.65) 41.83 (5.99) 
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Model 1a,b -0.12 (-0.39, 0.15) -0.89 (-1.11, -0.67)*** -1.08 (-1.92, -0.24)** -1.32 (-1.89, -0.75)*** 

Model 2a,b -0.14 (-0.41, 0.13) -1.02 (-1.26, -0.78)*** -1.24 (-2.08, -0.40)** -1.43 (-2.00, -0.86)*** 

Model 3a,b 0.30 (0.02, 0.59)* -0.32 (-0.58, -0.06)* -0.26 (-1.17, 0.65) -0.90 (-1.5, -0.29)** 

a Model 1 is unadjusted random effects model showing rate of decline (the interaction of each variable with follow-up time); model 2 

adjusted for age (continuous), center (categorical), current smoker (yes / no), and prevalent coronary heart disease (yes / no) at 

baseline; model 3 additionally adjusted for hypertension medication (yes / no), systolic blood pressure (continuous), total cholesterol 

(continuous), high-density lipoprotein cholesterol (continuous), triglyceride (continuous, log transformed), education level (high 

school graduated / not graduated), and annual family income (categorical) at baseline. 

b Black participants in the Minnesota and Washington County centers were excluded in the model because of small numbers. 

c Centered at median of each race-gender group. 

d In an overall unadjusted model combining sex-race groups, the p-value for interaction between sex-race and the association of eGFR 

decline with baseline obesity was <0.001 for all obesity measurements. 

e Estimate (95% confidence interval) for all such values. 

* indicates p<0.05, ** indicates p<0.01, *** indicates p<0.001. 
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Table 3-3 Hazard ratios for end-stage kidney disease (ESKD) according to baseline obesity status by sex and race.   

 White (n/N=95/1,0222) Black (N=95/3,274) 

Men (n/N=57/4,802) Women (n/N=43/5,420) Men (n/N=39/1,270) Women (n/N=56/2,004) 

 Body mass indexc.d, per standard deviation 

Mean (SD), kg/m2 27.23 (3.86) 26.33 (5.09) 27.28 (4.53) 30.29 (6.36) 

Model 1a,b 1.22 (0.95, 1.57)d 1.47 (1.13, 1.92)** 1.66 (1.23, 2.25)*** 1.63 (1.29, 2.06)*** 

Model 2a,b 1.26 (0.98, 1.62) 1.51 (1.14, 2.01)** 1.75 (1.29, 2.36)*** 1.68 (1.33, 2.13)*** 

Model 3a,b 1.04 (0.79, 1.39) 1.06 (0.76, 1.46) 1.51 (1.09, 2.11)* 1.65 (1.29, 2.13)*** 

 Waist to hip ratioc, per standard deviation 

Mean (SD) 0.97 (0.05) 0.89 (0.08) 0.94 (0.05) 0.90 (0.08) 

Model 1a,b 1.19 (0.91, 1.56) 2.11 (1.51, 2.94)*** 2.00 (1.40, 2.88)*** 1.77 (1.31, 2.37)*** 

Model 2a,b 1.12 (0.86, 1.48) 1.79 (1.26, 2.53)** 1.99 (1.38, 2.87)*** 1.78 (1.32, 2.40)*** 

Model 3a,b 0.92 (0.69, 1.23) 1.26 (0.86, 1.84) 1.73 (1.18, 2.53)** 1.74 (1.26, 2.40)*** 

 Predicted percent fatc, per standard deviation 

Mean (SD), % 28.49 (3.88) 39.99 (4.92) 26.31 (4.65) 41.83 (5.99) 

Model 1a,b 1.19 (0.92, 1.55) 1.74 (1.35, 2.24)*** 1.84 (1.34, 2.52)*** 1.64 (1.29, 2.08)*** 
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Model 2a,b 1.19 (0.91, 1.54) 1.72 (1.31, 2.26)*** 1.86 (1.36, 2.55)*** 1.68 (1.32, 2.14)*** 

Model 3a,b 0.94 (0.71, 1.25) 1.27 (0.92, 1.74) 1.63 (1.16, 2.30)** 1.61 (1.24, 2.09)*** 

a Model 1 is unadjusted random effects model showing rate of decline (the interaction of each variable with follow-up time); model 2 

adjusted for age (continuous), center (categorical), current smoker (yes / no), and prevalent coronary heart disease (yes / no) at 

baseline; model 3 additionally adjusted for hypertension medication (yes / no), systolic blood pressure (continuous), total cholesterol 

(continuous), high-density lipoprotein cholesterol (continuous), triglyceride (continuous, log transformed), estimated glomerular 

filtration rate (continuous), education level (high school graduated / not graduated), and annual family income (categorical) at 

baseline. 

b Black participants in the Minnesota and Washington County centers were excluded in the model because of small numbers. 

c Centered at median of each race-gender group. 

d Hazard ratio (95% confidence interval) for all such values.  

* indicates p<0.05, ** indicates p<0.01, *** indicates p<0.001. 
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Supplementary Figure 3-1 Scatter plot of bioelectrical impedance analysis (BIA) measured percent fat and body mass index 

(BMI), waist to hip ratio, or predicted percent fat at visit 5 with generalized additive regression line.  

BIA percent fat and BMI BIA percent fat and waist to hip ratio BIA percent fat and predicted percent fat 

   

All p-values are <0.001 
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Supplementary Figure 3-2 Distributions of waist to hip ratio and predicted percent fat according to baseline body mass index 

(BMI) tertile by sex and race. 

 White (N=1,0222) Black (N=3,274) 

Men (N=4,802) Women (N=5,420) Men (N=1,270) Women (N=2,004) 

Waist to 

hip ratio 

    

Predicted 

percent fat 
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Supplementary Table 3-1 Difference in estimated glomerular filtration rate (eGFR) decline slope (unit: ml/min per 1.73 m2 per 

decade) according to baseline obesity status tertile by sex and race.  

 White (N=1,0222) Black (N=3,274) 

Men (N=4,802) Women (N=5,420) Men (N=1,270) Women (N=2,004) 

 Low-

tertile 

(N=1,601) 

Mid-

tertile 

(N=1,600) 

High-

tertile 

(N=1,601) 

Low-

tertile 

(N=1,809) 

Mid-

tertile 

(N=1,803) 

High-

tertile 

(N=1,808) 

Low-

tertile 

(N=423) 

Mid-

tertile 

(N=424) 

High-

tertile 

(N=423) 

Low-

tertile 

(N=668) 

Mid-

tertile 

(N=668) 

High-

tertile 

(N=668) 

BMI 

Model 1a,b Ref 0.20 0.85* Ref -0.92*** -1.61*** Ref 0.69 -0.50 Ref -1.57* -2.90*** 

Model 2a,b Ref 0.01 0.56 Ref -1.09*** -1.93*** Ref 0.45 -0.98 Ref -1.70* -3.19*** 

Model 3a,b Ref 0.56 1.46*** Ref -0.50 -0.52 Ref 0.82 0.45 Ref -1.06 -1.92* 

Waist to hip ratio 

Model 1a,b Ref -0.96** -0.62 Ref -1.10*** -1.99*** Ref -0.78 -2.98** Ref -0.68 -3.21*** 

Model 2a,b Ref -0.92** -0.57 Ref -1.02*** -1.89*** Ref -0.83 -3.00** Ref -0.59 -3.13*** 

Model 3a,b Ref -0.36 0.28 Ref -0.28 -0.40 Ref 0.78 -0.07 Ref -0.22 -1.86* 

Predicted percent fat 

Model 1a,b Ref -0.68* -0.17 Ref -1.12*** -1.98*** Ref -0.81 -3.02** Ref -1.83** -3.35*** 

Model 2a,b Ref -0.69* -0.19 Ref -1.25*** -2.22*** Ref -1.10 -3.36** Ref -1.91** -3.61*** 

Model 3a,b Ref -0.28 0.72* Ref -0.50 -0.68* Ref 0.21 -0.95 Ref -1.36 -2.22** 
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a Model 1 is unadjusted random effects model showing rate of decline (the interaction of each variable with follow-up time); model 2 

adjusted for age (continuous), center (categorical), current smoker (yes / no), and prevalent coronary heart disease (yes / no) at 

baseline; model 3 additionally adjusted for hypertension medication (yes / no), systolic blood pressure (continuous), total cholesterol 

(continuous), high-density lipoprotein cholesterol (continuous), triglyceride (continuous, log transformed), education level (high 

school graduated / not graduated), and annual family income (categorical) at baseline. 

b Black participants in the Minnesota and Washington County centers were excluded in the model because of small numbers. 

* indicates p<0.05, ** indicates p<0.01, *** indicates p<0.001. 
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Supplementary Table 3-2 Difference in estimated glomerular filtration rate (eGFR) decline slope (unit: ml/min per 1.73 m2 per 

decade) according to baseline obesity status tertile by sex and race among participants who had visit 6 information. 

 White (N=2,802) Black (N=799) 

Men (N=1,237) Women (N=1,565) Men (N=253) Women (N=546) 

 Low-

tertile 

(N=430) 

Mid-

tertile 

(N=412) 

High-

tertile 

(N=395) 

Low-

tertile 

(N=575) 

Mid-

tertile 

(N=564) 

High-

tertile 

(N=426) 

Low-

tertile 

(N=73) 

Mid-

tertile 

(N=102) 

High-

tertile 

(N=78) 

Low-

tertile 

(N=202) 

Mid-

tertile 

(N=186) 

High-

tertile 

(N=158) 

Attended  

visit 6, % 

26% 25% 24% 31% 31% 23% 17% 23% 16% 29% 26% 21% 

BMI 

Model 1a,b Ref 0.17 0.62 Ref -1.00** -1.22*** Ref 0.46 0.15 Ref -1.11 -2.99*** 

Model 2a,b Ref 0.07 0.42 Ref -1.20*** -1.57*** Ref 0.41 -0.14 Ref -1.14 -3.02*** 

Model 3a,b Ref 0.45 0.98** Ref -0.76* -0.53 Ref 0.08 -0.59 Ref -1.10 -2.67** 

Waist to hip ratio 

Model 1a,b Ref -0.98** -0.04 Ref -1.03*** -1.38*** Ref -0.44 -0.62 Ref -0.95 -2.16** 

Model 2a,b Ref -1.01** -0.08 Ref -1.02*** -1.40*** Ref -0.45 -0.55 Ref -0.91 -2.11** 

Model 3a,b Ref -0.68* 0.30 Ref -0.41 -0.44 Ref -0.37 -0.44 Ref -0.92 -1.76* 

Predicted percent fat 

Model 1a,b Ref -0.36 0.08 Ref -0.91** -1.39*** Ref -0.63 -1.03 Ref -1.77* -3.50*** 
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Model 2a,b Ref -0.43 0.10 Ref -1.05*** -1.65*** Ref -0.85 -1.09 Ref -1.81** -3.55*** 

Model 3a,b Ref -0.16 0.66 Ref -0.53 -0.56 Ref -1.02 -1.37 Ref -1.98** -3.32*** 

a Model 1 is unadjusted random effects model showing rate of decline (the interaction of each variable with follow-up time); model 2 

adjusted for age (continuous), center (categorical), current smoker (yes / no), and prevalent coronary heart disease (yes / no) at 

baseline; model 3 additionally adjusted for hypertension medication (yes / no), systolic blood pressure (continuous), total cholesterol 

(continuous), high-density lipoprotein cholesterol (continuous), triglyceride (continuous, log transformed), education level (high 

school graduated / not graduated), and annual family income (categorical) at baseline. 

b Black participants in the Minnesota and Washington County centers were excluded in the model because of small numbers. 

* indicates p<0.05, ** indicates p<0.01, *** indicates p<0.001. 
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Supplementary Table 3-3 Association of estimated glomerular filtration rate (eGFR) decline slope (unit: ml/min per 1.73 m2 

per decade) with three measures of baseline obesity by sex and race excluding current smokers.  

 White (N=1,0222) Black (N=3,274) 

Men (N=3,608) Women (N=4,081) Men (N=782) Women (N=1,490) 

BMIc, per standard deviation 

Model 1a,b 0.01 (-0.28, 0.29)d -0.76 (-1.00, -0.52)*** -0.35 (-1.30, 0.60) -1.59 (-2.19, -0.99)*** 

Model 2a,b -0.05 (-0.33, 0.23) -0.84 (-1.08, -0.59)*** -0.34 (-1.28, 0.61) -1.60 (-2.20, -1.00)*** 

Model 3a.b 0.31 (0.02, 0.61)* -0.27 (-0.53, 0.001) 0.11 (-0.87, 1.09) -1.22 (-1.86, -0.58)*** 

Waist to hip ratioc, per standard deviation 

Model 1a,b -0.36 (-0.63, -0.09)** -0.76 (-0.99, -0.53)*** -1.18 (-2.11, -0.25)* -1.47 (-2.07, -0.88)*** 

Model 2a,b -0.35 (-0.62, -0.07)* -0.70 (-0.94, -0.46)*** -1.17 (-2.10, -0.24)* -1.47 (-2.06, -0.87)*** 

Model 3a,b -0.07 (-0.35, 0.22) -0.12 (-0.39, 0.14) -0.51 (-1.52, 0.51) -1.24 (-1.89, -0.59)*** 

Predicted percent fatc, per standard deviation 

Model 1a,b -0.28 (-0.56, 0.003) -0.87 (-1.11, -0.64)*** -0.85 (-1.81, 0.11) -1.66 (-2.26, -1.07)*** 

Model 2a,b -0.27 (-0.55, 0.01) -0.92 (-1.17, -0.68)*** -0.83 (-1.79, 0.13) -1.67 (-2.27, -1.07)*** 

Model 3a,b 0.07 (-0.22, 0.37) -0.31 (-0.58, -0.04)* -0.30 (-1.32, 0.72) -1.29 (-1.94, -0.65)*** 
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a Model 1 is unadjusted random effects model showing rate of decline (the interaction of each variable with follow-up time); model 2 

adjusted for age (continuous), center (categorical), and prevalent coronary heart disease (yes / no) at baseline; model 3 additionally 

adjusted for hypertension medication (yes / no), systolic blood pressure (continuous), total cholesterol (continuous), high-density 

lipoprotein cholesterol (continuous), triglyceride (continuous, log transformed), education level (high school graduated / not 

graduated), and annual family income (categorical) at baseline. 

b Black participants in the Minnesota and Washington County centers were excluded in the model because of small numbers. 

c Centered at median of each race-gender group. 

d Estimate (95% confidence interval) for all such values. 

* indicates p<0.05, ** indicates p<0.01, *** indicates p<0.001. 
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Supplementary Table 3-4 Subhazard ratios for end-stage kidney disease (ESKD) according to baseline obesity status by sex 

and race with using a Fine-Gray competing risk model. 

 White (n/N=95/1,0222) Black (N=95/3,274) 

Men (n/N=57/4,802) Women (n/N=43/5,420) Men (n/N=39/1,270) Women (n/N=56/2,004) 

 Body mass indexc.d, per standard deviation 

Mean (SD), kg/m2 27.23 (3.86) 26.33 (5.09) 27.28 (4.53) 30.29 (6.36) 

Model 1a,b 1.20 (0.95, 1.52) 1.45 (1.19, 1.78)*** 1.71 (1.3, 2.24)*** 1.58 (1.25, 1.99)*** 

Model 2a,b 1.21 (0.96, 1.54) 1.46 (1.17, 1.83)*** 1.73 (1.31, 2.28)*** 1.61 (1.28, 2.02)*** 

Model 3a,b 1.05 (0.82, 1.35) 1.05 (0.81, 1.36) 1.51 (1.07, 2.13)* 1.58 (1.24, 2.03)*** 

 Waist to hip ratioc, per standard deviation 

Mean (SD) 0.97 (0.05) 0.89 (0.08) 0.94 (0.05) 0.90 (0.08) 

Model 1a,b 1.11 (0.85, 1.44) 1.99 (1.43, 2.78)*** 1.68 (1.16, 2.43)** 1.62 (1.23, 2.12)*** 

Model 2a,b 1.05 (0.80, 1.37) 1.70 (1.19, 2.43)** 1.78 (1.19, 2.65)** 1.70 (1.29, 2.24)*** 

Model 3a,b 0.91 (0.69, 1.19) 1.27 (0.87, 1.86) 1.5 (0.97, 2.31) 1.67 (1.21, 2.3)** 

 Predicted percent fatc, per standard deviation 

Mean (SD), % 28.49 (3.88) 39.99 (4.92) 26.31 (4.65) 41.83 (5.99) 
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Model 1a,b 1.13 (0.86, 1.48) 1.71 (1.37, 2.13)*** 1.71 (1.27, 2.3)*** 1.55 (1.25, 1.92)*** 

Model 2a,b 1.11 (0.85, 1.46) 1.67 (1.30, 2.15)*** 1.74 (1.30, 2.34)*** 1.59 (1.29, 1.96)*** 

Model 3a,b 0.96 (0.73, 1.25) 1.27 (0.92, 1.75) 1.44 (1.02, 2.03)* 1.53 (1.21, 1.93)*** 

a Model 1 is unadjusted random effects model showing rate of decline (the interaction of each variable with follow-up time); model 2 

adjusted for age (continuous), center (categorical), current smoker (yes / no), and prevalent coronary heart disease (yes / no) at 

baseline; model 3 additionally adjusted for hypertension medication (yes / no), systolic blood pressure (continuous), total cholesterol 

(continuous), high-density lipoprotein cholesterol (continuous), triglyceride (continuous, log transformed), estimated glomerular 

filtration rate (continuous), education level (high school graduated / not graduated), and annual family income (categorical) at 

baseline. 

b Black participants in the Minnesota and Washington County centers were excluded in the model because of small numbers. 

c Centered at median of each race-gender group. 

d Hazard ratio (95% confidence interval) for all such values.  

* indicates p<0.05, ** indicates p<0.01, *** indicates p<0.001. 
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Supplementary Figure 3-3  Kaplan-Meier survival free of end-stage kidney disease (ESKD) by tertile of baseline obesity 

measure within each sex-race group showing absolute risk of ESKD. 

 White (n/N=95/1,0222) Black (N=95/3,274) 

Men (n/N=57/4,802) Women (n/N=43/5,420) Men (n/N=39/1,270) Women (n/N=56/2,004) 
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ABSTRACT  

Blood pressure and kidney function have a bidirectional relation. Hypertension has long been 

considered as a risk factor for kidney function decline. However, whether intensive blood 

pressure control could promote kidney health has been uncertain. The kidney is known to have a 

major role in affecting blood pressure through sodium extraction and regulating electrolyte 

balance. This bidirectional relation makes causal inference between these two traits difficult. To 

examine the causal relations between these two traits, we performed two-sample Mendelian 

randomization analyses using summary statistics of large-scale genome-wide association studies. 

We selected genetic instruments more likely to be specific for kidney function using 

complementary kidney function biomarkers (glomerular filtration rate estimated from serum 

creatinine [eGFRcr], N=567,460, and blood urea nitrogen, N=243,031, from the CKDGen 

Consortium). Systolic and diastolic blood pressure summary statistics were from the 

International Consortium for Blood Pressure and UK Biobank (N=757,601). Significant 

evidence supported the causal effects of higher kidney function on lower blood pressure. Based 

on the mode-based Mendelian randomization method, the effect estimates for 1 SD higher in 

eGFRcr was -0.17 SD unit (95 % CI: -0.09 to -0.24) in systolic blood pressure and -0.15 SD unit 

(95% CI: -0.07 to -0.22) in diastolic blood pressure. In contrast, the causal effects of blood 

pressure on kidney function were not statistically significant. Our results support causal effects 

of higher kidney function on lower blood pressure and suggest preventing kidney function 

decline can reduce the public health burden of hypertension. 
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INTRODUCTION 

Hypertension and chronic kidney disease (CKD) are two interconnected global public health 

burdens. The estimated prevalence of hypertension is 31%, and CKD affects ~10% of adults.1-3 

Both CKD and hypertension are major risk factors for cardiovascular disease (CVD) and 

mortality.112-114 Blood pressure (BP) and kidney function have a bidirectional relation. 

