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Abstract 

The recent innovations in horizontal drilling technology, paired with hydraulic fracturing 

(HF), have opened up vast reserves of petroleum across the world, particularly the United 

States.  This recent surge in oil and gas production has numerous implications for energy 

security and international relations and will weigh heavily on future US energy policy 

decisions.  However, wells in HF-stimulated reservoirs behave differently than their 

conventional counterparts, estimating recoverable resources difficult and often highly 

uncertain.  Historically, recoverable reserves have been estimated using decline curve 

analysis, a method utilizing empirical curve fits production data to predict long-term 

good production.  This analysis sought to understand the degree of uncertainty in 

unconventional reserve estimates using standard decline curve analysis through a 

comparison of representative well estimated ultimate recovery (EUR) in four tight oil 

plays and two tight gas plays.  Mean EUR data from the US Energy Information 

Administration (EIA) and industry were compared directly with modeled representative 

well EURs.  The high variability seen in the resulting comparison indicated significant 

uncertainty in mean EUR estimates for the same plays.  More comprehensive reservoir 

modeling techniques like rate-transient analysis (RTA), which incorporates geologic data, 

fracture geometry, and flow regime analysis, have been demonstrated in conventional 

reservoirs to yield more accurate estimates of recoverable reserves and reduce 

uncertainty.  As HF-stimulated oil and gas production in the United States continues to 

play a larger role in future energy policy decisions, reducing uncertainty, including by 

utilizing RTA, in future estimations of recoverable reserves will be critical to developing 

sustainable and effective policies.  
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1.0 Introduction and Background 
The recent boom in United States oil and gas production, primarily driven by innovations 

in horizontal drilling and hydraulic fracturing (HF) stimulation, propelled the US for the 

first time in decades to the position as the world’s top oil producer in 2014.1  Among 

other things, the surge in production in the preceding 10 years transformed the world oil 

market and spurred widespread conversions to natural gas turbines for electricity 

production.2   This surge in production led to aspirations among politicians and industry 

officials of “energy independence,” after decades of US reliance on foreign oil imports, 

often from politically volatile regions of the world.   However, when oil prices collapsed 

in late 2014 due to global oversupply, US production declined extraordinarily as drillers 

slowed down, raising questions regarding the long-term sustainability of high production 

rates from HF-stimulated wells.   

The uncertainty surrounding the sustainability of long-term US oil production lies in 

reservoir behavior.  Reservoirs stimulated by HF exhibit significantly different behaviors 

than their conventional counterparts throughout their producing lives.  High initial 

decline rates, coupled with complex permeability and flow regimes, increase the 

difficulty of estimating proved reserves in these reservoirs.  The Energy Information 

Administration (EIA) releases estimates of proved reserves, or the petroleum resources 

remaining in a given field that are estimated to be recoverable under current economic 

conditions, every year in its Annual Energy Outlook (AEO).3  Policymakers and industry 

officials often use this publication for future decisions.  The predictive portion of the 

                                                      
1 Smith, Grant. US Seen as Biggest Oil Producer After Overtaking Saudi Arabia. Bloomberg, July 4 (2014). 
2 Crooks, Ed. Cheap gas has hurt coal and nuclear plants, says US grid study. Financial Times, August 24 
(2017) 
3 EIA, US. Annual Energy Outlook 2018. US Energy Information Administration, Washington, DC (2018). 
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AEO, which uses reserve estimates to make projections of future production, is often 

criticized for optimistic predictions of production growth.  Hughes (2014) predicts 

significant underperformance of US oil and gas reserves in comparison to the EIA 

estimates over the coming decades.4  Previously, AEO publications between 2008 and 

2010 failed to predict the future viability of various tight oil5 and gas plays, which 

hampered the ability of government officials to prepare for a dramatic increase in 

domestic production adequately.6  Now that significant oil and gas resources are 

available within the US, the reliability of estimating how HF-stimulated wells will 

behave over the coming decades is critical to the economy and national security of the 

US.  As the US government considers its petroleum reserves when evaluating energy 

security and independence, accurate reserve estimates are critical to future policy 

decisions, trade partnerships, and military action.  This analysis sought to examine the 

uncertainty of decline curve analysis as a method for reserves estimation in reservoirs 

stimulated using HF, by comparing reserve estimates from industry and the EIA to 

models based on production data using decline curve analysis.  

1.1 Hydraulic Fracturing Stimulation and Unconventional Reservoir Behavior 

In formations with low permeability where petroleum resources are contained in isolated 

pore spaces, hydraulic fracturing (HF) is utilized to connect these pore spaces and 

artificially enhance permeability, bringing the greatest surface area of a given formation 

possible into contact with the wellbore.  This ensures larger production volumes and 

                                                      
4 Hughes, J. David. Drilling deeper: a reality check on US government forecasts for a lasting tight oil & 
shale gas boom. Post Carbon Institute, Santa Rosa, California (2014). 
5 Oil or gas found in relatively impermeable rock which often requires hydraulic fracturing to induce 
permeability 
6 Ibid, Hughes.   
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longer well life.  In higher-permeability conventional plays, estimation of recoverable 

reserves is usually accurate and predictable, since reservoir behavior and geology are 

relatively uniform and consistent data has been collected over decades.  For many 

emerging low-permeability unconventional plays, especially those where HF techniques 

are used to induce permeability, traditional analysis methods often fail to characterize 

well behavior adequately.  Much of the failure of traditional analysis methods to describe 

HF-stimulated reservoir behavior lies in the significant difference in the behavior of wells 

in conventional, higher permeability (10-100 mD)7 plays vs. those in low-permeability 

(0.1 µD to 1mD) unconventional plays stimulated with HF.8  When comparing 

conventional and unconventional plays in terms of decline rate, the difference is 

significant (See Figure 1.1.1). 

 

Figure 1.1.1: A plot of decline rates in both unconventional and conventional plays9 

                                                      
7 Reservoir permeability is measured in microdarcy (µD) and millidarcy (mD) with lower values 
corresponding to lower permeability. 
8 Hough, E., and Thomas McClurg. Impact of Geological Variation and Completion Type in the US Bakken 
Oil Shale Play Using Decline Curve Analysis and Transient Flow Character. In Presentation at AAPG 
International Conference and Exhibition, Milan, Italy, Oct, pp. 23-26. 2011. 
9 Sandrea, Rafael. Evaluating production potential of mature US oil, gas shale plays. Oil & Gas 
Journal 110, no. 12 (2012): 58. 
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In conventional fields like Prudhoe Bay in Alaska or Hugoton in Kansas, where oil is 

extracted without HF from conventional reservoirs, the decline rates are below 10% per 

year, whereas in plays like the Barnett, a low-permeability shale that needs HF 

stimulation, the average decline rates are roughly 25-50% per year, though the high rate 

is largely due to a steep initial decline.10  Even the Bakken, with an average decline rate 

comparable to conventional plays, exhibits an initial decline rate of 65-80% per year on 

average, in comparison to conventional plays, which typically have initial decline rates of 

5-10% per year.11  On average, 50% of the estimated ultimate recovery (EUR) of a well 

in the Bakken has been produced within the first five years of the well’s life, with the 

remaining 50% produced over the next 25 years.12  Despite the enormous growth in 

domestic producing reserves for the United States due to HF stimulation of tight gas and 

oil plays, the growth is artificially inflated due to initial high production rates, and drillers 

must continually bring wells into production to maintain production growth.   

