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Abstract

The singular value matrix decomposition plays a ubiquitous role in statistics and

related fields. Myriad applications including clustering, classification, and dimension-

ality reduction involve studying and understanding the geometric structure of singular

values and singular vectors.

Chapter 2 of this dissertation presents an initial analysis of local (e.g., entrywise)

singular vector (resp., eigenvector) perturbations for signal-plus-noise matrix models

of the form M̂ := M + E. We obtain both deterministic and probabilistic upper

bounds on singular vector perturbations that complement and in certain settings

improve upon classical, well-established benchmark bounds in the literature. We

then apply our tools and methods of analysis to problems involving (spike) principal

subspace estimation for high-dimensional covariance matrices and network models

exhibiting community structure. Subsequently, Chapter 3 obtains precise local eigen-

vector estimation results under stronger assumptions involving signal strength, prob-

abilistic concentration, and homogeneity. We provide in silico simulation examples

to illustrate our theoretical bounds and distributional limit theory. Chapter 4 tran-
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ABSTRACT

sitions to the investigation of singular value (resp., eigenvalue) perturbations, still in

the signal-plus-noise matrix model framework. There, our results are leveraged for

the purpose of better understanding hypothesis testing and change-point detection

in statistical random graph analysis. Chapter 5 builds upon recent joint analysis of

singular (resp., eigen) values and vectors in order to investigate the asymptotic rela-

tionship between spectral embedding performance and underlying network structure

for stochastic block model graphs.

The content of this dissertation corresponds to several contemporary statistics

publications and preprints, namely the works Cape et al. (2017, 2018, 2019a,b).

Primary Reader: Carey E. Priebe

Secondary Reader: Minh Tang
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Chapter 1

Introduction

Consider the setting in which an experimental outcome y is modeled as a “noisy”

realization of an underlying ground-truth “signal” quantity µ, namely

y = µ+ ε, (1.1)

where ε represents a noise term (deterministic or stochastic). The signal-plus-noise

model displayed in Eq. (1.1), together with its generalizations, lies at the heart of

scientific modeling and statistical analysis. Indeed, one need not look far to find

examples and applications in reference texts and scholarly publications.

In this work we shall replace the scalar quantities (elements) µ and ε with matrices

M and E, respectively. Matrices can be viewed simply as rectangular arrays of

elements, but matrices can also be thought of structurally in terms the factorizations
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CHAPTER 1. INTRODUCTION

and decompositions that they admit. Importantly, even though entry (i, j) in M and

in M + E satisfy a simple relationship, the structural relationship between M and

M+E in terms of singular values and singular vectors may be quite complicated. More

specifically, it is well-known that in general, matrix spectral perturbations behave

highly non-linearly even in simple additive matrix models (Bhatia, 1997).

Given matrices M and E with the same dimensions, the ordered singular values

σi(·) ofM+E andM satisfy a well-known perturbation inequality due to Weyl (Weyl,

1912); namely, in terms of the matrix operator norm ‖ · ‖2, for each index i,

|σi(M + E)− σi(M)| ≤ ‖E‖2. (1.2)

When M+E and M are both symmetric, their corresponding principal subspaces Û

and U are “close to each other” as a function of the noise strength and the magnitude

of a so-called spectral gap (i.e., eigengap) δgap > 0, provided the latter exists. In

particular, it follows from the classical Davis–Kahan sin Θ theorem (Bhatia, 1997;

Davis and Kahan, 1970) that there exists an orthogonal matrix W and an absolute

constant C > 0 such that

‖Û−UW‖2 ≤ C

(
‖E‖2

δgap

)
. (1.3)

The classical results summarized in Eqs. (1.2)–(1.3) shall serve as baselines for the

purpose of evaluating and understanding the results presented in this dissertation.
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CHAPTER 1. INTRODUCTION

Here, we obtain stronger results as a function of the signal-to-noise level that im-

prove upon these classical results in settings exhibiting additional structure. Loosely

speaking, our results quantifying Û ≈ U will be shown to hold in a strong local sense

(e.g., entrywise). Contrast this with Eq. (1.3) which via ‖ · ‖2 can be interpreted as

a global (i.e., basis independent) result. For an extended discussion of classical per-

turbation theory and Eqs. (1.2)–(1.3), see Bhatia (1997); Horn and Johnson (2012);

Stewart and Sun (1990).

1.1 Overview

Chapter 2 provides a novel collection of technical and theoretical tools for studying

the geometry of singular subspaces using the two-to-infinity norm. Motivated by pre-

liminary deterministic Procrustes analysis, we consider a general matrix perturbation

setting in which we derive a new Procrustean matrix decomposition. Together with

flexible machinery developed for the two-to-infinity norm, this allows us to conduct

a refined analysis of the induced perturbation geometry with respect to the underly-

ing singular vectors even in the presence of singular value multiplicity. Our analysis

yields singular vector entrywise perturbation bounds for a range of popular matrix

noise models, each of which has a meaningful associated statistical inference task.

In addition, we demonstrate how the two-to-infinity norm is the preferred norm in

certain statistical settings. Specific applications discussed in Chapter 2 include co-
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CHAPTER 1. INTRODUCTION

variance estimation, singular subspace recovery, and multiple graph inference. This

chapter has given rise to the paper Cape et al. (2019b).

Chapter 3 characterizes the behavior of perturbed eigenvectors for a range of

signal-plus-noise matrix models encountered in both statistical and random matrix

theoretic settings. In this chapter, we prove both first-order approximation results

(i.e., sharp deviations) as well as second-order distributional limit theory (i.e., fluctu-

ations). The concise methodology considered in this chapter synthesizes tools rooted

in two core concepts, namely (i) deterministic decompositions of matrix perturbations

and (ii) probabilistic matrix concentration phenomena. We illustrate our theoretical

results via simulation examples involving stochastic block model random graphs and

spiked matrix models. This chapter has given rise to the paper Cape et al. (2019a).

Chapter 4 presents an adaptation of the Kato–Temple inequality for bounding per-

turbations of eigenvalues with applications to statistical inference for random graphs,

specifically hypothesis testing and change-point detection. We obtain high-probability

bounds for the individual distances between certain spike eigenvalues of a graph’s ad-

jacency matrix and the corresponding eigenvalues of the model’s edge probability

matrix, even when the latter eigenvalues have multiplicity. Our results extend more

broadly to the perturbation of singular values in the presence of quite general random

matrix noise. This chapter has given rise to the paper Cape et al. (2017).

Chapter 5 analyzes the asymptotic information-theoretic relative performance of

Laplacian spectral embedding and adjacency spectral embedding for block assign-
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CHAPTER 1. INTRODUCTION

ment recovery in stochastic block model graphs by way of Chernoff information. We

investigate the relationship between spectral embedding performance and underlying

network structure (e.g., homogeneity, affinity, core-periphery, (un)balancedness) via

a comprehensive treatment of the two-block stochastic block model and the class of

K-block models exhibiting homogeneous balanced affinity structure. Our findings

support the claim that, for a particular notion of sparsity, loosely speaking, “Lapla-

cian spectral embedding favors relatively sparse graphs, whereas adjacency spectral

embedding favors not-too-sparse graphs.” We also provide evidence in support of the

claim that “adjacency spectral embedding favors core-periphery network structure.”

This chapter has given rise to the paper Cape et al. (2018).

1.2 Notation

All vectors and matrices in this dissertation are taken to be real-valued. The

symbols := and ≡ are used to assign definitions and to denote formal equivalence. For

any positive integer n, let [n] := {1, 2, . . . , n}. We use Cα to denote a general constant

that may change from line to line unless otherwise specified and that possibly depends

only on α (either a parameter or an indexing value). Let O(·) (and sometimes O(·))

denote standard big-O notation, possibly with an underlying probabilistic qualifying

statement. These conventions are simultaneously upheld when we write Oα(·). We

let Op,r denote the set of all p × r real matrices with orthonormal columns so that

5



CHAPTER 1. INTRODUCTION

Op ≡ Op,p denotes the set of orthogonal matrices in Rp×p.

For (column) vectors x,y ∈ Rp1 where x ≡ (x1, . . . , xp1)
>, the standard Eu-

clidean inner product between x and y is denoted by 〈x,y〉 :=
∑

i xiyi. The clas-

sical `p vector norms are given by ‖x‖p := (
∑p

i=1 |xi|p)1/p for 1 ≤ p < ∞, and

‖x‖∞ := maxi |xi|. We also make use of several standard matrix norms. Let-

ting σi(A) denote the ith largest singular value of A, then ‖A‖2 := σ1(A) de-

notes the spectral norm of A, ‖A‖F :=
√∑

i σ
2
i (A) denotes the Frobenius norm

of A, ‖A‖1 := maxj
∑

i |aij| denotes the maximum absolute column sum of A, and

‖A‖∞ := maxi
∑

j |aij| denotes the maximum absolute row sum of A. Additionally,

we consider ‖A‖max := maxi,j |aij|.

1.3 Norm relations

This dissertation prominently features the two-to-infinity norm, which for A ∈

Rp1×p2 is given by

‖A‖2→∞ := sup
‖x‖2=1

‖Ax‖∞. (1.4)

Proposition 1 establishes the simple fact that this norm corresponds to the maximum

Euclidean row norm of A. As such, the two-to-infinity norm of a matrix is easy to

interpret and straightforward to compute. In certain settings, ‖ · ‖2→∞ will be shown

to serve as an attractive surrogate for ‖·‖max in light of dimensionality considerations

and additional algebraic properties that ‖ · ‖2→∞ enjoys.
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We now verify several basic properties of the two-to-infinity norm. Below, let ei

denote the ith standard basis vector, and let ai ∈ Rp2 denote the ith row of A.

Proposition 1. For A ∈ Rp1×p2, then ‖A‖2→∞ = maxi∈[p1] ‖ ai ‖2.

Proof. The definition of ‖ · ‖2→∞ and the Cauchy–Schwarz inequality together yield

that ‖A‖2→∞ ≤ maxi∈[p1] ‖ai‖2, since

‖A‖2→∞ := sup
‖x‖2=1

‖Ax‖∞ = sup
‖x‖2=1

max
i∈[p1]

∣∣〈Ax, ei〉
∣∣

≤ max
i∈[p1]
‖ai‖2.

Barring the trivial case A ≡ 0, let e? denote the standard basis vector in Rp1 with

index given by argmaxi∈[p1] ‖ai‖2, noting that for each i ∈ [p1], ai = A>ei. For the

unit Euclidean norm vector x? := ‖A>e?‖−1
2 (A>e?), then

‖A‖2→∞ = sup
‖x‖2=1

max
i∈[p1]

∣∣〈Ax, ei〉
∣∣

≥
∣∣〈Ax?, e?〉

∣∣ =
∥∥A>e?∥∥2

= max
i∈[p1]
‖ai‖2.

This establishes the stated equivalence.

Remark 1. The two-to-infinity norm is subordinate with respect to the `2 and `∞

vector norms in the sense that for any x ∈ Rp2 , ‖Ax‖∞ ≤ ‖A‖2→∞‖x‖2. However,

‖ · ‖2→∞ is not sub-multiplicative for matrices in general. For example, ‖AB‖2→∞ =

7



CHAPTER 1. INTRODUCTION

√
5 >
√

4 = ‖A‖2→∞‖B‖2→∞ when

A ≡ B :=

1 1

0 1

 and so AB =

1 2

0 1

 .

Proposition 2. For A ∈ Rp1×p2, then

‖A‖2→∞ ≤ ‖A‖2 ≤ min
{√

p1‖A‖2→∞,
√
p2

∥∥A>∥∥
2→∞

}
. (1.5)

Proof. The first inequality is obvious since

‖A‖2→∞ = sup
‖x‖2=1

max
i∈[p1]

∣∣〈Ax, ei〉
∣∣ ≤ sup

‖x‖2=1

sup
‖y‖2=1

∣∣〈Ax,y〉
∣∣

= ‖A‖2.

The second inequality holds by an application of the Cauchy–Schwarz inequality

together with the vector norm relationship ‖Ax‖2 ≤
√
p1‖Ax‖∞ for Ax ∈ Rp1 . In

particular,

sup
‖x‖2=1

sup
‖y‖2=1

∣∣〈Ax,y〉
∣∣ ≤ sup

‖x‖2=1

‖Ax‖2 ≤
√
p1 sup
‖x‖2=1

‖Ax‖∞

=
√
p1‖A‖2→∞.
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CHAPTER 1. INTRODUCTION

By the transpose-invariance of the spectral norm, similarly

‖A‖2 =
∥∥A>∥∥

2
≤ √p2

∥∥A>∥∥
2→∞.

Remark 2. Proposition 2 is sharp. Indeed, for the second inequality, take A :=

{1/√p2}p1×p2 . Then ‖A‖2→∞ = 1 and ‖A>‖2→∞ =
√
p1/p2 while ‖A‖2 =

√
p1. For

“tall, skinny” rectangular matrices, the two-to-infinity norm can be much smaller than

the spectral norm.

Proposition 3. For A ∈ Rp1×p2, B ∈ Rp2×p3 and C ∈ Rp4×p1, then

‖AB‖2→∞ ≤ ‖A‖2→∞‖B‖2, (1.6)

‖CA‖2→∞ ≤ ‖C‖∞‖A‖2→∞. (1.7)

Proof. The subordinate property of ‖ · ‖2→∞ yields that for all x ∈ Rp3 , ‖ABx‖∞ ≤

‖A‖2→∞‖Bx‖2, hence maximizing over all unit vectors x yields Eq. (1.6). Equa-

tion (1.7) follows from Hölder’s inequality coupled with the fact that the vector norms
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`1 and `∞ are dual to one another. Explicitly,

‖CA‖2→∞ = sup
‖x‖2=1

max
i∈[p1]

∣∣〈CAx, ei〉
∣∣

≤ sup
‖x‖2=1

max
i∈[p1]

∥∥C>ei∥∥1
‖Ax‖∞

≤
(

sup
‖y‖1=1

∥∥C>y∥∥
1

)(
sup
‖x‖2=1

‖Ax‖∞
)

=
∥∥C>∥∥

1
‖A‖2→∞

= ‖C‖∞‖A‖2→∞.

Proposition 4. For A ∈ Rr×s, U ∈ Op1,r, and V ∈ Op2,s,

‖A‖2 = ‖UA‖2 =
∥∥AV>

∥∥
2

=
∥∥UAV>

∥∥
2
, (1.8)

‖A‖2→∞ =
∥∥AV>

∥∥
2→∞. (1.9)

However, ‖UA‖2→∞ need not equal ‖A‖2→∞.

Proof. The first statement follows from Proposition 3, the fact that the spectral norm

is sub-multiplicative, and since U>U and V>V are both simply identity matrices.

As for the final claim, consider the matrices

U :=

1/
√

2 1/
√

2

1/
√

2 −1/
√

2

 , A :=

1 1

0 1

 , UA =

1/
√

2
√

2

1/
√

2 0

 , (1.10)

for which ‖UA‖2→∞ =
√

5/2 >
√

2 = ‖A‖2→∞.

10



CHAPTER 1. INTRODUCTION

For A ∈ Rp1×p2 , the standard relations between the `p norms for p ∈ {1, 2,∞}

permit a quantitative comparison of ‖ · ‖2→∞ to ‖ · ‖max and ‖ · ‖∞. In particular,

these matrix norms are related through matrix column dimension via

1
√
p2

‖A‖2→∞ ≤ ‖A‖max ≤ ‖A‖2→∞ ≤ ‖A‖∞ ≤
√
p2‖A‖2→∞.

In contrast, the relationship between ‖ · ‖2→∞ and ‖ · ‖2 depends on the matrix row

dimension (see Proposition 2) via

‖A‖2→∞ ≤ ‖A‖2 ≤
√
p1‖A‖2→∞.

As an example, consider the rectangular matrix A := {1/√p2}p1×p2 , for which

‖A‖2→∞ = 1 while ‖A‖2 = ‖A‖F =
√
p1. This example, together with the above

norm relations, demonstrates that possibly ‖A‖2→∞ � ‖A‖2 when the row dimension

of A is large relative to the column dimension, that is, p1 � p2. Bounding ‖A‖2→∞

would then be preferred to bounding ‖A‖2 when seeking more refined (e.g., entrywise)

control of A. The same observation holds with respect to the Frobenius norm which

satisfies the well-known, rank-based relation with the spectral norm given by

‖A‖2 ≤ ‖A‖F ≤
√

rank(A)‖A‖2.

The two-to-infinity norm is not in general sub-multiplicative for matrices. More-

11



CHAPTER 1. INTRODUCTION

over, the “constrained” sub-multiplicative behavior of ‖ · ‖2→∞ (see Proposition 3),

when taken together with the non-commutativity of matrix multiplication and stan-

dard properties of more common matrix norms, yields substantial flexibility when

bounding matrix products and passing between norms. For this reason, a host of

bounds beyond those presented in this dissertation follow naturally from the matrix

decomposition results in Section 2.2.1. The relative strength of derived bounds will

depend upon underlying, application-specific properties and assumptions.

1.4 Singular subspaces and Procrustes anal-

ysis

Let U and Û denote the subspaces for which the columns of U, Û ∈ Op,r form

orthonormal bases, respectively. From the classical cosine-sine (CS) matrix decompo-

sition, a natural measure of distance between these subspaces (corresp., matrices) is

given via the canonical (i.e., principal) angles between U and Û. More specifically, for

the singular values of U>Û, denoted by {σi(U>Û)}ri=1 and indexed in non-increasing

order, the canonical angles are the main diagonal elements of the r×r diagonal matrix

Θ(Û,U) := diag
(
cos−1

(
σ1

(
U>Û

))
, cos−1

(
σ2

(
U>Û

))
, . . . , cos−1

(
σr
(
U>Û

)))
.

12



CHAPTER 1. INTRODUCTION

For an in-depth review of the CS decomposition and canonical angles see, for example,

Bhatia (1997) and Stewart and Sun (1990). An extensive summary of the relation-

ships between sin Θ distances, specifically ‖ sin Θ(Û,U)‖2 and ‖ sin Θ(Û,U)‖F, as

well as various other distance measures, is provided in Cai and Zhang (2018). This

dissertation primarily focuses on sin Θ distance in relation to Procrustes analysis.

Given two matrices A and B together with a set of matrices S and a norm ‖ · ‖,

a general version of the Procrustes problem is to investigate

inf
S∈S
‖A−BS‖.

For U, Û ∈ Op,r and η ∈ {max, 2→∞, 2,F}, this dissertation specifically considers

inf
W∈Or

‖Û−UW‖η. (1.11)

For each choice of η, the corresponding infimum in Eq. (1.11) is provably achieved by

the compactness of Or together with properties of norms in finite-dimensional vector

spaces. As such, let W?
η ∈ Or denote a corresponding Procrustes solution under η

(where dependence upon the underlying matrices U and Û is implicit from context).

