
 
 

 

 

 

 

SPECTRAL INTEGRATION AND NEURAL REPRESENTATION OF HARMONIC 

COMPLEX TONES IN PRIMATE AUDITORY CORTEX 

 

 

 

By 

Lei Feng 

 

 

 

 

A dissertation submitted to the Johns Hopkins University in conformity with the 
requirements for the degree of Doctor of Philosophy 

 

Baltimore, Maryland 

November 2013 

 

 

 

 

 

© 2013 Lei Feng 
All Rights Reserved 

  



ii 
 

Abstract 

 

Many natural and man-made sounds, such as animal vocalizations, human speech, and 

sounds from many musical instruments contain rich harmonic structures. Although the peripheral 

auditory system decomposes these sounds into separate frequency channels, harmonically related 

frequency components must be grouped together in order to form a single auditory percept. A 

central neural process is therefore required to accomplish this perceptual grouping and to 

integrate information across frequency channels in order to compute spectral properties, such as 

pitch and timber, which are not explicitly encoded in the auditory periphery. In this dissertation, I 

investigated whether there are representations of harmonic structures at the single neuron level in 

auditory cortex beyond pitch and how harmonic sounds are represented by populations of cortical 

neurons. I systematically tested single neurons in the primary auditory cortex (A1) of awake 

marmoset monkeys with harmonic and inharmonic complex tones, varying fundamental 

frequency (f0) and harmonic composition. I found harmonic template neurons, which were 

strongly driven by harmonic complex tones but showed weak or no response to single harmonics. 

Harmonic template neurons were selective to f0s and sensitive to harmonic numbers. They also 

exhibited a reduced firing rate in response to inharmonic complex tones. Other sound features of 

a harmonic complex tone, such as overall sound level, resolved individual harmonic partials, and 

temporal envelope were represented by different subpopulations of neurons in A1. Overall, the 

findings of this dissertation support the existence of a distributed neural code for harmonic 

complex tones in A1 which represents an important stage in the auditory pathway for robust 

feature extraction and sound source recognition.  

In the study of spectral integration and neural coding of complex tones, searching for 

preferred stimuli of cortical neurons has also proven challenging because of the high 

dimensionality of the acoustic space of possible stimuli and limited recording time. In the last part 

of this dissertation, I presented an online adaptive stimulus design approach based on a neural 
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network model for studying spectral integration in auditory cortex. The models estimated online 

helped to build a connection between receptive field structures and diverse spectral selectivity of 

cortical neurons.  
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CHAPTER 1:  

1. Introduction 
 

 

 

Our ability to quickly and accurately identify different sound sources in the environment 

relies on the analysis of the acoustic information arriving at both ears by our auditory system 

(Bregman 1990). We can easily distinguish different speakers who talk at the same time at a 

cocktail party, or identify different musical instruments in an orchestra.  For animals, such ability 

is crucial for survival as it is important for detecting predators, hunting and localizing food. Many 

species rely on species-specific vocalizations to maintain the social group coherence, or to find 

mates for reproduction (Feng and Narins 2008, Shen, Feng et al. 2008). It is therefore crucial for 

the auditory system to analyze sounds related to communication. 

 

1.1 Harmonic sounds, perception and auditory system 

Many natural and man-made sounds, such as animal vocalizations, speech and sound 

played from most musical instruments are broadband with energy distributed across multiple 

frequencies which are integer multiples of the same fundamental frequency (f0). Although the 

peripheral auditory system decomposes these sounds into separate frequency channels, 

harmonically related frequencies are tended to be grouped together to form a single precept 

(Bregman 1990, Darwin and Carlyon 1995). A central neural process is required to assemble 

information from those different channels to create a coherent representation of the sound. In 
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addition, the spectral properties need to be transformed into perceptual attributes, such as pitch 

and timber, which define and distinguish different sound sources.  

Pitch allows sounds to be ordered on a scale extending from low to high. For a harmonic 

complex tone (HCT), the elements of which are integer multiples of a fundamental frequency (f0), 

the pitch is perceived at f0 even the f0 itself is missing (missing fundamental harmonic complex 

tone, MFs) (Schouten 1938).  Harmonic complex tones of the same f0 but different spectrums 

differ in other sound qualities, such as timbre, which can be used to distinguish different musical 

instruments playing the same note. The fusion of harmonics and perception of f0 has also been 

shown on different animal models (Heffner and Whitfield 1976, Cynx and Shapiro 1986, 

Tomlinson and Schwarz 1988, Walker, Schnupp et al. 2009, Osmanski, Song et al. 2013).  

It has been shown in previous studies that the auditory system has evolved to adapt to the 

statistics of the acoustic environment, adjusting to fulfill functional requirements. The mustached 

bat is a good example of such adaptation. The auditory cortex of mustached bats is divided into 

different functional regions for measuring the properties of echoes from emitted biosonar signals 

to navigate and locate prey in dark. In one of the regions, neurons only respond to tone pairs with 

specific frequency combinations corresponding to the range of encountered Doppler shifts (Suga, 

O'Neill et al. 1979). Another example is the barn owl, which has been a good model for studying 

sound localization. The neurons in the mid-brain auditory nucleus were found arranged 

systematically to create a physiological map of auditory space (Knudsen and Konishi 1978).  

Therefore, it’s of great importance to determine whether the auditory system has 

specialized structures to encode spectral and temporal features of harmonic sounds and how the 

physical attributes (frequency and level) are transformed into the perception that we experience.  
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1.2 Information transformation in the sensory system 

The hierarchical processing network is common in all sensory systems. In visual system, 

the representation of objects starts from focal points of light in the visual peripheral (Adrian and 

Matthews 1927, Adrian and Matthews 1927), to line orientations in primary visual cortex (V1), 

then curvatures in V4 and finally the multipart shape configuration in inferotemporal cortex (IT) 

(Hubel 1968, Baker, Behrmann et al. 2002, Pasupathy and Connor 2002, Brincat and Connor 

2004).  

Similar to visual system, auditory system also consists of a hierarchy of processing stages 

which transform physical features of acoustical signals into perceptual attributes related to 

behavior context. If we use a harmonic complex tone as an example, different frequencies within 

this tone stimulate different regions of the cochlear: low harmonics near the apex of the cochlear 

while the high harmonics near the base. This stage of analysis can be approximated as a 

frequency analyzer with a serial of topographically band-pass filters centered at different 

characteristic frequencies (CFs). When the harmonic number is small, each component falls into a 

separate filter (resolved) and the filtered waveform is similar to single pure tone at the same 

frequency. The spectrum could be encoded by the spatial activation pattern of all frequency 

channels and the preserved temporal information (Cedolin and Delgutte 2005). Because the 

auditory filters become broader at high frequency, higher harmonics can fall into the same filter 

(unresolved). The interaction of frequencies generates complex waveform. For example, the 

output signal will have an envelope modulation at f0 if all harmonics start from the same phase.   

The spectral information and temporal information of the harmonic complex tone are 

transmitted to the auditory midbrain via auditory nerve fibers (ANs). The frequency-to-place 

representation in cochlear can be preserved in a rate-place manner by the tonotopic organization 

maintained throughout the auditory pathway. The temporal information is coded in the temporal 

firing pattern (phase-locking). Although such representations provide enough information of 
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acoustic properties of the harmonic complex tone, the central auditory system must integrate 

information across different frequency channel and represent the global properties, such as which 

spectral components are from the same complex tone but not from other presented sounds, and 

also the pitch and the timber of the tone giving the detected spectrum. 

Auditory cortex is essential for such computations. Lesion in auditory cortex results in 

deficits in speech perception, judgments about shift in pitch of missing fundamental sounds, pitch 

discrimination tasks and vowel identification (Whitfield 1980, Coslett, Brashear et al. 1984, 

Heffner 1986b, Kudoh, Nakayama et al. 2006). From A1 and beyond, neurons are more selective 

to combination of features. Harmonic sensitive neurons were found in auditory cortex of 

mustache bats which showed facilitation when the first harmonic was simultaneously delivered 

with one or more higher harmonics (Suga, O'Neill et al. 1979). Neurons in belt auditory cortex 

are found driven by narrow-band noise or conspecific vocalizations (Rauschecker, Tian et al. 

1995, Recanzone 2008). A putative pitch region was found near the anterolateral boarder of 

primary auditory cortex on marmoset monkeys, where pitch-selective neurons were identified 

(Bendor and Wang 2005, Bendor, Osmanski et al. 2012). Such findings provide evidence that 

higher order features have been extracted from the rate-place and phase-locking representations at 

cortical level, although it’s still largely unknown where and how exactly such computation 

happens. 

A1 becomes a good candidate, because the extraction of features, like pitch, requires 

integrating information across different frequency channels. The increased complexity in local 

neural network connections in A1 enables single neurons to integrate excitatory and inhibitory 

inputs from a broader frequency range. Multi-peaked neurons in A1 have been reported from 

studies on different species (Sutter and Schreiner 1991, Kadia and Wang 2003, Qin, Sakai et al. 

2005) with separated excitatory peaks at harmonically related frequencies. It also has been shown 

that stimuli outside the classical frequency receptive field could modulate a neuron’s responses to 
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simple or complex stimuli within the receptive field (Shamma and Symmes 1985, Nelken, Prut et 

al. 1994, Kadia and Wang 2003, Sutter and Loftus 2003, Qin, Sakai et al. 2005, Sadagopan and 

Wang 2010). Therefore, it’s very important to study how single neurons in A1 represent harmonic 

complex tones, which could help reveal the neural mechanisms underlying pitch perception, 

auditory grouping, and identification of ethologically relevant sounds. 

 

1.3 An overview of methods for studying frequency selectivity in auditory system 

 Frequency selectivity is a fundamental property of auditory neurons. For ANs, the 

frequency selectivity can be described by the tuning curve: the sound levels needed to produce a 

significant increase in firing rate at different frequencies. In the central nervous system, single 

tones can evoke both excitatory and inhibitory responses. The responses of a single neuron to 

different frequencies are determined by all excitatory and inhibitory inputs. The frequency 

analysis of complex sounds cannot be fully characterized by responses to pure tones, nor can be 

measured by creating a look-up table from testing all possible combinations of frequencies. 

Instead, parametric, broadband stimuli have been used to characterize neurons and a transfer 

function is used to describe the transformation of sound spectrums to neural responses.  

A widely used method in measuring frequency tuning of auditory neurons is the spectro-

temporal receptive field (STRF) characterization and weighting function models (Theunissen, 

Sen et al. 2000, Yu and Young 2000, Barbour and Wang 2003, Linden, Liu et al. 2003, Reiss, 

Bandyopadhyay et al. 2007).  Those approaches have improved our understanding of the 

frequency selectivity of auditory neurons. They have provided insights to understanding the 

mechanism underlying the functional properties. However, such approaches have limitations. 

First of all, STRFs and linear weights can only adequately characterize neurons that are 

approximately linear (Young, Yu et al. 2005, Christianson, Sahani et al. 2008). Secondly, more 
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complex models such as the quadratic models and neural network models often require large 

amount of data and computation (Yu and Young 2000, Prenger, Wu et al. 2004, Bandyopadhyay, 

Reiss et al. 2007). Third, the selectivity of cortical neurons to complex sounds requires sampling 

in a high dimensional space in order to get a good estimation of the transfer function, which is 

difficult in a limited recording time. A combination of models and efficient data-collecting 

method could potentially be a useful tool to study how cortical neurons process complex sounds. 

 

1.4 Objectives of the dissertation 

 Two main objectives guide the experiments in this dissertation: 1) to investigate the 

neural presentation of harmonic complex tones and information transformation in primary 

auditory cortex (A1); 2) to explore an online adaptive stimulus design approach based on neural 

network model for studying spectral integration in A1. There are three questions that I have 

attempted to address: 

1, Are there representations of harmonic structures at single neuron level in auditory cortex 

beyond pitch (Chapter 3)? 

The discovery of pitch neurons suggests a possible pre-processing stage in A1 for 

computing f0 from spectral information. Although neurons in A1 have been extensively studied 

by using pure tone, two-tones and multiple tones, there is little evidence of the existence of single 

neurons suitable for extracting pitch, for example, a harmonic template (Goldstein 1973).  

 

2, Are there any functional structures for harmonic processing in A1 (Chapter 4)? 

The heterogeneity within the large scale tonotopic organization in A1 suggests a parallel 

process for harmonic complex tones. However it also remains unknown how individual neurons 

encode the spectral and temporal information of harmonic complex tones differently, given the 
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different selectivity to frequency, level and modulation.  A comparison of the representation in 

A1 and the representation in subcortical region would help us understand the information 

transformation along the auditory pathway better.  

 

3, Can the optimal experimental design (OED) be applied to study on spectral integration of 

neurons in auditory cortex? (Chapter 5) 

Previous study proposed a general statistical data-collection method (optimal 

experimental design, OED): a small number of optimally designed stimuli can yield a model 

estimation as good as a large number of random independent and identically distributed (IID) 

samples (DiMattina and Zhang 2011). This method has been broadly used in machine learning, 

psychophysics studies and theoretical simulations (Watson and Pelli 1983, MacKay 1992, Lewi, 

Butera et al. 2009). Only a few studies have applied this method to actual in-vivo 

neurophysiology experiment (Tam 2012). When complex tones are used, searching for preferred 

stimuli of cortical neurons has also proven challenging because of the high dimensionality of the 

acoustic space of possible stimuli and limited recording time. In Chapter 5, I explore the 

feasibility of a new method combining neural network model and OED for studying spectral 

integration in auditory cortex.  
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CHAPTER 2:  

2. Methods and experimental design 
 

 

2.1 General experimental procedure 

All recordings were done in a double-walled soundproof chamber (Industrial Acoustics, 

Bronx, NY). Single neurons’ responses were recorded from four hemispheres of three marmoset 

monkeys (M79u, left hemisphere; M73v, both hemisphere; M6x, left hemisphere). All 

experiment procedures were approved by the Johns Hopkins University Animal Use and Care 

Committee. Details of the chronic recording preparation can be found in previous papers from our 

laboratory (Lu, Liang et al. 2001). Animals were adapted to sit quietly in a primate chair with the 

head immobilized. A Tungsten electrode (A-M System, 2-5 MΩ) was inserted into the auditory 

cortex perpendicularly to the surface through a 1 mm craniotomy on the skull. The electrode was 

manually advanced by a hydraulic microdrive (Trend Wells).  Harmonic complex tones and pure 

tones were used for searching neurons. 

Each recording session lasted 3 – 5 hours. Animals were awake but not performing any 

task during recordings. All spikes waveforms were high-pass filtered (300Hz – 3.75kHz), 

digitized and sorted in a template based online sorting software (MSD, alpha omega engineering).  
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2.2 Acoustic Stimuli 

All sound stimuli were generated digitally and delivered by a speaker 1m away from the 

front of the animal in a free field. All stimuli were sampled at 100 kHz and attenuated to a desired 

sound pressure level (RX6, PA5, Tucker-Davis Technologies).  

 

2.2.1 General acoustic stimuli 

Tones at different frequency (1-40 kHz, 10 steps per octave) were played at a moderate 

sound level (30-60dB SPL) to measure the frequency selectivity. Best frequency (BF) was 

defined as the pure-tone frequency which evoked the maximal firing rate. The threshold of a 

neuron was estimated from the rate-level function of the BF tone (-10 to 80dB SPL, in a step of 

10dB). Threshold was defined as the lowest sound level evoke response significantly different 

from spontaneous firing rate (t-test, p<0.05).  Typically, stimuli were 100 ms in duration with a 

500ms inter-stimulus interval (ISI) and 5ms onset and offset ramp. Longer durations (200ms and 

500ms) with longer ISIs (>1000ms) were used for neurons with a long response latency and long 

lasting offset firing. Every stimulus was presented at least10 repetitions in a random order. 

 

2.2.2 Harmonic complex tone and inharmonic complex tones 

Three types of tone complexes were used to study the spectral selectivity: harmonic 

complex tones (HCTs), shifted complex tones, spectrally jittered complex tones. For all complex 

tones, individual components were kept at the same sound intensity level and were usually added 

with cosine phases (COS).  Most of our complex tones were played at modest levels. The sound 

intensity per component was 10dB above the threshold of BF tone typically. If a neuron did not 

respond to pure tones at all, a 40dB SPL sound level would be used. For some neurons, HCTs 

were tested at two or three higher sound intensities. However, no sound intensity per component 



10 
 

was above 60 dB SPL considering the overall sound level. Additional test with alternating phase 

(ALT) or random phase (RND) were used on some neurons to exclude the effect of temporal cues.  

Harmonic complex tones at different fundamental frequencies (f0s) were generated but 

only harmonics within a 3 octave frequency range centered at BF were used. The preferred HCT, 

the one that evoke the maximal firing rate, were used for generating shifted complex tone and 

spectrally jittered complex tone. Shifted complex tones were generated by adding a shift 

frequency to the first six harmonics. The shift frequency was proportional to f0 in a step of 25% 

of f0. Spectrally jittered inharmonic complex tones were generated by jittering individual 

component of the preferred harmonic complex tone except the one at BF. The jittered 

components were randomly and independently drawn from a uniform distribution with mean at 

the corresponding harmonics and standard deviation proportional to the jitter level (Figure 2.1).  

Five different jitter levels, 10%, 20%, 30%, 40% and 50% were used. Twenty five stimuli with 

different spectral contents were generated for each jitter level.  

 

2.2.3 Random harmonic stimulus (RHS) 

Random harmonic stimulus (RHS) was adapted from random spectrum stimulus (RSS) 

(Yu and Young 2000, Barbour and Wang 2003). The acoustic stimuli contained simultaneous 

harmonics of a f0 within a three octave frequency range centered at BF. The RHS were arranged 

into sets that determined the levels for each component of individual stimuli such that the set as a 

whole was “white”, (the stimuli were uncorrelated to each other) and constant-variance (the level 

distributions of each component were identical). All RHS sets contained ten more stimuli than the 

number of harmonics. An auxiliary RHS set was created by using the spectral inverse of the 

original set to increase the frequency space sampling density. Figure 2.2 showed the adjusted 

level matrix of the RHS set used for one neuron. Each row of the plot is a stimulus. Each column 
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refers to each harmonics. In the adjusted level matrix, each harmonic has had the mean level 

subtracted. Three stimuli are plotted on the right to show the different spectral profiles of 

individual stimulus. There are four independent parameters for RHS: frequency range, f0, mean 

sound level and standard deviation of sound level. For every neuron tested with RHS, the f0 is 

chosen as a ratio of the preferred f0 (Bf0), typically Bf0/2 and Bf0/4.   