1.2 Geological and HF Stimulation Design Factors Contributing to Reservoir 
Behavior 

Factors related to the underlying geology and choices made by operators for the 

completion of the reservoir are primarily responsible for the uncertainties associated with 

reserves estimation for HF-stimulated reservoirs.  Factors include the interaction between 

HF and the producing formation, and the effects of geology and type of stimulation on 

reservoir behavior.   

Though there is a high degree of variance in pressures, pumping rates, and 

chemical/fluids used, the modern HF process primarily involves the injection of water, 

                                                      
10 Sandrea, Rafael. Evaluating production potential of mature US oil, gas shale plays. 58 
11 Ibid, 58 
12 Ibid, 58 
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proppant, gel, and other chemicals at a high pressure to fracture the formation and induce 

secondary permeability.  Proppant is a natural or engineered sand intended to “prop” 

open fractures after HF stimulation is complete so that flow through the induced 

permeability network may continue throughout the life of the well.  The fracture network 

induced allows unconventional reservoirs, where the petroleum resources are stored in 

isolated pore spaces, to produce at commercially viable volumes.13  Initially, due to in-

situ stress conditions, the formation fractures vertically, perpendicular to the principal 

overburden stress.  These vertical fractures are the initial, planar growth, and ideally, 

microfractures will branch out from the main planar fracture, expanding horizontally and 

creating fracture complexity.14 

While geological characteristics of the formation are important to production, fracture 

complexity has been attributed to higher cumulative production across plays of varying 

geology.15  The HF process, specifically what fluids and proppants are used, can 

significantly alter the fracture network extent (propagation) and complexity.  In the past 

five years, the industry has shifted to focus on inducing fracture complexity using 

“slickwater,” which is a blend of water, friction reducing chemicals, and in some cases, 

acid.16  Slickwater, though an older fluid system, has largely replaced more modern and 

heavily-researched crosslink gel systems in several plays.  The crosslink method, while 

successful at delivering proppant into the formation and reducing the potential for 

                                                      
13 King, George E. Hydraulic fracturing 101: What every representative, environmentalist, regulator, 
reporter, investor, university researcher, neighbor, and engineer should know about hydraulic fracturing 
risk. Journal of Petroleum Technology 64, no. 04 (2012): 34-42. 
14 Ibid, 34-42 
15 Britt, Larry K., Michael B. Smith, Henry H. Klein, and J. Y. Deng. Production Benefits from 
Complexity–Effects of Rock Fabric, Managed Drawdown, and Propped Fracture Conductivity. In SPE 
Hydraulic Fracturing Technology Conference. Society of Petroleum Engineers, 2016. 
16 Palisch, Terrence T., Michael Vincent, and Patrick J. Handren. Slickwater fracturing: food for 
thought. SPE Production & Operations 25, no. 03 (2010): 327-344. 
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proppant to accumulate in the wellbore, only seems to improve the propagation of planar 

fractures and induce higher fracture conductivity, rather than complexity.17  Typically, 

operators prefer a “hybrid” stimulation, which combines a slickwater and crosslink gel 

fluid system to create near-wellbore fracture conductivity and a complex fracture network 

further out in the formation.18   In hybrid fluid system HF stimulations, proppant also 

plays an important role, with smaller mesh-size proppant pumped into the outermost 

fracture network, and larger mesh-size proppant pumped into the near-wellbore zone.   

In the initial months and years after an HF stimulation, the production surges, as 

thousands of barrels of oil inside the now-connected pore space flow freely through the 

induced fracture network.  Additionally, the initial pressures are typically high in these 

formations, increasing the production rate.  However, because the network of fractures 

are so permeable, that initial network is rapidly depleted, and production quickly 

declines.19  After 2-3 years, the production rate stabilizes, and continues at this rate for 

decades, albeit a much lower rate than the initial years of production.  Ultra-low 

permeability matrix drives this initially rapid decline followed by a stable production rate 

near long, planar fractures.20  Over time, these fractures draw out a greater amount of 

petroleum from the surrounding rock matrix due to their higher pore volumes.     

Increasing surface area contact with the producing formation, and inducing maximum 

permeability and pore volume through the fracture network, are critical to ensuring the 

longevity of wells and minimizing rapid initial decline.  In response, the oil and gas 

                                                      
17 Ibid, 327-344 
18 Geiver, L. The Slickwater Story. The Bakken Magazine. Retrieved from (2014). 
19 Clarkson, Christopher R. Production data analysis of unconventional gas wells: Review of theory and 
best practices. International Journal of Coal Geology 109 (2013): 101-146. 
20 Hough, E., and Thomas McClurg. Impact of Geological Variation and Completion Type in the US 
Bakken Oil Shale Play Using Decline Curve Analysis and Transient Flow Character. 23-26 
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industry has increased proppant and water volumes in unconventional plays across the 

United States.  Between 2010 and 2014, the average proppant used for an HF stimulation 

in the United States more than doubled.21 More proppant, along with an equivalent 

increase in water volume per stimulation, has led to longer producing lives for wells. 

1.3 Techniques for Estimation of Recoverable Reserves 

The various characteristics of both conventional and unconventional reservoirs discussed 

above can be modeled using a variety of tools.  The oil industry has principally used 

decline curve analysis to predict ultimate resource recovery and proved reserves in fields 

they develop.  Decline curve analysis uses exponential and hyperbolic equations, which 

are empirically adjusted throughout the life of the well as needed to provide a better fit to 

production data.   

Decline curve analysis can be further refined using reservoir characterization including 

pressure, flow, and permeability data, so-called rate-transient analysis (RTA).  

Combining RTA with the empirical modeling of decline curve analysis typically leads to 

a better understanding of well performance and reservoir behavior over time.  While 

decline curve analysis continues to be refined for unconventional reservoirs, RTA 

methods are still being developed for unconventional reservoirs, due to the high 

complexity of flow and permeability regimes discussed above.22 

In conventional fields – such as those in Alaska, Kansas, Venezuela, Saudi Arabia, and 

the North Sea – exhibit constant decline rates of around 3-5% annually.  Permeability 

remains relatively consistent and is defined solely by the permeability of the geologic 

                                                      
21 Bleiwas, Don. Estimates of hydraulic fracturing (Frac) sand production, consumption, and reserves in 
the United States. Rock Prod. Newslett. (2015). 
22 Clarkson, Christopher R. Production data analysis of unconventional gas wells: Review of theory and 
best practices. 102 
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formation in which the reservoir lies.  Depending on the geology, permeability in 

conventional reservoirs can range from 0.1-1000 mD.23  This continuous permeability 

means the whole-reservoir extent and initial pressure dominate the long-term decline 

behavior of conventional reservoirs.  Conventional reservoirs are typically dominated by 

two flow regimes: radial flow and boundary-dominated flow.24  In the initial radial flow 

period, pressure declines at a constant rate around the wellbore until the radial decline 

reaches the extent of the reservoir, where it transitions to boundary-dominated flow, 

where the rate of pressure decline begins to increase and the entire reservoir volume 

declines at a constant rate.  Boundary-dominated flow is typically observed for the 

majority of reservoir life.25 

Unconventional reservoirs exhibit far lower and more variable permeability, which 

contributes to more complex flow-regime characteristics throughout the life of the 

reservoir.  Permeability in unconventional reservoirs can range from 15 µD - 0.1 mD.26  

