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Abstract

Given a convex polygon P, associate with each point p € P the
minimum area of the polygon to the left of any chord through p. The
maximum over all points in P is known as “Winternitz’s Measure of
Symmetry” and the point p* that achieves this maximum we call the
center of area. We will show that p* is unique and derive geometric
properties of minimume-area chords. These properties lead to two al-
gorithms for computing the center of area of a convex polygon with
n vertices. The first is a combinatorial algorithm that runs in time
O(n® log?n). The second is a numerical algorithm that computes the
coordinates to K bits of precision in time O(nK). We conclude with a
discussion of our implementation of the second algorithm, extensions
to higher dimensions and other generalizations.

1 Introduction

Given a set of points, Q, in the plane, one may wish to find a point (not
necessarily in Q), such that regardless of how you pass a line through this
point, the ratio of the number of points on either side is not very large or
very small. This “balance” point is called a centerpoint, and algorithms for
computing it and the related k-hulls are known [Ede87], [CSY87].

Moving from the discrete to the continuous domain, we ask the following:
Given a convex polygon P, does there exist a point such that regardless of
how the polygon is cut through that point the ratio of the areas of the result-
ing pieces is “balanced”? The center of mass can be considered “balanced”
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since any chord passing through it cuts off > 4/9 of the area (Winternitz’s
Theorem [YB61]). However, the center of mass is not always the most “bal-
anced” point: the point that maximizes the minimum area cut off by any
chord through it we call the center of area.

We first introduce the notation that will be used throughout this paper,
and then discuss certain geometric properties of the center of area and re-
lated geometric structures. The most important property to be established
is that the center of area of a convex polygon is a unique point. This is
followed by two algorithms for computing the coordinates of the center of
area — one combinatorial and the other numerical. The combinatorial algo-
rithm has high complexity, O(n® log? n), but the numerical algorithm only
requires O(n) work per bit of accuracy in the location of the center of area.
We conclude with implementation details and open problems.

2 Preliminaries

We will be considering only objects in the plane. Define L(p,f) to be a
directed line through the point p, and forming an angle @ with the positive
z axis, and let LT (p,#) be the closed halfplane bounded by, and to the left
of, L(p,8) (Figure la).

For a convex polygon P, define C(p,8) to be the chord formed by the
intersection of P with L(p,8). Define the function a(p,8) = |L*(p,8)NP|,
the area of the region to the left of the chord C(p,#) (Figure 1b).

(a) (b)

Figure 1: Notation



Define
a(p) = min a(p, ).

a(p) is thus the minimum area cut off by any chord through p. Let 6* be one
of the angles that minimizes a(p, #). In general it is possible for there to be
an arbitrary number of angles that minimize a{p) (for example, any chord
through the center of a regular polygon will be minimal). Unless stated
otherwise, we will use 8* to represent any one of the possible choices. We
will refer to L(p,8*) and C(p, 6*) as a min-line and a min-chord, respectively.
We can now formally define the center of area as the set of all points p* that
satisfy

o(p*) = max a(p).

Also let §* = a(p*). The area ratio of the pieces of P determined by C(p*,6*)
is known as Winternitz’s Measure of Symmetry [Grii63]. ’
The center of area and related concepts have been studied by geometers
for some time, and the mathematical properties we derive below have ei-
ther appeared in the literature, or can be derived from equivalent results.!
Nevertheless we feel it is useful to have a unified presentation, both for the
algorithms to follow and for generalizations to non-convex polygons.

2.1 Properties

a(p) is a function defined over the convex polygon P. The contours (level
surfaces) of this function, are defined as:

I's={p:afp) =6}
The following properties of I's are easily verified:
1. s is a simple, connected curve.
2. If 6; < 62 then Ty, ‘is strictly confained in Ty, .
3. If p €T then each L(p, 8*) supports T's, T's € P — L*(p,8*).
4. T'5 is convex. [SS67]

Figure 2 shows the contours for a non-regular polygon, taken at 5% intervals.
The contours I's can be considered “§-hulls”, the continuous analog of k-
hulls [Ede87|. It can be shown algebraically that the contours are comprised
of pieces of hyperbolic curves determined by the edges of P [Hog62|, [Dia89).

!We thank Branko Griinbaum for enlightening us [Gri88].




Figure 2: The contours for a convex polygon P.

The contours are shown at 5 percent intervals, each repre-
senting a range of [§,8 + 1) percent due to integer truncation.
Thus the outer contour extends from [0, 1) percent and the in-
nermost contour extends over the range [45,46) percent. The O
percent contour is the boundary of P. The maximum possible
value for 6* is 50 percent, and must always be greater than 4/9
(44) percent by Winternitz’s Theorem. This figure was gener-
ated by dividing P into “pixels” and calculating a(p) for each
pixel p by spinning aline about p and searching for the minimum
area cut off.




