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Dissertation Abstract 
 
Background: Recently, malaria has become a major global health priority. As a result 

there has been renewed interest in malaria control, elimination, and eradication. Zambia 

is one of the Elimination 8 countries and one of the President’s Malaria Initiative focus 

countries. Southern Province, Zambia has maintained a parasite prevalence of <10% 

since 2012, and the National Malaria Control Center made a goal of creating 5 malaria 

free zones in the province. As areas approach elimination, better understanding of the 

changing epidemiology of malaria transmission should be used to inform and determine 

how and where to target specific interventions. Additionally, challenges to elimination 

need to be evaluated to understand the risk for importation and resurgence of 

transmission. 

Methods: The study was conducted in the rural catchment area of Macha Hospital, 

Choma District, Southern Province, Zambia. First, spatial and temporal trends in 

passively and actively detected malaria infections were determined. Second, the genetic 

diversity and complexity of the parasite populations infecting individuals identified 

through passive and active surveillance was evaluated and compared. Third, a reactive 

screen-and-treat strategy was evaluated and coverage cascades were developed to 

inform and improve the intervention. Fourth, the impact of population movement was 

evaluated using GPS data loggers, in which movement patterns were characterized and 

quantified, and the amount of time spent in high and low malaria risk was determined. 

Results: A fractured spatial pattern was detected for both passively and actively 

detected infected individuals, and temporally stable, space-time clusters were detected, 

suggesting the presence of ecologically receptive areas. Phylogenetic analysis showed 

evidence of two distinct parasite populations from infected individuals identified through 

passive and active surveillance, with genetic diversity decreasing in actively detected 

infected individuals but not in passively detected cases. In the initial stages of a reactive 
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screen-and-treat strategy, challenges such as poor follow-up and coverage, difficulties in 

maintaining sufficient RDTs, and poor sensitivity of the RDTs impeded the success of 

the program and a reactive focal drug administration may be more efficient. Most time 

was spent in the participant’s household compound, with time spent in high malaria risk 

areas was dependent on whether or not the house was located in a high malaria risk 

area. Seasonal movement patterns were observed, with greater long-distance 

movements during the dry season.  

Conclusions: Temporally stable ecologically receptive areas remain in malaria 

elimination settings but the chronically infected population may not be contributing to 

local transmission. Reactive focal drug administration within index case households may 

be a more efficient at identifying and treating infected individuals than a reactive test and 

treat strategy. Population movement patterns have the potential to increase the risk of 

importation at the end of the rainy season when clinical malaria cases peak; however, 

the risk of malaria importation is likely to be low throughout the remainder of the dry 

season. 
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1. Introduction 

1.1 Malaria infection and epidemiology 

1.1.a. Malaria infection in humans 

 Malaria is caused by infection with the parasite Plasmodium, with five species 

infecting humans: P. falciparum, P. vivax, P. ovale, P. malariae, and P. knowlesi. 

Plasmodium falciparum infection results in the most virulent disease and is the 

predominant species in sub-Saharan Africa [1]. Malaria is transmitted to humans through 

the bite of infected female mosquitos of the Anopheles genus. P. falciparum is 

transmitted to humans as asexual sporozoites which travel through the blood to the liver 

where asexual reproduction takes place, with merozoites produced and released into the 

bloodstream. Merozoites infect red blood cells where they asexually reproduce leading 

to bursting of the cells. This bursting of red blood cells can lead to anemia and fever. A 

small proportion of merozoites transform into gametocytes, which are sexually 

reproducing cells. Gametocytes are transmitted to a female Anopheles mosquito when 

she bites the infected human for a blood meal.  

1.1.b. Malaria epidemiology 

 Malaria transmission is highly dependent upon the distribution and abundance of 

mosquito vectors. The capacity for transmission of P. falciparum from vectors to humans 

is dependent upon seasonal fluctuations in temperature and availability of breeding 

sites. An additional factor involved in the capacity for transmission is the joint spatial 

relationship between competent vectors, the infected human reservoir, and the 

population densities of vectors and humans.  

 Nearly half of the global population (3.2 billion people) are at risk of malaria [2]. In 

2015, there were an estimated 214 million malaria cases worldwide, with 88% occurring 
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in Africa [3]. In 2015, 10% of deaths among children under 5 years of age in sub-

Saharan Africa were due malaria, where it is the 4th leading cause of death [3]. Typically, 

pregnant women and children under 5 years of age are at the highest risk of malaria 

related morbidity and mortality [3]. However, school-age children (5-15 years old), have 

been shown to be at the highest risk of malaria infection [4-8]. 

 Where malaria is endemic, areas are classified by their level and seasonality of 

transmission. High transmission areas are classified as holoendemic or hyperendemic, 

with holoendemic areas those with intense transmission occurring year-long and 

hyperendemic areas those with intense seasonal transmission. In these areas parasite 

prevalence is typically >50%. Moderate transmission areas are classified as 

mesoendemic with regular seasonal transmission and parasite prevalence typically 

between 10%-50%. Low transmission areas are classified as hypoendemic with 

intermittent, usually seasonal transmission with parasite prevalence typically <10%.  

 In endemic areas, partial protective immunity to clinical malaria develops. 

Immunity is exposure dependent and develops over time. This immunity is complex, as 

sterilizing immunity against infection has been shown in experimental studies in mice 

and humans, but it has not been shown in field-based, observational studies [9]. Clinical 

immunity protects against disease, in which individuals can be infected with P. 

falciparum without suffering from clinical symptoms of malaria [9-12]. The mechanisms 

that confer immunity to clinical disease are not fully known; however, the process leads 

to the development of an asymptomatically infected population [13-16]. These 

asymptomatic individuals have lower parasitemia than symptomatically infected cases, 

indicating that host immunity may involve mechanisms that control levels of parasitemia 

[17].  
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1.1.c. Malaria diagnostic methods 

 Traditionally, the most commonly used method for the diagnosis of malaria is the 

clinical presence of fever [18]. However, the World Health Organization (WHO) 

recommends a parasite-based diagnosis using either microscopy or rapid diagnostic test 

(RDT) [19]. Microscopy has long been considered the “gold standard” for malaria 

diagnosis as it is able to quantify the level of parasitemia. The sensitivity and specificity 

of microscopy, however, are limited by the experience of the microscopist and the level 

of parasitemia [18-20]. RDTs identify malaria parasite antigens, most commonly histidine 

rich protein II (HRP-2) and P. falciparum lactate dehydrogenase (pLDH) [21]. For clinical 

malaria cases, RDTs are as sensitive but less specific than microscopy but their 

sensitivity declines with low levels of parasitemia [18, 19, 22]. RDTs have been shown to 

give false positive results up to two weeks after treatment, as the target antigens persist 

in the blood [18, 22, 23]. While not commonly used clinically, PCR detection of parasite 

DNA is highly specific to detect infection [19, 24]. In areas of low endemicity, PCR is 

emerging as a new “gold standard” tool to identify cases due to its ability to detect 

infections with low parasitemia (<100 parsites/μL), where microscopy and RDT may 

produce false negative results [19, 25]. 

1.2 Malaria elimination 

1.2.a. Early malaria eradication efforts 

 From the 1950s to the 1970s there were large-scale efforts to eradicate malaria 

worldwide, known as the Global Malaria Eradication Programme (GMEP) [26]. 

Substantial investments were made to determine risk factors associated with malaria. 

These efforts used data on climate, elevation, biting rates, measures of malaria infection 

(e.g. spleen size, parasite prevalence by microscopy, and febrile episodes), health care 

records, and vector surveillance [26, 27]. The two main interventions used during the 
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GMEP were indoor residual spraying (IRS) with DDT and treating passively detected 

cases with chloroquine. Malaria was eliminated from 15 countries and one territory [2]. 

Following the conclusion of the GMEP, seven additional countries and one territory 

eliminated malaria in the 1970s and 1980s. However, these elimination efforts did not 

fully reach many areas, specifically in sub-Saharan [27]. Additionally, none of the 

countries that eliminated malaria during the GMEP and shortly afterwards were located 

in Africa.  

1.2.b. Recent malaria elimination efforts 

 More recently, malaria has become a major global health priority. As a result 

there has been renewed interest in malaria control, elimination, and eradication [1].  

In the past decade, international support and funding for malaria control increased 

dramatically and targets were set to reduce the burden of malaria by 75% and eliminate 

malaria in 8-10 countries by 2015 [28]. This renewed commitment to malaria elimination 

has been made possible with increased coverage of four key interventions: long-lasting 

insecticide-treated bednets (LLINs and ITNs), indoor residual spraying (IRS), case 

identification with rapid diagnostic tests (RDT) and treatment with artemisinin-

combination therapy (ACT), and intermittent preventive treatment for pregnant women 

and infants (IPTp and ITPi). Some programs that achieved high coverage with these 

interventions showed dramatic decreases in the number of malaria cases, hospital 

admissions and deaths [28-31]. Worldwide, malaria incidence decreased by 37% and 

malaria mortality decreased by 60% from 2005-2015, and 5 countries received 

certification of malaria elimination by maintaining 3 consecutive years with no indigenous 

malaria cases. In 2014, 13 countries reported no indigenous cases of malaria for that 

year [2]. However, all of these countries are outside of Africa. In Africa, 11 countries 

demonstrated large (>50%) and sustained decreases in the incidence of clinical malaria 
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[28]. From 2000-2015, malaria mortality decreased by 65% in all age groups, and by 

71% among children under 5 years in Africa [2].  

1.2.c. Malaria elimination efforts in Southern Africa 

 In 2007, as malaria began to decline in Southern Africa, the Southern Africa 

Development Community (SADC) committed to aid in transitioning eligible countries 

from control to elimination [32]. This led to the creation of the Malaria Elimination 8 (E8) 

as a platform for regional malaria elimination in Southern Africa [32]. Botswana, 

Namibia, South Africa, and Swaziland were identified as the four mainland countries 

having the greatest potential for malaria elimination and were designated frontline 

countries. Their four neighbors to the north, Angola, Mozambique, Zambia, and 

Zimbabwe, with higher malaria transmission were identified as second line countries 

[32]. Together, these make up the E8, and these countries have committed to 

coordinated efforts between their National Malaria Control Programmes (NMCPs) to 

transition from malaria control to elimination [32].  

1.2.d. Malaria free zones in Southern Province, Zambia 

 Zambia is one of the E8 countries and was selected as a President’s Malaria 

Initiative (PMI) focus country in 2007. Zambia has recorded national decreases in 

malaria deaths among hospital inpatients from 3.9 per 1,000 to 2.4 per 1,000 between 

2010 and 2014, and parasite prevalence 

from 22% in 2006 to 15% in 2012 [33]. 

The Zambian NMCP classified the 

country into 3 epidemiologic zones 

based on reported malaria prevalence. 

Zone 1 areas are where malaria 

transmission declined and prevalence in children under 5 years was <1%. Zone 2 areas 

Figure: Zambian NMCP epidemiologic zones 
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are where malaria transmission declined and prevalence in children under 5 years was 

<14% during peak transmission seasons. Zone 3 areas are where malaria transmission 

had not been successfully reduced and prevalence in children under 5 years exceeded 

14% during peak transmission seasons [33].  

 Southern Province, Zambia was classified in the zone 2 epidemiologic area of 

malaria transmission [33]. Parasite prevalence, measured as number of positive tests 

(RDT or microscopy) per tests performed, decreased from 13% in 2006 to 8.4% in 2012 

[33]. Overall, Southern Province has maintained a parasite prevalence of <10% since 

2012. However, there remains spatial heterogeneity within the province, with districts on 

the shore of Lake Kariba having the highest levels of transmission and those further from 

the lake with lower levels of transmission [34, 35]. Given the overall low parasite 

prevalence in Southern Province, the NMCC set a goal to create 5 malaria free zones 

[36, 37]. These malaria free zones will consist of 5 districts where no malaria cases are 

locally acquired [36]. In creating malaria free zones, traditional interventions such as 

increasing and sustaining ITN ownership and use will be used in concert with 

strengthening health systems and surveillance, improving case management in RHCs, 

and introducing newer, better targeted drug-based interventions.  

1.2.d.1. Passive case detection and improving case management 

 Passive case detection identifies symptomatic individuals who present to a health 

care facility. Case management in many districts in Southern Province was improved by 

supplying rural health centers with RDTs and ACT, and training community health 

workers (CHWs) on testing with RDTs and providing treatment with artemether-

lumifantrin (AL) [35]. Thus, passive case detection and quality case management has 

expanded to be more available to communities in many of the more rural districts in 

Southern Province. Along with this expansion, an SMS reporting system was 
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implemented to improve surveillance for passively-detected, symptomatic malaria cases 

[35]. CHWs and staff at RHCs report monthly numbers of suspected and confirmed 

malaria cases. Expanding quality case management and improving surveillance for 

symptomatic malaria cases will aid in reducing malaria morbidity and mortality but will 

not identify and treat asymptomatic or minimally symptomatic infected individuals.  

1.2.d.2. The impact of asymptomatic infections on malaria transmission  

 In areas of high and moderate malaria transmission, individuals acquire partial 

protective immunity to clinical malaria. This immunity is sometimes described as age-

dependent or exposure dependent as children under five years of age are most likely to 

suffer from severe malaria disease as they have yet to acquire clinical immunity. With 

increasing age, severity of malaria disease wanes in the face of persistent exposure, 

without change to the incidence of infection. As a result, many persons in endemic areas 

become infected and continue to transmit the parasite but develop minimal or no clinical 

symptoms [15, 38-40]. Because passive case detection identifies symptomatically 

infected individuals who present to a health care facility, those who acquired clinical 

immunity are less likely to present to a health care facility but are able to act as human 

reservoirs of infection and contribute to ongoing transmission [15, 20, 26, 40].  

1.2.d.3. Active case detection and focal drug administration  

 Active case detection is one method to identify asymptomatic infections, which 

may be needed to achieve malaria elimination. Active case detection is defined by the 

WHO as screening for infection among individuals who are at high risk for infection by 

community health workers at the individual or household level [41]. Active case detection 

for malaria can be divided into two categories: reactive case detection and proactive 

case detection [42].  
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 Reactive case detection is defined as the screening of individuals residing in the 

same household or within a specified distance from the household of a passively 

detected, infected individual [26, 43-45]. Proactive case detection involves targeted 

screening and treating those individuals or households considered to be at high risk for 

malaria infection, usually via mass screen and treat campaigns [42]. Active case 

detection methods have been recommended for use in low transmission settings 

attempting to move from malaria control to malaria elimination [41, 42].  

 A major limitation of test-and-treat strategies is that the currently available RDTs 

for screening lack the sensitivity to identify many asymptomatic infections due to low 

levels of parasitemia. Locations transitioning from malaria control to elimination have 

proposed replacing test-and-treat with focal drug administration programs [46]. Focal 

drug administration can be reactive or proactive and work just as the test and treat 

programs; however, instead of screening individuals at risk with an RDT, everyone at 

risk of infection is presumptively treated with ACTs. In addition to presumptive treatment 

with ACTs clear parasites from the infected reservoir, single dose treatment with 

primaquine as a gametocytocide has been suggested to block parasite transmission [47-

49]. 

1.3 Rationale for the current research 

 In areas approaching malaria elimination, better understanding of the 

epidemiologic trends and the natural history of malaria elimination will inform how and 

where to implement interventions. These trends involve the spatial and temporal 

patterns of symptomatic and asymptomatic malaria infections, and the genetic 

relationships of parasites infecting the symptomatically and asymptomatically infected 

individuals. Challenges to achieving and sustaining malaria elimination also need to be 

evaluated. Operational challenges in the implementation of targeted interventions will 
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impede the success of elimination programs. Population movement patterns can sustain 

transmission and lead to parasite importation.  

1.3.1 The natural history of malaria elimination 

1.3.1.a. Spatial patterns of malaria transmission in areas approaching elimination  

 The spatial heterogeneity of malaria transmission is well documented [50]. The 

spatial variation in ecological factors, anopheline bionomics and human movement 

patterns likely contribute significantly to the level of spatial heterogeneity in malaria 

transmission. While spatial heterogeneity is well documented, provinces and districts in 

malarious areas are often treated equally in terms of distribution of interventions [1]. 

However, changes in spatial patterns in malaria transmission during the transition from 

control to elimination has not been well documented. These spatial transmission 

patterns are important when targeting interventions to eliminate malaria [38, 51, 52].  

1.3.1.b. Spatial and temporal patterns of passively detected, symptomatic malaria cases  

 The first line of attack for malaria elimination programs is symptomatic malaria 

cases that present to health care facilities. Providing quality case management in health 

care facilities will require the ability to anticipate the annual number of cases to allow 

timely allocation of resources, including RDTs and antimalarial drugs. As malaria 

transmission declines and approaches elimination, determining which clinics should be 

targeted for increased intervention delivery will be essential. Knowing how spatial 

patterns of symptomatic malaria change in response to declining transmission will help 

plan and target interventions.  

 Rural health centers (RHCs) are generally distributed in communities based on 

population density [53]. RHCs then estimate the size of their catchment area. This 

estimate is made using a combination of census data with accompanying  information on 

population size and demographics from local authorities [54]. This estimate does not 
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account for geographic distance from the RHC or actual utilization of a RHC by 

individuals in the community [55, 56]. Health seeking behaviors depend on many factors, 

including distance, perceived quality of care, and perceived accessibility of care. [56]. 

Considering the choice of utilization of an RHC, the catchment population may differ 

from the estimated population. Information on where individuals report seeking care can 

assist in more accurately estimating the catchment population served by RHCs. When 

malaria incidence per population served can be calculated, spatial heterogeneities in 

symptomatic malaria can be tracked and investigated. This can aid in planning and 

distributing interventions to health care facilities. 