Unfortunately, these solutions are not analytically tractable in general, save under

the Frobenius norm, in which case WU ≡W?
F(U, Û) corresponds to the the classical

orthogonal Procrustes problem solution given explicitly by WU ≡ W1W>
2 when

the singular value decomposition of U>Û ∈ Rr×r is written as U>Û ≡ W1ΣUW>
2

13



CHAPTER 1. INTRODUCTION

(Gower and Dijksterhuis, 2004).

For each η, it is therefore natural to study the behavior of

‖Û−UWU‖η. (1.12)

To this end, sin Θ distances and the above Procrustes problems are related in the

sense that (e.g., Cai and Zhang (2018))

∥∥sin Θ(Û,U)
∥∥

F
≤ ‖Û−UWU‖F ≤

√
2
∥∥sin Θ(Û,U)

∥∥
F
,

and

∥∥sin Θ(Û,U)
∥∥

2
≤
∥∥Û−UW?

2

∥∥
2
≤ ‖Û−UWU‖2 ≤

√
2
∥∥sin Θ(Û,U)

∥∥
2
.

By Lemma 40, ‖Û−UWU‖2 can be bounded differently in a manner suggesting that

the performance of WU is “close” to the performance of W?
2 under ‖ · ‖2, namely

‖Û−UWU‖2 ≤
∥∥sin Θ(Û,U)

∥∥
2

+
∥∥sin Θ(Û,U)

∥∥2

2
.

Loosely speaking, it follows that the discrepancy between WU andW?
2 in the spectral

norm Procrustes problem behaves as O(‖ sin Θ(Û,U)‖2
2).

As for the two-to-infinity norm, simply considering the naïve relationship between

14
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‖ · ‖2→∞ and ‖ · ‖2 yields

1
√
p

∥∥sin Θ(Û,U)
∥∥

2
≤
∥∥Û−UW?

2→∞
∥∥

2→∞ ≤ ‖Û−UWU‖2→∞.

These observations collectively suggest that direct analysis of Û −UWU may yield

meaningfully tighter bounds on ‖Û − UWU‖2→∞ in settings wherein p � r and

‖Û−UWU‖2→∞ � ‖Û−UWU‖2. In such a regime, ‖ · ‖2→∞ and ‖ · ‖max differ by

at most a (relatively small) r-dependent factor, so it is conceivable that ‖ · ‖2→∞ may

serve as a decent proxy for ‖ · ‖max.

We now proceed to introduce a matrix perturbation framework in which Û rep-

resents a perturbation (i.e., estimate) of U. We then formulate a Procrustean ma-

trix decomposition in Section 2.2.1 by further decomposing the underlying matrices

whose spectral norm bounds give rise to the above quantities ‖ sin Θ(Û,U)‖2 and

‖ sin Θ(Û,U)‖2
2. Together with two-to-infinity norm machinery and model-based

analysis, we subsequently derive a collection of perturbation bounds and demonstrate

their utility in problems of statistical estimation.
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1.5 Signal-plus-noise matrix perturbation

framework

For rectangular matrices M,E ∈ Rp1×p2 , let M denote an unobserved matrix,

let E denote an unobserved perturbation (i.e., error) matrix, and let M̂ := M + E

denote an observed matrix that amounts to an additive perturbation of M by E. For

M and M̂, their respective partitioned singular value decompositions are given in

block matrix form by

M =

[
U U⊥

]
·

Σ 0

0 Σ⊥

 ·
V>
V>⊥

 = UΣV> + U⊥Σ⊥V>⊥

and

M̂ := M + E =

[
Û Û⊥

]
·

Σ̂ 0

0 Σ̂⊥

 ·
V̂

>

V̂
>
⊥


= ÛΣ̂V̂

>
+ Û⊥Σ̂⊥V̂

>
⊥.

Above, U ∈ Op1,r, V ∈ Op2,r, [U|U⊥] ∈ Op1 , and [V|V⊥] ∈ Op2 . The matrices

Σ ∈ Rr×r and Σ⊥ ∈ R(p1−r)×(p2−r) contain the singular values of M, where Σ =

diag(σ1(M), . . . , σr(M)) and Σ⊥ contains the remaining singular values σr+1(M), . . .

on its main diagonal, possibly padded with additional zeros, such that σ1(M) ≥ · · · ≥
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σr(M) > σr+1(M) ≥ · · · ≥ 0. The matrices Û, Û⊥, V̂, V̂⊥, Σ̂, and Σ̂⊥ are defined

analogously.

This dissertation is primarily interested in the situation when σr(M)� σr+1(M),

although our results and framework hold more generally when Σ is redefined to con-

tain a collection of sequential singular values that are separated from the remaining

singular values in Σ⊥. In such a modified setting, one would have

Σ = diag(σs(M), . . . , σs+t(M))

for some positive integers s and t, where subsequent bounds and necessary bookkeep-

ing would depend both on the two-sided gap

min{σs−1(M)− σs(M), σs+t(M)− σs+t+1(M)}

and on the magnitude of the perturbation E, as in Yu et al. (2015).

1.6 Preliminary matrix analysis

For matrices Û,U ∈ Op1,r and each choice of norm η ∈ {2,F}, it holds that (e.g.,

Lemma 1 in Cai and Zhang (2018)),

‖ sin Θ(Û,U)‖η ≤ inf
W∈Or

‖Û−UW‖η ≤
√

2‖ sin Θ(Û,U)‖η.
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Simultaneously, the relationships between sin Θ distances and differences of orthogo-

nal projections are given by

‖ sin Θ(Û,U)‖2 ≤ ‖ÛÛ
>
−UU>‖2 ≤

√
2‖ sin Θ(Û,U)‖2,

‖ÛÛ
>
−UU>‖F =

√
2‖ sin Θ(Û,U)‖F.

In this dissertation, we decompose the matrix Û−UW as

Û−UW = Û−UU>Û + UU>Û−UW

= (I−UU>)Û︸ ︷︷ ︸
dominant term

+U(U>Û−W)︸ ︷︷ ︸
residual term

.

For WU := arg inf
W∈Or

‖Û−UW‖F, subsequent analysis demonstrates that

lower bound︷ ︸︸ ︷
1√
p1
‖ sin Θ(Û,U)‖2 ≤ inf

W∈Or
‖Û−UW‖2→∞ ≤ ‖Û−UWU‖2→∞

and

‖Û−UWU‖2→∞ ≤

upper bound︷ ︸︸ ︷
‖(I−UU>)Û‖2→∞︸ ︷︷ ︸

dominant term

+ ‖U‖2→∞‖ sin Θ(Û,U)‖2
2︸ ︷︷ ︸

residual term

.

In the statistically interesting settings considered here, both ‖U‖2→∞ � 1 and

‖ sin Θ(Û,U)‖2
2 � ‖ sin Θ(Û,U)‖2. The bulk of our technical analysis will involve

carefully analyzing the dominant term in the upper bound.
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We remark that straightforward algebraic considerations yield

√
r
p1
≤ ‖Û‖2→∞ ≤ inf

W∈Or
‖Û−UW‖2→∞ + ‖U‖2→∞, (1.13)

where ‖UW‖2→∞ ≡ ‖U‖2→∞ and possibly ‖U‖2→∞ → 0 (as a function of r and p1).

For this reason, it will be important in our analysis to obtain bounds of the form

‖Û−UWU‖2→∞ = o(‖U‖2→∞)

in order to establish that Û indeed provides strong local estimates of U up to an

appropriate orthogonal transformation.

It is worth pointing out that bounding ‖ÛÛ
>
−UU>‖max is related to bounding

‖U‖2→∞ and ‖Û−UW‖2→∞ for any r × r orthogonal matrix W, since

‖ÛÛ
>
−UU>‖max ≤

(
2‖U‖2→∞ + ‖Û−UW‖2→∞

)
‖Û−UW‖2→∞. (1.14)
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Chapter 2

Singular subspace geometry and

high-dimensional statistics

2.1 Overview of Chapter 2

This chapter provides a collection of technical and theoretical tools for studying

the perturbations of singular vectors and subspaces with respect to the two-to-infinity

norm. Our main theoretical results are first presented quite generally and then fol-

lowed by concrete consequences thereof to facilitate direct statistical applications.

We establish perturbation bounds for both low and high rank matrices. Among the

advantages of our methods is that we allow singular value multiplicity and merely

leverage a population singular value gap assumption.

As a special case of our general framework and methods, we improve upon results
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in Fan et al. (2018) wherein the authors obtain an `∞ norm perturbation bound

for singular vectors of low rank matrices exhibiting specific coherence structure. In

this way, beyond the stated theorems in this chapter, our results can be applied

analogously to robust covariance estimation involving heavy-tailed random variables.

Our Procrustes analysis complements the study of perturbation bounds for singu-

lar subspaces in Cai and Zhang (2018). When considered in tandem, we demonstrate

a Procrustean setting in which one recovers nearly rate-matching upper and lower

bounds with respect to the two-to-infinity norm.

Another contribution of this chapter is that we extend and complement spectral

methodology for graph inference and embedding (Levin et al., 2017; Lyzinski et al.,

2014; Tang et al., 2017). To the best of our knowledge, we obtain among the first-ever

estimation bounds for multiple graph inference in the presence of edge correlation.

2.1.1 Problem setting for Chapter 2

This chapter formulates and analyzes a general matrix decomposition for the

aligned difference between real-valued matrices U and Û, each consisting of r or-

thonormal columns (i.e., partial isometries; Stiefel matrices; orthogonal r-frames),

given by

Û−UW, (2.1)
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where W denotes an r × r orthogonal matrix. We focus on (but are strictly speak-

ing not limited to) a certain “nice” choice of W which corresponds to an “optimal”

Procrustes transformation in a sense that will be made precise.

Chapter 1 of this dissertation provides technical machinery for the two-to-infinity

subordinate vector norm on matrices, which for A ∈ Rp1×p2 is given by

‖A‖2→∞ := sup
‖x‖2=1

‖Ax‖∞.

By combining two-to-infinity norm tools with the matrix decomposition considera-

tions presented in this chapter, we obtain a suite of perturbation bounds within an

additive perturbation framework of the singular value decomposition.

The two-to-infinity norm yields finer uniform control on the entries of a matrix

than the more common spectral and Frobenius norms. We shall demonstrate that, in

certain settings, the two-to-infinity norm is preferable to these and to other norms.

In particular, matrices exhibiting bounded coherence in the sense of Candès and

Recht (2009) form a popular and widely-encountered class of matrices for which the

two-to-infinity norm is demonstrably an excellent choice.

The two-to-infinity norm has previously appeared in the statistics literature, in-

cluding in Lyzinski et al. (2014) wherein it is leveraged to prove that adjacency spec-

tral embedding achieves perfect clustering for certain stochastic block model graphs.

More recently, it has also appeared in the study of random matrices when a fraction of

22



CHAPTER 2. SINGULAR SUBSPACE GEOMETRY AND STATISTICS

the matrix entries are modified (Rebrova and Vershynin, 2018). In general, however,

the two-to-infinity norm has received far less attention than other norms. Among the

aims of this dissertation is to advocate for the more widespread consideration of the

two-to-infinity norm.

2.1.2 Sample application: covariance estimation

We pause here to present an application of our work and methods to estimating

the top singular vectors of a structured covariance matrix.

Denote a random vector Y and its entries by Y := (Y (1), Y (2), . . . , Y (d))> ∈ Rd, and

let Y, Y1, Y2, . . . , Yn be independent and identically distributed (i.i.d.) mean zero multi-

variate Gaussian random (column) vectors with common covariance matrix Γ ∈ Rd×d.

Denote the singular value decomposition of Γ by Γ ≡ UΣU> + U⊥Σ⊥U>⊥, where

[U|U⊥] ≡ [u1|u2| . . . |ud] ∈ Rd×d is an orthogonal matrix. The singular values of

Γ are indexed in non-increasing order, σ1(Γ) ≥ σ2(Γ) ≥ · · · ≥ σd(Γ), with Σ :=

diag(σ1(Γ), σ2(Γ), . . . , σr(Γ)) ∈ Rr×r, Σ⊥ := diag(σr+1(Γ), σr+2(Γ), . . . , σd(Γ)) ∈

R(d−r)×(d−r), δr(Γ) := σr(Γ) − σr+1(Γ > 0, and r � d. Here, Σ may be viewed

as containing the “signal” (i.e., spike) singular values of interest, while Σ⊥ contains

the remaining “noise” (i.e., bulk) singular values. The singular values of Γ are not

assumed to be distinct; rather, the assumption δr(Γ) > 0 simply specifies a singular

value population gap between Σ and Σ⊥.

Let Γ̂n denote the empirical covariance matrix Γ̂n := 1
n

∑n
k=1 YkY

>
k with decompo-
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sition Γ̂n ≡ ÛΣ̂Û
>

+ Û⊥Σ̂⊥Û
>
⊥. Let En := Γ̂n−Γ denote the difference between the

empirical and theoretical covariance matrices. Below, C, c, c1, c2, . . . are positive con-

stants (possibly related) of minimal interest. We use Var(Y (i)) to denote the variance

of Y (i) and o(·) to denote little-o notation.

We are interested in the regime where the sample size n and the covariance matrix

dimension d are simultaneously allowed to grow. In this regime, an important measure

of complexity is given by the effective rank of Γ, defined as r(Γ) := trace(Γ)/σ1(Γ)

(e.g., see Koltchinskii and Lounici (2017b)).

Theorem 5 (Application: covariance estimation). In Section 2.1.2, assume that

max{r(Γ), log d} = o(n), σ1(Γ)/σr(Γ) ≤ c1, δr(Γ) ≥ c2σr(Γ) > 0, and ‖U‖2→∞ ≤

c3

√
r/d. Let ν(Y ) := max1≤i≤d

√
Var(Y (i)). Then, there exists an r × r orthogonal

matrix WU and a constant C > 0 such that with probability at least 1− d−2,

‖Û−UWU‖2→∞ ≤ C

√
max{r(Γ), log d}

n

(
ν(Y )r√
σr(Γ)

+
σr+1(Γ)

σr(Γ)

)

+ C

(
max{r(Γ), log d}

n

)(√
σr+1(Γ)

σr(Γ)
+

√
r

d

)
.

Remark 3. In the setting of Theorem 5, spectral norm probabilistic concentration

via Koltchinskii and Lounici (2017a,b) can be applied to yield a naïve two-to-infinity

norm bound of the form

‖Û−UWU‖2→∞ ≤ C

√
max{r(Γ), log d}

n
. (2.2)
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When Γ exhibits the additional spike structure Γ ≡ U(Λ + c2I)U> + c2U⊥U>⊥ with

σ1(Γ) ≥ c4(d/r), then
√
σr+1(Γ), ν(Y ) ≤ c5

√
σ1(Γ)

√
r/d, and so the bound in The-

orem 5 simplifies to the form

‖Û−UWU‖2→∞ ≤ C

√
max{r(Γ), log d}

n

√
r3

d
. (2.3)

The bound in Eq. (2.3) manifestly improves upon Eq. (2.2) since here r � d and d is

taken to be large.

2.2 Main results for singular subspace per-

turbations

This section presents our main deterministic Procrustes analysis and general per-

turbation bounds.

2.2.1 A Procrustean matrix decomposition and its

variants

Below, Theorem 6 states the main matrix decomposition of this chapter in general

form. Remark 4 subsequently provides accompanying discussion and is designed to

offer a more intuitive, high-level explanation of the decomposition considerations
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presented here. The formal procedure for deriving Theorem 6 is based on geometric

considerations presented in Section 6.1.3.

Theorem 6 (Procrustean matrix decomposition). In the setting of Sections 1.4 and

1.5, if M̂ has rank at least r, then Û−UWU ∈ Rp1×r admits the decomposition

Û−UWU =
(
I−UU>

)
EVWVΣ̂−1 (2.4)

+
(
I−UU>

)
E(V̂ −VWV)Σ̂−1 (2.5)

+
(
I−UU>

)
M
(
V̂ −VV>V̂

)
Σ̂−1 (2.6)

+ U
(
U>Û−WU

)
. (2.7)

This decomposition still holds when replacing the r × r orthogonal matrices WU and

WV with any real r×r matrices T1 and T2, respectively. The analogous decomposition

for V̂ − VWV is given by replacing U, Û,V, V̂,E,M,WU, and WV above with

V, V̂,U, Û,E>,M>,WV, and WU, respectively.

Remark 4 (Intuition for Theorem 6). The decomposition presented in Theorem 6

can be loosely motivated in the following way. When M and M̂ have rank at least

r, then by Section 1.5, U ≡ MVΣ−1 and Û ≡ M̂V̂Σ̂−1 = MV̂Σ̂−1 + EV̂Σ̂−1. It

is thus conceivable that the difference between U and Û behaves to leading order as

EVΣ−1 (modulo proper orthogonal transformation) under suitable perturbation and

structural assumptions. Indeed, we repeatedly observe such first-order behavior via

the matrix term (I−UU>)EVWVΣ̂−1 when ‖U‖2→∞ � 1.
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For the purpose of obtaining upper bounds, passing from Σ̂−1 to Σ−1 amounts

to transitioning from σr(M̂) to σr(M); this can be achieved via Weyl’s inequality

(Bhatia, 1997) provided the perturbation E is suitably small in norm relative to

σr(M) (i.e., when the singular value “spike signal” is sufficiently informative relative

to the noise level E in norm).

Subsequent results in Section 2.2.2 will demonstrate that lines (2.5)–(2.7) amount

to situational residual and approximation error terms. Namely, with respect to the

two-to-infinity norm:

• Line (2.5) can be much smaller than ‖ sin Θ(V̂,V)‖2 as a function of the relative

magnitudes of E and Σ̂−1.

• Line (2.6) can be much smaller than ‖ sin Θ(V̂,V)‖2 as a function of the mul-

tiplicative singular value gap σr+1(M)/σr(M̂).

• Line (2.7) can be much smaller than ‖ sin Θ(Û,U)‖2
2 as a function of ‖U‖2→∞,

specifically when ‖U‖2→∞ � 1.

Theorem 6 can be rewritten in terms of the spectral matrix decomposition when

M and E are both symmetric matrices. For ease of reference, we state this special

case in the form of a corollary.

Corollary 7. Let M,E ∈ Rp×p be symmetric matrices. Rephrase Section 1.5 to hold

for the spectral matrix decomposition in terms of the eigenvalues and eigenvectors of

M and M̂. Provided M̂ has rank at least r, then Û − UWU ∈ Rp×r admits the

27



CHAPTER 2. SINGULAR SUBSPACE GEOMETRY AND STATISTICS

decomposition

Û−UWU =
(
I−UU>

)
EUWUΣ̂−1

+
(
I−UU>

)
E(Û−UWU)Σ̂−1

+
(
I−UU>

)
M
(
Û−UU>Û

)
Σ̂−1

+ U
(
U>Û−WU

)
. (2.8)

Remark 5 (The orthogonal matrix WU). This chapter does not assume that the

leading r singular values of M or M̂ are distinct. As such, in general Û alone cannot

hope to recover U in the presence of singular value multiplicity. Indeed, Û can only

be viewed as an estimate of U up to an orthogonal transformation, and our specific

choice of WU is based upon the aforementioned Procrustes-based considerations.