Typically, multiple permeability regimes will define the flow regimes of an 

unconventional reservoir, since a combination of in-situ permeability of the formation 

(matrix), naturally induced fracture permeability, and induced fracture permeability (from 

HF) may all exist in a single reservoir.  Flow regimes are highly variable depending on 

location and production characteristics, but multiple linear and boundary-dominated flow 

regimes typically dominate unconventional reservoirs.27  Bilinear flow regimes, where 

                                                      
23 Hough, E., and Thomas McClurg. Impact of Geological Variation and Completion Type in the US 
Bakken Oil Shale Play Using Decline Curve Analysis and Transient Flow Character. 23-26 
24 Clarkson, Christopher R. Production data analysis of unconventional gas wells: Review of theory and 
best practices.  101-146. 
25 Ibid, 101-146 
26 Hough, E., and Thomas McClurg. Impact of Geological Variation and Completion Type in the US 
Bakken Oil Shale Play Using Decline Curve Analysis and Transient Flow Character. 23-26 
27 Clarkson, Christopher R., and J. J. Beierle. Integration of microseismic and other post-fracture 
surveillance with production analysis: a tight gas study. Journal of Natural Gas Science and Engineering 3, 
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the fluid is simultaneously flowing out of the formation matrix and the fractures, typically 

exhibits a rapid increase in the rate of pressure decline initially, until the transition to 

boundary-dominated flow for the entire stimulated network of fractures and matrix 

occurs.28  Put differently, unconventional reservoirs exhibit rapid depletions in pressure 

and volume in the initial months after production begins, due to the higher induced 

permeability of the fracture network in comparison to the matrix permeability.29  Later in 

the life of the well, depletion of pressure is dominated by the flow of the matrix itself, 

exhibiting a much slower decline in pressure for the majority of the reservoir’s life. 

Decline curve analysis was initially proposed in “Analysis of Decline Curves” by J.J. 

Arps (1945), and demonstrated that decline curves could be fit to production data to 

model the decline parameters of a given reservoir and calculate the reservoir’s estimated 

ultimate recovery.30  The estimated ultimate recovery (EUR) is a calculation of the total 

amount of recoverable petroleum resource from the reservoir over its commercially 

viable lifetime.  Conventional and unconventional reservoirs are modeled using different 

decline parameters, characterized by the variables displayed in Equations (1.3.1), (1.3.2), 

and (1.3.3) below using hyperbolic decline parameters initially developed by Arps 

(1945)31:   

(1.3.1)                                          𝐷𝐷0 =
𝑝𝑝2−𝑝𝑝1
𝑡𝑡2−𝑡𝑡1
𝑡𝑡1

 ; where:  

 𝐷𝐷0 = initial decline rate 
 𝑡𝑡𝑥𝑥 = time in months 
𝑝𝑝𝑥𝑥 = production rate, bbls/day 
 

                                                      
no. 2 (2011): 382-401. 
28 Clarkson, Christopher R. Production data analysis of unconventional gas wells: Review of theory and 
best practices. 102 
29 Ibid, 102. 
30 Arps, Jan J. Analysis of decline curves. Transactions of the AIME 160, no. 01 (1945): 228-247. 
31 Arps, Jan J. Analysis of decline curves. 228-247 
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(1.3.2)                                              𝑞𝑞(𝑡𝑡) =  𝑝𝑝0[1 + 𝐷𝐷0𝑏𝑏(𝑡𝑡 − 𝑡𝑡0)]−
1
𝑏𝑏; where: 

𝑞𝑞(𝑡𝑡) = modeled production rate, bbls/day 
𝑡𝑡 = time in months 
𝑝𝑝0 = measured production rate at time 𝑡𝑡0, bbls/day 
𝐷𝐷0 = initial decline rate 
𝑏𝑏 = decline exponent constant 
 

(1.3.3)                                               𝐸𝐸𝐸𝐸𝐸𝐸 =  𝑝𝑝0 + ∑ 𝑞𝑞(𝑡𝑡)𝑡𝑡𝑓𝑓
𝑡𝑡0 ; where: 

EUR = estimated ultimate recovery, bbls 
𝑡𝑡0 = initial time 
𝑡𝑡𝑓𝑓 = final time 
𝑝𝑝0 = measured initial production rate, bbls/day 
𝑞𝑞(𝑡𝑡) = modeled production rate, bbls/day 
 

Perhaps the most important variable in the decline curve equation is b, or the decline 

exponent constant, which in addition to the initial decline rate defines the slope of decline 

curves.  In conventional reservoirs, b is often set equal to zero to model exponential 

decline.  In conventional reservoirs, exponential decline curves are well-suited to 

production behavior that exhibits a constant decline rate over an extended period.   

Unconventional reservoir decline curves, because of high initial decline early in the life 

of the well followed by an extended period of low decline rates, are best modeled by 

decline curves with b values above zero.  For wells in the Bakken, b values were found to 

correlate with permeability regime, and whether or not long-term, ultra- low permeability 

matrix flow would dominate in the wells.32  Typically, higher b values, or lower decline 

rates, related to greater surface area contact with the low-permeability matrix, and lower 

b values correlated with higher decline rates and contact with natural and induced 

fracture networks.33  Wells with higher b values exhibited slower decline rates, and 

                                                      
32 Hough, E., and Thomas McClurg. Impact of Geological Variation and Completion Type in the US 
Bakken Oil Shale Play Using Decline Curve Analysis and Transient Flow Character. 23-26 
33 Ibid, 23-26 
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higher long-term production rates, extending the commercially viable well life and 

increasing well rate-of-return.  Ultra-low permeability (0.1-15 µD) reservoirs which have 

been stimulated with HF are generally modeled using a curve with higher b values 

(between 1 and 2),34 whereas moderately low permeability (15 µD-0.1 mD) reservoirs 

which flow naturally in addition to HF stimulation are generally best modeled with lower 

b values, (between 0 and 0.5).35  The incremental change in EUR for a small change in 

the b value can be substantial.  This variability introduces wide margins of uncertainty in 

the estimation of future production, especially in emerging unconventional plays where 

less than a decade of reliable production data exists.  As it is developed further, RTA 

methods may be useful for better constraining b in unconventional reservoirs and 

producing more accurate estimates of recoverable reserves.  

2.0 Methods and Analysis 
2.1 Data Gathering 

To perform the decline curve analysis and calculate representative EURs, production data 

were obtained from ShaleProfile.com, which aggregates and organizes these data from 

state oil and gas commissions.36  The production data, expressed in barrels per day 

(bbls/day), presented a monthly average daily production for the well sample’s average.  

This permitted the sample of hundreds of wells to be analyzed as a single 

“representative” well for each play.  The organization of the data in this manner 

permitted decline curve analysis to be performed for a representative well, which 

exhibited characteristics of average well decline behavior in each play.   