Hypertension has long been considered as a risk factor for kidney function decline based on 

observational studies.7-10 However, it is uncertain whether intensive BP control could promote 

kidney health based on results from randomized controlled trials.11,12 On the relation between 

kidney function decline and higher BP, two observational studies reported significant association 

between lower kidney function and incident hypertension. However, the kidney function 

biomarkers with significant association were cystatin C and beta-2 microglobulin, whereas serum 

creatinine, the most commonly used kidney function biomarker, was not significant.115,116 These 

inconsistent results make inferring causal relation between BP and kidney function difficult. 

Evaluating the causal relations between kidney function and BP (Figure 1A) can inform disease 

prevention and treatment strategies.  

 

Mendelian randomization (MR) is an approach employing genetic variants as instrumental 

variables of the exposure to estimate causal effects of the exposure on an outcome overcoming 

the confounding inherent in observational studies.20 Two-sample MR analysis is an extension of 

the MR method that allows the use of summary statistics of genome-wide association studies 

(GWAS) for MR studies without directly analyzing individual-level data. Using two-sample MR 

analysis, Liu et al. found causal effects of systolic and diastolic BP on CKD.117 Morris et al. 

reported significant causal effect of lower kidney function on higher diastolic BP (DBP) and not 
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on systolic BP (SBP).118 Taking advantage of the recent large-scale meta-analysis of kidney 

function GWAS that included complementary glomerular filtration rate (GFR) biomarkers, we 

performed two-sample MR analyses to evaluate the potential bidirectional causal relation 

between kidney function and BP. The primary kidney function trait was estimated GFR based on 

serum creatinine (eGFRcr)119 with blood urea nitrogen (BUN) as secondary. The primary BP 

trait was SBP with DBP as secondary.  

 

To obtain robust conclusions from our analyses, we paid particular attention to two critical 

aspects in this MR study. One being the use of serum creatinine for GFR estimation, which 

might link eGFRcr to genetic variants related to creatinine metabolism and not GFR, making it 

difficult to interpret any causal findings between eGFRcr and BP. To address this issue, we used 

data from large-scale meta-analysis of GWAS of BUN, a complementary GFR biomarker, to 

select genetic instruments that are more likely to be specific to kidney function. The second 

being the assumption of the lack of horizontal pleiotropy of the genetic instruments, that is the 

genetic instruments must be associated with the outcome through the exposure only. This 

assumption is difficult to assess and verify.34 To address this issue, we used multiple MR 

methods and prioritized the method that are known to be robust to the presence of horizontal 

pleiotropy and the influence of outlying genetic instruments.35 

 

RESULTS 

Summary of population characteristics 
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The meta-analysis of the GWAS of kidney function included largely adult population-based 

cohorts (among cohorts in the Chronic Kidney Genetic [CKDGen] Consortium, median age: 50.1 

years; median of male %: 48.2; median eGFRcr: 91.4 mL/min/1.73m2; N=567,460 for eGFRcr 

and N=243,031 for BUN, Table 4-1). The meta-analysis of the GWAS of blood pressure also 

included largely population-based cohorts (mean age of 54.9 years for the International 

Consortium for Blood Pressure [ICBP], 56.8 years for UK Biobank [UKB]; male %: 44.9% for 

ICBP, 45.8% for UKB; mean SBP: 134.3 mmHg for ICBP, 141.1 mmHg for UKB; N=299,024 

for ICBP, N=458,577 for UKB, Table 4-1)  

 

Selection of kidney function genetic instruments 

The genetic instruments of kidney function were selected from the summary statistics of the 

meta-analysis of GWAS of European-ancestry participants of the CKDGen Consortium.13 Of 

256 reported eGFRcr index SNPs, after the removal of SNPs associated with potential 

confounders (Methods, Supplementary Table 1), 213 SNP remained (Figure 4-2, 

Supplementary Table 2). Using BUN as the complementary kidney function marker, we 

retained 40 index SNPs based on their association with BUN having direction consistency in 

kidney function and satisfying Bonferroni-corrected significance threshold (Methods, 

Supplementary Table 3). For example, the index SNP at GATM, which encodes an enzyme in 

creatine metabolism120, was removed due to insignificant association with BUN (rs1145077, 

eGFRcr P=6.9×10-142, BUN P=0.92). After pairwise-linkage disequilibrium (LD) clumping and 

matching of coding allele between exposure and outcome, 35 index SNPs remained. Finally, 

Steiger filtering removed the index SNPs at FGF5 and SPI1 (Supplementary Table 4) resulting 

in 33 genetic instruments for eGFRcr, which explained 1.33% of the variance of log(eGFRcr). 
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None of these 33 genetic instruments were associated with urine sodium-to-creatinine ratio or 

urine potassium-to-creatinine ratio at genome-wide significance level (p<5x10-8) in a large-scale 

GWAS of UKB participants (N=327,613, Supplementary Table 5).121 Using similar selection 

procedures, the number of genetic instruments retained for BUN was 24, which explained 1.18% 

of the variance of log(BUN). For example, using eGFRcr as the complementary kidney function 

biomarker, the BUN index SNP at SLC14A2, a urea transporter122,123 was removed due to 

insignificant association with eGFRcr (rs41301139, P=0.14) (Supplementary Table 6). The 

numbers of SNPs retained after each selection step are reported in Supplementary Table 7.   

 

Significant causal effect of kidney function on BP 

We identified significant evidence for causal effects of higher kidney function on lower BP. 

Based on weighted mode, our primary method, the causal effect estimates for each standard 

deviation (SD) higher log(eGFRcr) were -0.17 SD in SBP (95% confidence interval [CI]: -0.24 

to -0.09; P=9.92×10-5) and -0.15 SD in DBP (95% CI: -0.22 to -0.07; P=5.02×10-4, Figure 4-3). 

These causal effects were equivalent to 10% higher eGFRcr leading to 2.35 mmHg lower in SBP 

and 1.14 mmHg lower in DBP. If the relation between eGFRcr and blood pressure is linear,124,125 

a 50% lower in eGFRcr would lead to 17.5 mmHg higher SBP and 8.4 mmHg higher DBP. We 

also observed significant causal effects of BUN, the secondary kidney function trait, on SBP and 

DBP (weighted mode method, SBP P=4.92×10-4; DBP P=3.88×10-6). Using other MR methods: 

inverse-variance-weighted fixed-effects (IVW-FE) method, MR-Egger, weighted median, and 

MR analysis using mixture models (MRMix),126-129 all causal effect estimates were in the same 

direction as those from weighted mode and statistically significant, providing support for causal 

effects of lower eGFRcr on higher SBP and DBP (Supplementary Table 8). MR-PRESSO 
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analysis with the explicit removal of outlying instruments showed similar results 

(Supplementary Table 9). The scatter plots with the regression line from all MR methods are 

presented in Supplementary Figures 1A-4A. The forest plots of single SNP effects from each 

of the kidney function traits to each of the BP traits are presented in Supplementary Figure 1B-

4B. Multiple sensitivity analyses resulted in similar causal effect estimates for kidney function 

on BP (Supplementary Tables 10 and 11, Supplementary Results). 

 

Selection of genetic instruments for SBP and DBP 

The genetic instruments of SBP and DBP were selected from the summary statistics of the meta-

analysis of GWAS from the UKB-ICBP.31 Of the 551 reported index SNPs of SBP, after the 

removal of SNPs associated with potential confounders, LD clumping, matching of coding allele, 

250 index SNPs remained (Supplementary Tables 1, 2, 7, Figure 4-2). When eGFRcr was used 

as the outcome, Steiger filtering removed 10 SBP index SNPs including those at UMOD/PDILT 

and PRKAG2 (Supplementary Table 4), resulting in 240 genetic instruments for SBP 

explaining 2.46% of the variance of SBP. Of the 537 reported DBP index SNPs, after the 

removal of SNPs associated with potential confounders, LD clumping, and matching of coding 

allele, 250 remained (Supplementary Tables 1, 2, 7). When eGFRcr was used as the outcome, 

Steiger filtering removed 8 DBP index SNPs including those at UMOD/PDILT and PRKAG2 

(Supplementary Table 4), resulting in 234 genetic instruments for DBP explaining 2.85% of the 

variance of DBP. With the same SNP selection algorithms, 248 SBP and 237 DBP genetic 

instruments were selected when CKD was the outcome, and 243 SBP and 233 DBP genetic 

instruments were selected when BUN was the outcome (Supplementary Tables 4 and 7).     
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Causal effect estimates of BP on kidney function   

Based on weighted mode, our primary method, we observed that the causal effect estimates of 

BP on kidney function were generally not significant accounting for multiple testing (P<0.025, 

Methods). The effect estimate for each SD higher SBP was -0.09 SD in log(eGFRcr) (95% CI: -

0.18 to -0.002; P=4.71×10-2, Supplementary Figure 4, Supplementary Table 8). This effect 

estimate is equivalent to 10 mmHg higher in SBP leading to 0.6% lower in eGFRcr. The causal 

effect estimates of SBP on eGFRcr from other MR methods were also modest (10 mmHg higher 

in SBP for <1% difference in eGFRcr). Similar non-significant and modest causal effect 

estimates were observed for DBP on the three kidney function outcomes (eGFRcr, CKD, and 

BUN) using weighted mode as well as MRMix, one of the methods most robust to horizontal 

pleiotropy (Supplementary Table 8).130 In contrast, using IVW-FE, the causal effect estimates 

were significant across both SBP and DBP on kidney function outcomes. The results using MR-

PRESSO, an extension of IVW-FE with outlier removal were consistent with the IVW-FE results 

(Supplementary Table 9). The scatter plots with the regression line from all MR analyses are 

presented in Supplementary Figures 5A-10A. The forest plots of single SNP effects from BP 

traits to kidney function traits are presented in Supplementary Figures 5B-10B. Sensitivity 

analysis using BP summary statistics from UKB only as exposure resulted in similar causal 

estimates for SBP and DBP on eGFRcr, BUN, and CKD (Supplementary Table 10).  
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DISCUSSION 

Extensive MR analyses, based on the largest GWAS summary statistics available to date on 

kidney function and BP, showed evidence of a causal role of kidney function on BP levels. 

Specifically, we observed that 50% lower in eGFRcr results in 17.5 mmHg higher SBP and 8.4 

mmHg higher DBP. In contrast, the causal role of BP on kidney function levels were not 

supported across MR methods. The significant causal effect of lower kidney function on higher 

BP suggests preventing kidney function decline can reduce the public health burden of 

hypertension. 

 

Kidney function is difficult to measure and is generally estimated using biomarkers.131 The 

systematic measurement errors in GFR estimation due to the biomarker post challenges for the 

study of kidney function, particularly for early kidney function decline using eGFRcr because the 

systematic measurement errors increase as GFR approaches or within the normal range119. In two 

population-based association studies that reported significant association between lower kidney 

function and incident hypertension, the kidney function biomarkers with the significant 

association were cystatin C and beta-2 microglobulin, whereas serum creatinine, the most 

commonly used GFR biomarker, was not significant.115,116  In this MR study, we used a novel 

approach of combining GFR biomarkers in selecting the genetic instruments for kidney function 

to overcome the systematic measurement errors in eGFRcr and found significant causal effects 

for lower kidney function on higher BP at the population level. This finding is consistent with 

the important physiological role of the kidney in affecting BP through the regulation of sodium 

excretion and electrolyte balance132 and with the genetics of hypertension-attributed kidney 
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disease in African Americans, in whom the APOL1 high-risk genotype confers twice the risk of 

CKD progression and appears to directly affect kidney function rather than BP.95,133,134   

 

Our study extends previous MR studies of kidney function on BP. Significant bidirectional 

causal effects between higher albuminuria, an indicator of kidney damage, and higher SBP and 

DBP have been reported using the large-scale UKB data.135 In contrast, the causal effects of 

eGFRcr on SBP and DBP had inconsistent results. Morris et al. reported significant causal effect 

of eGFRcr on DBP but not on SBP.118 Our study used a complementary GFR biomarker 

approach to identify genetic instruments that were more likely to be specific for GFR and found 

robust causal effects of eGFRcr on both SBP and DBP.  

 

On the causal direction from BP on kidney function, significant causal effects of higher SBP and 

DBP on CKD have been reported using the IVW-FE method, which requires strong assumption 

on the sum of horizontal pleiotropy to be zero to provide consistent estimates.136 In our study, the 

IVW-FE method also provided significant causal effect estimates of SBP and DBP on CKD with 

effect sizes similar to those previously reported.117 If the assumption on horizontal pleiotropy of 

the IVW-FE method is valid, the IVW-FE method would be more powerful. Given the 

substantial heterogeneity of blood pressure genetic instruments on kidney function, the 

horizontal pleiotropy assumption of the IVW-FE method may not hold. Across all methods, the 

effect estimates of BP on kidney function were small (<1% difference in eGFRcr per 10 mmHg 

difference in SBP). Our inconclusive MR results of BP on kidney function might be due to 

measurement inaccuracies in kidney function contributed by GFR biomarkers leading to a 
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dilution of the causal effect estimates. Another potential source of these inconclusive results 

might be the ability of the kidney to adapt to small differences in blood pressure.137,138 Some 

have hypothesized that only severe hypertension would lead to kidney function decline.139 It 

should also be noted that our results mirror, to some extent, the results of BP control in 

randomized controlled trials, which have failed to show consistent protective effects for kidney 

function, particularly within the trial period.140-142 

 

Our use of Steiger filtering, which compared the effect size of a genetic instrument for exposure 

and outcome, suggested that some kidney function loci may affect kidney function through BP, 

such as FGF5, and some BP loci may affect BP through kidney function, such as UMOD, which 

expresses exclusively in the kidney.143 These results provide insight into the potential pleiotropy 

underlying GWAS findings of these traits. 

 

Our study has several strengths. First, we used a novel approach of combining GFR biomarkers 

to select genetic instruments that are more likely to be specific to kidney function to overcome 

measurement inaccuracies in kidney function contributed by GFR biomarkers. Second, we used 

summary statistics from large-scale GWAS.  Lastly, to reduce the possibility of violating the 

assumptions of MR, we employed a range of techniques: evaluation of the association of index 

SNPs with potential confounders, use of Steiger filtering to reduce potential reverse causation 

driven by genetic instruments, and selecting a primary method that is robust to the presence of 

pleiotropy accompanied by sensitivity analysis with alternative methods.  
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Some limitations warrant mentioning. The MR approach uses genetic instruments to represent 

lifelong difference in exposure levels for estimating causal effects on an outcome. 

Developmental adaptation could alter the effect of the genetic instruments on the outcome.144 

The two-sample MR methods rely on GWAS summary statistics and assume a linear relationship 

between the exposure and the outcome. We did not evaluate potential non-linear relationship 

between kidney function and blood pressure or investigate potential mechanisms linking kidney 

function and blood pressure, such as sodium and potassium handling. In our primary analysis, 

the cohorts in CKDGen and UKB-ICBP had some overlap, which might lead to bias in the causal 

estimates.145 However, our results using non-overlapping populations in exposure and outcome 

(CKDGen and UKB only) were similar to our primary analysis. The CKDGen populations 

included studies of CKD patients and children. These studies only made up a small proportion of 

the study population. Overall, the populations in the summary statistics for exposures and 

outcomes were similar.146 

 

In summary, using a novel approach that combines GFR biomarkers for selecting genetic 

instruments for kidney function, we found that lower kidney function is causal to higher BP. This 

result suggests that preventing kidney function decline may reduce the public health burden of 

hypertension.  

 

METHODS 

Study design overview 



89 

 

We performed two-sample MR analyses to estimate the causal effects of kidney function on BP 

and vice versa. The primary kidney function trait was eGFRcr with BUN as a secondary trait. 

CKD, defined as eGFRcr<60 mL/min/1.73m2, was a secondary outcome.13 The primary BP trait 

was SBP with DBP as secondary.147 Published GWAS summary statistics were obtained from 

the European-ancestry meta-analysis of the CKDGen Consortium for kidney function13 and the 

UKB-ICBP for BP.31 Genotypes in the GWAS were imputed using the Haplotype Reference 

Consortium (HRC)148 or the 1000 Genomes Project reference panels.149 All GWAS summary 

statistics assumed an additive genetic model. 

 

Summary statistics of kidney function from the CKDGen Consortium 

The meta-analysis of the GWAS of eGFRcr included 54 cohorts of European ancestry 

(N=567,460), largely adult population-based (Table 1). A small proportion of the participants 

were from cohorts of CKD patients, diabetes patients, or children (2.5%). The meta-analysis of 

the GWAS of BUN included 48 cohorts of European ancestry (N=243,031), and the analysis of 

CKD included 444,971 participants. eGFRcr was calculated using the Chronic Kidney Disease 

Epidemiology Collaboration (CKD-EPI) equation119 for adults and the Schwartz formula150 for 

participants who were 18 years old or younger. BUN, the secondary kidney function trait, was 

derived as blood urea×2.8 mg/dl.13 The phenotypes used in the GWAS of eGFRcr and BUN 

were the natural log transformed age- and sex-adjusted residuals of the traits. The basic 

characteristics of the CKDGen studies were summarized as weighted averages across studies 

with the sample size as the weight using summary data reported in Wuttke et al. 2019.13 
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Summary statistics of BP from the UKB-ICBP 

Summary statistics of BP traits were obtained from the meta-analysis results of the UKB-ICBP.31 

The UKB is a population-based cohort.30 SBP and DBP were calculated as the mean of two 

automated or manual BP measurements, except for participants with one BP measurement 

(N=413). The GWAS of SBP and DBP in UKB included 458,577 participants of European 

ancestry. The meta-analysis of the GWAS of SBP and DBP from ICBP included 77 cohorts of 

European ancestry (N=299,024).147 In both UKB and ICBP, the values of SBP and DBP were 

adjusted for the use of BP lowering medications by adding 15 and 10 mmHg, respectively.31,151 

The characteristics of the ICBP studies were summarized as weighted averages across studies 

with the sample size as the weight using summary data reported in Evangelou et al. 2018.31 

 

MR assumptions 

Genetic instruments in MR studies rely on three assumptions: (i) the SNP must be associated 

with the exposure; (ii) the SNP is independent of confounders, i.e. other factors that can affect 

the exposure-outcome relationship; and (iii) the SNP must be associated with the outcome 

through the exposure only, i.e., no direct association due to horizontal pleiotropy.144  

 

Selection of genetics instruments more likely to be related to kidney function 

To ensure that the genetic instruments satisfied the first assumption with respect to kidney 

function, we selected index SNPs associated with multiple GFR biomarkers, so that they are 

more likely to be related to kidney function, the exposure of interest, rather than GFR 
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biomarkers. For the primary analysis using eGFRcr, we started with the index SNPs of the 

genome-wide significant loci of the European-ancestry meta-analysis of eGFRcr from the 

CKDGen Consortium.13 We first evaluated the association of the index SNPs with potential 

confounders using the GWAS summary statistics from UKB for the following traits: prevalent 

diabetes, body mass index (BMI), triglycerides and high-density lipoprotein cholesterol (HDL-C) 

levels, smoking, and prevalent coronary heart disease (Table S1).1,152,153 We removed index 

SNPs with genome-wide significant associations (5×10-8) with the potential confounders listed 

above.1,152,154  

 

Next we used genetic association information of BUN,13 an alternative biomarker of kidney 

function, to select genetic instruments that were more likely to reflect kidney function as 

opposed to creatinine metabolism. This approach was similar to the approach in Wuttke et al. for 

prioritizing genetic loci most likely to be relevant for kidney function.13 We required that the 

eGFRcr index SNPs to be associated with BUN at a Bonferroni-corrected significance (P<0.05 

divided by the number of eGFRcr index SNPs) and in opposite direction since higher GFR 

would lead to lower BUN. To ensure independence among genetic instruments, we applied LD 

clumping155 with a clumping window of 10 MB and an r2 cutoff of 0.001 (default of the 

ld_clump function).155 The matching of the effect allele of each SNP between the summary 

statistics of the exposure and the outcome was examined using the harmonise_data function, 

which removed SNPs that were palindromic or had possible strand mismatch. Finally, to reduce 

the possibility that a genetic instrument might affect the outcome independently of the exposure, 

we applied Steiger filtering to ensure that the association between a genetic instrument and the 

exposure was stronger than its association with the outcome.156 



92 

 

 

To select genetic instruments of BUN, the secondary kidney function trait, we started with index 

SNPs from the GWAS of BUN and followed similar procedure of selection described above. We 

used their association with eGFRcr for screening out those index SNPs that might only be related 

to metabolism of BUN but not to kidney function. 