To reiterate, WU depends upon Û, which in turn depends upon the perturbation

E. Consequently, WU is unknown (resp., random) when E is assumed unknown

(resp., random). We note that statistical inference methodologies and applications

are often either invariant under or equivalent modulo orthogonal transformations as

a source of non-identifiability. For example, K-means clustering applied to the rows

of U in Euclidean space is equivalent to clustering the rows of UWU.

It will subsequently prove convenient to work with the following modified versions

of Theorem 6 which are stated below as corollaries.
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Corollary 8. The decomposition in Theorem 6 can be rewritten as

Û−UWU =
(
I−UU>

)
E
(
VV>

)
VWVΣ̂−1

+
(
I−UU>

)
(E + M)(V̂ −VWV)Σ̂−1

+ U
(
U>Û−WU

)
. (2.9)

Corollary 9. Corollary 8 can be equivalently written as

Û−UWU =
(
U⊥U>⊥

)
E
(
VV>

)
VWVΣ̂−1

+
(
U⊥U>⊥

)
E
(
VV>

)
V
(
V>V̂ −WV

)
Σ̂−1

+
(
U⊥U>⊥

)
E
(
V⊥V>⊥

)(
V̂ −VV>V̂

)
Σ̂−1

+
(
U⊥U>⊥

)
M
(
V⊥V>⊥

)(
V̂ −VV>V̂

)
Σ̂−1

+ U
(
U>Û−WU

)
. (2.10)

For Corollaries 8 and 9, the first term following the equality sign in each display

equation is shown in practice to be the leading order term of interest. This point

shall be made more precise and quantitative below.

2.2.2 General perturbation theorems

This section presents a collection of perturbation theorems derived via a unified

methodology that combines Theorem 6, its variants, the two-to-infinity norm ma-
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chinery in Section 1.3, and the geometric observations in Section 6.1.1. We bound

Û−UWU, while similar bounds hold for V̂ −VWV under the appropriate modifi-

cations detailed in Theorem 6.

Theorem 10 (Baseline two-to-infinity norm bound). Provided σr(M) > σr+1(M) ≥ 0

and σr(M) ≥ 2‖E‖2, then

‖Û−UWU‖2→∞ ≤ 2

(
‖(U⊥U>⊥)E(VV>)‖2→∞

σr(M)

)
+ 2

(
‖(U⊥U>⊥)E(V⊥V>⊥)‖2→∞

σr(M)

)∥∥sin Θ(V̂,V)
∥∥

2

+ 2

(
‖(U⊥U>⊥)M(V⊥V>⊥)‖2→∞

σr(M)

)∥∥sin Θ(V̂,V)
∥∥

2

+
∥∥sin Θ(Û,U)

∥∥2

2
‖U‖2→∞. (2.11)

Let CM,U and CM,V denote upper bounds on the quantities ‖(U⊥U>⊥)M‖∞ and

‖(V⊥V>⊥)M>‖∞, respectively, and define CE,U and CE,V analogously. Theorem 11

provides a uniform perturbation bound for ‖Û−UWU‖2→∞ and ‖V̂−VWV‖2→∞.

When rank(M) = r, Corollary 12 states a weaker but simpler version of the bound

in Theorem 11.

Theorem 11 (Uniform perturbation bound for rectangular matrices). Suppose that

σr(M) > σr+1(M) > 0 and that

σr(M) ≥ max
{

2‖E‖2, (2/α)CE,U,
(
2/α′

)
CE,V, (2/β)CM,U,

(
2/β′

)
CM,V

}
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for constants 0 < α, α′, β, β′ < 1 such that δ := (α + β)(α′ + β′) < 1. Then

(1− δ)‖Û−UWU‖2→∞ ≤ 2

(
‖(U⊥U>⊥)E(VV>)‖2→∞

σr(M)

)
+ 2

(
‖(V⊥V>⊥)E>(UU>)‖2→∞

σr(M)

)
+
∥∥sin Θ(Û,U)

∥∥2

2
‖U‖2→∞

+
∥∥sin Θ(V̂,V)

∥∥2

2
‖V‖2→∞. (2.12)

If rank(M) = r so that σr+1(M) = 0, then the above bound holds for the value

δ := α× α′ < 1 under the weaker assumption that

σr(M) ≥ max
{

2‖E‖2, (2/α)CE,U,
(
2/α′

)
CE,V

}
.

Corollary 12 (Uniform perturbation bound for low rank matrices). Suppose that

σr(M) > σr+1(M) = 0 and that

σr(M) ≥ max
{

2‖E‖2, (2/α)CE,U,
(
2/α′

)
CE,V

}

for some constants 0 < α, α′ < 1 such that δ := α× α′ < 1. Then

(1− δ)‖Û−UWU‖2→∞ ≤ 12× max
η∈{1,∞}

{
‖E‖η
σr(M)

}
× max

Z∈{U,V}

{
‖Z‖2→∞

}
. (2.13)
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2.3 Applications in high-dimensional statis-

tics

This section applies our perturbation theorems and two-to-infinity norm machin-

ery to three statistical settings corresponding to, among others, the results in Cai

and Zhang (2018); Fan et al. (2018); Lyzinski et al. (2014), thereby yielding Theo-

rem 14, Theorem 15, and Theorem 18. Each of these theorems (including Theorem 5

presented earlier) is obtained by combining general considerations with application-

specific analysis.

Moving forward, consider the following structural matrix property which arises

within the context of low rank matrix recovery.

Definition 13 (Coherence (Candès and Recht, 2009)). Let U be a subspace of di-

mension r in Rp, and let PU be the orthogonal projection onto U. Then the coherence

of U (vis-à-vis the standard basis {ei}) is defined to be

µ(U) :=

(
p

r

)
max
i∈[p]
‖PUei‖2

2. (2.14)

For U ∈ Op,r, the (orthonormal) columns of U span a subspace of dimension r

in Rp, so it is natural to abuse notation and to interchange U with its underlying

subspace U. In this case, PU ≡ UU>, and so Propositions 1 and 4 lead to the
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equivalent formulation

µ(U) :=

(
p

r

)
‖U‖2

2→∞.

Observe that 1 ≤ µ(U) ≤ p/r, where the upper and lower bounds are achieved for

U consisting of all standard basis vectors and of vectors whose entries each have

magnitude 1/
√
p, respectively. Since the columns of U are mutually orthogonal with

unit Euclidean norm, the magnitude of µ(U) can be viewed as quantifying the row-

wise accumulation of “mass” in U.

The bounded coherence property (Candès and Recht, 2009) corresponds to the

existence of a positive constant Cµ ≥ 1 such that

‖U‖2→∞ ≤ Cµ

√
r

p
. (2.15)

Bounded coherence arises naturally in the random orthogonal (matrix) model and

influences the recoverability of low rank matrices via nuclear norm minimization when

sampling only a subset of the matrix entries (Candès and Recht, 2009). Bounded

coherence is also closely related to the notion of eigenvector delocalization in random

matrix theory (Rudelson and Vershynin, 2015). Examples of matrices whose row and

column space factors exhibit bounded coherence can be found, for example, in the

study of networks. Specifically, it is not difficult to check that bounded coherence

holds for the top eigenvectors of the (non-random) low rank edge probability matrices

corresponding to the Erdős–Rényi random graph model and the balanced K-block
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stochastic block model.

2.3.1 Singular vector perturbation bound

In Fan et al. (2018), the authors consider low rank matrices exhibiting bounded

coherence. For such matrices, the results therein provide singular vector perturba-

tion bounds under the `∞ vector norm, which are then applied to robust covariance

estimation.

In this dissertation, Corollary 12 states a perturbation bound that is similar in kind

to those in Fan et al. (2018). Note that upper bounding ‖Û−UWU‖2→∞ immediately

bounds both ‖Û − UWU‖max and infW∈Or ‖Û − UW‖max, thereby providing `∞-

type bounds for the perturbed singular vectors up to orthogonal transformation, the

analogue of sign flips for well-separated, distinct singular values (similarly for V, V̂

and WV). The joint, symmetric nature of the singular value gap assumption controls

the dependence of ‖Û−UWU‖2→∞ and ‖V̂−VWV‖2→∞ on one another and takes

into account the underlying matrix dimensions.

For symmetric matrices, Theorem 14 improves upon Fan et al. (2018) and implic-

itly applies to the applications discussed therein.

Theorem 14 (Application: eigenvector (entrywise) perturbation bound). LetM,E ∈

Rp×p be symmetric matrices where rank(M) = r and M has spectral decomposition

M = UΛU> + U⊥Λ⊥U>⊥ ≡ UΛU> with leading eigenvalues |λ1| ≥ |λ2| ≥ · · · ≥

|λr| > 0. If |λr| ≥ 4‖E‖∞, then there exists an orthogonal matrix WU ∈ Or such
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that

‖Û−UWU‖2→∞ ≤ 14

(
‖E‖∞
|λr|

)
‖U‖2→∞. (2.16)

Theorem 14 provides a user-friendly, deterministic perturbation bound that per-

mits repeated eigenvalues inM and makes no assumption on the behavior of ‖U‖2→∞.

When bounded coherence does hold, combining Eq. (2.15) with Theorem 14 immedi-

ately yields the bound

‖Û−UWU‖2→∞ ≤ 14Cµ

(√
r‖E‖∞√
p|λr|

)
.

It is worth emphasizing that stronger (albeit more complicated) bounds are obtained

in the proof leading up to the statement of Theorem 14.

2.3.2 Singular subspace perturbation and random

matrices

This section interfaces the results in this dissertation with the spectral and Frobe-

nius norm rate-optimal singular subspace perturbation bounds obtained in Cai and

Zhang (2018).

Consider the setting whereinM ∈ Rp1×p2 is a fixed rank r matrix with r � p1 � p2

and σr(M) ≥ C(p2/
√
p1). Let E ∈ Rp1×p2 be a random matrix with independent
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standard normal entries. Then by Cai and Zhang (2018), the following bounds hold

for the left and right singular subspaces with high probability:

∥∥sin Θ(Û,U)
∥∥

2
≤ C

( √
p1

σr(M)

)
and

∥∥sin Θ(V̂,V)
∥∥

2
≤ C

( √
p2

σr(M)

)
.

Here, working with V and V̂ is desirable though comparatively more difficult. Theo-

rem 15 demonstrates how (even relatively coarse) two-to-infinity norm analysis allows

one to recover upper and lower bounds for ‖V̂ − VWV‖2→∞ that at times nearly

match. For ease of presentation, Theorem 15 is stated simply as holding with high

probability.

Theorem 15 (Application: singular subspace recovery). Let M,E ∈ Rp1×p2 be as in

Section 2.3.2. There exists an orthogonal matrix WV ∈ Or and Cr > 0 such that

with high probability,

‖V̂ −VWV‖2→∞

≤ Cr

(
log(p2)

σr(M)

)(
1 +

(
p1

σr(M)

)
+

( √
p1

log(p2)

)
‖V‖2→∞

)
. (2.17)

If in addition σr(M) ≥ cp1 and ‖V‖2→∞ ≤ cr/
√
p2 for some c, cr > 0, then with high

probability

‖V̂ −VWV‖2→∞ ≤ Cr

(
log(p2)

σr(M)

)
. (2.18)

The lower bound 1√
p2
‖ sin Θ(V̂,V)‖2 ≤ ‖V̂ − VWV‖2→∞ always holds by Proposi-
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tion 2 and Lemma 39.

2.3.3 Statistical inference for random graphs

In the study of networks, community detection and clustering are tasks of central

interest. A network (i.e., a graph G ≡ (V,E) consisting of a vertex set V and edge

set E) may be represented by its adjacency matrix, A ≡ AG, which captures the

edge connectivity of the nodes in the network. For inhomogeneous independent edge

random graph models, the adjacency matrix can be viewed as a random perturbation

of an underlying (often low rank) edge probability matrix P, where in expectation

P ≡ E[A]. In the notation of Section 1.5, the matrix P corresponds to M, the matrix

A−P corresponds to E, and the matrix A corresponds to M̂. By viewing Û (here the

matrix of leading eigenvectors of A) as an estimate of U (here the matrix of leading

eigenvectors of P), the results in Section 2.2 immediately apply.

Spectral methods and related optimization problems for random graphs employ

the spectral decomposition of the (adjacency or Laplacian) matrix (Rohe et al., 2011;

Sarkar and Bickel, 2015; Sussman et al., 2012; Tang and Priebe, 2018). For example,

Le et al. (2016) presents a general spectral-based, dimension-reduction community de-

tection framework which incorporates the spectral norm distance between the leading

eigenvectors of A and P. Taken in the context of Le et al. (2016) and indeed the

wider statistical network analysis literature, this chapter complements existing work

and paves the way for expanding the toolkit of network analysts to include more
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Procrustean considerations and two-to-infinity norm machinery.

Much of the existing literature for graphs and network models concerns the popular

stochastic block model (SBM) (Holland et al., 1983) and its variants. The related

random dot product graph model (RDPG model) (Young and Scheinerman, 2007)

has recently been developed in a series of papers as both a tractable and flexible

random graph model amenable to spectral methods (Fishkind et al., 2013; Sussman

et al., 2012, 2014; Tang et al., 2017,?; Tang and Priebe, 2018). In the RDPG model,

the graph’s eigenvalues and eigenvectors are closely related to the model’s generative

latent positions. In particular, the leading eigenvectors of the adjacency matrix can be

used to estimate the latent positions when properly scaled by the leading eigenvalues.

In the context of the wider RDPG literature, this dissertation extends both the

treatment of the two-to-infinity norm in Lyzinski et al. (2014) and Procrustes match-

ing for graphs in Tang et al. (2017). Our bounds in Section 2.2 imply an eigenvector

version of Lemma 5 in Lyzinski et al. (2014) that does not require the matrix-valued

model parameter P to have distinct eigenvalues. Our Procrustes analysis also sug-

gests a refinement of the test statistic formulation in the two-sample graph inference

hypothesis testing framework of Tang et al. (2017).

Our level of generality permits the consideration of random graph models that

allow edge dependence structure, such as the (C, c, γ) property (O’Rourke et al.,

2018) (see below). Indeed, moving beyond independent edge models represents an

important direction for future work in the field of statistical network analysis.
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Definition 16 ((C, c, γ) concentration (O’Rourke et al., 2018)). A p1 × p2 random

matrix E is said to be (C, c, γ)-concentrated if, given a trio of positive constants

(C, c, γ), for all unit vectors u ∈ Rp1 , v ∈ Rp2 , and for every t > 0,

P
[∣∣〈Ev,u〉∣∣ > t

]
≤ C exp

(
−ctγ

)
. (2.19)

Remark 6 (Probabilistic concentration and the perturbation E). The proofs of our

main results demonstrate the importance of bounding ‖EV‖2→∞ and ‖U>EV‖2 in

the perturbation framework of Section 1.5. When E satisfies the (C, c, γ) concentra-

tion property in Definition 16, these quantities can be easily controlled via standard

Bernstein and Hoeffding-type probabilistic bounds encountered throughout statistics.

In the statistical network analysis literature, current active research directions in-

clude the development of random graph models exhibiting edge correlation and the

development of inference methodology for multiple graphs. Here, we briefly consider

the ρ-correlated stochastic block model (Lyzinski et al., 2015) and the omnibus em-

bedding matrix for multiple graphs (Priebe et al., 2013) employed in Chen et al.

(2016); Levin et al. (2017); Lyzinski (2018). The ρ-correlated stochastic block model

provides a simple yet easily interpretable and tractable model for dependent random

graphs, while the omnibus embedding matrix provides a framework for performing

spectral analysis on multiple graphs by leveraging graph (dis)similarities.

Definition 17 (ρ-correlated SBM graphs (Lyzinski, 2018)). Let Gn denote the set of
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labeled, n-vertex, simple, undirected graphs. Two n-vertex random graphs (G1, G2) ∈

G1 × G2 are said to be ρ-correlated SBM(κ,
→
n, b,Λ) graphs (abbreviated ρ-SBM) if:

1. G1 := (V,E(G1)) and G2 := (V,E(G2)) are marginally SBM(κ,
→
n, b,Λ) random

graphs; that is, for each i = 1, 2,

(a) The vertex set V is the union of κ blocks V1,V2, . . . ,Vκ, which are disjoint

sets with respective cardinalities n1, n2, . . . , nκ;

(b) The block membership function b : V 7→ [κ] is such that for each v ∈ V,

b(v) denotes the block of v; that is, v ∈ Vb(v);

(c) The block adjacency probabilities are given by the symmetric matrix Λ ∈

[0, 1]κ×κ; that is, for each pair of vertices {j, l} ∈
(
V

2

)
, the adjacency of j

and l is an independent Bernoulli trial with probability of success Λb(j),b(l).

2. The random variables

{
I
[
{j, k} ∈ E

(
Gi
)]}

i=1,2;{j,k}∈(V
2)

are collectively independent except that for each {j, k} ∈
(
V

2

)
, the correlation

between I[{j, k} ∈ E(G1)] and I[{j, k} ∈ E(G2)] is ρ ≥ 0.

The following theorem provides a guarantee for estimating the leading eigenvectors

of a multiple graph omnibus matrix when the graphs are not independent. Theorem 18

is among the first of its kind and complements the recent, concurrent work on joint
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graph embedding in Levin et al. (2017).

Theorem 18 (Application: multiple graph inference). Let (G1, G2) be a pair of ρ-

correlated SBM(κ,
→
n, b,Λ) graphs as in Definition 17 with n× n (symmetric, binary)

adjacency matrices (A1,A2). Let the model omnibus matrix O and adjacency om-

nibus matrix Ô be given by

O :=

1 1

1 1

⊗ ZΛZ> and Ô :=

 A1 A1+A2

2

A1+A2

2
A2

 ,

where ⊗ denotes the matrix Kronecker product and Z is the n × κ matrix of vertex-

to-block assignments such that P := ZΛZ> ∈ [0, 1]n×n denotes the edge probability

matrix. Let rank(Λ) = r, and hence rank(O) = r. For i = 1, 2, suppose that the

maximum expected degree of Gi, ∆, satisfies ∆� log4(n), along with σr(O) ≥ c∆ for

some c > 0. Let U, Û ∈ O2n,r denote the matrices whose columns are the normalized

eigenvectors corresponding to the largest eigenvalues of O and Ô given by the diagonal

matrices Σ and Σ̂, respectively. For WU ∈ Or as in Section 1.4, with probability

1− o(1) as n→∞,

‖Û−UWU‖2→∞ = Or

(
log n

∆

)
.

In contrast, spectral norm analysis implies the weaker two-to-infinity norm bound

‖Û−UWU‖2→∞ = Or(
1√
∆

).
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Remark 7 (Edge correlation). The implicit dependence upon the correlation factor

ρ in Theorem 18 can be made explicit by a more careful analysis of constant factors

and the probability statement. This is not our present concern.