                                                      
34 Hough, E., and Thomas McClurg. Impact of Geological Variation and Completion Type in the US 
Bakken Oil Shale Play Using Decline Curve Analysis and Transient Flow Character. 23-26 
35 Ibid, 23 
36 Peters, Enno.  Visualizing US shale oil & gas production. ShaleProfile.com. (2018) 
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Data were obtained for four tight oil plays: the Bakken, Eagle Ford, Permian, and the 

Niobrara, as well as two tight gas plays: the Haynesville and Marcellus shale, all for the 

years 2011-2015.  These plays are some of the most productive and well-developed plays 

in the US, and possess variable geologic characteristics.    

Mean EUR data were also obtained from the EIA for comparison with the modeled 

EURs.  The EIA determines mean play/subplay EURs using distributions of well-level 

EURs by play and subplay for its prediction assumptions every year.37  The data were 

obtained from the EIA for the same plays: the Bakken, Eagle Ford, Permian, and the 

Niobrara, as well as two tight gas plays: the Haynesville and Marcellus shale, all for the 

years 2011-2015. 

Finally, EUR data were obtained from industry for major firms and independent industry 

assessors active in each play for comparison with modeled estimates.  Firms often display 

average well EUR data in investor presentations, and these data were gathered and 

averaged for each play. 38  Additionally, independent assessors will often consult with 

investment firms and generate reports estimating recoverable reserves by play.39 

This data is subject to several limitations, principally a lack of consistency in reporting 

and estimation.  Data displayed by firms for investors often portray optimistic estimates 

of reserves and productivity.  For official filings with the Securities and Exchange 

Commission (SEC), firms are subject to strict regulations and independent assessments of 

reserves, to ensure estimates are not artificially heightened to increase firm valuation.40  

                                                      
37 Energy Information Administration. Assumptions to the Annual Energy Outlook. Annual Energy Outlook 
2013-2017. (2013-2017). 
38 Investor Presentations, 2011-2015.  Occidental Petroleum, EOG Resources, Continental Resources, 
Anadarko Petroleum, and Chesapeake Energy.  
39 Independent Assessments: 2011-2015 Jeffries, Strata Advisors.  
40 Securities, U. S., and Exchange Commission. Modernization of Oil and Gas Reporting. Final Rule, 17 
CFR Parts 210, 211, 229, and 249,[Release Nos. 33–8995; 34–59192; FR–78; File No. S7–15–08], RIN 
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However, SEC filings only require reserve estimates for entire corporate portfolios, and 

not individual wells, making investor presentations the only source of data for well-level 

industry EURs.   Independent assessors like Jeffries and Strata Advisors were also used 

where available to introduce greater conservatism in the analysis.  The variability of these 

data makes the industry EURs the least reliable for comparison with data from EIA and 

model simulations.  However, industry EURs were considered valuable enough to 

include in the comparison.   

2.2 Analysis Methods 

Recoverable reserves for each play’s representative well were estimated using standard 

decline curve analysis methods initially developed by Arps (1945).41   The 

“representative” well is an average of the monthly production for the well sample in each 

play.  The monthly production data for each representative well were populated in 

Microsoft Excel for each play and each of the years 2011-2015, and an initial decline rate 

𝐷𝐷0 was calculated for each representative well using Equation (2.2.1) below: 

(2.2.1)                                                 𝐷𝐷0 =
𝑝𝑝2−𝑝𝑝1
𝑡𝑡2−𝑡𝑡1
𝑡𝑡1

 ; where:  

 𝐷𝐷0 = initial decline rate 
 𝑡𝑡𝑥𝑥 = time in months 
𝑝𝑝𝑥𝑥 = production rate, bbls/day 

 

Using 𝐷𝐷0, production rate 𝑞𝑞(𝑡𝑡) in bbls/day was calculated for each of 360 months to 

simulate a 30-year economic well life using two different models; a reference case and a 

high case representative well.  The reference case used Equation (2.2.2) initially and 

Equation (2.2.3) after the monthly decline rate dropped below 0.8% to simulate a flow 

                                                      
3235–AK00, US SEC, Washington, DC (14 January 2009). Federal Register 74, no. 9 (2009): 2157-2197. 
41 Arps, Jan J. Analysis of decline curves. 228-247 
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transition to exponential decline, consistent with the model used by the EIA42 and a 

simplified version of flow models used by Clarkson (2013).43  The high case used 

Equation 2.2.2 to model production for the life of the well, simulating well behavior with 

no exponential decline.      

(2.2.2)                                                 𝑞𝑞(𝑡𝑡) =  𝑝𝑝0[1 + 𝐷𝐷0𝑏𝑏(𝑡𝑡 − 𝑡𝑡0)]−
1
𝑏𝑏; where: 

𝑞𝑞(𝑡𝑡) = modeled production rate, bbls/day 
𝑡𝑡 = time in months 
𝑝𝑝0 = measured production rate at time 𝑡𝑡0, bbls/day 
𝐷𝐷0 = initial decline rate 
𝑏𝑏 = decline exponent constant 
 

(2.2.3)                                                 𝑞𝑞(𝑡𝑡) =  𝑝𝑝0 ∗ [𝐷𝐷0(𝑡𝑡 − 𝑡𝑡0)]; where: 

𝑞𝑞(𝑡𝑡) = modeled production rate, bbls/day 
𝑡𝑡 = time in months 
𝑝𝑝0 = measured production rate at time 𝑡𝑡0, bbls/day 
𝐷𝐷0 = initial decline rate 
 

Finally, using Equation (2.2.4), the EUR was calculated for each representative well.  

Since the time unit for the data obtained is monthly and the production rate is expressed 

in bbls/day, the EUR calculation was multiplied by the average number of days in a 

month, 30.5, as shown below: 

(2.2.4)                                            𝐸𝐸𝐸𝐸𝐸𝐸 =  [𝑝𝑝0 + ∑ 𝑞𝑞(𝑡𝑡)𝑡𝑡360
𝑡𝑡1 ] ∗ 30.5; where: 

EUR = estimated ultimate recovery, bbls 
𝑡𝑡1 = time of first modeled production month 
𝑡𝑡360 = time at end of 30-year modeled well life 
𝑝𝑝0 = measured initial production rate, bbls/day 
𝑞𝑞(𝑡𝑡) = modeled production rate, bbls/day 

 

To ensure the curve provided an accurate representation of the production data, a 

                                                      
42 EIA, US. Oil and Gas Supply Module of the National Energy Modeling System: Model 
Documentation 2017. (2017). 
43 Clarkson, Christopher R. Production data analysis of unconventional gas wells: Review of theory and 
best practices. 102 
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coefficient of determination was calculated to provide an estimation of the fitness of the 

modeled production data 𝑞𝑞(𝑡𝑡) to available measured production data 𝑝𝑝(𝑡𝑡).  The equation 

used to calculate the coefficient of determination is shown in Equation (2.2.5):  

(2.2.5)                                             𝐸𝐸2 = 𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠
𝑡𝑡𝑜𝑜𝑡𝑡𝑠𝑠𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 

A minimum threshold was set at  𝐸𝐸2 = 0.99 to ensure a high level of fitness for the 

predicted production rates.  The modeled production rates were empirically fit by 

changing the decline exponent constant 𝑏𝑏 until a minimum 𝐸𝐸2 value of 0.99 was 

obtained.  Both the measured and modeled production data for each representative well 

were plotted together to display the fitness of the modeled production rates visually, as 

shown in Figure 2.2.1.   