 

Selection of genetics instruments for BP 

For the BP traits, we started with the index SNPs from genome-wide significant loci of SBP or 

DBP reported by the UKB-ICBP,31 applied the same steps as described above for eGFRcr, 

without the alternative biomarker step. Briefly, we removed index SNPs that were associated 

with potential confounders listed above, removed correlated SNPs using the ld_clump 

function,155 used the harmonise_data function to remove SNPs that were palindromic or had 

possible strand mismatch between the summary statistics of the exposure and outcome, and 

finally, we applied Steiger filtering156. 

 

Use of robust method to account for horizontal pleiotropy 

Some methods for MR analysis can be heavily biased in the presence of direct association of 

SNP with the outcome that is not mediated by the exposure.157 When the direct effects of genetic 

instrument on the outcomes and the exposures are correlated across different instruments due to 

the presence of unobserved confounders that may have heritable components, the bias can be 

severe.130 To reduce the possibility that the genetic instruments might affect the outcome 
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independently of the exposure, in addition to the use of Steiger filtering,156 we chose the 

weighted mode method, one of the most robust in the presence of horizontal pleiotropy,130,136 as 

our primary MR method. In addition, we conducted sensitivity analysis using alternative 

methods that may be more powerful under various model assumptions (see Supplementary 

Methods section). Given our primary analyses were the causal effects of eGFRcr on SBP and 

vice versa, the significance level for MR analysis was set at P<0.025 (=0.05/2).  

 

Units of causal effect estimates, variance explained by genetic instruments, and sensitivity 

analyses 

For continuous exposures and outcomes, we estimated the causal effects of 1 SD difference of 

the exposure on the outcome. The SD of each trait was estimated based on data from population-

based cohorts. The details are reported in Supplementary Methods. 

 

Details of the calculation of exposure variance explained by the genetic instruments, power 

analysis, and sensitivity analysis are reported in the Supplementary Methods and Results 

section. All analyses were conducted using R (version 3.5.3), and the “TwoSampleMR” package 

was used for all MR analyses, except MRMix. 
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Table 4-1 Basic characteristics of the studies that contributed summary statistics of kidney 

function (CKDGen) and blood pressure (ICBP-UK Biobank). 

  CKDGen  

Sample size 567,460  

Age (years), mean 50.1  

Male, % 48.2  

eGFRcr (mL/min/1.73m2), median 91.4  

CKD, % 8.6  

  ICBP UK Biobank 

Sample size 299,024 458,577 

Age (years), mean 54.9 56.8 

Male, % 44.9 45.8 

SBP (mmHg) , mean 134.3 141.1 

DBP (mmHg) , mean 80.6 84.3 

The basic characteristics of the studies participated in the CKDGen consortium were calculated 

as the weighted average of the characteristics of each study reported in Wuttke et al. Nat Genet 

2019 with study-specific sample size as the weight.  

The basic characteristics of the studies participated in the ICBP were calculated as the weighted 

average of the characteristics of each study with study-specific sample size as the weight. These 

study-specific characteristics and the UK Biobank characteristics were reported in Evangelou et 

al. Nat Genet 2018.  
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Abbreviation. CKDGen, Chronic Kidney Disease Genetics; ICBP, International Consortium for 

Blood Pressure; eGFRcr, estimated glomerular filtration rate calculated from serum creatinine; 

CKD, chronic kidney disease defined as eGFRcr < 60 mL/min/1.73m2; SBP, systolic blood 

pressure; DBP, diastolic blood pressure. 
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Figure 4-1. The hypothesized bi-directional relations between kidney function and blood pressure (BP) depicted in a directed 

acyclic graph (DAG) where the arrows represent causal relations (adapted from Davey Smith et al. 2014, PMID: 25064373). In 

our study, the primary kidney function measures were glomerular filtration rate (GFR) estimated from serum creatinine and not 

measured directly. 
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Figure 4-2 Selection of genetic instruments for GFR estimated from serum creatinine (eGFRcr) and systolic blood pressure 

(SBP), our primary traits. The centered graph represents the conceptual causal relations (black arrows) between estimated GFR and 

SBP, similar to the DAG in Figure 1A, except that estimated GFR levels were calculated from serum creatinine and therefore has two 
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parts: a GFR and a biomarker level components. The diagrams on the two sides with grey arrows represent the process of genetic 

instrument selection. Abbreviation: SNP, single nucleotide polymorphism. 
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Figure 4-3 Causal effect estimates of log(eGFRcr) and log(BUN) on SBP and DBP using the weighted mode method. 
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Figure 4-4 Causal effect estimates of SBP and DBP on log(eGFRcr), log(BUN) and CKD using the weighted model method. 
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Supplementary Materials Index  (link: https://www.dropbox.com/sh/f9nlg2s775zdpqh/AAABxAJu-1iBw4j5UUUlIUqDa?dl=0) 

Supplementary Methods and Results 

Supplementary Table 1. Source and sample size of GWAS summary statistics of potential confounders. 

Supplementary Table 2. Index SNPs significantly associated with potential confounders. 
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ABSTRACT 

Genome-wide association studies (GWAS) have revealed numerous loci for kidney function 

(estimated glomerular filtration rate, eGFR). The relationship of polygenic predictors of eGFR,  

risk of incident adverse kidney outcomes, and the plasma proteome is not known. We developed 

a genome-wide polygenic risk score (PRS) using a weighted average of 1.2 million SNPs for 

eGFR using the LDpred algorithm, summary statistics generated by a European-ancestry (EA) 

meta-analysis of the CKDGen Consortium (N=558,423) and UK Biobank GWAS for eGFR 

(90% of the cohort; N=289,432), followed by best parameter selection using data from the 

remaining 10% of the UK Biobank (N=32,159). We then tested the association of the PRS 

among 8,886 EA participants in the Atherosclerosis Risk in Communities (ARIC) study (mean 

age: 54±6 years, 53% female) with incident chronic kidney disease (CKD), end stage kidney 

disease (ESKD), kidney failure (KF), and acute kidney injury (AKI). We also examined 4,877 

plasma proteins measured at two time points (visit 3 (1993-95) and visit 5 (2011-13)) in relation 

to the PRS and compared associations between the proteome and eGFR itself. All models were 

adjusted for age, sex, center, and the first 10 principal components of ancestry. The developed 

PRS had an R2 for eGFR of 0.078 in ARIC. Over 30 years of follow up, the number of incident 

CKD, ESKD, KF, and AKI were 2,959, 137, 470, and 1,723, respectively. The PRS showed 

significant associations with all outcomes: hazard ratios (95% CI) per 1 SD lower PRS were 1.33 

(1.28, 1.39) , 1.20 (1.00, 1.42), 1.17 (1.06, 1.28), and 1.07 (1.02, 1.12) for incident CKD, ESKD, 

KF, and AKI respectively.  The PRS was significantly associated (Bonferroni threshold p<1.02 × 

10-5) with 108 proteins at both time points. The strongest associations were with cystatin-C (a 

marker of kidney function used in clinical practice), collagen alpha-1(XV) chain, and 

desmocollin-2. All significant associations were inversely correlated with the PRS, except that of 
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testican-2 and angiostatin. Correlations of proteins with eGFR were much stronger than those 

with the PRS. By incorporating variants across the entire genome, we demonstrated a link 

between the genetic basis of eGFR and a spectrum of incident kidney diseases and use implicate 

proteins across the plasma proteome that may reflect or lead to reduced kidney function.   
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INTRUDUCTION 

Most kidney diseases are complex diseases with both genetic and environmental factors 

contributing to their risks. The heritability estimated by familiar studies are up to 30–75%.158-161 

Genome-wide associations studies (GWAS) have grown rapidly in the last decade and identified 

numerous loci for kidney function, which gave rise to increasing attention in using polygenic risk 

scores (PRS) to predict kidney diseases risks.13-19 However, previous PRS provided limited risk 

stratification for adverse kidney outcomes such as end-stage kidney disease 

(ESKD).13,18 Potential reasons include: small sample sizes of early GWAS, which might lead to 

imprecise estimation of the associations between individual variants and disease risk; limiting the 

PRS to genetic variants that reached genome-wide significance (p < 5 × 10−8); and a lack of 

deeply phenotyped data to identify cases.14-19  With new data and methodologies, there is an 

opportunity to mitigate these limitations. 

 

New methodologies for large scale proteomic measurement using aptamer technologies also 

provide an opportunity to assess the impact of genetic susceptibility to low kidney function on 

the plasma proteome.21,22  The plasma proteome consists of thousands of secreted proteins that 

involve in numerous physiological and pathological processes, including transporting and 

signaling, metabolism, vascular function, and defense mechanisms.25-27 As those proteins reflect 

the current state of human body from various aspects, the plasma proteome is a reservoir of 

important potential biomarkers. Although previous studies have demonstrated the heritability of 

plasma protein levels,28 research in the plasma proteomic signals of genetic susceptibility of 

diseases, including kidney diseases, has been limited.162-165 Also, for kidney diseases, as reduced 
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kidney function results in elevations of many proteins, it is particularly important to examine the 

balance of genetically predicted risk vs. secondary influences on proteomic signals.  

 

Using large studies and new algorithms, we investigated the strength of associations of PRS for 

kidney function with incident kidney diseases over 30 years of follow-up in a deeply phenotyped 

community-based cohort. We included diseases strongly related to kidney function with evidence 

of a strong genetic basis, including chronic kidney disease (CKD), end-stage kidney disease 

(ESKD), and kidney failure,158-161 as well as acute kidney injury (AKI).166 We also examined 

4,877 plasma proteins measured at two time points approximately 20 years apart in relation to 

both genetic susceptibility to low kidney function and the concurrent kidney function itself, in 

order to evaluate the strengths of proteomic associations with genetically predicted risk and 

physiological changes and how those associations change over time.   

 

METHODS 

Study Cohort 

The Atherosclerosis Risk in Communities (ARIC) study is an ongoing longitudinal cohort of 

15,792 45-60-year-old participants (55% female, 73% participants of European ancestry (EA)) 

recruited from four communities in the U.S.: Forsyth County, North Carolina; Jackson, 

Mississippi; suburbs of Minneapolis, Minnesota; and Washington County, Maryland at 1987-

1989 (visit 1). Follow-up examinations were conducted approximately every three years: 1990-

1992 (visit 2), 1993-1995 (visit 3), 1996-1998 (visit 4), more recently, in 2011-2013 (visit 5), in 

2016-2017 (visit 6), and in 2018-2019 (visit 7).167 Each study visit consisted of a clinical 

examination, blood and urine specimens collection, and filling out extensive questionnaires. 
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Proteomic levels were measured at visit 3 and visit 5. Our primary study population was 

restricted to 8,866 unrelated EA participants (Supplemental Figure 1), since so far most of the 

genomic studies with results available for use were conducted among EA. In the proteomic 

analysis of our study, 7,213 participants with valid proteomic measurements remained. In 

sensitivity analysis, we constructed another study population of 2,871 unrelated participants with 

African ancestry (AA). Study protocols were approved by the Institutional Review Boards and 

all study participants provided informed consent (including agreement for industry studies for 

SomaLogic sponsored proteomic quantification). 

 

Genotyping 

Participants were genotyped with the Affymetrix 6.0 DNA microarray (Affymetrix, Santa Clara, 

CA) with genotype calling performed using the Birdseed algorithm. Genotyping was performed 

on the Affymetrix 6.0 DNA microarray (Affymetrix, Santa Clara, CA) and analyzed with the 

Birdseed variant calling algorithm. Haplotype phasing was performed using ShapeIt (v1.r532).168 

Genotypes were imputed on the Michigan Server to the TOPMed reference panel.169,170 A quality 

control was carried out prior to imputation: SNPs were included if they had call rate < 95%, 

Hardy-Weinberg equilibrium p-values < 0.0001, or minor allele frequencies (MAF) < 1%.171 

Individuals with cryptic relatedness defined as identity by state (IBS) distance generated from 

PLINK > 0.8 were also excluded.155 

 

Assessing Kidney Function 

Kidney function, measured as estimated glomerular filtration rate (eGFR), was assessed by 

measuring serum creatinine (at all visits excepted visit 7) and serum cystatin C (at all visits 
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excepted visit 1 and 7) using the 2009 Chronic Kidney Disease Epidemiology Collaboration 

(CKD-EPI) creatinine equation (eGFRcr) and 2012 CKD-EPI cystatin C equation  

(eGFRcys).119,172 Cystatin C is an excellent marker for kidney function but is not as widely used 

as creatinine, which limits its use in genetics studies. Serum creatinine level was measured by the 

modified kinetic Jaffé method, standardized to the National Institute of Standards and 

Technology (NIST) standard, and calibrated to an isotope dilution mass spectrometry (IDMS)-

traceable reference method.56-58 Serum cystatin C level was measured by the turbidimetric 

method, and standardized and calibrated to the International Federation of Clinical Chemistry 

and Laboratory Medicine (IFCC) reference.173 In the polygenic risk scores development, we used 

eGFRcr as the kidney function measurement since this has been the main trait with the largest 

samples size in GWAS meta-analysis.13  

 

Polygenic Risk Score for Kidney Function 

Polygenic risk scores aggregate genome-wide genetic variation into a single score that reflects 

individual’s inherited disease risk. They are most commonly calculated by summing across SNPs 

associated with a given trait, weighted by their effect sizes from GWAS results of that trait.  

 

For the PRS construction, we first conducted a GWAS for log(eGFRcr) using PLINK among 

90% of unrelated EA participants in the UK Biobank (N=289,432; application ID 17712) using 

an additive genetic model adjusted for age and sex.155 Details of the UK Biobank cohort has been 

described elsewhere.174 Then we conducted a fixed-effects inverse variance weighted meta-

analysis on the summary statistics from the UK Biobank GWAS and a meta-analysis by the 
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CKDGen Consortium of the GWAS of eGFRcr including up to 567,460 EA individuals.13,175 As 

the CKDGen consortium included the ARIC study (N=9,037), we adjusted the effect sizes of 

SNPs by removing the ARIC participants (βcorrected =

(
1

SECKDGen
2  ∙ βCKDGen) − (

1

SEARIC
2  ∙ βARIC)

1

SECKDGen
2  − 

1

SEARIC
2

;  SEcorrected = √
1

1

SECKDGen
2  − 

1

SEARIC
2

).176 We also used a sample 

of 489 unrelated EA individuals from phase 3 1000 Genomes as a linkage disequilibrium (LD) 

reference panel for the score construction step.177 Approximately 1.2 million common (MAF 

≥1%) variants in HapMap3 were kept for score construction, as suggested in Vilhjálmsson et 

al.36,178 We computed PRS in three ways: LDpred, pruning and threshold (P+T), and a simple 

weighted combination of SNPs that reached genome-wide significance in our meta-analysis 

combining UK Biobank and CKDGen, a special case of P+T. 

 

The primary PRS was calculated using the LDpred algorithm.36 For this method, we created 5 

candidate LDpred PRSs under different assumptions for the fraction of causal variants. This 

Bayesian approach utilizes GWAS summary statistics to compute the posterior mean effect sizes 

for the genetic variants by assuming a prior of the joint effect sizes and incorporating the LD 

structure of the reference population. Two parameters of the LDpred need to be set by the users. 

One is the LD radius, which is the number of variants being adjusted for at each side of a variant. 

We set it to 400 (which corresponds to 1.2× 106/3,000) based on Vilhjálmsson et al. The other 

parameter is the fraction of causal variants, ρ, which can be selected via parameter tuning on a 

separate dataset. Our tested ρ values were 1, 0.3, 0.1, 0.03, and 0.01, as suggested in 

Vilhjálmsson et al.36 
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We also implemented a second approach named pruning and thresholding. P+T scores were 

constructed with applying two filtering steps based on LD and P value.179 The variants are first 

pruned to only keep variants that have absolute pairwise correlation weaker than a threshold, r2, 

within certain genetic distance. The remaining variants are then filtered by removing the ones 

that have a P value larger than a pre-defined threshold of significance. We created 24 candidate 

P+T PRSs based on four r2 levels (0.2, 0.4, 0.6, and 0.8) and six P values (5 × 10−8, 5 × 10−6, 

5 × 10−4, 0.05, 0.5, and 1). Finally, we created a “simple PRS” in a similar manner, using the 

most commonly used r2 level, 0.1, and P value threshold, 5 × 10−8 (genome-wide significance). 

 

For the PRS tuning, the 5 candidate LDpred PRSs, 24 candidate P+T PRSs, and one simple PRS 

were calculated in a tuning dataset of the remaining 10% unrelated EA participants in the UK 

Biobank (N=32,159). The best PRS of each approach was determined based on the proportion of 

the variance explained (R2) of eGFRcr that can be explained by the PRS. Specifically, we fitted a 

linear regression model with eGFRcr being the outcome, each candidate PRS being the exposure, 

and age at baseline and sex as the covariates. The best LDpred PRS and P+T PRS, as well as the 

simple PRS were carried forward into subsequent analyses in an independent validation dataset.  

 

PRS validation was conducted in the 8,866 unrelated EA participants in ARIC. The R2 for 

eGFRcr by the best LDpred PRS, best P+T PRS, and simple PRS were calculated using the same 

approach with adjustment for the same covariates as in the tuning step. We compared the three 

PRSs with respect to number of SNPs included, phenotypic variance explained, and correlations 

with each other. In sensitivity analysis, we also directly implemented the PRS constructed and 

tuned on EA participants to the 2,871 unrelated AA participants in ARIC.  
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Assessing Incident Kidney Diseases 

Four incident kidney diseases were included in our study as outcomes: chronic kidney disease 

(CKD), end-stage kidney disease (ESKD), kidney failure, and acute kidney injury (AKI). CKD 

was defined based on the following criteria: eGFR <60 mL/min/1.73 m2 plus ≥30% eGFR 

decline during a follow-up visit comparing to baseline, ESKD cases identified through the direct 

linkage to the US Renal Data System (USRDS) registry, or International Classification of 

Diseases (ICD)-9/10-Clinical Modification (CM) codes (Supplemental Table 1A) representing 

CKD in any position of hospitalization or death records.180 ESKD was defined as having kidney 

transplant or dialysis in the USRDS registry. Kidney failure was defined by hospitalization codes 

(Supplemental Table 1B). AKI was defined by hospitalization or death codes (ICD-9-CM code: 

584.X or ICD-10-CM code: N17.x).181 

 

Protein Measurements 

Plasma proteins were measured in ARIC participants at visit 3 and visit 5 using the SOMAscan 

v.4  assay by SomaLogic. This platform uses Slow Off-rate Modified Aptamers (SOMAmers) to 

bind to targeted proteins and then uses DNA microarray to quantify them. SOMAscan v.4 

includes 4,931 unique human proteins or protein complexes, with 95% of the proteins tagged by 

one modified aptamer and a total 5,211 modified aptamers. Protein measurements were reported 

as relative fluorescence units (RFUs).21 There were no missing values in the proteomic data. 

Details of the quality control of the proteins were described elsewhere.164 Previous studies of 

SOMAscan v.3 consisting of 4,001 aptamers have shown high precision of this assay in 
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quantifying proteins with median coefficient of variance (CV) of 4%-8%.182-184 In the current 

study, all proteins were log2 transformed. 

 

Assessing Covariates 

Information on age, sex, center, and education level were assessed at baseline and current 

smoking status was assessed at all visits using an interviewer-administered questionnaires.167 

Body mass index (BMI) was calculated as weight (in kilograms) divided by the square of height 

(in meters), both of which were measured at all visits. Clinical factors included history of 

hypertension, diabetes, and coronary heart disease (CHD). Hypertension was defined at all visits 

as systolic blood pressure ≥140 mm Hg, diastolic blood pressure ≥ 90 mm Hg, or use of 

antihypertensive medication in the past 2 weeks. Diabetes was defined at all visits as fasting 

blood glucose ≥126 mg/dL, non-fasting glucose ≥200 mg/dL, self-reported doctor-diagnosed 

diabetes, or use of diabetes medication in the past 2 weeks. CHD was defined at all visits as prior 

myocardial infarction (MI) observed on ECG, self-reported doctor-diagnosed heart attack, or 

self-reported cardiovascular surgery or coronary angioplasty. Albumin to creatinine ratio (ACR) 

was calculated as urinary albumin divided by urinary creatinine, with albumin being measured 

by an immunoturbidimetric method and creatinine being measured by a modified kinetic Jaffé 

method.  

