
Gamera: A Structured Document Recognition
Application Development Environment

Karl MacMillan, Michael Droettboom, and Ichiro Fujinaga

Peabody Conservatory of Music
Johns Hopkins University

1 East Mount Vernon Place, Baltimore MD 21202
email: {karlmac,mdboom,ich}@peabody.jhu.edu

ABSTRACT
This paper presents a new toolkit for the creation of customized
structured document recognition applications by expert users. This
open-source system, called Gamera, allows a user, with particular
knowledge of the documents to be recognized, to combine image
processing and recognition tools in an easy to use, interactive,
graphical scripting environment. Additionally, the system can be
extended through a C++ module system.

1. INTRODUCTION
This paper1 presents a new toolkit for the creation of domain-
specific structured document recognition applications by expert
users. This system, called Gamera, allows a knowledgeable user
to combine image processing and recognition tools in an easy to
use, interactive, graphical scripting environment. The applications
created by the user are suitable for use in a large-scale digitization
project; they can be run in a batch processing mode and easily
integrated into a digitization framework. Additionally, a module
(plug-in) system allows experienced programmers to extend the
system. This paper will give an overview of Gamera, describe the
user environment, and briefly discuss the plug-in system.

2. MOTIVATION AND GOALS
Gamera is being created as part of the Lester S. Levy Sheet Music
Project (Phase Two). The Levy collection represents one of the
largest collections of sheet music available online.2 The
Collection, part of the Special Collections of the Milton S.
Eisenhower Library at the Johns Hopkins University, comprises
nearly 30,000 pieces of music which correspond to nearly 130,000
sheets of music and associated cover art. It provides a rich, multi-
faceted view of life in late 19th and early 20th century America,
featuring famous songs such as “The Star-Spangled Banner”,
“Hail Columbia”, and “Yankee Doodle Dandy” along with
engravings, lithographs, and many forms of early photo
reproduction on song covers.

1 Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full
citation on the first page.
2 The Lester S. Levy Collection of Sheet Music,
<http://levysheetmusic.mse.jhu.edu>

The goal of the Levy Project (Phase Two) is to create an efficient
workflow management system to reduce the cost and complexity
of converting large, existing collections to digital form. From the
beginning of the project, optical music recognition (OMR)
software was a key component of the workflow system. The
creation of a flexible OMR tool is necessary because of the
historical nature of the Levy collection; existing OMR systems are
not designed to handle the wide range of music notation found in
the collection or deal with the potentially degraded documents.
OMR alone is not sufficient for the complete recognition of the
scores in the Levy collection as they are not comprised only of
musical symbols. Text is also present as lyrics, score markings,
and metadata. It was hoped, however, that an existing optical
character recognition (OCR) system would be able to process
such text. Early trials of existing systems revealed there are many
problems with the current generation of OCR software within this
context.

To address the need for OCR in the Levy project the Gamera
system was created. Gamera is an extension of the existing OMR
system to a general symbol recognition system. By creating a
general symbol recognition system it is possible to use the same
technology that allows the OMR system to perform well on the
musical portions of the Levy collection to recognize the text. In
addition to serving the needs of the Levy project, we hope that the
system may be used in the future for the recognition of historical
documents and any other structured documents that current
recognition systems do not adequately address.

In addition to generalizing the system, a graphical programming
environment has been added to ease the adaptation of the system
by users with expert knowledge of the documents to be
recognized. This environment provides an easy-to-learn scripting
language coupled with a graphical user interface. The goal is to
allow the user to experiment easily with algorithms and
recognition strategies during the creation of custom scripts for the
recognition process. This will allow users to leverage their
knowledge of the documents to customize the recognition process.
It is hoped that users without extensive computer experience can
effectively use this environment with a small amount of training.
The scripting environment does contain, however, a complete,
modern programming language that will allow advanced users
considerable flexibility and power.