 
Figure 2.2.1: Example of decline curve fitted to 50 months of Bakken production data  

To estimate proved and technically recoverable reserves for use in the AEO, the EIA 

obtains production data for plays nationwide using the proprietary database DrillingInfo, 

which gathers and aggregates industry data from plays and basins across the US.   The 

EIA determines mean play EURs using distributions of well-level EURs by play and sub-
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play.44  The well-level EURs are determined using decline curve analysis similar to the 

methods described above.  These play-level mean EUR data provide a baseline, 

consistent estimation of reserves for a given year, using the same framework to estimate 

EUR based on well production data.  With data from major operators in each play, mean 

well EUR calculations from EIA were also gathered and compared directly with the 

modeled EURs.45 Comparison of EUR based on the model, EIA, and industry estimates 

are displayed in Results.     

3.0 Results 
3.1 Model Results 

Model results met the fitness threshold to the production data, with 𝐸𝐸2 values all above 

0.99.  This fitness was also visually confirmed using graphs like Figure 2.2.1 to ensure 

the decline curve models fit production data appropriately.  Detailed model results are 

included as an Appendix under section 7.1.    

3.2 Comparison of Modeled Results with EIA and Industry Data 

Generally, mean EIA EURs were lower than both the reference and high case modeled 

representative wells, while industry EUR estimates were generally higher than both 

modeled scenarios.  Reference case model EURs tended to be more closely aligned with 

EIA EURs, while high case model EURs were better aligned with industry EURs.  In 

particular, the Marcellus play modeled representative well EURs exhibited substantial 

differences from EIA EURs, with average EIA results 2.8 billion cubic feet (Bcf) lower 

than the reference case representative well and 5.7 Bcf lower than high case 

                                                      
44 Energy Information Administration. Assumptions to the Annual Energy Outlook. Annual Energy Outlook 
2013-2017. (2013-2017). 
45 Ibid. 
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representative well.   Industry EUR estimates tended to be significantly higher than 

representative wells for both scenarios, with the exception of the Haynesville and 

Marcellus plays, where industry and modeled estimates were more closely aligned.  

However, for the various reasons discussed in section 2.1, the sample of EURs from 

industry is not considered as reliable as the sample of EIA EURs.  A comparison of EIA 

and industry EURs with modeled EURs for each scenario is also displayed graphically 

below for all six plays.  A detailed numerical comparison of results is included as an 

Appendix under section 7.2.    

 
Figure 3.2.1: Comparison of modeled results, EIA, and industry data for the Permian play  

 
Figure 3.2.2: Comparison of modeled results, EIA, and industry data for the Eagle Ford play 
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Figure 3.2.3: Comparison of modeled results, EIA, and industry data for the Bakken play 

 
Figure 3.2.4: Comparison of modeled results, EIA, and industry data for the Niobrara play 

 
Figure 3.2.5: Comparison of modeled results, EIA, and industry data for the Haynesville play 
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Figure 3.2.6: Comparison of modeled results, EIA, and industry data for the Marcellus play 

4.0 Discussion  
4.1 Implication of Results for Uncertainty in Reserves Estimation 

Generally, modeled EURs for both the reference and high cases were higher than EIA 

estimates.  The lower mean EURs calculated by the EIA indicated a high degree of 

conservatism in the agency’s analysis.  Even the reference case representative well EURs 

tended to be higher than EIA estimates for almost every play over the years 2011-2015, 

especially in the Marcellus shale, where reference case modeled EURs were more than 

twice the EIA-estimated EURs.  In other plays, like the Eagle Ford and Niobrara, 

modeled EURs tended to align more closely with EIA EURs.  Since the analysis 

methodology for the representative well models is nearly the same as that used by the 

EIA, alignment to some degree was expected.  However, higher representative well 

EURs in relation to EIA EURs was not expected, since the agency is typically criticized 

for overestimating recoverable reserves in its analyses.46  In general, the results of the 

analysis principally demonstrated the degree to which changes in decline curve variables, 

                                                      
46 Hughes, J. David. Drilling deeper: a reality check on US government forecasts for a lasting tight oil & 
shale gas boom.  
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like decline rate 𝐷𝐷0 and the decline exponent constant b, to fit production data can 

dramatically alter results, meaning use of this method involves significant uncertainty in 

estimating future production.  In attempts to ensure conservatism in analysis, EIA likely 

used more aggressive decline variables, which in turn produced lower estimates.  Since 

data on the fitness of EIA’s models to production data are not available, it is difficult to 

ascertain the exact source of the agency’s conservative recovery estimates.     

The methodology used for aggregating production data was also thought to play a role in 

the major differences between modeled and EIA estimates.  For example, the modeled 

EURs were calculated from the mean of a cohort of wells separated by year of first flow 

for years 2011-2015.  The methodology used by EIA, however, takes an average EUR of 

all wells producing in a given area each year it performs the analysis, regardless of when 

the well started production.47  The inclusion of legacy wells, or wells which had already 

been flowing for multiple years at the time of analysis, could have led to more 

conservative EURs.   

However, the method used by EIA does not provide an assessment on whether long-term 

recovery of wells is changing every year, as technology and practices change in response 

to lessons learned by industry.  The lower EIA EURs could indicate that inclusion of 

legacy wells in EIA’s analysis was lowering mean EURs for individual plays, which if 

true could indicate EURs decline as more production data becomes available to fit 

decline curves.  However, a correlation between the inclusion of legacy wells and lower 

EURs did not seem likely, since trends in EURs for both EIA and modeled estimates in 

tight oil plays generally increase with time (See Figure 4.1.1).       

                                                      
47 EIA, US. Assumptions to the Annual Energy Outlook. (2013-2017). 
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Figure 4.1.1 also indicated EIA has become more conservative in calculating EUR with 

time, especially for the Bakken, Permian, and Niobrara plays.  EIA EURs were higher 

than model reference case results in all tight oil plays in 2011, but dropped below model 

EURs in 2012 for the Permian and Bakken plays, and in 2014 for the Niobrara play.   

 
Figure 4.1.1: Comparison of trends in EUR estimated by the reference case model and EIA 

One explanation for EIA’s increasing conservatism could lie in the accelerating decline 

of legacy production, or production from wells with two or more months of production 

data.48  The agency’s March 2018 Drilling Productivity Report reported that monthly 

decline rate of legacy well production in the Bakken, Niobrara, and Permian plays 

increased between 2011 and 2015.49  Even with the most recent numbers, production 

from new wells continues to exceed legacy decline, but if the trends indicated in EIA’s 

                                                      
48 EIA, US. Drilling Productivity Report Background and Methodological Overview. US Energy 
Information Administration (2018). 
49 EIA, US. Drilling productivity report. US Energy Information Administration (2018). 
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report continue, operators will encounter increasing difficulty in drilling enough new 

wells to exceed decline of old wells.   Sustaining this pace requires substantial operating 

expenditures, and increase sensitivity to changes in the price of oil.50  EIA has recognized 

the difficulty in sustaining production for plays with high decline rates, which may 

explain the agency’s increasingly conservative EURs.   