 

2.3 Data Analysis 

Firing rates were calculated over the time window between 15ms after onset and 50ms 

after offset. The preferred harmonic complex tone was defined as the one evoking the maximal 

firing rate. The f0 of the preferred harmonic complex tone was referred as the preferred f0 (Bf0).  

 

2.3.1 Characterize neural responses to HCTs  

A facilitation index is defined as  ሺRୌେ୘ െ R୘୭୬ୣሻ/ሺRୌେ୘ ൅ R୘୭୬ୣሻ , where Rୌେ୘  is the 

firing rate to the preferred harmonic complex tone, and R୘୭୬ୣ  is the maximal firing rate to 

individual components in the preferred harmonic complex tone at equal sound level. Facilitation 

index is a measure of the increase in firing rates by presenting a tone in different spectral context. 

The facilitation index is 1 if the neuron only responds to the harmonic complex tone but not 

individual components alone.  The index is 0 if other simultaneously presented tones do not 

change the neural response to a single tone.  

In our test, because the f0 of HCTs was changed in small increments, the peak in the 

frequency tuning (BF) either concurrent with a harmonic or fell in between two harmonics. If 

harmonic number, the ratio of BF to f0, is used to replace f0, the rate-harmonic profile should 

display an oscillating patter with peaks at integer values and valleys between two adjacent integer 

values. Periodicity in the rate-f0 tuning can be measured by using discrete Fourier transform 
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(DFT) of the rate-harmonic number tuning. The peaks in the power spectral density (DFT) are 

used to determine whether there is oscillation in the tuning. A nonparametric permutation test 

(Ptitsyn, Zvonic et al. 2006, Fishman, Micheyl et al. 2013) was used to assess the statistical 

significance of the peaks by randomly shuffling the sample points in the rate-harmonic tuning. 

For every shuffled trial, the power spectral density was computed and the amplitude at peak 

frequency in the PSD of the original sequence was measured. The null-hypothesis is that a 

random point serial will yield a same amplitude or higher peak in the PSD. A null reference 

distribution of the spectral amplitude at the given peak frequency was generated by repeating this 

process for 1000 times. The p-value is defined as the probability of observing an amplitude at the 

given peak frequency equal or larger than the observed value.  

Harmonic Tuning width was used to evaluate whether individual harmonics can be 

resolved in the rate-harmonic number profile. A moving window of 1 was centered at each 

integer harmonic number and the total response area, where firing rate was larger than 20% of the 

maximal firing rate in the window, was calculated. A square was used to match the normalized 

response area with the height at the maximal firing rate in the window. The width of the square 

was the harmonic tuning width for each integer harmonic number.  The less response for non-

integer harmonic number, the smaller harmonic tuning width is.  The density preference index is 

defined as the ratio of the harmonic tuning width at the maximal harmonic number to the 

maximal harmonic tuning width. 

A periodic index is defined below to quantify the tuning to shifted complex tones. 

Periodic	Index ൌ෍
ሺ2 ൈ R୬౟ െ R୬౟ାହ଴% െ R୬౟ିହ଴%ሻ

ሺ2 ൈ R୬౟ ൅ R୬౟ାହ଴% ൅ R୬౟ିହ଴%ሻ
/N

୒

୧ୀଵ
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Where ܴ is the firing rate, and n୧ for R୬౟ is the percentage frequency shift at multiples of 

100%. Only those shifts which evoke a firing rate significantly different from spontaneous rate 

were included (t-test, p < 0.05).  If a neuron only responds to harmonic shifts, the periodicity 

index will be 1. If a neuron cannot distinguish harmonic shifts from others shifts, the periodic 

index will be close to 0.  

 

2.3.3 Neural correlations 

Signal correlations were computed for each neuron pair as the correlation coefficients 

between the mean firing rates to all stimuli tested including all complex tones. Noise correlation 

were computed using a normalized correlation measure (Bair, Zohary et al. 2001, Jeanne, Sharpee 

et al. 2013) across trials. In this measure, the firing rate on each trial was subtracted by the mean 

firing and normalized by the standard deviation across all trials to obtain z-score.  

 

2.3.4, Identification of cortical areas and layers 

Primary auditory cortex was identified by neural response properties to tones and 

tonotopic gradient (low frequency at rostral-lateral and high frequency at caudal-medial). The 

border between A1 and the rostral regions (R and RT) was estimated from the frequency gradient 

reversal. Low-pass filtered Local field potentials (1Hz – 300Hz) (LFPs) were also recorded. If 

time permits, at the recording section, LFPs were recorded every 100݉ߤ to a 20dB tone at the BF 

of the track in a total depth of 2.5mm from dura typically. One dimensional current source density 

(CSD) was calculated as the second spatial derivatives of the LFPs (Figure 2.3). CSD profile is a 

representation of the direction, location and intensity of the transmembrane currents underlying 

the evoked response potentials (Schroeder, Mehta et al. 1998, Hirsch and Martinez 2006). Current 

sinks (negative peaks) are indicator of depolarizing events, such as the recipient layers for 
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thalamo-cortical projections (layer III/IV). Current sources (positive peaks) are indicator for 

passively return currents. Although we did not do CSD for all track to fully categorize the 

neurons we recorded into different layers, it provides a reference for a general estimation of the 

layers we recorded from in addition to the response properties. Most of samples in our recordings 

were from layer II and III.  

 

2.3.5 Linear weighting function estimation 

 The RHS results can be used to build a linear model of how a cortical neuron responds to 

harmonic complex tones with arbitrary spectral profile. The model can be written as 

ሬܴറ ൌ ܴ଴ ൅ Λݓሬሬറ , 

Where  ܴ is a vector of firing rate to the set of RHS,  ܴ଴ is a constant, the response to flat 

spectrum stimulus, Λ is the adjusted level matrix and ݓሬሬറ is the linear weighting function, which 

represents an estimate of rate slopes at each frequency. All rates used in the linear weights 

estimation are driven rates: averaged firing rate minus spontaneous rate. Weighting functions are 

computed by solving the synthesis equation. Because of the way the adjusted level matrix is 

constructed, the equation above can be solved to obtain the unconstrained lease-squares estimate: 

ሬሬറݓ ൌ ൫Λ୘Λ൯
ିଵ
Λ் ሬܴറ෠ 

where ሬܴറ෠ are rates measured in experiment.  

The Fraction of variance ௩݂ is used to evaluate how good the model is to predict the 

responses to different stimuli (Reiss et al. 2007): 

௩݂ ൌ 1 െ
∑ ሺݎ௡ െ ௡ሻଶݎ̂
ே
௡ୀଵ

∑ ሺݎ௡ െ ሻଶேݎ̅
௡ୀଵ
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where ݎ௡ is the measured firing rate in response to the nth stimulus, ̂ݎ௡ is the predicted rate from 

the model, and ̅ݎ is the average rate of ݎ௡. 

 

2.4 Online adaptive experiment design (OED) 

2.4.1 A feed-forward neural network model 

The model used in the online adaptive experiments was adapted from previous 

works. We assume that adjacent excitatory and inhibitory neurons in A1 get their 

excitatory inputs from thalamocortical axons with similar best frequencies, and that an 

excitatory cortical neuron receives feedforward inhibition from other cortical neurons 

(Dominguez et al., 2006; Soto et al., 2006; de la Rocha et al., 2008; Wu et al., 2008). We 

choose feedforward neural network models because they are the simplest models that can 

capture the general notion that more complex responses should arise by combining 

simpler responses from the lower levels. 

The model is composed of three excitatory subunits (E1, E2 and E3) and two 

inhibitory subunits (I1 and I2), all converging into a single principal cell at the top which 

is the supposedly recorded neuron in A1 (Figure 2.4). The rational for choosing multiple 

excitatory subunits was to allow the formation of complex frequency receptive fields with 

more than one excitatory peak.  

The input synaptic weights of each subunit are modeled by a Gaussian with only 

three free parameters: 

௜ݓ ൌ expቆെܣ
ሺ ௜݂ െ ሻଶߤ

ଶߪ2
ቇ 
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where ௜݂ is the frequency of the i-th input node (circles at the bottom of Figure 2.4), ߤ is 

the center frequency corresponding to the BF of the subunit, ߪ is the width of the spectral 

input range, and ܣ is the weight amplitude. The input ܠ ൌ ሺݔଵ,⋯ ,  ௡ሻ to the network isݔ

the spectrum of a sound stimulus: ݔ௜ is the sound level (dB) in the i-th frequency bin. For 

simplicity, we did not take into account any subcortical nonlinearity in the inputs. The 

output of each subunit is given by  

ݕ ൌ ݃൭෍ݓ௜ݔ௜

௡

௜ୀଵ

െ  ൱ܤ

where B is the bias and ݃ሺݑሻ ൌ 1/ሺ1 ൅ ݁ି௨ሻ is the sigmoid gain function. The synaptic 

connection weight between each subunit and the principle cell is always constrained to be 

positive for an excitatory subunit and negative for an inhibitory subunit. The principal 

cell sums the weighted outputs from all subunits, passes the sum through the sigmoid 

function, and then multiplies the outcome by a final gain factor to yield the final response 

(averaged firing rate). Each subunit includes 5 parameters: 3 for its Gaussian shaped 

weights (amplitude, mean and variance), 1 for the bias, and 1 for the weight of its 

connection with the principal cell, yielding a subtotal of 25 parameters for all 5 subunits. 

After adding the final gain factor, model 1 has a total of 26 free parameters.  

 

2.4.2 Offline Data fitting 

The entire stimuli-response set recorded for each neuron was divided randomly 

into a training set that included 75% of the data and a validation set that included the 

remaining 25%. Model was fitted to the training data through minimization of the mean 
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square error (MSE) between the observed average firing rate and the model’s prediction 

for each stimulus in the set: 

MSE ൌ
1
ܰ
෍൫ݎ௡ െ ݂ሺܠ௡ሻ൯

ଶ
ே

௡ୀଵ

 

where N  is the number of data points in the set, ݎ௡ is the recorded response to the n-th 

stimulus, ܠ௡ and ݂ሺܠ௡ሻ is the model’s predicted mean response to the same stimulus. The 

observed average firing rate was computed from the spike count within a time window 

from 15ms after onset and 50ms after offset. The optimization was performed using the 

function fmincon in Matlab (MathWorks, Matick, MA) which finds the minimum of a 

constrained nonlinear multivariate function (MSE) over the space of network parameters, 

starting from a single initial guess. In order to avoid local minima of the MSE in the 

parameter space and increase the probability of finding an optimal solution, each 

optimization process was repeated 1000 times, starting from random initial guesses. The 

chosen parameter set was the one that yielded the smallest MSE for the training set.  

 

2.4.3 Experimental system design for OED 

This hardware setup is the same as the traditional neurophysiology recording in section 

2.1. The different part is, instead of pre-generate a set of stimuli, every stimulus is generated 

online (Figure 2.5). After one stimulus is played, the neural response is recorded and then the 

OED algorithm will find the next optimal stimulus and update the model parameters according to 

the recorded response. The total iteration is 300. After Every 5 iterations, a randomly picked 

stimulus will be played to avoid local minimum or possible neural adaptation. All stimuli were 
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200ms long with a 5ms onset and offset ramp. The inter stimulus interval was at least 600ms 

depending on the time of computation.  

 

2.4.3.1 Stimulus design 

In this experiment, the collected responses are used to estimate the parameters θ of a 

hypothesized model ݂ሺ࢞, ,࢞|ݎሺ݌ ሻ given the distributionࣂ  ,ሻ of a neuron’s stochastic responseࣂ

where ݎ represents the response and ࢞ denotes the stimulus.  Given a set of stimulus – response 

observations	ܦ௡ ൌ ሼሺ࢞ଵ, ,ଵሻݎ … , ሺ࢞௡,  ௡ሻሽ, the posterior distribution of the parameters vector θ canݎ

be given by Bayes rule, shown below: 

௡ሻܦ|ࣂ௡ሺ݌ ∝  																																							ሻࣂ଴ሺ݌ሻࣂ|௡ܦሺ݌

where ݌ሺܦ௡|ࣂሻ ൌ ∏ ,௜࢞|௜ݎሺ݌
௡
௜ୀଵ  ሻ assuming the responses are independent and identicallyࣂ

distributed and ݌଴ሺࣂሻ is the prior distribution of	ࣂ. 

A possible way to reduce the uncertainty of	݌௡ሺࣂሻ ≝  ௡ሻ is to quantify it using theܦ|ࣂ௡ሺ݌

differential entropy ܪሾ݌௡ሺࣂሻሿ of the posterior density. This way, stimuli that minimize this 

entropy using the current estimate of the parameters ݌௡ሺࣂሻ can be iteratively chosen (DiMattina 

& Zhang, 2011). This strategy is implemented in the algorithm presented by designing stimuli 

that minimize the following utility function: 

ܷ௡ାଵ
ሺாሻ ሺ࢞ሻ ൌ െනܪሾ݌௡ାଵሺࣂሻሿ݌ሺ࢞|ݎሻ݀ݎ																																	 

where	݌ሺ࢞|ݎሻ ൌ ,࢞|ݎሺ݌׬  More details of .࢞ is the response distribution given input ࣂሻ݀ࣂ௡ሺ݌ሻࣂ

the algorithm can be found in the master thesis of Eyal Dekel (Dekel 2012). 

In every iteration of the algorithm, 5000 stimuli are generated and passed through the 

utility function, where the one that maximizes the utility function is chosen to be presented. These 
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stimuli are composed of 31 frequency bins, spanning a frequency range that is specified by the 

user at the beginning of the process. Every frequency bin can get any sound level intensity from 

zero to a maximum value, specified again by the user to make sure the model operates in a 

reasonable range of sound levels. 

 

2.4.3.2 Parallel modeling 

In our experiment, a modified version of the OED algorithm for parallel estimation of 

multiple models was developed and implemented by using Matlab “Parallel computing toolbox”. 

This version of the algorithm is initialized with four different initial parameter estimates (means 

of the parameters prior distribution) serving as starting points for four different models. During 

the run of the algorithm, the parameters of each model are updated in parallel (though 

independently) following each stimulus. Even though the update of the models parameters can be 

done in parallel at approximately the same time, the optimal stimuli chosen by each one of the 

models cannot be presented in parallel to the animal. In our implementation, the model which fits 

the data collected up to the specific iteration the best (the least MSE) will determines the next 

optimal stimulus.  

Despite the fact that the rest of the models are updated based on a stimulus that is not 

designed according to their specific utility function, this parallelization still has some advantages 

comparing with single processing. First, starting from four different initial guesses of the 

parameters increases the chances that one of these guesses is closer to the optimal estimate of the 

network. Second, as the models evolve, the “favorite” model (i.e. the one that fits the data best) 

may switch between the four, and so the optimal stimuli are not designed strictly based on one 

model.  
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Figure 2.1 Demonstration of Jittered complex tones 

A, the uniform distribution for individual component in the jittered complex tones at different 
jitter levels 
B, the spectrum of jittered complex tones 
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Figure 2.2 An example of a RHS set 

A, the adjusted level matrix of a RHS set. 
B. three stimuli from the RHS set in A with different spectral profiles. 
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Figure 2.3 An example of LFPs and CSD of one recording track 

A, LFPs recorded at different depth from the dura with a step of 100݉ߤ. 
B, CSD from the LFPs in A. Negative peaks indicate sinks.  
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Figure 2.4 A feed-forward network model with three excitatory subunits (red) and two 
inhibitory subunits (blue). 
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Figure 2.5 A diagram of the online adaptive experiment system 
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CHAPTER 3:  

3. Spectral templates for encoding harmonic structure in 

marmoset auditory cortex  
 

 

3.1 Introduction 

Many natural sounds, like animal vocalization, human speech, and the sounds from most 

musical instruments comprise of a set of sinusoids at frequencies which are integer multiples of 

the same fundamental frequency (f0). The fusion of harmonics is a natural process which groups 

all frequencies relevant to the same sound source together to form a single percept (Bregman 

1990, Darwin and Carlyon 1995). Perceptual properties such as pitch and timbre can be then 

computed from the harmonic spectra(Schouten 1938). Such harmonic process can also be 

associated with the preference to consonant chords over dissonant chord in music perception, 

because the consonant chords, such as the perfect fifth, are more similar to single notes with 

harmonic spectra(Terhardt 1974, Tramo, Cariani et al. 2001, Ebeling 2008, McDermott, Lehr et 

al. 2010).  The fusion of harmonics and perception of f0 has also been shown on different animal 

models (Heffner and Whitfield 1976, Cynx and Shapiro 1986, Tomlinson and Schwarz 1988, 

Walker, Schnupp et al. 2009, Osmanski and Wang 2011), which implicate a common neural 

mechanism for harmonic sound processing across different species.  

At the peripheral auditory system, a harmonic sound is decomposed into different 

frequency channels and can be represented in terms of its constituent parts. Therefore, a central 

process is required to accomplish the harmonic fusion and following computations. Auditory 

cortex is essential for processing harmonic sounds. Deficits in pitch discrimination and vowel 
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identification were observed following cortical lesion (Whitfield 1980, Kudoh and Shibuki 2006). 

In addition, electrophysiology recordings in primary auditory cortex (A1) found multi-peaked 

neurons with separated excitatory peaks at harmonically related frequencies (Sutter and Schreiner 

1991, Kadia and Wang 2003, Qin, Sakai et al. 2005). Previous studies have also shown a 

nonlinear two-tone interactions of harmonically related frequencies at single neurons in A1 (Suga, 

O'Neill et al. 1979, Kadia and Wang 2003). The emergence of such harmonic sensitivity suggests 

that neural circuits in auditory cortex have evolved to efficiently process harmonic sounds. 