3. ARCHITECTURE OVERVIEW
Gamera is primarily a toolkit for the creation of applications by
knowledgeable users. It is composed of modules (plug-ins),
written in a combination of C++ and Python, that are combined in
a very high-level scripting environment to form an application.
The overall design is inspired by systems like MathWorks Matlab,
CVIP tools (Umbaugh 1998), or spreadsheet macros. In Gamera,
modules perform one of five document recognition tasks:

1. Pre-processing

2. Document segmentation and analysis

3. Symbol segmentation and classification

4. Syntactical or semantic analysis

5. Output

Each of these tasks can be arbitrarily complex, involve multiple
strategies or modules, or be removed entirely depending on the
specific recognition problem. Additionally, keeping with the
toolbox philosophy of Gamera, the user of the system has access
to a range of tools that fall within the general category of these
tasks. The actual steps that make up the recognition process are
completely controlled by the user.

In addition to flexibility Gamera also has several other goals that
are important to the Levy project and to large-scale digitization
projects in general. These are:

1. A batch processing mode to allow many documents to
be recognized without user intervention.

2. Open-source so that the software can be customized to
interact well with the other parts of the digitization
framework.

3. The system designed to run on a variety of operating
systems including Unix, Microsoft Windows, and Apple
MacOS.

4. Recognition confidence output so that collection
managers can easily target documents that need
correction or different recognition strategies.

The first three goals have been achieved while the last goal is
currently being developed.

3.1 Pre-processing
Pre-processing can involve almost any standard image-processing
operation including noise removal, blurring, de-skewing, contrast
adjustment, sharpening, binarization, or morphology. Any number
of operations may be necessary to take a raw input image and
prepare it for recognition, but the output of this step must be a
binary image for the rest of the recognition process.

Many documents, particularly historical documents like those in
the Levy collection, will depend on this part of the recognition
process to ensure overall good performance of the system.

Discoloration of the documents makes binarization difficult and
often requires locally-adaptive algorithms (Trier and Torfinn
1995). Additionally, broken lines often cause problems in the
segmentation of symbols. Experiments suggest that simple
blurring or morphology (Serra 1982) may help with these
difficulties.

3.2 Document segmentation and analysis
Before the symbols of a document can be classified, an analysis of
the overall structure of the document is often necessary. The
document segmentation and analysis process is designed to
anaylse the overall structure of the document, segment it into
sections, and perhaps remove elements (Haralick 1994; Yanikoglu
1998). For example, in the case of music recognition, it is
necessary to identify and remove the staff lines in order to be able
to properly separate the individual symbols. The proper
identification of the staff lines and the grouping of the lines into
staves and systems is essential to the classification of symbols and
later to the interpretation of those symbols. Similarly, text
documents may require the identification of columns, paragraphs,
lines, or tables.

3.3 Symbol segmentation and classification
The segmentation and classification of symbols is the core of the
Gamera system. The current implementation provides tools for the
creation of simple heuristic classifiers, template-based image
matching, and a learning classifier using the k-nearest neighbor
algorithm enhanced with a genetic algorithm. Other possible
classification algorithms include neural-nets, decision trees, or
hidden markov models. The use of both learning and heuristic
classifiers allows for the balancing of flexibility, training time,
and recognition speed.

3.4 Syntactical or Semantic analysis
This process reconstructs a document into a semantic
representation from the individual symbols. Examples include
combining stems, flags, and noteheads into musical notes, or
grouping words and numbers into a table. Obviously this process
is entirely dependent on the type of document being processed and
is a likely place for large customizations by knowledgeable users.

3.5 Output
Output converts either the raw symbols or the post structural
interpretation data into a suitable format for storage.

4. USER ENVIRONMENT
The goal of the user environment is to leverage the knowledge
and skills of the user about the documents being recognized. This
is accomplished by creating a dynamic scripting environment and
graphical user interface where users can experiment with various
Gamera modules.

4.1 Scripting Environment
Gamera includes a complete scripting environment that a user can
use to create custom recognition systems quickly and easily. The

scripting environment tries to be easy to use, flexible, and
extensible.

4.1.1 Ease of Use

Perhaps the most important aspect of the Gamera scripting
environment is ease of use by users with limited computer
programming experience. As previously stated, the targeted user
is a person with expert knowledge of the documents to be
recognized that may or may not have computer programming
experience. In order to meet this goal Python was chosen as the
foundation and extensions were written that are as easy to use as
possible.