 

Statistical Analysis 

Baseline characteristics of the primary study population were examined. The R2 for eGFRcr at 

all visits except for visit 7 by the LDpred PRS, P+T PRS, and simple PRS were calculated as 

Var(PRS)×𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑃𝑅𝑆
2

Var(eGFRcr)
 in a linear regression model of eGFRcr adjusting for age at the 
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corresponded visit, sex, center, and first 10 genetic principal components (PCs). We also 

calculated the R2 for eGFRcys at all visits except for visit 1 and visit 7. For comparison, we 

calculated the R2 for eGFRcr and eGFRcys by the PRS using the same methods among the 2,871 

AA participants as a sensitivity analysis.   

 

We evaluated the association between PRS and incident kidney diseases. Using Cox proportional 

hazard models, we estimated hazard ratios (HR) and associated 95% confidence intervals (CI) of 

PRSs (per 1 SD lower PRS) for incident kidney diseases outcomes. We considered time at risk to 

start at visit 1 (1987–1989) and continue until the event of interest, death, loss to follow-up , or 

the  end of follow-up (December 31, 2018). We evaluated three models: Model 1, which 

included age, sex, center, and first 10 genetic PCs; Model 2, which additionally included 

education, baseline BMI, baseline smoking status, baseline history of hypertension, diabetes, and 

CHD. In sensitivity analysis, we also evaluated additional adjustments for eGFRcr and for both 

eGFRcr and ACR. As ACR was first measured at visit 4, the time to event for this sensitivity 

analysis started at visit 4 and the baseline covariates were also assessed at this time. Time to 

incident kidney diseases was assessed among deciles of PRS using proportional hazard models 

and displayed using Kaplan-Meier survival curves. 

 

To evaluate the association between PRS for kidney function and proteomic measurements, we 

conducted linear regression of LDpred PRS on 4,877 proteins measured at visit 3 and visit 5 

adjusting for age, sex, center, and first 10 genetic PCs. These estimates reflect the difference in 

each log(2) transformed protein per normalized SD-unit higher in PRS for kidney function. 

Given that multiple statistical tests were performed, we utilized a Bonferroni adjusted P-value 
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threshold of 0.05/4,877 ≈ 1.2 x 10-5 to indicate evidence for significant associations. We 

identified proteins significantly associated with LDpred PRS at both visit 3 and visit 5. We then 

examined their correlations and associations with eGFRcr and eGFRcys at each visit through 

Pearson correlation matrix and linear regression of PRS on eGFRcr or eGFRcys with adjustment 

for age, sex, center, and first 10 genetic PCs. Then we made scatter plots of correlations between 

those proteins and eGFR at each visit against their Pearson correlations with PRS. Analyses used 

R version 3.6.2 software (The R Foundation), two-tailed P-values, as well as statistical 

significance level of P < 0.05 except for the identification of proteomic signals, which was P < 

1.02 × 10-5. 

 

RESULTS 

Characteristics of Study Cohort 

Our primary study population included 8,886 participants (mean age 54.3 years; 53% female). 

Around 40% of them received college or above education. At baseline, 25% were smokers; mean 

BMI was 27.0 kg/m2; and the percentage of participants with prevalent hypertension, diabetes, 

and CHD were 26.7%, 8.6%, and 5.1% respectively. Over 30 years of follow up, the number of 

incident chronic kidney disease (CKD), end stage kidney disease (ESKD), kidney failure, and 

acute kidney injury (AKI) were 2,959, 137, 470, and 1,723, respectively (Table 1). 

 

Characteristics of the Polygenic Risk Scores 

LDpred PRS, P+T PRS, and simple PRS were all standardized to be approximately normally 

distributed in the population with zero-mean and unit-variance. The technical details of the three 

PRSs are summarized in Supplemental Table 2 and described in detail elsewhere.185 LDpred 
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PRS was highly correlated with P+T PRS with a Pearson correlation coefficient (r) of 0.84, but 

moderately correlated with the simple PRS (r=0.58, Supplemental Figure 2). The adjusted 

eGFRcr variance explained by the LDpred PRS for kidney function was relatively consistent 

across all visits over 30 years of follow-up, ranging from 6.8% to 10.3%. P+T PRS and simple 

PRS explained lower adjusted eGFRcr variance (P+T PRS: 5.4% to 8.8%; simple PRS: 4.5% to 

6.6%). The adjusted eGFRcys variance was lower and its ranges for LDpred PRS, P+T PRS and 

simple PRS were 2.7% to 4.0%, 1.9% to 3.3, and  1.5% to 2.6%, respectively. Variance 

explained for eGFR based on creatinine and cystatin (eGFRcr-cys) was intermediate 

(Supplemental Table 3). As a comparison, directly applying the PRS trained and tuned on EA 

participants to AA participants led to substantial decrease of score performance, with the eGFRcr 

variances explained by the LDpred PRS, P+T PRS, and simple PRS ranging from 1.7% to 3.1%, 

0.86% to 2.1%, and 0.91% to 2.3% respectively (Supplemental Table 4).  

 

Associations between PRSs for Kidney Function and Incident Kidney Diseases 

Categorizing the PRSs into deciles showed an incremental association with risk in Kaplan-Meier 

survival curves (Figure 2). In continuous analysis, we observed that the LDpred PRS for kidney 

function was strongly associated with all four incident kidney diseases: HRs (95% CI) per 1 SD-

unit lower in LDpred PRS, indicating worse kidney function, were 1.33 (1.28, 1.39), 1.20 (1.00, 

1.42), 1.17 (1.06, 1.28), and 1.07 (1.02, 1.12) for incident CKD, ESKD, kidney failure, and AKI 

respectively, after adjusting for age at baseline, sex, center, first 10 genetic PCs. Using P+T PRS 

and simple PRS, HRs for all incident kidney diseases were of smaller magnitude than using 

LDpred PRS and only statistically significant for CKD and kidney failure (Table 2, 

Supplemental Figure 3).  
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After adjustment for lifestyle and clinical risk factors (education, baseline BMI, baseline 

smoking status, and hypertension, diabetes, and CHD history at baseline) in Cox models, we 

observed limited changes in the risk estimates of the PRSs for all incident kidney diseases. 

However, risk estimates were substantially attenuated after additionally adjusting for the 

mediator eGFRcr (Supplemental Table 5). Sensitivity analyses showed that additional 

adjustment for ACR made little difference (Supplemental Table 6).  

 

Plasma Proteome as An Intermediate Trait 

Using linear regression models adjusted for age, sex, center, and first 10 genetic PCs, we 

observed that 183 proteins were associated with LDpred PRS for kidney function at P = 1.2×10-5 

level among 7,213 participants with valid proteomic measurements at visit 3, and 138 proteins 

among 3,666 participants at visit 5. Among those proteins, 108 were significant at both visits, 

which are 20 years apart. The strongest associations were with cystatin-C, collagen alpha-1(XV) 

chain, and desmocollin-2. Collagen alpha-1 (XV) chain exhibited strong and consistent 

associations with both eGFRcr and eGFRcys with a magnitude similar to that of cystatin with 

eGFRcr. For the 108 proteins consistently associated with LDpred PRS for kidney function, most 

of the associations were negative, indicating higher protein levels with lower kidney function. 

Testican 2 and angiostatin were the only two proteins with significant positive correlation to 

kidney function. The correlations with eGFRcr and eGFRcys measured at the corresponding 

visits were much stronger than those with the LDpred PRS, especially at visit 5 (Figure 3, 

Supplemental Table 7, median negative correlations at visit 5 of -0.0855, -0.4668, and -0.4697 

with LDpred PRS, eGFRcr and eGFRcys with corresponding values at visit 3 of -0.0679, -0.2639 
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and -0.2820). This was also true for the positive correlations; the Pearson correlation coefficients 

with PRS, eGFRcr, and eGFRcys at visit3 were 0.100, 0.195, 0.197 for testican 2 and 0.067, 

0.167, 0.258 for angiostatin respectively, and 0.103, 0.398, 0.433 for testican 2 and 0.095, 0.273, 

0.344 for angiostatin respectively at visit 5.  

 

DISCUSSION 

In this community-based deeply phenotyped cohort of 8,866 middle-aged adults, we leveraged 

large studies to construct a range of polygenic risk scores for kidney function. A genome-wide 

score that included a weighted average of 1.2 million SNPs (LDpred PRS) showed the strongest 

association with kidney function while narrower risk scores (P+T PRS and simple PRS) showed 

weaker associations. The kidney function LDpred PRS was also associated with a range of 

plasma protein levels in mid-life and older age. However, these associations were weaker than 

the protein associations with eGFR itself. This may be due to many protein elevations being 

secondary to reduced kidney function. Genetic susceptibility to lower kidney function was 

associated with higher level of all significant proteins except testican 2 and angiostatin, which 

had lower levels at lower kidney function. Examination of future risk showed genetic 

susceptibility to lower kidney function was associated with higher risk of CKD, ESKD, kidney 

failure, and AKI. LDpred PRS showed the strongest association, which was mediated by eGFR 

and independent of all other measured clinical and lifestyle risk factors including albuminuria.   

 

An advantage of PRS for kidney function is that it can be assessed at any time, well before the 

emergence of lifestyle and clinical risk factors, such as elevated BMI, hypertension, and 

diabetes. Our results demonstrate that, for a spectrum of kidney diseases, not only diseases with 
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established high heritability, but also entities like AKI whose genetic basis is less pronounced,158-

161,166 PRS can now identify individuals with higher genetic risk for over 30 years of follow up, 

suggesting its potential role in further research and clinical medicine.  

 

During the last decade, GWAS studies demonstrated thousands of genetic loci associated with 

hundreds of phenotypes.186 However, for most traits, the heritability explained by those SNPs 

(h2
gwas) only explains a small portion of the estimated proportion of phenotypic variance due to 

additive genetic effects, i.e., narrow-sense heritability (h2).187 One of the proposed reasons for 

that was the existence of common causal variants of exceedingly low effect size which requires 

extremely large sample sizes to detect via GWAS.188-192 Using large studies for discovery and 

algorithms that incorporate variants across the genome, our results showed a significant 

improvement in the performance of PRS compared with previous efforts for score 

development,14-19 allowing us to explain more variance in kidney function and a link between the 

genetic basis of eGFR and a spectrum of incident kidney disease outcomes.  

 

In addition to the improved algorithm of constructing PRS, two other factors were important for 

improving the prediction performance of PRS. In recent years, mega cohorts and global genetics 

consortia provided sufficient power for detecting loci that confer only small changes in disease 

risk, which was a key factor in improving accuracy of PRS for disease prediction. Another factor 

is accurate identification of disease. In our study, we benefited from linkage to the USRDS 

registry and algorithms developed based on best possible clinical and epidemiological evidence 

for identifying cases of incident kidney diseases, which also improved the power of our analysis. 
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Differences in plasma protein levels can provide clues for intermediate pathways between 

genetic susceptibility and disease. These alterations can happen as a result of the genetic 

susceptibility itself or secondary to other physiologic changes, including reduced eGFR. Our 

finding that many proteins were negatively associated with kidney function suggests that low 

renal clearance may result in relative protein accumulation. On the other hand, increased protein 

levels in the setting of kidney disease may reflect ongoing pathological processes, such as 

inflammation. Specific proteins are of interest. Collagen alpha-1 (XV) chain showed strong and 

consistent associations with PRS and both eGFRcr and eGFRcys with a magnitude similar to that 

of cystatin, the best marker for kidney function at current practice, which suggested its potential 

role as a marker for genetically predicted kidney function. Testican 2, one of two proteins that 

was lower with lower kidney function, forms a structural component of the extracellular matrix 

through covalently binding with glycosaminoglycans. 193  It is expressed in multiple tissues 

including the kidney and genetic variants in its gene, SPOCK2, have been strongly associated 

with bronchopulmonary dysplasia but the connection to kidney disease is largely unknown.  

Angiostatin, the other protein that was lower with lower kidney function, is a potent angiogenesis 

inhibitor generated through the proteolysis of plasminogen. Evidence also suggests its anti-

inflammatory roles through hindering the recruitment of leukocyte194 and the movement of 

neutrophil and macrophage.195,196 Alterations in angiogenesis and inflammation have important 

roles in kidney disease pathophysiology.197,198 Previous animal experiments demonstrated that 

angiostatin overexpression slowed the progression of renal disease after chronic kidney injury 

and its decrease expression accelerated the pathogenesis process of diabetic nephropathy199,200 

Observational studies have suggested elevated urinary angiostatin as potential biomarker of the 

disease severity and progression for IgA nephropathy and lupus nephritis.201,202  
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Our study had limitations. The PRS developed in our study were constructed, tuned, and 

validated in EA participants only, mirroring most genetic studies done so far. Since LD patterns, 

minor allele frequencies, effect sizes of common variants, and phenotypic features vary by 

ancestry, our PRS constructed based on GWAS results and LD structure of EA individuals will 

have poor disease prediction for individuals with other ancestries.203,204 When directly applying 

our PRS trained and tuned on EA participants to AA participants, the phenotypic variance 

explained was four-fold lower. It is therefore necessary and important for future efforts to 

include more multi-ethnic participants in genomic studies and develop novel methods that 

appropriately adjust for the difference across ethnic groups. The PRS presented in this study 

were for eGFRcr which means they may include genetic influences of creatinine metabolism as 

well as kidney function. However, we included eGFRcys as an outcome to assess the extent to 

which associations were robust to the kidney function marker used.  Finally, we focused on 

common genetic variants in calculating the PRS recognizing future work may include additional 

variants, including rare variants with larger effects.   

 

In conclusion, our results show polygenic risk scores for kidney function are associated with 

future risk of incident kidney diseases, including CKD progression, end-stage kidney disease, 

kidney failure, and acute kidney injury, over 30 years of follow up in a community-based cohort. 

This association was independent of most risk factors, including albuminuria, but largely 

mediated through kidney function itself. A number of plasma protein levels were elevated among 

individuals with high genetic risk for low kidney function. The protein associations were much 

stronger with concurrent kidney function than with PRS, consistent with protein elevations 
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secondary to the progressive kidney disease may be the dominant influence instead of 

representing the primary link of kidney function genetic susceptibility to the proteome.   
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Figure 5-1 Study design and workflow.  

Three polygenic risk scores (PRS) for kidney function measured as estimated glomerular 

filtration rate based on creatinine level (eGFRcr) were constructed by a European-ancestry (EA) 

meta-analysis of UK Biobank GWAS for eGFRcr (90% of the cohort) and a meta-analysis of 

GWAS for eGFRcr conducted by the CKDGen Consortium using LDpred algorithm, pruning 

and threshold (P+T), and a simple weighted combination of SNPs that reached genome-wide 

significance, followed by parameters tuned using data from the remaining 10% of UK Biobank 

EA participants, then tested for their associations with proteome and incident kidney diseases  in 

the Atherosclerosis Risk in Communities (ARIC) study. 
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Table 5-1 Characteristics of the study population (N=8,886). 

Characteristica  

Age, yearsb 54.3 (5.7) 

Female 4,708 (53.0) 

Advanced education 3,513 (39.6) 

Current smokersb 2,192 (24.7) 

Body mass index, kg/m2 b 27.0 (4.8) 

History of hypertensionb 2,363 (26.7) 

History of diabetesb 764 (8.6) 

History of CHDb 445 (5.1) 

eGFRcr, mL/min/1.73 m2b 99.6 (12.5) 

Incident CKD 2959 (33.6) 

Incident ESKD 137 (1.5) 

Incident kidney failure 470 (5.3) 

Incident AKI 1723 (19.4) 

a Mean (standard deviation) for continuous variables and % (n) for categorical variables. 

b Indicate baseline values 

AKI, acute kidney injury; ARIC, Atherosclerosis Risk in Communities; CHD, coronary heart 

disease; CKD, Chronic kidney disease; eGFRcr, estimated glomerular filtration rate based on 

creatinine; ESKD, end stage kidney disease; PRS, polygenic risk score. 
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Table 5-2 Risk for incident kidney diseases according to polygenic risk scores of kidney function (N=8,886). 

  Risk for incident kidney diseases per 1 SD lower in PRS 

Ldpred PRSa P+T PRSa Simple PRSa 

Hazard ratios  

(95% CI) 

P value Hazard ratios  

(95% CI) 

P value Hazard ratios  

(95% CI) 

P value 

Chronic kidney disease Model 1b 1.33 (1.28, 1.39) 5.46E-50 1.28 (1.23, 1.32) 1.34E-37 1.23 (1.18, 1.27) 8.22E-28 

Model 2b 1.33 (1.28, 1.38) 8.91E-47 1.28 (1.23, 1.33) 3.01E-37 1.23 (1.19, 1.28) 8.83E-28 

End stage kidney disease Model 1b 1.20 (1.00, 1.42) 0.04 1.14 (0.96, 1.36) 0.13 1.05 (0.89, 1.25) 0.55 

Model 2b 1.21 (1.01, 1.45) 0.04 1.18 (0.98, 1.41) 0.08 1.09 (0.91, 1.29) 0.36 

Kidney failure Model 1b 1.17 (1.06, 1.28) 1.32E-03 1.12 (1.02, 1.23) 0.02 1.12 (1.03, 1.23) 0.01 

Model 2b 1.16 (1.06, 1.28) 2.24E-03 1.13 (1.03, 1.24) 0.01 1.13 (1.03, 1.24) 8.31E-03 

Acute kidney injury Model 1b 1.07 (1.02, 1.12) 9.77E-03 1.03 (0.98, 1.08) 0.21 1.00 (0.96, 1.05) 0.86 

Model 2b 1.06 (1.01, 1.12) 0.02 1.03 (0.98, 1.08) 0.27 1.01 (0.96, 1.06) 0.82 

a  LDPred PRS was constructed using LDPred algorithm, a Bayesian approach utilizes GWAS summary statistics to compute the 

posterior mean effect sizes for the genetic variants by assuming a prior of the joint effect sizes and incorporating the LD structure of 

the reference population. P+T PRS was constructed using ‘pruning and thresholding (P+T)’, which first prunes variants to only keep 
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those who have absolute pairwise correlation weaker than a threshold within certain genetic distance and then filtered variants that 

have a P value larger than a pre-defined threshold of significance. Simple score was constructed using the most commonly used level 

of absolute pairwise correlation for pruning and genome-wide significance level for thresholding. 

b Model 1 adjusted for age at baseline, sex, center, and first 10 genetic principal components; Model 2 adjusted for all covariates in 

model 1 and education, baseline body mass index, baseline smoking status, baseline history of hypertension, diabetes, and coronary 

heart disease. 

PRS: polygenic risk score. 
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Chronic kidney disease End stage kidney disease 

  

Kidney failure Acute kidney injury 

  

Figure 5-2 Association of deciles of LDPred polygenic risk score of kidney function with incident kidney diseases (N=8,886).  
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The LDPred polygenic risk score (PRS) for kidney function was categoried into three levels  1st decile, 2nd – 9th deciles, and 10th 

decile, and was examined for their unadjusted associations with incident kidney diseases over 30-year of follow-up. P-values of the 

score (log-rank) test were 3.43E-27, 0.10, 0.002, and 0.08 for incident chronic kidney disease, end stage kidney disease, kidney 

failure, and acute kidney injury respectively.   
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(A)                                                                                                   (B) 

Figure 5-3 Scatter plots of correlations between protein and LDPred polygenic risk score for kidney function and correlation between 

protein and estimated glomerular filtration rate. Both protein measures and eGFR are visit specific (panel A – visit 3; panel B – visit 5). 

A total of 108 proteins were identified as significantly (Bonferroni threshold p < 1.02 × 10-5) associated with LDPred PRS at both visit 3 and visit 5 

through linear regression of LDPred PRS on 4,877 proteins adjusting for age at the corresponded visits, sex, center, and first 10 genetic principal 

components. Visit 3 (N=7,213) was conducted during 1993-1995 when the mean age of study population was 60.4 years and visit 5 (N=3,666) was 

conducted during 2011-2013 when the mean age of study population was 75.9 years. The dashed line in grey is the identity line. 

