5.7 Supporting Information

References

(1) Bilinski, H. and Morgan, J. J. Complex formation and oxygenation of manganese (2) in pyrophosphate solutions. Preprints of Papers Presented at National Meeting, Division Water, Air and Waste Chemistry, American Chemical Society 1969, April14-18, 32-38.
(2) Bozor, I. and Simandi, L. I. Oxidation of tiron by (pyrophosphato) manganese(III). Kinetics and mechanism. J. Chem. Soc., Dalton Trans. 2002, 3226-3233.
(3) Farmer, R. M. and Popov, A. I. Electron-spin-resonance study of manganese(II) complexes in aqueous-solutions. Inorg. Chim. Acta 1982, 59, 87-91.
(4) Wang, Y. and Stone, A. T. The citric acid-Mn ${ }^{\mathrm{III}, \mathrm{IV}} \mathrm{O}_{2}$ (birnessite) reaction. Electron transfer, complex formation, and autocatalytic feedback. Submitted to Geochim. Cosmochim. Acta 2005.
(5) Martell, A. E., Smith, R. M., and Motekaitis, R. J. NIST Critically Selected Stability Constants of Metal Complexes Database. 2004, US Department of Commerce, National Institute of Standards and Technology: Gaithersburg, MD.

Table S5.1. logK Values Used to Perform Equilibrium Calculations.

Reactions $\quad \log ^{\mathrm{c}} \mathbf{K}^{1} \quad$| Ionic Str. |
| :--- |
| (\mathbf{M}) |$\quad \mathbf{T}\left({ }^{\circ} \mathbf{C}\right)$

Reactions Involving PP

$\mathrm{H}^{+}+\mathrm{L}^{4-}=\mathrm{HL}^{3-}$	8.91	0.01	25
$2 \mathrm{H}^{+}+\mathrm{L}^{4-}=\mathrm{H}_{2} \mathrm{~L}^{2-}$	15.34	0.01	25
$3 \mathrm{H}^{+}+\mathrm{L}^{4-}=\mathrm{H}_{3} \mathrm{~L}^{-}$	17.44	0.01	25
$4 \mathrm{H}^{+}+\mathrm{L}^{4-}=\mathrm{H}_{4} \mathrm{~L}^{0}$	18.25	0.01	25
$\mathrm{Mn}^{2+}+\mathrm{L}^{4-}=\mathrm{MnL}^{2-}$	$6.12(1)$	0.01	25
$\mathrm{Mn}^{3+}+\mathrm{H}^{+}+\mathrm{L}^{3-}=\mathrm{MnHL}^{+}$	18.99	3.0	25
$\mathrm{Mn}^{3+}+2 \mathrm{H}^{+}+\mathrm{L}^{3-}=\mathrm{MnH}_{2} \mathrm{~L}^{2+}$	19.78	3.0	25
$\left[\mathrm{Mn}^{\text {III }}(\mathrm{HL})\left(\mathrm{H}_{2} \mathrm{~L}\right)_{2}\right]^{4-}+\mathrm{H}^{+}=\left[\mathrm{Mn}^{\mathrm{III}}\left(\mathrm{H}_{2} \mathrm{~L}\right)_{3}\right]^{3-}$	$3.41(2)$	0.5	25

Reactions Involving MDP

$\mathrm{H}^{+}+\mathrm{L}^{4-}=\mathrm{HL}^{3-}$	10.96	0	25
$2 \mathrm{H}^{+}+\mathrm{L}^{4-}=\mathrm{H}_{2} \mathrm{~L}^{2-}$	18.36	0	25
$3 \mathrm{H}^{+}+\mathrm{L}^{4-}=\mathrm{H}_{3} \mathrm{~L}^{-}$	21.32	0	25
$4 \mathrm{H}^{+}+\mathrm{L}^{4-}=\mathrm{H}_{4} \mathrm{~L}^{0}$	23.14	0	25

$\underline{\text { Reactions Involving PAA }}$

$\mathrm{H}^{+}+\mathrm{L}^{3-}=\mathrm{HL}^{2-}$	8.33	0.01	25
$2 \mathrm{H}^{+}+\mathrm{L}^{3-}=\mathrm{H}_{2} \mathrm{~L}^{-}$	13.26	0.01	25
$3 \mathrm{H}^{+}+\mathrm{L}^{3-}=\mathrm{H}_{3} \mathrm{~L}^{0}$	14.47	0.01	25
$\mathrm{Mn}^{2+}+\mathrm{L}^{3-}=\mathrm{MnL}^{-}$	$6.80(3)$	0.01	25
$\mathrm{Mn}^{2+}+\mathrm{H}^{+}+\mathrm{L}^{3-}=\mathrm{MnHL}^{0}$	$12.17(3)$	0.01	25

Metal Ion Hydrolysis Reactions

$\mathrm{Mn}^{2+}+\mathrm{H}_{2} \mathrm{O}=\mathrm{Mn}(\mathrm{OH})^{+}+\mathrm{H}^{+}$	-10.69	0.01	25
$\mathrm{Mn}^{2+}+3 \mathrm{H}_{2} \mathrm{O}=\mathrm{Mn}(\mathrm{OH})_{3}^{-}+3 \mathrm{H}^{+}$	-34.80	0.01	25

Metal (Hydr)oxide Solubility-Controlling Phases

$\mathrm{Mn}^{2+}+2 \mathrm{H}_{2} \mathrm{O}=\mathrm{Mn}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{H}^{+}$	-15.09	0.01	25
$\mathrm{Mn}^{3+}+2 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{MnOOH}\left(3 \mathrm{H}^{+}\right.$		$12(4)$

$\mathrm{Mn}^{3+}+2 \mathrm{H}_{2} \mathrm{O}=\mathrm{MnOOH}(\mathrm{s}$, manganite $)+3 \mathrm{H}^{+} \quad-1.2(4) \quad 0.0 \quad 25$

[^0]

Figure S5.1. $\mathbf{M n O}_{2}$ aging effect on time course plots for reaction of $200 \mu \mathrm{M} \mathrm{MnO}_{2}$ with 5.0 mM PP , MDP and PAA at pH 7.0. For reactions with MDP and PAA, a pH stat was employed. For reaction with PP, self-buffering was sufficient to maintain constant pH .

Figure S5.2. Time course plot for reaction of $\mathbf{M n O O H}$ with 5.0 mM PP at pH 6.0. Self-buffering was sufficient to maintain constant pH .

[^0]: ${ }^{1}$ Unless otherwise noted, $\log ^{\mathrm{c}} \mathrm{K}$ values from electronic database CRITICAL (5), and referred to $25^{\circ} \mathrm{C}$, values not originally at ionic strength $=0.01 \mathrm{M}$ corrected using the Davies Equation.

