5.7 Supporting Information

References

- Bilinski, H. and Morgan, J. J. Complex formation and oxygenation of manganese
 (2) in pyrophosphate solutions. *Preprints of Papers Presented at National Meeting, Division Water, Air and Waste Chemistry, American Chemical Society* 1969, April14-18, 32-38.
- (2) Bozor, I. and Simandi, L. I. Oxidation of tiron by (pyrophosphato) manganese(III). Kinetics and mechanism. *J. Chem. Soc., Dalton Trans.* **2002**, 3226-3233.
- (3) Farmer, R. M. and Popov, A. I. Electron-spin-resonance study of manganese(II) complexes in aqueous-solutions. *Inorg. Chim. Acta* **1982**, 59, 87-91.
- (4) Wang, Y. and Stone, A. T. The citric acid-Mn^{III,IV}O₂(birnessite) reaction. Electron transfer, complex formation, and autocatalytic feedback. *Submitted to Geochim. Cosmochim. Acta* **2005**.
- (5) Martell, A. E., Smith, R. M., and Motekaitis, R. J. NIST Critically Selected Stability Constants of Metal Complexes Database. 2004, US Department of Commerce, National Institute of Standards and Technology: Gaithersburg, MD.

Reactions	log ^c K ¹	Ionic Str. (M)	T (°C)
<u>Reactions Involving PP</u>	0.01	0.01	25
H' + L' = HL'	8.91	0.01	25
$2H^{+} + L^{+} = H_2 L^2$	15.34	0.01	25
$3H^+ + L^+ = H_3L$	17.44	0.01	25
$4H' + L' = H_4L'$	18.25	0.01	25
$Mn^{2} + L^{+} = MnL^{2}$	6.12 <i>(1)</i>	0.01	25
$Mn^{3+}_{2+} + H^{+}_{+} + L^{3+}_{2-} = MnHL^{+}_{2+}$	18.99	3.0	25
$Mn^{3+} + 2H^{+} + L^{3-} = MnH_2L^{2+}$	19.78	3.0	25
$[Mn^{III}(HL)(H_2L)_2]^{4-} + H^+ = [Mn^{III}(H_2L)_3]^{3-}$	3.41 (2)	0.5	25
Reactions Involving MDP			
$H^{+} + I^{4-} - HI^{3-}$	10.96	0	25
$2H^{+} + I^{4-} - H_{2}I^{2-}$	18.36	0	25
$3H^{+} + I^{4-} - H_2I^{-}$	21.32	0	25
$4H^{+} + L^{4-} = H_{4}L^{0}$	23.14	0	25
	23.11	0	23
Reactions Involving PAA			
$H^+ + L^{3-} = HL^{2-}$	8.33	0.01	25
$2H^+ + L^{3-} = H_2L^-$	13.26	0.01	25
$3H^+ + L^{3-} = H_3L^0$	14.47	0.01	25
$Mn^{2+} + L^{3-} = MnL^{-}$	6.80 (3)	0.01	25
$Mn^{2+} + H^+ + L^{3-} = MnHL^0$	12.17 (3)	0.01	25
Metal Ion Hydrolysis Reactions	10.00	0.01	25
$Mn^{2+} + H_2O = Mn(OH)^+ + H^+$	-10.69	0.01	25
$Mn^{2+} + 3H_2O = Mn(OH)_3^{-} + 3H^{+}$	-34.80	0.01	25
Metal (Hvdr)oxide Solubility-Controlling Phases			
$Mn^{2+} + 2H_2O = Mn(OH)_2(s) + 2H^+$	-15.09	0.01	25
$Mn^{3+} + 2H_2O = MnOOH(s, manganite) + 3H^+$	-1.2(4)	0.0	25
2		- · -	-

Table S5.1. logK Values Used to Perform Equilibrium Calculations.

¹ Unless otherwise noted, $\log^{c} K$ values from electronic database CRITICAL (5), and referred to 25°C, values not originally at ionic strength = 0.01 M corrected using the Davies Equation.

Figure S5.1. MnO₂ aging effect on time course plots for reaction of 200 **m**M MnO₂ with 5.0 mM PP, MDP and PAA at pH 7.0. For reactions with MDP and PAA, a pH stat was employed. For reaction with PP, self-buffering was sufficient to maintain constant pH.

Figure S5.2. Time course plot for reaction of MnOOH with 5.0 mM PP at pH 6.0. Self-buffering was sufficient to maintain constant pH.