1.3.1.c. Locating hotspots of actively detected, asymptomatic malaria cases 

 Identifying geographic areas at high risk for asymptomatic malaria will aid in 

directing targeted interventions such as reactive test-and-treat or focal drug 

administration, as these individuals will not be detected at health care facilities. Malaria 

hotspots have been defined as geographical areas where the observed malaria 

transmission intensity exceeds the expected malaria transmission intensity if 

transmission were homogeneously dispersed. Hotspots are usually spatially small (<1 

km2), with the micro-epidemiology of malaria transmission in hotspots permissive to 

sustaining the basic reproductive number (R0) above 1. The distance from the center of 

the hotspot to where the observed malaria transmission intensity no longer exceeds the 

expected malaria transmission intensity determines the borders of a hotspot [38, 52, 57].  

 Malaria hotpots can be detected through mapping the residence locations of 

individuals with parasitemia in a specified area [38, 52]. The geographic location of 

hotspots can then be determined by using spatial scan statistics [58, 59]. This method is 

based on scanning the map with a window of different sizes to determine if the observed 

number of cases inside the window is greater than the expected number of cases [58-
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60]. The expected number of cases is calculated as the number of cases that would be 

observed in an area if cases were evenly distributed spatially in the population. The 

windows with the highest ratio of the number of observed to number of expected cases 

are identified and the statistical significance of these hotspots is calculated using the 

likelihood ratio test [58, 59].  

 To target interventions directed at the asymptomatic reservoir, areas considered 

to be malaria hotspots should be located [38]. Additionally, as areas transition from 

malaria control to elimination, the temporal stability of hotspots should be determined. 

Temporally stable hotspots of actively detected malaria cases as transmission declines 

provide information on ecologically receptive areas. In these areas, malaria may not be 

actively transmitted during each season but the populations in these areas are 

susceptible to infection and the areas are ecologically receptive to maintain malaria 

transmission.  

1.3.1.d. Parasite populations infecting passively and actively detected malaria cases 

 As areas transition from malaria control to elimination, understanding the 

epidemiologic patterns of local malaria transmission is crucial to achieving elimination 

and preventing re-introduction [41, 61, 62]. Of interest is the relative magnitude of 

malaria infections attributed to locally acquired cases compared to imported cases, 

particularly elucidating the role the asymptomatically infected reservoir plays in 

maintaining local malaria transmission [14, 20, 35, 63, 64]. One way to approach this 

question is to determine the genetic relatedness of parasites between actively detected, 

predominantly chronically infected asymptomatic malaria cases and passively detected, 

predominantly acutely infected symptomatic malaria cases [65]. Differences in parasite 

relatedness between passively and actively detected cases can inform how the parasite 

population within these different hosts changes as transmission declines [66].  
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 Various methods have been developed to genotype P. falciparum parasites. The 

first method developed, and most commonly used, is based on identification of length-

based polymorphisms in 3 loci: merozoite surface protein 1 (msp-1), merozoite surface 

protein 2 (msp-2), and glutamine rich protein (glurp) [67]. This method relies only on a 

PCR thermocycler and gel-electrophoresis to determine length of allele polymorphisms 

[68]. However, this method is limited in tracking infections in populations with high 

parasite diversity due to the limited number of informative loci [65, 68]. More 

sophisticated, high resolution methods to determine parasite diversity, such as 

microsatellite polymorphisms and whole genome sequencing, have been used to 

overcome this limitation; however these methods are often labor intensive and 

expensive [65, 68]. 

 A P. falciparum molecular barcode was developed to elucidate malaria 

transmission dynamics by tracking the genomic diversity and complexity of the malaria 

parasite over time and space [65]. This method was developed specifically for use in 

local or district-level laboratories, as the highest level of technology required is a 

polymerase chain reaction (PCR) assay [65]. The molecular barcode consists of 24 

unlinked SNPs that characterize unique genomic signatures of circulating P. falciparum 

parasites [65]. The barcode determines whether the major allele, minor allele, or a 

mixture of major and minor alleles is present in the haploid blood stage of the parasite 

for each of the 24 SNPs. Variation in the barcode arises as a result of genetic 

recombination and outcrossing during the sexual stage of infection when gametocytes 

combine [66]. SNPs with a mixture of the major and minor allele present are referred to 

as mixed infections, with higher numbers of mixed infections representing higher genetic 

complexity. The frequency of mixed infections approximates the level of genomic 

complexity and provides information about the burden of infection due to genetically 

unique parasites in the population [69].  
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 The molecular barcodes can be used to infer parasite haplotypes infecting 

individuals [66]. Thus, phylogenetic relationships can be determined for passively and 

actively detected cases to inform the relative magnitude that each of these populations 

contribute to the circulating parasite population. The genetic complexity and diversity 

among passively and actively detected cases can be used to determine how the parasite 

population changes in each of these populations in response to decreasing 

transmission.  

1.3.2 Challenges to malaria elimination 

1.3.2.a. Operational challenges in implementing targeted malaria elimination 

interventions 

Reactive case detection leverages the underlying spatial and temporal clustering 

of malaria infections [38, 52, 57] and can comprise reactive screen-and-treat or focal 

drug administration. Methods of implementing reactive case detection have not been 

fully operationalized and evaluated. Multiple challenges can impact the effectiveness 

and efficiency of reactive case detection. For example, the optimal screening radius 

around index cases has not been determined and will vary depending on demographic, 

ecologic and epidemiologic characteristics [44]. In rural areas, the WHO recommended 

that programs cover areas as large as the flight range of Anopheles mosquitoes, which 

can be up to 1-2 km [41]. A 1 km screening radius is used in Tanzania, a 300-500 meter 

screening radius is used in rural Senegal, and a 140-meter screening radius is used in 

rural Zambia [35, 44, 45]. Screening all index households and their neighbors can be 

costly and logistically challenging. Even with well-developed protocols, identifying 

neighboring households within a specified radius from an index household can be 

difficult in practice. For reactive case detection to be an effective malaria elimination 

strategy, high coverage levels are needed [64]. For high coverage to be achieved, ample 
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supplies of RDTs and ACTs must be available to RHCs and rural health posts (RHPs). 

Additionally, reactive screen-and-treat strategies rely on RDTs to identify infected 

individuals and the availability and sensitivity of these diagnostics will impact how well a 

reactive case detection program performs. Given these challenges, it is important to 

monitor reactive case detection programs as they are implemented to determine how 

they perform operationally and identify how they can be improved. 

1.3.2.b. Human movement and malaria transmission 

 Population movement is known to contribute to the transmission of vector borne 

diseases, specifically malaria [70-72]. This is due to differential contact between humans 

and mosquitos as a result of migration and overlapping activity space [73-75]. During the 

first global malaria eradication campaign in the 1950s and 1960s, the failure to account 

for human population movement was one of the factors that contributed to the program’s 

ultimate failure [70, 72].  

 In areas approaching malaria elimination, human mobility patterns are of 

particular interest in determining the local dynamics between malaria parasites that are 

imported and ongoing low-level endemic transmission [76-81]. Population movement 

patterns can threaten malaria elimination in two ways [70]. The first is through infected 

individuals traveling into ecologically receptive areas and transmitting parasites to the 

local population. The second is through uninfected individuals traveling into areas of high 

malaria transmission, becoming infected and returning to an ecologically receptive area 

[70]. These movement patterns occur on both large and small spatial scales, each 

impacting malaria transmission and with the potential to threaten elimination [70, 80-82]  

1.4 Summary 

 With renewed interest in malaria elimination, many areas that have increased 

interventions have experienced decreases in malaria cases. As areas approach 
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elimination, transmission becomes more spatially focal and the impact of the 

asymptomatically infected reservoir on transmission, and how to best target this 

reservoir, is of interest. The current research describes the epidemiology of malaria in an 

area of low transmission in Southern Province, Zambia, where elimination strategies are 

being implemented to create malaria free zones. Spatial and temporal trends in 

passively detected and actively detected malaria cases were compared, as well as the 

genetic parasite population infecting each population. Challenges to achieving malaria 

elimination in this area were described. Operational challenges to reactive case 

detection strategies, currently being use in the area, were evaluated and the potential 

impact of these strategies on the infected population was modeled. The impact of 

population movement patterns on local malaria transmission and risk of importation was 

explored. To successfully achieve and sustain malaria elimination, the epidemiology of 

malaria cases, and potential threats to achieving and sustaining elimination should be 

explored.   
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Abstract 

Background: As areas transition from malaria control to elimination, targeted 

interventions will be needed. Knowledge of changing spatial and temporal patterns of 

malaria as transmission declines can guide elimination efforts.  

Methods: Spatial and temporal changes in malaria incidence and prevalence were 

measured and analyzed as transmission declined in the catchment area of Macha 

Hospital in Choma District, Southern Province, Zambia. Passively detected cases of 

malaria were reported from six rural health centers (RHCs) from August 2008 to 

September 2015. Seasonal malaria incidence was estimated based on an estimated 

population size for each catchment area and spatial patterns were evaluated. Parasite 

prevalence was measured through active case detection using rapid diagnostic tests and 

PCR in population-based, serial cross-sectional cohort studies conducted from February 

2008 to October 2013. Spatial clusters of parasite prevalence were determined and 

overlap with malaria incidence was assessed. 

Results: The number of passively detected malaria cases decreased over the study 

period. Each transmission season had a dominant RHC catchment area with the highest 

incidence and adjacent RHC catchment areas had the next highest incidence.  However, 

as the burden of malaria decreased, these spatial relationships changed. More distant, 

non-adjacent RHC catchment areas frequently had a higher incidence than those 

adjacent to the dominant RHC. Malaria prevalence as measured by active case 

detection declined from 9.2% to 0.7% from 2008 to 2013. Statistically significant spatial 

clusters of prevalent infections were identified during most annual transmission seasons 

but were not consistent from year to year. Over the entire study period, four statistically 

significant, temporally stable clusters were detected. These clusters of prevalent 

infections overlapped with the dominant RHC catchment area with the highest incidence 
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only during the 2008-2009 season when the burden of malaria was highest. As 

transmission declined, the spatial distribution of prevalent infections and incident cases 

no longer overlapped. 

Conclusion: As areas approach malaria elimination, information on how spatial and 

temporal patterns of malaria incidence and prevalence change can be used to plan 

targeted interventions. The absence of spatial overlap between incident and prevalent 

cases suggests the emergence of two distinct populations of infected individuals, acutely 

infected, symptomatic individuals and chronically infected, asymptomatic individuals.
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Background 

 Over the past decade, reductions in the burden of malaria occurred in many 

countries in sub-Saharan Africa [1] and malaria elimination goals have been proposed 

[2-4]. Malaria transmission has been shown to be spatially heterogeneous on various 

spatial scales, from the national level to districts and villages [25-32], but small-scale 

spatial patterns of malaria transmission as regions move toward elimination have not 

been fully elucidated. Understanding these epidemiologic patterns of transmission 

decreases is crucial to achieving and sustaining elimination [2, 3, 5].  

Of particular interest is the role of the asymptomatic reservoir in maintaining local 

malaria transmission [6-10]. The current hypothesis is that asymptomatically infected 

individuals maintain malaria transmission, whereas individuals lacking clinical immunity 

develop symptomatic malaria and seek care at health facilities [6, 11, 13, 16, 24]. Thus, 

areas approaching elimination have increased efforts to detect and treat both 

symptomatically and asymptomatically infected individuals to achieve elimination [6, 8, 

11-23].  

 This study explored changing spatial and temporal patterns of malaria in a region 

of southern Zambia where malaria transmission has decreased dramatically and is 

approaching elimination to better understand the relationship between the asymptomatic 

reservoir identified through active case detection and symptomatic individuals seeking 

care at health facilities. 

Methods 

Study site 

 The study was conducted in Southern Province, Zambia. The single rainy season 

lasts from November through April, followed by a cool dry season from April to August 

and a hot dry season through November. Malaria transmission peaks during the rainy 
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season [33] and the primary malaria vector is Anopheles arabiensis. The study area is 

populated by villagers living in small, scattered homesteads. Artemisinin combination 

therapy (ACTs) with artemether-lumefantrine was introduced as first-line anti-malarial 

therapy in Zambia in 2002 [34] and into the study area in 2004. In Zambia, long lasting 

insecticide treated nets (LLINs) are distributed through antenatal care clinics and 

additional mass distribution campaigns [35]. LLINs were widely distributed in the study 

area in 2007 [36] and more than 11,000 LLINs were distributed from nine health posts in 

the catchment area of Macha Hospital in 2012, with additional LLINs distributed in 2014 

according to the Office of the Macha Hospital Environmental Health Technician. 

Passive surveillance through health center reporting 

 Fourteen rural health centers (RHCs) send weekly reports of malaria cases to 

study staff in at Macha Research Trust (MRT) [37], including the number of RDTs used, 

number of RDTs that were positive, and the number of people treated for malaria. Six of 

these RHCs are located within the active case surveillance study area described below 

and started reporting in August 2008. One of these RHCs is associated with Macha 

Hospital.  

Active surveillance through community surveys 

 Satellite images were used to develop a sampling frame in a 1,200 km2 study 

area. Households were randomly sampled from 2007 to 2013 [28]. The 2007 study area 

was east of that used from 2008 to 2013, and data collected in 2007 was only used to 

define the RHC catchment areas. The identification and enumeration of households was 

done manually to delineate household and non-household structures (kraals, schools, 

and larger structures) [28]. Households selected from the sampling frame were recruited 

and enrolled in cross-sectional surveys conducted every other month from February 

2008 to December 2013, with a different set of households each month. For each study 

visit, a questionnaire was administered to collect demographic data, history of recent 
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malaria symptoms and treatment, healthcare seeking behavior including which RHC 

they visited the last time they had an illness, knowledge of malaria risk and prevention, 

LLIN use, and recent travel history. A blood sample was collected by finger prick for a 

rapid diagnostic test (RDT). Participants who were positive by RDT were offered 

treatment with artemether-lumefantrine (Coartem®).  

Defining RHC catchment areas 

 The locations of participating households were mapped along with the specified 

RHC visited during the last illness episode for each resident. Responses from 

participants from 2007 through 2013 were mapped. The participants from 2008 to 2013 

indicated one of the 6 RHCs; the 2007 sample included an additional 2 RHCs. These 

additional, two RHCs were included to delineate RHC boundaries but were not included 

in further analyses. Thiessen polygons were created around each household in ArcGIS 

using the proximity tools. Thiessen polygons define areas of influence around each of a 

set of points so that any location inside the polygon is closer to that point than any other 

sample points and the boundaries define the area that is closest to each point relative to 

all other points. The Thiessen polygons were then dissolved by the reported preferred 

RHC to create RHC level polygons. The resulting polygons represent the catchment 

areas most likely served by each RHC [38, 39].  

 A simulation model was constructed previously which created a simulated 

population for all of the households in the study area based on the sampled population. 

The methods used to create this simulated population was previously published [23]. In 

brief, a prediction model was constructed using data from the population-based, serial 

cross-sectional surveys to estimate the number of residents per household [23]. These 

estimates of household size were then spatially joined to the Thiessen polygons 

representing the RHC catchment areas. Thus, the total number of households and 

individuals residing in each RHC was estimated.  
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Calculating incidence rates of passively detected malaria cases 

 Weekly reports of passively detected malaria cases from the 6 RHCs were 

aggregated to the month and linked to their RHC catchment area. Monthly incidence 

rates per catchment area were calculated as the total number of cases per month 

divided by the total population of the catchment area. As there was a clear seasonal 

pattern in total malaria cases and incidence rates, the data were aggregated for each 

annual transmission season from October through September.  

Spatiotemporal patterns of incidence of passively detected malaria cases 

 The RHC with the highest incidence per annual transmission season was 

classified as the dominant RHC for that season. First-order neighbors of the dominant 

RHC for each season were neighboring RHCs sharing borders with the dominant RHC. 

Second-order neighbors of the dominant RHC for each season were neighboring RHCs 

sharing borders with the first-order neighbors.  

 Incidence rates per 1,000 residents were calculated for each annual transmission 

season for the dominant RHC, first-order neighboring RHCs, and second-order 

neighboring RHCs. Incidence rates ratios comparing dominant and first-order 

neighboring RHCs, and first-order and second-order neighboring RHCs, were calculated 

for each annual transmission season. 

Cluster detection of actively detected malaria infections 

 Infection with Plasmodium falciparum was confirmed by RDT and PCR during 

active case detection from the serial cross-sectional surveys from February 2008 to 

October 2013. Actively detected cases were aggregated by annual transmission season 

in the same manner as passively detected cases (October through September). 

SaTScanTM software was used for cluster detection for each annual transmission season 

using a Bernouli purely spatial model. Clusters were allowed to overlap but were 
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restricted to having no cluster centers inside other clusters. The maximum cluster size 

was set to be less than or equal to 25% of the total population at risk.  

 All annual transmission seasons were combined and a space-time cluster 

detection analysis was conducted to identify temporally stable clusters. These clusters 

were also allowed to overlap, were restricted to having no clusters inside other clusters, 

and the maximum cluster size was set to be less than or equal to 25% of the total 

population. Statistically significant clusters were mapped in ArcGIS (ESRI 2012. ArcGIS 

Desktop: Release 10.2. Environmental Systems Research Institute, Redlands, CA, 

USA). 

Results 

RCH catchment area populations 

 A total of 3,235 participants from 735 households were enrolled between 2007 

and 2013 in the cross-sectional surveys and had data on their preferred RHC. When 

linked with the simulated population, 35,148 individuals from 6,589 households were 

estimated to reside within the catchment areas of the 6 RHCs (Figure 2.1, Figure 2.2). 

These population estimates were used to calculate incidence rates and create polygons 

of the RHC catchment areas (Figure 2.2).  