2.4 Discussion

This chapter develops a flexible Procrustean matrix decomposition and its variants

together with machinery for the two-to-infinity norm in order to study the pertur-

bation of singular vectors and subspaces. We have demonstrated both implicitly

and explicitly the widespread applicability of our framework and results to a host of

popular matrix noise models, namely matrices that have:

• independent and identically distributed entries (Section 2.3.2);

• independent and identically distributed rows (Section 2.1.2);

• independent but not identically distributed entries (Section 2.3.3);

• neither independent nor identically distributed entries (Section 2.3.1).

Each application presented in this chapter requires problem-specific analysis. One

must determine which formulation of the Procrustean matrix decomposition to use,

how to effectively transition between norms, and how to analyze the resulting quan-

tities. For example, in Section 2.3.1 the product term ‖E‖∞‖U‖2→∞ is meaningful

when coupled with the bounded coherence assumption, whereas the term ‖EU‖2→∞ is
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analyzed directly in order to prove Theorem 18. Similarly, with respect to covariance

estimation (Theorems 5 and 14), context-specific differences motivate idiosyncratic

approaches when deriving the stated bounds.

This chapter focuses on decomposing the matrix Û−UWU and on establishing

the two-to-infinity norm as a useful tool for matrix perturbation analysis. Among the

observations made earlier in this dissertation, it is useful to keep in mind that

inf
W∈Or

‖Û−UW‖max ≤ ‖Û−UWU‖max ≤ ‖Û−UWU‖2→∞.

Ample open problems and applications exist for which it is and will be productive

to utilize the two-to-infinity norm and matrix decompositions in the future. It is our

hope that the level of generality and flexibility presented in this chapter will facilitate

the more widespread use of the two-to-infinity norm in statistics.
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Chapter 3

Eigenvector deviations and

fluctuations

3.1 Overview of Chapter 3

This chapter considers the setting where M and E are large n × n symmetric

real-valued matrices with M̂ = M + E representing an additive perturbation of M

by E. For n × r matrices U and Û whose columns are orthonormal eigenvectors

corresponding to the r � n leading eigenvalues of M and M̂, respectively, we ask:

Question 1. How entrywise close are the matrices of eigenvectors U and Û?

Under quite general structural assumptions on U, M, and E, our main results

address Question 1 both at the level of first-order deviations and at the level of

second-order fluctuations. Theorems 19 and 20 quantify the entrywise closeness of
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Û to U modulo a necessary orthogonal transformation W (corresponding to WU in

Chapter 2). Theorem 21 states a multivariate distributional limit result for the rows

of the matrix Û−UW.

Numerous problems in statistics consider the eigenstructure of large symmetric

matrices. Prominent examples of such problems include (spike) population and co-

variance matrix estimation (Johnstone, 2001; Silverstein, 1984, 1989; Yu et al., 2015)

as well as principal component analysis (Jolliffe, 1986; Nadler, 2008; Paul, 2007), prob-

lems which have received additional attention and windfall as a result of advances in

random matrix theory (Bai and Silverstein, 2010; Benaych-Georges and Nadakuditi,

2011; Paul and Aue, 2014). Within the study of networks, the problem of community

detection and success of spectral clustering methodologies have also led to widespread

interest in understanding spectral perturbations of large matrices, in particular graph

Laplacian and adjacency matrices (Le et al., 2017; Lei and Rinaldo, 2015; Rohe et al.,

2011; Sarkar and Bickel, 2015; Tang and Priebe, 2018). Towards these ends, recent

ongoing and concurrent efforts in the statistics, computer science, and mathematics

communities have been devoted to obtaining precise entrywise bounds on eigenvector

perturbations (Cape et al., 2019b; Eldridge et al., 2018; Fan et al., 2018). See also

Mao et al. (2017), Abbe et al. (2017), and Tang et al. (2017).

The content in this chapter distinguishes itself from the existing literature by

presenting both deviation and fluctuation results within a concise yet flexible signal-

plus-noise matrix model framework amenable to statistical applications. We extend
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the machinery and perturbation considerations introduced in Chapters 1 and 2 in

order to obtain more precise first-order bounds. We then demonstrate how careful

analysis within a unified framework leads to second-order multivariate distributional

limit theory. Our characterization of eigenvector perturbations relies upon a matrix

perturbation series expansion together with an approximate commutativity argument

for certain matrix products.

The results in this chapter apply to principal component analysis in spike matrix

models, including those of the form Y = λuu>+n−1/2E where u ∈ Rn denotes a spike

(signal) unit vector and E ∈ Rn×n denotes a random symmetric (noise) matrix. We

consider the super-critical regime, λ > 1, for which it is known, for example, that the

leading eigenvector û ofY has non-trivial correlation with u when E is drawn from the

Gaussian orthogonal ensemble, namely |〈û,u〉|2 → 1− 1/λ2 almost surely (Benaych-

Georges and Nadakuditi, 2011). This chapter obtains stronger local results for spike

estimation in the presence of sufficient eigenvector delocalization and provided the

signal in λ � 1 is sufficiently informative with respect to E. Loosely speaking, we

establish that ‖û−u‖∞ ≤ C(log n)cλ−1‖u‖∞ with high probability for some positive

constants C and c, and we prove that n(ûi−ui) is asymptotically normally distributed.

Our results hold more generally for r-dimensional spike models exhibiting eigenvalue

multiplicity and for E exhibiting a heterogeneous variance profile.
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3.2 Main results for eigenvector deviations

and fluctuations

Let M ≡Mn ∈ Rn×n be a symmetric matrix with block spectral decomposition

M ≡ [U|U⊥][Λ⊕Λ⊥][U|U⊥]> = UΛU> + U⊥Λ⊥U>⊥, (3.1)

where the diagonal matrix Λ ∈ Rr×r contains the r largest-in-magnitude nonzero

eigenvalues of M with |Λ1,1| ≥ · · · ≥ |Λr,r| > 0, and where U ∈ On,r is an n × r

matrix whose orthonormal columns are the corresponding eigenvectors of M. The

diagonal matrix Λ⊥ ∈ R(n−r)×(n−r) contains the remaining n − r eigenvalues of M

with the associated matrix of orthonormal eigenvectors U⊥ ∈ On,(n−r). Let E ∈ Rn×n

be a symmetric matrix, and write the perturbation of M by E as M̂ ≡ M + E =

ÛΛ̂Û
>

+ Û⊥Λ̂⊥Û
>
⊥.

Assumption 1. Let ρn denote an n-dependent scaling parameter where (0, 1] 3 ρn →

cρ ∈ [0, 1] as n→∞, with nρn ≥ c1(log n)c2 for some constants c1, c2 ≥ 1.

Assumption 2. There exist constants C, c > 0 such that for all n ≥ n0(C, c), |Λr,r| ≥

c(nρn) and |Λ1,1||Λr,r|−1 ≤ C, while Λ⊥ ≡ 0.

Assumption 3. There exist constants C, c > 0 such that ‖E‖2 ≤ C(nρn)1/2 with

probability at least 1− n−c for n ≥ n0(C, c), written as ‖E‖2 = OP{(nρn)1/2}.
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Assumption 1 introduces a sparsity scaling factor ρn for additional flexibility.

This chapter considers the large-n regime and often suppresses the dependence of

(sequences of) matrices on n for notational convenience.

Assumption 2 specifies the magnitude of the leading eigenvalues corresponding to

the leading eigenvectors of interest. For simplicity and specificity, all leading eigen-

values are taken to be of the same prescribed order, and the remaining eigenvalues are

assumed to vanish. Remark 9 briefly addresses the situation when the leading eigen-

values differ in order of magnitude, when Λ⊥ 6= 0, and when the (spike) dimension r

is unknown.

Assumption 3 specifies that the random matrix E is concentrated in spectral norm

in the classical probabilistic sense. Such concentration holds widely for random matrix

models where E is centered, in which case M̂ has low rank expectation equal to M.

The advantage of Assumption 3 when coupled with Assumption 2 is that, together

with an application of Weyl’s inequality (Bhatia, 1997, Corollary 3.2.6), the implicit

signal-to-noise ratio terms behave as ‖E‖2|Λr,r|−1, ‖E‖2|Λ̂r,r|−1 = OP{(nρn)−1/2}. It

is straightforward to adapt our analysis and results under less explicit assumptions,

albeit at the expense of succinctness and clarity.

Below, Assumption 4 specifies an additional probabilistic concentration require-

ment that arises in conjunction with the model flexibility introduced via the sparsity

scaling factor ρn in Assumption 1. The notation d·e used below denotes the ceiling

function.
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Assumption 4. There exist constants CE, ν > 0, ξ > 1 such that for all 1 ≤ k ≤

k(n) = dlog n/ log(nρn)e, for each standard basis vector ei, and for each column vector

u of U,

|〈Eku, ei〉| ≤ (CEnρn)k/2(log n)kξ‖u‖∞ (3.2)

with probability at least 1− exp{−ν(log n)ξ} provided n ≥ n0(CE, ν, ξ).

Assumption 4 states a higher-order concentration estimate that reflects behavior

exhibited by a broad class of random symmetric matrices including Wigner matrices

whose entries exhibit sub-exponential decay and nonidentical variances (Erdős et al.,

2013, modification of Lemma 7.10; Remark 2.4); see also Mao et al. (2017). For

example, using our notation, the proof of Lemma 7.10 in Erdős et al. (2013) establishes

that |〈(CEnρn)−k/2Eke, ei〉| ≤ (log n)kξ with high probability, where e is the vector of

all ones and the symmetric matrix E has independent mean zero entries with bounded

variances. Taking a union bound collectively over 1 ≤ k ≤ k(n), the standard basis

vectors in Rn, and the columns of U, yields an event that holds with probability at

least 1− n−c for some constant c > 0 for sufficiently large n.

The function k(n) is fundamentally model-dependent through its connection with

the sparsity factor ρn and satisfies (nρn)−k(n)/2 ≤ n−1/2 for n sufficiently large. In the

case when ρn ≡ 1, then k(n) ≡ 1, and the behavior reflected in Eq. (3.2) reduces to

commonly-encountered Bernstein-type probabilistic concentration. In contrast, when

ρn → 0 and, for example, (nρn) = nε for some ε ∈ (0, 1), then k(n) ≡ ε−1. If instead
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(nρn) = (log n)c2 for some c2 ≥ 1, then k(n) = dlog n/(c2 log log n)e. We remark that

all regimes in which ρn → cρ > 0 functionally correspond to the regime where ρn ≡ 1

by appropriate rescaling.

3.2.1 First-order approximation (deviations)

Under Assumptions 2 and 3, spectral norm analysis via the Davis-Kahan sin Θ

theorem (Bhatia, 1997, Section 7.3) yields that for large n there existsW ≡Wn ∈ Or

such that

‖Û−UW‖2 = OP
{

(nρn)−1/2
}
. (3.3)

Equation (3.3) provides a coarse benchmark bound for the quantity ‖Û−UW‖2→∞

(since ‖·‖2→∞ ≤ ‖·‖2), a quantity which is shown below to at times be much smaller.

Theorem 19. Suppose that Assumptions 1–4 hold and that nρn = ω{(log n)2ξ} with

r1/2 ≤ (log n)ξ. Then there exists W ≡Wn ∈ Or such that

‖Û−UW‖2→∞ = OP
[
(nρn)−1/2 ×min

{
r1/2(log n)ξ‖U‖2→∞, 1

}]
. (3.4)

The bound obtained by two-to-infinity norm methods in Eq. (3.4) is demonstrably

superior to the bound implied by Eq. (3.3) when r1/2(log n)ξ‖U‖2→∞ → 0 as n→∞,

namely when ‖U‖2→∞ → 0 sufficiently quickly. Such behavior arises both in theory

and in applications, including under the guise of eigenvector delocalization (Erdős
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et al., 2013; Rudelson and Vershynin, 2015) and of subspace basis coherence (Candès

and Recht, 2009).

The proof of Theorem 19 first proceeds by way of refined deterministic matrix de-

compositions and then subsequently leverages the aforementioned probabilistic con-

centration assumptions. Our proof framework further permits second-order analysis,

culminating in Theorem 21 in Section 3.2.2. In the process of proving Theorem 21

we also prove Theorem 20, an extension and refinement of Theorem 19. Proof details

are provided Section 6.2.

Theorem 20. Suppose that Assumptions 1–4 hold and that Eq. (3.2) holds for k

up to k(n) + 1. Suppose nρn = ω{(log n)2ξ} and r1/2 ≤ (log n)ξ. Then there exists

W ≡Wn ∈ Or such that

Û−UW = EUΛ−1W + R (3.5)

for some matrix R ∈ Rn×r satisfying

‖R‖2→∞ = OP
[
(nρn)−1 × r × max

{
(log n)2ξ, ‖U>EU‖2 + 1

}
× ‖U‖2→∞

]
.

Moreover,

‖EUΛ−1W‖2→∞ = OP
{

(nρn)−1/2 × r1/2(log n)ξ‖U‖2→∞
}
.
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Theorem 20 provides a collective eigenvector (i.e., subspace) characterization of

the relationship between the leading eigenvectors of M and M̂ via the perturbation

E, summarized as

Û ≈ M̂UΛ−1W = UW + EUΛ−1W.

The unperturbed eigenvectors satisfy UW ≡ MUΛ−1W, leading to the striking

observation that the eigenvector perturbation characterization is approximately linear

in the perturbation E.

Remark 8. It always holds that ‖U>EU‖2 ≤ ‖E‖2, where “≤” can be replaced

by “�” upon invoking Hoeffding-type concentration or more generally (C, c, γ) con-

centration for suitable choices of E (O’Rourke et al., 2018). Moreover, ‖R‖2→∞ �

‖EUΛ−1W‖2→∞ holds with high probability in Theorem 20 for numerous regimes in

which nρn →∞ and ‖U‖2→∞ → 0.

Remark 9. Strictly speaking, Eq. (3.3) holds even when the leading eigenvalues of

M are not of the same order of magnitude, for the bound is fundamentally given

by C‖E‖(|Λr,r| − ‖Λ⊥‖2)−1. Similarly, the first-order bounds in this chapter still

hold for Λ⊥ 6= 0 provided ‖Λ⊥‖2 is sufficiently small, in which case naïve analysis

introduces additional terms of the form ‖Λ⊥‖2‖Λ−1‖2‖ sin Θ(Û,U)‖2. In practice the

exact spike dimension may be unknown, though it can often be consistently estimated

via the “elbow in the scree plot” approach (Zhu and Ghodsi, 2006) provided ‖E‖2 is

sufficiently small relative to the leading nonzero eigenvalues of M.
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3.2.2 Second-order limit theory (fluctuations)

This section specifies additional structure on M and E for the purpose of estab-

lishing second-order limit theory. Here, M is assumed to have strictly positive leading

eigenvalues, reminiscent of a spike covariance or kernel population matrix setting. It

is possible though more involved to obtain similar second-order results when M is

allowed to have both strictly positive and strictly negative leading eigenvalues of the

same order. Specifically, such modifications would give rise to considerations involving

structured orthogonal matrices and the indefinite orthogonal group.

Assumption 5. Suppose that M can be written as M ≡ ρnXX> ≡ UΛU> with

X = [X1| . . . |Xn]> ∈ Rn×r and (n−1X>X)→ Ξ ∈ Rr×r as n→∞ for some symmetric

invertible matrix Ξ. Also suppose that for a fixed index i, the scaled i-th row of EX,

written as (nρn)−1/2(EX)i = (nρn)−1/2(
∑n

j=1 EijXj), converges in distribution to a

centered multivariate normal random vector Yi ∈ Rr with second moment matrix

Γi ∈ Rr×r.

Theorem 21. Suppose that Assumptions 1–5 hold and that Eq. (3.2) holds for k up

to k(n) + 1. Suppose in addition that nρn = ω{(log n)2ξ}, r1/2 ≤ (log n)ξ, and

ρ−1/2
n × r ×max

{
(log n)2ξ, ‖U>EU‖2 + 1

}
× ‖U‖2→∞ → 0 (3.6)

in probability as n→∞. Let Ûi and Ui be column vectors denoting the i-th rows of

Û and U, respectively. Then there exist sequences of orthogonal matrices (W) and
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(WX) depending on n such that the random vector nρ1/2
n W>

X(WÛi−Ui) converges in

distribution to a centered multivariate normal random vector with covariance matrix

Σi = Ξ−3/2ΓiΞ
−3/2, i.e.

nρ1/2
n W>

X

(
WÛi −Ui

)
⇒ Nr(0,Σi). (3.7)

Equation (3.6) amounts to a mild regularity condition ensuring nρ1/2
n ‖R‖2→∞ → 0

in probability for R ≡ Rn ∈ Rn×r as in Theorem 20. This condition holds, for exam-

ple, when ‖U‖2→∞ = O{(log n)c3n−1/2}, in which case the left-hand side of Eq. (3.6)

can often be shown to behave as OP{(log n)c4(nρn)−1/2} where (log n)c4(nρn)−1/2 → 0

as n → ∞. Such bounds on ‖U‖2→∞ arise when (maxi ‖Xi‖2)/(mini ‖Xi‖2) is at

most polylogarithmic in n.

Remark 10 (Example: matrixM with kernel-type structure). Let F be a probability

distribution defined on X ⊆ Rr, and let X1, . . . , Xn ∼ F be independent random

vectors with invertible second moment matrix Ξ ∈ Rr×r. For X = [X1| . . . |Xn]> ∈

Rn×r, letM = ρnXX> ≡ UΛU>, so for each n there exists an r×r orthogonal matrix

WX such that ρ1/2
n X = UΛ1/2WX. The strong law of large numbers guarantees that

(n−1X>X)→ Ξ almost surely as n→∞, and soM has r eigenvalues of order Θ(nρn)

asymptotically almost surely. Moreover, ‖U‖2→∞ ≤ Cn−1/2‖X‖2→∞ asymptotically

almost surely for some constant C > 0, where ‖X‖2→∞ can be suitably controlled

by imposing additional assumptions, such as taking X to be bounded or imposing
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moment assumptions on ‖X1‖2. Conditioning on X yields a deterministic choice of

M for the purposes of Assumption 5.

Remark 11 (Example: matrix E and multivariate normality). To continue the dis-

cussion from Remark 10, let all the entries of E be centered and independent up

to symmetry with common variance σ2
E > 0. Then, by the classical multivariate

central limit theorem, the asymptotic normality condition in Assumption 5 holds

and nρ
1/2
n W>

X(WÛi − Ui) ⇒ Nr(0, σ
2
EΞ−2) by Theorem 21. There are a variety

of other regimes in which the multivariate central limit theorem can be invoked for

(nρn)−1/2(
∑n

j=1 EijXj) in order to satisfy the normality condition in Assumption 5,

including when the entries of E have heterogeneous variances. In practice, we remark

that Assumption 5 is structurally milder than Assumption 4 with respect to E.