Industry EURs were higher than both the high and reference case modeled EURs, 

principally for two reasons.  First, as discussed in the limitations of industry data in 

section 2.1, the motives of industry tend to differ significantly from government agencies 

like the EIA.  Investor presentations typically display optimistic EURs and proved 

reserves estimates to attract investment and highlight firm accomplishments, and since 

data from independent assessors was limited, the data were still thought to contain 

inflated EURs.51   Second, industry methodologies for calculating EURs are not publicly 

available, and likely vary from the methodology used by both the EIA and models in this 

analysis.  For example, industry often includes all liquids and gas produced from a well 

in its EUR, whereas the EIA and the modeled analysis used separate oil or gas EURs.  

Additionally, decline variables and equations also differ among firms, which, as 

evidenced by the differences between the reference and high case modeled results, lead to 

significant differences in EUR. 

Generally, the results indicate a significant degree of uncertainty in the estimation of 

reserves for wells completed with HF stimulations.  The uncertainty appears to be 

fundamentally sourced from the inadequacy of decline curve analysis to predict the 

                                                      
50 Smith, James L., and Thomas K. Lee. "The price elasticity of US shale oil reserves." Energy Economics 
67 (2017): 121-135. 
51 DiLallo, Matthew.  This Oil Executive Thinks the Oil Market Is Way Too Optimistic (and That's Wildly 
Bullish for Oil Prices) The Motley Fool. (2017) 
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behavior of unconventional reservoirs with induced permeability.  As discussed in section 

1.1, and drawing on work from Hough et al (2011)52, and Clarkson (2013) 53, more 

consideration of the complex flow regimes and underlying matrix permeability are 

essential to understanding the behavior of unconventional reservoir behavior in the long 

term and yield more accurate calculations of EUR.   

4.2 Greater Application of Rate-Transient Analysis to HF-Stimulated Reservoirs 

Production data analysis (PDA) and more recently RTA have been widely used to 

characterize conventional reservoirs, based on workflows which use fundamental 

reservoir behavior to inform decline curve models.54  Use of techniques based on 

reservoir pressure data and geologic formation characteristics to modify decline curves, 

rather than relying solely on empirical matches to production data, have allowed for 

improved prediction of long-term decline and better calculation of EUR.   As discussed in 

sections 1.1 and 1.3, adapting RTA to the complex permeability and flow regimes present 

in HF-stimulated unconventional reservoirs has proven difficult.  A better understanding 

of fracture geometry, matrix permeability, flow characteristics, and reservoir pressure are 

essential to better characterizing unconventional reservoirs and predicting production 

decline rates.55   Industry has employed micro-seismic monitoring of HF operations to 

provide real time data on fracture propagation throughout the formation, which provides 

a better understanding of fracture geometry and reservoir flow regimes.56    As well 

                                                      
52 Hough, E., and Thomas McClurg. Impact of Geological Variation and Completion Type in the US 
Bakken Oil Shale Play Using Decline Curve Analysis and Transient Flow Character. 23-26 
53 Clarkson, Christopher R Production data analysis of unconventional gas wells: Review of theory and 
best practices. 116 
54 Fetkovich, M. J., E. J. Fetkovich, and M. D. Fetkovich. Useful concepts for decline curve forecasting, 
reserve estimation, and analysis. SPE Reservoir Engineering 11, no. 01 (1996): 13-22. 
55 Clarkson, Christopher R Production data analysis of unconventional gas wells: Review of theory and 
best practices. 102 
56 Clarkson, Christopher R. Integration of rate-transient and microseismic analysis for unconventional gas 
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density has increased in many plays where HF stimulations are employed, gathering 

micro-seismic data has become more feasible and cost-effective.  Improved coring 

techniques have also brought down costs to obtain accurate geologic cores, increasing 

understanding of underlying matrix porosity and permeability.  Both of these factors 

allow for more accurate flow regime modeling, customized to the unique geologic and 

completion factors of each play.  Use of RTA has demonstrated more accurate prediction 

of long-term reservoir behavior and production rates.57  Increasing the accessibility of 

micro-seismic and geologic core data, coupled with better techniques for applying RTA 

to unconventional reservoirs has the potential to improve reserves estimation and reduce 

overall uncertainty greatly.   

However, despite improvements in technology and RTA techniques for unconventional 

reservoirs, structural hurdles to widespread adoption of RTA remain.  Decline curve 

analysis based solely on statistical well performance across the play is much simpler and 

more cost-effective than RTA, despite recent improvements in technology for obtaining 

the data necessary to performs the analysis more cost-effective.  Domestic tight oil and 

gas production has primarily been driven by smaller firms which lack access to 

substantial research capital for analysis.  Additionally, the rapid pace of drilling in many 

tight oil and gas plays does not provide sufficient time for more thorough reservoir 

analysis.  A rapid drilling pace has led to several negative effects, including fracture 

interference, where the fracture network from one well combines with the fracture 

network from an adjacent well, leading to substantial decreases in well pressure and 

                                                      
reservoirs: where reservoir engineering meets geophysics. CSEG Rec 36 (2011): 44-61. 
57 Clarkson, Christopher R Production data analysis of unconventional gas wells: Review of theory and 
best practices. 116 
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lower EURs.58  The pace of drilling to keep production rates sustained has not left 

sufficient time for many firms to analyze the producing formation or characterize 

stimulated reservoirs adequately.   

4.3 Implications for Future Energy Policy 

While geologically, the technically recoverable reserves to sustain current consumption 

rates for a century are present, low recovery and high decline rates make this promise 

uncertain.59   Similar statistics related to domestic oil supply are also typically uncertain, 

as reserves estimation and high decline in HF wells make supplying the entirety of the 

reserves infeasible.  This comparative analysis of EURs demonstrated the uncertainty of 

reserves estimation from HF-stimulated wells, making the task of estimating the length of 

time domestic reserves will be able to supply consumption difficult, and in need of 

further evaluation before major policy decisions are made. 

Reserves added through HF stimulation are and will continue to be a critical component 

of the US energy portfolio, and consequently US energy security.  Future policy 

decisions must recognize, due to uncertainty in reserves estimation and high decline rates 

in HF wells, that domestic oil and gas is unlikely to sustain the energy demands of the US 

in the long term without the development of a diverse array of other energy sources.  

Currently, barriers to diversifying the energy sources of the US are numerous, derived 

from both social and economic considerations. Established relationships between 

traditional energy industries, government, and society mean that a shift in policy can 

often be difficult. 

                                                      
58 Jacobs, Trent. Frac Hits Reveal Well Spacing May be Too Tight, Completion Volumes Too 
Large. Journal of Petroleum Technology 69, no. 11 (2017): 35-38. 
59 EIA, US. Annual Energy Outlook 2018.  
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This makes current policy unfavorable to the development of emerging energy 

technologies, even if those technologies are superior to traditional energy sources. This 

has been referred to as “carbon lock-in,” where conventional energy sources remain 

dominant due to a number of feedback loops between government, industry, and 

society.60  The energy return on energy investment (ERoEI), affordability, and structural 

advantages of fossil fuels make them attractive for elected officials, who would lose their 

offices if energy costs increased. 

Elected officials also face pressure from the emerging concept of “energy independence.”  