COL15A1: collagen alpha-1(XV) chain; CST3: cystatin-C; PLG: angiostatin; RNASE1: ribonuclease pancreatic; SPOCK2: testican-2. 
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Supplementary Figure 5-1 Flow chart of subjects included in the study. 
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Supplemental Table 5-1. ICD-9/10 codes used for identifying chronic kidney disease and kidney failure.  

(A) Chronic kidney disease (CKD) 

ICD-9-code Description ICD-10-code 

582 Chronic glomerulonephritis N03 

583 Nephritis and nephropathy  

585, 585.x where x≥3 Chronic kidney disease N18, N18.x where x≥3 

586 Renal failure N19 

587 Renal sclerosis N26 

588 Disorders resulting from impaired renal function N25 

403 Hypertensive chronic kidney disease I12 

404 Hypertensive heart and kidney disease I13 

593.9 Unspecified disorder of the kidney and ureter  

250.4 Diabetes with renal complications E10.2, E11.2, E13.2 

V42.0 Kidney replaced by transplant Z94.0 

55.6 Transplant of kidney  

996.81 Complications of transplanted kidney  
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V45.1a Renal dialysis status Z99.2 

V56 a Admission for dialysis treatment or session Z49 

39.95a Hemodialysis  

54.98a Peritoneal dialysis  

 Encounter for adjustment and management of vascular access device Z45.2 

 a Codes that are counted as incident CKD only if a concomitant acute kidney injury (AKI) code (ICD-9: 584.x, ICD-10: N17) is not 

present. 

 

(B) Kidney failure 

ICD-9-code Description ICD-10-code 

V42.0 Kidney replaced by transplant Z94.0 

55.6 Transplant of kidney  

996.81 Complications of transplanted kidney  

V45.1a Renal dialysis status Z99.2 

V56 a Admission for dialysis treatment or session Z49 
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39.95a Hemodialysis  

54.98a Peritoneal dialysis  

 Encounter for adjustment and management of vascular access device Z45.2 

585.5 Chronic kidney disease stage 5 N18.5 

585.6 End stage renal disease N18.6 

586 Renal failure N19 

403.01 Hypertensive chronic kidney disease, malignant, with CKD 5 or ESRD  

403.91 Hypertensive chronic kidney disease, with CKD 5 or ESRD I12.0 

a Codes that are not counted as incident kidney failure if: 1) for hospitalizations, a concurrent AKI code is present; 2) for deaths, if a 

concurrent AKI code is present without a concurrent CKD code. 
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Supplemental Table 5-2. Technical details of polygenic risk scores. 

 
LDPred PRS P+T PRS Simple PRS 

Features Entire summary results of variants with 

rescaling weights based on LD structure, 

effect size, and estimated causal fraction 

r2 and P value thresholds to 

restrict variants 

r2 and genome-wide significant 

threshold to restrict variants 

Settings LD structure from 1000 Genome 

% of causal variants = 30% 

r2 = 0.2 

P = 0.05 

r2 = 0.1 

P = 5 ∗ 10−8 

No. of candidate SNPs ~ 1.2 million ~ 1.2 million ~ 1.2 million 

No. of included SNPs ~ 1.2 million 36,944 1,022 

Rescaling weights  Yes No No 

PRS: polygenic risk score. 
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P + T PRSa vs. LDPred PRSa Simple PRSa vs. LDPred PRS Simple PRS vs. P + T PRS 

   

Supplemental Figure 5-2. Scatter plots of polygenic risk scores (PRS) with locally weighted smoothing (LOESS) regression 

line.  

LDPred PRS was constructed using LDPred algorithm, a Bayesian approach utilizes GWAS summary statistics to compute the 

posterior mean effect sizes for the genetic variants by assuming a prior of the joint effect sizes and incorporating the LD structure of 

the reference population. P+T PRS was constructed using ‘pruning and thresholding (P+T)’, which first prunes variants to only keep 

those who have absolute pairwise correlation weaker than a threshold within certain genetic distance and then filtered variants that 
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have a P value larger than a pre-defined threshold of significance. Simple score was constructed using the most commonly used level 

of absolute pairwise correlation for pruning and genome-wide significance level for thresholding.  
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Supplemental Table 5-3. Adjusted proportion of the variance for estimated glomerular filtration rate (eGFR) explained by 

polygenic risk scores (PRS) (N = 8,886). 

 
eGFRcr eGFRcys  eGFRcr-cys 

LDPred 

PRSa 

P+T 

PRSa 

Simple 

PRSa 

LDPred 

PRSa 

P+T 

PRSa 

Simple 

PRSa 

LDPred 

PRSa 

P+T 

PRSa 

Simple 

PRSa 

Visit 1 (1987-1989) 0.078b 0.061 0.051 - - - - - - 

Visit 2 (1990-1992) 0.082 0.071 0.055 0.033 0.027 0.022 0.067 0.057 0.044 

Visit 3 (1993-1995) 0.103 0.088 0.066 0.040 0.033 0.026 0.079 0.066 0.051 

Visit 4 (1996-1998) 0.084 0.07 0.048 0.032 0.025 0.022 0.067 0.054 0.042 

Visit 5 (2011-2013) 0.068 0.054 0.045 0.027 0.019 0.015 0.048 0.037 0.030 

Visit 6 (2016-2017) 0.073 0.062 0.051 0.032 0.027 0.021 0.054 0.046 0.037 

a  LDPred PRS was constructed using LDPred algorithm, a Bayesian approach utilizes GWAS summary statistics to compute the 

posterior mean effect sizes for the genetic variants by assuming a prior of the joint effect sizes and incorporating the LD structure of 

the reference population. P+T PRS was constructed using ‘pruning and thresholding (P+T)’, which first prunes variants to only keep 
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those who have absolute pairwise correlation weaker than a threshold within certain genetic distance and then filtered variants that 

have a P value larger than a pre-defined threshold of significance. Simple score was constructed using the most commonly used level 

of absolute pairwise correlation for pruning and genome-wide significance level for thresholding. 

b  Proportion of the variance for eGFR explained by PRS with adjusting for age at the corresponded visit, sex, center, and first 10 

genetic principal components for all such values. 

eGFRcr, estimated glomerular filtration rate based on creatinine; eGFRcr-cys, estimated glomerular filtration rate based on creatinine 

and cystatin; eGFRcysr, estimated glomerular filtration rate based on cystatin. 
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Supplemental Table 5-4. Adjusted proportion of the variance for estimated glomerular filtration rate (eGFR) explained by 

polygenic risk scores (PRS) among participants with African ancestry (N = 2,871). 

 
eGFRcr eGFRcys  eGFRcr-cys 

LDPred 

PRSa 

P+T 

PRSa 

Simple 

PRSa 

LDPred 

PRSa 

P+T 

PRSa 

Simple 

PRSa 

LDPred 

PRSa 

P+T 

PRSa 

Simple 

PRSa 

Visit 1 (1987-1989) 0.017b 0.010 0.008 - - - - - - 

Visit 2 (1990-1992) 0.025 0.016 0.011 0.012 0.008 0.005 0.026 0.018 0.012 

Visit 3 (1993-1995) 0.025 0.018 0.016 0.016 0.013 0.007 0.025 0.019 0.013 

Visit 4 (1996-1998) 0.022 0.021 0.013 0.010 0.013 0.006 0.019 0.022 0.011 

Visit 5 (2011-2013) 0.018 0.009 0.009 0.010 0.008 0.009 0.015 0.009 0.010 

Visit 6 (2016-2017) 0.031 0.009 0.023 0.009 0.005 0.017 0.024 0.096 0.028 

a  LDPred PRS was constructed using LDPred algorithm, a Bayesian approach utilizes GWAS summary statistics to compute the 

posterior mean effect sizes for the genetic variants by assuming a prior of the joint effect sizes and incorporating the LD structure of 

the reference population. P+T PRS was constructed using ‘pruning and thresholding (P+T)’, which first prunes variants to only keep 
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those who have absolute pairwise correlation weaker than a threshold within certain genetic distance and then filtered variants that 

have a P value larger than a pre-defined threshold of significance. Simple score was constructed using the most commonly used level 

of absolute pairwise correlation for pruning and genome-wide significance level for thresholding. 

b  Proportion of the variance for eGFR explained by PRS with adjusting for age at the corresponded visit, sex, center, and first 10 

genetic principal components for all such values. 

eGFRcr, estimated glomerular filtration rate based on creatinine; eGFRcr-cys, estimated glomerular filtration rate based on creatinine 

and cystatin; eGFRcysr, estimated glomerular filtration rate based on cystatin. 
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Supplemental Table 5-5. Risk for incident kidney diseases adjusting for kidney fuction according to polygenic risk scores of 

kidney function (N=8,886). 

 Risk for incident kidney diseases per 1 SD lower in PRS 

Ldpred PRSa P+T PRSa Simple PRSa 

Hazard ratios  

(95% CI) 

P value Hazard ratios  

(95% CI) 

P value Hazard ratios  

(95% CI) 

P value 

Chronic kidney diseaseb 1.21 (1.16, 1.26) 1.64E-19 1.17 (1.13, 1.22) 5.99E-15 1.13 (1.09, 1.18) 2.26E-10 

End stage kidney diseaseb 0.98 (0.81, 1.18) 0.81 0.97 (0.81, 1.18) 0.79 0.91 (0.76, 1.08) 0.29 

Kidney failureb 1.03 (0.93, 1.14) 0.57 1.01 (0.92, 1.12) 0.79 1.03 (0.93, 1.13) 0.59 

Acute kidney injuryb 1.03 (0.98, 1.08) 0.30 1.00 (0.95, 1.05) 0.93 0.98 (0.93, 1.03) 0.35 

a  LDPred PRS was constructed using LDPred algorithm, a Bayesian approach utilizes GWAS summary statistics to compute the 

posterior mean effect sizes for the genetic variants by assuming a prior of the joint effect sizes and incorporating the LD structure of 

the reference population. P+T PRS was constructed using ‘pruning and thresholding (P+T)’, which first prunes variants to only keep 

those who have absolute pairwise correlation weaker than a threshold within certain genetic distance and then filtered variants that 

have a P value larger than a pre-defined threshold of significance. Simple score was constructed using the most commonly used level 

of absolute pairwise correlation for pruning and genome-wide significance level for thresholding 
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b Model adjusted for age at baseline, sex, center, first 10 genetic principal components, education, baseline body mass index, baseline 

smoking status, baseline history of hypertension, diabetes, and coronary heart disease, and estimated glomerular filtration rate based 

on creatinine (eGFRcr) measured at baseline. 

PRS: polygenic risk score. 
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Supplemental Table 5-6. Risk for incident kidney diseases according to polygenic risk scores of kidney function after visit 4 

(N=6,719). 

  Risk for incident kidney diseases per 1 SD lower in PRS 

Ldpred PRSa P+T PRSa Simple PRSa 

Hazard ratios  

(95% CI) 

P value Hazard ratios  

(95% CI) 

P value Hazard ratios  

(95% CI) 

P value 

Chronic kidney disease 

 

Model 1b 1.25 (1.20, 1.31) 5.75E-22 1.21 (1.15, 1.26) 1.93E-16 1.16 (1.11, 1.22) 2.13E-11 

Model 2b 1.25 (1.19, 1.31) 1.90E-21 1.21 (1.15, 1.26) 6.22E-16 1.17 (1.12, 1.22) 3.64E-12 

Model 3b 1.16 (1.10, 1.21) 3.75E-09 1.12 (1.07, 1.18) 2.03E-06 1.10 (1.05, 1.15) 6.15E-05 

 Model 4b 1.16 (1.11, 1.22) 1.25E-09 1.13 (1.07, 1.18) 1.05E-06 1.11 (1.06, 1.16) 1.55E-05 

End stage kidney 

disease  

Model 1b 1.17 (0.95, 1.43) 1.32E-01 1.08 (0.89, 1.32) 4.48E-01 0.99 (0.81, 1.2) 8.83E-01 

Model 2b 1.15 (0.94, 1.41) 1.80E-01 1.09 (0.88, 1.33) 4.34E-01 1.00 (0.82, 1.22) 9.99E-01 

Model 3b 0.78 (0.62, 0.97) 2.84E-02 0.78 (0.63, 0.96) 1.97E-02 0.79 (0.65, 0.97) 2.06E-02 

 Model 4b 0.81 (0.65, 1.02) 7.80E-02 0.79 (0.64, 0.98) 3.16E-02 0.81 (0.66, 0.99) 4.38E-02 

Kidney failure  Model 1b 1.19 (1.07, 1.33) 1.37E-03 1.15 (1.03, 1.27) 1.24E-02 1.12 (1.00, 1.24) 4.23E-02 

Model 2b 1.19 (1.07, 1.33) 1.98E-03 1.15 (1.03, 1.28) 1.46E-02 1.11 (1.00, 1.24) 4.69E-02 

Model 3b 0.96 (0.85, 1.08) 4.69E-01 0.94 (0.84, 1.06) 3.24E-01 0.96 (0.86, 1.07) 4.56E-01 
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 Model 4b 0.98 (0.87, 1.10) 7.06E-01 0.96 (0.86, 1.08) 4.89E-01 0.98 (0.88, 1.09) 7.16E-01 

Acute kidney injury  Model 1b 1.07 (1.01, 1.13) 1.51E-02 1.04 (0.99, 1.10) 1.53E-01 1.01 (0.96, 1.07) 6.13E-01 

Model 2b 1.07 (1.02, 1.13) 1.27E-02 1.04 (0.99, 1.10) 1.38E-01 1.01 (0.96, 1.07) 6.46E-01 

Model 3b 1.00 (0.94, 1.06) 8.92E-01 0.97 (0.92, 1.03) 3.15E-01 0.96 (0.91, 1.01) 1.02E-01 

 Model 4b 1.00 (0.94, 1.06) 9.69E-01 0.97 (0.92, 1.03) 3.56E-01 0.96 (0.91, 1.01) 1.43E-01 

a  LDPred PRS was constructed using LDPred algorithm, a Bayesian approach utilizes GWAS summary statistics to compute the 

posterior mean effect sizes for the genetic variants by assuming a prior of the joint effect sizes and incorporating the LD structure of 

the reference population. P+T PRS was constructed using ‘pruning and thresholding (P+T)’, which first prunes variants to only keep 

those who have absolute pairwise correlation weaker than a threshold within certain genetic distance and then filtered variants that 

have a P value larger than a pre-defined threshold of significance. Simple score was constructed using the most commonly used level 

of absolute pairwise correlation for pruning and genome-wide significance level for thresholding 

b Model 1 adjusted for age at visit 4, sex, center, and first 10 genetic principal components; Model 2 adjusted for all covariates in 

model 1 and education, body mass index at visit 4, smoking status at visit 4, history of hypertension, diabetes, and coronary heart 

disease at visit 4; Model 3 adjusted for all covariates in model 2 and albumin-to-creatinine ratio (ACR) measured at visit 4; Model 4 

adjusted for all covariates in model 3 and estimated glomerular filtration rate based on creatinine (eGFRcr) measured at visit 4. 

PRS: polygenic risk score 
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Kidney 
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Supplemental Figure 5-3. Polygenic risk scores density distribution by incident kidney diseases status. 
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LDPred PRS was constructed using LDPred algorithm, a Bayesian approach utilizes GWAS summary statistics to compute the 

posterior mean effect sizes for the genetic variants by assuming a prior of the joint effect sizes and incorporating the LD structure of 

the reference population. P+T PRS was constructed using ‘pruning and thresholding (P+T)’, which first prunes variants to only keep 

those who have absolute pairwise correlation weaker than a threshold within certain genetic distance and then filtered variants that 

have a P value larger than a pre-defined threshold of significance. Simple score was constructed using the most commonly used level 

of absolute pairwise correlation for pruning and genome-wide significance level for thresholding. PRS: polygenic risk score 
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Supplemental Table 5-7. Associations of LDPred polygenic risk score for kidney function and estimated glomerular filtration 

rate with proteins that are significantly associated with LDPred polygenic risk score at both visit 3 (N=7,213) and visit 5 (N = 

3,666)a.  

(A) LDPred PRS, eGFR measured at visit 3, and proteins measured at visit 3 

Gene Full name Visit 3 Protein and LDPred PRSb,c Visit 3 Protein and Visit 3 eGFRcr c Visit 3 Protein and Visit 3 eGFRcysc 

Correlatione Beta (SE) P Correlatione Beta (SE) P Correlatione Beta (SE) P 

  Positive significant correlations 

SPOCK2 Testican-2 0.0999 0.0369 (0.0039) 6.96E-21 0.1951 0.0054 (0.0003) 8.77E-68 0.1972 0.0042 (0.0002) 9.18E-71 

PLG Angiostatin 0.0665 0.0153 (0.0028) 3.59E-08 0.1669 0.0021 (0.0002) 8.06E-22 0.2579 0.0033 (0.0002) 3.44E-86 

Positive significant correlations, medianf 0.0832 0.1810 0.2276 

  Negative significant correlations 

CST3 Cystatin-C -0.1405 -0.0395 (0.003) 7.62E-39 -0.4811 -0.009 (0.0002) 0 -0.677 -0.0104 (0.0001) 0 

COL15A1 Collagen alpha-1(XV) chain -0.1334 -0.0351 (0.0029) 4.28E-34 -0.4171 -0.0084 (0.0002) 0 -0.3766 -0.0058 (0.0002) 2.50E-254 

RNASE1 Ribonuclease pancreatic -0.1193 -0.0707 (0.0064) 3.06E-28 -0.4341 -0.0166 (0.0005) 2.00E-253 -0.577 -0.0179 (0.0003) 0 

DSC2 Desmocollin-2 -0.1031 -0.0305 (0.003) 2.07E-24 -0.3896 -0.0076 (0.0002) 4.40E-240 -0.3408 -0.0049 (0.0002) 1.20E-165 

COL6A3 Collagen alpha-3(VI) chain -0.104 -0.0299 (0.0029) 2.18E-24 -0.3501 -0.0064 (0.0002) 1.30E-185 -0.5068 -0.0073 (0.0002) 0 

COL28A1 
Collagen alpha-1(XXVIII) 

chain 

-0.1024 -0.0321 (0.0032) 8.27E-24 -0.3534 -0.0071 (0.0002) 7.20E-181 -0.5101 -0.0081 (0.0002) 0 

CD59 CD59 glycoprotein -0.1072 -0.031 (0.0031) 1.09E-23 -0.3941 -0.0078 (0.0002) 1.80E-234 -0.3382 -0.0049 (0.0002) 1.70E-154 

TMED10 
Transmembrane emp24 

domain-containing protein 10 

-0.1024 -0.0359 (0.0036) 2.63E-23 -0.3768 -0.0087 (0.0003) 2.90E-213 -0.5245 -0.0095 (0.0002) 0 

GM2A Ganglioside GM2 activator -0.1016 -0.0329 (0.0033) 1.05E-22 -0.3897 -0.0082 (0.0002) 3.40E-219 -0.4669 -0.0076 (0.0002) 0 
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TNFRSF1A 

Tumor necrosis factor receptor 

superfamily member 1A 
-0.1038 -0.0389 (0.004) 2.43E-22 -0.393 -0.0095 (0.0003) 4.10E-210 -0.5008 -0.0097 (0.0002) 0 

ART3 Ecto-ADP-ribosyltransferase 3 -0.1113 -0.046 (0.0048) 1.26E-21 -0.2788 -0.0101 (0.0004) 2.30E-161 -0.045 -0.0015 (0.0003) 4.25E-07 

CDNF 

Cerebral dopamine 

neurotrophic factor 
-0.1079 -0.0286 (0.0031) 1.54E-20 -0.3566 -0.0073 (0.0002) 4.10E-209 -0.1983 -0.0029 (0.0002) 6.99E-55 

SELM Selenoprotein M -0.098 -0.0314 (0.0034) 7.35E-20 -0.3905 -0.0081 (0.0003) 2.40E-208 -0.3691 -0.0058 (0.0002) 5.70E-174 

EFNB2 Ephrin-B2 -0.0973 -0.0318 (0.0036) 7.58E-19 -0.3532 -0.0082 (0.0003) 1.70E-195 -0.3181 -0.0056 (0.0002) 2.50E-151 