If C(p,0) has endpoints a and b on the boundary of P, and if the length
of the line segment ap is the same as the length of bp, | ap | = | bp |, then we
say that C(p,6) is a balanced chord. The following lemma has been known
for convex sets as far back as 1889 [Bru89|, and has appeared more recently
in [CY86]. We present our own proof in order to facilitate extension to
non-convex polygons [DO].

Lemma 2.1 The chord C(p,0) is a min-chord only if it is balanced.

Proof Assume that C(p,6) is not balanced, and let a and b be the points
at which C(p,8) intersects the boundary of polygon P. We examine the
rotation of the line L(p, #) both clockwise and counterclockwise by a small
angle € with the restriction that the chord, C(p,8), associated with L(p, 8)
does not become balanced at any point during the rotation. (If it did become
balanced it would contradict our assumption.) In particular, consider the
chord C(p, § — €) that intersects the boundary of P at points a_ and b_ and
C(p, 8 + €) that intersects at ay and b,. (Figure 3).

We know that C(p,8) is not balanced, so without loss of generality let
|ap| < | bp|. It must also be the case then that [pa_| < |pb_ | and
| pay | < | pb- | for if they were not, then the chord would have passed
through a balanced state.

The area of Aapa_ is strictly less than the area of Abpb_ since they share
the common angle € and the former has two sides of length strictly less than
that of the latter. Similarly, the area of Aapay is strictly less than the area
of Abpby. This implies a(p, 8 — €) > a(p,6) and a(p,d) > a(p,b + ¢€), which
implies there is always a direction that L(p,d) can be rotated to decrease
a(p,8). Thus C(p,6) cannot be a min-chord. O

The converse of this is not necessarily true: not every balanced chord
determines a min-line.

Using Lemma 2.1 we can now prove the following uniqueness result,
which had been proved previously in [Siis50| by a different method.

Lemma 2.2 For a convez polygon the center of area i3 a unique point.

Proof From the properties of the contours we know that the center of area
must be a convex figure. If we assume that it is not a point, then it must
be either a line segment or region. We will discuss these in turn.

Assume that the center of area is a line segment, ab, and thus

a(lp)=46" Vpecad

We distinguish two cases:




C(p.,B+c)

Figure 3: Rotating L{p,0) for Lemma 2.1

Case 1. 3 p, p € ab, such that L(p,8") is not collinear with ab. Take a
point, p' € ab, such that p' is to the left of p. (When p is the left
endpoint case 2 holds). Since P is a connected region, it must be the

case that
o(p',8°) < a(p,0%).
But
a(p,8") = a(p) = ofp') = &".
Hence

o(p',0%) < o(p'),

which contradicts the definition of a(p') as a minimum.

Case 2. It must be the case that there exist two distinct points, p and
p', p,p' € ab such that both L(p,8*) and L(p',0*) are collinear with
ab. Then both L(p,0°) and L(p',0%) intersect the boundary of P at
the same points. By Lemma 2.1 it must be that both p and p' are
midpoints of the same chord, contradicting the assumption that p and
p' are distinct.

The situation where the center of area is a region is handled by case 1
since it is always possible to find a point p' to the left of L(p,6") through
which to construct L(p',8”).

The center of area is a connected region, and having thus disallowed the
possibilty of the center of area being a line or region, it must be the case
that it is a single point. O

This lemma remains true for non-convex polygons [DO] but it is false
for subsets of the plane that are not simply-connected (Figure 4).




Figure 4: Center of area for a disconnected region R.

The minimum area of R which is cut off by any point in the
center of area is 1/3, which is best possible.

3 A Combinatorial Algorithm

The first algorithm to be described is combinatorial in nature. Intuitively
it partitions the polygon into regions where a(p) is simple and then solves
a minimization problem over each piece. We call this partition the chord
diagram of P. This diagram contains much information in addition to the
center of area data, but finding the center of area exactly without construct-
ing the diagram would require sophisticated pruning. It should be noted that
the goal of this algorithm is to indicate that the solution could be found in
polynomial time, and as such the bounds used are brute force estimates.