This notion is popular since past reliance on foreign oil has brought economic hardship to 

the US, and because the dramatic increase in oil and gas production due to HF stimulated 

economic growth in many communities.61  Elected officials opposed to furthering the 

development of domestic petroleum resources, or skeptical of the sustainability of the HF 

boom, would be considered unpopular with a significant portion of the American 

electorate.  This pressure keeps existing energy policies in place, leaving industries 

researching emerging technologies reluctant to pursue the development of alternative 

energy sources until favorable policy is in place.  This “policy uncertainty” is a major 

barrier to energy diversification in the United States.62  Due to oil and gas being so 

closely tied to US energy policy, security, and economic development, the structural and 

policy mechanisms governing the current energy paradigm make diversification of 

energy sources and policy changes difficult.  Uncertainty associated with the HF boom 

                                                      
60 Brown, Marilyn A., and Benjamin K. Sovacool. Climate change and global energy security: technology 
and policy options. MIT Press, 2011. 
61 Desilver, Drew. Oil and gas boom feeds greatest real wage growth in U.S., but will it last? Pew Research 
Center, 2016 
62 Brown, Marilyn A., and Benjamin K. Sovacool. Climate change and global energy security: technology 
and policy options. 
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for both oil and natural gas resources in the US will become increasingly important in the 

coming decades. For presidential administrations and legislators on committees dealing 

with energy policy, an assessment of oil and gas resources in the United States based on 

the latest reservoir characterization techniques and best available data, conducted in 

collaboration with the oil industry, would be an important step toward reducing 

uncertainty in recoverable reserves.  Better information on individual well performance, 

which could be reported confidentially to agencies like the EIA, would also lead to more 

accurate predictions of reserves and future production.  For example, oil and gas leases 

on Federal lands could be accompanied with a reporting requirement for well 

performance describing specific reservoir characteristics and flow behavior. Additionally, 

policies that encourage the development of alternative energy technologies and increase 

energy efficiency serve as a hedge on the estimations of future oil and gas production.  

Use of policy mechanisms like production tax credits for alternative energy sources and 

energy efficiency standards for homes, appliances, and vehicles would diversify the US 

energy portfolio without posing a direct challenge to the fossil fuel industry and their 

associated constituencies.   

5.0 Conclusion 
The comparison of production data for the Permian, Eagle Ford, Bakken, and Niobrara 

tight oil plays and the Haynesville and Marcellus tight gas plays yielded varying results, 

ultimately indicating uncertainty in the estimation of reserves using decline curve 

analysis.   This uncertainty confirms the necessity of the wider adoption by industry of 

more advanced reservoir analysis techniques like RTA for unconventional reservoirs, 

using better geologic data and new technologies like micro-seismic monitoring to better 

understand fracture networks and geologies.  Further refining and reducing the 
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uncertainty in reserves estimating using decline curves will require additional work and 

data.  This analysis was limited by access to comprehensive production data to inform the 

models, along with a lack of reliable data on industry EUR estimates.  Further work with 

access to more reliable and comprehensive data would greatly enhance the quality and 

significance of the results.   
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7.0 Appendix 

7.1 Detailed Model Results  

Displayed below in Tables 7.1.1-7.1.6 are the modeled EUR results for the reference and 

best case scenarios, broken down into each play.  The coefficient of determination ( 𝐸𝐸2) 

is also displayed to demonstrate the fitness of each decline curve model to the actual 

production data, and the sample size, or number of wells included in the mean daily 

production data to which the decline curve models were fit, is also included.  While most 

sample sizes exceeded 1,000 wells, some samples, primarily for the Haynesville shale, 

were smaller than 500 wells, making the samples less representative of average well 

production for the play.   

Year Reference Case Model EUR (bbls) Best Case Model EUR (bbls) Fitness 
(R2) 

Sample Size 
(No. Wells) 

2011 111,153 159,129 0.996 600 
2012 120,649 172,463 0.999 1,187 
2013 139,540 199,044 0.997 1,808 
2014 175,273 237,734 0.997 2,681 
2015 273,639 341,982 0.996 2,580 

Table 7.1.1: Model Results for the Permian Basin play with accompanying fitness of results 

Year Reference Case Model EUR (bbls) Best Case Model EUR (bbls) Fitness 
(R2) 

Sample Size 
(No. Wells) 

2011 188,059 204,858 0.993 1,629 
2012 192,242 211,589 0.992 2,867 
2013 194,611 212,952 0.994 3,657 
2014 197,796 207,517 1.000 4,004 
2015 197,524 207,023 0.998 2,709 

Table 7.1.2: Model Results for the Eagle Ford shale play with accompanying fitness of results 

Year Reference Case Model EUR (bbls) Best Case Model EUR (bbls) Fitness 
(R2) 

Sample Size 
(No. Wells) 

2011 217,476 438,856 0.990 1,235 
2012 213,834 360,090 0.997 1,798 
2013 221,850 347,543 0.994 1,985 
2014 256,806 367,952 0.999 2,160 
2015 268,534 317,933 0.995 1,493 

Table 7.1.3: Model Results for the Bakken shale play with accompanying fitness of results 
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Year Reference Case Model EUR (bbls) Best Case Model EUR (bbls) Fitness 
(R2) 

Sample Size 
(No. Wells) 

2011 76,187 94,323 0.996 338 
2012 103,552 139,961 0.995 706 
2013 125,820 156,073 0.994 1,105 
2014 129,576 157,072 0.994 1,640 
2015 127,025 143,070 0.994 1,389 

Table 7.1.4: Model Results for the Niobrara shale play with accompanying fitness of results 

Year Reference Case Model EUR (Mcf) Best Case Model EUR (Mcf) Fitness 
(R2) 

Sample Size 
(No. Wells) 

2011 3,844,896 5,603,382 0.997 1,006 
2012 3,995,522 6,100,552 0.994 1,334 
2013 4,761,303 8,748,108 0.991 1,349 
2014 5,687,129 8,268,238 0.990 1,188 
2015 5,524,345 9,284,957 0.996 998 

Table 7.1.5: Model Results for the Marcellus shale play with accompanying fitness of results 

Year Reference Case Model EUR (Mcf) Best Case Model EUR (Mcf) Fitness 
(R2) 

Sample Size 
(No. Wells) 

2011 4,042,289 4,180,150 0.992 842 
2012 4,001,091 4,017,615 0.995 299 
2013 3,946,662 3,946,662 0.998 170 
2014 5,215,425 5,215,425 0.996 160 
2015 5,240,774 5,240,774 0.995 141 

Table 7.1.6: Model Results for the Haynesville shale play with accompanying fitness of results 

7.2 Comparison of Model Results with EIA and Industry Data 

Model results are compared with EIA data in Tables 7.2.1-7.2.6 and industry data in 

Tables 7.2.7-7.2.12 below, organized by play.   