B2M Beta-2-microglobulin -0.0941 -0.0274 (0.0032) 8.66E-18 -0.388 -0.0074 (0.0002) 1.50E-201 -0.4931 -0.0076 (0.0002) 0 

MYOC Myocilin -0.0986 -0.0352 (0.0041) 2.21E-17 -0.3036 -0.0082 (0.0003) 1.40E-143 -0.2149 -0.0043 (0.0002) 5.08E-67 

FABP4 

Fatty acid-binding protein, 

adipocyte 
-0.0879 -0.0522 (0.0062) 5.45E-17 -0.3044 -0.0124 (0.0005) 2.90E-145 -0.3874 -0.0121 (0.0004) 7.20E-238 

LMAN2 
Vesicular integral-membrane 

protein VIP36 

-0.0884 -0.0248 (0.003) 9.20E-17 -0.3218 -0.0061 (0.0002) 5.20E-155 -0.3681 -0.0054 (0.0002) 1.40E-206 

MB Myoglobin -0.0895 -0.0412 (0.005) 1.35E-16 -0.2509 -0.0093 (0.0004) 1.10E-127 -0.1043 -0.0029 (0.0003) 4.92E-22 

IGFBP6 

Insulin-like growth factor-

binding protein 6 

-0.0896 -0.0231 (0.0028) 2.04E-16 -0.3139 -0.0057 (0.0002) 6.10E-150 -0.2422 -0.0032 (0.0002) 8.14E-80 

LCN2 

Neutrophil gelatinase-

associated lipocalin 
-0.0901 -0.0365 (0.0045) 4.91E-16 -0.2589 -0.0074 (0.0003) 5.99E-98 -0.2976 -0.0068 (0.0003) 4.20E-139 

HSPB6 Heat shock protein beta-6 -0.0913 -0.0384 (0.0047) 6.33E-16 -0.3341 -0.0091 (0.0004) 6.50E-134 -0.3086 -0.0063 (0.0003) 5.10E-107 

MFAP2 

Microfibrillar-associated 

protein 2 
-0.0826 -0.0262 (0.0033) 2.19E-15 -0.2509 -0.0051 (0.0003) 2.52E-85 -0.28 -0.0043 (0.0002) 6.80E-104 

FSTL3 Follistatin-related protein 3 -0.0726 -0.0248 (0.0032) 7.64E-15 -0.3423 -0.0065 (0.0002) 8.10E-154 -0.4465 -0.0067 (0.0002) 4.50E-286 

RGMB 

RGM domain family member 

B 
-0.0845 -0.0212 (0.0027) 8.31E-15 -0.3045 -0.0058 (0.0002) 3.00E-165 -0.1494 -0.0021 (0.0002) 2.02E-36 
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ESAM 

Endothelial cell-selective 

adhesion molecule 
-0.091 -0.0254 (0.0033) 1.36E-14 -0.2935 -0.006 (0.0003) 2.90E-119 -0.2428 -0.0039 (0.0002) 6.59E-86 

CFD Complement factor D -0.0792 -0.0256 (0.0033) 1.45E-14 -0.2749 -0.0057 (0.0003) 1.10E-107 -0.2996 -0.0046 (0.0002) 2.00E-119 

JAM2 

Junctional adhesion molecule 

B 
-0.0863 -0.0202 (0.0026) 2.38E-14 -0.2633 -0.0043 (0.0002) 2.81E-94 -0.2662 -0.0034 (0.0002) 2.20E-99 

NBL1 
Neuroblastoma suppressor of 

tumorigenicity 1 

-0.0781 -0.0311 (0.0041) 3.11E-14 -0.3766 -0.0095 (0.0003) 2.90E-201 -0.3767 -0.0073 (0.0002) 7.00E-199 

SMOC2 

SPARC-related modular 

calcium-binding protein 2 

-0.082 -0.0272 (0.0036) 4.14E-14 -0.2827 -0.0066 (0.0003) 3.10E-121 -0.1853 -0.0031 (0.0002) 1.82E-44 

TNFRSF1B 

Tumor necrosis factor receptor 

superfamily member 1B 
-0.0785 -0.0286 (0.0038) 4.52E-14 -0.3007 -0.0069 (0.0003) 5.30E-120 -0.4723 -0.0088 (0.0002) 0 

GAS1 
Growth arrest-specific protein 

1 

-0.086 -0.0256 (0.0034) 7.70E-14 -0.3326 -0.0069 (0.0003) 2.00E-146 -0.2843 -0.0043 (0.0002) 3.87E-94 

COL18A1 Endostatin -0.0729 -0.0262 (0.0035) 1.40E-13 -0.2665 -0.0061 (0.0003) 3.70E-108 -0.2652 -0.0045 (0.0002) 4.13E-98 

UNC5B Netrin receptor UNC5B -0.0771 -0.0257 (0.0035) 1.80E-13 -0.3227 -0.0066 (0.0003) 1.60E-132 -0.3293 -0.0052 (0.0002) 2.60E-134 

PPIC 
Peptidyl-prolyl cis-trans 

isomerase C 

-0.0771 -0.0262 (0.0036) 1.85E-13 -0.2719 -0.0063 (0.0003) 7.40E-114 -0.3251 -0.0059 (0.0002) 2.10E-168 

RNASE6 Ribonuclease K6 -0.0762 -0.0367 (0.005) 2.36E-13 -0.2812 -0.0085 (0.0004) 1.40E-105 -0.3993 -0.0097 (0.0003) 2.00E-237 

GABARAP 
Gamma-aminobutyric acid 

receptor-associated protein 

-0.0869 -0.0195 (0.0027) 2.87E-13 -0.3085 -0.005 (0.0002) 7.90E-126 -0.4391 -0.0058 (0.0001) 6.80E-308 

UNC5C Netrin receptor UNC5C -0.0739 -0.0243 (0.0034) 4.32E-13 -0.247 -0.0049 (0.0003) 3.57E-78 -0.243 -0.0036 (0.0002) 7.68E-71 

PTGDS Prostaglandin-H2 D-isomerase -0.0742 -0.0323 (0.0045) 6.61E-13 -0.3607 -0.0093 (0.0003) 5.10E-157 -0.3399 -0.0065 (0.0003) 9.80E-131 

DNAJB12 

DnaJ homolog subfamily B 

member 12 
-0.0807 -0.0313 (0.0044) 7.55E-13 -0.319 -0.0086 (0.0003) 3.10E-143 -0.3283 -0.0068 (0.0003) 4.40E-152 
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WFDC1 

WAP four-disulfide core 

domain protein 1 
-0.0777 -0.0298 (0.0042) 7.86E-13 -0.3137 -0.0077 (0.0003) 1.70E-125 -0.3575 -0.007 (0.0002) 8.00E-177 

CRABP2 
Cellular retinoic acid-binding 

protein 2 

-0.0809 -0.0327 (0.0046) 8.24E-13 -0.28 -0.0083 (0.0003) 1.80E-119 -0.3613 -0.0084 (0.0003) 1.30E-211 

CCL14 C-C motif chemokine 14 -0.0735 -0.0391 (0.0055) 9.77E-13 -0.2645 -0.0092 (0.0004) 5.30E-104 -0.3223 -0.0085 (0.0003) 1.70E-149 

MIA 
Melanoma-derived growth 

regulatory protein 

-0.0751 -0.026 (0.0036) 9.93E-13 -0.216 -0.0053 (0.0003) 2.00E-77 -0.0955 -0.0015 (0.0002) 4.48E-12 

RARRES2 

Retinoic acid receptor 

responder protein 2 

-0.0671 -0.0266 (0.0038) 1.69E-12 -0.2127 -0.0054 (0.0003) 2.32E-73 -0.3435 -0.0067 (0.0002) 2.00E-200 

EFNA5 Ephrin-A5 -0.0778 -0.0211 (0.003) 2.39E-12 -0.3063 -0.0058 (0.0002) 1.60E-135 -0.2857 -0.004 (0.0002) 5.20E-109 

ATOX1 

Copper transport protein 

ATOX1 

-0.0839 -0.0348 (0.005) 5.50E-12 -0.2437 -0.0073 (0.0004) 1.26E-75 -0.3091 -0.008 (0.0003) 2.80E-155 

UNC5B Netrin receptor UNC5B -0.0757 -0.0252 (0.0037) 6.46E-12 -0.289 -0.0062 (0.0003) 2.40E-104 -0.3195 -0.0053 (0.0002) 2.20E-130 

EFNA4 Ephrin-A4 -0.0751 -0.0196 (0.0029) 1.06E-11 -0.2856 -0.0052 (0.0002) 4.20E-119 -0.3333 -0.0046 (0.0002) 2.20E-164 

TAGLN Transgelin -0.07 -0.0279 (0.0041) 1.50E-11 -0.3513 -0.0075 (0.0003) 2.80E-118 -0.2919 -0.0041 (0.0002) 1.86E-59 

TWSG1 
Twisted gastrulation protein 

homolog 1 

-0.0663 -0.0154 (0.0023) 1.51E-11 -0.2736 -0.0038 (0.0002) 1.00E-101 -0.2726 -0.0029 (0.0001) 5.80E-101 

CD46 Membrane cofactor protein -0.0688 -0.0181 (0.0027) 2.16E-11 -0.2421 -0.0043 (0.0002) 4.39E-90 -0.2577 -0.0034 (0.0002) 2.76E-97 

TNFRSF1B 
Tumor necrosis factor receptor 

superfamily member 1B 

-0.0666 -0.0256 (0.0038) 2.19E-11 -0.2628 -0.006 (0.0003) 2.29E-90 -0.417 -0.0078 (0.0002) 3.70E-267 

AIF1L 

Allograft inflammatory factor 

1-like 

-0.0737 -0.0213 (0.0032) 3.97E-11 -0.3092 -0.0054 (0.0002) 3.60E-102 -0.3205 -0.0044 (0.0002) 6.70E-113 

CD55 

Complement decay-

accelerating factor 
-0.0669 -0.0183 (0.0028) 8.47E-11 -0.2368 -0.0043 (0.0002) 2.38E-85 -0.1639 -0.0021 (0.0002) 6.61E-35 
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NPDC1 

Neural proliferation 

differentiation and control 

protein 1 

-0.0654 -0.0233 (0.0036) 9.86E-11 -0.1954 -0.0044 (0.0003) 1.04E-53 -0.2183 -0.0037 (0.0002) 1.74E-64 

VWC2 Brorin -0.0685 -0.0242 (0.0038) 1.13E-10 -0.2693 -0.0064 (0.0003) 1.10E-105 -0.2584 -0.0046 (0.0002) 6.11E-90 

CALCOCO2 

Calcium-binding and coiled-

coil domain-containing protein 

2 

-0.0637 -0.0191 (0.003) 2.12E-10 -0.1397 -0.0032 (0.0002) 2.06E-40 -0.1282 -0.0022 (0.0002) 1.99E-33 

EPHA2 Ephrin type-A receptor 2 -0.0673 -0.0237 (0.0037) 2.24E-10 -0.2754 -0.0059 (0.0003) 7.89E-91 -0.3183 -0.0054 (0.0002) 2.70E-128 

EPHB6 Ephrin type-B receptor 6 -0.0618 -0.0168 (0.0027) 3.81E-10 -0.2274 -0.0044 (0.0002) 1.51E-98 -0.168 -0.0024 (0.0002) 2.98E-49 

ROR2 

Tyrosine-protein kinase 

transmembrane receptor ROR2 
-0.0661 -0.0239 (0.0038) 3.89E-10 -0.286 -0.0066 (0.0003) 5.70E-110 -0.2946 -0.0052 (0.0002) 1.90E-113 

WFDC2 
WAP four-disulfide core 

domain protein 2 

-0.054 -0.0305 (0.0049) 5.69E-10 -0.2893 -0.0078 (0.0004) 7.60E-91 -0.3899 -0.0087 (0.0003) 2.10E-194 

FABP3 

Fatty acid-binding protein, 

heart 
-0.0562 -0.0381 (0.0063) 1.89E-09 -0.1851 -0.0095 (0.0005) 1.34E-81 -0.2872 -0.0106 (0.0004) 4.00E-173 

DLK1 Protein delta homolog 1 -0.0645 -0.0402 (0.0067) 2.24E-09 -0.2262 -0.0093 (0.0005) 5.42E-70 -0.1857 -0.0056 (0.0004) 5.76E-43 

CD300C CMRF35-like molecule 6 -0.0591 -0.0223 (0.0037) 2.59E-09 -0.148 -0.0035 (0.0003) 5.21E-32 -0.2778 -0.0053 (0.0002) 4.50E-121 

EPHB4 Ephrin type-B receptor 4 -0.0635 -0.0215 (0.0036) 2.84E-09 -0.2543 -0.0056 (0.0003) 4.14E-86 -0.2586 -0.0044 (0.0002) 2.74E-89 

DLK1 Protein delta homolog 1 -0.0647 -0.0374 (0.0063) 3.05E-09 -0.2185 -0.0085 (0.0005) 2.53E-66 -0.1743 -0.005 (0.0004) 3.03E-38 

EFNA2 Ephrin-A2 -0.0662 -0.0194 (0.0033) 5.06E-09 -0.2839 -0.0058 (0.0003) 5.90E-112 -0.3221 -0.0051 (0.0002) 5.40E-145 

LRP10 

Low-density lipoprotein 

receptor-related protein 10 

-0.0699 -0.016 (0.0027) 5.89E-09 -0.3042 -0.005 (0.0002) 1.70E-121 -0.269 -0.0033 (0.0002) 3.97E-89 

IGFBP4 

Insulin-like growth factor-

binding protein 4 
-0.0531 -0.0204 (0.0035) 1.02E-08 -0.1375 -0.0034 (0.0003) 1.79E-34 -0.2318 -0.0044 (0.0002) 1.62E-95 
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SERPINF1 

Pigment epithelium-derived 

factor 
-0.0612 -0.0126 (0.0022) 1.23E-08 -0.207 -0.0031 (0.0002) 1.49E-73 -0.2505 -0.003 (0.0001) 1.10E-113 

MXRA7 
Matrix-remodeling-associated 

protein 7 

-0.0606 -0.0207 (0.0037) 1.70E-08 -0.2429 -0.0056 (0.0003) 1.92E-83 -0.234 -0.004 (0.0002) 1.97E-73 

IL18BP Interleukin-18-binding protein -0.0585 -0.0225 (0.004) 1.82E-08 -0.21 -0.0044 (0.0003) 1.99E-45 -0.3404 -0.0062 (0.0002) 4.60E-152 

CAPG Macrophage-capping protein -0.0575 -0.0335 (0.006) 2.14E-08 -0.1979 -0.0065 (0.0005) 4.18E-43 -0.2807 -0.0076 (0.0004) 5.60E-100 

TNFRSF19 

Tumor necrosis factor receptor 

superfamily member 19 
-0.0604 -0.0232 (0.0042) 3.37E-08 -0.2841 -0.0074 (0.0003) 6.90E-111 -0.2617 -0.0051 (0.0003) 2.14E-89 

VIT Vitrin -0.0651 -0.0222 (0.004) 3.44E-08 -0.2417 -0.0057 (0.0003) 7.07E-74 -0.2456 -0.0046 (0.0002) 4.26E-81 

CPLX2 Complexin-2 -0.0561 -0.0249 (0.0045) 3.59E-08 -0.2839 -0.0081 (0.0003) 8.50E-117 -0.1717 -0.0031 (0.0003) 6.49E-29 

RETN Resistin -0.0623 -0.0268 (0.0049) 4.85E-08 -0.2112 -0.0068 (0.0004) 1.81E-69 -0.2422 -0.006 (0.0003) 8.50E-91 

ASGR1 Asialoglycoprotein receptor 1 -0.0567 -0.0184 (0.0034) 7.36E-08 -0.2175 -0.0048 (0.0003) 1.34E-70 -0.3015 -0.0052 (0.0002) 6.60E-142 

TNFRSF21 

Tumor necrosis factor receptor 

superfamily member 21 
-0.0538 -0.0151 (0.0028) 8.82E-08 -0.1901 -0.0036 (0.0002) 2.12E-58 -0.2484 -0.0035 (0.0002) 6.94E-96 

DCLK1 

Serine/threonine-protein kinase 

DCLK1 

-0.0634 -0.022 (0.0041) 9.64E-08 -0.1991 -0.0054 (0.0003) 6.46E-63 -0.2091 -0.0044 (0.0002) 3.35E-69 

PXDN Peroxidasin homolog -0.0586 -0.0493 (0.0093) 1.09E-07 -0.2027 -0.011 (0.0007) 4.03E-51 -0.3277 -0.0149 (0.0005) 1.50E-160 

EPHA1 Ephrin type-A receptor 1 -0.0521 -0.0314 (0.0059) 1.21E-07 -0.1813 -0.0066 (0.0005) 1.39E-44 -0.2125 -0.006 (0.0004) 5.37E-62 

PI3 Elafin -0.0493 -0.0319 (0.0061) 1.46E-07 -0.2037 -0.008 (0.0005) 6.52E-63 -0.2305 -0.0071 (0.0004) 2.58E-84 

SRL Sarcalumenin -0.0595 -0.0252 (0.0048) 1.65E-07 -0.1838 -0.0056 (0.0004) 2.50E-49 -0.1708 -0.0039 (0.0003) 1.96E-41 

IGFLR1 IGF-like family receptor 1 -0.05 -0.0278 (0.0053) 1.97E-07 -0.252 -0.0079 (0.0004) 7.49E-80 -0.3905 -0.01 (0.0003) 1.30E-222 

DLK2 Protein delta homolog 2 -0.0525 -0.0227 (0.0044) 2.12E-07 -0.2905 -0.0078 (0.0003) 7.20E-117 -0.2236 -0.0044 (0.0003) 2.07E-62 

VASN Vasorin -0.0643 -0.0138 (0.0027) 2.35E-07 -0.1882 -0.0033 (0.0002) 7.55E-57 -0.2238 -0.0031 (0.0002) 1.13E-85 

CLMP 

CXADR-like membrane 

protein 

-0.05 -0.0228 (0.0045) 4.19E-07 -0.2243 -0.0067 (0.0003) 2.64E-82 -0.2388 -0.0053 (0.0003) 7.24E-87 
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NRXN3 Neurexin-3-beta -0.0521 -0.0204 (0.0041) 4.75E-07 -0.1902 -0.0044 (0.0003) 1.22E-43 -0.154 -0.0024 (0.0002) 1.16E-22 

XXYLT1 Xyloside xylosyltransferase 1 -0.0576 -0.0172 (0.0034) 4.86E-07 -0.2024 -0.0043 (0.0003) 7.71E-59 -0.207 -0.0033 (0.0002) 8.24E-59 

MAP2K2 

Dual specificity mitogen-

activated protein kinase kinase 

2 

-0.0528 -0.0298 (0.006) 5.61E-07 -0.2286 -0.008 (0.0005) 3.14E-66 -0.2525 -0.0069 (0.0004) 1.28E-81 

DDOST 

Dolichyl-

diphosphooligosaccharide--

protein glycosyltransferase 48 

kDa subunit 

-0.0571 -0.0163 (0.0033) 6.69E-07 -0.2293 -0.0046 (0.0003) 1.12E-70 -0.2301 -0.0036 (0.0002) 1.33E-72 

B4GALT1 

Beta-1,4-galactosyltransferase 

1 
-0.0562 -0.0118 (0.0024) 8.96E-07 -0.2378 -0.0036 (0.0002) 1.01E-81 -0.1896 -0.002 (0.0001) 7.78E-45 

TREM1 
Triggering receptor expressed 

on myeloid cells 1 

-0.0547 -0.0218 (0.0045) 9.58E-07 -0.2204 -0.0054 (0.0003) 2.07E-52 -0.3302 -0.0068 (0.0003) 3.10E-144 

MANSC1 

MANSC domain-containing 

protein 1 
-0.0482 -0.0184 (0.0038) 1.05E-06 -0.1609 -0.0039 (0.0003) 3.03E-39 -0.1886 -0.0035 (0.0002) 1.15E-52 