3.1 Chord Diagram

Through every point in a convex polygon, P, there exists at least one bal-
anced chord [Grii72]. While any given point may be the midpoint of several
balanced chords, no two of the balanced chords through any given point may
intersect the same pair of edges. We know from Lemma 2.1 that one or more
of these balanced chords will be min-chords. If we label the edges of P as
€1...en, We can assign to each min-chord a label pair, (e;,¢;), corresponding
to the labels of the edges it intersects.? Then for each point, p, in the poly-
gon, we can associate with it the set of label pairs, {{ei,, ;) -, (€irs €5)}
representing edges intersected by min-chords through p. We then partition

2]f we define e; to include its left endpoint but not its right one, then every chord will
be assigned a unique label pair.




P into equivalence classes such that p; and p; are in the same class iff their
label sets are equivalent. This partitioning we call the chord diagram. Par-
titions with label sets of size 1 (one label pair) correspond to regions of P,
sets of size 2 represent boundaries between these regions, and sets of size
3 or more, vertices. In particular the center of area will be one of these
vertices.

We construct the chord diagram in two stages. First we identify the
regions in P where there might be a point p such that C (p,8*) intersects a
specific pair of edges. Second, we compute the pointwise minimum of the
functions over each of these regions to find a(p). We begin by examining the
set of balanced chord midpoints for a particular pair of edges. Let R;;be
the set of points such that for any p € R; ;, p is the midpoint of a balanced

" chord through edges ¢ and ej. Rij is the set of points through which a

min-chord might pass (by Lemma 2.1) and touch e; and e;.

Lemma 3.1 R; jis a parallelogram with sides parallel to e; and ¢;, and half
as long.

Proof Let a; and b; be the left and right endpoints of e;, respectively, and
likewise for a; and b; for edge €;. We wish to enumerate all possible chords
with endpoints on ¢ and e; and examine the locus of midpoints. We start
with the set of chords with one endpoint at a; and the other on e;. These
chords sweep through the triangle a;b;e; and the midpoints of these chords
sweep out a line parallel to the base of the triangle, e;, with length le/2].
(Figure 5a). We next move the endpoint at a; towards b; by a distance ¢,
and again sweep the second endpoint from a; to b;. The midpoints of these
chords follow another line segment parallel to e; and shifted towards &; by
¢/2 in a direction parallel to e;. Continuing in a like manner we generate
the series of line segments shown in Figure 5b. As we let € shrink to 0, the
locus of midpoints converges to a solid parallelogram. O

Each pair of edges gives rise to a parallelogram with sides parallel to those
edges, half their length and with vertices located at the midpoints of the
segments connecting the endpoints of the edges. The set of parallelograms
generated by all O(n?) pairs of edges of a polygon P is shown in Figure 6.
Note that this same diagram can be constructed by placing a half-size copy
of P at each vertex of P.

Over each parallelogram R; ; one can define the function o; j(p) to be the
minimum area cut off by a chord with endpoints on ¢; and e; with midpoint
p, p € R; ;. This function has the form:

coy® + 2zy + cay, (1)
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where the constant ¢y depends on the angle formed by e; and e; and c¢q4
depends upon the distance from e; to the intersection of e; and e;. (The
equation for the special case where e; and e; are parallel has a much simpler
form). The important point is that these functions are simple and depend
only on constants determined by the edges of P. This is the reason for
starting with the regions R; ;.

By Lemma 2.1 we know that C(p,#*) must be balanced, and hence each
parallelogram in which a point p is contained determines a candidate for
C(p,8"). For a point p, there are only a linear number of pairs of edges that
may be intersected by a line through p, yielding a linear upper bound to
the number of parallelograms, R; ; to which p can belong, and thus a linear
number of candidates for C(p,6*).

The value of a(p) is then determined as the minimum among these can-
didates:

a(p) =min a4 (p) ¥ Ri; 3p
As mentioned earlier, boundaries between two regions of the chord diagram
occur when a(p) for a point is realized by two or more ¢; ;(p)’s (the label set
has size greater than 1). Explicit algebraic computation of these boundaries,
by intersecting two surfaces with equations of the form Equation (1), show
that they are actually pieces of hyperbolic curves.?

It is known [Grii63] that at least 3 min-chords must pass through the
center of area, so given the chord diagram the center of area can be found
by examining points at which 3 or more boundaries meet.

Figure 7 represents a sample chord diagram, Figure 8 is an enlarged view
of the region surrounding the center of area, and Figure 9 is an overlay of
the chord diagram of Figure 8 on the contours at 2% intervals. These figures
were generated using the same “raster-line” approximation as the contours
in Figure 2.

3.2 The Algorithm

The algorithm proceeds as follows:

Algorithm 3.1

1. For each pair of edges, e and e; generate Ri;. This yields O(n?)
parallelograms.

3See [Dia89] for more details.
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Figure 9: Combined chord diagram and contours.
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2. Determine all the regions formed by the intersection of these parallel-
ograms. This generates O(n*) regions.