However, studies using harmonic complex tones showed that populations of neurons in A1 carry 

sufficient spectral-temporal information for pitch extraction but did not find any combination 

sensitive neurons (Schwarz and Tomlinson 1990, Fishman, Reser et al. 1998, Fishman, Micheyl 

et al. 2013). Neurons which selectively responded to harmonic complex tones were found in a 

tentative pitch region in marmoset auditory cortex and have proven to code pitch (Bendor and 

Wang 2005, Bendor, Osmanski et al. 2012), but they were only tuned to low frequency pitches 

(<1kHz). Marmosets can hear up to 36kHz (Osmanski and Wang 2011) and the fundamentals of 

four major marmoset calls are between 5kHz to 10kHz (DiMattina and Wang 2006). It is possible 

that there is a more generalized harmonic process in auditory cortex over a broader frequency 

range in A1. In the present study, we systematically tested neurons in A1 with harmonic and 

inharmonic complex tones, varying f0 and harmonic compositions. We found harmonic template 

neurons in A1, which were strongly driven by harmonic complex tones and showed reduced 

response to inharmonic complex tones. Responses of harmonic template neurons were selective 

to fundamental frequency (f0) and sensitive to harmonic number and spectral regularity. Those 

templates covered a broad range of f0 (400Hz – 12kHz). They were distributed in the entire 

frequency range of A1 and organized tonotopically by their best frequencies (BFs). Our findings 

indicate that there is a more generalized harmonic process in A1 for harmonic fusion and pitch 

extraction.  
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3.2 Results 

We recorded from four hemispheres of three awake marmoset monkeys. 372 well 

isolated and fully tested neurons which responded (the firing rate to at least one tested harmonic 

complex tone is significantly larger than spontaneous firing rate, ttest, p < 0.05) to harmonic 

complex tones were used in data analysis.  

 

3.2.1 Neurons showed combination sensitivity to harmonic complex tones 

Most neurons in auditory cortex had frequency preference with a peak response at their 

BFs (Figure 3.1A,B).  When a second tone was played simultaneously with the BF tone, the 

response to BF tone could be either facilitated or suppressed depending on the frequency of the 

second tone (Figure 3.1C).  The two facilitatory areas above and below BF were interleaved with 

suppressive areas around BF (Figure 3.1D).  When tested with harmonic complex tones, this 

example neuron showed a significant increase in responses to some f0s (Figure 3.1E). In the 

tuning to f0s, the two largest peaks were separated by f0s which evoked less or no response.  By 

examining the spectrum of the complex tones corresponding to the two peak responses (Figure 

3.1E, left), we found that both tones included three components near BF and in the two 

facilitatory areas in two-tone test.  In other words, this example neuron selectively responded to 

the concurrence of components from the three excitatory frequency areas. Moreover, this neuron 

showed onset responses to pure tones but exhibited sustained firing to the preferred harmonic 

complex tones (Figure 3.1A and 3.1E). Previous study has showed that sustained responses are 

usually evoked in auditory cortex by preferred stimuli(Wang, Lu et al. 2005). This example 

suggests pure tone responses, even two-tone responses might underestimate the spectral 

selectivity of some neurons in A1. 
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Previous studies reported 25 ~ 50% neurons in A1, which do not respond to simple 

stimuli such as pure tones and noise but to complex sound features (Evans and Whitfield 1964, 

Sadagopan and Wang 2009). In our study, we also found neurons that did not respond to pure 

tone but only responded to harmonic complex tones at specific f0s (Figure 3.2A and B). Since 

some cortical neurons were narrowly tuned to levels and show a non-monotonic rate-level tuning 

(Sadagopan and Wang 2008), the preferred harmonic complex tone and its individual harmonics 

were tested separately at different sound levels.  This neurons did not respond to f0 alone nor to 

other individual harmonics.  But the response to the preferred f0 at 621Hz was consistent at 

different sound levels (Figure 3.2C). Since it is not uncommon for A1 neurons to be sensitive to 

amplitude modulation (Lu, Liang et al. 2001), harmonic complex tones with cosine and 

alternating phases were tested separately for this neurons. A harmonic complex tone added at 

cosine phase will have an envelope modulation at f0 while alternating phase gives rise to a 

modulation at 2*f0 with the same spectral content. The example neuron showed similar tunings to 

both cosine phase and alternating phase (Figure 3.2D), suggesting the enhanced responses to 

harmonic complex tones were due to spectral integration rather than temporal modulation. We 

used a facilitation index (FI) to quantify neurons’ preference to harmonic complex tones. A FI is 

between -1 and 1. A FI larger than 0 indicates a preference to complex tones while a negative FI 

indicates a preference to pure tones. Only neurons with a FI larger than 0.3 were identified as 

candidates for harmonic template neurons (Figure 3.5A).  

 

3.2.2 Harmonic template neurons process spectral information 

When complex tones are presented, the change in spectral density, total sound level, and 

temporal modulation might cause the increase in firing rate other than harmonicity itself. In order 

to separate neurons which were sensitive to harmonic structures rather than other co-varying 

sound parameters, frequency-shifted complex tones were used to test candidates which preferred 
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complex tones over pure tones.  In this test, the first five or six harmonics of the preferred f0 (0% 

shift) were gradually shifted in frequency by an amount proportional to f0 (Figure 3.3A).  When 

the shifts were multiples of 100%, the complex tones were still harmonic with the same f0 but 

different compositions.  Other shifts either resulted inharmonic complex tones (25%, 75%, 

125%, …) or odd-harmonic complex tones with a fundamental half octave below the original f0 

(50%, 150%, 250%, …). The temporal modulation remained the same because of the equal 

spectral space in all shifts (Figure 3.3A). For humans, the perceived pitch shifts with the 

inharmonic shifts and ambiguous pitches were perceived for odd-harmonic complex tones if 

resolved harmonics are included (Patterson and Wightman 1976, Moore and Moore 2003). On the 

contrary, the shifts had less or negligible effects on perceived pitch of unresolved harmonics 

because the temporal cue was used (Moore and Moore 2003). Neurons which encode spectral 

information of harmonic complex tones should be able to distinguish harmonic shifts from 

inharmonic shifts or the odd-harmonic tones (Figure 3.3B). The example neuron showed a 

periodic response pattern to the shifted complex tones: large responses at harmonic shifts (100%, 

200%, 300%, …) when the f0 remained the same,  while weaker or no response at inharmonic 

shifts and odd-harmonic complex tones.  More example neurons were shown in Figure 3.4. Based 

on the responses to harmonic complex tones and shifted complex tones, we had our criteria for 

harmonic template neurons which: 1, showed larger response to harmonic complex tones than 

responses to pure tones (Facilitation index > 0.3, Figure 3.5A); 2, preferred to harmonic complex 

tones over inharmonic tones or odd-harmonic tones (Periodicity index > 0.5, Figure 3.5B).  

 

3.2.3 The relationship between BF and preferred f0 (Bf0) 

Another observation from the response pattern to shifted harmonic complex tones was the 

selectivity to harmonic compositions.  Despite the selectivity to f0, the response to the first five 

harmonic (0% shift in Figure 3.3B) was weak even the f0 itself was presented and the pitch 
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salience was high. The largest firing rate was always at harmonic shifts but at different harmonic 

compositions for different neurons (Figure 3.4). Such response pattern suggests harmonic 

template neurons encode not only f0 but also absolute frequency of individual components. The 

next question is how those absolute frequencies are related to the BFs of harmonic template 

neurons.  

For harmonic template neurons, the preferred f0s were linearly proportional to the BFs 

(Figure 3.6A). The ratios between BF and the preferred f0s were close to integer numbers (Figure 

3.6B).  In other words, the preferred f0 of a harmonic template neuron equals to BF or 

subharmonics of BF (BF/2, BF/3, …).  In order to examine the role of BF in coding harmonic 

complex tones, we compared responses of two neurons with the same preferred f0 but different 

BFs. The same set of harmonic complex tones comprising of different harmonic of the same f0 

were used. The BF of the first neuron was the third harmonic of the preferred f0 while the second 

neuron had a BF at the eighth harmonic (Figure 3.7A). Low BF neuron preferred to the lower 

harmonics whereas the high BF neurons selectively respond to the higher harmonics (Figure 3.7B 

and C). Harmonic template neurons were selective to absolute frequencies which were 

determined by their BFs.  

Another way to test the frequency region for harmonic template neurons was using 

sinusoidal amplitude modulated tones (sAMs), which consisted of just three components (Figure 

3.8A). A sAM tone becomes harmonic when the carrier frequency (fc) is an integer multiple of 

the modulation frequency (fm). Different carrier frequencies with the modulation frequency at the 

preferred f0 of a harmonic template neuron were use, which were similar to the frequency tuning 

to pure tones. The example neuron in Figure 6B did not respond to pure tone alone. When an 

amplitude modulation at preferred f0 was added, this neuron showed responses to carrier 

frequencies that were harmonics of the f0 (Figure 3.8B). The second neuron also showed multiple 

peaks at harmonics of f0 (Figure 3.8C).  Either neuron responded to carrier frequencies between 
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those harmonics.  The results from sAMs experiments further supports that harmonic template 

neurons encode both f0 and harmonic numbers.  

In all 64 harmonic template neurons we recorded, the preferred f0s vary from 400Hz to 

12kHz and the BFs cover a broad frequency range from 1kHz to 30kHz (Figure 3.9A).  The 

majority of harmonic template neurons in our study were found in primary auditory cortex (A1) 

and distributed in the entire frequency range of tonotopic map by BFs (Figure 3.9B). We also 

found a few neurons in the high frequency rostral region of the core area (Figure 3.10). There was 

no difference in terms of spectral selectivity so they were also included in our analysis.  

 

3.2.4 Harmonic template neurons are sensitive to spectral regularity 

The periodicity in spectrum is essential for harmonic complex tones. Frequencies, which 

are not integer multiples of a common fundamental frequency do not elicit a clear pitch sensation 

as harmonic complex tones. More than one pitch may be perceived or the complex tone may 

sounds like noise. In music, a consonant sounds more pleasant than a dissonant. Here we 

investigated whether harmonic template neurons were sensitive to spectral regularity by using 

spectrally jittered complex tones. The harmonic at BF was fixed while all other components were 

independently and randomly drawn from a uniform distribution with a mean at corresponding 

harmonics and a standard deviation proportional to a certain jitter level (Figure 2.3). As the jitter 

level increased, the spectrum became more irregular and the pitch of the complex tone was less 

clear. For each jitter level, 25 stimuli were generated with different spectral structures. The 

preferred harmonic complex tone was also repeated 25 times to estimate the internal noise of 

neural response (Figure 2.3). For harmonic template neurons, firing rate decreased when the 

spectral regularity was disrupted by jitter (Figure 3.11A and B).  The decrease in firing rates was 

significant for jitter levels larger than 10% by comparing the firing rate distribution at individual 
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jitter level with the rate distribution to repeated harmonic complex tone (Figure 3.12, Wilcoxon 

singed-rank test, p < 0.0001).  

Another way to visualize the firing rate change with the spectrum regularity was to 

arrange the jittered complex tones according to the responses from high to low (Figure 3.13A). 

As the spectrum became more irregular, the firing rate decreased. An inharmonic index was 

defined as the average distance between individual component and the corresponding harmonic in 

the original harmonic complex tone. 

Inharmonic	Index ൌ
ටሺ ଵ݂ െ ଵ݂

ᇱሻଶ ൅ ሺ ଶ݂ െ ଶ݂
ᇱሻଶ ൅ ⋯൅ ሺ ௡݂ െ ௡݂

ᇱሻଶ
݊ െ 1
f0

 

Where ௜݂ represents the frequency from the harmonic complex tone and  ௜݂
ᇱ  is the jittered 

component for that harmonic. The inharmonic index was negatively correlated with the firing rate 

(Figure 3.13A, bottom figure). As a comparison, a non-harmonic template neuron’s responses to 

jittered complex tones were shown in Figure 3.13B. There was no correlation between the 

inharmonic index and the firing rate. Non-harmonic template neurons in general were not 

sensitive to spectral regularity. 

Additional test was done for a few harmonic template neurons with the 

compressed/stretched complex tones. In this test, the harmonic at BF was still fixed while the 

distance between adjacent harmonic was increased (stretched tones) or decreased (compressed 

tones) (Figure 3.14A). All 9 harmonic template neurons showed a decreased in firing rate for both 

stretched and compressed tones. The decrease in firing rate was significant when the change was 

at least 8% of the f0 (Figure 3.14B). This result indicates that harmonic template neurons are not 

only selective to the local spectral regularity but a very specific spectral space.  
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3.2.5 Inhibition plays a role in shaping harmonic templates in A1 

The emergence of harmonic templates could result from a combination of sharply tuned 

harmonically related inputs. Previous studies have already showed narrowly tuned excitatory 

responses in A1 (Abeles and Goldstein 1972, Pelleg-Toiba and Wollberg 1989, Sadagopan and 

Wang 2008). However, excitatory inputs alone cannot distinguish stimuli with overlapping 

spectral contents. For example, the harmonics of f0 are also the even harmonics of f0/2. A 

harmonic template only based on excitatory inputs would match both f0 and f0/2. However, 

harmonic template neurons in our study showed distinct responses to the preferred f0 (Bf0) and 

Bf0/2. The firing rate to Bf0/2 was much smaller than the firing rate to Bf0 (Figure 3.15A).  

Some neurons did not even respond to the Bf0/2 (circles on the x axis in Figure 3.15A) at all. The 

decreased firing rates indicate that there were inhibitory areas which may contribute to reject 

stimuli which have overlapping components with the harmonic template.   

More direct evidence for inhibitory areas came from neurons with high spontaneous 

firing rates. Driven rate was used by subtracting spontaneous rate from the firing rate estimated 

from the spike count during the stimulus. In the shifted complex tone test, the negative driven 

rates for the inharmonic tones and odd-harmonic tones indicated inhibitory frequency regions 

between the components of the harmonic template (Figure 3.15B). Our data suggest interaction 

between excitatory and inhibitory areas in the frequency receptive field give rise to harmonic 

templates in A1.  

 

3.2.6 Random harmonic stimuli for studying harmonic template neurons 

The design of RHS was introduced in Methods. The rational for RHS was to explore the 

possible mechanism for generating such harmonic templates. The most intuitive explanation 

would be an integration of multiple excitatory inputs and inhibitory inputs given the previous 
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observations. Because of the limitation of the extracellular recording, the excitation and inhibition 

cannot be separated in our data. However, by using a linear weighting model (Yu and Young 

2000), we could estimate the distribution of possible excitatory and inhibitory inputs.  For 

harmonic template neurons, the f0s for random harmonic stimulus usually is chosen to be Bf0/2 

or Bf0/4 so that there are components sampling the area between two adjacent harmonics in the 

preferred template. For each stimulus in the RHS set, the variations in the sound level of each 

component change the balance of excitatory and inhibitory components and result in a wide 

variety of response strength (Figure 3.16A and B). For the flat spectrum stimulus, the f0 is not at 

the Bf0, which make it a sub-optimal stimulus for the neuron. Therefore, the response is low. The 

estimated linear weights showed an alternating of positive weights at even harmonics and 

negative weights at odd harmonics (Figure 3.16C). Such linear weight pattern suggests the 

organized excitatory and inhibitory components in the frequency receptive field creates harmonic 

templates to accurately detect concurrence of harmonic related frequencies.  

Our sampling density for RHS is small, because there will be fewer spikes due to the 

strong inhibition if there are more components in the inhibitory area. It is difficult to get a good 

estimation of the weight if the firing rates are too low. For a few neurons, we managed to run the 

RHS at Bf0/4 so that there were three addition components between adjacent harmonics in the 

template (Figure 3.17A). We also saw similar pattern of excitatory peaks with inhibitory areas 

between on the second neuron (Figure 3.17 B and C). We tested RHS at different mean sound 

levels (20dB and 30dB) but the same standard deviation, the patterns were consistent although the 

weight strengths were different. This confirmed that the alternating excitation and inhibition 

pattern were not random, or due to the sparse sampling. It might reflect some general receptive 

field property of those harmonic template neurons.  

Another interesting question to ask is how many harmonics are encoded by harmonic 

template neurons. In our test, the number of harmonics were determined by the frequency range 
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and f0. In the shifted five harmonics test, we have already showed that harmonic template 

neurons only responded to harmonics around BF. RHS provided a chance to investigate this 

question. Although RHS includes a large number of harmonics, the harmonics far away from the 

BF might not have any contribution to predict neural responses. We started with a single 

component at BF, adding one more on either side of BF at one time until all harmonics were used. 

For each time after a component was added, the linear weights were estimated with all the chosen 

components and the fraction of variance was calculated. As shown in Figure 3.18A, adding more 

components gradually improved the model performance. The improvement became very small 

after a few number of components. All the harmonic numbers that improve the model 

performance significantly were counted as useful harmonics for this neuron (1000 bootstrapping 

with replacement, ttest, p<0.05). The same approach was applied to 6 out of 19 neurons in our 

test, which yielded fairly good predication. The number of useful harmonics for all six neurons 

were plotted in Figure 3.18B. Most neurons encoded at least the two adjacent harmonics of BF. A 

few neurons encoded more than three harmonics. The alternating excitatory and inhibitory 

weights pattern was observed for all neurons (Figure 3.18C).  

 

3.3 Discussion 

In the experiments described in this chapter, I used harmonic and inharmonic complex 

tones to systematically examine the selectivity to complex spectral features in auditory cortex. I 

found harmonic template neurons which maximally respond to a combination of certain 

harmonics of a preferred f0. Those neurons were sensitive to the frequency shift and spectral jitter. 

They provide templates which can be used for extracting f0 and detecting harmonic structures in 

many ecologically relevant sounds. 
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3.3.1 Compare with previous studies 

Previous studies did not find any combination sensitivity neurons in A1 of awake 

macaque monkey or ferrets (Schwarz and Tomlinson 1990, Kalluri, Depireux et al. 2008). The 

findings in our study might due to the sampling bias rather than different animal models. In the 

macaque study, noise was used for searching neurons. As shown in Figure 3.14, harmonic 

template neurons have inhibitory inputs which make them non-responsive to broad-band noise. 