Incidence of passively detected malaria at RHCs 

 The number of passively detected malaria cases declined over the study period, 

with variation in the incidence of passively detected malaria cases across RHCs (Figure 

2.3, Figure 2.4). Annual peaks in incidence were observed in the 2008-2009 and 2009-

2010 annual transmission seasons, but biannual peaks in incidence were observed 

during the remaining time periods (Figure 2.3, Figure 2.4).  

Spatiotemporal patterns of incidence of passively detected malaria 
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 Malaria incidence rates for each annual transmission season for the dominant 

RHC catchment area and first-order and second-order neighboring RHC catchment 

areas are presented in Table 2.1. The RHC associated with Macha Hospital was the 

dominant RHC catchment for 4 of the 7 annual transmission seasons (57%), with the 

Nalube RHC the dominant RHC catchment for two seasons (29%) and the Mangunza 

RHC for one season (14%) (Table 2.1, Figure 2.5).  

Incidence rates in first-order RHCs were consistently higher than or equal to 

neighboring second order RHCs during the first 4 annual transmission seasons from 

2008-2009 through 2011-2012 (Table 2.1, Figure 2.5). After the 2011-2012 season, 

incidence in second-order neighboring RHCs was greater than first-order RHCs, with the 

exception of the 2013-2014 season when the incidence in first-order and second-order 

RHCs were equivalent (Table 2.1, Figure 2.5).  

 Because the incidence of malaria decreased sharply after the 2010-2011 annual 

transmission season, analyses were stratified by the higher (2008 through 2011) and 

lower (2011 through 2015) transmission seasons. A more distinct spatial pattern was 

observed, with dominant RHC catchments having a higher incidence than their first-

order RHCs catchment areas, and first-order RHCs higher than second-order RHCs in 

the higher transmission period (Table 2.1, Figure 2.6). The incidence rate ratio (IRR) 

comparing dominant RHCs to their first-order neighbors was 1.95 (1.74-2.19) in the 

higher transmission period and 1.98 (1.62-2.40) in the lower transmission period (Table 

2.2, Figure 2.7). In contrast, the IRR comparing the first- and second-order RHCs was 

1.09 (0.97-1.22) in the higher incidence period a 0.79 (0.67-0.94) in the lower 

transmission period (Table 2.2, Figure 2.7), suggesting less spatial dependence as 

transmission decreased.  

Cluster detection of actively detected infected individuals 
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 Malaria prevalence declined from 9.2% in 2008 to 0.7% in 2013 (Table 2.3, 

Figure 2.8). The largest decrease in prevalence occurred between the 2008-2009 and 

2009-2010 annual transmission seasons when the prevalence declined from 7.1% to 

1.7%, and remained low for the remaining 3 transmission seasons (Table 2.3, Figure 

2.8). Participant demographic characteristics did not differ by annual transmission 

season but the proportion of febrile participants was higher in the 2008 and 2012-2013 

seasons (Table 2.3).  

Spatial clusters were detected using a spatial-only model during each annual 

transmission seasons except 2010-2011 but these clusters did not overlap (Table 2.4, 

Figure 2.9). After combining all annual transmission seasons and accounting for 

temporal trends, four statistically significant, temporally stable clusters were detected 

using the space-time cluster detection model (Table 2.5, Figure 2.10). Three clusters 

overlapped due to inclusion of a single household (Table 2.5, Figure 2.10).  

Relationship between incidence of passively detected malaria and clusters of actively 

detected malaria infection 

 Spatial-only clusters of parasite prevalence overlapped with the dominant RHC 

catchment area only during the 2008-2009 season. During other annual transmission 

seasons, spatial-only clusters of parasite prevalence were either in first-order RHCs, 

second-order RHCs, or overlapping with both. When both malaria incidence and 

prevalence were low, there was no evidence of spatial overlap between the passively 

and actively detected infected individuals.  

Discussion 

These results show changes in spatial and temporal trends of passively and 

actively detected infections in an area where malaria transmission has declined 

substantially. To the authors’ knowledge, this is the first time spatial and temporal trends 



 

 31 

among passively and actively detected cases were compared in an elimination setting. 

In such areas, targeted interventions to prevent further transmission are critical to 

achieve elimination but predicting spatial patterns can become difficult as the number of 

infected individuals decreases. 

RHCs estimate their catchment area based on available census data [37]. This 

estimate does not account for actual utilization of an RHC by residents [40, 41]. Health 

seeking behavior can depend on many factors including distance, perceived quality of 

care and accessibility of [41]. Using a novel approach, RHC catchment area population 

sizes were estimated based on a reported health center use and a simulation model. A 

hierarchical spatial pattern in malaria incidence was observed based on these estimates, 

in which incidence was higher in RHC catchment areas adjacent to the RHC with the 

highest incidence compare to more distant RHCs. However, this spatial dependence 

was lost as the burden of malaria decreased. 

The spatial only model identified clusters of prevalent cases for six of the seven 

annual transmission seasons and the space-time model detected four temporally stable 

clusters over the study period. Spatial clusters of actively detected cases and the 

dominant RHC catchment area overlapped only during the annual transmission season 

with the highest prevalence. As transmission declined, this spatial relationship between 

incident and prevalent cases was lost, consistent with a chronically infected reservoir of 

prevalent cases that are not contributing to incident cases.  

A major limitation was the small number of RHC catchment areas used to 

determine spatial trends in malaria incidence. To estimate the catchment area 

population sizes, data on health care utilization from community surveys were used, 

which restricted the number of RHCs to those within the active surveillance study area, 

and assumed a static population. However, this permitted comparisons of spatial 

patterns in incidence and prevalent cases. A second limitation was the low number of 
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prevalent cases available to assess spatial and temporal-spatial clusters, a challenge 

common to all areas approaching elimination.  

Conclusions 

  As malaria transmission declined in southern Zambia, spatial relationships in 

malaria incidence changed, with a loss of spatial dependence consistent with a change 

from endemic malaria transmission to stochastic, parasite importations. Small spatial 

clusters of prevalent cases were identified but the absence of spatial overlap between 

incident and prevalent cases suggests the emergence of two distinct populations of 

infected individuals, acutely infected, incident cases and chronically infected, prevalence 

cases.
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Table 2.1: Seasonal malaria incidence in dominant catchment areas and first and second order neighbors from 2008 to 2015 

 
Dominant catchment area First order neighbors Second order neighbors 

Season Incidence per 1,000 95% CI Incidence per 1,000 95% CI Incidence per 1,000 95% CI 

2008-2009 32.4 28.8, 36.2 40.3 35.3, 45.9 20.8 17.1, 25.0 

2009-2010 19.3 15.7, 23.4 13.3 11.2, 15.7 12.9 11.4, 14.6 

2010-2011 14.9 11.1, 19.7 6.3 5.4, 7.3 3.8 2.2, 6.0 

2011-2012 17.8 14.4, 21.7 10.2 8.3, 12.3 8.4 7.1, 9.8 

2012-2013 8.9 6.0, 12.8 5.3 4.5, 6.3 7.1 5.0, 10.0 

2013-2014 18.1 14.7, 22.1 7.4 5.9, 9.3 10.0 8.7, 11.5 

2014-2015 8.4 6.1, 11.3 4.7 3.4, 6.2 4.3 3.4, 5.3 
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Table 2.2: Malaria incidence rate ratios between dominant RHC catchment areas and first and second order neighbors for the high 
(2008-2011) and low (2012-2015) transmission periods  
 

 

Dominant catchment vs. first 
order neighbors 

Dominant catchment vs. 
second order neighbors 

First order neighbor vs. 
second order neighbors 

Season IRR 95% CI p-value IRR 95 % CI p-value IRR 95% CI p-value 

2008-2011 2.0 1.7, 2.2 <0.001 2.1 1.9, 2.4 <0.001 1.1 1.0, 1.2 0.075 

2012-2015 2.0 1.6, 2.4 <0.001 1.6 1.3, 1.9 <0.001 0.8 0.7, 0.9 0.006 
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Table 2.3: Demographic characteristics of passively detected cases by annual transmission season 
 

 *2008 2008-2009 2009-2010 2010-2011 2011-2012 2012-2013 p-value 

Households 24 98 142 139 151 689  

Participants 153 534 869 746 685 706  

Confirmed malaria cases 14 38 15 13 7 5  

Prevalence (%) 9.2 7.1 1.7 1.7 1.0 0.7 <0.001 

Sex       0.9 

Male (%) 45.1 45.9 47.2 46.5 44.5 44.9  

Symptomatic 31.4 26.0 21.1 18.4 21.5 48.6 <0.001 

Median age (IQR) 14.5 (6.9-35.5) 14.2 (6.6-34.3) 14.7 (6.1-33.3) 14 (5.8-34.5) 13.0 (5.0-13.0) 15 (5.7-34.6) 0.72 

*Data collection in 2008 began in February 2008 
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Table 2.4: Spatial clusters by annual transmission season 
 

Season 
Cluster 
number Households Participants 

Expected 
cases 

Observed 
cases RR p-value 

2008* 1 1 13 1.2 6 8.1 0.008 

2008-2009 1 3 30 2.1 11 6.8 0.001 

2008-2009 2 2 15 1.6 8 5.9 0.03 

2009-2010 1 1 7 0.1 3 30.8 0.04 

2010-2011 
None 

detected NA NA NA NA NA NA 

2011-2012 1 10 56 0.6 5 28.1 0.02 

2012-2013 1 10 39 0.3 4 68.3 0.01 
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Table 2.5: Space-time clusters of infected individuals identified through active 
surveillance from 2008 to 2013 
 

Cluster Households Participants 
Expected 

cases 
Observed 

cases RR p-value 

1 63 341 2.6 10 6.4 0.007 

2 3 28 0.9 6 6.4 0.01 

3 4 25 0.9 6 6.4 0.01 

4 67 359 0.7 5 5.7 0.02 
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Figure 2.1: Map of study households and preferred rural health center 
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Figure 2.2: Polygons of rural health center catchment areas and population size estimate 
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Figure 2.3: Incidence of passively detected malaria per 1,000 population per month by 
rural health center 
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Figure 2.4: Incidence of passively detected malaria per 1,000 population per month 
stratified by rural health center 
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Figure 2.5: Incidence of passively detected malaria for the dominant rural health center 
and first and second order rural health centers for annual malaria transmission seasons 
from 2008-2009 through 2014-2015 
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Figure 2.6: Incidence of passively detected malaria for the dominant rural health centers 
and the first and second order rural health centers for the high (2008-2011) and low 
(2012-2015) transmission periods 
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Figure 2.7: Malaria incidence rate ratios between dominant rural health centers and their 
first and second order rural health centers for the high (2008-2011) and low (2012-2015) 
transmission periods 
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Figure 2.8: Malaria prevalence detected through active surveillance, by annual 

transmission season 

 

*2008 season began in February 2008 
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Figure 2.9: Spatial clusters of infected individuals detected through active surveillance in Macha, Zambia (A: *2008, B: 2008-2009, C: 

2009-2010, D: 2010-2011, E: 2011-2012, F: 2012-2013) 
  

 

A B C 
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Figure 2.10: Space-time clusters of infected individuals detected through active 

surveillance from 2008-2013 
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Abstract  

Background: Substantial reductions in the burden of malaria have been documented in 

parts of sub-Saharan Africa, with malaria elimination goals proposed at regional, 

national, and subnational levels. As areas transition from high or moderate to low 

malaria transmission and approach elimination, understanding the epidemiology of low 

level malaria transmission is crucial to achieving and sustaining elimination. A 24 single 

nucleotide polymorphism (SNP) Plasmodium falciparum molecular barcode was used to 

characterize parasite populations over time from infected individuals identified through 

passive and active case detection in an area approaching malaria elimination in 

southern Zambia. 

Methods: The study was conducted in the catchment area of Macha Hospital in Choma 

District, Southern Province, Zambia, where the parasite prevalence declined over the 

past decade, from 9.2% in 2008 to less than 1% in 2013. A 24 SNP P. falciparum 

molecular barcode was used to determine the genetic relatedness, diversity and 

complexity of parasite populations. Parasite haplotypes from actively detected, P. 

falciparum-infected participants enrolled in a population-based, serial cross-sectional 

cohort study from 2008-2013 and passively detected, P. falciparum-infected individuals 

enrolled at five rural health centers from 2012-2015 were compared. Within each study 

population, changes in genetic relatedness, diversity and complexity were analyzed as 

malaria transmission declined.  

Results: Infected individuals detected through active and passive surveillance did not 

differ by basic demographic characteristics. Actively detected cases were most 

commonly rapid diagnostic test (RDT) negative, asymptomatic and had submicroscopic 

parasitemia. The phylogenetic tree showed evidence of clustering only during the 2012-

2013 transmission season for passively detected cases but no evidence of clustering for 
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actively detected cases. In a combined phylogenetic tree, there was clear separation of 

parasite haplotypes from passively and actively detected infections, consistent with two 

evolutionarily distinct parasite populations. For passively detected infections, the 

proportion of polyclonal infections was consistently low in all seasons, in contrast with 

actively detected infections in which the proportion of polyclonal infections was high. The 

mean genetic divergence for passively detected infections was 34.5% for the 2012-2013 

transmission season, 37.8% for the 2013-2014 season, and 30.8% for the 2014-2015 

season. The mean genetic divergence for actively detected infections was 22.3% in the 

2008 season and 29.0% in the 2008-2009 season but decreased to 9.9% across the 

2012-2014 seasons, which were combined because of small sample size.  

Conclusions: Distinct parasite populations were identified among infected individuals 

identified through active and passive surveillance, suggesting the asymptomatic 

reservoir detected through active surveillance did not contribute substantially to ongoing 

transmission. As parasite prevalence and diversity within these individuals declined over 

time, efforts to detect and treat the chronically infected reservoir through reactive case 

detection or mass drug administration may not be necessary to eliminate malaria in this 

setting. 
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Background 

 Substantial reductions in the burden of malaria have been documented in parts 

of sub-Saharan Africa [1] and malaria elimination goals have been proposed at regional, 

national, and subnational levels [2-4]. As areas transition from high or moderate to low 

malaria transmission and approach elimination, understanding the epidemiologic 

patterns of transmission is crucial to achieving and sustaining elimination [2, 3, 5]. Of 

interest is the relative magnitude of infection attributed to locally acquired and imported 

cases, specifically the role of the chronically infected, asymptomatic reservoir in 

maintaining local malaria transmission [6-10]. One way to address this question is to 

determine the genetic relatedness of parasites between actively detected, predominantly 

chronically infected, asymptomatic infected individuals and passively detected, 

predominantly acutely infected, symptomatic malaria cases [11]. As areas transition from 

malaria control to elimination, knowledge of the relative role of chronically infected, 

actively detected cases and acutely infected, passively detected cases in local malaria 

transmission dynamics can guide interventions, particularly reactive case detection and 

focal or mass drug administration strategies. 

 A Plasmodium falciparum molecular barcode assay consisting of 24 unlinked, 

single nucleotide polymorphisms (SNPs) has been used to characterize unique genetic 

signatures and track circulating P. falciparum parasite populations [11]. The barcode 

was developed to elucidate malaria transmission dynamics by tracking the genetic 

diversity and complexity of the parasite over time and space [11]. This method was 

developed specifically for use in resource-limited settings as the highest level of 

technology required is a polymerase chain reaction (PCR) assay [11].  

 This study was conducted in an area of southern Zambia that experienced a 

dramatic decrease in malaria transmission over the past decade [12]. The molecular 
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barcode was used to determine the relatedness between parasites over time in infected 

individuals identified through passive and active surveillance, as well as changes in 

parasite genetic complexity and diversity. 

Methods 

Study site and population 

 The study was conducted in the catchment area of Macha Hospital in Choma 

District, Southern Province, Zambia, where there is a single rainy season which lasts 

from November through April, followed by a cool dry season from April until August and 

a hot dry season from August through November. Malaria transmission peaks during the 

rainy season [13] and the primary vector is Anopheles arabiensis [14, 15]. The hospital 

catchment area is populated by villagers living in small, scattered homesteads. The 

prevalence of malaria declined in this area over the past decade, from 9.2% in 2008 to 

less than 1% in 2013. Artemisinin combination therapy (ACTs) with artemether-

lumefantrine was introduced as first-line anti-malarial therapy in Zambia in 2002 [16] and 

into the study area in 2004. In Zambia, long lasting insecticide treated nets (LLINs) are 

distributed through antenatal care clinics and additional mass distribution campaigns 

[17]. LLINs were widely distributed in the study area in 2007 [18] and more than 11,000 

LLINs were distributed from nine health posts in the catchment area of Macha Hospital 

in June 2012, with additional LLINs distributed in 2014 according to the Office of the 

Macha Hospital Environmental Health Technician. 

 

Active malaria surveillance  

 Satellite images were used to develop a sampling frame for the random sampling 

of households to enroll participants in longitudinal and cross-sectional malaria surveys 

[19]. The identification and enumeration of households was done manually to delineate 
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household and non-household structures (kraals, schools, and larger structures) [19]. 

Households selected from the sampling frame were enrolled in either a cross-sectional 

or longitudinal cohort. Households enrolled in the cross-sectional cohort were surveyed 

once, whereas households enrolled in the longitudinal cohort were repeatedly surveyed 

every two months. Surveys were conducted each month, alternating between the cross-

sectional cohort and the longitudinal cohort, from February 2008 through October 2013. 

For each study visit, a questionnaire was administered to collect demographic data, 

history of recent malaria symptoms and treatment, healthcare seeking behavior, 

knowledge of malaria risk and prevention and long-lasting insecticidal net use. For these 

analyses, recent malaria symptoms were defined as having a documented fever greater 

than 38°C or reporting a fever and chills within the previous 48 hours. A blood sample 

was collected by finger prick for a rapid diagnostic test (RDT), microscopy and blood 

was spotted on Whatman 903TM Protein Saver cards. Participants who were positive by 

RDT were offered treatment with artemether-lumefantrine (Coartem®). 