3.3 Simulation examples

3.3.1 Stochastic block models

The K-block stochastic block model (Holland et al., 1983) is a simple yet ubiqui-

tous random graph model in which vertices are assigned to one of K possible com-

munities (blocks) and where the adjacency of any two vertices is conditionally inde-

pendent given the two vertices’ community memberships. For stochastic block model

graphs on n vertices, the binary symmetric adjacency matrix A ∈ {0, 1}n×n can be
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viewed as an additive perturbation of a (low rank) population edge probability matrix

P ∈ [0, 1]n×n, A = P+E, where for K-block model graphs the matrix P corresponds

to an appropriate dilation of the block edge probability matrix B ∈ [0, 1]K×K . In the

language of this chapter, M̂ = A and M = P. It can be verified that versions of the

aforementioned assumptions and hypotheses hold for the following examples. Here

we set ρn ≡ 1.

Consider n-vertex graphs arising from the three-block stochastic block model

with equal block sizes where the within-block and between-block Bernoulli edge

probabilities are given by Bi,i = 0.5 for i = 1, 2, 3 and Bi,j = 0.3 for i 6= j, re-

spectively. Here rank(M) = 3, and the second-largest eigenvalue of M has mul-

tiplicity two. Figure 3.1 (left) plots the empirical mean and 95% empirical confi-

dence interval for ‖Û −UW‖2→∞ computed from 100 independent simulated adja-

cency matrices for each value of n. Figure 3.1 (left) also plots the function φ(n) =

{λ−1/2
3 (M)}(log n)n−1/2 which for large n captures the behavior of the leading order

term in Theorem 20. This illustration does not pursue optimal constants or logarith-

mic factors. Here λ3(M) = Θ(nρn) = Θ{(nρn)1/2λ} with respect to λ at the end of

Section 3.1.

Figure 3.1 (right) shows a scatter plot of the (uncentered, block-conditional) scaled

leading eigenvector components for an n = 200 vertex graph arising from a two-block

model with 40% of the vertices belonging to the first block and where the block edge

probability matrix B has entries B1,1 = 0.5, B1,2 = B2,1 = 0.3, and B2,2 = 0.3. This
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Figure 3.1: (Left plot) First-order simulations for the three-block model with
number of vertices n on the x-axis and values of ‖Û−UW‖2→∞ on the y-axis. Vertical
bars depict 95% empirical confidence intervals, and the solid line reflects Theorem 20.
(Right plot) Second-order simulations for the two-block model with n = 200 where
point shape reflects the block membership of the corresponding vertices. Dashed
ellipses give the 95% level curves for the empirical distributions. Solid ellipses give
the 95% level curves for the theoretical distributions according to Theorem 21.

small-n example is complemented by additional simulation results provided below.

Table 3.1 shows block-conditional sample covariance matrix estimates for the centered

random vectors nρ1/2
n W>

X(WÛi−Ui). Also shown are the corresponding theoretical

covariance matrices.

We remark that the normalized random (row) vectors are jointly dependent but

with decaying pairwise correlations; rows within any fixed finite collection are prov-

ably asymptotically independent as n→∞.
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Table 3.1: SBM example: empirical and theoretical covariance matrices

n 1000 2000 ∞

Σ̂1

[
14.11 −36.08
−36.08 110.13

] [
14.94 −36.85
−36.85 108.55

] [
15.14 −38.05
−38.05 112.34

]

Σ̂2

[
11.76 −30.09
−30.09 93.07

] [
12.91 −33.04
−33.04 101.64

] [
13.12 −33.93
−33.93 103.94

]

3.3.2 Spiked matrix models

Figure 3.2 provides two additional examples illustrating Theorem 21 for one and

two-dimensional spiked matrix models, written in the rescaled form M̂ = λUU>+E

with ρn ≡ 1. In the left plot, λ = n, U = n−1/2e ∈ Rn, and Eij ∼ Laplace(0, 2−1/2)

independently for i ≤ j with Eij = Eji. Here Ξ is the one-dimensional identity

matrix, i.e. Ξ = I1, and (nρn)−1/2(EX)i ⇒ N1(0, 1) by the central limit theorem, so

for each fixed row i Theorem 21 yields convergence in distribution to N1(0, 1). In

the right plot, λ = n and Uij = n−1/2 for 1 ≤ i ≤ n, j = 1, 1 ≤ i ≤ n/2, j = 2

with Uij = −n−1/2 otherwise. In addition, Eij ∼ Uniform[−1, 1] independently

for i ≤ j with Eij = Eji, so Var(Eij) = 1/3. Here (nρn)−1/2(EX)i converges in

distribution to a centered multivariate normal random variable with covariance matrix

Γi = (1/3)I2 ∈ R2×2 by the multivariate central limit theorem, while the second

moment matrix for the rows Xi in Assumption 5 is simply Ξ = I2. Theorem 21

therefore yields nρ1/2
n W>

X(WÛi − Ui) ⇒ N2(µ,Σi), where µ = (0, 0)> ∈ R2 and

Σi = (1/3)I2 ∈ R2×2. Plots depict all vectors computed from a single simulated

adjacency matrix.
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Figure 3.2: (Left plot) One-dimensional simulation for n = 500 with empirical
(dashed line) and theoretical (solid line) eigenvector fluctuation density. (Right plot)
Two-dimensional simulation for n = 500 where the dashed ellipse gives the 95% level
curve for the empirical distribution, and the solid ellipse gives the 95% level curve for
the row-wise theoretical distribution.
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Chapter 4

Eigenvalue concentration and graph

inference

4.1 Overview of Chapter 4

Eigenvalues and eigenvectors are structurally fundamental quantities associated

with matrices and are widely studied throughout mathematics, statistics, and en-

gineering disciplines. For example, given an observed graph, the eigenvalues and

eigenvectors of associated matrix representations, such as the adjacency matrix or

Laplacian matrix, encode structural information about the graph (e.g., community

structure, connectivity (Chung, 1997)). In the context of certain random graph mod-

els, the eigenvalues and eigenvectors associated with the underlying matrix-valued

model parameter, the edge probability matrix, exhibit similar information. It is
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therefore natural to study how “close” the eigenvalues and eigenvectors of a graph are

to the underlying model quantities.

In this chapter we consider simple, undirected random graphs on n vertices gen-

erated via the inhomogeneous Erdős–Rényi model (IERM) (Bollobás et al., 2007;

Hoff et al., 2002), G(n,P), where P := (Pij) ∈ [0, 1]n×n denotes the (symmetric)

edge probability matrix. This independent edge model generalizes numerous widely-

studied random graph models including the classical Erdős–Rényi model (Erdős and

Rényi, 1959), the stochastic block model (Holland et al., 1983), and the random dot

product graph model (Nickel, 2006; Young and Scheinerman, 2007). For G ∼ G(n,P),

the (symmetric) adjacency matrix, A ≡ AG ∈ {0, 1}n×n, has entries that are inde-

pendently distributed according to Aij ∼ Bernoulli(Pij) for all i ≤ j. This yields

P ≡ E[A], where E[·] denotes probabilistic expectation.

We focus our attention on the eigenvalues of A and P. Specifically, we consider

the eigenvalues in pairs (e.g., the largest eigenvalues of A and of P form a pair, as

do the second-largest eigenvalues of each matrix, etc.). We obtain bounds on the

distance between eigenvalues in certain “signal pairs”, thereby and therein demon-

strating a local sense in which random graphs concentrate. Note that in the random

graph literature, the term concentration is primarily used to describe global, uniform

behavior via the spectral norm quantity ‖A− E[A]‖2.

The following description provides an overview of our results for the IERM set-

ting. Given a collection of consecutive, ordered eigenvalues of P which are sufficiently
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separated from the remainder of the spectrum and conditional on that the correspond-

ing eigenvalues of A are not near the remainder of the spectrum of either A or P,

then Theorems 26 and 27 yield high-probability bounds on the distances between

the eigenvalues in each pair. The individual, pair-specific (i.e., local) bounds we ob-

tain stand in contrast to weaker bounds which hold uniformly for all eigenvalue pairs

(e.g., bounds implied by Weyl’s inequality (Horn and Johnson, 2012)). Our results

hold even in the presence of eigenvalue multiplicity.

We demonstrate that when the matrix P has low rank, our results compare favor-

ably with the recent study of low rank matrices undergoing random perturbation in

O’Rourke et al. (2018) (e.g., see our Example 1). We also demonstrate that our results

can lead to meaningful estimation in high rank settings (e.g., see our Example 2).

After presenting our main theoretical results, we then apply the theory in this

chapter to both hypothesis testing and change-point detection for random graphs.

Moreover, we generalize our results beyond the IERM setting to obtain high-probability

bounds for perturbations of singular values of rectangular matrices in a quite general

random matrix noise setting.

Broadly speaking, we adapt the original, deterministic setting in a paper by

T. Kato (Kato, 1950) to a new setting involving randomness, and this approach

is novel in the context of random graphs, random matrix theory, and statistical in-

ference for random graphs. We further detail the key modifications and differences

between our work and Kato (1950) in our subsequent remarks and proofs. The present

62



CHAPTER 4. KATO–TEMPLE INEQUALITY AND EIGENVALUES

chapter also stands in contrast to a deterministic generalization of the Kato–Temple

inequality in Harrell (1978).

4.1.1 Inhomogeneous random graphs

In the inhomogeneous random graph literature, concentration bounds have been

known for some time for each eigenvalue of A, denoted λi(A), both around its median

and around its expectation, E[λi(A)] (Alon et al., 2002). Unfortunately, since the

latter quantities are inaccessible in practice, such bounds are of limited practical use.

Moreover, in general E[λi(A)] 6= λi(E[A]).

By way of contrast, numerous results in the literature bound the spectral norm

matrix difference ‖A−E[A]‖2, thereby immediately and uniformly bounding each of

the eigenvalue differences |λi(A)− λi(E[A])| via an application of Weyl’s inequality.

For example, Oliveira (2010) proved an asymptotically almost surely spectral norm

bound of ‖A − E[A]‖2 = O(
√

∆ log n) for ∆ = Ω(log(n)) where ∆ ≡ ∆(n) denotes

the maximum expected degree of a graph. In Lu and Peng (2013) the above bound

is improved to ‖A − E[A]‖2 ≤ (2 + o(1))
√

∆ under the stronger assumption that

∆ = ω(log4 n) with further refinement being subsequently obtained in Lei and Rinaldo

(2015). We on the other hand show that under certain conditions, for particular

eigenvalue pairs, one can obtain tighter and non-uniform high probability bounds of

the form |λi(A)− λi(E[A])| = O(logδ n) for small δ > 0.

Spectral theory for random graphs overlaps with the random matrix theory liter-
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ature. There, asymptotic analysis includes proving, for example, convergence of the

empirical spectral distribution to a limiting measure (Ding and Jiang, 2010). Related

approaches to studying the spectrum of random graphs consider normalized versions

of the adjacency matrix (Le et al., 2017) and employ standard random matrix theory

techniques such as the Stieltjes transform method (Avrachenkov et al., 2015; Zhang

et al., 2014). In contrast, we do not study normalized versions of the adjacency or

the edge probability matrix. In this chapter, our aim is to demonstrate the usefulness

of adapting and applying the eigenvalue-centric Kato–Temple framework.

The stochastic block model (SBM) offers an example of an inhomogeneous random

graph model which is wildly popular in the literature (Bickel and Sarkar, 2013; Karrer

and Newman, 2011; Lei, 2016; Lei and Rinaldo, 2015; Zhao et al., 2012) and in which

our results apply to the top (signal) eigenvalues of A and P. Previously, the authors

in Athreya et al. (2016) obtained a collective deviation bound on the top eigenvalues

of A and P for certain stochastic block model graphs in order to prove the main

limit theorem therein. Our Theorem 26 improves upon Lemma 2 in Athreya et al.

(2016) by removing a distinct eigenvalue assumption and by obtaining stronger high-

probability deviation bounds for pairs of top eigenvalues of A and P which are of the

same order. This implies a statistical hypothesis testing regime for random graphs

which is discussed further in Section 4.4.

The remainder of this chapter is organized as follows. In Section 4.2 we introduce

notation and the Kato–Temple eigenvalue perturbation framework. In Section 4.3
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we present our results for random graphs and more generally for matrix perturbation

theory. There we also include illustrative examples together with comparative analysis

involving recent results in the literature. In Section 4.4 we discuss applications to

problems involving graph inference. Section 6.3 contains the proofs of our results.

4.2 Problem setup for eigenvalue concentra-

tion

Let 〈·, ·〉 denote the standard Euclidean inner (dot) product between two vectors,

‖·‖ denote the vector norm induced by the dot product, and ‖·‖2 denote the spectral

norm of a matrix. The identity matrix is implicitly understood when we write the

difference of a matrix with a scalar. In this chapter, O(·), Ω(·), and Θ(·) denote

standard big-O, big-Omega, and big-Theta notation, respectively, while o(·) and ω(·)

denote standard little-o and little-omega notation, respectively.

As prefaced in Section 4.1, we consider simple, undirected random graphs on n

vertices generated by the inhomogeneous Erdős–Rényi model, G ∼ G(n,P), via the

corresponding (binary, symmetric) adjacency matrix A ≡ AG. Given an open interval

in the positive half of the real line, (α, β) ⊂ R>0, we denote the d eigenvalues of P

that lie in this interval (locally) by

α < λ1(P) ≤ λ2(P) ≤ · · · ≤ λd(P) < β, (4.1)
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and similarly for A, noting that for A this amounts to a probabilistic statement. By

symmetry one can handle the case when the interval lies in the negative half of the

real line. We are principally interested in eigenvalues that are large in magnitude, so

we do not consider the case when the underlying interval contains the origin.

To highlight the Kato–Temple framework for bounding eigenvalues, we now repro-

duce two lemmas from Kato (1950) along with the Kato–Temple inequality as stated

in Harrell (1978) (see Theorem 24 below).1 These results all hold in the following

common setting.

Let H be a self-adjoint operator on a Hilbert space. Assume a unit vector
w is in the domain of H and define η := 〈Hw,w〉 along with ε := ‖(H−
ηI)w‖, noting that η2 + ε2 = ‖Hw‖2. The quantity η may be viewed
as an “approximate eigenvalue” of H corresponding to the “approximate
eigenvector” w, while ε represents a scalar residual term.

Lemma 22 (Lemma 1 in Kato (1950)). For every α such that α < η (where α = −∞

is permitted), the interval (α, η + ε2

η−α ] contains a point in the spectrum of H.

Lemma 23 (Lemma 2 in Kato (1950)). For every β such that β > η (where β =∞

is permitted), the interval [η − ε2

β−η , β) contains a point in the spectrum of H.

Theorem 24 (Kato–Temple inequality; Theorem 2 in Harrell (1978)). Suppose that

ε2 < (β − η)(η − α) where α < β. Then spectrum(H) ∩ (α, β) 6= ∅. Moreover, if the
1Of primary importance in this chapter is the extension of Theorem 24 to multiple eigenvalues

as presented in Kato (1950). The original statement of the extension to multiple eigenvalues is more
involved and therefore omitted for simplicity.
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only point of the spectrum of H in the interval (α, β) is the eigenvalue λ(H), then

− ε2

β − η
≤ λ(H)− η ≤ ε2

η − α
.

Remark 12 (Hermitian dilation). Given an m × n real matrix M, it will be useful

to consider the corresponding real symmetric (m + n) × (m + n) Hermitian dilation

matrix M̃ given by

M̃ :=

 0 M

M> 0

 .
It is well-known that the non-zero eigenvalues of M̃ correspond to the signed singular

values of M (see Theorem 7.3.3 in Horn and Johnson (2012)). This correspondence

between the singular values of arbitrary matrices and the eigenvalues of Hermitian

matrices allows our results to generalize beyond the IERM setting to the more general

study of matrix perturbation theory for singular values in a straightforward manner.

4.3 Results for eigenvalue concentration

4.3.1 Results for random graphs

In the IERM setting, a graph’s adjacency matrix can be written as A = P + E

where E := A−P is a random matrix and P is the (deterministic) expectation of A.

We begin with a preliminary observation concerning the tail behavior of A−P which
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will subsequently be invoked for the purpose of obtaining standard union bounds.

The proof follows from a straightforward application of Hoeffding’s inequality.

Proposition 25 (General IERM concentration). Let u,v ∈ Rn denote (non-random)

unit vectors. Then for any t > 0,

P[|〈(A−P)u,v〉| > t] ≤ 2 exp(−t2). (4.2)

It is indeed possible to invoke more refined concentration inequalities than Propo-

sition 25 in the presence of additional structure (e.g., when all entries of P have

uniformly very small magnitude). Doing so is particularly useful when it is simul-

taneously possible to obtain a strong bound on ‖A − P‖2. This observation will

be made clearer in the context of Theorem 26 below. Furthermore, consideration of

Proposition 25 will facilitate the subsequent presentation of our generalized results

which extend beyond the IERM setting.

Remark 13. In this chapter the main diagonal elements of P are allowed to be strictly

positive, in which case realizations of A need not necessarily be hollow (i.e., observed

graphs may have self-loops). To avoid graphs with self-loops, one may either condition

on the event that A is hollow or set the main diagonal of P to be zero. In the former

case, note that P ≡ E[A] no longer holds on the main diagonal. In the latter case, a

modified version of Proposition 25 holds.

We now present our main results for the IERM setting. The proofs, which are
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located in Section 6.3, also formulate a bound for the special case when the upper

bound threshold β may be chosen to be infinity. This special case is particularly

useful in applications.

Theorem 26 (IERM eigenvalue perturbation bounds, conditional version). Let the

matrices A ∈ {0, 1}n×n and P ∈ [0, 1]n×n correspond to the IERM setting described

in Section 4.2. Suppose the interval (α, β) ⊂ R>0 contains precisely d eigenvalues

of P, λ1(P) ≤ λ2(P) ≤ · · · ≤ λd(P) (possibly with multiplicity). Condition on the

event that (α, β) contains precisely d eigenvalues of A, {λi(A)}di=1, as well as the

set {〈Awi,wi〉}di=1 where {wi}di=1 is an orthonormal collection of eigenvectors of P

corresponding to the eigenvalues {λi(P)}di=1. Fix k ∈ [d]. Define l := (d − k + 1).

Then, for t > 0,

λk(A) ≥ λk(P)− t− ζ−, (4.3)

where ζ− :=
l‖E‖22+((β−λk(P))+(λd(P)−λk(P))+3t)l(l−1)t

β−λd(P)−(l(l−1)+1)t
holds with probability at least 1 −(

l +
(
l
2

))
2 exp(−t2). Also, for t > 0,

λk(A) ≤ λk(P) + t+ ζ+, (4.4)

where ζ+ :=
k‖E‖22+(3λk(P)−α+3t)k(k−1)t

λ1(P)−α−(k(k−1)+1)t
with probability at least

1−
(
k +

(
k
2

))
2 exp(−t2). Moreover, the upper and lower bounds hold collectively with

probability at least 1−
(
d+

(
d
2

))
2 exp(−t2).
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Remark 14. Our proof depends upon several new observations with respect to Kato’s

original argument. In particular, for wi as defined above, the matrix [〈Awi,wj〉]di,j=1

need not be diagonal, so {wi}di=1 need not constitute an orthonormal collection of

“approximate eigenvectors” of A in the sense of Kato (1950). Instead, here the notion

of “approximate” may be interpreted via Proposition 25 as the source of randomness

which allows for Kato–Temple methodology to be adapted beyond the original deter-

ministic setting. Of additional note is that the vectors wi as defined in this chapter

agree in function and notation with Kato’s original paper, the operational distinction

being that our setting provides a canonical choice for these vectors.