3. Over each region, determine the lower envelope of the o ;(p)’s. We
will show below that for the O(n) functions associated with each of the
O(n?) regions, this step has complezity O(n®log? n).

4. Check the value for each of the O(n®) vertices at constant time per
vertez to determine the center of area.

For Step 3 there are two issues to consider: the combinatorial complexity
of the lower envelope of the «;;(p)’s, and the complexity of determining
this envelope. Work on Davenport-Schinzel sequences provides bounds for
the former given that the functions satisfy certain requirements [EPSS87),
[SS87]. The two requirements particular to this case are that:

1. Any two of the functions intersect in either a closed curve or are un-
bounded.

2. Any three of the functions intersect at no more than two points.

For N functions satisfying these requirements, the complexity of the lower
envelope will be O(N?).

We first define the function of ;(p) as ¢ ;(p) but not restricted to the
parallelogram R; ;. It can then be shown that the intersection of any two of
the o} ;(p)’s results in one branch of a hyperbola [Dfa89], satisfying the first
requirement, and since any two (single branch) hyperbolas can intersect in
at most two points, the second requirement is also satisfied. This indicates
that for O(N) o} ;(p)’s the complexity of the lower envelope for the entire
plan is O(N?), and thus the complexity restricted to the region over which
@ ;(p) is defined can be no worse than O(N?). The complexity of finding
this envelope, however, is O(N?log? N) [Sha88].

We can now compute the time complexity for Step 3 of the algorithm. We
have O(n*) regions of the polygon, and over each region we have O(n) func-
tions (since, from Section 3.1, each point can belong to only a linear number
of R;;’s). Computing the lower envelope for each of these regions requires
O(n?log® n) time, giving a total complexity for step 3 of O(n®log? n).

We believe that the complexity of this algorithm could be significantly
reduced, but the effort involved would be of questionable value due to the
ease of implementation and speed of the following numerical algorithm.
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4 A Numerical Approach

Because finding the center of area can be viewed as finding the maximum
of the bivariate function a(p), it is natural to try procedures for finding
maxima of functions. We implemented a hill-climbing algorithm, but it was
highly unstable due to the discontinuities in the derivative of the surface:
each seam between a pair of functions a; j(p) adjacent on the lower envelope
is such a discontinuity, and Griinbaum’s result guarantees that there will
be at least three such seams meeting at the center of area (see Figure 9).
Therefore we developed a more robust approach specific to this problem.

To understand how this numerical algorithm works we will first consider
a simpler algorithm. This algorithm starts with a search space, S, picks a
point p € S, and determines C(p,8*). We know from contour property 3
that C(p,8*) supports a contour at p. Hence the center of area must be
to the right of C(p,8"), permitting the search space to be reduced by the
area to the left of C(p,8*). One necessary condition for linear convergence
is for a fixed percentage of the area of S to be removed at each iteration.
Although we have no control over which line through p will be the min-line,
by Winternitz’s Theorem if we pick p to be the center of mass, then any line
through p is guaranteed to cut off > 4/9 of the area of S. This leads to the
following algorithm:

Algorithm 4.1 Start with polygon P and search polygon Sp = P.
1. Set p; to the center of mass of Si.

2. Find C(p;,0*) using P. If more than one min-chord, choose one arbi-
trarily.

8. Set Si31 = S; — Lt (p,',g*).
4. If not at desired precision, goto 1.

Both steps 1 and 3 are straightforward and can be done in O(n) time. Step
9 can also be done in time O(n) as follows: By Lemma 2.1 we know that for
a given point p, C (p,8*) must be balanced. Hence there are only a linear
number of choices of pairs of edges from P that need to be checked. By
scanning the edges of P in order it is possible to find the balanced chord
and update the area to the left of C(p,6) in constant time per edge. Thus
the minimum can be found in O(n) time.
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Although after K iterations the area of S has been reduced by (4/9)% =
0O(1/2K), this does not necessarily mean that the coordinates of the center of
area are converging. In fact, there exist polygons such that S may converge
to a line segment and not a point. (Figure 10.)

B Ltp,,9
B L(p;,8)
B 1(p;,8)
B L(py. @)

Figure 10: Convergence to a line using Algorithm 4.1

We found two methods to remedy this problem. The first is a procedure
for determining to which side of an arbitrary chord of P the center of area
must lie. Unfortunately, this leads to a slower and less stable algorithm. The
second method follows the basic structure of Algorithm 4.1, but ensures that
the diameter as well as the area of S converges. This is achieved by splitting
S into two pieces, and selecting appropriate points within each piece. An
outline of the algorithm follows. :

Algorithm 4.2 Start with polygon P and search polygon Sy = P.