IL15RA 
Interleukin-15 receptor subunit 

alpha 

-0.0481 -0.0213 (0.0044) 1.06E-06 -0.2545 -0.0061 (0.0003) 7.24E-72 -0.3445 -0.0069 (0.0003) 5.00E-154 

CD93 

Complement component C1q 

receptor 

-0.0483 -0.0154 (0.0032) 1.09E-06 -0.1341 -0.0033 (0.0002) 1.77E-39 -0.1857 -0.0034 (0.0002) 2.93E-69 

EFEMP1 

EGF-containing fibulin-like 

extracellular matrix protein 1 
-0.0411 -0.0141 (0.0029) 1.11E-06 -0.2385 -0.0034 (0.0002) 3.41E-49 -0.3549 -0.0044 (0.0002) 2.20E-142 

AMBP Alpha-1-microglobulin -0.0542 -0.0154 (0.0032) 1.20E-06 -0.2113 -0.004 (0.0002) 4.13E-57 -0.2833 -0.0043 (0.0002) 7.60E-114 

TMPO 

Lamina-associated polypeptide 

2, isoforms beta/gamma 
-0.0588 -0.0253 (0.0053) 1.92E-06 -0.2184 -0.0066 (0.0004) 1.38E-56 -0.336 -0.0088 (0.0003) 1.00E-171 

NEGR1 Neuronal growth regulator 1 -0.0423 -0.0113 (0.0024) 3.64E-06 -0.1503 -0.0025 (0.0002) 1.51E-38 -0.0375 -0.0002 (0.0001) 0.253267 
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PENK Proenkephalin-A -0.0555 -0.0379 (0.0082) 4.19E-06 -0.1669 -0.007 (0.0006) 4.52E-27 -0.2399 -0.0086 (0.0005) 2.08E-67 

SPINK7 

Serine protease inhibitor 

Kazal-type 7 

-0.0521 -0.0222 (0.0049) 5.39E-06 -0.1937 -0.0068 (0.0004) 1.47E-70 -0.0726 -0.002 (0.0003) 2.67E-11 

SMOC1 

SPARC-related modular 

calcium-binding protein 1 
-0.0477 -0.0118 (0.0026) 7.27E-06 -0.2433 -0.0035 (0.0002) 7.45E-65 -0.1798 -0.0017 (0.0002) 4.78E-26 

CST2 Cystatin-SA -0.0461 -0.0337 (0.0076) 9.71E-06 -0.198 -0.0096 (0.0006) 9.57E-58 -0.0767 -0.0022 (0.0005) 1.47E-06 

Negative significant correlations, medianf -0.0679 -0.2639 -0.2820 

 

(B) LDPred PRS, eGFR measured at visit 5, and proteins measured at visit 5 

Gene Full name Visit 5 Protein and LDPred PRSb,d Visit 5 Protein and Visit 5 eGFRcrd Visit 5 Protein and Visit 5 eGFRcysd 

Correlation Beta (SE) P Correlation Beta (SE) P Correlation Beta (SE) P 

           

  Positive significant correlations 

SPOCK2 Testican-2 0.1033 0.0411 (0.0066) 7.20E-10 0.3976 0.0096 (0.0004) 6.00E-122 0.4333 0.009 (0.0003) 9.85E-147 

PLG Angiostatin 0.0946 0.0192 (0.0037) 1.66E-07 0.2734 0.0033 (0.0002) 7.74E-48 0.3442 0.0037 (0.0002) 7.82E-79 

Positive significant correlations, medianf 0.0989 0.3355 0.3887 

  Negative significant correlations 

COL15A1 Collagen alpha-1(XV) chain -0.139 -0.0456 (0.0048) 2.18E-21 -0.6275 -0.0112 (0.0002) 0.00E+00 -0.5708 -0.0091 (0.0002) 1.93E-313 

CST3 Cystatin-C -0.141 -0.0535 (0.0056) 4.59E-21 -0.7304 -0.015 (0.0003) 0.00E+00 -0.8703 -0.0159 (0.0002) 0.00E+00 

DSC2 Desmocollin-2 -0.1157 -0.0493 (0.0058) 3.72E-17 -0.6337 -0.0133 (0.0003) 0.00E+00 -0.6052 -0.0112 (0.0003) 8.89E-323 

CD59 CD59 glycoprotein -0.1177 -0.0433 (0.0051) 5.41E-17 -0.5965 -0.0111 (0.0003) 1.64E-304 -0.5533 -0.0091 (0.0002) 1.11E-266 

TNFRSF1A 
Tumor necrosis factor receptor 

superfamily member 1A 

-0.1173 -0.0563 (0.0067) 9.16E-17 -0.6328 -0.0151 (0.0003) 0.00E+00 -0.71 -0.0151 (0.0003) 0.00E+00 



158 

 

GM2A Ganglioside GM2 activator -0.1207 -0.0542 (0.0065) 1.34E-16 -0.6421 -0.015 (0.0003) 0.00E+00 -0.6991 -0.0145 (0.0003) 0.00E+00 

RNASE1 Ribonuclease pancreatic -0.118 -0.104 (0.0126) 2.51E-16 -0.6764 -0.0303 (0.0006) 0.00E+00 -0.7862 -0.0313 (0.0004) 0.00E+00 

COL6A3 Collagen alpha-3(VI) chain -0.1173 -0.0483 (0.0059) 3.33E-16 -0.6145 -0.0129 (0.0003) 5.23E-317 -0.7037 -0.0132 (0.0002) 0.00E+00 

TMED10 

Transmembrane emp24 domain-

containing protein 10 
-0.1173 -0.0596 (0.0073) 4.59E-16 -0.6933 -0.018 (0.0003) 0.00E+00 -0.7963 -0.0183 (0.0003) 0.00E+00 

ART3 Ecto-ADP-ribosyltransferase 3 -0.1173 -0.0564 (0.007) 7.09E-16 -0.4533 -0.0128 (0.0004) 4.54E-207 -0.2375 -0.0062 (0.0004) 3.15E-60 

EFNB2 Ephrin-B2 -0.1172 -0.0469 (0.0058) 8.70E-16 -0.5655 -0.0118 (0.0003) 4.93E-262 -0.5251 -0.0097 (0.0003) 7.08E-230 

COL28A1 Collagen alpha-1(XXVIII) chain -0.1136 -0.0492 (0.0062) 2.47E-15 -0.6049 -0.0133 (0.0003) 3.74E-300 -0.7006 -0.0138 (0.0002) 0.00E+00 

NBL1 
Neuroblastoma suppressor of 

tumorigenicity 1 

-0.1082 -0.0692 (0.0091) 3.25E-14 -0.6745 -0.0218 (0.0004) 0.00E+00 -0.6762 -0.019 (0.0004) 0.00E+00 

MFAP2 

Microfibrillar-associated protein 

2 

-0.1118 -0.0406 (0.0054) 6.35E-14 -0.4859 -0.009 (0.0003) 2.45E-169 -0.5207 -0.0086 (0.0003) 1.09E-206 

PXDN Peroxidasin homolog -0.1102 -0.0894 (0.0119) 8.25E-14 -0.6003 -0.0255 (0.0006) 9.65E-299 -0.7044 -0.0265 (0.0005) 0.00E+00 

CD55 

Complement decay-accelerating 

factor 
-0.1042 -0.0329 (0.0044) 1.03E-13 -0.438 -0.0068 (0.0003) 5.54E-143 -0.3575 -0.0049 (0.0002) 3.66E-96 

TWSG1 
Twisted gastrulation protein 

homolog 1 

-0.1069 -0.0295 (0.004) 2.32E-13 -0.5667 -0.008 (0.0002) 8.36E-250 -0.6029 -0.0074 (0.0002) 4.31E-298 

FSTL3 Follistatin-related protein 3 -0.0975 -0.0404 (0.0055) 2.43E-13 -0.5862 -0.0112 (0.0003) 1.06E-263 -0.6781 -0.0115 (0.0002) 0.00E+00 

LMAN2 
Vesicular integral-membrane 

protein VIP36 

-0.1013 -0.0407 (0.0056) 2.86E-13 -0.5818 -0.0116 (0.0003) 2.60E-282 -0.6133 -0.0109 (0.0002) 0.00E+00 

ROR2 

Tyrosine-protein kinase 

transmembrane receptor ROR2 

-0.1006 -0.0481 (0.0066) 4.42E-13 -0.5376 -0.0123 (0.0004) 3.76E-213 -0.5614 -0.0113 (0.0003) 6.21E-247 

B2M Beta-2-microglobulin -0.1056 -0.0452 (0.0062) 4.69E-13 -0.6675 -0.0147 (0.0003) 0.00E+00 -0.7559 -0.0147 (0.0002) 0.00E+00 

MB Myoglobin -0.102 -0.0543 (0.0075) 6.77E-13 -0.413 -0.0126 (0.0004) 1.27E-169 -0.2849 -0.008 (0.0004) 2.07E-86 
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LCN2 

Neutrophil gelatinase-associated 

lipocalin 
-0.1087 -0.0556 (0.0077) 8.19E-13 -0.4967 -0.0139 (0.0004) 1.12E-196 -0.5418 -0.0135 (0.0004) 2.24E-258 

RGMB RGM domain family member B -0.1026 -0.0306 (0.0043) 8.48E-13 -0.492 -0.0075 (0.0002) 2.41E-192 -0.3779 -0.0051 (0.0002) 4.14E-110 

CDNF 

Cerebral dopamine neurotrophic 

factor 
-0.1123 -0.0385 (0.0054) 1.10E-12 -0.5404 -0.0107 (0.0003) 4.47E-248 -0.4012 -0.0069 (0.0003) 3.14E-127 

SELM Selenoprotein M -0.0965 -0.0423 (0.0059) 1.13E-12 -0.6084 -0.0126 (0.0003) 1.41E-295 -0.5979 -0.0109 (0.0003) 3.42E-292 

SRL Sarcalumenin -0.1026 -0.0455 (0.0065) 3.01E-12 -0.458 -0.0108 (0.0004) 6.11E-167 -0.3738 -0.0078 (0.0003) 3.17E-111 

IGFBP6 

Insulin-like growth factor-

binding protein 6 

-0.0848 -0.0269 (0.0038) 3.15E-12 -0.4328 -0.0062 (0.0002) 1.11E-154 -0.3647 -0.0047 (0.0002) 8.52E-118 

EPHA2 Ephrin type-A receptor 2 -0.0931 -0.043 (0.0064) 2.64E-11 -0.5039 -0.011 (0.0004) 4.60E-179 -0.539 -0.0105 (0.0003) 7.15E-222 

TNFRSF1B 

Tumor necrosis factor receptor 

superfamily member 1B 

-0.0937 -0.0481 (0.0072) 3.21E-11 -0.4956 -0.0125 (0.0004) 4.63E-183 -0.609 -0.0138 (0.0003) 2.77E-322 

EFNA5 Ephrin-A5 -0.0966 -0.0348 (0.0052) 3.30E-11 -0.5222 -0.0096 (0.0003) 7.39E-207 -0.5068 -0.0082 (0.0003) 9.21E-199 

CD46 Membrane cofactor protein -0.0989 -0.0289 (0.0043) 3.32E-11 -0.4917 -0.0074 (0.0002) 9.14E-176 -0.5017 -0.0066 (0.0002) 3.77E-186 

COL18A1 Endostatin -0.0921 -0.033 (0.0051) 1.07E-10 -0.5416 -0.0096 (0.0003) 3.16E-220 -0.5732 -0.0089 (0.0002) 1.16E-256 

EFNA4 Ephrin-A4 -0.0904 -0.033 (0.0051) 1.16E-10 -0.5355 -0.0097 (0.0003) 8.30E-225 -0.5568 -0.009 (0.0002) 2.98E-262 

TNFRSF1B 

Tumor necrosis factor receptor 

superfamily member 1B 
-0.0864 -0.0464 (0.0072) 1.71E-10 -0.5315 -0.0135 (0.0004) 2.83E-216 -0.6549 -0.0149 (0.0003) 0.00E+00 

WFDC1 
WAP four-disulfide core 

domain protein 1 

-0.0947 -0.0421 (0.0066) 1.81E-10 -0.5379 -0.0123 (0.0004) 1.08E-216 -0.5405 -0.0108 (0.0003) 3.02E-224 

UNC5B Netrin receptor UNC5B -0.0855 -0.0352 (0.0055) 2.30E-10 -0.5099 -0.0097 (0.0003) 1.73E-187 -0.5222 -0.0087 (0.0003) 1.15E-205 

RETN Resistin -0.094 -0.0449 (0.0071) 2.36E-10 -0.3516 -0.0084 (0.0004) 2.02E-82 -0.3901 -0.0085 (0.0004) 1.30E-112 

TNFRSF21 

Tumor necrosis factor receptor 

superfamily member 21 
-0.0856 -0.028 (0.0044) 2.57E-10 -0.4081 -0.0063 (0.0003) 3.85E-120 -0.419 -0.0057 (0.0002) 5.35E-134 

MYOC Myocilin -0.0957 -0.0406 (0.0064) 3.24E-10 -0.4303 -0.0103 (0.0004) 4.10E-155 -0.3091 -0.0066 (0.0003) 1.50E-80 
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CFD Complement factor D -0.08 -0.0293 (0.0046) 3.47E-10 -0.4101 -0.0066 (0.0003) 2.02E-118 -0.4065 -0.0059 (0.0002) 1.72E-124 

PTGDS Prostaglandin-H2 D-isomerase -0.0898 -0.0407 (0.0065) 4.88E-10 -0.5897 -0.0134 (0.0003) 3.74E-273 -0.5922 -0.0119 (0.0003) 1.74E-285 

CD300C CMRF35-like molecule 6 -0.0945 -0.0392 (0.0063) 5.02E-10 -0.3838 -0.0083 (0.0004) 7.48E-103 -0.4669 -0.009 (0.0003) 6.25E-167 

FABP4 

Fatty acid-binding protein, 

adipocyte 
-0.0807 -0.0524 (0.0084) 6.21E-10 -0.4937 -0.0156 (0.0005) 9.64E-212 -0.5664 -0.0156 (0.0004) 5.28E-296 

TNFRSF19 
Tumor necrosis factor receptor 

superfamily member 19 

-0.0898 -0.0458 (0.0074) 7.25E-10 -0.4861 -0.0126 (0.0004) 4.04E-175 -0.4458 -0.0101 (0.0004) 3.27E-147 

ESAM 

Endothelial cell-selective 

adhesion molecule 

-0.0956 -0.0296 (0.0048) 8.90E-10 -0.4823 -0.0082 (0.0003) 7.00E-178 -0.4412 -0.0065 (0.0002) 1.19E-147 

UNC5C Netrin receptor UNC5C -0.0802 -0.0343 (0.0056) 1.04E-09 -0.3872 -0.0073 (0.0003) 2.58E-100 -0.4023 -0.0068 (0.0003) 1.00E-114 

SEMG2 Protein delta homolog 1 -0.0939 -0.0594 (0.0097) 1.04E-09 -0.3515 -0.0122 (0.0006) 7.05E-92 -0.2881 -0.0087 (0.0005) 2.54E-61 

DLK1 Protein delta homolog 1 -0.0929 -0.0579 (0.0096) 1.91E-09 -0.3443 -0.0118 (0.0006) 7.20E-88 -0.2819 -0.0084 (0.0005) 1.20E-58 

TREM1 

Triggering receptor expressed 

on myeloid cells 1 
-0.0869 -0.0421 (0.007) 2.09E-09 -0.4217 -0.0097 (0.0004) 4.48E-113 -0.468 -0.0098 (0.0003) 1.03E-155 

DCLK1 

Serine/threonine-protein kinase 

DCLK1 

-0.0877 -0.0405 (0.0068) 2.35E-09 -0.4399 -0.0106 (0.0004) 1.78E-148 -0.4479 -0.0096 (0.0003) 6.01E-163 

GAS1 Growth arrest-specific protein 1 -0.0863 -0.0317 (0.0053) 2.63E-09 -0.4827 -0.0087 (0.0003) 1.22E-160 -0.4712 -0.0074 (0.0003) 1.02E-153 

JAM2 Junctional adhesion molecule B -0.0984 -0.0236 (0.004) 2.91E-09 -0.4757 -0.0068 (0.0002) 4.07E-180 -0.455 -0.0056 (0.0002) 1.03E-160 

EPHB6 Ephrin type-B receptor 6 -0.0811 -0.0272 (0.0046) 2.95E-09 -0.5061 -0.0079 (0.0003) 4.87E-185 -0.4816 -0.0065 (0.0002) 2.32E-162 

MXRA7 

Matrix-remodeling-associated 

protein 7 
-0.0794 -0.0377 (0.0065) 7.36E-09 -0.5043 -0.0114 (0.0004) 1.20E-188 -0.4854 -0.0096 (0.0003) 1.52E-177 

PPIC 
Peptidyl-prolyl cis-trans 

isomerase C 

-0.0794 -0.0344 (0.0059) 8.20E-09 -0.4335 -0.0093 (0.0003) 1.57E-147 -0.4598 -0.0089 (0.0003) 1.81E-182 

MANSC1 

MANSC domain-containing 

protein 1 

-0.0796 -0.0312 (0.0054) 8.40E-09 -0.3686 -0.0067 (0.0003) 3.27E-89 -0.3798 -0.0062 (0.0003) 7.80E-103 
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CCL14 C-C motif chemokine 14 -0.0881 -0.0531 (0.0092) 8.74E-09 -0.4783 -0.0153 (0.0005) 7.84E-168 -0.555 -0.0159 (0.0004) 3.89E-251 

DNAJB12 

DnaJ homolog subfamily B 

member 12 

-0.0882 -0.0389 (0.0068) 1.07E-08 -0.5364 -0.0128 (0.0004) 5.81E-224 -0.5541 -0.0117 (0.0003) 1.16E-252 

EFNA2 Ephrin-A2 -0.0772 -0.0278 (0.0049) 1.69E-08 -0.5312 -0.0091 (0.0003) 1.35E-216 -0.5529 -0.0084 (0.0002) 3.15E-251 

CRABP2 

Cellular retinoic acid-binding 

protein 2 

-0.081 -0.0414 (0.0074) 2.21E-08 -0.4069 -0.0112 (0.0004) 8.88E-138 -0.4583 -0.0114 (0.0004) 1.33E-193 

HSPB6 Heat shock protein beta-6 -0.0692 -0.041 (0.0073) 2.35E-08 -0.5076 -0.0128 (0.0004) 6.51E-186 -0.4937 -0.0109 (0.0004) 2.83E-180 

VASN Vasorin -0.0888 -0.0205 (0.0037) 2.45E-08 -0.3395 -0.0046 (0.0002) 2.03E-92 -0.3392 -0.0041 (0.0002) 3.50E-98 

B4GALT1 Beta-1,4-galactosyltransferase 1 -0.0729 -0.0214 (0.0038) 2.73E-08 -0.4407 -0.0058 (0.0002) 8.02E-138 -0.4314 -0.0051 (0.0002) 9.76E-140 

GABARAP 

Gamma-aminobutyric acid 

receptor-associated protein 
-0.0947 -0.0244 (0.0044) 2.98E-08 -0.4869 -0.0075 (0.0002) 1.44E-177 -0.6207 -0.0083 (0.0002) 4.98E-315 

IL15RA 
Interleukin-15 receptor subunit 

alpha 

-0.073 -0.0383 (0.0069) 3.51E-08 -0.4396 -0.0102 (0.0004) 2.04E-129 -0.52 -0.011 (0.0003) 3.42E-207 

EPHB4 Ephrin type-B receptor 4 -0.072 -0.0302 (0.0055) 4.62E-08 -0.4415 -0.0084 (0.0003) 4.51E-140 -0.4348 -0.0074 (0.0003) 1.18E-144 

UNC5B Netrin receptor UNC5B -0.0794 -0.0301 (0.0056) 7.48E-08 -0.4751 -0.0091 (0.0003) 3.90E-159 -0.5033 -0.0085 (0.0003) 5.09E-189 

AMBP Alpha-1-microglobulin -0.084 -0.0224 (0.0042) 7.86E-08 -0.4258 -0.0063 (0.0002) 3.53E-136 -0.4805 -0.0063 (0.0002) 1.43E-189 

TAGLN Transgelin -0.0633 -0.0354 (0.0066) 7.98E-08 -0.5736 -0.0126 (0.0004) 2.15E-230 -0.5601 -0.0105 (0.0003) 3.27E-210 