 

Passive malaria surveillance 

 Fourteen rural health centers (RHCs) surrounding Macha Hospital sent a weekly 

text message report of the number of RDTs used, number of positive RDTs, and the 

number of people treated for malaria to study staff at Macha Research Trust [20]. Five of 

these RHCs collected demographic data using a short survey and a dried blood spot 

from individuals with a positive RDT during annual malaria transmission seasons 

(October-September) from 2012 through 2015. 

 

Laboratory methods 

 The dried blood spots (DBS) were stored at -20°C in individual plastic bags 

containing desiccant until DNA extraction. DBS collected from February to September 
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2008 were initially stored at room temperature, then transferred to -20°C storage 

afterwards. Parasite DNA was extracted using the Chelex© method from one dried blood 

spot. The dried blood spots were placed in 1.5 mL microcentrifuge tubes, 1 mL of 0.1% 

weight by volume saponin in 1x phosphate buffered saline (PBS) was added and the 

mixture was incubated for 10 minutes at room temperature. The tubes were centrifuged 

for two minutes at 14,000 rpm, the supernatant discarded and 1 mL of 1X PBS was 

added. The tubes were centrifuged for 2 minutes at 14,000 rpm, the supernatant 

discarded and 150 μL of 2% weight by volume Chelex© solution and 50 μL of DNase 

free water were added and the tubes were boiled for 8 minutes. The tubes were then 

centrifuged for one minute at 14,000 rpm and approximately 150 μL of DNA was stored 

at -20°C. 

 Infection was confirmed using a Plasmodium specific nested PCR assay. The 

nested PCR detected the asexual stage of parasite DNA using two sets of primers 

targeting a segment of the mitochondrial cytochrome b gene (cytb) present in the four 

major human Plasmodium parasites. In the primary PCR step, 6 μL of DNA extract was 

pipetted into 0.2 mL tubes containing a 19 μL reaction mix made up of DNase free water 

and final concentrations of dNTPs, 10X PCR buffer, magnesium chloride, forward and 

reverse primers and DNA Taq polymerase in 25 μL reaction mix. In the nested PCR 

step, 3 μL of the primary PCR product was added to 0.2 mL PCR tubes containing 22 μL 

of reaction mix containing DNase free water and final concentrations of dNTPs, 10X 

buffer, magnesium chloride, forward and reverse primers and Taq DNA polymerase in 

25 μL reaction mix. No template controls were included in each experiment and 

reactions were run in a Techne™ TC-412 thermo cycler (Bibby Scientific Limited, 

Staffordshire, UK). Amplified product was detected by electrophoresis on 1% agarose 

gel and viewed under UV light as an 815 base pair DNA band. 
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  The 24 SNP molecular barcode assays were run using a TaqMan protocol at the 

Macha Research Trust laboratory in Zambia [11]. DNA was extracted from a second 

DBS for samples positive by nested PCR using the Chelex© method. Due to low 

parasite DNA concentrations, samples were pre-amplified prior to performing the 24 

SNP molecular barcode assay [21]. The pre-amplification step was done by adding 5 μL 

of DNA for each sample to 10 μL of TaqMan pre-amplification master mix, and 0.2X 

pooled assay mixture, made up of forward and reverse primers for each of the 24 SNPs 

[21].  

Pre-amplified samples were diluted 1:20 with TE buffer prior to running the 24 

SNP molecular barcoding assay [21]. For each of the 24 SNP assays, 2.0 μl of pre-

amplified sample DNA was added to 10.0 μl TaqMan master mix, 7.5 μL distilled water, 

and 0.5 μL TaqMan commercially available primer and probe assay mixture. For each of 

the 24 SNP assays, 3 known positive controls and 2 negative, no-template controls were 

run. Positive controls consisted of DNA samples from P. falciparum strains obtained 

from MR4 with known haplotypes for all 24 SNPs. Typically, 12 SNP assays were run for 

5 samples at a time with controls on a 96-well plate. The assays were run on the Applied 

Biosystems StepOnePlusTM (Thermo Scientific, Waltham, MA, USA), and Roche 

LightCycler 480TM (Roche Diagnostics Corporation, Indianapolis, IN, USA) real time PCR 

systems. 

 Parasites sampled from peripheral blood are those in the haploid intra-

erythrocytic stage of their lifecycle. Thus, SNP calls were made automatically based on 

allelic discrimination plots using standardized software programs accompanying the real 

time PCR systems as one of the two alleles or mixed [22, 23]. In cases where SNP calls 

could not be made by automatically, the calls were made manually by the study 

investigators. Otherwise the SNP call was classified as failed. Samples with failed SNP 
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calls were repeated up to 3 times. If a sample failed on all repeated assays, it was 

treated as missing data.  

 

Construction of phylogenetic trees 

 Haplotypes were aligned using the ClustalW method in MEGA6 software, with 

mixed calls represented as a third possible allele [24]. Maximum likelihood trees were 

constructed for actively and passively detected malaria infections separately, grouped by 

malaria transmission season, to explore temporal phylogenetic clustering of haplotypes. 

Haplotypes for the combined dataset were aligned using the same method and a 

maximum likelihood tree was constructed.  

 

Parasite genetic complexity and diversity 

 Parasite genetic complexity was determined by the number of mixed calls at 

each of the 24 SNPs. Samples with 4 or more mixed calls were categorized as 

polyclonal infections [25]. Temporal trends were graphed and variation in the proportion 

of polygenic infections was determined using the Wilcoxon rank-sum test. Samples with 

more than half missing data were excluded. 

 Parasite genetic diversity was evaluated by determining divergence from the 

most common barcode for each transmission season stratified by whether the parasite 

was identified through passive or active surveillance. The most common barcode for 

each season was determined by allelic frequency at each SNP to determine the 

nucleotide diversity. A modified ‘SNP π’, was developed to account for missing data and 

mixed allele calls, and was used to measure the seasonal parasite genetic divergence 

[26]. Details of the methods in calculating the modified ‘SNP π’ are described in the 

Appendix.  
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Results 

 The 24 SNP molecular barcode was run on 72 samples from actively detected 

malaria cases and 46 samples from passively detected malaria cases. The median age 

was 13 years (IQR=7-30) for infected individuals identified through passive case 

detection and 14 years (IQR=11-21) for those identified through active case detection 

(Table 3.1). There were no statistically significant differences in sex between the two 

study populations and no statistically significant differences in median age or sex were 

observed in passively or actively detected cases across the malaria transmission 

seasons (Table 3.1). While all actively detected cases were confirmed by PCR, no 

statistically significant differences were observed in microscopy results across the 

malaria transmission seasons, with most negative by microscopy (Table 3.1). 

Statistically significant differences were observed in the RDT results across malaria 

transmission seasons, with the proportion of RDT positive infections fluctuating, but all 

seasons had a higher proportion of RDT negative infections (Table 3.1). Statistically 

significant differences were observed in the proportion of individuals reporting symptoms 

of malaria for each season, with trends in symptomatic infections decreasing from the 

2008 season through the 2010-2011 season, then subsequently increasing (Table 3.1). 

 

Phylogenetic trees 

 The phylogenetic tree showed evidence of clustering for passively detected 

cases during the 2012-2013 annual malaria transmission season along with some 

mixing during the other two seasons (Figure 3.1A). However, there was no evidence of 

phylogenetic clustering during the 2013-2014 and 2014-2015 annual malaria 

transmission seasons (Figure 3.1A). For actively detected cases, the phylogenetic tree 

showed no evidence of phylogenetic clustering during any of the malaria transmission 

seasons (Figure 3.1B). In a combined phylogenetic tree, there was in general separation 
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of parasite genotypes from passively and actively detected cases (Figure 3.2), 

suggesting two evolutionarily distinct parasite populations (Figure 3.2).  

 

Genetic complexity and diversity 

 Genetic complexity was approximated by calculating the proportion of polyclonal 

infections in a season. The proportion of polyclonal infections was consistently low for 

passively detected cases in all seasons, with no polyclonal infections identified during 

the 2012-2013 and 2014-2015 annual transmission seasons (Table 3.2, Figure 3.3A). In 

contrast, the proportion of polyclonal infections among actively detected cases was 

consistently high for all malaria transmission seasons (Figure 3.3B). The last two 

seasons were combined due to the low numbers of cases but all were infections were 

polyclonal (Table 3.2, Figure 3.3B). No seasonal trends in genetic complexity were 

identified (Figure 3.3B).  

 The mean genetic divergence for passively detected cases was 34.5% for the 

2012-2013 season, 37.8% for the 2013-2014 season, and 30.8% for the 2014-2015 

season (Table 3.2, Figure 3.4A). The mean genetic divergence for actively detected 

cases was 22.3% in the 2008 season and 29.0% in the 2008-2009 season (Table 3.2, 

Figure 3.4B). This decreased to 9.9% in the combined 2012-2014 seasons (Table 3.2, 

Figure 3.4B). Overall, the genetic divergence remained high among passively detected 

cases but decreased for actively detected cases (Figure 3.4B).  

Discussion 

 Distinct parasite populations were found in individuals identified through passive 

and active surveillance in a region of declining malaria transmission in southern Zambia 

using a SNP-based molecular barcode for Plasmodium falciparum. These results 
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suggest that the population of largely asymptomatic, passively detected infections may 

not be contributing significantly to ongoing transmission in this setting. 

 The molecular barcode can be used to document the parasite diversity over time 

by providing information on the number of unique barcodes present each year, the 

persistence of unique barcodes between years, and the genetic divergence measured 

by nucleotide diversity within and between years. The molecular barcode determines 

whether the major allele, minor allele, or a mixture of major and minor alleles is present 

in the haploid blood stage of the parasite for each of the 24 SNPs. The resulting barcode 

represents the parasite’s haplotype and can be used to compare the genetic relatedness 

between individual infections and populations of parasites infecting different groups of 

people [27]. Variation arises as a result of genetic recombination and outcrossing during 

the sexual stage of infection when gametocytes combine [24]. SNPs with a mixture of 

major and minor alleles are referred to as mixed infections, with higher numbers of 

mixed infections representing higher genetic complexity. The frequency of mixed 

infections approximates the level of genetic complexity and provides information about 

the burden of infection due to genetically unique parasites [25].  

Typically, as malaria transmission declines, this creates a bottleneck, reducing 

opportunities for outcrossing in the mosquito midgut, leading to reduced parasite 

diversity among passively detected, symptomatic malaria cases [24, 27]. This decline in 

diversity is also accompanied by a decline in the complexity of infection, as there are 

fewer unique parasites circulating in population [24, 27]. However, parasite diversity 

among passively detected, symptomatic infections did not decline in southern Zambia, 

and the complexity of infection was low. As malaria transmission was consistently low 

between the 2012 and 2015 seasons, the sustained, high parasite diversity may be 

evidence of imported, locally transmitted parasites among a population susceptible to 

clinical malaria. 
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 The molecular barcode was used in Senegal to determine the clonal and 

epidemic expansion of passively detected clinical P. falciparum infections [24]. After 

enhanced deployment of ITNs and use of RDTs and ACTs between 2005 and 2011, 

reductions in parasite genetic diversity and complexity were observed [24]. Between 

2006 and 2013, the molecular barcode was used to determine the decline in malaria 

transmission among passively detected infections, with re-introduction in 2012 [27]. In 

Malawi, the molecular barcode was used to determine differences in the complexity of 

infection between severe clinical malaria cases and cerebral malaria cases among 

children younger than 5 years of age [25]. Children with cerebral malaria had less 

complex infections than those with severe malaria [25]. To the authors’ knowledge, this 

is the first time the molecular barcode was used to determine the genetic variation 

between actively and passively detected infections.  

 Passively detected cases had fewer complex infections, with a low proportion of 

polyclonal infections, consistent with recent infection with single parasite clones. In 

contrast, actively detected cases had more complex infections, with a high proportion of 

polyclonal infections. Between the 2008 and 2009-2010 transmission seasons there was 

an indication of a non-statistically significant, decreasing trend in the proportion of 

polyclonal infections; however, this proportion subsequently increased and remained 

high, indicating that the actively detected population of largely asymptomatic and sub-

patent infections was carrying many different parasite clones. While transmission 

declined, these individuals may be harboring parasites that were acquired over time and 

maintained at low levels of parasitemia. Chronically infections such as these have been 

shown to persist for up to a decade [28-31].  

 Parasite genetic diversity remained relatively high and constant for passively 

detected cases throughout the observed malaria transmission seasons. This finding, 

along with the phylogenetic separation from actively detected cases and the paucity of 



 

 64 

polyclonal infections, suggests these passively detected cases likely represent recent 

infections with parasites from outside the study area. In contrast, parasite genetic 

diversity was lower among actively detected cases, consistent with a chronically infected 

population. The decreasing parasite diversity among the actively detected cases is 

consistent with loss of parasites from this chronically infected reservoir as malaria 

transmission declined over the study period.  

 There were four major limitations of these analyses. The first was that passive 

and active case detection did not overlap temporally except for one malaria transmission 

season. However, given the absence of seasonal phylogenetic clustering for both 

passively and actively detected cases, the combined phylogenetic tree is likely an 

accurate representation of the phylogenetic relationship between the two parasite 

populations. The second was that we identified a high number of mixed infections from 

which single haplotypes were difficult to resolve. To account for this, a third allele was 

used to indicate mixed infections in calculating the phylogenetic relatedness and mixed 

infections were accounted for when calculating genetic divergence. [24, 26]. The third 

was that the sample size was small, although this is to be expected in a pre-elimination 

setting. The fourth was the low level of parasitemia. Pre-amplification of parasite DNA 

was performed to increase the molecular barcode yield, potentially introducing bias in 

the allele frequency. However, pre-amplification sites were barcode specific to reduce 

amplification in non-specific parasite DNA, and all samples were pre-amplified 

regardless of individual parasitemia [21]. After pre-amplification, assays with greater 

than 3 failures were treated as missing data, however this missing data may have been 

informative as these samples had very low parasitemia. This limitation is expected in all 

pre-elimination settings where the parasite prevalence is low.  
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Conclusions 

 Distinct parasite populations were found among infected individuals identified 

through active and passive surveillance, suggesting the asymptomatic reservoir did not 

contribute substantially to ongoing transmission. As parasite prevalence and diversity 

within these individuals declined over time, efforts to detect and treat the chronically 

infected reservoir through reactive case detection or mass drug administration may not 

be necessary to eliminate malaria in this setting.
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Table 3.1: Demographic characteristics of passively and actively detected individuals infected with Plasmodium falciparum by malaria 
transmission season 

 Overall *2008 2008-2009 2009-2010 2010-2011 2011-2012 2012-2013 2013-2014 2014-2015 

Passively detected cases          

   Number 46 - - - - - 12 25 9 

   Age in years (median [IQR]) 
13  

[7-30] 
- - - - - 11  

[7-30] 
18  

[9-32] 
11  

[7-11] 

   Male (%) 64.4 - - - - - 63.64 60.00 77.78 

Actively detected cases          

   Number 72 15 19 13 12 7 6 

   Age in years (median [IQR]) 
14  

[11-21] 
14  

[9-18] 
13  

[11-18] 
17  

[11-20] 
14.5  

[10.5-24] 
25  

[13-31] 
12.5  

[6-47] 

   Male (%) 55.6 66.7 52.6 53.9 50.0 57.1 50.0 

   Symptomatic (%) 34.7 60.0 15.8 23.1 16.7 57.1 66.7 

   Microscopy positive (%) 11.1 35.0 7.1 11.1 0.0 25.0 0.0 

   RDT positive (%) 20.8 20.0 31.6 23.1 8.3 14.3 16.7 

* The 2008 season was truncated as active case detection began in February 2008 

 

 

 

 

 



 

 69 

Table 3.2: Percent of polyclonal infections and genetic divergence for passively and 
actively detected individuals infected with Plasmodium falciparum by malaria 
transmission season 

 Number Percent polyclonal 
(95% Confidence 

interval) 

Percent genetic 
divergence (95% 

Confidence interval) 

Actively detected cases    

   *2008  15 87 (60-98) 22 (17-28) 

   2008-2009 19 79 (54-94) 29 (26-32) 

   2009-2010 13 69 (39-91) 24 (20-28) 

   2010-2011 12 92 (62-100) 15 (10-19) 

   2011-2012 7 86 (42-100) 18 (11-26) 

   2012-2014 6 100 (54-100) 10 (2-17) 

Passively detected cases    

   2012-2013 12 0 (0-26) 35 (27-42) 

   2013-2014 25 12 (3-31) 38 (34-42) 

   2014-2015 9 0 (0-34) 31 (19-43) 

* The 2008 season was truncated as active case detection began in February 2008 
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Figure 3.1: Phylogenetic trees of A: passively detected infections and B: actively detected infections, by malaria transmission season 
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Figure 3.2: Phylogenetic tree of actively and passively detected infections 
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Figure 3.3: Proportion of polyclonal infections by season for A: passively detected infections and B: actively detected infections 
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Figure 3.4: Mean genetic divergence by season for A: passively detected infections and B: actively detected infections 
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Appendix 

The modified ‘SNP π’ used to account for missing data and mixed allele calls 

was calculated as follows: 

1. The most common barcode for each season was determined based on allelic 

frequency for each of the 24 sites 

2. For each sample, the maximum agreement that could be achieved was calculated 

for all non-missing 24 sites. SNP calls of only allele 1 or allele 2 were given a score 

of 1 and mixed calls were given a score of 0.5. 

3. For each sample, the maximum agreement for all non-missing alleles was summed 

to give a total potential agreement score. For example, a sample with no missing 

data and no mixed calls would have a total potential agreement score of 24. 

4. The agreement between individual samples and the most common barcode was 

calculated. For each of the 24 SNPs, each sample received a score of 1 if the allele 

was the same as the most common barcode and a score of zero otherwise. When 

the most common allele at a given SNP was a mixed call, the barcode would 

receive a score of 0.5 for that SNP. If a barcode had a mixed allele assignment at a 

SNP for which the most common barcode was not mixed, the sample also received 

a score of 0.5 for that SNP. 