Some neurons have low spontaneous firing rate (Figure 3.2A) and high selectivity to sound 

parameters. It’s easy to miss such neurons by searching with noise. In our study, we used a 

different searching strategy. The electrode was advanced in steps of 25µm.  Pure tone and 

harmonic complex tones would be played before the next movement. Such strategy helped us find 

harmonic template neurons with extremely low spontaneous rate and high selectivity to acoustic 

features (Figure 3.2B).  

 

3.3.2 Information transformation and feature detection 

The ability to rapidly recognize different sounds in the environment enables us to escape 

from danger, efficiently communication within the social group. How auditory system analyzes 

the acoustic signals and detects the important spectral features for sound recognition still remains 

largely unknown. The increased complicity in frequency receptive fields of single neurons along 

auditory pathway and the emergence of neurons highly selective to species-specific vocalizations 

in auditory cortex (Tian, Reser et al. 2001) suggest that the low-level neural signals for simple 

frequency partials have been synthesized into integrative representations of sound features, such 

as pitch and timbre, and eventually form coherent representations of ‘objects’. In our study, the 

finding of harmonic template neurons which exhibit combined selectivity to harmonically related 

frequency partials suggests A1 is an important intermediate processing stage for extracting sound 

features.  Such feature processing is not unique for auditory system. In visual system, the retinal 
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signals are transformed into orientation information, curvature, and subsequently contour 

fragments with certain combination of curvature and orientation (Connor, Brincat et al. 2007). 

Another important question to ask next is where harmonic templates emerge in auditory cortex or 

in subcortical areas such as inferior colliculus (IC). We showed that inhibitory inputs in addition 

to the shapely tuned excitatory inputs for harmonic template neurons, given the shaper frequency 

tuning and local microcircuits with inhibitory neurons and long range projection from other areas 

in the tonotopic map, auditory cortex maybe be a good place for the formation of harmonic 

templates. However, combination sensitive neurons were found in auditory cortex (Suga, O'Neill 

et al. 1979) as well as some subcortical areas such as IC (Leroy and Wenstrup 2000). It will be 

interesting to test neurons from inferior colliculus to see whether at least part of the information 

of harmonic template already encoded by IC neurons.  In addition, it will be interesting to test the 

excitatory and inhibitory inputs for harmonic template neurons using other techniques such as 

whole cell recording and distinguish the pre-synaptic inputs from intra-cortical connections and 

from direct thalamo-cortical inputs. It will help us understand more of the network architecture 

for generating such complex receptive fields.  

 

3.3.3 Harmonic template neurons and pitch neurons  

The harmonic template neurons reported in our study are different from pitch-selective 

neurons in previous studies (Bendor and Wang 2005, Bendor, Osmanski et al. 2012), although 

both types of neurons respond to harmonic complex tones even if they don’t respond to individual 

component. First of all, pitch selective neurons respond to pure tone and harmonic complex tones 

with a f0 near its BF. They respond to stimuli with equal pitch regardless of different spectral 

contents. In other words, the tuning of f0 for pitch neurons is along some perceptual dimension 

instead of physical dimension. For harmonic template neurons, the selectivity to f0 comes from 

the combination sensitivity to concurrent frequencies with harmonic spacing.  The BF of 



38 
 

harmonic template neurons can either be the preferred f0 or the harmonic of the preferred f0.  

Secondly, in the shifted harmonic test, pitch neurons showed a higher firing rate to harmonic 

complex tones with lower harmonics but lower firing rate to those with higher harmonics 

suggesting a sensitivity to pitch salience, because harmonics complex tones with lower harmonics 

have a higher pitch salience. For harmonic template neurons, they respond maximally to 

harmonics including the BF component. The preference for harmonic numbers depends on the 

ratio between their BFs and the preferred f0. Third, pitch neurons are organized by the preferred 

f0s because f0s equal their BFs. They are located in low frequency boarder between A1 and 

rostral region of the core area (R) and the preferred f0s are mostly below 1kHz. Harmonic 

template neurons are scattered in the entire frequency range of A1 (1kHz to 30kHz) and 

organized by their BFs even the preferred f0s can be as low as 400Hz. We did find a few 

harmonic template neurons in the high frequency rostral region as well (Figure 3.10A). In 

conclusion, Harmonic template neurons are not pitch neurons. However, harmonic encode 

absolute frequencies which can be used for extracting pitch. They also preserve the spectral 

information which can be used for coding timbre. In the hierarchical information pathway, 

harmonic template neurons might be a pre-processing stage for pitch neurons.  

 

3.3.4 Harmonic resolvability and pitch computation 

The peripheral auditory system can be modeled as a series of auditory filters centered 

from low to high frequencies along the basilar membrane. The filters become broader with 

frequency whereas the frequency spacing of a harmonic complex tone remains constant (Glasberg 

and Moore 1990). As a result, lower harmonics are separated into different filters to be ‘resolved’ 

while higher harmonics can fall into the same filter to be ‘unresolved’. Lower harmonics and 

higher harmonics can have the same pitch but differ in many other aspects of perception. For 

example, it’s easier to discriminate the f0s of complex tones containing lower harmonics than the 
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f0s of tones comprising of only higher harmonics (Houtsma and Smurzynski 1990). In addition, 

there is perceived pitch shift for resolved harmonics but not unresolved harmonics if all 

harmonics are shifted in frequency (Moore and Moore 2003). It has been proposed that harmonic 

templates can be used for pitch extraction of resolved harmonics (Goldstein 1973, Terhardt 1974, 

Shamma and Klein 2000).  Our study provides biological evidence for such templates. Pitch and 

harmonic numbers can be estimated by matching an unknown complex tone to different templates. 

However, the final decision of pitch requires additional computation because such estimation has 

certain ambiguity because of the noisy frequency inputs (Goldstein 1973). For example, the 

example neuron in Figure 3.1 responded largely to two f0s because both the 4, 5, 6th harmonics of 

the first f0 and the 5, 6, 7th harmonics of the second f0 match the template.  

The harmonic template neurons found in our study are biological evidence that how pitch 

and harmonic numbers are estimated from resolved harmonics. Due to the different hearing range 

and cochlear structures across species, harmonic template neurons from different animal models 

might differ in the frequency range and resolved harmonic numbers. We need take into account 

the physiological difference across species when we use knowledge from animal studies to 

understand human perception.  

 

3.3.5 Implications in auditory perception 

The harmonic template neurons found in our studies cover a broad frequency range, not 

limited to marmoset vocalization range. The four major marmoset calls have the first harmonic 

between 3kHz to 8kHz (DiMattina and Wang 2006). This result suggests a general principle of 

the auditory processing which could take advantage of the probabilistic structures of natural 

sounds. The following question is how harmonic templates emerge in the auditory processing? 

One possibility is that harmonic templates form during early development due to the exposure to 
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the natural acoustic environment full of harmonic sounds. Some studies have shown how 

harmonic templates can be generated from the exposure to the rich acoustic environment during 

early development or even to any broadband sounds (Shamma and Klein 2000). One other 

possibility is our auditory system have evolved to efficiently detect harmonic sounds by using 

harmonic templates. The ability to quickly and accurately identify different sound sources in the 

environment is crucial for survival as it is important for detecting predators, hunting and 

localizing food, reproduction and communication. Future studies across different species are 

necessary to fully answer this question. 

Most sounds from musical instruments are harmonic as well. Harmony is an important 

discipline in western music, which delimits the structure of chords based on the frequency ratios. 

Most listeners report the similar consonance ordering of chromatic scale tone combinations 

(Malmberg 1918, Krumhansl 1990). It has been shown the preference for harmonic spectra was 

consistently correlated with preferences for consonant over dissonant chord across more than 250 

subjects (McDermott, Lehr et al. 2010). Another study has also showed that the statistical 

acoustics of human speech sounds can successfully predict some widely shared aspect of music 

perception, which suggests music can be a side effect of auditory mechanism that evolved for 

other functions(Schwartz, Howe et al. 2003). Therefore, the findings in our study might imply 

some neural mechanism underlying music perception.  
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Figure 3.1 An examples of a neuron which preferred to harmonic complex tones.  

A, the raster plot of an example neuron responding to pure tone at different frequencies at 40dB 
SPL sound level).  
B, frequency tuning curve to pure tones from the raster plot in A.  
C, left: spectrum of the two-tone stimuli. Right: raster plot of neural response to two-tone stimuli.  
D, tuning curve to the two-tone stimuli. x axis was the frequency of the second tone. The dashed 
line was the neural response to BF tone alone. The solid line was the firing rate to BF played 
simultaneously with a second tone.  
E, the raster plot (left) and tuning curve (right) of the neuron’s response to harmonic complex 
tones at different fundamental frequencies. The dashed line indicates the maximal firing rate in 
pure tone tuning (shown in A).  
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Figure 3.2 Another example of harmonic template neuron.  

A, the raster plot of the example neuron’s response to pure tones at different frequency at 40dB 
SPL sound level.  
B, Responses to harmonic complex tones. All harmonic tone have equal amplitude of 40dB SPL 
per component.  
C, the neuron’s responses to the preferred f0 at different sound levels (black line), to f0 alone 
(black dot) and the linear sum of responses to individual harmonics (red circles).  
D, The tunings to f0s with different adding phases (cosine phase: COS and alternating phase: 
ALT).  
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Figure 3 Harmonic template neurons showed periodic response patterns to shifted complex 
tones.  

A, a diagram of shifted complex tones in spectrum.  
B, the responses of a harmonic template neuron to the shifted complex tones shown in A.  
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Figure 3.4 Normalized responses of 35 different harmonic template neurons to the shifted 

complex tones. Each column is the responses from one neuron. The color indicates normalized 

firing rates from 0 to 1. Different neurons are aligned by the location of the maximum firing rate.  
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Figure 3.5 Two criteria for harmonic template neurons.  

A, the distribution of facilitation index for all 372 neurons. A FI larger than 0.3 will be the first 
criterion for harmonic template neurons.  
B, the distribution of periodicity index of all 92 neurons with a FI larger than 0.3. The second 
criterion for harmonic template neuron is: have a periodicity index larger than 0.5. 
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Figure 3.6 The relationship between BF and the preferred f0 for harmonic template 
neurons.  

A, a plot of BFs against preferred f0s of all 64 harmonic template neurons in logarithm scale. The 
preferred f0s are linearly proportional to BFs.  
B, the distribution of ratios between BF and Bf0.  
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Figure 3.7 The different responses of two neurons to the same harmonic complex tones of 
the same f0 but different compositions.  

A, a diagram of the spectrum of all harmonic complex tones and the BFs of two neurons.  
B, responses of Neuron1 which has a BF at the third harmonic of the preferred f0.  
C, responses of neuron2, the BF of which is the eighth harmonic.   



48 
 

 

Figure 3.8 Harmonic template neurons’ responses to sAM tones  

A, a diagram of an amplitude modulate tone in both time domain and frequency domain.  
B, the responses of an example neuron to pure tones and sAM tones at different carriers.  
C, another example of a harmonic template neuron showed responses to carrier at multiple 
harmonics when it is modulated at 621Hz. 
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Figure 3.9 Distribution of harmonic template neurons.  

A, the distribution of estimated BFs of harmonic template neurons.  
B, tonotopic map of marmoset auditory cortex and location of harmonic template neurons.  
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Figure 3.11 Distribution of harmonic template neurons in auditory cortex 

A, tonotopic map and locations of harmonic template neurons from the right hemisphere of 
monkey M73v.  
B, tonotopic map and locations of harmonic template neurons from the left hemisphere of 
monkey M79u. 
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Figure 3.11 A harmonic template neuron’s responses to jittered complex tones.  

A, the raster plot of a harmonic template neuron’s response to spectrally jittered harmonic 
complex tones.  
B, boxplot of the distribution of firing rate for 25 stimuli at each jitter level.   
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Figure 3.12 The normalized firing rate distributions for all jitter level of 29 harmonic 

template neurons. For each jitter level, accumulative probability distribution is used.  The firing 

rate is significantly decreased when the jitter level is larger than 10% (t-test, p < 0.001).  
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Figure 3.13 Examples of a harmonic template neuron and a non-harmonic template neuron 

A, the spectra of jittered complex tones sorted by firing rates of a harmonic template neuron (top). 
The correlation between firing rate and inharmonic index (bottom) 
B, a non-harmonic template neuron did not show sensitivity to spectral regularity. 
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Figure 3.14 Compressed and stretched complex tones test.  

A, the spectra of the compressed and stretched complex tones. 
B, the average firing rates of 9 neurons to those complex tones shown in A.  
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Figure 3.15 The role of inhibition in shaping harmonic templates.  

A, a comparison of the responses to the preferred f0 (Bf0) and responses to Bf0/2 for all harmonic 
template neurons.  
B, the responses of a harmonic template neuron to shifted complex tones plotted in driven rates.  
Driven rates were used by subtracting spontaneous rate from the firing rates estimated from the 
spike count during the stimulus.  
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Figure 3.16 RHS and linear weights estimations 

A, a diagram of the RHS design for a harmonic template neuron at the sample frequency of f0/2.  
B, the estimated linear weights at different harmonics of f0/2. 
  



57 
 

 

 

Figure 3.17 RHS and linear weights estimations 

A, a diagram of the RHS design for a harmonic template neuron at the sample frequency of f0/4.  
B, the estimated linear weights at 20dB mean sound level with 10dB standard deviation. 
C, the estimated linear weights at 30dB mean sound level with 10dB standard deviation. 
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Figure 3.18 An estimation of number of harmonics coded by harmonic template neurons 

A, a demonstration of how the model performance changes with more frequency components. 
B, a summary of all frequency components for all 6 neurons that are important for predicting 
neural responses. 
C, the distribution of the linear weights of five harmonics around BF at the sample of f0/2. 
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Figure 3.19   The preferred f0 measured at different sound levels for harmonic template 
neurons  
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CHAPTER 4:  

4. A distributed harmonic process in primary auditory 

cortex 
 

 

4.1 Introduction 

In chapter3, I describe a specialized subgroup of neurons in A1: harmonic template 

neurons. However, this subgroup of neurons are only a small portion of all neurons sampled in 

A1 (64/372). In this chapter, I analyze at the population level all other neurons to understand how 

harmonic complex tones are represented.  

 

4.1.1 Spectral analysis and perception 

The spectral analysis of a time-varying waveform of the pressure waves can be referred 

to Fourier analysis in physics. Any sound can be written as a summation of a series of sinusoid 

waveforms. For our auditory system, the definition of spectral analysis is more complicated. In 

order to accurately and identify a sound source or to have an efficient communication, the 

analysis of the acoustical signal has to be done on multiple scales because most natural sound and 

conspecific vocalizations are broadband with energy distributed at different frequency bands. If 

we use speech as an example, in order to discriminate a vowel, our auditory system has to analyze 

the space between each frequency and the location of peaks in the spectral profile. The space is 

associated with pitch, which carries information of a talker, such as the gender. The location of 

peaks are formants, the information bearing elements for distinguish different vowels.  
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Although the auditory filter model has been widely used to understand the spectral 

processing in perception (Moore 1995), there are many conditions for complex stimuli that the 

simple peripheral filter model cannot account for performances, such as profile analysis 

(Bernstein and Green 1987, Bernstein and Green 1987), harmonic grouping (Bregman 1990), co-

modulation masking release (Hall, Haggard et al. 1984). In those cases, the perception of a 

frequency can be influenced by another frequency component located far beyond the filter 

bandwidth. Those results suggest that the auditory system integrate information across different 

frequency channels and is sensitive to the global spectral patterns. However, our knowledge of 

the neural mechanism underlying such cross-channel processing is very limited. Harmonic 

complex tones can be useful to explore the possible mechanism because they are sophisticated 

enough to involve the cross-channel processing yet simple enough to systematically control the 

parameters.  

 

4.1.2 Neural representation of harmonic complex tones at auditory nerves  

In the peripheral auditory system, which can be approximated as filter banks organized 

topographically by the center frequencies, a complex sound is decomposed into its frequency 

partials (Zhang, Heinz et al. 2001). When a harmonic complex tone is presented, individual AN 

fibers had a larger firing rate when its characteristic frequencies (CF)  was near a low-order 

harmonic and low firing rate when CF fell in between two harmonics (Cedolin and Delgutte 

2005). A model incorporating a band-pass filter could predict the response trend to f0 changes.  

Although previous study has shown a robust representation of vowels combining rate, 

place and temporal information of populations of AN fibers (Young and Sachs 1979), the spectral 

information of resolved harmonics at single AN fibers degraded at higher sound level. It’s still 
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largely unknown how neurons in the later stage of auditory system read out the information from 

AN fibers and represent harmonic complex tones differently. 

 

4.1.3 Frequency receptive field of neurons in auditory cortex 

In the primary auditory cortex, single neurons are highly selective to frequencies (Suga 

1965, Abeles and Goldstein 1972, Pelleg-Toiba and Wollberg 1989, Sadagopan and Wang 2008) 

and tonotopically organized. However, the increased complexity in local neural network 

connections in auditory cortex enables single neurons to integrate excitatory and inhibitory inputs 

from a broader frequency range. There were evidences that stimuli outside the classical frequency 

receptive field could modulate a neuron’s responses to simple or complex stimuli within the 

receptive field(Shamma and Symmes 1985, Nelken, Prut et al. 1994, Kadia and Wang 2003, 

Sutter and Loftus 2003, Qin, Sakai et al. 2005, Sadagopan and Wang 2010). Therefore, single-

tone responses are not adequate to characterize how cortical neurons process harmonic complex 

tones nor their functional significance in sound feature extraction. On the other hand, such extra-

classical receptive fields make A1 neurons good candidates for integrating information across 

frequency and form an integrative representation of the global spectral feature.  

 

4.1.4 The functional organization of auditory cortex for spectral processing 

The tonotopic frequency organization in A1 has been confirmed from many studies on 

many species. It’s still under debate whether there is other functional structure beyond the 

tonotopic map for the purpose of spectral processing.  Different functional areas were found in 

the auditory cortex of mustached bats, which echo-locate by emitting biosonar signal and measure 

the properties of echoes. There is a CF-CF region, where neurons only respond to tone pairs with 

specific frequency combinations corresponding to the range of encountered Doppler shifts (Suga, 
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1988).  In cat auditory cortex, a bandwidth map was found in dorsal A1: sharply tuned neurons at 

the dorsal ventral center, broadly tuned neurons were located more dorsally (Schreiner, 1992). In 

addition, multi-peaked neurons were found in the dorsal zone (DZ) (Sutter and Schreiner, 1991).  