AIF1L 

Allograft inflammatory factor 1-

like 

-0.0669 -0.0273 (0.0051) 8.28E-08 -0.4596 -0.0078 (0.0003) 1.84E-142 -0.4507 -0.0068 (0.0003) 2.82E-140 

XXYLT1 Xyloside xylosyltransferase 1 -0.0748 -0.0267 (0.005) 8.78E-08 -0.341 -0.0058 (0.0003) 8.09E-78 -0.3364 -0.0051 (0.0003) 2.00E-79 

SERPINF1 

Pigment epithelium-derived 

factor 

-0.0695 -0.0176 (0.0033) 1.36E-07 -0.3319 -0.0043 (0.0002) 3.14E-95 -0.3629 -0.0042 (0.0002) 2.14E-126 

MAP2K2 

Dual specificity mitogen-

activated protein kinase kinase 2 
-0.084 -0.0445 (0.0084) 1.41E-07 -0.3862 -0.0117 (0.0005) 5.85E-113 -0.3532 -0.0089 (0.0004) 9.25E-87 

CAPG Macrophage-capping protein -0.0774 -0.0452 (0.0086) 1.46E-07 -0.4178 -0.0114 (0.0005) 2.10E-103 -0.4728 -0.0113 (0.0004) 3.13E-137 
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EPHA1 Ephrin type-A receptor 1 -0.0728 -0.0445 (0.0085) 1.99E-07 -0.283 -0.0088 (0.0005) 5.36E-61 -0.3036 -0.0085 (0.0004) 1.19E-75 

IGFLR1 IGF-like family receptor 1 -0.0722 -0.0455 (0.0088) 2.44E-07 -0.4744 -0.0143 (0.0005) 5.14E-160 -0.5687 -0.0153 (0.0004) 9.54E-259 

EFEMP1 
EGF-containing fibulin-like 

extracellular matrix protein 1 

-0.0712 -0.0243 (0.0047) 2.53E-07 -0.4354 -0.0063 (0.0003) 2.16E-106 -0.5645 -0.0075 (0.0002) 6.01E-209 

DLK2 Protein delta homolog 2 -0.0682 -0.0356 (0.0069) 2.69E-07 -0.4989 -0.012 (0.0004) 9.44E-185 -0.4489 -0.0094 (0.0003) 1.84E-148 

IGFBP4 
Insulin-like growth factor-

binding protein 4 

-0.0735 -0.0249 (0.0049) 3.33E-07 -0.3655 -0.0066 (0.0003) 3.38E-109 -0.4215 -0.0067 (0.0002) 1.18E-151 

VIT Vitrin -0.0664 -0.0302 (0.0059) 3.91E-07 -0.3833 -0.008 (0.0004) 2.63E-105 -0.3584 -0.0067 (0.0003) 1.30E-98 

PENK Proenkephalin-A -0.0753 -0.0432 (0.0085) 4.12E-07 -0.3396 -0.0091 (0.0005) 1.13E-66 -0.3779 -0.0089 (0.0004) 5.96E-85 

LRP10 

Low-density lipoprotein 

receptor-related protein 10 
-0.0682 -0.0225 (0.0045) 4.76E-07 -0.4505 -0.0069 (0.0003) 5.60E-142 -0.429 -0.0058 (0.0002) 1.05E-133 

CD93 
Complement component C1q 

receptor 

-0.0684 -0.0236 (0.0047) 5.91E-07 -0.2957 -0.0051 (0.0003) 4.17E-67 -0.2939 -0.0047 (0.0002) 8.05E-76 

IL18BP Interleukin-18-binding protein -0.0645 -0.029 (0.0058) 6.38E-07 -0.3747 -0.0072 (0.0003) 1.79E-88 -0.4523 -0.008 (0.0003) 6.75E-150 

NPDC1 

Neural proliferation 

differentiation and control 

protein 1 

-0.0654 -0.0295 (0.0059) 6.87E-07 -0.4681 -0.0097 (0.0003) 1.42E-162 -0.4648 -0.0083 (0.0003) 1.17E-158 

WFDC2 

WAP four-disulfide core 

domain protein 2 

-0.0572 -0.0349 (0.007) 7.11E-07 -0.5846 -0.0141 (0.0004) 1.56E-260 -0.6098 -0.0131 (0.0003) 2.05E-304 

VWC2 Brorin -0.0691 -0.027 (0.0055) 8.57E-07 -0.4736 -0.0088 (0.0003) 1.70E-157 -0.4511 -0.0072 (0.0003) 3.25E-139 

RARRES2 

Retinoic acid receptor responder 

protein 2 

-0.0704 -0.0284 (0.0058) 9.13E-07 -0.4542 -0.0096 (0.0003) 3.38E-167 -0.5357 -0.01 (0.0003) 4.81E-252 

RNASE6 Ribonuclease K6 -0.0647 -0.0459 (0.0093) 9.40E-07 -0.4655 -0.0148 (0.0005) 4.54E-152 -0.5481 -0.0156 (0.0004) 2.94E-236 

PI3 Elafin -0.0566 -0.0496 (0.0102) 1.17E-06 -0.4154 -0.0155 (0.0006) 1.64E-138 -0.4343 -0.0148 (0.0005) 5.46E-171 
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CALCOCO2 

Calcium-binding and coiled-coil 

domain-containing protein 2 
-0.069 -0.0224 (0.0046) 1.28E-06 -0.3562 -0.006 (0.0003) 4.21E-98 -0.314 -0.0047 (0.0002) 2.57E-80 

SPINK7 
Serine protease inhibitor Kazal-

type 7 

-0.0628 -0.0351 (0.0072) 1.29E-06 -0.4028 -0.0105 (0.0004) 4.92E-125 -0.2811 -0.0064 (0.0004) 1.35E-60 

MIA 

Melanoma-derived growth 

regulatory protein 

-0.0641 -0.0246 (0.0052) 2.28E-06 -0.2978 -0.0054 (0.0003) 1.65E-61 -0.1855 -0.0029 (0.0003) 2.70E-24 

ASGR1 Asialoglycoprotein receptor 1 -0.0629 -0.0284 (0.0061) 2.79E-06 -0.4406 -0.0099 (0.0003) 1.62E-160 -0.4976 -0.01 (0.0003) 2.31E-227 

CLMP CXADR-like membrane protein -0.0587 -0.034 (0.0073) 2.80E-06 -0.4428 -0.0116 (0.0004) 1.82E-155 -0.4516 -0.0104 (0.0004) 1.13E-165 

CPLX2 Complexin-2 -0.0687 -0.0356 (0.0076) 3.05E-06 -0.511 -0.0135 (0.0004) 1.62E-192 -0.4491 -0.0096 (0.0004) 4.77E-125 

ATOX1 

Copper transport protein 

ATOX1 
-0.0954 -0.0389 (0.0083) 3.15E-06 -0.3392 -0.0104 (0.0005) 2.25E-91 -0.4176 -0.0106 (0.0004) 2.52E-128 

FABP3 Fatty acid-binding protein, heart -0.0529 -0.0435 (0.0094) 3.93E-06 -0.4051 -0.0157 (0.0005) 1.78E-170 -0.4974 -0.0166 (0.0004) 2.90E-268 

SMOC1 

SPARC-related modular 

calcium-binding protein 1 
-0.0671 -0.0238 (0.0052) 4.60E-06 -0.4404 -0.0074 (0.0003) 2.96E-120 -0.4244 -0.0061 (0.0003) 1.95E-109 

TMPO 

Lamina-associated polypeptide 

2, isoforms beta/gamma 

-0.0768 -0.039 (0.0085) 5.20E-06 -0.3591 -0.0108 (0.0005) 4.41E-94 -0.4851 -0.0127 (0.0004) 5.88E-179 

DDOST 

Dolichyl-

diphosphooligosaccharide--

protein glycosyltransferase 48 

kDa subunit 

-0.0691 -0.025 (0.0055) 5.34E-06 -0.383 -0.0072 (0.0003) 5.18E-102 -0.3842 -0.0064 (0.0003) 1.92E-106 

CST2 Cystatin-SA -0.0666 -0.0537 (0.0119) 6.29E-06 -0.2963 -0.0122 (0.0007) 8.93E-61 -0.1812 -0.0062 (0.0006) 1.24E-21 

NRXN3 Neurexin-3-beta -0.0649 -0.0265 (0.0059) 6.71E-06 -0.3296 -0.0064 (0.0004) 2.00E-69 -0.277 -0.0045 (0.0003) 8.94E-46 

SMOC2 

SPARC-related modular 

calcium-binding protein 2 
-0.0568 -0.0272 (0.0061) 7.97E-06 -0.4313 -0.0088 (0.0004) 9.48E-126 -0.3614 -0.0063 (0.0003) 3.47E-82 

NEGR1 Neuronal growth regulator 1 -0.0533 -0.0172 (0.0039) 8.57E-06 -0.2982 -0.0038 (0.0002) 3.86E-56 -0.1808 -0.0018 (0.0002) 1.09E-17 
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Negative significant correlations, medianf -0.0855 -0.4668 -0.4697 

a  Proteins were identified through linear regression of LDPred PRS for kidney function on 4,877 proteins measured at visit 3 and visit 

5 with adjusting for age at the corresponded visits, sex, center, and first 10 genetic principal components. A total of 108 proteins were 

significantly associated with LDPred PRS at both visit 3 and visit 5. The threshold of significance was Bonferroni corrected: p = 1.02 

× 10-2. Visit 3 was conducted during 1993-1995 when the mean age of study population was 60.4 years and visit 5 was conducted 

during 2011-2013 when the mean age of study population was 75.9 years.  

b LDPred PRS was constructed using LDPred algorithm, a Bayesian approach utilizes GWAS summary statistics to compute the 

posterior mean effect sizes for the genetic variants by assuming a prior of the joint effect sizes and incorporating the LD structure of 

the reference population. 

c Linear regression of LDPred PRS, eGFRcr measured at visit 3, and eGFRcys measured at visit 3 on proteins measured at visit 3, with 

adjusting for age at visit 3, sex, center, and first 10 genetic principal components.  

d Linear regression of LDPred PRS, eGFRcr measured at visit 5, and eGFRcys measured at visit 5 on proteins measured at visit 5, with 

adjusting for age at visit 5, sex, center, and first 10 genetic principal components.  

e P values of Wilcoxon signed rank test for the comparison between correlations of proteins with LDPred PRS and with eGFR were 

2.58E-19 for eGFRcr and 1.15E-18 for eGFRcys at visit 3, and were 3.90E-19 for eGFRcr and 6.99E-19 for eGFRcys at visit 5. 

f P values of Wilcoxon signed rank test for the comparison between visit 3 and visit 5 correlations of proteins with LDPred PRS was 

1.03E-13, and that of proteins with eGFR were 8.71E-19 for eGFRcr and 2.13E-18 for eGFRcys.              
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eGFRcr: estimated glomerular filtration rate based on creatinine; eGFRcys: estimated glomerular filtration rate based on cystatin C; 

PRS: polygenic risk score 
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Chapter 6 Conclusions 

As a summary, in Chapter 2 and 3, we examined the associations between potential risk factors, 

hypertension and obesity, and kidney function trajectory, CKD, and ESKD using longitudinal 

analysis. We observed that individuals with hypertension had significantly greater decline in 

kidney function than those without hypertension, and the average 30-year predicted probabilities 

of developing CKD at all stages was higher among those with hypertension.205 We also found 

that obesity status was a risk factor for future decline in kidney function and development of 

ESKD in black and white women with less consistent associations among men. In Chapter 4, we 

dig deeper into the causation between hypertension and kidney function. Not only did we 

demonstrate strong causal effects of lower kidney function on higher blood pressure, we  also 

learned how Mendelian randomization (MR) can be altered when biomarkers are not perfect 

measurements of underlying biology and may contain genetic influences of the marker itself 

(e.g., creatinine) separate from the underlying physiology (e.g. reduced kidney function).206 

Interestingly, using multiple markers allowed us to triangulate on the subset of genes that are 

likely to reflect kidney function susceptibility. In Chapter 5, by incorporating variants across the 

genome, we demonstrated the link between genetic basis of kidney function measured as a PRS 

and a spectrum of incident kidney diseases, which is undetected by previous studies. Protein 

associations were stronger with eGFR than its PRS consistent with many protein elevations 

being secondary to the reduced kidney function. In sum, with using multiple types of data and 

methods, this doctoral thesis examined multiple aspects of kidney function for better 

understanding kidney function. It can provide scientific evidence from multiple facets - 
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association, to causation, to prediction - for guiding effective and efficient prevention strategies 

of CKD.  

 

The implications of this doctoral thesis can also expand to public health and epidemiology in 

general. We build a three-step strategy for studying an outcome of interest, with each step 

leveraging the strengths of certain epidemiological methods. Starting with association, we 

benefited the solid methods and interpretations, as well as large amount of data of the classical 

risk factor analyses. With which, we were able to identify a target that worth further 

investigation. At the second step, causation, we went further and used causal inference and 

resources on genetics to evaluate the causal directions of risk factors and disease. At the last step, 

prediction, we utilized knowledge and methods from genetic and molecular epidemiology to 

conduct robust risk stratification and evaluate how physiological environment influence that risk 

stratification. Together, we were able to establish a comprehensive view of the outcome of 

interests, kidney function.  

 

Future directions of this work could focus on extending the trajectory work to span the full range 

of ages from childhood to adolescence, young adulthood, and then midlife and older age. It is 

unclear how strongly abnormalities at older age such as more rapid kidney function decline and 

proteinuria are heralded by changes early in life. Blood pressure and body mass index increases 

can start at very early ages, and it may be that early prevention would result in gains through the 

entire lifespan. Integration of time-dependent covariates when lag times and reverse causality 

exists is a challenge that requires attention.  The research can also be expanded to other CKD 

risk factors, including socioeconomic status. Likewise, the work can examine pathways by which 
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risk factors likely have their effect. For example, socioeconomic disparities likely contribute to 

hypertension, obesity, hyperglycemia, diabetes and poorer control.  Understanding these 

pathways and proposing strategies for reducing risk and eliminating disparities is important. 

 

With the emergence of mega cohorts, such as the UK Biobank (UKB) and the Million Veteran 

Program (MVP), and the rapid growth of global-wide consortiums, such as the Cohorts for Heart 

and Aging Research in Genomic Epidemiology (CHARGE) Consortium and the Population 

Architecture Using Genomics and Epidemiology (PAGE), the power for detecting loci 

conferring small changes in disease risk has been greatly increased. MR and PRS, methods that 

aggregate genetic influences of many common genetic variants, will be more and more important 

in the causal inference and risk prediction of common complex diseases, including kidney 

diseases. We do want to point out that both our MR and PRS studies were conducted among 

individuals of European ancestry, the group in which most genetic studies have been undertaken 

to date. Because allele frequencies, linkage disequilibrium patterns, and effect sizes of common 

polymorphisms vary with ancestry, our findings in these two studies cannot be generalized to 

other ethnic groups. We would like to emphasize the need to assemble diverse cohorts for 

genetic discovery. And we are very glad to see that growing number of cohorts and consortiums, 

such as the MVP and the PAGE Consortium, are moving towards that direction. In addition to 

greater generalizability, studying a diverse range of populations allows for a better understanding 

of shared causal mechanisms. For example, linkage disequilibrium can inform identification of 

potentially causal variants to study in vitro and in animal systems with the goal of improved 

design for therapeutic agents. Addressing causation will also benefit from a synthesis of data 

across different study designs. Epidemiology focuses on human studies and its observations can 
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be tested and illuminated by animal and in vitro experimental studies. Once an firm 

understanding of a potential treatment for reducing risk is in place and adequate safety data is 

collected, human experimental studies are a useful final step for testing strategies to reduce the 

risk of CKD and its progression. 

 

Driven by technological advances, larger amount of omics data on more layers at more time 

points has been generated, which poses opportunities for better understanding the biology of 

kidney function and challenges for their integration. Machine learning approaches to mining 

multi-omics data hold great promises in overcoming the challenges in integrating heterogenous 

and temporal data. Complex models which integrate multi-omics data from genetics to 

epigenetics, expression, proteomics, physiologic and eventually disease risk can be assembled 

from datasets such as the ones we have studied. Such models will yield insights into biology and 

the design of therapeutics. However, it is still uncertain how much risk is predictable vs. 

unpredictable due to chaos theory’s implications for large biological systems; there are limits to 

prediction, even if we know all components of a system and its operating rules. At present, I am 

working on applying a novel continuous-time, random forest method for survival analysis, RF-

SLAM, to predict sudden cardiac death using the longitudinal data in ARIC. Time dependent 

modeling holds promise for improving our understanding of the dynamics of disease. Genetics 

are powerful time invariant elements of biology but their expression over time is both fascinating 

and complex. I plan to extend the application of this method and other machine learning 

approaches to integrate multiple omics as well as environmental factors such as lifestyle and 

clinical covariates for better studying kidney function and diseases. Overall, we must combine 

improved understanding of biology to advance therapeutics, treatment and prevention, 
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combining new tools with proven strategies for vascular disease prevention such as eating a 

healthy diet, exercising, avoiding smoking and excess weight which are powerful drivers of our 

complex biology and vascular disease risk. 
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(ARIC) Study. In preparation. 

 

PRESENTATIONS 

American Society of Human Genetics (ASHG) Annual Meeting, Houston, US          Oct 2019 

Kidney function and blood pressure: A Mendelian randomization study. Poster. 

Society for Epidemiologic Research (SER) Annual Meeting, Baltimore, US           Jun 2018 

Association between midlife obesity and kidney function trajectories: the Atherosclerosis 

Risk in Communities Study. Poster. 

American College of Rheumatology (ACR) Annual Meeting, Washington, US        Nov 2016 
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Association between inflammation and systolic blood pressure at normal and elevated C-

reactive protein levels. Poster. 

Boston Nutrition Obesity Research Center Annual Symposium, Boston, US            Aug 2015 

Association between nut consumption and inflammatory biomarkers. Poster. 

 

AD HOC PEER REVIEW ACTIVITIES 

Arthritis Research and Therapy           2019 & 2020 

Clinical Journal of the American Society of Nephrology (CJASN)         2020 

British Medical Journal (BMJ)                        2020 

British Journal of Nutrition (BJN)                                              2020 

Journal of Clinical Densitometry                                             2020 

Diabetes Care            2018 & 2019 

Journal of the American Heart Association (JAHA)        2017 & 2019 

Public Health Nutrition              2019 

Heliyon                2019 

BMJ Open               2018 

Journal of Hospital Medicine             2018 

Blood Purification                                    2018 

BioMed Central (BMC) Nutrition             2015 

 

REVIEW SERVICES 

Atherosclerosis Risk in Communities Study (ARIC) Publications Committee             2019 - 2020 

Society for Epidemiologic Research (SER) Abstract Review                                                   2020 
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SELECTED HONORS AND AWARDS 

Delta Omega Scholarship, Johns Hopkins Bloomberg School of Public Health       2020 

Travel Award, Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium 

2019 

Comstock Training Fund, Johns Hopkins Bloomberg School of Public Health       2019 

Ellen B. Gold Fund for Epidemiology, Johns Hopkins Bloomberg School of Public Health   2019 

President Honor Roll, Hong Kong Baptist University         2008 - 2013 

Lee Koon Shin Scholarship                      2010 & 2013 

First Class Honors, Hong Kong Baptist University           2013 

Scholastic Award (highest academic standing), Hong Kong Baptist University       2013 

Chiu Chow Chamber of Commerce Limited Scholarship, Hong Kong Baptist University      2013 

C.V. Starr Scholarship Fund, Starr Foundation                      2012 

School of Chinese Medicine Scholarship, Hong Kong Baptist University        2012 

Hong Kong Association of University Women (HKAUM) Scholarship, HKAUM        2011 

Scholarship for Excellent Mainland Student (full scholarship), Hong Kong Baptist University 

2008 

 

TEACHING EXPERIENCES 

Teaching Assistant at Johns Hopkins Bloomberg School of Public Health: 

Statistical Methods in Public Health III    Epidemiologic Methods II 

Epidemiology of Diabetes and Obesity    Principles of Epidemiology 

Epidemiology in Evidence-Based Policy    Analysis of Longitudinal Data 
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Data Analysis Workshop I      Data Analysis Workshop II 

 

SKILLS 

Computer: R, Python, SAS, Unix, plink, git, Latex 

Experiment: Western blotting, cell culture 