5. The agreement across all non-missing sites was summed to create a total observed 

agreement score. 

6. The proportion of agreement for each sample was calculated as the total observed 

agreement score divided by the total potential agreement score. 

7. The proportion of divergence was calculated as 1 minus the percent agreement for 

each sample. 
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8. For each season, the mean divergence was calculated to allow for comparisons 

across seasons. 
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Abstract 

Background: As malaria transmission declines in many regions of sub-Saharan Africa, 

interventions that target the chronically infected, asymptomatic reservoir are being 

deployed with the goals of improving surveillance and interrupting transmission. 

Reactive case detection strategies, in which clinical malaria cases are followed-up at 

their home where other household residents and neighbors are screened and treated for 

malaria, are currently being used in Zambia as part of the malaria elimination program. 

In areas of Southern Province, Zambia, community health workers were trained to 

conduct home follow-up visits for individuals who tested positive for malaria at a health 

care facility and to screen all residents and neighbors within 140 meters with a rapid 

diagnostic test (RDT) and treat those who tested positive. 

Methods: The operational challenges during the early stages of implementing a reactive 

screen-and-treat program in Macha, southern Zambia were assessed using rural health 

center records, ground truth evaluation of community health worker performance, and 

data from serial cross-sectional and longitudinal cohorts in the area. The proportion of 

the total infected population treated was estimated by constructing reactive screen-and-

treat and focal drug administration cascades.  

Results: In the first six-months of implementing a reactive screen-and-treat strategy, 

community health workers followed-up 32% of eligible index cases. The main reason 

reported for low follow-up was lack of RDTs. When index cases were followed-up, 66% 

of residents were at home in the index households and 58% of neighbors were at home 

within a 140-meter radius. Forty-one neighboring households of 26 index households 

were screened, with only 13 (32%) of these households actually falling within the 140-

meter screening radius. In the evaluation, the parasite prevalence by RDT was 22% in 

index households and 5% in neighboring households. In a simulation model with 

complete follow-up, only 22% of the total infected population would be detected with 
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reactive screen-and-treat using the currently available RDT, but the proportion treated 

increased to 57% with reactive focal drug administration, which does not rely on a 

diagnostic test.  

Conclusions: In the initial stages of implementing reactive screen-and-treat, operational 

challenges impede efficiency, including lack of RDTs at the level of the community 

health worker, low coverage of the strategy, and difficulty accurately identifying the 

screening radius. The poor sensitivity of the RDT to detect low-level infections in this low 

transmission setting was the largest impediment of reactive screen-and-treat. While this 

barrier is removed with focal drug administration, high levels of follow-up will be needed 

to treat a high proportion of infected individuals. Reactive screen-and-treat will likely not 

be sufficient to eliminate malaria and reactive focal drug administration, particularly 

targeting residents of the index case household, may be more efficient.  
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Background 

 Substantial reductions in the burden of malaria have been documented in parts 

of sub-Saharan Africa and malaria elimination goals have been proposed at regional, 

national, and subnational levels [1-3]. As areas transition from malaria control to 

elimination, strategies have been developed to target the population of chronically-

infected individuals who are asymptomatic yet can contribute to transmission as an 

infectious reservoir [4-9]. In malaria endemic areas, individuals develop clinical immunity 

to disease after repeated exposure to parasites and can remain infectious despite the 

absence of symptoms or develop low-grade symptoms that would not prompt them to 

seek care [10, 11]. As malaria transmission declines, the proportion of the total infected 

population including asymptomatic, chronically-infected individuals with low parasite 

densities initially increases [12-15], until clinical immunity wanes and more infected 

individuals develop symptoms. These individuals constitute an asymptomatic reservoir 

that is less infectious than symptomatically infected individuals due to the low parasite 

and gametocyte densities, but is capable of transmitting parasites in areas with 

competent vectors [12, 14, 15].  

 Several strategies have been developed to identify and treat asymptomatic, 

chronically infected individuals. Mass drug administration treats populations or high-risk 

groups based on the fact that current point-of-care diagnostic tests are not sufficiently 

sensitive to identify individuals with low levels of parasitemia [16, 17]. Active case 

detection, in contrast, involves screening individuals for malaria infection with rapid 

diagnostic tests (RDTs) within a defined geographic area (“hot spots”) or high-risk 

populations (“hot pops”) at regular intervals and treating those who test positive. This 

method can be used to identify the asymptomatic reservoir by testing and treating 

individuals who would not be detected by passive case detection [8]. Active case 

detection, as well as focal and mass drug administration, aims to eliminate parasites 
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from chronically-infected individuals, thus facilitating the interruption of local transmission 

[18]. The World Health Organization (WHO) recommends that areas of moderate to low 

malaria transmission implement active case detection as part of national malaria control 

and elimination programs [8].   

One specific method of active case detection is reactive case detection, which 

leverages the underlying spatial and temporal clustering of malaria infections [19-21] and 

can comprise reactive screen-and-treat or focal drug administration. When an infected 

individual is diagnosed at a health care facility, that person is recorded as an index case 

triggering reactive case detection. With a reactive screen-and-treat strategy, other 

residents in the home of the index case are screened using RDTs and treated if positive. 

Residents of neighboring households may also be screened and treated within a 

specified distance from the index household [6, 22, 23]. With a focal drug administration 

strategy, individuals residing in the index case household and possibly neighboring 

households are treated with antimalarials without testing. The advantage of focal drug 

administration is that infections, which may have been missed with a low-sensitivity 

diagnostic, are treated. The assumption underlying these reactive strategies is that 

temporally stable transmission hotspots exist where chronically-infected individuals 

reside and ecologic factors support and perpetuate local malaria transmission [19, 24, 

25]. Identifying these hotspots and treating chronically-infected individuals has the 

potential to interrupt transmission and facilitate the transition from malaria control to 

elimination [20, 23]. Thus, the objective of reactive case detection is to detect areas of 

recent local transmission using symptomatic index cases as sentinels for malaria 

transmission hotspots, which are maintained by chronically-infected individuals.  

 Methods of implementing reactive case detection have not been fully 

operationalized and evaluated. Multiple challenges can impact the effectiveness and 

efficiency of reactive case detection. For example, the optimal screening radius around 
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index cases has not been determined and will vary depending on demographic, ecologic 

and epidemiologic characteristics [22]. In rural areas, the WHO recommended that 

programs cover areas as large as the flight range of Anopheles mosquitoes, which can 

be up to 1-2 km [8]. A 1 km screening radius is used in Tanzania, a 300-500 meter 

screening radius is used in rural Senegal, and a 140-meter screening radius is used in 

rural Zambia [6, 9, 22]. Screening all index households and their neighbors can be 

financially costly and logistically challenging. Even with well-developed protocols, 

identifying neighboring households within a specified radius from an index household 

can be difficult in practice. However, for reactive case detection to be an effective 

malaria elimination strategy, high coverage levels are needed [14]. Additionally, reactive 

screen-and-treat strategies rely on RDTs to identify infected individuals and the 

availability and sensitivity of these diagnostics will impact how well a reactive case 

detection program performs. Given these challenges, it is important to monitor reactive 

case detection programs in their initial stages as they are implemented to determine how 

they perform operationally and identify how they can be improved.  

 The initial challenges faced during a recently implemented reactive screen-and-

treat program in southern Zambia and its ability to identify infected individuals were 

evaluated. The impact of operational challenges such as RDT availability, follow-up and 

coverage, and the sensitivity of RDTs on the potential efficiency of reactive case 

detection were evaluated using rural health center (RHC) records, assessment of 

community health worker (CHW) performance, and data from serial cross-sectional and 

longitudinal cohorts from a population-based study of malaria epidemiology in southern 

Zambia to construct a simulated reactive case detection cascade.  

Methods 

Study site and population 
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 The study was conducted in Kalomo, Namwala, and Choma Districts in Southern 

Province, Zambia, in the catchment area of Macha Hospital in Choma District. Here, a 

single rainy season lasts from November through April, followed by a cool dry season 

from April until August and a hot dry season through November. Malaria transmission 

peaks during the rainy season [26]. The primary malaria vector in the Macha area is 

Anopheles arabiensis [26, 27]. The hospital catchment area consists of villages 

comprised of small, scattered homesteads. The prevalence of malaria declined in this 

area over the past decade, from 13.7% in 2006 to less than 1% in 2013 [28]. Artemisinin 

combination therapy (ACTs) with artemether-lumefantrine was introduced as first-line 

anti-malarial therapy in Zambia in 2002 [29] and into the study area in 2004. In Zambia, 

long lasting insecticide treated nets (LLINs) are distributed through antenatal care clinics 

and additional mass distribution campaigns [30]. LLINs were widely distributed in the 

study area in 2007 [31], more than 11,000 LLINs were distributed from nine health posts 

in the catchment area of Macha Hospital in June 2012, with additional LLINs distributed 

in 2014 according to the Office of the Macha Hospital Environmental Health Technician.  

 

Reactive screen-and-treat in Southern Province, Zambia 

 The Government of Zambia created a stepped sequence of interventions to 

achieve malaria elimination [32-34]. Designated as Step A through Step E, these 

interventions are to be implemented in succession depending on the malaria parasite 

prevalence and case burden at health facilities [33, 34]. Step D consists of training 

volunteer CHWs in malaria diagnostics and treatment to expand access to care into the 

community. CHWs provide this service passively, for symptomatic individuals seeking 

care, actively and through reactive case detection. Step D is implemented in low 

transmission settings e.g. when the parasite prevalence is approximately 1% and an 

average of 10 or fewer malaria cases present to a healthcare facility per week [33]. Step 
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D activities were implemented through a phased roll-out in selected districts in Southern 

Province, Zambia with the goals of improving surveillance and creating malaria free 

zones [9, 32].  

 When an individual seeks care at a health care facility (hospital, rural health 

center or rural health post) and tests positive for malaria by RDT, their eligibility for 

follow-up with reactive screen-and-treat is determined. The CHWs in rural Southern 

Province, based at rural health posts (RHPs) used travel history at the time of this 

evaluation, to determine eligibility and excluded from reactive screen-and-treat cases of 

malaria with a travel history as presumed to be imported. Travel was defined as staying 

overnight in a place outside their home district within the previous month. RDT positive 

individuals who had not traveled within the past month were eligible for reactive screen-

and-treat. Eligible index cases were to be followed-up in their household within one week 

of diagnosis. CHWs were trained to visit the households of eligible index cases and 

neighboring households within 140 meters of an index case, screen all residents with an 

RDT and treat everyone who tested positive [9].   

 

Record review of reactive screen-and-treat 

 During the low transmission season from July 2014 to September 2014, a study 

team from Macha Research Trust visited 10 RHCs in Kalomo, Choma, and Namwala 

Districts of Southern Province, Zambia. During these visits, the team reviewed and 

abstracted data on reactive screen-and-treat from January 2014 through June 2014 

(within a few months of Step D being implemented) in 20 RHPs serving the catchment 

areas of the 10 RHCs. RHPs are the lowest level of stationary health care and are 

staffed by volunteer CHWs. The numbers of RDTs received by the RHP, tests 

performed, RDT positive malaria cases identified, malaria cases eligible for reactive 
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screen-and-treat, and the numbers of eligible malaria cases followed-up were recorded 

for each month.  

 

Ground truth evaluation of reactive screen-and-treat 

 To ground truth reactive screen-and-treat performance, study staff visited 10 

RHPs associated with 7 parent RHCs from July to September 2014, and identified index 

cases with RDT-confirmed malaria that triggered reactive screen-and-treat. Study staff 

randomly selected 26 index case households that were screened during Step D activities 

from January 2014 through June 2014 for ground truth evaluation. The study staff and 

CHW visited the selected index case households and neighboring households 

determined to be eligible for screening by the CHW. Household coordinates, the number 

of residents within each household, the number of residents tested by the CHW, the 

number of RDT positive residents, the number of residents treated for malaria, and the 

distance from the index case household to neighboring households collected using a 

GPS enabled device, were recorded. The time from presentation of the index case to 

reactive screen-and-treat was calculated when dates were available.  

 Data on age and sex of individuals, and whether or not eligible residents were 

screened during the reactive screen-and-treat were collected retrospectively from RHP 

records of individuals residing in index and neighboring households during the follow-ups 

for 7 RHPs under 6 parent RHCs.  

 

Construction of simulated reactive case detection cascades 

 The proportion of infected individuals identified and treated through reactive 

screen-and-treat in the study area was modeled through a series of steps. First, data 

collected through repeated cross-sectional surveys were used to estimate the population 

size of the study area and the number of residents in index households and neighboring 
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households. Details of the model were previously described [23]. In brief, all households 

in the study area were enumerated from satellite imagery. Using data from population-

based, serial cross-sectional surveys, a prediction model was constructed to estimate 

the number of residents per household based on the geographic location of the 

household and ecological features. Using the same data, a prediction model was used to 

estimate the total number of PCR-positive malaria infections (infections positive for P. 

falciparum by polymerase chain reaction) in the study area. Second, the proportion of 

symptomatic PCR-positive malaria infections was calculated using data from the 

population-based, serial cross-sectional surveys. Symptomatic infections were those 

with a documented fever (tympanic temperature ≥ 38°C) or self-reported fever in the 

past 48 hours. This proportion was applied to the number of PCR-positive infections in 

the study area. Third, the proportion of symptomatic PCR-positive infected individuals 

who sought care from a RHP, RHC, or hospital the last time they had a fever was then 

estimated using data from the population-based serial cross-sectional surveys. This 

proportion was applied to the number of symptomatic PCR-positive infected individuals 

in the study area. Fourth, a sensitivity of 95% was used to determine how many of these 

symptomatic, PCR-positive infected individuals would be RDT positive when presenting 

to a health-care facility with symptoms of uncomplicated malaria [35]. These individuals 

would be identified by passive case detection. Fifth, the record review and ground-truth 

evaluation data were used to determine the median number of neighboring households 

per index households that were screened. A median of three neighboring households 

were screened for each index case and this estimate was used as the number of 

neighboring households screened through reactive screen-and-treat in the simulation. 

The record review was also used to determine the RDT positivity in index and 

neighboring households. Sixth, the sensitivity of the RDT to detect asymptomatic 

infections in the study area was determined to be 40% in index households and 23% in 
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neighboring households when compared to PCR, based on a preliminary analyses on 

comparing RDT results and PCR results on houses screened in this area [Kobayashi, 

unpublished data]. These sensitivities were used to determine the number of infected 

individuals in index and neighboring households, based on the RDT positivity rate. The 

inverse of the RDT sensitivities for index (1/0.40) and neighboring households (1/0.23) 

was multiplied by the number of RDT positive infections to determine the total number of 

infections. Last, reactive screen-and-treat and reactive focal drug administration 

cascades were constructed.  

 The same model was repeated using observed coverage levels. The observed 

follow-up of index cases, and the percent of individuals residing in index households and 

neighboring households at home when visited were used to determine the total infected 

population that would have been treated under observed coverage.  

 The sensitivity of the model developed to create the reactive case detection 

cascades under varying RDT prevalence in index and neighboring households, RDT 

sensitivity, and level of clinical immunity in the population was evaluated. These three 

aspects were varied to determine how reactive case detection performed under different 

conditions. The results of this analysis are presented in the supplemental section 

(Figures S4.1-S4.3).  

Results 

Record review of reactive screen-and-treat 

 The reactive screen-and-treat program started in the study area in May 2013. 

Records reviewed at the 10 RHCs indicated that 411 malaria cases were passively 

identified by RDT from January to June 2014 at the 20 RHPs. Of these, 21 cases were 

excluded by the CHW and 394 were considered eligible for follow-up with reactive 

screen-and-treat. Of those eligible, 32% (n=126) were followed-up. The primary reason 
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many households were not followed-up given by the CHW was not having a sufficient 

number of RDTs.  

 The expected seasonal pattern of malaria cases was observed, with the number 

of cases increasing after January and peaking in April (Figure 4.1). As the number of 

malaria cases increased, the difference between the number of eligible cases and the 

number of cases followed-up increased (Figure 4.1). When RHPs were stratified by 

malaria burden (high malaria burden were those with 20 or more eligible cases in a 

month), high burden RHPs showed a much larger discrepancy between the number of 

eligible cases and the number of cases followed-up (Figure 4.1), as expected when the 

burden of reactive case detection exceeded capacity. The largest difference for both 

high and low burden RHPs occurred in April when the number of malaria cases peaked 

(Figure 4.1). Over half of the RHPs (n=11) reported at least one month without sufficient 

RDTs to follow-up eligible index cases with reactive screen-and-treat. Eight of these 

RHPs reported at least one month without sufficient RDTs to perform passive case 

detection. Overall, the number of RHPs reporting a lack of RDTs per month increased 

from January to June. Low burden RHPs reported more months with a lack of RDTs 

than high burden RHPs. During this time period the parent RHCs were not reporting 

stock-outs or limited RDTs, suggesting delays or interruptions in distributing sufficient 

RDTs to the CHWs during the initial stages of implementing the program.  

 

Ground truth evaluation of reactive screen-and-treat 

 Twenty-six index case households triggering reactive screen-and-treat by a CHW 

were randomly selected within the catchment areas of 10 RHPs under 7 parent RHCs. 