Such functional maps were rarely reported from other species. Some studies showed that 

single neurons in A1 can have a large diversity in the frequency and level selectivity, even in the 

same isofrequency column (Schwarz and Tomlinson 1990, Hromadka, Deweese et al. 2008, 

Bandyopadhyay, Shamma et al. 2010, Rothschild, Nelken et al. 2010). However those studies did 

not test complex tone or broadband stimuli as the studies on cats.  One important question will be 

whether neurons with different tone response properties, for example monotonic or non-

monotonic rate level functions (Brugge and Merzenich 1973, Pfingst and O'Connor 1981, 

Sadagopan and Wang 2008), process harmonic complex tones differently. 

In this chapter, we systematically characterize single neurons’ responses to tones and 

harmonic complex tones covering a broad f0 frequency range at a moderate sound level to 

investigate how harmonic complex tones are represented in A1. 

 

4.2 Results 

All analyses in this chapter are based on 372 well isolated single units from primary 

auditory cortex from three hemispheres of two monkeys. All neurons had a significant increase in 

firing rate to at least one harmonic complex tone.  

 

4.2.1 Frequency selective neurons in A1 

Neurons which showed a single peak in tone frequency tuning (Figure 4.1A) could 

exhibit multiple peaks if the average firing rate was plotted against the f0s (Figure 4.1B). Because 
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when the fundamental frequency (f0) changes, the corresponding harmonics move in and out of 

the frequency receptive field (Figure 4.1C). We used a dimensionless ratio of single neuron’s best 

frequency (BF) to f0 (harmonic number) (Cedolin and Delgutte 2005, Fishman, Micheyl et al. 

2013), because the selectivity to harmonic complex tones was constrained by the BF. Harmonic 

numbers vary inversely with f0s. The BF became one of the harmonics of the stimuli when the 

harmonic number was an integer value. When the harmonic number is odd integer multiples of 

0.5, the BF fell in between two adjacent harmonics. Therefore, in the rate-f0 tuning, there were 

peaks at integer harmonic numbers and valleys at odd integer multiples of 0.5. The example 

neuron showed such oscillation pattern for lower harmonic number but stopped responding when 

the harmonic number was larger than 6 even there were always harmonics in the tone receptive 

field (Figure 4.1B, spectrum on the left). This response pattern, which was different from the 

auditory nerve responses (Cedolin and Delgutte 2005), could not be simply predicted from the 

pure tone tuning.  

We used discrete Fourier transform (DTF) to calculate the power spectral density (PSD) 

in order to detect oscillations in the rate-f0 tuning profile. If neurons encode precise spectral 

information so that the response peaks only appear at integer harmonic numbers, there will be a 

peak at 1 in the PSD (Figure 4.2B). Neurons which showed similar response pattern could be 

identified because the frequency at the maximal amplitude of PSD would be around 1 (Figure 

4.3A). A non-parametric statistical test was used to assess whether there is a significant peak 

around 1 cycle per Hertz (Methods, Figure 4.4). The firing rate decrease with increased harmonic 

number was quantified by a suppression index. A suppression index was defined as the 

normalized firing rate difference between the smallest and largest harmonic number If only the 

integer harmonic numbers were used (Figure 4.2C).  The distribution of the suppression index 

was shown in Figure 4.3C. Surprisingly, more than half of the neurons were suppressed by 

harmonic complex tones. Based on the two criteria: periodic response pattern and decrease in 
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firing rate (Suppression index < 0), 60/379 neurons were categorized as frequency selective 

neurons (Figure 4.9). The response pattern that the simultaneously presented components 

suppress the response to BF tone and the suppression was larger for spectrally denser stimuli 

suggest surrounding inhibitions for the excitatory receptive field. 

 

4.2.2 Band-pass neurons 

Another type of neurons also had a single peak in pure tone tuning (Figure 4.5A) but 

showed completely different response pattern from the frequency selective neurons. The firing 

rate increased as the spectral density increased (Figure 4.5B). Moreover, the firing rate tuning 

curve had one peak at low harmonic number but became flat gradually to high harmonic numbers, 

which indicates the neuron could not resolve the frequencies at high harmonic numbers. We used 

a tuning width to characterize change of spectral resolvability in the tuning curve (Methods). 

When the tuning is completely flat, the tuning width will be 1, which indicates that the neuron 

cannot distinguish the spectral information (Figure 4.6A and B). A density preference index, the 

ratio of the tuning width at the largest harmonic number to the maximal tuning width, was used to 

quantify the change of tuning width. We use density preference index > 0.8 and suppression 

index <= 0 to identity band-pass neurons because such response pattern was very similar to the 

AN fibers (Figure 4.9). However, there were a few neurons which did not respond to pure tone 

but to harmonic complex tones and broadband noise also fit the criteria (Figure 4.7A). The firing 

rate usually increased with noise bandwidth and sound level (Figure 4.7B, C). Because those 

neurons still showed the similar preference to spectrally dense stimuli and similar trend of firing 

rate increase as the band-pass neurons, we did not put them into a separate category. Band-pass 

neurons are less likely to encode spectral information because of the relatively flat tuning. 

However they could encode other information, such as overall sound level and frequency density, 

which are still important features of harmonic complex tones.  
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4.2.3 Modulation sensitive neurons 

Another important feature of a harmonic complex tone is the temporal regularity. A 

harmonic complex tone will have a periodic temporal modulation equal to f0 if all harmonics start 

at the same phase.  Such envelope modulation could be coded in the temporal phase-locking in 

the auditory system (Cedolin and Delgutte, 2005; Fishman et al. 2013). The cutoff frequency for 

phase-locking in auditory cortex is much lower than subcortical areas (Lu, Liang et al. 2001). 

Some new coding strategy is necessary for coding the temporal feature for larger f0s. We found a 

few neurons which did not respond to pure tones but only to harmonic complex tones at certain 

f0s (Figure 4.8A). We did additional tests by manipulating the starting phases.  If the even 

harmonics started at cosine phase while odd harmonics started at sine phase (ALT), the temporal 

modulation rate will be twice of the f0 in this manipulation. If every component starts with a 

random phase (RND), the peaks in the temporal envelope become less obvious (Figure 4.8C). In 

all three conditions (COS, ALT, RND), the spectral content remained the same. The example 

neuron showed a preferred f0 at around 200Hz (Figure 4.8 B).  However, the response peak 

shifted to around 100Hz when alternating phase was used. The neuron did not respond to 

harmonic complex tones with random phase.  

Although it did not respond to pure tones, the example neuron responded to sinusoidal 

amplitude modulated tones (sAMs) when the modulation frequency was at the preferred f0 

(Figure 4.8D). The preferred carrier frequency around 7kHz, which was consistent with BFs of 

neurons recorded from the same recording track. Such phase sensitivity suggested this example 

neuron encoded the temporal modulation information of harmonic complex tones. Because of 

limited samples of temporal modulation sensitive neurons (6/372), we did not separate this 

subpopulation in the population analysis later in this chapter.  
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4.2.4 Harmonic template neurons 

We also found another subpopulation of neurons which responded to harmonic complex 

tones but showed weak or no response to pure tone (Figure 4.9 A and B).  However, different 

from the temporal modulation sensitive neurons, those neurons were usually not phase sensitive 

(Figure 4.9C). A facilitation index, the normalized firing rate difference between response to best 

f0 and the response to the BF, was used to quantify such combination sensitivity. In addition, 

shifted harmonic complex tones were used to identify harmonic template neurons in addition to 

the facilitation index.  Shifted harmonic complex tones were generated by shifting the first 5 or 6 

harmonics of the preferred f0 of individual neurons by 25% of f0 gradually (Figure 4.9D). Only 

when the shift is 100%, 200%, 300%, …, the shifted complex tone is still harmonic with the same 

f0. When the shift is odd integer multiples of 50%, all frequencies are odd harmonics of f0/2. The 

other shifts generated inharmonic tones. When the harmonics are resolved, a change in pitch will 

be perceived for the inharmonic and odd harmonic shifts (Moore and Moore 2003). Because 

harmonic templates are for resolved harmonics, a harmonic template neuron should be able to 

distinguish harmonic shifts from the other shifts (Figure 4.9E). Neurons that met both criteria: FI > 

0.33 and PI > 0.5 were identified as harmonic template neurons. The emergence of such neurons 

suggests an integrative representation of complex sounds in A1. 

More detailed properties of harmonic template neurons were already described in Chapter 

3. Because of the complicity in responses to harmonic complex tones, we used different criteria 

for separating different subgroups of neurons. In Figure 4.10, all neurons were plotted in a three 

dimensional space: the frequency relative to 1 in periodogram, suppression index and density 

preference index. With all three measurements, the frequency selective neurons and band-pass 

neurons could be fairly well separated. However, harmonic template neurons were more scattered 

in the 3-D distribution. This suggests for highly selective neurons, it’s not sufficient to evaluate 

what features in harmonic complex tones are encoded. Additional tests are needed to fully 
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understand the functional properties. This was also the reason we did not categorize the rest 

neurons further and put them in the uncategorized group together.  

 

4.2.5 A level invariant representation of spectral information 

In auditory nerves, the rate responses to complex stimuli are strongly dependent on 

stimulus levels (Sachs and Young 1979). The representation of resolved harmonics in rate 

response was degraded as the sound level increased which could possibly due to broadened 

cochlear tuning or rate saturation (Cedolin and Delgutte 2005).  We tested some frequency 

selective neurons and harmonic template neurons at different sound levels. For frequency 

selective neurons in A1, the peak firing rates changed under different sound levels. However, the 

tuning curve did not become flat and there were still clear peaks and valleys around the integer 

values (Figure 4.11A, B). We compared the tuning width change at different harmonic number 

and did not find a significant change in tuning width for different sound levels (Figure 4.11C).  

Such sharp frequency selectivity cannot be simply explained by a sharp frequency tuning 

shown in pure tone responses. A few neurons with high spontaneous rates provided evidence for 

the role of inhibition in maintaining sharp frequency tuning at high sound level. The example 

neuron showed increased firing rate to integer harmonics at soft level (10dB SPL). When the 

sound level was increase to 40dB, the firing was suppressed for f0s when BF fell between two 

harmonics and increased when BF coincides with one of the harmonics (Figure 4.11B). Inhibition 

could also explain the decreased firing rate to increased harmonic number for frequency selective 

neurons.  
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4.2.6 Spectral information and Resolvability 

Harmonic template neurons and frequency selective neurons have been shown to encode 

spectral information of harmonic complex tones. By pooling responses from those two 

subpopulations over a broad frequency range, we could have an estimation of the resolved 

harmonics for different fundamental frequency.  The resolved harmonic numbers depend on the 

fundamental frequency. For f0 between 400Hz to 1kHz, the 10th harmonic can be resolved 

(Figure 4.12). This estimation was consistent with the marmoset behavior but different from 

human perception in which the resolved harmonic number is independent of the f0s.   

 

4.2.7 The relationship between other properties and response pattern to harmonic complex tones 

Previous studies have shown different response properties of A1 neurons to pure tones. 

There were monotonic neurons which increase firing rate when the sound level increases. Other 

neurons show non-monotonic tuning to sound level changes: maximal firing rate to a certain 

sound level and the firing rate decreases either the sound level gets higher or lower than the 

preferred level. These different rate-level tunings suggest different excitation and inhibition 

inputs pattern (Ojima and Murakami 2002, Tan, Atencio et al. 2007, Levy and Reyes 2011). It’s 

still unknown, however, how these neurons differ in the spectral selectivity. We compared the 

rate-level functions to BF tones of neurons in different groups described in the previous part. A 

monotonicity index (MI) is defined as the ratio between the firing rate to the maximal sound level 

and maximal firing rate. A MI is between 0 and 1. A MI close to 0 indicates a non-monotonic rate 

level function whereas a MI close to 1 indicates a monotonic tuning. Frequency selective neurons 

and harmonic template neurons are mainly non-monotonic neurons (Figure 4.12B). A majority of 

band-pass neurons are monotonic neurons. The uncategorized group included both monotonic and 

non-monotonic neurons.  
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There was no significant difference in spontaneous firing rates, or distribution of BFs 

across different subpopulations (Figure 4.12 C and D). The facilitation index was also compared 

across different groups. Harmonic template neurons have a strong preference to harmonic 

complex tones, which was also the first criterion for such neurons. Frequency selective neurons 

responded to pure tones and harmonic complex tones equally well. The facilitation index uses the 

largest firing rate in HCTs tuning. Earlier in this Chapter, we also showed a trend of firing rate 

decrease with increasing harmonic number or spectral density for frequency selective neurons. 

They have a preference to spectrally sparse stimuli. Since pure tones are the sparsest stimuli, 

frequency selective neurons usually show large responses to BF tones too.  

 

4.2.8 Heterogeneity of spectral selectivity in the large scale tonotopic map 

Neurons in A1 are tonotopically organized and neighboring neurons usually have similar 

BFs because of common thalamo-cortical inputs (Figure 4.14A). If we plot the distribution of 

neurons within the tonotopic map and also distribution in depth in different categories of spectral 

selectivity, different subpopulations were mixed together and we did not observe any cluster 

either in the tonotopic map or in depth (Figure 4.14 B and C).  However, the recording depth 

distribution (Figure 4.14 D) showed a biased sample in supragranular layers (II/IV) 

Another more direct way to test whether there is possible functional cluster in A1 is to 

compare the responses to complex tones of simultaneously recorded neuron pairs. Spikes from 

different neurons can be sorted by different waveform templates (Figure 4.15B, insert plot). 

Those simultaneously recorded neurons were usually close to each other physically (< 100um 

distance). The same set of stimuli, including pure tones, complex tones were tested. We use 

signal correlation to measure the similarity of the spectral selectivity for neuron pairs. The 

responses of a neuron pair to the shifted harmonic complex tones were shown in Figure 4.15A. 
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For shifted tones, the frequency center also moved from low frequency to high frequency when 

the shift increased. The response areas for both neurons overlapped, which implies similar 

frequency preference. However, one neuron only responded to harmonic shifts while the other 

responded to all shifts.  

Signal correlation is a measure of the similarity of tunings. The negative signal 

correlation suggested two neurons barely responded to the same stimulus (Figure 4.15C). For all 

63 neuron pairs, the estimated BFs were close to each other (Figure 4.16A). However, the 

similarity in BF did not result in similar selectivity to complex tones with more complicated 

spectral contents. For all 63 neuron pairs, both signal correlation and noise correlation were low 

(Figure 8B and C). Overall, our results suggest within the large scale tonotopic map, there is a 

parallel process for harmonic complex tones which might be used for extracting different sound 

features.  

 

4.3 Discussion 

4.3.1 A distributed harmonic process in A1 

In order to identify a sound source with harmonic structures, a parallel spectral analysis 

has to be done on different scales to extract features associated with perceptual attributes.  For 

example, the discrete frequency components need to be grouped together to estimate f0 if the 

fundamental frequency itself is not presented and to compute the overall sound level. In addition, 

the accurate representation of individual harmonics is important for timbre perception. The 

diversity in neural responses to harmonic complex tones suggests different information was 

extracted and carried by different subpopulations of neurons. The harmonic template neurons and 

frequency selective neurons encode resolved harmonics and provide spectral information for f0 

extraction and timber. Integrators can be used for coding frequency range, spectral density or 
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overall sound levels. The temporal envelope neurons mainly code the temporal modulation in the 

signal. Last but not least, although the uncategorized group cannot be characterized by our 

measurements, they might encode some other important features.  Because of the high 

dimensionality of complex tones, additional tests are necessary to fully understand the functions 

of those neurons.  

All the different subgroups of neurons form a distributed neural code for harmonic 

complex tones with pre-processed information which can be used further for extracting perceptual 

features, such as loudness, pitch and timber to form a code of ‘auditory objects’ at later stages.  

 

4.3.2 Harmonic resolvability in auditory cortex  

By examining the response of cortical neurons, we could estimate the lowest f0, the 

harmonics of which can be resolved in a given frequency range (different BFs). By pooling all 

neurons which encode spectral information of harmonic complex tones, we could estimate the 

highest harmonic number that could be resolved in auditory cortex for different f0s. We found the 

resolved harmonic numbers changes with the f0s. For the f0s around 1kHz, up to the 10th 

harmonic can be resolved.  However, our estimation for the upper limit of resolved harmonic 

numbers is based on two subpopulations of neurons characterized by our measures. It might be an 

underestimate because of the limited sample size and the fact that we did not take into account the 

resolvability of neurons in the uncategorized group. Our results are consistent with previous 

studies.  Two different groups showed the maximal resolved harmonic numbers increases with 

characteristic frequency (CF) of AN fibers, from 2-3 at 200Hz to about 10 at 10kHz and above on 

different animal models (Evans, Rosenberg et al. 1971, Cedolin and Delgutte 2005). Our result 

was also comparable with the study in the cat anteroventral cochlear nucleus (AVCN), which 



73 
 

reported the number of harmonics resolved in the rate responses of single units increases from 2 

at 250Hz to 13 at 10kHz (Smoorenburg and Linschoten 1977).  

 

4.3.3 Comparison between the peripheral auditory system and the central auditory system 

The peripheral auditory system acts like a frequency analyzer which decomposes a 

harmonic complex tone into a serial of topographically organized frequency channels along the 

basilar membrane of cochlear. When the harmonic number is small, each component falls into 

different filters (resolved). The frequency contents could be encoded by the spatial activation 

pattern of all frequency channels. For unresolved harmonics, the interaction of frequencies within 

a single filter generates an envelope modulation which can be coded by neurons which phase lock 

to such temporal modulation. The subpopulations of cortical neurons, which encode spectral 

information only responded to resolved harmonics and cease firing when the harmonics are not 

resolved. The emergency of those specialized neurons suggest the spectral and temporal 

information start to separate in A1.  