Year EIA EUR 
(bbls) 

Reference Case 
Model EUR (bbls) 

Best Case Model 
EUR (bbls) 

EIA vs. 
Model Ref 

EIA vs. 
Model Best 

2011 228,000 111,153 159,129 116,847 68,871 
2012 108,000 120,649 172,463 -12,649 -64,463 
2013 131,000 139,540 199,044 -8,540 -68,044 
2014 167,000 175,273 237,734 -8,273 -70,734 
2015 151,000 273,639 341,982 -122,639 -190,982 

   Average -7,051 -65,070 
Table 7.2.1: Comparison of modeled results and EIA data for the Permian basin play  

Year EIA EUR 
(bbls) 

Reference Case Model 
EUR (bbls) 

Best Case Model 
EUR (bbls) 

EIA vs. 
Model Ref 

EIA vs. 
Model Best 

2011 227,000 188,059 204,858 38,941 22,142 
2012 162,000 192,242 211,589 -30,242 -49,589 
2013 186,500 194,611 212,952 -8,111 -26,452 
2014 186,500 197,796 207,517 -11,296 -21,017 
2015 198,500 197,524 207,023 976 -8,523 

   Average -1,946 -16,688 
Table 7.2.2: Comparison of modeled results and EIA data for the Eagle Ford shale play  
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Year EIA EUR 
(bbls) 

Reference Case Model 
EUR (bbls) 

Best Case Model 
EUR (bbls) 

EIA vs. 
Model Ref 

EIA vs. 
Model Best 

2011 225,000 217,476 438,856 7,524 -213,856 
2012 207,000 213,834 360,090 -6,834 -153,090 
2013 208,000 221,850 347,543 -13,850 -139,543 
2014 226,500 256,806 367,952 -30,306 -141,452 
2015 234,500 268,534 317,933 -34,034 -83,433 

   Average -15,500 -146,275 
Table 7.2.3: Comparison of modeled results and EIA data for the Bakken shale play  

Year EIA EUR 
(bbls) 

Reference Case Model 
EUR (bbls) 

Best Case Model 
EUR (bbls) 

EIA vs. 
Model Ref 

EIA vs. 
Model Best 

2011 120,000 76,187 94,323 43,813 25,677 
2012 120,000 103,552 139,961 16,448 -19,961 
2013 130,000 125,820 156,073 4,180 -26,073 
2014 120,000 129,576 157,072 -9,576 -37,072 
2015 120,000 127,025 143,070 -7,025 -23,070 

   Average 9,568 -16,100 
Table 7.2.4: Comparison of modeled results and EIA data for the Niobrara shale play  

Year EIA EUR 
(Mcf) 

Reference Case 
Model EUR (Mcf) 

Best Case Model 
EUR (Mcf) 

EIA vs. 
Model Ref 

EIA vs. 
Model Best 

2011 4,160,000 4,042,289 4,180,150 117,711 -20,150 
2012 3,709,000 4,001,091 4,017,615 -292,091 -308,615 
2013 4,279,000 3,946,662 3,946,662 332,338 332,338 
2014 4,266,000 5,215,425 5,215,425 -949,425 -949,425 
2015 4,269,000 5,240,774 5,240,774 -971,774 -971,774 

   Average -352,648 -383,525 
Table 7.2.5: Comparison of modeled results and EIA data for the Haynesville shale play  

Year EIA EUR 
(Mcf) 

Reference Case Model 
EUR (Mcf) 

Best Case Model 
EUR (Mcf) 

EIA vs. 
Model Ref 

EIA vs. 
Model Best 

2011 2,065,000 3,844,896 5,603,382 -1,779,896 -3,538,382 
2012 1,589,000 3,995,522 6,100,552 -2,406,522 -4,511,552 
2013 1,897,000 4,761,303 8,748,108 -2,864,303 -6,851,108 
2014 1,934,000 5,687,129 8,268,238 -3,753,129 -6,334,238 
2015 1,963,000 5,524,345 9,284,957 -3,561,345 -7,321,957 

   Average -2,873,039 -5,711,447 
Table 7.2.6: Comparison of modeled results and EIA data for the Marcellus shale play   

Year Industry 
EUR (bbls) 

Reference Case 
Model EUR (bbls) 

Best Case Model 
EUR (bbls) 

Industry vs. 
Model Ref 

Industry vs. 
Model Best 

2011 250,000 111,153 159,129 138,847 90,871 
2012 308,000 120,649 172,463 187,351 135,537 
2013 315,000 139,540 199,044 175,460 115,956 
2014 330,000 175,273 237,734 154,727 92,266 
2015 340,000 273,639 341,982 66,361 -1,982 

   Average 144,549 86,530 
Table 7.2.7: Comparison of modeled results and industry data for the Permian basin play  
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Year Industry 
EUR (bbls) 

Reference Case 
Model EUR (bbls) 

Best Case Model 
EUR (bbls) 

Industry vs. 
Model Ref 

Industry vs. 
Model Best 

2011 500,000 188,059 204,858 311,941 295,142 
2012 500,000 192,242 211,589 307,758 288,411 
2013 400,000 194,611 212,952 205,389 187,048 
2014 450,000 197,796 207,517 252,204 242,483 
2015 600,000 197,524 207,023 402,476 392,977 

   Average 295,954 281,212 
Table 7.2.8: Comparison of modeled results and industry data for the Eagle Ford shale play  

Year Industry 
EUR (bbls) 

Reference Case 
Model EUR (bbls) 

Best Case Model 
EUR (bbls) 

Industry vs. 
Model Ref 

Industry vs. 
Model Best 

2011 200,000 217,476 438,856 -17,476 -238,856 
2012 250,000 213,834 360,090 36,166 -110,090 
2013 400,000 221,850 347,543 178,150 52,457 
2014 400,000 256,806 367,952 143,194 32,048 
2015 450,000 268,534 317,933 181,466 132,067 

   Average 104,300 -26,475 
Table 7.2.9: Comparison of modeled results and industry data for the Bakken shale play  

Year Industry 
EUR (bbls) 

Reference Case 
Model EUR (bbls) 

Best Case Model 
EUR (bbls) 

Industry vs. 
Model Ref 

Industry vs. 
Model Best 

2011 300,000 76,187 94,323 223,813 205,677 
2012 310,000 103,552 139,961 206,448 170,039 
2013 350,000 125,820 156,073 224,180 193,927 
2014 350,000 129,576 157,072 220,424 192,928 
2015 350,000 127,025 143,070 222,975 206,930 

   Average 219,568 193,900 
Table 7.2.10: Comparison of modeled results and industry data for the Niobrara shale play  

Year Industry 
EUR (Mcf) 

Reference Case 
Model EUR (Mcf) 

Best Case Model 
EUR (Mcf) 

Industry vs. 
Model Ref 

Industry vs. 
Model Best 

2011 4,500,000 4,042,289 4,180,150 457,711 319,850 
2012 5,000,000 4,001,091 4,017,615 998,909 982,385 
2013 5,500,000 3,946,662 3,946,662 1,553,338 1,553,338 
2014 6,000,000 5,215,425 5,215,425 784,575 784,575 
2015 6,500,000 5,240,774 5,240,774 1,259,226 1,259,226 

   Average 1,010,752 979,875 
Table 7.2.11: Comparison of modeled results and industry data for the Haynesville shale play  

Year Industry 
EUR (Mcf) 

Reference Case 
Model EUR (Mcf) 

Best Case Model 
EUR (Mcf) 

Industry vs. 
Model Ref 

Industry vs. 
Model Best 

2011 7,000,000 3,844,896 5,603,382 3,155,104 1,396,618 
2012 7,700,000 3,995,522 6,100,552 3,704,478 1,599,448 
2013 8,400,000 4,761,303 8,748,108 3,638,697 -348,108 
2014 9,100,000 5,687,129 8,268,238 3,412,871 831,762 
2015 9,800,000 5,524,345 9,284,957 4,275,655 515,043 

   Average 3,637,361 798,953 
Table 7.2.12: Comparison of modeled results and industry data for the Marcellus shale play  
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