The CHW registers identified 63 neighboring households associated with the 26 index 

case households as eligible for reactive screen-and-treat (89 total households) (Table 

4.1). Study staff collected coordinates and household demographics for all 26 index case 
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households and 89% (n=56) of the 63 neighboring households, as no one was home at 

7 households (Figure 4.2). Twenty-two neighboring households were not screened by 

CHWs (35% of 63), of which 12 (55%) were not screened due to a lack of RDTs, 

representing 19% of the 63 eligible households. Of the 41 neighboring households that 

were screened by the CHW, only 13 (32%) were within 140 meters of an index case 

household (Table 4.1). Study staff identified 21 households within 140 meters of an 

index household (8 more than the CHWs) and data were collected from 18 (86%) of 

these households, as no one was home at 3 households (Table 4.1). The percentage of 

eligible neighboring households within 140 meters of an index household that was 

screened by the CHWs was 62% (13 of 21) (Table 4.1). The median number of 

households screened per index case households was three (IQR 1, 3; minimum = 1; 

maximum = 8).  

 From the 26 index cases selected for evaluation, 705 individuals residing in 82 

households were eligible for reactive screen-and-treat, 261 in index households and 444 

in neighboring households (Table 4.1). Overall, 428 individuals (61%) were recorded to 

have been screened in the CHW registers. In index case households, 66% of the 

residents were reported as screened compared with 58% of residents in neighboring 

households (p = 0.04) (Table 4.1). During the evaluation 165 eligible individuals were 

identified in the 18 neighboring households that the study staff collected data from within 

140 meters of an index household and 100 (61%) were screened by the CHW (Table 

4.1). The parasite prevalence by RDT was 22% among residents of index case 

households and 5% among residents of neighboring households (Table 4.1).   

The median time between when an index case presented to a health care facility 

and the reactive screen-and-treat was 3 days (IQR=2-5.5; min=1; max=12). The median 

distance from the index household to the neighboring households screened was 194 

meters (IQR=117-303; min=36; max=530 meters). Thirty-two percent of all neighboring 
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households screened by the CHWs were within 140 meters of the index case household, 

suggesting the CHWs had difficulty delineating the 140-meter radius. Thirteen RDT 

positives were detected in index and neighboring households. Only one (7.7%) RDT 

positive individual detected was within 140 meters of the index case household; this 

increased to 92% (n=12) of RDT positive individuals with a screening distance of 250 

meters (Table 4.2). 

 Retrospectively, demographic information was collected from 449 individuals 

eligible for screening by reactive screen-and-treat, 99 from index case households and 

350 from neighboring households. No differences in screening by sex were observed 

overall (49.5% male, 50.7% female, p=0.21), or when stratified by household type 

(index: 41.6% male, 58.4% female, p=0.28; neighboring: 51.3% male, 48.7% female, 

p=0.32). Residents of index and neighboring households did not differ by age (index: 

median age=13.5 years IQR=7-23 years; neighboring: median age=14 years IQR=6-26 

years, p=0.75). However, residents who were screened were younger than those who 

were not (screened: median age=13 years, IQR=6-25 years; not screened: median 

age=19 years, IQR=12-31 years, p<0.01).  

 

Reactive case detection cascades 

 A flow diagram of the reactive screen-and-treat and focal drug administration 

cascade estimates and construction is presented in Figure 4.3. The total population of 

the study area was estimated to be 32,370 people and the P. falciparum parasite 

prevalence by PCR was estimated to be 2.9% (937 infections) based on the population 

level simulation model using serial cross-sectional survey data in the study area [23]. 

Based on data from the serial cross-sectional surveys, 23% (214 individuals) of the 937 

PCR positive individuals were estimated to be symptomatic (i.e. febrile), with 36% (n=76) 

of these individuals estimated to have sought care at a health care facility during their 
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last febrile episode. Using an RDT sensitivity of 95% for uncomplicated malaria, 73 

(95%) of these individuals would have been detected at a health care facility [35]. The 

proportion of RDT positive residents in the index case households and neighboring 

households were estimated based on the RDT prevalence observed during the RHC and 

RHP record reviews (22% in index households and 5% in neighboring households) to 

capture the local spatial dependence of malaria transmission. 

 Based on the eligibility criteria used by CHWs, in which persons with recent 

travel are excluded, 5% of RDT positive symptomatic cases were estimated to be 

ineligible for reactive screen-and-treat (Figures 4.4 and 4.5). Thus, 95% (n=69) of the 

RDT positive index cases were estimated to be eligible for reactive screen-and-treat. 

These cases represented 7% (69 of 937) of the total infected population (Figure 4.4A 

and 4.5A). Based on household residency figures, it was estimated that 5 residents per 

response would be screened reactively in each of these 69 index households, yielding 

345 residents, with 22% (n=76) estimated as RDT positive per the RDT positivity of 

index households from the RHC and RHP performance evaluations (Figure 4.4A). Given 

the 40% sensitivity of the RDT in index households, it was estimated that there were 189 

PCR positive infected individuals (20% of total infections) in index households (Figure 

4.4A) [36]. With complete follow-up, in which all index case household residents were 

screened, 16% (73 symptomatic RDT positive index cases and 76 RDT positive 

secondary infections residing within the index case household) of all infected individuals 

would have been detected and treated (Figure 4.4A). 

 When neighboring houses were included in the model, 270 (29% of total 

infection) infected individuals were estimated to live in 207 neighboring households of 69 

index case households (Figure 4.4B). Of these infected individuals, 62 (7% of total 

infection) were estimated to be RDT positive based on the 23% sensitivity of the RDT. 

Screening neighboring households of the index case household would increase the 
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percentage of the total infected population detected and treated from 16% to 22% under 

complete follow-up of all eligible index cases and neighboring households, with all 

residents at home and willing to be screened (Figure 4.4B).  

 Using the same data consisting of 69 index cases, 189 infected individuals in 

index households, and 270 infected individuals in neighboring households, reactive focal 

drug administration was modeled. In this analysis the sensitivity of the RDT for 

asymptomatic individuals did not apply as everyone in index and neighboring 

households is treated without testing. Under complete follow-up of all eligible index 

cases, 28% (n=258), of all infected individuals in the population would have been treated 

(Figure 4.4C). When neighboring households were included, 57% (n=531) of all infected 

individuals would have been treated (Figure 4.4D).   

 The same data and model were used to determine the impact on the total 

infected population treated under the coverage observed in the RHC evaluation and 

ground truth surveys. Follow-up of eligible index cases was estimated as 32%. In index 

households 66% of the residents were estimated as being at home during screening and 

in neighboring households, 58% of the residents were estimated as being home during 

the screening. Under observed coverage, screening and treating index case households 

would have detected and treated 9% of the total infected population (Figure 4.5A). When 

neighboring households were included in the model this increased to 11% of the total 

infected population that would be detected and treated (Figure 4.5B). The same 

observed coverage was used to model focal drug administration, where everyone at 

home is treated without testing during the visit. Under observed coverage of eligible 

index cases, 11% of all infected individuals in the population would have been treated 

(Figure 4.5C). This increased to 17% when neighboring households were included in the 

model (Figure 4.5D). 
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 The cascades develop identified key areas that impact the efficiency of reactive 

case detection to decrease the pool of infected individuals that could be measured 

during real time planning and evaluation of programs. These included the sensitivity of 

the RDT in index and neighboring households and the malaria prevalence in index and 

neighboring households. Additionally, the impact of the proportion of infected individuals 

that were symptomatic and care seeking had a large impact on the efficiency of reactive 

case detection. These areas are displayed on Figure 4.6. 

Discussion 

 The initial implementation of reactive screen-and-treat in this area of southern 

Zambia faced several operational challenges, as would be expected with a new program 

using volunteer CHWs to expand clinical services into the community. It was observed 

that CHWs were applying an exclusion criteria based on recent travel, which was not 

indicated in the reactive screen-and-treat protocol for rural Southern Province [9]. 

Approximately one third of eligible index case households resulted in reactive screen-

and-treat and coverage decreased to one quarter among RHCs with a higher burden of 

malaria. This low coverage was likely due to two factors. First, the follow-up screening 

was logistically difficult for CHWs due to the high number of cases during the peak 

malaria season. Step D activities were designed to be implemented when the number of 

malaria cases is approximately 10 per week. Despite the low transmission in this setting, 

some RHCs reported more than 70 eligible cases per month during the peak 

transmission season. This overwhelmed the capacity of the CHWs to conduct reactive 

case detection. During peak transmission times the program would benefit from extra 

staff. The second challenge was insufficient RDTs as a consequence of the high number 

of cases and difficulty in anticipating the additional need of RDTs to conduct reactive 

case detection. Over 50% of CHWs reported having at least one month when reactive 
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screen-and-treat was not done due to lack of RDTs, and 40% of CHWs reported at least 

one month when not even passive malaria screening with RDTs could be performed. 

During this time period, the parent RHCs did not report stock-outs or limited RDTs. This 

implies that there were delays, interruptions, or failures by RHC staff in distributing 

sufficient RDTs to the CHWs during the initial stages of implementing the reactive case 

detection program. Following CHW trainings, a moderate stock of RDTs were provided 

to CHWs and RHC staff were notified that additional RDTs should be requested and 

released to CHWs to support Step D. Clearly to implement Step D activities, a reliable 

and ample supply of RDTs is necessary, however, the rapid seasonal changes (Figure 

4.1) makes predicting the number of RDTs required challenging, and surge capacity may 

not be feasible. Over time, programs should improve their ability to predict need and 

maintain an adequate stock of RDTs at the level of the RHPs. However, the cost may be 

that RDTs are stockpiled at these facilities and, if unused, will expire. 

 When eligible index cases were followed-up, three main challenges were 

identified that hindered the ability to identify infected individuals through reactive screen-

and-treat. First, only one half to two-thirds of residents were at home at the time of 

screening and residents not at home were older than those at home. Those not at home 

include school-age children and young adults, the age group comprising the chronically 

infected reservoir that reactive case detection aims to identify and treat [3]. This 

challenge could be overcome in response. Notifications could be made to let individuals 

know when the CHW would be visiting. Households could be re-visited to attempt to 

access those not able to be at home during the first visit. Second, while theoretically 

simple, identifying households within 140 meters (the distance of one and a half football 

fields) of an index case was difficult for the CHWs in practice. Sixty-eight percent of 

neighboring households screened by CHWs were outside the 140-meter radius. Some 

CHWs screened neighboring households over half a kilometer from an index case 
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household. While reactive screen-and-treat programs in other countries screen further 

from the index household, in this setting nearly all RDT positive individuals were within 

250 meters of the index household [6, 22, 37]. This demonstrates not only the difficulty in 

identifying the appropriate screening radius, but also the burden of unnecessary 

screening given the lack of RDTs and logistical challenges when the case burden is 

high. Lastly, as is widely recognized, the low sensitivity of RDTs limits the ability to 

identify individuals with chronic infection and low-level parasitemia in areas approaching 

malaria elimination [14, 38, 39]. Even with complete follow-up, only 16% of infected 

individuals were estimated to be identified by screening all index households and 22% of 

infected individuals by screening neighboring households. While the infectiousness of 

very low-parasitemic individuals to mosquitoes is variable, a large portion of the malaria 

reservoir in this area would be not treated. Given the poor sensitivity of RDTs to detect 

low parasite levels in this low transmission setting, and the current lack of more sensitive 

field deployable diagnostics, reactive focal drug administration may be a more efficient 

use of resources. With complete coverage, nearly 60% of the total infected population in 

this setting would be treated through reactive focal drug administration. However, 

complete coverage will be logistically difficult, and many improvements in follow-up 

strategies and gauging neighboring household distances would need to be made.  

 A major limitation of this study was the short period of evaluation covering the 

rainy season, but not the dry season. The study period (January through June of 2014) 

only represents a 6-month window where the evaluation was implemented. In addition, 

this period reflects early program implementation. However, other reactive case 

detection programs can learn from this experience. These results highlight the need for 

monitoring and evaluation shortly after implementation to identify operational challenges 

and their potential impact on program performance and impact early on. Additional 
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analyses are on-going to confirm whether these trends can be reversed or whether 

reactive case detection should be suspended during the wet season.  

 A strength of the RHC survey is that demographic data on the number of 

residents not in the home at the time of screening were collected. The reactive screen-

and-treat cascade used population-based survey data from the study area in Choma 

District. Information from Kalomo and Namwala Districts were not represented in these 

data; however, the people residing within the three districts are traditional subsistence 

farmers and are demographically similar. The model did not account for care seeking 

outside the government health facilities and likely overestimated the number of index 

cases detected. However, the objective for creating the cascades was to provide 

estimates of the proportion of infected individual that reactive screen-and-treat and focal 

drug administration would identify using multiple novel data sources.  

Conclusions 

 A large-scale reactive case detection implementation in Southern Province, 

Zambia identifies and treats more individuals with malaria than passive case detection 

alone and can improve surveillance among the chronically infected population. However, 

several obstacles impede the efficiency of reactive case detection, including the high 

number of cases during peak months placing burden on current resources and staffing 

levels, low proportion of residents at home at the time of the screening, the difficulty in 

identifying households within the specified radius, and the low sensitivity of RDTs in this 

population. Reactive focal drug administration has the potential to address the latter 

issue by removing the need for a diagnostic test, although challenges with supply chain 

will need to be addressed to ensure larger commodities of drug can be accommodated. 

Irrespective of the inclusion or exclusion of a diagnostic, community sensitization and 

coordination to enable high target population coverage needs to be addressed. In 
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summary, with limited resources, coverage, and diagnostic tools, reactive screen-and-

treat will likely not be sufficient to achieve malaria elimination in this setting. However, 

high coverage with reactive focal drug administration could be efficient at decreasing the 

reservoir of infection and should be considered as an alternative strategy.
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Table 4.1: Ground-truth evaluation of reactive screen-and-treat: household and individual characteristics 
 

Household characteristic Index Neighboring Total 

Indicated eligible for RCD by CHW (%) 26 (100) 63 (100) 89 (100) 

Identified by study staff (%) 26 (100) 56 (89) 82 (92) 

Recorded in CHW register (%) 26 (100) 41(65) 67 75) 

Within 140 meters of index household (%) NA 21(33) NA 

Within 140 meters of index household in CHW register (%) NA 13 (21) NA 

Resident characteristic    

Indicated eligible for RCD by CHW in 82 households with 
data (%) 

261 (100) 444 (100) 705 (100) 

Screened and recorded in CHW register (%) 171 (66) 257 (58) 428 (61) 

Within 140 meters of index household (%) NA 165 (37) NA 

Within 140 meters of index household in CHW register (%) NA 100 (23) NA 

RDT positive (% of all RDTs) 37 (22) 13 (5) 50 (12) 

RDT negative (% of all RDTs) 134 (78) 244 (95) 378 (88) 

 
RCD = reactive case detection 
CHW = community health worker 
RDT = rapid diagnostic test 
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Table 4.2: Cumulative numbers of neighboring households, individuals, and RDT positive cases by distance from index households 
identified through the ground-truth evaluation of reactive screen-and-treat 
 

ffj 140 
meters 

250 
meters 

300 
meters 

350 
meters 

400 
meters 

450 
meters 

500 
meters 

550 
meters 

Households indicated as eligible by CHW (% 
indicated as eligible) 

21 (33) 40 (64) 47 (75) 49 (78) 55 (87) 59 (93) 62 (98) 63 (100) 

Households screened by CHW 
(% households screened) 

13 (32) 28 (68) 30 (73) 32 (78) 35 (85) 37 (90) 40 (98) 41 (100) 

Residents in screened households 
(% residents screened) 

78 (30) 182 (71) 196 (76) 214 (83) 236 (92) 239 (93) 254 (99) 257 (100) 

RDT positive cases in screened households 
(%RDT positive cases) 

1 (8) 12 (92) 12 (92) 13 (100) 13 (100) 13 (100) 13 (100) 13 (100) 

 

RDT = rapid diagnostic test 
CHW = community health worker 
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Figure 4.1: Malaria cases reported and followed-up with reactive screen-and-treat by month from record review (A: all RHPs, B: high 
burden RHPs, and C: low burden RHPs) 

 
A B C 
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Figure 4.2: Index and neighboring households included in the ground-truth evaluation of 
reactive screen-and-treat 
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Figure 4.3: Reactive screen-and-treat flow diagram for complete coverage  

 

* 2.5 was derived from the inverse of the sensitivity of the RDT to determine the number of 

residents infected (1/0.4) 

**4.4 was derived from the inverse of the sensitivity of the RDT to determine the number of 

neighbors infected (1/.0.23)
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Figure 4.4: Complete coverage cascade with A: reactive screen-and-treat in index households, B: reactive screen-and-treat in index 
and neighboring households, C: reactive focal drug administration in index housheolds, D reactive focal drug administration in index 
and neighboring households. The model assumes complete coverage of index and neighboring households 
  

A B 

C D 
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Figure 4.5: Observed coverage cascade with A: reactive screen-and-treat in index households, B: reactive screen-and-treat in index 
and neighboring households, C: reactive focal drug administration in index housheolds, D reactive focal drug administration in index 
and neighboring households. The model assumes complete coverage of index and neighboring household. The model assumes 
coverage of index and neighboring households that was observed during the record review and ground-truth survey 
 

A B

 

C D 
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Figure 4.6: Key areas that impact the efficiency of reactive screen-and-treat on index 
and neighboring households 
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Figure S.4.1: Coverage cascades with malaria prevalence in index and neighboring households observed in preliminary data from 
Step D activities in Macha for A: reactive test-and-treat in index households; B: reactive focal-drug-administration in index 
households; C: reactive test-and-treat in index and neighboring households and; D: reactive focal-drug-administration in index and 
neighboring households 

A B 

C D 
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Figure S.4.2: Coverage cascades with malaria prevalence in index and neighboring households observed in the RHP evaluation with 
the sensitivity of the RDT doubled for index and reactive households for A: reactive test-and-treat in index households; B: reactive 
focal-drug-administration in index households; C: reactive test-and-treat in index and neighboring households and; D: reactive focal-
drug-administration in index and neighboring household 

A B 

C D 
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Figure S.4.3: Coverage cascades with malaria prevalence in index and neighboring households observed in the RHP evaluation with 
the proportion of symptomatic infections doubled for A: reactive test-and-treat in index households; B: reactive focal-drug-
administration in index households; C: reactive test-and-treat in index and neighboring households and; D: reactive focal-drug-
administration in index and neighboring households 

 

A B

 

C D 
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Abstract 

Background: In areas approaching malaria elimination, human mobility patterns are 

important in determining the relative proportions of malaria parasites that are imported or 

the result of low-level, endemic transmission. Commercially available GPS data loggers 

can be used to investigate individual human mobility patterns and the potential impact on 

malaria transmission in pre-elimination settings. 