1. Set D = diam(S;), and split S; into R; and L; along the perpendicular
bisector to D.

Set r; and I; to be the centers of mass of R; and L; respectively.
Find C(l;,8*) and C(r;,8") using P.
Set S;y1 = 5; — L+(I,',0‘).

MR

If r; € Siy1, set Si41 = Sig1 — L*(ri,6*).
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6. If not at desired precision, goto 1.

Figure 11: Algorithm 4.2 after the first iteration.

Step 1 can be done in O(n) time [PS85] and Steps 2-5 are essentially the
same as in Algorithm 4.1. The benefit of this algorithm is that it can be
shown that the diameter of S; converges, in the limit, as ¢+ — oo.

Theorem 4.1 Using Algorithm 4.2, the diameter of S; converges linearly
to a point as i — ©O. i

16
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Figure 14: Algorithm 4.2 after several iterations.
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Proof We first show that S; must converge to a point. To do this, assume
the contrary. Then it must be the case that there exists some non-zero
length, lnin, that forms a lower bound on the lengths of the diameters of
S; for all 1. (In other words if we let d; = diam(S;) then | & |> lmin ¥ 1.)
The algorithm in steps 4 and 5, by removing a fixed percentage of the area
of S;, forces the area to decrease linearly at each iteration. With the area
decreasing and the diameter length fixed by lmin, it it must be the case
that S; converges to a line segment (To see this, let B; be the smallest box
surrounding S; with length {min and width €. Since each S; is convex, and
their area approaches 0, it must be the case that € approaches 0, leaving S;
as a line segment of length lnin-)

As S; converges to a segment of length lpmin, the centers of mass of each
side, r; and I;, converge to a separation of Imin/2. The min-lines, L(r;, 0%)
and L(l;,0*), determine the portion of S; to be removed, and hence are
restricted by the requirement that the length of d; stay above lmin. In par-
ticular, the angle of L(p,0") with respect to d; can be at most tan™!(2€/lmin)
(Figure 15).

T hy
N 78

-

mi

Figure 15: Maximum permissible angle for L(p, 6*)

As ¢ approaches 0, this tan~! approaches 0, and hence L(r;,0*) becomes
colinear with L(l;,6*). By Lemma 2.1, it must be the case that both r;
and [; are the midpoints of L(r;,8") and L(%,6") respectively, and since
these lines are colinear, we have that r; = I;. However, we have shown that
when the diameter does not converge, Ty and [; are separated by Imin/2,
a contradiction. Hence the diameter of S; converges to a point. That it
converges linearly follows from the linear convergence of the area. (If the
area goes to zero and the diameter converges, then it too must converge at
the same asymptotic rate). O

The implication of Theorem 4.1 is that Algorithm 4.2 can compute the
coordinates of the center of area to K bits of precision in O(nK) time,
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in other words, O(n) work per bit of precision. Note that the theorem
does not claim a linear diameter convergence rate for each iteration, but
only eventually. Our experience is, however, that “eventually” happens
immediately, as discussed below.

5 Empirical Results

Algorithm 4.2 was implemented in the C programming language on a VAX
8530. Tests were performed to examine the expected performance of the
algorithm for random convex polygons. The input polygons were created by
picking points uniformly from a square and taking their convex hull. Figure
16 shows a plot of the area of the search polygon S and the length of the
diameter on a logarithmic y axis versus iteration. The graph shows that,
as expected, both the area and the diameter of the search polygon decrease
a constant number of bits per iteration, with the area decreasing roughly
twice as fast as the diameter.

6 Concluding Remarks

We have presented two algorithms for computing the center of area the
point that characterizes “Winternitz’s Measure of Symmetry” for a convex
polygon P. The second algorithm (4.2) is easily implemented, fast and ro-
bust in practice. This is an interesting case where an “exact” combinatorial
algorithm would not only be more complicated than the simple numerical
algorithm, but would likely yield inferior numerical results if actually imple-
mented.

There are several generalizations [Grii63] that have not been completely
explored, particularly algorithmically. One is to extend the definition of the
center of area to non-convex polygons. It can be shown that the contour
properties still hold, that again the center of area is a unique point and
that Lemma 2.1 can be extended to provide a generalized balance condition
[DOJ.

We can also move to higher dimensions by replacing area with volume
and min-lines with min-hyperplanes, to get the center of volume. Addition-
ally we can replace area with surface area to get (in 2 dimensions) the center
of perimeter. We expect that the numerical techniques developed here will
prove useful in these generalizations.
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