Remark 15. We note that the term ‖E‖2
2 in the formulation of both ζ+ and ζ−

can be replaced by an appropriate maximum over quantities of the form ‖Ewi‖2

(see Eq. (6.29)). That is to say, in the presence of additional local structure and

knowledge, one can refine the above bounds in Theorem 26.

Remark 16. In settings wherein the eigenvalues of interest have disparate orders

of magnitude, Kato–Temple methodology is not guaranteed to yield useful bounds.

This can be seen in the bounds’ dependence on the ratio of the eigenvalues of P in

Theorem 26. Moreover, within the Kato–Temple framework, poor separation from

the remainder of the spectrum also deteriorates the bounds, as is evident in the

denominators’ dependence on the interval endpoints α and β along with the smallest

and largest local eigenvalues of P. On the other hand, by further localizing, i.e.

by restricting to a subset of d′ < d eigenvalues in a particular interval, applying
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Theorem 26 to said fewer eigenvalue pairs may yield improved bounds (e.g., see

Example 1 and Remark 15).

Next, we formulate an unconditional version of Theorem 26. For both simplicity

and the purpose of applications, Theorem 27 is stated in terms of the largest singular

values in the IERM setting.

Theorem 27 (IERM singular value perturbation bounds, unconditional version).

Let the matrices A ∈ {0, 1}n×n and P ∈ [0, 1]n×n correspond to the IERM setting

described in Section 4.2 with maximum expected degree (via P) given by ∆ ≡ ∆(n).

Denote the d+ 1 largest singular values of A by 0 ≤ σ̂0 < σ̂1 ≤ · · · ≤ σ̂d, and denote

the d + 1 largest singular values of P by 0 ≤ σ0 < σ1 ≤ · · · ≤ σd. Suppose that

∆ = ω(log4 n), σ1 ≥ C∆, and σ0 ≤ c∆ for some absolute constants C > c > 0. Let

δ ∈ (0, 1]. Then for each k ∈ [d], there exists some positive constant ck,d such that as

n→∞, with probability 1− o(1) involving δ,

|σ̂k − σk| ≤ ck,d
(
logδ n

)
. (4.5)

A similar version of Theorem 30 holds when ∆ = Ω(log n) under slightly different

assumptions on the entries of P for which one still has ‖A − P‖2 = O(
√

∆) with

high probability (Lei and Rinaldo, 2015). On a related yet different note, see Le

et al. (2017) for discussion of the sparsity regime ∆ = O(1) in which graphs fail to

concentrate in the classical sense.
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Remark 17 (Random dot product graph model). When the edge probability matrix

P can be written as P = XX> for some matrix X ∈ Rn×d with d� n, then the IERM

corresponds to the popular random dot product graph (RDPG) model (Young and

Scheinerman, 2007). In the random dot product graph model, the largest eigenvalues

of A and P are of statistical interest in that they represent spectral “signal” in the

model. These eigenvalues are separated from the remainder of their respective spectra

and lie in an interval of the form (α,∞) where, for example, α may be taken to be

O(‖A−P‖2).

Among its applications, the RDPGmodel has been used as a platform for modeling

graphs with hierarchical and community structure (Lyzinski et al., 2017). A central

limit theorem is known for the behavior of the top eigenvectors of adjacency matrices

arising from the RDPG model (Athreya et al., 2016), and this limit theorem relies

upon a lemma which collectively bounds the differences between top eigenvalues of A

and P but requires a stringent eigengap assumption. Namely, Lemma 2 in Athreya

et al. (2016) states that with high probability,

√√√√ d∑
i=1

|λi(A)− λi(P)|2 = O(δ−2
gap log n). (4.6)

In contrast, using Theorem 27 with σ0 := 0, we do not require the gap assumption
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δgap > 0 and still obtain that with high probability,

√√√√ d∑
i=1

|λi(A)− λi(P)|2 = O(log n). (4.7)

In practice, models involving repeated or arbitrarily close eigenvalues are prevalent

and of interest (e.g., Section 4.4.2). As such, the above improvement is nontrivial and

of practical significance.

Remark 18 (Latent position random graphs). Theorem 26 further extends to the

more general setting of latent position random graphs. There, the matrix P is viewed

as an operator [κ(Xi, Xj)]
n
i,j=1 where Xi and Xj are independent, identically dis-

tributed latent positions with distribution F , and the positive definite kernel, κ

(viewed as an integral operator), is not necessarily of finite fixed rank as n increases

(Hoff et al., 2002; Tang et al., 2013). Note that for the RDPG model, the kernel κ is

simply the standard Euclidean inner product between (latent position) vectors.

4.3.2 Results for matrix perturbation theory

The behavior of the random matrix A−P (i.e., see Proposition 25) represents a

specific instance of more general, widely-encountered probabilistic concentration as

discussed in O’Rourke et al. (2018) and formulated in the following definition (which

previously appeared in Chapter 2).
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Definition 28 ((C, c, γ) concentration (O’Rourke et al., 2018)). A m × n random

matrix E is said to be (C, c, γ)-concentrated if, given a trio of positive constants

(C, c, γ), for all unit vectors u ∈ Rn, v ∈ Rm, and for every t > 0,

P
[∣∣〈Eu,v〉∣∣ > t

]
≤ C exp

(
−ctγ

)
. (4.8)

In particular, the IERM setting corresponds to (C, c, γ) concentration where m =

n, C = γ = 2, and c = 1. For the Hermitian dilation discussed in Remark 12, one

has the following correspondence between E and Ẽ.

Lemma 29 (O’Rourke et al. (2018)). Let E ∈ Rm×n be (C, c, γ)-concentrated. Define

C̃ := 2C and c̃ := c/2γ. Then the matrix Ẽ ∈ Rm+n×m+n is (C̃, c̃, γ)-concentrated.

Definition 28 and Lemma 29 together with Remark 12 allow for Theorem 26 to be

generalized in a straightforward manner. We frame the generalization in the context

of a signal-plus-noise matrix model with tail probability bounds. In particular, replace

A with M̂ := M + E, thought of as an observed data matrix. Also replace P with

M, thought of as an underlying signal matrix, so that the matrix A−P becomes E,

thought of as an additive error matrix. We emphasize that the following generalization

is in terms of the singular values of M and M̂. This generalization resembles the

formulation of a result obtained in O’Rourke et al. (2018) using different methods;

however, unlike our Theorem 30, the bound in O’Rourke et al. (2018) depends upon

the rank of M and assumes that the rank is known.
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Given a matrixM ∈ Rm×n, write its singular value decomposition as M ≡ UΣV>

where Mvi = σiui holds for the normalized left (resp., right) singular vectors vi

(resp., ui) and singular values σi = Σii. For each i such that σi > 0, define w̃i ∈ Rm+n

to be the concatenated unit vector wi := 1√
2
(u>i ,v>i )>. Note that w̃i is an eigenvector

for M̃ with M̃w̃i = σiw̃i.

Theorem 30 (Singular value perturbation bounds, conditional version). For matrices

M,E ∈ Rm×n and M̂ := M + E, suppose that E is (C, c, γ)-concentrated for positive

constants C, c, γ > 0. Suppose the interval (α, β) ⊂ R>0 contains the largest d singular

values of M, denoted by 0 < σ1 ≤ σ2 ≤ · · · ≤ σd. Condition on the event that the

interval (α, β) contains precisely d singular values of M̂, denoted 0 < σ̂1 ≤ σ̂2 ≤

· · · ≤ σ̂d, as well as 〈
˜̂Mw̃i, w̃i〉 for 1 ≤ i ≤ d and unit vector w̃i as defined above. Fix

k ∈ [d]. Define l := (d− k + 1). Then for t > 0,

σ̂k ≥ σk − t− ζ−, (4.9)

where ζ− :=
l‖E‖22+((β−σk)+(σd−σk)+3t)l(l−1)t

β−σd−(l(l−1)+1)t
with probability at least

1−
(
l +
(
l
2

))
C̃ exp(−c̃tγ). Also, for t > 0,

σ̂k ≤ σk + t+ ζ+, (4.10)

where ζ+ :=
k‖E‖22+(3σk−α+3t)k(k−1)t

σ1−α−(k(k−1)+1)t
with probability at least

1−
(
k +

(
k
2

))
C̃ exp(−c̃tγ). Moreover, the upper and lower bound hold collectively with
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probability at least 1−
(
d+

(
d
2

))
C̃ exp(−c̃tγ).

As with the results in Section 4.3.1, Theorem 30 can be formulated uncondition-

ally and for collections of not–necessarily–the–largest singular values. Both of these

aspects are explored in greater detail in Example 2. The following technical lemma

will subsequently be employed in applications.

Lemma 31. Let E ∈ Rm×n be a (C, c, γ)-concentrated random matrix. Choose ε > 0

such that 2+ ε > 2 (2 log(9)/c)1/γ. Define cε,c,γ := (c(1 + ε/2)γ − 2 log(9)) > 0. Then,

P
[
‖E‖2 > (2 + ε)max{m,n}1/γ

]
≤ C exp(−cε,c,γmax{m,n}). (4.11)

If in addition m = n and E is assumed to be symmetric, then the quantity 2 log(9)

above may be replaced by log(9), an improvement.

4.3.3 Two illustrative examples

In the remainder of this section, we present two examples that highlight the use-

fulness and flexibility of Kato–Temple methodology. We begin with Example 1 which

presents a simple stochastic block model setting wherein our results compare favor-

ably with those in the recent work of O’Rourke et al. (2018), noting that in general

for similar settings, the corresponding results are often comparable.

Example 1 (Balanced affinity two block stochastic block model). Consider an n ver-

tex realization from a two block stochastic block model in which 0 < q < p < 1 where
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p and q denote the within–block and between–block edge probabilities, respectively.

Suppose each block contains n/2 of the graph’s vertices. The signal singular values

and maximum expected degree of this rank two model are given by

σ1(P) =
n

2
(p− q), σ2(P) =

n

2
(p+ q), and ∆ = σ2(P). (4.12)

For the purposes of large n comparison, view ‖E‖2 ≈ 2
√

∆ from Lu and Peng (2013)

and set the lower threshold α to be ‖E‖2. Define rp,q to be the edge probability-

dependent parameter rp,q := (p + q)/(p − q). Then via Kato–Temple methodology

applied jointly to σ1(P) and σ2(P), with probability approximately 0.99 when tKT ≥

2.55, for each singular value, respectively,

−3tKT ≤ σ̂1(A)− σ1(P) ≤ 4rp,q + tKT ,

−tKT ≤ σ̂2(A)− σ2(P) ≤ (8 + 6t)rp,q + tKT .

By the same approach, the bounds obtained in O’Rourke et al. (2018) are given by

−tOVW ≤ σ̂1(A)− σ1(P) ≤ 8
√

2rp,q +
√

2tOVW ,

−tOVW ≤ σ̂2(A)− σ2(P) ≤ 8 +
√

2tOVW .

Direct application of the results in O’Rourke et al. (2018) yields probability approx-

imately at least 0.99 for tOVW ≥ 11.6, though it appears upon further inspection
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that this can be improved to, for example, tOVW ≥ 5.6. The above joint analysis

demonstrates that our bounds are favorable for the pair {σ̂1(A), σ1(P)} whereas the

opposite is true for the pair {σ̂2(A), σ2(P)}.

We emphasize that here the upper bounds are of primary importance and interest.

Indeed, the (C, c, γ) property allows for straightforward lower bounds to be obtained

by epsilon net techniques together with the Courant–Fisher–Weyl min-max princi-

ple. For example, note that a single application of (C, c, γ)-concentration yields that

σ̂2(A)− σ2(P) ≥ −t with probability at least 1− C exp(−ctγ).

Among the advantages of Kato–Temple methodology is the ability to, in certain

cases, refine one’s initial analysis by further localizing the underlying interval (α, β).

This is possible in the current example wherein we can “zoom in” further on the

largest signal singular value. In particular, keeping the same indexing as above and

setting α to be ‖E‖2 + σ1(P), then for n large and with probability approximately

0.99, we have

−tKT ≤ σ̂2(A)− σ2(P) ≤ 2
(
p
q

+ 1
)

+ tKT . N

In contrast to the low rank setting of Example 1, Example 2 shows how our results

can be applied to the problem of estimating signal in a high rank matrix setting.

Example 2 (Estimating signal in a high rank spike model). Let m,n, p ∈ N and set
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q := m+ n+ p. Let M ∈ Rq×q be full rank with singular values given by the set

{1, . . . , 1︸ ︷︷ ︸
m times

, κ+ 1, . . . , κ+ 1︸ ︷︷ ︸
n times

, τ + κ+ 1, . . . , τ + κ+ 1︸ ︷︷ ︸
p times

},

where τ, κ > 0. By slight abuse of notation, denote the singular values of M up to

multiplicity by σ1 := 1, σ2 := κ+ 1, and σ3 := τ + κ+ 1.

Further suppose that E ∈ Rq×q has entries which are independent, identically

distributed standard normal random variables. It follows by Gaussian concentration

that E is (C, c, γ)-concentrated with parameters C = 2, c = 1
2
, and γ = 2, and so by

an application of Lemma 31 for ε = 4, then

P [‖E‖2 > 6
√
q] ≤ 2 exp

(
− 1

10
q
)
.

Define M̂ := M + E and organize the singular values of M̂ in correspondence with

the repeated singular values of M, namely write

{
{σ̂1,i1}mi1=1, {σ̂2,i2}ni2=1, {σ̂3,i3}

p
i3=1

}
.

Suppose that τ, κ > (2 × (6
√
q) + 1). Then we can use Weyl’s inequality as a pre-

liminary tool for selecting the threshold values α and β. In particular, such analysis
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yields that with high probability,

|σ̂1,i1 − 1| ≤ ‖E‖2 =⇒ 0 ≤ σ̂1,i1 ≤ 6
√
q + 1,

|σ̂2,i2 − (κ+ 1)| ≤ ‖E‖2 =⇒ 6
√
q + 2 < σ̂2,i2 < τ + κ− 6

√
q,

|σ̂3,i3 − (τ + κ+ 1)| ≤ ‖E‖2 =⇒ τ + κ+ 1− 6
√
q ≤ σ̂3,i3 ≤ τ + κ+ 1 + 6

√
q.

For the choices α = 6
√
q+ 2 and β = τ +κ−6

√
q, observe that {σ̂2,i2}ni2=1 ⊂ (α, β) ⊂

R>0 while simultaneously {1, κ+ 1, τ + κ+ 1}
⋂

(α, β) = {κ+ 1}. In this setting our

perturbation theorems apply for κ sufficiently large. Namely, choosing δ ∈ (0, 1] and

setting t = Θ(logδ q) yields that for each k ∈ [n] there exist positive constants c′ and

c′′ such that with high probability,

|σ̂2,k − σ2| ≤ c′t+ c′′.

To reiterate, this bound improves upon the bound implied by a naïve, terminal appli-

cation of Weyl’s inequality. Moreover, Example 2 demonstrates how Weyl’s inequality

may be invoked for the preliminary purpose of establishing threshold values when the

paired singular values (eigenvalues) correspond to the same index after ordering. N
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4.4 Applications to graph inference

4.4.1 Methods of graph inference

The field of statistical inference and modeling for graphs represents a burgeoning

area of research with implications for the social and natural sciences among other

disciplines (Goldenberg et al., 2010; Kolaczyk, 2009). Within the current body of

research, the pursuit of identifying and studying community structure within real–

world networks continues to receive widespread attention (Arias-Castro and Verzelen,

2014; Bickel and Sarkar, 2013; Fortunato, 2010; Newman and Girvan, 2004; Newman,

2006; Verzelen and Arias-Castro, 2015). Still another area of investigation involves

anomaly detection for time series of graphs by considering graph statistics such as the

total degree, number of triangles, and various scan statistics (Rukhin, 2009; Wang

et al., 2014). Here we apply our results to two such detection tasks.

4.4.2 Community detection via hypothesis testing

Here we view the problem of community detection through the lens of hypothesis

testing as in Arias-Castro and Verzelen (2014); Verzelen and Arias-Castro (2015). We

consider the simple setting of a balanced three block stochastic block model and the

problem of detecting differences in between-block communication. Namely, consider
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the block edge probability matrix and block assignment vector given by

Null model: B0 =


p q q

q p q

q q p

 and π0 =
(

1
3
, 1

3
, 1

3

)>
, (4.13)

where p = 0.81 and q = 0.2025. In this model, vertices have an equal probability of

belonging to each of the three blocks. Vertices within the same block have probability

p of being connected by an edge, whereas vertices in different blocks have probability

q of being connected by an edge.

As an aside, we note that this SBM may be cast in the language of random dot

product graphs for which the underlying distribution of latent positions F is a mixture

of point masses. Specifically, take F to be the discrete uniform distribution on the

vectors x1 ≈ (0.55, 0.32, 0.64)>, x2 ≈ (−0.55, 0.32, 0.64)>, and x3 ≈ (0,−0.64, 0.64)>

in R3 (see Remarks 17 and 18).

For a graph on n vertices from this three block model, condition on the graph

exhibiting equal block sizes, i.e., n1 = n2 = n3 = n/3. For the corresponding P

matrix, denoted Pn(B0), the non-trivial (signal) model eigenvalues themselves exhibit

multiplicity (hence Eq. (4.6) via Athreya et al. (2016) does not apply) and are

λ1(Pn(B0)) = λ2(Pn(B0)) =
n

3
(p− q) and λ3(Pn(B0)) =

n

3
(p+ 2q). (4.14)
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In contrast, consider an alternative model in which the first and second blocks

exhibit stronger between-block communication. This stronger communication is rep-

resented by an additional additive factor ε ∈ (0, p − q) in the block edge probability

matrix Bε, where ε is assumed to be bounded away from p− q for convenience.

Alternative model: Bε =


p q + ε q

q + ε p q

q q p

 and π1 =
(

1
3
, 1

3
, 1

3

)>
. (4.15)

Under Bε, the signal eigenvalues of Pn(Bε) (equiv., singular values) can be explicitly

computed as functions of p, q, n, and ε. They are given by

λ1(Pn(Bε)) =
n

3
(p− q − ε), λ2(Pn(Bε)) =

n

6
(2p+ q + ε−

√
9q2 + 2qε+ ε2),

λ3(Pn(Bε)) =
n

6
(2p+ q + ε+

√
9q2 + 2qε+ ε2).

Furthermore, the maximum expected degree of the model corresponding to Bε is given

by ∆ε = n
3
(p+ 2q + ε).