Methods: A convenience sample of participants older than 13 years and enrolled in a 

longitudinal cohort study in the catchment area of Macha Hospital in Choma District, 

Southern Province, Zambia was selected to participate in a movement study from 

October 2013 through August 2014. Participants were requested to carry a GPS data 

logger when active for one month. Geographic position, date and time were logged 

every 2.5 minutes. Density maps for each month were created to evaluate seasonal 

trends in movement patterns. The proportion and kernel density of time spent at 

locations outside the home were plotted by distance from the household. Time spent 

outside the household compound, including during peak anopheline biting times, and 

time spent in high and low malaria risk using a previously published malaria risk map 

were calculated.  

Results: A total of 69 of 173 eligible participants in the longitudinal cohort agreed to 

carry a GPS data logger. The convenience sample of participants was older than the 

eligible study population but there were no differences by sex, and the age distribution of 

participants varied slightly by month. Long-distance movement density maps showed 

evidence of seasonal patterns. There was less long-distance movement during the rainy 

season and no participants left the study area. Long-distance movement increased at 

the end of the rainy season and throughout the dry season, with participants traveling 

outside the study area and staying away longer. A median of 10.6% (IQR: 5.8-23.8) of 
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time was spent outside the household compound. This decreased by nearly half during 

peak anopheline biting times to a median of 5.6% (IQR: 1.7-14.9). The percent of time 

spent in areas of high malaria risk for participants residing in areas of high risk ranged 

from 83.2% to 100.0% (median: 96.4%, IQR: 91.1-98.1), and the percent of time spent in 

areas of high malaria risk for participants residing in areas of low risk ranged from 0.0% 

to 36.7% (median 0.0%, IQR: 0.0-.66). During peak biting times, the median amount of 

time spent within the household compound in high malaria risk areas was 44.3% (IQR: 

33.9-49.2), higher than the amount of time spent outside of the household compound 

during peak biting times in both high risk areas (5.4% [IQR: 0.98-14.4]) and low risk 

areas (2.0% [IQR: 0.0-18.2]; p=0.001). 

Conclusions: Malaria control interventions targeted at the household level, such as 

insecticide treated nets and reactive case detection, are likely made more effective by 

the less frequent, long-distance movement during the rainy season, with limited 

movement to and from high and low risk areas. The long-distance movement patterns 

during the dry season were consistent with Lévy random walks. This long-distance 

movement may increase the risk of importation at the end of the rainy season when the 

number of clinical malaria cases peaked; however, the risk of malaria importation is 

likely to be low throughout the remainder of the dry season.  

 
 
 
 
 
 



 

 115 

Background 

 Population movement is known to contribute to the transmission of infectious 

diseases [1-3]. The spatial dependency and heterogeneity of infectious diseases makes 

them susceptible to spread via population movement. Transmission of vector-borne 

diseases is particularly heterogeneous [3-5]. For mosquito-borne diseases, specifically 

malaria, this heterogeneous transmission typically is due to differential contact between 

humans and mosquitos as a result of migration, overlapping activity space and unequal 

biting rates [4, 6, 7]. During the first global malaria eradication campaign in the 1950s 

and 1960s, failure to account for human population movement was identified as one of 

the factors that contributed to the program’s failure [1, 3].  

 In areas approaching malaria elimination, human mobility patterns are important 

in determining the relative proportions of malaria parasites that are imported or the result 

of low-level, endemic transmission. [8-13]. Population movement patterns can threaten 

malaria elimination in three primary ways [1, 8]. The first is through uninfected residents 

traveling to higher malaria risk areas and transmitting parasites to local vectors upon 

returning home. The second is through infected visitors transmitting to local vectors [1, 

8], and the third is through infected migrants re-locating and transmitting to local vectors 

[8]. As human movement patterns and malaria transmission are dynamic processes, 

individuals can be passive acquirers before becoming active transmitters upon return to 

their residence [2, 3]. These movement patterns occur on both large and small spatial 

scales, impacting malaria transmission and potentially threatening elimination [1, 12-14]  

 Many methods to measure human mobility have been explored to describe the 

impact of human movement on malaria transmission [15]. Long-distance migratory 

patterns have been characterized using census data on birth-place and prior residence 

[15, 16]. Many countries include questions on recent travel in malaria indicator surveys 
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[15]. Recent travel history also is used to classify passively detected case as imported. 

In research settings, movement diaries and travel histories have been used to measure 

human movement. However, these methods are subject to recall and social desirability 

bias, and small-scale movement is difficult to determine from survey data [15].   

 Mobile phone data to track individual movement is a convenient and accurate 

method for measuring human movement [8, 15]. However, there are limitations with 

mobile phone data to measure human movement patterns, particularly in rural settings. 

Use of mobile phone data to measure movement assumes that individuals who own a 

mobile phone are representative of the population and that a single person uses the 

phone [17]. In many areas, multiple mobile service providers are available and 

individuals have different subscriber identify module (SIM) cards under different provider 

accounts. Mobile phone coverage may be limited rural areas [18], limiting the ability to 

detect movement in these settings, and cannot readily measure movement across 

international borders. Finally, mobile phone data are reported at a population level 

without individual demographic information. Mobile phone data are primarily useful for 

capturing long-distance movement but do not capture short-distance human mobility 

patterns that impact the micro-epidemiology of malaria transmission [8, 15, 17, 19].  

 On both large and small spatial scales, human movement can be measured 

using commercially available GPS data loggers to describe individual movement 

patterns [20-23]. Their low cost and ease of use makes GPS data loggers ideal for 

tracking short-distance human movement to infer risk over specific time periods, 

including peak transmission seasons and vector biting times [24]. Commercially 

available GPS data loggers have been used to investigate individual human mobility and 

its impact on the transmission of several infectious diseases, including schistosomiasis, 

hookworm, and dengue virus [20-22, 24]. Use of commercially available GPS data 

loggers to track individual movement has been validated under different geographic and 
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environmental conditions [25]. Commercially available GPS data loggers were used to 

examine movement patterns in a study of influenza at a university in New Jersey, USA 

[26], and of dengue in Iquitos, Peru [22, 24]. However, most studies reporting data using 

commercially available GPS data loggers were conducted in North and South America, 

and in urban or peri-urban settings [20, 22, 24, 26-28]. One exception was a study 

conducted in northern Tanzania among the Hadza hunter-gatherer population to explore 

foraging patterns consistent with Lévy random walks [29]. Otherwise, little is known of 

small-scale movement patterns in rural sub-Saharan Africa and how these patterns may 

impact malaria transmission, control and elimination. 

 Commercially available GPS data loggers were used to determine movement 

patterns among a population of rural, agrarian participants in a longitudinal cohort study 

of malaria epidemiology in Southern Province, Zambia. These analyses aid in explaining 

the micro-epidemiology of malaria transmission and the risk of imported malaria as 

elimination is achieved and sustained [15]. Knowledge of mobility patterns and their 

potential impact on malaria transmission can inform the planning of malaria elimination 

strategies, particularly the targeting of interventions that account for spatial and seasonal 

variations in mobility.  

 

Methods 

Study site and population 
 
 The study was conducted in the rural catchment area of Macha Hospital in 

Choma District, Southern Province, Zambia, 70 km from the nearest town of Choma and 

approximately 1,200 km2 in area. The single rainy season lasts from November through 

April, followed by a cool dry season from April until August and a hot dry season through 

November. Malaria transmission peaks during the rainy season [30] and the primary 

vector is Anopheles arabiensis [31, 32]. The hospital catchment area is populated by 
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villagers living in small, scattered homesteads. The parasite prevalence declined in this 

area over the past decade, from 9.2% in 2008 to less than 1% in 2013 [33]. Artemisinin 

combination therapy (ACTs) with artemether-lumefantrine was introduced as first-line 

anti-malarial therapy in Zambia in 2002 [34] and into the study area in 2004. In Zambia, 

long lasting insecticide treated nets (LLINs) are distributed through antenatal care clinics 

and additional mass distribution campaigns [35]. LLINs were widely distributed in the 

study area in 2007 [36] and more than 11,000 LLINs were distributed from nine health 

posts in the catchment area of Macha Hospital in 2012, with additional LLINs distributed 

in 2014 according to the Office of the Macha Hospital Environmental Health Technician. 

 Satellite images were used to develop a sampling frame for the random sampling 

of households to recruit and enroll individuals into longitudinal and cross-sectional 

surveys of malaria parasitemia starting in 2008 [36]. The identification and enumeration 

of households was done manually to delineate household and non-household structures 

(kraals, schools and larger structures) [36]. Households randomly selected from the 

sampling frame were recruited and enrolled in either one of two cohorts: cross-sectional 

or longitudinal. Households enrolled in the longitudinal cohort were repeatedly surveyed 

every two months whereas households enrolled in the cross-sectional cohort were 

visited once. Two hundred twenty individuals from 34 households were included in the 

longitudinal cohort. For each study visit, a questionnaire was administered to gather 

information on demographic characteristics, recent malaria symptoms and treatment 

history, knowledge of malaria risk and prevention, insecticide treated net (ITN) use, and 

recent travel history. A blood sample was collected by finger prick for a malaria rapid 

diagnostic test (RDT).[36].  

 

GPS data loggers 
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 Criteria for selection of the GPS devices were developed to accommodate the 

study population, ensure participants would not be responsible for charging the devices, 

and to protect privacy. These criteria included size, weight, water resistance, battery life, 

memory size, programing capabilities, motion detection, and validity. IgotU ® GT-600 

(Mobile Action Technology) GPS loggers were selected as they were shown to be 

accurate (point accuracy of 4.4 meters and line accuracy of 10.3 meters) and acceptable 

in Iquitos, Peru [20]. These devices were light weight (37 g), had a large battery (750 

mAh), were programmable, could collect up to 262,000 waypoints with 64 Mb of 

memory, and were water resistant [20-22]. The loggers could be password protected 

and accessed only with the accompanying software when connected to a computer with 

a custom USB connection. The data loggers could be worn using a Velcro strap or 

lanyard, or carried in a pocket or a bag, with the only requirement that they be carried 

with the participant continuously during their normal daily movement. As the devices 

were motion activated, they could be removed when participants were sleeping or 

sedentary to preserve battery life.   

 A convenience sample was selected from the longitudinal cohort during study 

visits from October 2013 through August 2014. Participants in the longitudinal cohort 

who were 13 years and older were invited to participate during alternate months. The 

study staff aimed to enroll 12 participants per month and have at least 10 complete the 

full month. Up to three participants per household were permitted to participate with no 

more than two individuals participating concurrently in a single month. Enrolled 

participants were requested to carry the GPS data logger at all times they were active for 

a one-month period. This allowed for a full year of data collection to assess seasonal 

patterns in population movement. The observed rainfall collected at the study site using 

a HOBO weather station (Onset Computer Corporation, Bourne, MA, USA) was graphed 

to document seasonal rainfall patterns. To prevent data loss due to limited battery life, 
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participants carried one logger for two weeks at which time the device was exchanged 

for a fully charged logger during a household visit by the study team. 

 Serial numbers of the GPS data loggers were matched to participant unique 

identification numbers. The power button was locked and the GPS data loggers were 

password protected so that only study staff could access the data. Geographic position 

was logged every 2.5 minutes. The loggers were programmed to be motion activated 

and hibernate when not in motion to conserve battery life. Data collected from the 

loggers contained date, time, longitude and latitude. Study staff maintained a monthly 

record of the date and time the devices were distributed and collected. 

 

Data management 

 After each two-week collection period, the data were downloaded from each 

device using the @trip software (Mobile Action Technology, Inc., New Taipei City, 

Taiwan). The unique participant and household identification numbers were added 

manually. The data were checked for inconsistent logging and device errors, such as 

battery failure or unrealistically few locations logged. Raw data for each two-week period 

were uploaded to a secure REDCap (Research Electronic Data Capture) server [37]. 

The monthly record was used to remove data points where the logger was in transit with 

study staff to and from study households. 

 

Mapping movement patterns  

  Movement data were projected into UTM Zone 35S, WGS 1984, and imported 

into ArcGIS (ESRI 2012. ArcGIS Desktop: Release 10.2. Environmental Systems 

Research Institute, Redlands, CA, USA) for pre-processing and analysis. Pre-processing 

was done by removing erroneous data points based on the shape, speed, or abrupt 

change in direction in the movement tract using a software extension developed for GPS 



 

 121 

based trajectory analysis in ArcScene by Qi et al [26]. The cleaned and processed 

movement tracts were used to determine the cumulative amount of time spent at each 

location. High-resolution movement density maps were created by calculating the kernel 

density of the tract paths per 100 m2 using the ArcScene software extension [26]. 

 A movement density map was created to display the movement trajectory density 

for each participant and overlaid on a map of the study area with the enumerated 

households to represent the cumulative amount of time each participant spent in 

different areas. Density maps for participants were aggregated up to the month of 

collection to evaluate seasonal trends in movement patterns. These movement densities 

were normalized to be on the same scale for each month to make direct comparisons. 

Short-distance, local movement patterns were evaluated by overlaying the density map 

on a high-resolution satellite image of the study area. Long-distance movement patterns 

were evaluated by overlaying the density map on a satellite image obtained from ESRI. 

A 3-dimensional density map was created and overlaid on a previously published 

malaria risk map of the study area [36] to visualize movement patterns in and out of 

areas of higher and lower malaria risk.  

 

Calculating activity space 

 Time was converted from date, hour, minute and second format to a numeric 

format. The total time participants carried a GPS data logger for each two-week time 

period was calculated independently to permit inclusion of individuals who only carried 

the logger for the first two-week period or experienced battery failure during the two-

week period. The time elapsed between two consecutively logged geographic locations 

was then calculated. To account for differences in the total amount of time recorded by 

the GPS data logger for each participant, the proportion of time spent in each location 

was calculated. The proportion of time and kernel density of time spent in locations were 
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plotted against distance from the household to determine the distribution of the 

movement patterns. 

 The proportion of time participants spent within their household compound was 

calculated. A typical household compound in the study area has one or more domestic 

structures with several smaller structures, such as cooking houses or animal kraals.  A 

household compound was defined as a grouping of these structures that function as a 

family unit. During each study visit, geographic coordinates of the household were 

collected from the front entrance of the main domestic structure using a tablet computer. 

To account for the household compound layout, and error due to the limits of spatial 

resolution of the GPS logger and the tablet used to collect the GPS coordinates, the 

household was defined as a 100-meter circular buffer around the measured household 

coordinates. Trajectories for each of the two-week periods for each participant were 

joined to the household buffer. This allowed for the movement to be defined as being 

within or outside the household compound.  

 As the primary vector An. arabiensis is known to have exophilic feeding behavior, 

the amount of time spent outside the household compound during peak biting time was 

estimated [31, 32]. We were not able to estimate the time outdoors due to the complex 

household structure and spatial resolution of the GPS loggers. Peak biting times for An. 

arabiensis were estimated to be between 19:00 and 6:00 hours in the study area [31]. 

First, the proportion of time each participant was within and outside the household 

compound was plotted to determine seasonal patterns in time spent outside of the 

household compound. The trajectories for each two-week period for each participant 

were then stratified by within and outside peak vector biting times. The subset of 

trajectories during the peak biting time was used to calculate the proportion of time spent 

outside of the household compound during peak biting times and graphed by month to 

determine seasonal patterns.  
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 The proportion of time spent in areas of high malaria risk was calculated using a 

previously constructed malaria risk map [36]. The risk map was created using 

community-based surveys and environmental features obtained from satellite imagery 

and remotely-sensed data to predict the probability of malaria infection in the study area. 

Areas were categorized as being high and low malaria risk based on this map. Polygons 

of areas of high and low malaria risk were created from the raster formatted malaria risk 

map. The trajectories for each two-week period for each participant were spatially joined 

to the high malaria risk polygons. The proportion of time spent in areas of high and low 

risk was calculated for each participant and aggregated by month to assess seasonal 

patterns. Participants were stratified by household compound location as being within an 

area of high or low malaria risk. The proportion of time spent within and outside the 

household compound was calculated for participants residing in areas of high malaria 

risk. However, only the proportion of time spent outside the household compound was 

calculated for participants residing in areas of low malaria risk, as they did not have the 

opportunity to spend time in an area of high malaria risk within their household 

compound.  

Results 

 During the study period, 173 eligible participants from 49 households in the 

longitudinal cohort were visited, of whom 69 agreed to carry a GPS data logger. All 

completed the first two weeks of data collection and 62 completed the second two 

weeks. Data from one participant was excluded from all analyses as they reported they 

were ill and gave the GPS data logger to other family members. The other six 

participants who did not complete the second two weeks declined further participation. 

The GPS data loggers were well accepted among participants and even became popular 

within the community. The age distribution of participants varied slightly by month but 
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there were no differences by sex (Table 5.1). The convenience sample of participants 

was older than the eligible study population but not different by sex (Table 5.1).  

 The long-distance movement density maps, which display movement patterns 

outside the study area, showed evidence of seasonal patterns in population movement 

(Figure 5.1). There was less long-distance movement during the rainy season 

(December and February), with no participants leaving the study area (Figure 5.1). From 

April through August, long-distance movement increased as participants traveled outside 

the study area and stayed further from home for longer periods (Figure 5.1).  