Python is a popular, general purpose scripting language often
praised for it simplicity and elegance (Gauld 2000). Additionally,
Python has been used as a teaching language with considerable
success. For this reason, we believe that Python is a good choice
for the basis of the scripting environment. The existence of books
and tutorials about the language also means that there is more help
available to users than with a custom scripting language.

In order to transform Python from a general purpose scripting
language to scripting environment tailored to the needs of Gamera
users, a set extensions were written in a combination of Python
and C++. Example 1 shows a script for OMR. This script gives a
good indication of the high-level of Gamera scripts.

load an image
image = Image()
image.load_image('example.tiff')
Convert to binary using the Otsu thresholding
image.otsu_threshold()
Remove staves and store information about them
staves = image.remove_staves()
Perform recognition on the image - this is a
two step process. First the image is
segmented and then the K-nn classifier is
used on the individual symbols
symbols = image.connected_components()
classified_symbols = knn_classify(symbols, 'knn-
database.knn')
Interpret the symbols with the Optical Music
Interpretation object
omi = OMI()
omi.interpret(image, staves, classified_symbols)
Output GUIDO and the MIDI
omi.save('example.gmn', 'guido')
omi.save('example.mid', 'midi')

4.1.2 Flexibility

Flexibility is the second most important goal for the scripting
environment. Again, this aspect of the scripting environment is
facilitated by the choice of Python. Because Python is a general-
purpose programming language, a large portion of the system can
be implemented directly in standard Python. In general, only those
algorithms that need direct access to image pixels are written in
C++. This allows users to customize existing modules written in
Python, combine the low-level building blocks into new modules,
or write modules from scratch.

4.1.3 Extensibility

Despite the flexibility of the scripting environment, not all
algorithms can be suitably implemented in Python. For this
reason, a C++ module system for use by experienced
programmers has been developed. Some of the features of this
system are:

1. Automatic binding of C++ code to Python.

2. Runtime addition of C++ modules as methods to Python
classes.

3. Abstraction of the data storage format of image data
using C++ templates to allow convenient access to
compressed images.

4. Flexible programming interface allows the easy
conversion of existing C and C++ code that uses a
variety access methods to image data.

4.2 Graphical Interface
In addition to the scripting environment Gamera includes a
graphical user interface that allows the interactive display and
manipulation of images using the scripting environment. This can
be as simple as displaying the results of a pre-processing
algorithm or as complex as complete interface for training.
Figure 1 shows a sample Gamera editing session. Again, like the
scripting environment, the graphical interface is created with
standard tools entirely in Python allowing users to extend and
modify the system.

5. CONCLUSION
A graphical programming environment for the creation of
document recognition applications was described. This system,
called Gamera, is designed to be used by people with expert
knowledge of the documents to be processed. These users are not
required to have extensive computer experience; the system can
be effectively used with a small amount of training. Users with
considerable programming experience can also create custom
modules in Python or C++ to extend the system. The applications
created by this system are suitable for large-scale digitization
projects because they can be run in batch mode and integrated into
the digitization framework.

6. ACKNOWLEDGEMENTS
The second phase of the Levy Project is funded through the NSF’s
DLI-2 initiative (Award #9817430), an IMLS National Leadership
Grant, and support from the Levy Family.

7. REFERENCES
Gauld, A. 2000. Learn to program using Python. Boston:

Addison-Wesley.

Haralick, R. M. 1994. Document image understanding: Geometric
and logical layout. In Proceedings of IEEE Computer
Society Computer Vision and Pattern Recognition. 385–90.

Serra, J. P. 1982. Image analysis and mathematical morphology.
London: Academic Press.

Trier, O. D., and T. Torfinn. 1995. Evaluation of binarization
methods for document images. In Proceedings of IEEE
Computer Society Pattern Analysis and Machine
Intelligence. 312–5.

Yanikoglu, B.A., and L. Vincent. 1998. Pink panther: A complete
environment for ground-truthing and benchmarking
document page segmentation. Pattern Recognition 31(9):
1191–204.

Umbaugh, S. E. 1998. Computer vision and image processing: A
practical approach using CVIPtools. Upper Saddle River,
NJ: Prentice Hall.

Figure 1. Screenshot of a grey-scale image, its histogram, the script window, and a copy of the image converted to binary format.