For ε > 0, now consider a simple null versus simple alternative hypothesis test

written as

H0 : B = B0 against HA : B = Bε. (4.16)

In what follows we choose the smallest signal eigenvalue as our test statistic and

denote it by Λ1. We compare our bounds obtained via Kato–Temple methodology
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with the large-sample approximation bounds implied by Lu and Peng (2013) for the

specified values n ∈ {6000, 9000, 12000, 15000}. Similar comparison can be carried

out with respect to the results in O’Rourke et al. (2018). Our bounds are competitive

even for conservative choices of t.

By Lemma 31 and Proposition 25, irrespective of ε > 0 above, we have the con-

centration inequality P [‖E‖2 > 3
√
n] ≤ 2 exp

(
− 1

20
n
)
. This spectral norm bound

allows us to invoke an unconditional version of Theorem 26. Specifically, for mod-

erate choices of t > 0, the bounds in Theorem 26 hold with probability at least

1− 12 exp(−t2)− 2 exp
(
− 1

20
n
)
. When n ≥ 6000, the choice t ≈ 2.66 yields probabil-

ity at least 0.99.

Using these concentration inequality results, we determine confidence intervals

which hold for Λ1 with probability at least 0.99 under H0 and HA, respectively.

We compute the value εn such that the confidence intervals under H0 and HA no

longer overlap for ε ∈ (εn, 0.2], emphasizing that smaller values of εn indicate superior

performance. This provides us with a region of the alternative in which the statistical

test has power at least 0.99. Our results are summarized in the numerical table

below. It is not too difficult to realize that the eigenvalue-based test considered here

has asymptotic power equal to one as n → ∞ for any choice of 0 < q < p < 1 and

ε ∈ (0, p− q). Moreover, as a consequence of Theorem 27 and subsequent discussion,

we make the following observation.

Proposition 32. Consider testing the hypothesis in Equation (4.16). Assume that
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Table 4.1: Local approximate confidence intervals for eigenvalues

n εn via Lu and Peng (2013) εn via this chapter

6000 0.1006 0.0407
9000 0.0818 0.0256
12000 0.0707 0.0187
15000 0.0631 0.0147

q ≡ qn = ω( logn
n

) with qn < pn. Then for nεn = ω(log n) and εn < pn − qn, the above

test using Λ1 has asymptotically full power.

Note that the above analysis investigates testing performance as a function of ε

for graphs with fixed block proportions. Next we investigate a setting wherein ε is

fixed and the sizes of the graph communities change.

4.4.3 Change-point detection

We now consider a stylized example of change-point detection via hypothesis test-

ing. Let T ∗ ≥ 1 and suppose that G1, G2, . . . , GT for T < T ∗ are Erdős–Rényi graphs

on n vertices, while for T ≥ T ∗ the graph GT is sampled according to a two block

stochastic block model with block edge probability matrix B =
[
pε p
p p

]
for pε := p+ ε

and ε > 0, with m vertices assigned to the first block and n−m vertices assigned to

the second block. We note that B encapsulates a notion of chatter anomaly, i.e., a

subset of the vertices in [n] exhibit altered communication behavior in an otherwise

stationary setting. For a given value of T , we are interested in testing the hypothesis

that T is a change-point in the collection {G1, G2, . . . , GT}. Given two graphs with
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adjacency matrices, A(T−1) and A(T ), this can be formulated as the problem of testing

the two-sample hypotheses

H0 : A(T−1) ∼ ER(n, p),A(T ) ∼ ER(n, p) against

HA : A(T−1) ∼ ER(n, p),A(T ) ∼ SBM(B,m, n−m).

We emphasize that in the above formulation, the parameter p in ER(n, p), the size

m of the chatter community, and the associated communication probability pε are

generally assumed to be unknown.

Many test statistics are available for this change-point detection problem, includ-

ing those based on graph invariant statistics (such as number of edges or number of

triangles) or those based on locality statistics (such as max degree or scan statistics).

For a given graph with adjacency matrix A, let N(i) = {j : Ai,j = 1} denote the

collection of vertices adjacent to vertex i. Furthermore,

• let Tk count the number of k-cliques in A for k ≥ 2;

• let δ(A) := maxi
∑

jAi,j be the max degree statistic of A;

• let Ψ(A) := maxi
∑

j,k∈N(i) Aj,k be the scan statistic of A.

These test statistics are widely used in anomaly detection for time series of graphs;

see Arias-Castro and Verzelen (2014); Priebe et al. (2005); Ranshous et al. (2015);

Wang et al. (2014) and the references therein for a survey of results and applications.
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One can then show that the test statistics based on T2 and T3 are consistent for

the above hypothesis test when m = Ω(
√
n) (Rukhin and Priebe, 2011; Tang et al.,

2013). More precisely, under the null hypothesis,

T2(A(T ))− T2(A(T−1))

n
√
p(1− p)

⇒ N(0, 1);
T3(A(T ))− T3(A(T−1))

n2p2
√
ppε

⇒ N(0, 1),

as n→∞, while under the alternative hypothesis,

T2(A(T ))− T2(A(T−1))

n
√
p(1− p)

⇒ N
( m(m− 1)ε

n
√
p(1− p)

, C1

)
;

T3(A(T ))− T3(A(T−1))

n2p2
√
ppε

⇒ N
( µn,m,p,ε
n2p2
√
ppε

, C2

)
,

as n→∞ for some positive constants C1 and C2 together with µn,m,p,ε := m3p3
ε/6 +

m2(n−m)p2pε + (m(n−m)2/2 + (n−m)3/6)p3− n3p3/6. Now, if m = ω(
√
n), then

m(m− 1)ε

n
√
p(1− p)

→∞;
µn,m,p,ε
n2p2
√
ppε
→∞,

as n → ∞, and thus both T2 and T3 are consistent for the above hypothesis test

when m = Ω(
√
n). Furthermore, Theorem 2 and Proposition 2 of Arias-Castro and

Verzelen (2014) indicate that T2 is asymptotically optimal, i.e., if m = o(
√
n) then

provided that

lim
n→∞

I(m,n, p, ε) := lim
n→∞

m
(
pε log pε

p
+ (1− pε) log 1−pε

1−p

)
2 log (n/m)

< 1, (4.17)
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no test statistic is consistent for testing the above hypotheses. Similarly, one can

also show that the test statistics based on δ(A) and Ψ(A) are consistent for the

above hypothesis test when m = Ω(
√
n log n); in particular, the (normalized) limiting

distributions of both δ(A(T )) − δ(A(T−1)) and Ψ(A(T )) − Ψ(A(T−1)) is the Gumbel

distribution (Rukhin and Priebe, 2011; Tang et al., 2013).

In the context of this chapter, one could also use a test statistic based on the

largest eigenvalue. Our earlier results indicate that, under the null hypothesis, with

high probability the largest eigenvalues of A(T ) and A(T−1) satisfy

|λmax(A(T ))− λmax(P(T ))| = O(1) and |λmax(A(T−1))− λmax(P(T−1))| = O(1),

along with |λmax(A(T )) − λmax(A(T−1))| = O(1). Meanwhile, under the alternative

hypothesis, when m = o(n), then with high probability

∣∣∣∣∣∣∣λmax(A(T ))− λmax(A(T−1))
∣∣∣− m2pε

np−mε

∣∣∣∣ = O(1).

Thus the largest eigenvalue test statistic is also consistent when m = Ω(
√
n).

The previous test statistics are all global test statistics in the sense that, if H0 is

rejected, the resulting test procedures do not extract the subset of the vertices which

exhibits anomalous behavior between A(T ) and A(T−1). One can construct related

local test statistics which do extract the subset of anomalous vertices, although the

resulting test procedure is computationally prohibitive. For example, assuming that
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m is known, we could replace Ψ(A) with the (modified) scan statistic Υm(A) =

max|S|=m T2(A|S) where A|S is the subgraph of A induced by the vertices in S and

the maximum is taken over all subsets S ⊂ [n] with |S| = m. Thus Υm(A) is the

maximum number of edges in any subgraph induced by m vertices of A. By Arias-

Castro and Verzelen (2014), the test statistic Υm(A(T )) − Υm(A(T−1)) is consistent

for the hypothesis test considered in this section whenever

lim
n→∞

I(m,n, p, ε) > 1.

Thus, for any fixed p and ε, the (modified) scan statistic is consistent when m =

Ω(log n) as n→∞. Using a similar idea, one can define a local variant of the largest

eigenvalue statistic as Λm(A) = max|S|=m λmax(A|S). By Theorem 26 and a union

bound over all
(
n
m

)
= O(nm) subsets S ⊆ [n] with |S| = m, we have that there exists

a constant C > 0 such that if T = C
√
m log n, then with high probability

|Λm(A(T ))− Λm(A(T−1))| = O(
√
m log n)

under the null hypothesis, whereas under the alternative hypothesis, with high prob-

ability ∣∣∣|Λm(A(T ))− Λm(A(T−1))| −mε
∣∣∣ = O(

√
m log n).

Thus for any fixed p and ε, the test statistic based on Λm is also consistent for the
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above hypothesis test whenever m = Ω(log n) as n→∞.

In summary, the results in Section 4.3 facilitate eigenvalue-based test statistics

for the change-point detection problem as presented in this section. Furthermore,

the resulting procedure is consistent whenever the size of the chatter community m

exceeds the threshold of detectability given in Arias-Castro and Verzelen (2014).
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Chapter 5

Spectral embedding performance and

elucidating network structure in

stochastic block model graphs

5.1 Preface to Chapter 5

The stochastic block model (SBM) (Holland et al., 1983) is a simple yet ubiqui-

tous network model capable of reflecting community structure that has been widely

studied via spectral methods in the mathematics, statistics, physics, and engineer-

ing communities. Each vertex in an n-vertex K-block SBM graph belongs to one of

the K blocks (communities), and the probability of any two vertices sharing an edge

depends exclusively on the vertices’ block assignments (memberships).
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This chapter provides a detailed comparison of two popular spectral embedding

procedures by synthesizing recent advances in random graph limit theory. We un-

dertake an extensive investigation of network structure for stochastic block model

graphs by considering sub-models exhibiting various functional relationships, sym-

metries, and geometric properties within the inherent parameter space consisting of

block membership probabilities and block edge probabilities. We also provide a col-

lection of figures depicting relative spectral embedding performance as a function

of the SBM parameter space for a range of sub-models exhibiting different forms of

network structure, specifically homogeneous community structure, affinity structure,

core-periphery structure, and (un)balanced block sizes (see Section 5.5).

The rest of this chapter is organized as follows.

• Section 5.2 introduces the formal setting under consideration and contextualizes

this work with respect to the existing statistical network analysis literature.

• Section 5.3 establishes notation, presents the generalized random dot product

graph model (of which the stochastic block model is a special case), defines the

adjacency and Laplacian spectral embeddings, presents the corresponding spec-

tral embedding limit theorems, and specifies the notion of sparsity considered

in this chapter.

• Section 5.4 motivates and formulates a measure of large-sample relative spectral

embedding performance via Chernoff information.
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• Section 5.5 presents a treatment of the two-block SBM and certain K-block

SBMs whereby we elucidate the relationship between spectral embedding per-

formance and network model structure.

• Section 5.6 offers further discussion and some concluding remarks.

Later in Chapter 6, Section 6.4 provides additional supplementary technical material

and proof details.

5.2 Stochastic block models

Formally, we consider the following stochastic block model setting.

Definition 33 (K-block stochastic block model). LetK ≥ 2 be a positive integer and

π be a vector in the interior of the (K− 1)-dimensional unit simplex in RK . Let B ∈

(0, 1)K×K be a symmetric matrix with distinct rows. We say (A, τ ) ∼ SBM(B,π)

with scaling factor 0 < ρn ≤ 1 provided the following conditions hold. Firstly,

τ ≡ (τ1, . . . , τn)> where τi are independent and identically distributed (i.i.d.) random

variables with P[τi = k] = πk. Then, A ∈ {0, 1}n×n denotes a symmetric (adjacency)

matrix such that, conditioned on τ , for all i ≤ j, the entries Aij are independent

Bernoulli random variables with E[Aij] = ρnBτi,τj . If only A is observed, namely if

τ is integrated out from (A, τ ), then we write A ∼ SBM(B,π).1 N

1The distinct row assumption removes potential redundancy with respect to block connectivity
and labeling. Namely, if rows k and k′ of B′ are identical, then their corresponding blocks are indis-
tinguishable and can without loss of generality be merged to form a reduced block edge probability
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The SBM is an example of an inhomogeneous Erdős–Rényi random graph model

(Bollobás et al., 2007) and reduces to the classical Erdős–Rényi model (Erdős and

Rényi, 1959) in the degenerate case when all the entries of B are identical. This model

enjoys an extensive body of literature focused on spectral methods (Von Luxburg,

2007) for statistical estimation, inference, and community detection (Fishkind et al.,

2013; Lei and Rinaldo, 2015; McSherry, 2001; Rohe et al., 2011; Sarkar and Bickel,

2015; Sussman et al., 2012). Considerable effort has also been devoted to the infor-

mation theoretic and computational investigation of the SBM as a result of interest in

the community detection problem; for an overview see Abbe (2018). Popular variants

of the SBM include the mixed-membership stochastic block model (Airoldi et al.,

2008) and the degree-corrected stochastic block model (Karrer and Newman, 2011).

Within the statistics literature, substantial attention has been paid to the class of

K-block SBMs with positive semidefinite block edge probability matrices B. This is

due in part to the extensive study of the random dot product graph (RDPG) model

(Athreya et al., 2018; Nickel, 2006; Young and Scheinerman, 2007), a latent position

random graph model (Hoff et al., 2002) which includes positive semidefinite SBMs as

a special case. Notably, it was recently shown that for the random dot product graph

model, both Laplacian spectral embedding (LSE; see Definition 35) and adjacency

spectral embedding (ASE; see Definition 35) behave approximately as random sam-

matrix B with corresponding combined block membership probability πk+πk′ . We also remark that
Definition 33 implicitly permits vertex self-loops, a choice that we make for mathematical expedi-
ency. Whether or not self-loops are disallowed does not alter the asymptotic results and conclusions
presented here.
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ples from Gaussian mixture models (Athreya et al., 2016; Tang and Priebe, 2018).

In tandem with these limit results, the concept of Chernoff information (Chernoff,

1952) was employed in Tang and Priebe (2018) to demonstrate that neither Laplacian

nor adjacency spectral embedding dominates the other for subsequent inference as a

spectral embedding method when the underlying inference task is to recover vertices’

latent block assignments. In doing so, the results in Tang and Priebe (2018) clarify

and complete the groundbreaking work in Sarkar and Bickel (2015) on comparing

spectral clusterings for stochastic block model graphs.

In Tang and Priebe (2018) the authors leave open the problem of comprehensively

investigating Chernoff information as a measure of relative spectral embedding per-

formance for stochastic block model graphs. Moreover, they do not investigate how

relative spectral embedding performance corresponds to underlying network model

structure. This is understandable, since the positive semidefinite restriction on B

limits the possible network structure that can be investigated under the random dot

product graph model.

More recently, the limit theory in Tang and Priebe (2018) was extended in Rubin-

Delanchy et al. (2017) to hold for all SBMs within the more flexible framework of

the generalized random dot product graph (GRDPG) model. These developments

now make it possible to conduct a more comprehensive Chernoff-based analysis, and

that is precisely the aim of this chapter. We set forth to formulate and analyze a

criterion based on Chernoff information for quantifying relative spectral embedding
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performance which we then further consider in conjunction with underlying network

model structure. The investigation carried out in this chapter is, to the best of our

knowledge, among the first of its kind in the study of statistical network analysis and

random graph inference.

This chapter focuses on the following two models which have garnered widespread

interest (e.g., see Abbe (2018) and the references therein).

1. The two-block SBM with B =
[
a b
b c

]
and π = (π1, 1 − π1)> where a, b, c, π1 ∈

(0, 1);

2. The K ≥ 2 block SBM exhibiting homogeneous balanced affinity structure,

i.e. Bij = a for all i = j, Bij = b for all i 6= j, 0 < b < a < 1, and π =

( 1
K
, . . . , 1

K
)> ∈ RK .

Using Chernoff information (see Section 5.4), we obtain an information-theoretic sum-

mary characteristic ρ? ≡ ρ?(B,π) such that the cases ρ? > 1, ρ? < 1, and ρ? = 1

correspond to the preference of spectral embedding procedure based on approximate

large-sample relative performance, summarized as ASE > LSE, ASE < LSE, and

ASE = LSE, respectively. The above models’ low-dimensional parameter spaces fa-

cilitate visualizing and analyzing the relationship between network structure (i.e.,

SBM(B,π)) and embedding performance (i.e., ρ?(B,π)).

This chapter considers the task of performing inference on a single large graph. As

such, we interpret the notion of sparsity in reference to the magnitudes of probability
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parameters, namely the magnitudes of the entries of B. This notion of sparsity cor-

responds to the interpretation and intuition of a practitioner wanting to do statistics

with an observed graph. With this understanding in mind, we shall demonstrate that

LSE is preferred as an embedding method in relatively sparse regimes, whereas ASE

is preferred as an embedding method in not-too-sparse regimes.

By way of contrast, the scaling factor ρn in Definition 33, which is included for the

purpose of general presentation, indexes a sequence of models wherein edge probabil-

ities change with n. We take ρn to be constant in n which by rescaling is equivalent

to setting ρn ≡ 1. Limit theorems are known for regimes where ρn → 0 as n → ∞,

but these regimes are uninteresting for single graph inference from the perspective of

relative spectral embedding performance (Tang and Priebe, 2018).

5.3 Preliminaries and existing results

Given a symmetric positive definite n × n matrix M, let 〈·, ·〉M : Rn × Rn → R

denote the real inner product induced by M. Similarly, define the induced norm

as ‖ · ‖M :=
√
〈·, ·〉M. In particular, given the n × n identity matrix I, denote

the standard Euclidean inner product and Euclidean norm by 〈·, ·〉 ≡ 〈·, ·〉I and

‖ · ‖2 :=
√
〈·, ·〉, respectively. Given an underlying matrix, det(·) and tr(·) denote

the matrix determinant and matrix trace operator, respectively. Given a diagonal

matrix D := diag(d11, d22, . . . , dnn) ∈ Rn×n, |D| denotes the entrywise absolute value
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(matrix) of D.

The vector of all ones in Rn is denoted by 1n, whereas the zero matrix in Rm×n

is denoted by 0m,n. We suppress the indices for convenience when the underlying

dimensions are understood, writing instead 1 and 0.

Let N := {1, 2, 3, . . . } denote the set of natural numbers so that for n ∈ N,

[n] := {1, 2, . . . , n}. For integers d+ ≥ 1, d− ≥ 0, and d := d+ + d− ≥ 1, let Id
+

d− :=

Id+
⊕

(−Id−) ∈ Rd×d be the direct sum (diagonal) matrix with identity matrices

Id+ ∈ Rd+×d+ and Id− ∈ Rd−×d− together with the convention that Id
+

0 ≡ Id+ . For

example, I1
1 ≡ diag(1,−1) ∈ R2×2.