Another important finding in our study is that the resolvability does not change with 

sound level change.   This is very important because our auditory system operates in a broad 

dynamic range because of the distance to the sound source, background noise. For AN fibers and 

AVCN neurons, the ability to resolve harmonics in their rate response degrades rapidly with 

increasing stimulus levels, even the low and moderate stimulus levels (15-20dB above threshold) 

were used to minimize rate saturation (Smoorenburg and Linschoten 1977, Cedolin and Delgutte 

2005). Although the rate-place representation in the AN fibers provide sufficient information to 

account for the behavior performance at high sound levels as shown in previous studies, it fails to 

explain the general robust psychophysical performance at high sound levels(Hirsh, Reynolds et al. 

1954).  In addition, accurate frequency information need to be maintained in order to use a 
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‘’harmonic template’’ to extract pitch information(Goldstein 1973). Frequency selective neurons 

showed a level-invariant representation of the spectral information over a relative wide range (up 

to 40dB difference). Although we were not able to separate excitation and inhibition in 

extracellular studies, the suppression in firing rates to spectrally dense stimuli and harmonic 

complex tones that don’t include BF suggests that inhibition can help maintain the frequency 

selectivity at higher sound levels.   

 

4.3.4 Parallel spectral analysis in A1 

In our study, we did not find any clusters for different subpopulations of neurons 

characterized by their responses to harmonic complex tones. Instead, they were all scattered in the 

tonotopic map and intermingled with each other. Our finding was consistent with previous studies, 

which found tone-unresponsive neurons scattered in the local circuitry and neighboring neurons 

could have similar or complete different frequency response areas(Hromadka, Deweese et al. 

2008, Bandyopadhyay, Shamma et al. 2010, Rothschild, Nelken et al. 2010). Although our 

criteria for grouping neurons were not based on tone response but responses to harmonic complex 

tones. We did find some correlation between the tone responses and selectivity to harmonic 

complex tones. For example, the majority of the frequency selective neurons were tone-

responsive and had a non-monotonic rate-level functions. On the contrary, the band-pass neurons 

tend to have a monotonic rate-level function. Harmonic template neurons and modulation 

sensitive neurons had weak or no responses to tones.  

We also found that on average the signal correlations between neuron pairs were low, 

consistent with previous studies. However, the noise correlation in our study was on average low 

as well, which was different. One possible reason could be the different stimulus set. The 

complex tones used in our study cover a broad frequency range (3 octaves), which might recruit 
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more neurons in the local circuitry or even long range intra-cortical connections comparing with 

pure tones. Another possible reason could be the different experiment preparation. In the study by 

Rosechild and Nelken, recording was done under anesthesia while we recorded from awake 

animals (Rothschild, Nelken et al. 2010). The smaller noise correlation in our study might be due 

to the awake state. Previous studies have shown the neural correlation changed in different states 

or by associative learning (Issa and Wang 2013, Jeanne, Sharpee et al. 2013). The third reason 

might be the sample sizes. Because we had only 63 neurons pairs, there could be a larger bias in 

our distribution.  

We did not find any organization along the recording track either. However, in our study, 

we had a biased sample in Layer II and III. Because of the information flow hierarchy across 

layers, it will be interesting to compare the neural responses to harmonic complex tones across 

different layers.  

In summary, data presented in this chapter show that within the large scale tonotopic map, 

the local processing for complex tones is heterogeneous, which suggests parallel processing for 

feature extraction.  

 

4.3.5 Harmonic process and comparative aspects of pitch perception 

In this chapter, I systematically examined how cortical neurons represent harmonic 

complex tones. The perception of complex sounds by animals may be related to human pitch 

perception. We did not directly associate our study with pitch perception as previous studies, 

because we were trying to understand a general neural mechanism for complex sound processing, 

which might also involve in pitch extraction. There has been shown a link between speech and 

pitch perception. The probability distribution of speech sounds could predict many pitch 

perception phenomena.  
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In our study we used f0s cover a broad frequency range (400Hz to 15kHz) because 

marmosets have a hearing range from 300Hz to 38kHz (Osmanski and Wang 2011). The first 

harmonics of four major marmoset vocalizations are between 3kHz to 8kHz (DiMattina and 

Wang 2006). We found that the upper limit for resolved harmonics depends on the f0s, which is 

consistent with the estimation from the critical bands of marmosets. We did not test the temporal 

processing systematically because most of stimuli had f0s above 400Hz. Behavior study suggest 

marmosets rely on spectral cues for f0s above 400Hz in a pitch discrimination task. This could 

also be the reason that we did not get many modulation sensitive neurons with harmonic complex 

tone search. It will be interesting to compare the spectral and temporal information processing for 

harmonic complex tones on different animal models given different vocalization ranges and 

hearing ranges across species. We will have more evidence whether there is a general pitch 

mechanism common for all vertebrate species. 
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Figure 4.1,  An example of the responses of a frequency selective neuron to pure tone and 
harmonic complex tones. 

A, frequency tuning measured at 30dB SPL showed a peak at the best frequency (BF).  
B, left: the spectrum of harmonic complex tones at different f0s with equal amplitude. The level 
for individual harmonics was 30dB SPL. Middle: the raster plot of the neural responses to the 
stimuli shown on the left. The shaded area indicates the duration of sound stimuli. Right: the 
average firing rates to different f0s. 
 C. The schematic illustration of the HCT stimuli.  
D, firing rate tuning to harmonic number, a dimensionless parameter  
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Figure 4.2. Metrics for quantify response pattern to HCTs.  

A, the rate-harmonic number tuning.  
B. the power spectral density of the rate-harmonic number tuning in A.  
C, firing rates of harmonic numbers at integer value only. There was a trend of decrease in firing 
rate when the harmonic number increased.  
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Figure 4.3 Distribution of three different measurements for tuning to harmonic complex 
tones 

A, distribution of frequencies at peak amplitude in the power spectral density function. A value 
near 1 indicate an oscillating response pattern in Figure 4.1.  
B, distribution of the density preference index 
C, distribution of the suppression index 
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Figure 4.4 A nonparametric permutation test (Ptitsyn, Zvonic et al. 2006, Fishman, Micheyl et 
al. 2013) to assess the statistical significance of the peaks by randomly shuffling the sample 
points in the rate-f0 tuning. For every shuffled trial, the power spectral density was computed and 
the amplitude at the peak frequency of the original trial was measured. The null-hypothesis is that 
a random point serial will yield a same amplitude or higher peak in the power spectral density 
distribution. A null reference distribution of the spectral amplitude at the given period was 
generated by repeating this process for 1000 times. The p-value is defined as the probability of 
observing an amplitude at a given frequency equal or larger than the observed value.  
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Figure 4.5 An example of the responses of an band-pass neuron to pure tone and harmonic 
complex tones.  

A, frequency tuning measured at 30dB SPL showed a peak at the best frequency (BF).  
B, left: the spectrum of harmonic complex tones at different f0s with equal amplitude. The level 
for individual harmonics was 30dB SPL. Middle: the raster plot of the neural responses to the 
stimuli shown on the left. The shaded area indicates the duration of sound stimuli. Right: the 
average firing rates to different f0s.  
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Figure 4.6 An example of how to quantify a band-pass neuron.  

A. a demonstration of how the response pattern to HCTs is quantified. The red rectangular 
squares were used to match the responsive area within each window.  
B. the harmonic tuning widths measured at different harmonic number (the width of the red 
rectangular square). The tuning became more flat to higher harmonic numbers.  
C, firing rates of harmonic numbers at integer value only. There was a trend of increase in firing 
rate when the harmonic number increased.  
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Figure 4.7 An example of a band-pass neuron which preferred high density and loud stimuli. 

A, responses to HCTs. 
B, firing rates to noise with different bandwidth. 
C, rate-level function of a broadband noise. 
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Figure 4.8 An example of the responses of a modulation sensitive neuron.  

A, raster plot of responses to f0 of HCTs.  
B. An illustration of different stimulus waveforms for different phase relationships among 
harmonic of a 200Hz f0.  
C, The average firing rate tuning to f0 of HCTs in three different phase relationships.  
D, The responses to pure tone at different frequency and a 256Hz sinusoidal amplitude modulated 
tones.  
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Figure 4.9 An example of a harmonic template neuron.  

A, raster plot of responses to f0 of HCTs.  
B, Responses to the preferred HCT and individual harmonics alone at different sound levels.  
C, the rate-f0 tuning in two different phase relationships.  
D, a diagram of the spectrum for shifted harmonic tones.  
E, the responses to shifted harmonic tones. Neuron only responded to harmonic shifts.  
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Figure 4.10 Distributions of different subgroups of neurons in different metrics 

A, the distribution of different subgroups of neurons in a 3-D space of the three measurements: 
periodicity, suppression index, and density preference index 
B, a projection of the 3-D distribution to 2-D spaces. 
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Figure 4.11, A level independent rate code for spectral information of HCTs.  

A, an example of a frequency selective neuron’s tuning to f0s at two sound levels tested.  
B, another example of a frequency selective neuron with a high spontaneous firing rate.  
C, the distribution of change in harmonic tuning width at every peaks in the f0 tuning for 10 
neurons when the sound level was increased by 10 – 40dB SPL.   
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Figure 4.12 Estimation of resolved harmonic numbers for different f0s by pooling all 
frequency selective neurons and harmonic template neurons. The blue lines were the estimated 
resolvability from the measured critical bandwidth of marmosets (Osmanski, Song et al. 2013).
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Figure 4.13 A comparison between different subpopulations.  

A, the distribution of facilitation index indicates different preference to complex tones and pure 
tones. 
B, the distribution of monotonicity index of rate-level function at BF tones.  
C, the distribution of best frequencies  
D, the distribution of spontaneous firing rates.  
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Figure 4.14 Distribution of different subpopulations in auditory cortex.  

A, the tonotopic map of A1 from one hemisphere of one monkey (73v).  
B, the distribution of different groups in the tonotopic map.  
C, the distribution of different groups in depth.  
D, the recording depth distribution for different groups. All groups were within a 1mm distance 
from the first spikes, suggesting that most of our samples are form layer II/III. 
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Figure 4.15 Correlations of neuron pairs in responses to complex tones.  

A, raster plots of the responses to shifted HCTs of two simultaneously recorded neurons.  
B, average waveform and standard deviation (shaded area) for each neuron 
C, the signal correlation of the neuron pair shown in A in responses to complex tones  
D, the trial to trail noise correlation of the neuron pair in responses to complex tones.  
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Figure 4.16 a summary of all 63 pairs in BF and neuron correlations 

A, a comparison of estimated BFs for pairs of neurons.  
B, the distribution of signal correlations for all neuron pairs 
C, the distribution of noise correlation for all pairs.  
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CHAPTER 5:  

5. Online adaptive stimulus design for studying spectral 

integration in auditory cortex 
 

 

 

 

 In the previous chapters, I investigated the neural representation of harmonic complex 

tones in primary auditory cortex using the traditional neurophysiology procedure: pre-determine a 

set of stimulus with varying parameters, record neural responses, and analyze data offline. In this 

chapter, I explore a new method: online adaptive stimulus design to study spectral integration in 

A1.  In this approach, every stimulus is generated online according to neural responses to 

previous stimuli, which can sample a high dimensional feature space more efficiently.  

 

5.1 Introduction 

In order to understand how auditory system analyzes sounds and give rise to perception, 

we are trying to quantify the transfer function between stimuli and neural responses at single 

neuron level. In most neurophysiology studies, a widely used approach is to play a set of pre-

determined stimuli with varying parameters along one feature dimension, for example, the 

frequency of a pure tone, record the neural responses and analyze the date offline to determine the 

relationship between stimuli and responses, for example tuning curves. This approach has been 

successful to characterize auditory neurons to some extent. A good example is the auditory nerve 

filter model, which provides approximately good prediction for the responses to speech-like 



94 
 

stimuli (Meddis, O'Mard et al. 2001, Zhang, Heinz et al. 2001, Bruce, Sachs et al. 2003) However, 

the spectral analysis is much more complex in central auditory system (CNS) because of the 

nonlinear integration of both inhibitory and excitatory responses to a broad frequency and level 

range. In auditory cortex, for example, a neuron’s response to a spectrally complex sound cannot 

be predicted from the linear sum of its responses to individual partials (Abeles and Goldstein 

1972, Shamma and Symmes 1985, Sutter, Schreiner et al. 1999, Kadia and Wang 2003). 

Combination sensitive neurons which did not respond to simple stimuli but to combination of 

features make it necessary to study cortex neurons with complex stimuli.  

This raises two problems: first, the high dimensionality of complex stimuli makes a 

lookup table that describe the response of a neuron to all possible combination of stimulus 

features become impossible. Different models were used other than tuning curves to describe the 

stimuli and responses relationships in CNS. Commonly used models include the Spectro-

Temporal Receptive Fields (STRFs), which are based on spike-triggered average obtained using 

random noise or natural sounds(Marmarelis 1978, Jones and Palmer 1987, Theunissen, Sen et al. 

2000) and frequency weighting function models using random spectrum stimuli (Yu and Young 

2000). One of the limitation for STRFs and linear weighting function model is that they can only 

adequately characterize neurons that are approximately linear (Young, Yu et al. 2005, Wu, David 

et al. 2006). For cortical neurons, those models can have a poor performance in predicting 

responses to new stimuli and cannot accurately capture complex receptive fields, such as the 

multi-peaks (Theunissen, Sen et al. 2000, Christianson, Sahani et al. 2008).  More complex 

models such as the quadratic models and neural network models often require large amount of 

data and computation (Pfingst and O'Connor 1981, Yu and Young 2000, Bandyopadhyay, Reiss 

et al. 2007).  

The second problem is: the large number of combinations makes it difficult to find the 

optimal stimulus in a limited recording time. Some studies have tried an adaptive stimulus 
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optimization technique to maximize the firing rate of single neurons (Nelken, Prut et al. 1994, 

O'Connor, Petkov et al. 2005). In those studies, an optimal stimulus is defined as the one that 

produces the highest firing rate. However, from neural coding aspect, the stimulus that maximally 

changes the firing rate (maximal slope) is also informative.   

A general statistical data-collection method (optimal experimental design, OED) has been 

proposed in a recent work for hierarchical neural networks: a small number of optimally designed 

stimuli can yield a model estimation as good as a large number of random independent and 

identically distributed (IID) samples (DiMattina and Zhang 2011). This method could potentially 

reduce the recording time needed for an accurate estimation. In addition, the responses elicited by 

this method should potentially span the entire dynamic range of firing rate. This method has been 

applied to the estimation of generalized linear models, where fewer stimuli chosen adaptively can 

give an accurate estimation (Lewi, Schneider et al. 2011), but not been broadly used in in-vivo 

neurophysiology experiments except the study by Tam and Young in inferior colliculus (Tam 

2012). 

In this chapter, we combined neural modeling and the statistical data-collection method 

in the neurophysiology experiment to study spectral integration in auditory cortex. In this study, a 

feed-forward network model with five subunits was used to approximate the computation of 

cortical neurons. Those subunits represented potential excitatory and inhibitory synaptic inputs. 

Stimuli were generated adaptively to optimize the parameter estimation of the hypothesized 

model based on the recorded firing rates from previous stimuli. Our results show that the optimal 

design algorithm can use less than 300 stimuli for estimating the parameters of the neural network. 

The model can potentially predict firing rates of various neurons and also capture the nonlinear 

spectral integration of some cortical neurons. Our preliminary data also revealed possible 

frequency receptive field structures underlying diverse spectral selectivity. 
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5.2 Results  

A total of 92 neurons were recorded from three hemispheres of two marmoset monkeys 

(left hemisphere of M79u, both hemispheres of M73v). All neurons were tested with pure tones, 

two tones, harmonic complex tones, inharmonic complex tones (Methods). The entire data set 

was divided into training set (75% of all stimuli) and validation set (25% of all stimuli). For each 

neuron, the feed-forward model as in Figure 2.2 was estimated using the training data set and then 

the predictive capability was tested on the validation set. We used the correlation coefficient (r) to 

quantify the performance of the model in predicting neural responses. A correlation coefficient 

close to 1 indicate good prediction. A total of 66 neurons were tested in the online adaptive 

stimulus design. 

 

5.2.1, A generalized feedforward model for studying spectral integration in auditory cortex 

The rational for choosing multiple excitatory subunits was to allow the formation of 

complex frequency receptive fields with more than one excitatory peak in order to account for the 

modulation effect from extra-classical receptive field and combination sensitivity shown on 

harmonic template neurons in Chapter3 (Shamma and Symmes 1985, Sutter, Schreiner et al. 1999, 

Kadia and Wang 2003). However, not all subunits will turn to be useful after fitting: the synaptic 

connection can be close to 0. Therefore, this model can still account for simple receptive fields, 

such as excitation peak surrounded by lateral inhibition. The example neuron shown in Figure 5.1 

is a good demonstration. After fitting, only one excitatory subunit and one inhibitory subunit had 

significant weights.  The estimated model gave a good predication for both training data set and 

validation dataset. One interesting observation from the estimated model was the overlapping of 

the excitatory and inhibitory subunits. We will have a detailed discussion later.   
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As we shown in Chapter 4, there are different subpopulations which showed distinct 

selectivity to complex tones. The diversity in responses suggests different structure of the 

frequency receptive fields. Different subpopulations might also have different level of 

nonlinearity in spectral integration. Therefore, we evaluated the model’s performance across all 

92 neurons in four different groups defined in chapter 4. Figure 5.2 shows the distributions of the 

correlation coefficient (r) for four different groups. On average, the validation data were often 

harder for a model to predict than the training data. This was expected because this simplified 

model cannot account for the possible nonlinearity. The performance varied greatly from neuron 

to neuron. However, our model had a better performance on the frequency selective neurons and 

band-pass neurons for both training set and validation set in general. For harmonic template 

neurons, the prediction was good on training set but poor on validation set. The correlation 

coefficients were also listed in Table 5.1.The across group variance suggests that frequency 

selective neuron and band-pass neurons are more linear than harmonic template neurons and 

neurons that were not categorized. Overall, the five subunits feedforward network model can 

account for the spectral selectivity of cortical neuron to some extent.  