The short-distance maps, which display high-resolution movement patterns 

within the 1,200 km2 study area, showed no evidence of seasonal mobility patterns 

(Figure 5.2). Evidence of seasonal patterns in long-distance but not short-distance 

movement was supported by kernel density plots of the proportion of movement 

trajectory by distance from the household compound (Figure 5.3) and showed longer 

trips, farther from home beginning in April as the rainy season ended (Figure 5.3). These 

kernel density plots also showed that participants spent most of their time close to their 

household compound with seasonal, longer trips that included shorter movements 

around these distant locations (Figure 5.3). This seasonal pattern of increased long-

distance movement following the end of the rainy season coincides with an increase in 

clinical malaria cases. The measured monthly rainfall was consistent with the expected 

seasonal rainfall patterns (Figure 5.4). 

 Movement density in areas of high and low malaria risk was mapped (Figure 

5.5). There was no evidence of a seasonal trend in the percentage of time spent away 

from the household compound (Figure 5.6). Overall, a median of 10.6% (IQR: 5.8-23.8) 

of time was spent away from the household compound. This decreased by nearly half 

during peak anopheline biting times to a median of 5.6% (IQR: 1.7-14.9) of time spent 

outside the household compound (Figure 5.7). The amount of time spent in areas of high 
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malaria risk was dependent on whether the household compound was located in an area 

of high malaria risk (Figure 5.8). The percent of time spent in areas of high malaria risk 

for participants residing in areas of high malaria risk ranged from 83.2% to 100% 

(median: 96.4%, IQR: 91.1-98.1), and the percent of time spent in areas of high malaria 

risk for participants residing in areas of low malaria risk ranged from 0% to 36.7% 

(median 0%, IQR: 0.0-.66).  

 The amount of time spent in high-risk areas outside the household compound 

during peak vector biting times was not different between participants residing in 

household compounds in high malaria risk (median: 5.5%, IQR: 0.98-14.4) and low 

malaria risk (median: 2%, IQR: 0-18.2) (p=0.4) areas (Figure 5.8). During peak biting 

times, the median time spent within the household compound in high malaria risk areas 

was 44.3% (IQR: 33.9-49.2), higher than the amount of time spent away from the 

household compound during peak biting times in both high risk areas (5.4% [IQR: 0.98-

14.4]) and low risk areas (2.0% [IQR: 0.0-18.2]) (p=0.001) (Figure 5.8).  

Discussion 

 Residents of rural, southern Zambia primarily spent time close to their household 

compound, with frequent short movements around their household compound and 

infrequent longer trips that included shorter movements around these distant locations. 

Long-distance movement patterns showed clear seasonal patterns. During the rainy 

season, participants did not travel far from their household compound, presumably to 

stay closer to their farms but perhaps also because roads became impassable. As the 

rainy season ended, participants began to travel further from their household compound 

and stayed there for longer durations. 

 The long-distance movement patterns at the end of the rainy season and during 

the dry season are consistent with Lévy random walk patterns and other random walk 
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searches [29]. These random walk patterns have been described primarily for animal 

foraging patterns but also more recently among nomadic hunter-gatherers in northern 

Tanzania [38] [29]. Lévy walks are random walk search strategies used when searching 

for heterogeneously distributed food [29]. This pattern consists mainly of shorter 

movements (e.g. frequent short-term trips close to home) combined with fewer farther 

movements (e.g. infrequent longer-term trips far from home) [29, 39]. While movement 

patterns are important for understanding malaria transmission, challenges remain as to 

how best to incorporate these patterns into malaria transmission models [40]. This study 

showed that human movement patterns follow seasonal patterns, with Lévy random walk 

patterns during the dry season but not during the rainy season.  

 Malaria prevalence declined dramatically in parts of southern Zambia but the 

region remains receptive to malaria transmission and clinical cases typically occur each 

year throughout the rainy season, increasing at the end of the rainy season. This 

seasonal increase in clinical malaria cases coincides with when the population becomes 

more mobile and begins to display Lévy random walk patterns. While malaria prevalence 

is low in the study area, some surrounding areas have higher malaria prevalence. 

Movement to these areas for extended periods and traveling back home may result in 

imported infections. However, this may only be important at the end of the rainy season 

in the month of April, as this marks the beginning of the dry season and vectors 

subsequently are not available to maintain transmission. Thus, these long-distance, 

seasonal movement patterns may result in imported infections but are unlikely to 

facilitate transmission during the dry season. 

 Participants spent approximately 5% of time away from their household 

compound during peak biting times. However, the spatial resolution of the GPS data 

loggers and the satellite imagery limited the ability to determine if participants were 

inside a domestic structure. For short-distance movement patterns, the proportion of 
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time spent in areas of high malaria risk was mainly dependent on whether or not the 

participant’s household compound was in an area of high malaria risk. In this study area 

where the ecologic risk of malaria was estimated, individuals who resided in areas of 

higher and lower malaria risk did not spend much time in areas of the opposite risk. 

However, even a small amount of time spent in a high malaria risk area could result in 

infection and the introduction into low malaria risk areas, propagating local transmission. 

Therefore, malaria elimination interventions implemented at the household level, such as 

ITNs, IRS and reactive case detection, may benefit from the less frequent, long-distance 

movement during the rainy season.  

 The human mobility patterns observed in this study would be described as 

circulatory rural-rural movement in Prothero’s typology [1]. These types of movement 

patterns and their seasonality should be considered when planning malaria elimination 

strategies. Because of restricted mobility during the rainy season, interventions directed 

at households may be more effective. In areas at higher ecological risk, interventions 

could be targeted at households during the rainy season, as mobility outside of high-risk 

areas during this time is minimal.  

Conclusions 

 Malaria control interventions targeted at the household level, such as insecticide 

treated nets and reactive case detection, are likely made more effective by the less 

frequent, long-distance movement during the rainy season, with limited movement to 

and from high and low risk areas. The long-distance movement patterns during the dry 

season were consistent with Lévy random walks. This long-distance movement may 

increase the risk of importation at the end of the rainy season when clinical malaria 

cases peak; however, the risk of malaria importation is likely to be low throughout the 

remainder of the dry season.
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Table 5.1: Demographic characteristics of the study participants by month and comparison with the remaining eligible population  
 

 Number Age in years  
(median [IQR]) 

Percent male  
(% [95% CI]) 

Study participants  68 39.1 [19.8-54.7] 50.0 [38.0-62.0] 

   October  12 54.5 [42.6-61.7] 41.7 [12.0-71.3] 

   December  12 45.8 [20.3-57.7] 50.0 [20.0-80.0] 

   February  11 19.3 [16.6-51.4] 36.4 [6.0-66.7] 

   April  11 39.0 [23.2-41.6] 54.6 [23.1-86.0] 

   June  12 40.8 [26.9-48.2] 50.0 [20.0-80.0] 

   August  10 21.5 [14.5-30.2] 70.0 [39.5-100.0] 

Remaining eligible individuals  105 23.8 [16.0-42.8] 48.6 [38.9-58.2] 
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Figure 5.1: Long-distance movement density, October 2013 to August 2014 
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Figure 5.2: Short-distance movement density, October 2013 to August 2014 
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Figure 5.3: Proportion of movement trajectory by distance from participant’s home for 
each month from October 2013 to August 2014 
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Figure 5.4: Total rainfall per month collected by HOBO weather station in Macha, 
Zambia 
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Figure 5.5: Short-distance movement density in areas of different malaria risk, October 
2013 to August 2014 
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Figure 5.6: Percent of time spent away from the household compound 
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Figure 5.7: Percent of time spent away from the household compound during peak 
anopheline biting times 
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Figure 5.8: Percent of time spent away from the household compound during peak 
anopheline biting times in areas of high malaria risk by household location  
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6. Conclusions 

6.1 Summary of findings 
 
 In the Macha study area of Southern Province, Zambia, changes in the spatial 

and temporal patterns of passively detected cases were observed as transmission 

declined. As areas approach malaria elimination, information on how spatial and 

temporal patterns of passively and actively detected infected individuals change in 

response to declining transmission can be used to target interventions. Transitions from 

annual seasonal peaks in passively detected malaria cases to biannual seasonal peaks 

allow for applications of interventions, such as focal drug administration, prior to the 

expected peak in cases, although a shift to fractured spatial patterns complicates the 

spatial targeting of interventions. However, enhanced surveillance systems will allow 

seasonal spatial patterns to be detected and targeted. Real time monitoring of monthly 

malaria cases presenting at health care facilities could be used to detect areas with 

increases in cases prior to and during the transmission season. These areas can then 

be targeted for increased delivery of interventions to detect and treat symptomatic 

cases, and reactively treat asymptomatic cases to decrease onward transmission.  

 In addition to changing spatial and temporal patterns, differences in parasite 

genetics were observed between passively and actively detected cases. Parasites 

infecting the passively and actively detected populations were phylogenetically 

separated. Analysis of the complexity of infection indicated that passively detected cases 

were primarily monoclonal whereas actively detected cases were primarily polyclonal. 

This implies that passively detected cases are being infected with single parasites, while 

actively detected cases are harboring multiple parasites, potentially between 

transmission seasons. The genetic divergence between seasons was constant for 

passively detected cases but decreased over seasons for actively detected cases. 
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These differences are consistent with the hypothesis that the actively detected cases 

represented chronic, sub-patent infections in contrast to the acute infections of the 

passively detected cases. The parasites infecting the passively detected cases can be 

cleared through successful case management and treatment at health care facilities. As 

these are likely seasonally acquired acute infections, increased passive surveillance at 

health care facilities can effectively treat this population. The chronic infections may not 

need to be actively sought out and treated to decrease or halt transmission. Additionally, 

as these infections are harbored through multiple transmission seasons, they could be 

targeted through reactive case detection programs, specifically reactive focal drug 

administration. . 

 Targeted interventions, such as reactive case detection, can accelerate malaria 

elimination. However, several obstacles impede the efficiency of reactive case detection, 

including the high number of cases during peak months burdening resources and 

staffing levels, the low proportion of residents at home at the time of the screening, the 

difficulty in identifying households within the specified radius, and the low sensitivity of 

RDTs in this transmission setting. Reactive focal drug administration has the potential to 

address the latter obstacle by removing the need for a diagnostic test, although 

challenges with supply chain will need to be addressed to ensure a larger volume of 

antimalarials can be accommodated. Irrespective of the inclusion or exclusion of a 

diagnostic test, community sensitization and coordination to enable high target 

population coverage needs to be addressed. With limited resources, coverage, and 

diagnostic tools, reactive screen-and-treat will likely not be sufficient to achieve malaria 

elimination in this setting. However, high coverage with reactive focal drug administration 

could be more efficient in decreasing the reservoir of infection and should be considered 

as an alternative strategy.  
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 In this area most individuals spent the majority of their time around their 

household compound, especially during peak vector biting times. The proportion of time 

spent in areas of higher malaria risk was determined by the risk status of the 

participant’s household. Therefore, interventions targeted at the household level, such 

as LLINs/ITNs and IRS, take advantage of the restricted, small-scale movement 

patterns.  The long-distance movement patterns displayed seasonal patterns consistent 

with those of Lévy random walks, where individuals make more frequent long-distance, 

long-term trips from their home, highlighting the risk of malaria importation. As these 

movement patterns were observed during the dry season, interventions such as reactive 

case detection or reactive focal drug administration could take advantage of this 

seasonality and begin implementation at the end of the rainy season, in advance of long-

distant movements.  

 Malaria elimination is a dynamic process that can create fractured spatial 

patterns of transmission and a segregation of malaria infections into a chronically 

infected asymptomatic population and an acutely infected symptomatic population. The 

symptomatically infected population can be identified and treated simply with passive 

case detection and improving the quality of case management. The chronically infected, 

and asymptomatically infected populations are much more difficult to identify and treat. 

While more targeted interventions, such as reactive focal drug administration, may 

overcome this challenge, high coverage levels will need to be achieved. Additionally, 

populations are not static, and mobility can be highly seasonal, which impacts the ability 

to reach all of the population with targeted interventions. To achieve malaria elimination, 

one intervention or even some combination of interventions may not be efficient in all 

settings. As malaria transmission decreases and elimination becomes the goal of 

interventions, the underlying epidemiology of malaria needs to be evaluated in to provide 

the most appropriate combination of interventions that will be implemented. Advanced 
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planning should also be made to deliver the interventions to the most appropriate areas, 

maintain high coverage over a long time frame until elimination is achieved, and prevent 

reintroduction and resurgence. 

6.2 Strengths and limitations 

 A major strength of these findings is that most of the work was conducted over 

an eight year period when malaria transmission was decreasing. This study had the 

ability to document the spatial and temporal trends in passively and actively detected 

infections, store biological samples from cases, and determine the genetic relationships 

between parasites. This allowed for a large repository of data and samples that led to 

the ability to describe the natural history of malaria elimination on a local scale. 

Additionally, these data highlight the importance of having enhanced surveillance 

systems in areas moving from malaria control to elimination, as passive case detection 

only reveals part of the story of malaria elimination.  

 The strong relationship between the study staff at MRT and the community of 

Macha was integral in the success of the population movement study using GPS data 

loggers. The community was invested in the study and was willing to participate. The 

data collected showed evidence of seasonal movement patterns. These movement 

patterns allow for interventions distributed at the household level to be timed during the 

transmission season to ensure high coverage. Also, to our knowledge, this is the first 

study describing and quantifying movement patterns of a rural sub-Saharan African 

population and its potential impact of malaria elimination.  

 During the course of achieving malaria elimination, new interventions will be 

implemented in settings such as Macha. In this setting, we evaluated the newly 

introduced reactive test and treat strategy in its initial stages. The study staff were able 

to leverage an established relationship with the RHCs and CHWs to conduct the 
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evaluation. The findings can help guide the process of improving the current intervention 

and develop next steps from the programmatic and policy levels of malaria elimination.  

 While the data provide a great level of detail and long time frame, there were few 

malaria cases in later years (2010 onwards) to draw definitive conclusions. However, in 

an elimination setting, the paucity of cases is expected and inferences from the small 

numbers can be made. Assumptions were made when mapping the incidence of 

symptomatic malaria cases, particularly that there was no substantial change in the 

underlying population over time. Additionally, the population was derived using a 

simulation model based on a random sample of the population, and assumes this was 

representative of the entire population.  

 The molecular barcode was used to determine the population complexity and 

diversity from those with confirmed malaria infection. However, due the low levels of 

parasitemia in the actively detected cases, some assays failed leading to missing data. 

As many of the actively detected cases had high numbers of mixed calls, there was a 

high proportion of polyclonal infections. Typically, haplotypes with missing data and 

polyclonal infections are not included in analyses of population genetics as it is not 

possible to determine the proportion of each allele present in a mixed call and exact 

haplotypes cannot be determined. This was overcome by including a third possible allele 

representing mixed calls and using the percent agreement, accounting for missing data 

and mixed calls.  

 The human movement study was conducted among a small number of 

participants from the already established longitudinal cohort study. However, this was 

designed in part to determine the feasibility and acceptability of the using GPS data 

loggers to measure population movement patterns in rural sub-Saharan Africa. The GPS 

data loggers were well received among the population and the study was feasible and 

manageable. Although we used a convenience sample rather than a random sample, 
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the study population included a large proportion of all eligible participants in the 

longitudinal cohort and did not differ from those not included in the study population.  

 The reactive case detection evaluation was conducted over a short period that 

only covered the rainy and not the dry season. The study period (January through June 

of 2014) only represented a 6-month window where the evaluation was implemented 

and was early in the program’s implementation. However, other reactive case detection 

programs can learn from this experience. The results highlight the need for monitoring 

and evaluation shortly after implementation to identify operational challenges and their 

potential impact on program performance and impact. 

6.3 Recommendations for future research and policy 

 The Macha research site in Choma District, Southern Province, Zambia, provides 

a setting where the transition from malaria control to elimination can be assessed and 

obstacles to elimination evaluated. Surveillance of passively detected malaria cases is 

ongoing. The temporal and spatial trends can be measured in real time to determine 

when and where increases in passively detected, symptomatic cases occur. Additionally, 

surveillance of passively detected cases in this area can be used to identify when and 

where outbreaks of symptomatic malaria are occurring during the process of malaria 

elimination.  

 Active case detection, via reactive surveillance, may be able to identify foci of 

malaria transmission. Genetic relatedness between infections in index cases and 

infections in individuals residing in the same household and their neighbors can provide 

insight into the transmission patterns between symptomatic and asymptomatic malaria 

cases. Investigation into this genetic relatedness of parasites infecting index cases, 

household members of index cases, and their neighbors is currently being explored.  
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 Research into how to most effectively target the asymptomatic population is 

ongoing. Reactive test and treat programs may increase case detection of 

asymptomatically infected cases in transmission foci and treat them to prevent ongoing 

transmission. However, the sensitivity of RDTs has shown that it is not sufficient to 

detect low parasitemic, asymptomatic malaria infections, as it was developed to detect 

symptomatic malaria infections. Therefore, test and treat programs using the currently 

available RDTs for case detection of asymptomatic infections may not be the best use of 

resources. In areas approaching malaria elimination, reactive focal drug administration 

should be considered. 

 The role of population movement patterns and malaria transmission in this area 

will need to be explored further. Simulated, agent based models of vector and human 

movement patterns will be applied to this setting. These complex interactions will be 

modeled to determine the impact of human population movement patterns on malaria 

transmission. While that is ongoing, the timing of interventions targeted at households 

can be shifted to before and after the rainy season to increase their impact. Targeting 

interventions at the household before the onset of the rainy season will aid in reducing 

the parasite population prior to the peak transmission season, thus reducing local 

transmission when people are less likely to travel long distances. Interventions targeted 

after the rainy season could prevent or decrease the onward transmission of parasites 

acquired during long-distance travel that occurs towards the end of the rainy season. 
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