One surprising result was that co-tuning occurred quite frequently in the estimated 

network. Figure 5.3A shows examples of different model estimates. In the first example, one 

excitatory subunit and one inhibitory subunit overlapped with each other. In other words, the two 

Gaussian weights have almost identical centers and variances. The appearance of co-tuned 

subunits cannot be dismissed as a mere coincidence at the population level. Figure 5.3B shows 

the distribution of the co-tuning index over the whole population. Out of the 92 recorded neurons, 

18 neurons had a COI lower than 0.2 (20%). Those neurons with co-tuned subunits had a broad 

BF range (Figure 5.4A). Intuitively, a co-tuned pair would yield a non-monotonic rate-level 

function. However, half of the 18 neurons had monotonic rate-level function at their BFs (Figure 

5.4B).  
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5.2.2, Application of OED experiments 

From the offline data fitting, we have shown that the simplified feedforward network 

model can capture the stimulus-response relationship to some extent. The next question is 

whether the online adaptive search method could give an estimation as good as the model from 

offline fitting. During the OED experiment, the model was trained over 300 iterations. Figure 5.5 

showed how the optimal stimuli developed during the process. In our design, there are 31 bins 

covering a broad frequency range of three octaves. The 300 stimuli can be either narrow-band and 

sparse or broadband. However, pure tones were relatively rare.  In the example, the model started 

with random guess, but after 50 iterations, the designed stimuli had spectral energy focusing 

around frequencies that the neuron was most sensitive to, which can either strongly excite or 

inhibit the example neuron. The firing rate to each stimulus was plotted below. Some of the 

stimuli increased the neural firing rate (above the dashed line) while others suppress the firing 

rate (below the dashed line).   

The estimated model was plotted in Figure 5.6A in terms of the synaptic input weights 

for all subunits. The excitatory units were spread in different frequency regions. The excitatory 

subunit with the largest peak was near the estimated BF from other test. The only inhibitory unit 

left was also centered at BF but slightly wider than the excitatory subunit. The model gave a good 

prediction of the frequency tuning and non-monotonic rate-level function of the example neuron 

even though the model was not trained on pure tones (Figure 5.6B, C).  

 

5.2.3 Finding the “optimal stimuli” 

As mentioned earlier in this chapter, our approach aims to find the “optimal stimuli” 

which drive a neuron in its full dynamic range. In order to test whether the online model was 
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optimized to do such task, thirty “optimal stimuli” were used as a separate validation set.  The 

thirty stimuli were picked according to the predicted responses to randomly generated 1,000,000 

stimuli with different spectral profiles from the model: ten stimuli which invoked high firing rates, 

ten median, and ten low. Neural responses to the thirty stimuli were recorded and compared with 

the model prediction. As shown in Figure 5.7, although the model was not as successful to give a 

good prediction of the absolute firing rates, it captured how the firing rate changes with different 

spectral contents.  

Previous adaptive methods aimed to find the “optimal stimuli” that has the highest 

probability to make a neuron fire a spike. Some neurons in auditory cortex are suppressed by 

sound stimuli. The decrease in firing rate encodes information of sounds. For such neurons, the 

adaptive methods have to adjust the optimization algorithm in order to find the “optimal stimulus” 

which maximally suppresses the firing rate. The OED method in our study aims at driving a 

neuron in its full dynamic range, which by default could not only find stimuli that excite the 

neuron but also stimuli that suppress the neuron. Therefore, this method can also study neurons 

which only decreases firing rate to stimuli. An example neuron was shown in Figure 5.8. The 

final model estimated online only had inhibitory subunits, which explained the suppressed firing 

rate by most stimuli.  

For most neurons that we tested with OED, regular stimuli, such as pure tones and 

complex tones were also used to characterize individual neuron. For some neurons which did not 

respond to any simple stimuli tested, the OED method was also able to find stimuli which could 

drive those neurons. One example is shown in Figure 5.9. The “optimal stimuli” designed by the 

online model were less structured, but showed a preference to broadband stimuli.  
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5.2.4 Receptive field structure underlying the spectral selectivity 

We applied OED experiment on 66 neurons. The model revealed different receptive field 

structure with distinct selectivity. As described in Chapter 4, the adjacent neuron pairs have little 

similarity in their selectivity to complex tones even their BFs are close. It becomes an interesting 

question whether the OED model is accurate enough in order to capture the details of the local 

microcircuits within a small frequency range.  

In one experiment, we managed to hold two neurons long enough to have the models for 

each neuron estimated online separately. The first neuron was the example shown in Figure 5.2 

with overlapped excitatory and inhibitory subunits centered at BF (Figure 5.9A, left). The model 

showed a preference of this neuron to sparse tones because of the surrounding inhibitory (Figure 

5.9B and C, left). For the second neuron, two excitatory subunits had their centers shifted from 

the BF and one broadly tuned inhibitory subunit covered the area between the two excitatory 

peaks including BF, where was the excitatory area for the first neuron (Figure 5.9A). The second 

neuron responded maximally to two tones simultaneously and did not respond to stimuli with 

energy at BF.  

These examples showed that the OED method has a high accuracy to estimate the 

receptive field structure even in a small frequency range. It also proved that within 300 iterations, 

OED can efficiently sample the most interesting areas for individual neuron in a high dimensional 

space to give a good estimation of the stimulus-response relationship. This method would 

potentially provide more insights to our observations of the little similarity in the spectral 

selectivity of adjacent neuron pairs.  
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5.2.5 Evaluation of OED 

In the OED experiment, the more the iterations are, the higher probability is to get a low 

mean predictive error (MPE) (Sheiner and Beal 1981). However, considering the limited 

recording time, only 300 iterations were used. Because a simulation has shown that there is no 

significant improvement in predication when the iteration increases from 300 to 400 given the 

complicity of our model (Dekel 2012). In a fixed number of stimuli, the estimated model will 

depend on the stimulus samples used. In order to evaluate the model estimated online, we also did 

offline fitting combining all the stimuli used for characterizing a neuron and the 30 optimal 

stimuli designed online excluding the 300 stimuli during the adaptive searching to get another 

estimation as comparison. The entire data set was divided randomly to a training set with 75% of 

the total stimuli and the validation set with the rest 25%. For most neurons, the training set 

included more than 300 stimuli. The parameters of the model were estimated using a multi-start, 

data-fitting minimization of the MSE between the neural responses and the model, starting from a 

1000 initial guesses. This offline fitting presumably will give a more optimized model. However 

we have to keep in mind that the large amount of computation for the offline fitting and 

optimization is not feasible for an online experiment.  

A comparison between the online model and the offline optimized model was based on 

66 neurons. On average, the offline model could predict the neural responses better than the 

model estimated online (Figure 5.10). We also compared the models on different subsets of data: 

the optimal stimuli generated online, pure tone, complex tones (harmonic complex tones and 

inharmonic complex tones). There was no significant difference in the performance in predicting 

the responses to the 30 optimal stimuli generated online. But the model generated online was not 

as good as the optimized offline model in predicting pure tone responses. The prediction to 

complex tones was the worse among all three sets. Table 5.2 summarizes the results of the OED 

online model and the optimized offline model, including a t-test comparison between the two 
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models. A possible reason for the poor performance on pure tones might be the training stimuli 

generated online were mostly broadband. As for complex tones, because of the nonlinear 

summation of harmonic complex tones, our feed-forward model might not be adequate.  

 

5.3 Discussion 

5.3.1 Summary of experiments 

We combined neurophysiological recording and computational modeling to investigate 

the role of the interaction of excitatory and inhibitory receptive field components in shaping the 

spectral selectivity of neurons in A1 of awake marmosets. We found that simple feedforward 

networks, composed of a relatively small number of excitatory and inhibitory subunits (Figure 

2.2), were capable of capturing the complex responses of many A1 neurons to stimuli with 

varying spectral contents to some extent, ranging from pure-tones to multi-band stimuli. In 

particular, the network models were able to predict the responses to novel stimuli that were not 

used for parameter estimation.  

Based on the feed-forward model, we implemented an online adaptive method which is 

based on an information-theoretic criterion that maximize the mutual information between the 

presented stimuli and the expected response given the neuron’s response history and the current 

parameters estimated in our neurophysiology experiment. The adaptively designed 300 stimuli 

can efficiently search in the high dimensional space to drive neurons in their full firing rate range. 

The estimated model online could accurately capture the difference in receptive field structure 

even within a small frequency range.  
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5.3.2 Co-tuned excitatory and inhibitory inputs 

The best-fitting models for many neurons showed co-tuning; that is, the networks 

contained excitatory and inhibitory subunits that had almost identical center frequencies and 

almost identical tuning widths (Figure 5.3). We analyzed those neurons with co-tuned subunits, 

focusing especially on their underlying network mechanisms. The center of co-tuned excitation 

and inhibition was spread throughout the hearing range of marmoset. A neuron with co-tuned 

subunits had either monotonic or non-monotonic rate-level function at its best frequency, 

depending on the distance between the best frequency and the frequency center of the co-tuned 

pair (Dekel 2012). When the co-tuned pair was centered far away from the best frequency, the 

rate-level function tended to be monotonic. By contrast, when the co-tuned pair was centered 

close to the best frequency, the rate-level function tended to be non-monotonic, peaking at some 

intermediate sound level. In this situation, the non-monotonicity was produced predominantly by 

the projections from the co-tuned pair to the principal unit.  

We also considered broader theoretical implications of our findings. Co-tuning implies 

degeneracy of a synaptic weight matrix, which is a necessary condition that allows a network to 

generate peaked responses around the optimal stimulus (DiMattina and Zhang 2007). Although 

the relationship between optimal stimulus and weight matrix degeneracy may seem abstract or 

even counterintuitive, it provides a conceptual bridge from co-tuning to non-monotonic turning 

curves and robust selectivity to specific high-dimensional stimulus features. 

Our results showed that co-tuning could emerge solely from spectral models without 

involving any temporal role at all. This is because our models were focused strictly on spectral 

information processing while temporal dynamics was completely ignored. Of course, this finding 

should by no means be interpreted as a contradiction to any temporal function of co-tuning (Wehr 

and Zador 2003, Zhang, Tan et al. 2003, Tan, Atencio et al. 2007). In reality, co-tuning probably 

has both spectral and temporal roles to play in the auditory cortex.  
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Similar to previous experimental and theoretical results (de la Rocha, Marchetti et al. 

2008, Wu, Arbuckle et al. 2008) , our findings do not imply that lateral inhibition and co-tuning 

are mutually exclusive in the neural architecture underlying A1 neurons. On the contrary, most 

estimated models containing co-tuning also contained lateral inhibition to some extent. The 

biological system probably uses both configurations together as building blocks to construct more 

elaborate circuitries.  

 

5.3.3 Implication for spectral integration in auditory system 

Many natural and man-made sounds, such as animal vocalizations, human speech and 

music have broad spectrum. Although the peripheral auditory system segregates sounds into 

narrow frequency channels, frequency components of one sound source needed to be grouped 

together and separated from components of other sound sources, usually known as auditory scene 

analysis (Bregman 1990). To understand how neurons in central auditory system analyze the 

spectrum provided by the peripheral auditory system and form representations of individual 

sound sources is very important for understanding the grouping and segregation in perception. 

Neurons in A1 showed narrow tuning to pure tones, but intracellular recording and two-tone 

experiments revealed much broader subthreshold excitatory and inhibitory inputs (Merzenich, 

Knight et al. 1975, Recanzone, Guard et al. 2000, Linden, Liu et al. 2003, Moshitch, Las et al. 

2006, Sadagopan and Wang 2008). These data suggest that neurons in A1 are candidates for 

spectral integration and coding of complex spectral profiles. By using complex tones in addition 

to single tones, we were able to study neural response properties and selectivity in a higher 

dimensional stimulus feature space.  

A network model with excitatory and inhibitory subunits covering different frequency 

areas helped reduce the dimensionality in the description of neural responses. Instead of 
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specifying a lookup table that describes the response of a neuron to all possible combination of 

stimulus features, which quickly becomes impossible as the stimulus dimension increases, one 

only needs to specify the parameters of a network model, which can potentially predict the 

response to any stimulus and therefore carry full information about the global stimulus-response 

relationship. Our models also captured the nonlinearity at multiple levels in the network in 

addition to the linear integration of synaptic inputs which are attainable by methods such as 

Spectrotemporal receptive fields (Theunissen, Sen et al. 2000) and random spectral stimuli 

estimations (Yu and Young 2000, Barbour and Wang 2003). There is no inherent theoretical 

limitation on the complexity of neural responses that can be accommodated by a network model, 

because these networks are universal approximators that can approximate any input-output 

function to arbitrary precision when enough subunits are included (Cybenko 1989, Hornik, 

Stinchcombe et al. 1989). It would be useful to extend our method to exploit the feature 

selectivity of nonlinear neurons in higher auditory areas.  

 

5.3.4 Network models used in studying neural response properties in A1 

The neural network models used in our study were highly simplified but proved to be 

adequate for the purpose of this work. In the hierarchical networks, each unit at the bottom 

preferred only a single frequency while the unit at the top integrated excitatory and inhibitory 

inputs from below to generate more complex spectral selectivity that spanned a wide frequency 

range, not unlike the real system to a first approximation.  

Our current models included only feedforward excitation and inhibition. A recurrent 

network with additional feedback excitation and inhibition may potentially offer a more 

expressive model for describing neuronal responses. By incorporating temporal dynamics and 

recurrent connections into network models (de la Rocha, Marchetti et al. 2008, Schinkel-Bielefeld, 
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David et al. 2012), we might be able to account for the behaviors of a large proportion of auditory 

cortical neurons more precisely. Although biological realism is always desirable in modeling, we 

need to keep in mind that an increase in model complexity should be accompanied by adequate 

decrease in model fitting error and, more importantly, model prediction error.  

There are many biological details that could be accommodated into future versions of our 

models. For example, thalamocortical inputs and intracortical inputs received by A1 neurons are 

thought to be separated in both spectral and temporal domains: the thalamocortical pathway 

preferentially mediates fast response to BF tones, while the intracortical pathway mediates late 

response to non-BF stimuli. For near-BF tones, inputs come from both pathways, with the 

thalamocortical inputs arriving before the intracortical inputs (Kaur, Lazar et al. 2004, Liu, Wu et 

al. 2007, Happel, Jeschke et al. 2010). The thalamic and intracortical projections might contribute 

differently to the neural selectivity to spectral contents. Besides other limitations mentioned 

earlier, our current models did not make such fine differentiations, and future improvement 

should come from incorporating more biologically realistic features into the models.  

In addition, there are different types of GABAergic interneurons which have distinct 

morphology and postsynaptic targets (Markram, Toledo-Rodriguez et al. 2004). An important 

open question is to model such subtypes of inhibitory neurons differently and clarify their 

respective functional roles in cortical processing. Now with the development of optogenetic tools, 

it is possible to target certain types of neurons and manipulate distinct neural circuitry (Lee, 

Kwan et al. 2012, Wilson, Runyan et al. 2012). It will be interesting in the future to combine our 

modeling approach with such experimental manipulations. Because of the online adaptive method, 

it’s possible to have an estimated model in 300 iterations, usually a few minutes.  The estimated 

models under different conditions may uncover systematic changes in the functional network 

structures. It will also be interesting to test how attention or change of behavioral states may alter 
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network parameters such as the gains, thereby changing the balance of excitation and inhibition 

and the efficiency of neural coding (Fritz, Shamma et al. 2003).  

In summary, in the future work, modeling and experiments should be further integrated to 

gain a better understanding of cortical functions and underlying anatomic structures. 
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Table 5.1 The predication of the model to training and validation set 

(Median of the correlation coefficient of the neural responses and model predictions) 

 

 Frequency 
selective 

Band-pass Harmonic 
template 

Uncategorized 

Training set 0.808 0.703 0.809 0.693 

Validation set 0.647 0.548 0.597 0.256 

P-value < 0.0001 0.0001 0.0048 0.0064 
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Table 5.2 Comparison between online model and offline model 

(Medians of correlation coefficient of neural responses and predicted responses) 

 All data set Optimal stimuli Pure tones Complex tones 

Online Model 0.362 0.442 0.398 0.2 

Offline Model 0.593 0.547 0.655 0.512 

P-value <0.0001 0.97 0.002 <0.0001 
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Figure 5.1 An example of the fitted feed-forward model 

A, the synaptic weights for five subunits of an estimated model.  
B, the model prediction of the firing rates to stimuli in the training set (left) and validation set 
(right) 
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Figure 5.2 The distribution of correlation coefficient for model predictions for training and 
validation sets in four subgroups of neurons 

  



112 
 

 

 

Figure 5.3 co-tuned excitatory and inhibitory subunits 

A, examples of subunits synaptic weight functions. The neuron in the top figure showed 
overlapped excitatory and inhibitory subunits. The other neuron in the bottom figure had a more 
distributed subunits.  
B, The distribution of co-tuning index for all 92 neuron 
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Figure 5.4 Tone response properties of neurons with co-tuned subunits 

A, the distribution of BFs of 18 neurons which had co-tuned excitatory and inhibitory subunits in 
the estimated model.  
B, the distribution of the monotonicity index at BF for the same 18 neurons. 
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Figure 5.5 An example of one run for the OED experiment 

A, the 300 stimuli developed during the OED experiment.  
B, the neural responses to the 300 stimuli during search.  
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Figure 5.6 The estimated model online and prediction of responses to pure tones 

A, The synaptic weighting functions for all subunits in the online estimated model.  
B, The tone response map predicted by the online model. C, Response map measured by pure 
tones 
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Figure 5.7 An example of the optimal stimuli designed online.  

A, the spectrum of thirty stimuli designed by the online model: stimulus 1-10 will give low firing 
rate, 11-20 median firing rate and 21-30 high firing rate.  
B, the predicted responses and real neural responses to the optimal stimuli 
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Figure 5.8 An example of a neuron which was suppressed by sound stimuli.  

A, the synaptic weighting function of five subunits in the online estimated model.  
B, the spectrum of the optimal stimuli designed by the online model. 
C, the predicted responses and real neural responses to the optimal stimuli. 
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Figure 5-9 An example of a neuron which selectively responded to broadband stimuli.  

A, the synaptic weighting function of five subunits in the online estimated model.  
B, the spectrum of the optimal stimuli designed by the online model.  
C, the predicted responses and real neural responses to the optimal stimuli. 
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Figure 5-10 An example of a neuron pair with different spectral selectivity.  

A, the synaptic weighting function of five subunits in the online estimated model for neuron 1 
and 2.  
B, the spectrum of the optimal stimuli designed by the online models.  
C, the predicted responses and real neural responses to the optimal stimuli. 
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Figure 5-11 The distribution of correlation coefficients for online model and offline model in 
four different subgroup of neurons 
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CHAPTER 6:  

6. Conclusion 
 

 

 

 This dissertation has combined neurophysiology and modeling to study the spectral 

integration and neural representation of harmonic complex tones in the auditory cortex of awake 

marmosets.  

 

6.1 The existence of harmonic template neurons in A1 

6.1.1 Harmonic template neurons 

Chapter 3 reported the finding of harmonic template neurons in A1. Harmonic template 

neurons show strong responses to concurrent harmonics of a preferred f0 even if individual 

frequency evokes weak or no response. In the test of shifted harmonic complex tones, harmonic 

template neurons can distinguish harmonic shifts from inharmonic shift and odd harmonic shifts.  

The first criterion is for select combination sensitive neurons which encode features specific for 

harmonic complex tones, rather than information of individual components. The second criterion 

makes sure those neurons are selective to spectral but not temporal information. A spectral 

template is for harmonics that can be resolved by the peripheral auditory system. For humans, the 

perceived pitch shifts with the inharmonic shifts and ambiguous pitches were perceived for odd-

harmonic complex tones if resolved harmonics are included (Moore and Moore,2003; Patterson 

and Wightman, 1976). On the contrary, the shifts had less or negligible effects on perceived pitch 

of unresolved harmonics because the temporal cue was used (Moore and Moore, 2003). Therefore, 
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any candidate for harmonic template should be able to distinguish the inharmonic shifts and the 

odd-harmonic complex tones. 

 

6.1.2 Comparison between harmonic template neurons and pitch selective neurons 

Harmonic template neurons are not pitch-selective neurons reported in previous studies 

(Bendor and Wang, 2005, Bendor et al. 2012). First of all, pitch neurons respond to all stimuli at 

the same pitch even the spectrum is different. Whereas harmonic template neurons only respond 

to stimuli contain frequencies matching the template. A good example would be on the neuron 

shown in Figure 3-1. There were two separated peaks in the f0 tuning (f01 =1.2, f02=1.05) and 

there was no response to any f0 in between. This discontinuity in f0 tuning was very different 

from pitch neurons. It suggested there is some other feature that determines the response rather 

than pitch itself. By analyzing the spectrums for both f01 and f02, we found both the 5 – 7th 

harmonics of f01 and the 6-8th harmonics of f02 were close to the spectral template provided. 

Such ambiguity is also shown in the optimum pitch model (Goldstein, 1979). Secondly, pitch 

neurons’ responses to the harmonic complex tones decrease when the lowest harmonic number 

increases because the pitch salience decreases. Harmonic template neurons don’t respond to a 

harmonic complex tone that does not include the template even it has high pitch salience. Third, 

the preferred f0s of pitch neurons are at their BFs and they respond equally well to pure tones at 

BFs. For harmonic template neurons, the preferred f0 is either at BF or subharmonics of BF (BF/2, 

BF/3, BF/4,…). In other words, the BF has to be a harmonic of F0, but not necessarily the f0. For 

one f0, there are several templates distributed in the tonotopic map for detecting different 

harmonics. Therefore, harmonic template neurons don’t encode f0 per se, but represent a stage 

where the f0 can be extracted.  Because harmonic template neurons encode the absolute 

frequencies, they can potentially be used for coding of timbre.  
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6.1.3 Harmonic template neurons and harmonic sensitive neurons in bats 

 The response properties of harmonic template neurons are very similar to the harmonic 

sensitive neurons found in bat auditory cortex, which showed facilitation when the first harmonic 

was simultaneously delivered with one or more higher harmonics (Suga, 1979). However, 

harmonic sensitive neurons were found in a specialized region for detecting biosonar signals for 

echolocation. They are selective to high frequencies around 30kHz. The harmonic template 

neurons found in this study codes a broad range of f0 from 400Hz to 12kHz and they were 

distributed in the entire frequency range of A1 and organized tonotopically by their frequency 

center. Marmosets can hear up to 36kHz (Osmanski and Wang, 2010) and the fundamentals of 

four major marmoset calls were between 5kHz to 10kHz (Dimartinna and Wang, 2005). The 

harmonic template neurons are not limited to the frequency range of marmoset vocalizations. 

They may represent a common structure in A1 for processing harmonic sounds which are very 

common in the acoustical environment. Harmonic template neurons provide an integrative 

representation of harmonic sounds that could be used further for pitch extraction and recognition 

of conspecifics vocalizations.  

 

6.2 A distributed harmonic process in A1 

6.2.1 A parallel process of harmonic complex tones 

Chapter 4 describes different subpopulations of neurons in A1 with distinct response 

patterns to harmonic complex tones. Frequency selective neurons resolve individual harmonics 

for low harmonic number. Band-pass neurons are less frequency selective but tune to the overall 

sound intensity. Harmonic template neurons are sensitive to combination of harmonics. 

Modulation sensitive neurons encode the envelope modulation. There was also a group of 

neurons which cannot fully characterize by our measure.  
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In order to respond to a sound source fast, a parallel spectral analysis has to be done on 

different scales to efficiently extract features associated with perceptual attributes from the 

physical features (frequency and level).  For example, the discrete frequency components need to 

be grouped together to estimate f0 if the fundamental frequency itself is not presented and to 

compute the overall sound level. In addition, the accurate representation of individual harmonics 

is important for timbre perception.  

The diversity in neural responses to harmonic complex tones suggests A1 is an important 

stage in auditory processing, where pre-processed information of harmonic complex tones can be 

carried by different population of neurons and can be used further for extracting perceptual 

features, such as loudness, pitch and timber to form a code of ‘auditory objects’ at later stages.  

 

6.2.2 Inhibition and a level-invariant representation of spectral information 

 For AN fibers and AVCN neurons, the ability to resolve harmonics in their rate response 

degrades rapidly with increasing stimulus levels, even the low and moderate stimulus levels (15-

20dB above threshold) were used to minimize rate saturation (Smoorenburg and Linschoten 1977, 

Cedolin and Delgutte 2005).  Although the rate-place representation in the AN fibers provide 

sufficient information to account for the behavior performance at high sound levels as shown in 

previous studies, it fails to explain the general robust psychophysical performance at high sound 

levels(Hirsh, Reynolds et al. 1954).  Accurate frequency information need to be maintained in 

order to use a ‘’harmonic template’’ to extract pitch information(Goldstein 1973) and timbre 

information. It has been shown that a population code of AN fibers combining rate, space, 

temporal information provide a robust code for vowels over a 80dB SPL range.  

The different finding in our study was the level-invariant representation of the spectral 

information over a relative wide range (up to 40dB difference) at single neuron level. The multi-
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peak response pattern of frequency selective neurons remains even at higher levels when the rate 

– place representation at AN fibers start to degrade. The preferred f0s for harmonic template 

neurons did not change at different levels tested. Those observations suggest that cortical 

processing enhanced the frequency discriminability for complex tones. Although we were not 

able to measure inhibition with the extracellular recording method, our data have implied that 

inhibition play a very important role in this processing. This level invariant representation of 

spectral information is necessary and crucial for the auditory system, because it operates in a 

broad dynamic range because of the distance to the sound source and background noise.  

 

6.2.3. Functional structures for spectral processing in A1 

 In Chapter 4, we observed that different subpopulations are intermingled in A1 and 

distributed in a large frequency range. Simultaneously recorded neuron pairs showed small signal 

correlations in responses to complex tones even their BFs were close to each other. There was no 

functional cluster observed yet in this study. This finding was different from the primary visual 

cortex, which is organized in functional columns. However, from the computation aspect of view, 

a disruption of the organized rate-place codes from the peripheral auditory system is the start of 

information transformation from the isomorphic representation of frequency and level to a non-

isomorphic representation of perceptual attributes and integrative representation of “object” at 

higher levels beyond A1.  

 

6.3 An online adaptive method for studying spectral integration in A1 

6.3.1 Finding the ‘optimal’ stimuli 

The majority of studies in auditory cortex were trying to find the “optimal stimuli” for 

each neuron, because they help us understand how individual neuron encodes information of 
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physical spaces. In order to find the true “optimal stimuli”, not the sub-optimal stimuli, it’s not 

enough to use a subset of stimuli. The combination selectivity requires a search in a high 

dimensional feature space, which becomes infeasible in a limited experiment time.  Chapter 5 

describes a new approach to efficiently search in a high dimensional feature space to find the 

“optimal stimuli”. 

The most common definition for optimal stimulus is the stimulus that has the highest 

probability to firing a spike. However, an optimal stimulus can also be the one to which a neuron 

is most sensitive. In other words, the change of firing rate will be the largest by changing the 

stimulus away from the optimal, corresponding to the maximal slope in a tuning curve. In our 

approach, we used an information-theoretic criterion that maximizes the mutual information 

between the presented stimuli and the expected response given the neuron’s response history and 

the current parameters estimated. In this way, our model could design not only the optimal stimuli 

to maximize firing rate, but also stimuli to minimize the firing rate. In other word, our optimal 

stimuli can drive neurons at its full dynamic range.  

Even with the simplified feed-forward network model, our approach could accurately 

capture the stimulus-response relationship for some neurons within 300 iteration within a few 

minutes (5-10min). 300 iterations were only half the size of the entire stimulus set including pure 

tones, complex tones in experiments in Chapter 3 and 4, which were designed manually by the 

experimenter. The stimulus design was largely dependent on the experience and knowledge of the 

experimenters. The online adaptive stimulus design approach is an automatically searching 

procedure which requires little information of each neuron. For example, the neuron shown in 

Figure 5.9 which did not respond to simple tone, complex tones tested. The OED was still able to 

find stimuli which could drive this neuron. Although our program requires to provide BF 

information to decide the frequency range, the three-octave range was broad enough for most 

neurons. Therefore it won’t affect the optimization even if BF estimated was not accurate.  
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6.3.2 Frequency receptive field structure underlying the spectral selectivity 

 Our model recovered different frequency receptive field structures for neurons with 

different spectral selectivity. Although the synaptic weighting functions of subunits in the 

network model might not be the actual synaptic inputs distribution because it’s a linear 

approximation, it provide possible structures for certain functional properties which give more 

insights to understand the variability of individual neurons in the spectral processing. Those 

hypothesized structures could potentially to be verified or tested with other technics in the future. 

 

6.4 Methodological considerations for studying auditory cortex 

 In this thesis, I systematically tested neurons in auditory cortex with harmonic and 

inharmonic complex tones and explored a new method for neurophysiology experiments 

combining neural network model and the statistical data-collection method. There were 

interesting findings in this study but also revealed new challenges. The variability and complexity 

in neural responses to complex tones made it very difficult to interpolate the results. The 

boundary for each subgroups was less obvious even in a multi-dimensional metrics. No single 

criterion is enough to fully characterize the response properties. There are some methodological 

principles I learnt from my experiments for future studies in auditory cortex: 

 1, It’s necessary to use complex stimuli to study neurons in auditory cortex because of the 

high selectivity. We really need to try to “drive” each neuron to understand the real stimulus-

response relationship. 

 2, It’s necessary to take into account single neuron variability. Any form of averaging 

(such as multi-units) will possibly lose some important information when we evaluate the 

functional properties of neurons in A1.  
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 3, Computational models are very useful tools for understanding the real stimulus-

response relationship in a high dimensional feature space.   
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CHAPTER 7:  

7. Miscellaneous findings 

 

 
7.1 Temporal response pattern 

 In this dissertation, the neural response was quantified based on the spike count within a 

time window from 15ms after stimulus onset until 50ms after offset, which ignored temporal 

firing patterns within this time window. In some neurons, I observed temporal response pattern 

changes during different stimuli. The first example neuron (Figure 7.1A) was a frequency 

selective neuron with the typical response pattern: large firing rate at integer harmonic numbers 

and firing rate decreases for high harmonic number. The firing pattern changed with harmonic 

number as well. For the low harmonic numbers, the firing started shortly after stimulus onset and 

lasted through the stimulus. However, starting from the harmonic number at 3, the neuron was 

suppressed after stimulus onset then started to fire again. The duration for such suppression 

became longer for higher harmonic numbers.  The second neuron (Figure 7.1B) showed similar 

trend in its response temporal pattern. The sustained response during stimulus degraded rapidly as 

the harmonic number increased and completely disappeared after harmonic number 3. The offset 

responses remained until harmonic number 10. 

 Two other examples were from the subgroup of band-pass neurons (Figure 7.1C and D). 

They showed rate response patterns like auditory nerve fibers. However, within the subgroup, 

even neurons change average firing rates in a similar way, the temporal response pattern could be 

largely different. The first neuron (Figure 7.1C) exhibited onset responses to all HCTs. For large 

harmonic numbers, suppression started to appear after the onset response and also the offset 
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rebound. The second neuron showed an opposite trend. For low harmonic numbers, there was 

onset response followed by suppression lasting until 100ms after offset. There were also response 

rebounds after the suppression. However, when the spectrum became denser, the suppression was 

weaker so that the onset response turned into a sustained response.  

 In the future work, the temporal response pattern should be considered for studying 

spectral integration because the integration of “object parts” at higher level sensory cortex can be 

a dynamic process (Brincat and Connor 2006). The temporal pattern, such as the onset, sustained, 

even suppression might carried different information of the “object”. A model taking account into 

temporal parameters, such as a recurrent network model, should be considered.  

 In Chapter 3 and 4, we discussed about the possible role of inhibition in sharpening 

frequency selectivity. It appears here that inhibition affects a larger populations of neurons than 

just harmonic template neurons and frequency selective neurons in A1. The role of inhibition in 

neural coding might be underestimated in our study because only the averaged firing rate was 

used. The examples showed here suggest inhibitory inputs and excitatory inputs have more 

specific spectral-temporal interaction patterns, which might not be surprising. Because previous 

studies already showed that inhibition and excitation occurred in a precise temporal sequence 

(Wehr and Zador 2003, Zhang, Tan et al. 2003, Tan, Zhang et al. 2004), which could shape the 

time course of the spike responses, frequency tuning and direction selectivity of AI neurons. 

However, it’s still unknown how the stereotypical temporal patterns of tone-evoked inhibition 

and excitation in those studies can associate with the diverse temporal response pattern to 

complex tones. Although the integration of simultaneous auditory components is very important 

in a scene analysis (Bregman 1990), we have to keep in mind that our auditory system have to 

track time-varying sounds most of the time in a natural environment. Future works need to 

combine spectral and temporal integration together.  
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7.2 Auditory grouping 

 Our auditory system relies on different cues to parse the mixed acoustical signals in order 

to correctly group all components from the same sound source together and separate them from 

the ones from a different sound source. Important cues include the onset synchrony, the frequency 

components of one sound tend to start together; harmonicity, all the components from one sound 

source are usually harmonically related; space, frequencies coming from different locations are 

likely from different sources. However, the three cues are not equally weighted our auditory 

system. For example, a resolved harmonic does not contribute to the pitch of a complex tone if 

the onset time is different and the difference is larger than 160ms (Darwin and Ciocca 1992). 

Another study showed that subjects would perceive the same pitch even if the odd harmonics and 

even harmonics were delivered to different ears via headphone (Bernstein and Oxenham 2008).  

 Harmonic template neurons were shown to have the ability to group simultaneously 

presented harmonics. One interesting question would be whether the grouping is constrained by 

the onset timing as shown in psychoacoustic studies. I tested the onset synchrony on one of the 

harmonic template neurons. In this test, all even harmonics were shifted in time from leading the 

odd harmonics to following the odd harmonics (Figure 7.2A). The black bars indicate the 

overlapping parts of all harmonics. As shown in Figure 7.2B, onset time was very important for 

the grouping based on harmonicity. This neuron only responded during the overlap parts. When 

the overlap time was less than 50ms, or the onset time difference was larger than 150ms, there 

was no response. Another interesting observation is that odd harmonics dominated the responses. 

The neuron still responded to odd harmonic even the response was much weaker compared to the 

responses to all harmonic. When the odd harmonics were leading, the responses always stopped 

after the odd harmonic offset. However, when the even harmonics were leading, the response 

could still last even after the offset of the even harmonics, until the odd harmonics were off.  
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 Another test was separating even harmonics and odd harmonics in space. There were 16 

speakers in the chamber (8 speakers at 0 degree elevation, 30o apart on azimuth; 8 speakers at 45 

degree above horizontal plane, 30o apart on azimuth). All speakers were at equal distance (1m) 

from the center of the head of the animal. This neuron responded to the harmonic complex tone 

including all harmonics from all 16 speakers. In the spatial test, the even harmonic were always 

played from the speaker horizontal plane, 60 degree from the midline contralaterally. The odd 

harmonics were played from other different speakers (Figure 7.3A). All harmonics were played 

simultaneously. Although odd harmonics or even harmonics alone evoked no or weak response, 

the response was largely increased when they were played simultaneously even from different 

locations. This result suggests that this neuron can integrate harmonics from different locations.  

 Although only two harmonic template neurons were tested in the spatial separation task, 

the results were similar. Those preliminary data provide evidence for common grouping rules 

both in perception and at single neurons in A1. Further tests are needed for investigate the neural 

mechanism underlying auditory grouping across time, frequency and space.  
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Figure 7.1 Four examples of the temporal response patterns in response to HCTs 
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Figure 7.2 onset synchrony test for harmonic grouping 

A, a diagram of the unsynchronized harmonic tones. 
B, raster plot of a harmonic template neuron’s responses to the unsynchronized harmonic tones
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Figure 7.3 harmonic grouping across space 

A, a diagram of the spatially separated even and odd harmonics. 
B, the responses of a harmonic template neuron when the even harmonics and odd harmonics 
were separated on azimuth 
C, B, the responses of a harmonic template neuron when the even harmonics and odd harmonics 
were separated both on azimuth and elevation 
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