For integers n ≥ d ≥ 1, the set of all n×d real matrices with orthonormal columns

shall be denoted by On,d. Let O(d+, d−) denote the indefinite orthogonal group with

signature (d+, d−), and let Od+ ≡ Od+,d+ ≡ O(d+, 0) denote the orthogonal group in

Rd+×d+ . In particular, M ∈ O(d+, d−) has the characterization M>Id
+

d−M = Id
+

d− . For

the orthogonal group, this characterization reduces to the relationship M> ≡M−1.

5.3.1 Generalized random dot product graphs

A growing corpus has emerged within the statistics literature focused on the devel-

opment of theory and applications for the random dot product graph (RDPG) model

(Nickel, 2006; Young and Scheinerman, 2007). This latent position random graph

model associates to each vertex in a graph an underlying low-dimensional vector.

These vectors may be viewed as encoding structural information or attributes pos-
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sessed by their corresponding vertices. In turn, the probability of two vertices sharing

an edge is specified through the standard Euclidean inner (dot) product of the ver-

tices’ latent position vectors. While simple in concept and design, this model has

proven successful in real-world applications in the areas of neuroscience and social

networks (Lyzinski et al., 2017). On the theoretical side, the RDPG model enjoys

some of the first-ever statistical theory for two-sample hypothesis testing on random

graphs, both semiparametric (Tang et al., 2017) and nonparametric (Tang et al.,

2017). For more on the RDPG model, see the survey Athreya et al. (2018) and the

references therein.

More recently, the generalized random dot product graph (GRDPG) model was

introduced as an extension of the RDPG model that includes as special cases the

mixed membership stochastic block model as well as all (single membership) stochas-

tic block models (Rubin-Delanchy et al., 2017). Effort towards the development of

theory for the GRDPG model has already raised new questions and produced new

findings related to the geometry of spectral methods, embeddings, and random graph

inference. The present chapter further contributes to these efforts.

Definition 34 (The generalized random dot product graph (GRDPG) model). For

integers d+ ≥ 1 and d− ≥ 0 such that d := d+ + d− ≥ 1, let F be a distribution on

a set X ⊂ Rd such that 〈Id+d−x,y〉 ∈ [0, 1] for all x,y ∈ X. We say that (X,A) ∼

GRDPG(F ) with signature (d+, d−) and scaling factor 0 < ρn ≤ 1 if the following

hold. Let X1, . . . , Xn ∼ F be independent and identically distributed random (latent
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position) vectors with

X := [X1| · · · |Xn]> ∈ Rn×d and P := ρnXId
+

d−X
> ∈ [0, 1]n×n. (5.1)

For each i ≤ j, the entries Aij of the symmetric adjacency matrix A ∈ {0, 1}n×n are

generated in a conditionally independent fashion given the latent positions, i.e.,

{Aij|Xi, Xj} ∼ Bernoulli(ρn〈Id
+

d−Xi, Xj〉). (5.2)

In this setting, the conditional probability P[A|X] can be computed explicitly as a

product of Bernoulli probabilities. N

To reiterate, we consider the regime ρn ≡ 1 and therefore suppress dependencies

on ρn later in the text. When no confusion can arise, we also use adorned versions of

the symbol ρ to denote Chernoff-related quantities (and unrelated to ρn) in a manner

consistent with the notation in Tang and Priebe (2018) (see Section 5.4).

When d− = 0, the GRDPG model reduces to the RDPG model. When the

distribution F is a discrete distribution on a finite collection of vectors in Rd, then

the GRDPG model coincides with the SBM, in which case the n×n edge probability

matrix P arises as an appropriate dilation of the K×K block edge probability matrix

B. Given any valid B ∈ (0, 1)K×K as in Definition 33, there exist integers d+, d−,

and a matrix X ∈ RK×K such that B has the (not necessarily unique) factorization

B ≡ XId
+

d−X
>, which follows since the spectral decomposition of B can be written
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as B ≡ UBΛU>B = (UB|Λ|1/2)Id
+

d−(UB|Λ|1/2)>. This demonstrates the ability of the

GRDPG framework in Definition 34 to model all possible stochastic block models

formulated in Definition 33.

Remark 19 (Non-identifiability in the GRDPG model). The GRDPG model pos-

sesses two intrinsic sources of non-identifiability, summarized as “uniqueness up to in-

definite orthogonal transformations” and “uniqueness up to artificial dimension blow-

up”. More precisely, for (X,A) ∼ GRDPG(F ) with signature (d+, d−), the following

considerations must be taken into account.

1. For any Q ∈ O(d+, d−), (X,A)
d
= (Y,B) whenever (Y,B) ∼ GRDPG(F ◦Q),

where F ◦Q denotes the distribution of the latent position vector Y = QX and

d
= denotes equality in distribution. This source of non-identifiability cannot be

mitigated. See Eq. (5.2).

2. There exists a distribution F ′ on Rd′ for some d′ > d such that (X,A)
d
= (Y,B)

where (Y,B) ∼ GRDPG(F ′). This source of non-identifiability can be avoided

by assuming, as we do here, that F is non-degenerate in the sense that for

X1 ∼ F , the second moment matrix E[X1X
>
1 ] ∈ Rd×d is full rank.

Definition 35 (Adjacency and Laplacian spectral embeddings). Let A ∈ {0, 1}n×n

be a symmetric adjacency matrix with eigendecomposition A ≡
∑n

i=1 λiuiu
>
i and

with ordered eigenvalues |λ1| ≥ |λ2| ≥ · · · ≥ |λn| corresponding to orthonormal

eigenvectors u1,u2, . . . ,un. Given a positive integer d such that d ≤ n, let SA :=
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diag(λ1, . . . , λd) ∈ Rd×d and UA := [u1| . . . |ud] ∈ On,d. The adjacency spectral em-

bedding (ASE) of A into Rd is then defined to be the n× d matrix X̂ := UA|SA|1/2.

The matrix X̂ serves as a consistent estimator for X up to indefinite orthogonal

transformation as n→∞.

Along similar lines, define the normalized Laplacian of A as

L(A) := (diag(A1n))−1/2A(diag(A1n))−1/2 ∈ Rn×n, (5.3)

whose eigendecomposition is given by L(A) ≡
∑n

i=1 λ̃iũiũ
>
i with ordered eigenvalues

|λ̃1| ≥ |λ̃2| ≥ · · · ≥ |λ̃n| corresponding to orthonormal eigenvectors ũ1, ũ2, . . . , ũn.

Given a positive integer d such that d ≤ n, let S̃A := diag(λ̃1, . . . , λ̃d) ∈ Rd×d and

let ŨA := [ũ1| . . . |ũd] ∈ On,d. The Laplacian spectral embedding (LSE) of A into

Rd is then defined to be the n × d matrix X̆ := ŨA|S̃A|1/2. The matrix X̆ serves

as a consistent estimator for the matrix (diag(XId
+

d−X
>1n))−1/2X up to indefinite

orthogonal transformation as n→∞. N

Remark 20 (Consistent estimation and parametrization involving latent positions).

The matrices X and (diag(XId
+

d−X
>1n))−1/2X, which are one-to-one invertible trans-

formations of each other, may be viewed as providing different parametrizations of

GRDPG graphs. As such, comparing X̂ and X̆ as estimators is non-trivial. In or-

der to carry out such a comparison, we subsequently adopt an information-theoretic

approach in which we consider a particular choice of f -divergence which is both an-
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alytically tractable and statistically interpretable in the current setting.

For the subsequent purposes of the present work, Theorems 36 and 37 (below)

state slightly weaker formulations of the corresponding limit theorems obtained in

Rubin-Delanchy et al. (2017) for adjacency and Laplacian spectral embedding.

Theorem 36 (ASE limit theorem for GRDPG, adapted from Rubin-Delanchy et al.

(2017)). Assume the d-dimensional GRDPG setting in Definition 34 with ρn ≡ 1.

Let X̂ be the adjacency spectral embedding into Rd with i-th row denoted by X̂i. Let

Φ(·,Σ) denote the cumulative distribution function of the centered multivariate nor-

mal distribution in Rd with covariance matrix Σ. Then, with respect to the adjacency

spectral embedding, there exists a sequence of matrices Q ≡ Qn ∈ O(d+, d−) such

that, for any z ∈ Rd,

Pr
[√

n
(
QX̂i −Xi

)
≤ z
]
→
∫
X

Φ(z,Σ(x))dF (x) (5.4)

as n → ∞. Here, for X1 ∼ F , ∆ := E[X1X
>
1 ], and the scalar quantity g(x, X1) :=

〈Id+d−x, X1〉(1− 〈Id
+

d−x, X1〉), the covariance matrix Σ(x) is given by

Id
+

d−∆−1E
[
g(x, X1)X1X

>
1

]
∆−1Id

+

d− .

Theorem 37 (LSE limit theorem for GRDPG, adapted from Rubin-Delanchy et al.

(2017)). Assume the d-dimensional GRDPG setting in Definition 34 with ρn ≡ 1.
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Let X̆ be the Laplacian spectral embedding into Rd with i-th row denoted by X̆i. Let

Φ(·,Σ) denote the cumulative distribution function of the centered multivariate nor-

mal distribution in Rd with covariance matrix Σ. Then, with respect to the Laplacian

spectral embedding, there exists a sequence of matrices Q̃ ≡ Q̃n ∈ O(d+, d−) such

that, for any z ∈ Rd,

Pr

[
n

(
Q̃X̆i − Xi√∑

j〈I
d+

d−Xi,Xj〉

)
≤ z

]
→
∫
X

Φ(z, Σ̃(x))dF (x) (5.5)

as n → ∞. Here, for X1 ∼ F , µ := E[X1], and ∆̃ := E
[
〈Id+d−µ, X1〉−1X1X

>
1

]
, then

g̃(x, X1) :=
(
〈Id+d−µ, x〉−1〈Id+d−x, X1〉(1− 〈Id

+

d−x, X1〉)
)
, and Σ̃(x) is given by

Id
+

d−∆̃−1E

[
g̃(x, X1)

(
X1

〈Id+
d−µ,X1〉

− ∆̃Id
+

d−x

2〈Id+
d−µ,x〉

)(
X1

〈Id+
d−µ,X1〉

− ∆̃Id
+

d−x

2〈Id+
d−µ,x〉

)>]
∆̃−1Id

+

d− .

5.4 Spectral embedding performance

We desire to compare the large-n sample relative performance of adjacency and

Laplacian spectral embedding for subsequent inference, where the subsequent infer-

ence task is naturally taken to be the problem of recovering latent block assignments.

Here, measuring spectral embedding performance will correspond to estimating the

large-sample optimal error rate for recovering the underlying block assignments fol-

lowing each of the spectral embeddings. Towards this end, we now introduce Chernoff

information and Chernoff divergence as appropriate information-theoretic quantities.
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Given independent and identically distributed random vectors Yi arising from one

of two absolutely continuous multivariate distributions F1 and F2 on Ω = Rd with

density functions f1 and f2, respectively, we are interested in testing the simple null

hypothesis H0 : F = F1 against the simple alternative hypothesis HA : F = F2.

In this framework, a statistical test T can be viewed as a sequence of mappings

Tm : Ωm → {1, 2} indexed according to sample size m such that Tm returns the value

two when H0 is rejected in favor of HA and correspondingly returns the value one

when H0 is favored. For each m, the corresponding significance level and type-II

error are denoted by αm and βm, respectively.

Assume that the prior probability of H0 being true is given by π ∈ (0, 1). For

a given α?m ∈ (0, 1), let β?m ≡ β?m(α?m) denote the type-II error associated with the

corresponding likelihood ratio test when the type-I error is at most α?m. Then, the

Bayes risk in deciding between H0 and HA given m independent random vectors

Y1, Y2, . . . , Ym is given by

inf
α?m∈(0,1)

πα?m + (1− π)β?m. (5.6)

The Bayes risk is intrinsically related to Chernoff information (Chernoff, 1952, 1956),

C(F1, F2), namely

lim
m→∞

1
m

[
inf

α?m∈(0,1)
log(πα?m + (1− π)β?m)

]
= −C(F1, F2), (5.7)
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where

C(F1, F2) := − log

[
inf

t∈(0,1)

∫
Rd
f t1(x)f 1−t

2 (x)dx
]

= sup
t∈(0,1)

[
− log

∫
Rd
f t1(x)f 1−t

2 (x)dx
]
.

In words, the Chernoff information between F1 and F2 is the exponential rate at

which the Bayes risk decreases as m → ∞. Note that the Chernoff information

is independent of the prior probability π. A version of Eq. (5.7) also holds when

considering K ≥ 3 hypothesis with distributions F1, F2, . . . , FK , thereby introducing

the quantity min
k 6=l

C(Fk, Fl); more discussion is provided in Tang and Priebe (2018).

Chernoff information can be expressed in terms of the Chernoff divergence between

distributions F1 and F2, defined for t ∈ (0, 1) as

Ct(F1, F2) = − log

∫
Rd
f t1(x)f 1−t

2 (x)dx, (5.8)

which yields the relation

C(F1, F2) = sup
t∈(0,1)

Ct(F1, F2). (5.9)

The Chernoff divergence is an example of an f -divergence and as such satisfies the

data processing lemma (Liese and Vajda, 2006) and is invariant with respect to in-

vertible transformations (Devroye et al., 2013). One could instead use another f -

divergence for the purpose of comparing the two embedding methods, such as the
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Kullback-Liebler divergence. Our choice is motivated by the aforementioned relation-

ship with Bayes risk in Eq. (5.7).

In this chapter we explicitly consider multivariate normal distributions as a conse-

quence of Theorems 36 and 37 when conditioning on the individual underlying latent

positions for stochastic block model graphs. In particular, given F1 = N(µ1,Σ1),

F2 = N(µ2,Σ2), and t ∈ (0, 1), then for Σt := tΣ1 + (1 − t)Σ2, the Chernoff infor-

mation between F1 and F2 is given by

C(F1, F2) = sup
t∈(0,1)

[
t(1−t)

2
(µ2 − µ1)>Σ−1

t (µ2 − µ1) + 1
2

log
(

det(Σt)
det(Σ1)t det(Σ2)1−t

)]
= sup

t∈(0,1)

[
t(1−t)

2
‖µ2 − µ1‖2

Σ−1
t

+ 1
2

log
(

det(Σt)
det(Σ1)t det(Σ2)1−t

)]
.

Let B ∈ (0, 1)K×K and π denote the matrix of block edge probabilities and the vec-

tor of block assignment probabilities for a K-block stochastic block model as before.

This corresponds to a special case of the GRDPG model with signature (d+, d−),

d+ + d− = rank(B), and latent positions νk ∈ Rrank(B). For an n-vertex SBM graph

with parameters (B,π), the large-sample optimal error rate for recovering block as-

signments when performing adjacency spectral embedding can be characterized by

the quantity ρA ≡ ρA(B,π, n) defined by

ρA := min
k 6=l

sup
t∈(0,1)

[
nt(1−t)

2
‖νk − νl‖2

Σ−1
kl (t)

+ 1
2

log
(

det(Σkl(t))
det(Σk)t det(Σl)1−t

)]
, (5.10)
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where Σkl(t) := tΣk + (1− t)Σl for t ∈ (0, 1).

Similarly for Laplacian spectral embedding, ρL ≡ ρL(B,π, n), where

ρL := min
k 6=l

sup
t∈(0,1)

[
nt(1−t)

2
‖ν̃k − ν̃l‖2

Σ̃−1
kl (t)

+ 1
2

log
(

det(Σ̃kl(t))

det(Σ̃k)t det(Σ̃l)1−t

)]
, (5.11)

with Σ̃kl(t) := tΣ̃k + (1− t)Σ̃l and ν̃k := νk/(
∑

k′ πk′〈I
d+

d−νk′ ,νk〉)1/2.

The factor n in Eqs. (5.10)–(5.11) arises from the implicit consideration of the

appropriate (non-singular) theoretical sample covariance matrices. To assist in the

comparison and interpretation of the quantities ρA and ρL, we assume throughout

that nk = nπk for ν̃k. The logarithmic terms in Eqs. (5.10–5.11) as well as the

deviations of each term nk from nπk are negligible for large n, collectively motivating

the following large-sample measure of relative performance, ρ?, where

ρA

ρL
≡ ρA(n)

ρL(n)
→ ρ? ≡ ρ?A

ρ?L
:=

min
k 6=l

sup
t∈(0,1)

[
t(1− t)‖νk − νl‖2

Σ−1
kl (t)

]
min
k 6=l

sup
t∈(0,1)

[
t(1− t)‖ν̃k − ν̃l‖2

Σ̃−1
kl (t)

] . (5.12)

Here we have suppressed the functional dependence on the underlying model pa-

rameters B and π. For large n, observe that as ρ?A increases, ρA also increases, and

therefore the large-sample optimal error rate corresponding to adjacency spectral em-

bedding decreases in light of Eq. (5.7) and its generalization. Similarly, large values

of ρ?L correspond to good theoretical performance of Laplacian spectral embedding.

Thus, if ρ? > 1, then ASE is to be preferred to LSE, whereas if ρ? < 1, then LSE
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is to be preferred to ASE. The case when ρ? = 1 indicates that neither ASE nor

LSE is superior for the given parameters B and π. To reiterate, we summarize these

preferences as ASE > LSE, ASE < LSE, and ASE = LSE, respectively.

In what follows, we fixate on the asymptotic quantity ρ?. For the two-block SBM

and certain K-block SBMs exhibiting symmetry, Eq. (5.12) reduces to the form

ρ? =

sup
t∈(0,1)

[
t(1− t)‖ν1 − ν2‖2

Σ−1
1,2(t)

]
sup
t∈(0,1)

[
t(1− t)‖ν̃1 − ν̃2‖2

Σ̃−1
1,2(t)

] (5.13)

for canonically specified latent positions ν1 and ν2. In some cases it is possible to

concisely obtain analytic expressions (in t) for both the numerator and denominator.

In other cases this is not possible. A related challenge with respect to Eq. (5.12) is

analytically inverting the interpolated block conditional covariance matrices Σ1,2(t)

and Σ̃1,2(t). Section 6.4 provides additional technical details and discussion.

5.5 Elucidating network structure

5.5.1 The two-block stochastic block model

Consider the set of two-block SBMs with parameters π ≡ (π1, 1− π1)> and B ∈

B :=
{
B =

[
a b
b c

]
: a, b, c ∈ (0, 1)

}
. For π = (1

2
, 1

2
)>, then a ≥ c without loss of

generality by symmetry. In general, for any fixed choice of π, the class of models B
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can be partitioned according to matrix rank, namely

B ≡ B1

⊔
B2

:= {B : rank(B) = 1; a, b, c ∈ (0, 1)}
⊔
{B : rank(B) = 2; a, b, c ∈ (0, 1)}.

The collection of sub-models B1 further decomposes into the disjoint union of the

Erdős–Rényi model with homogeneous edge probability a = b = c ∈ (0, 1) and its

relative complement in B1 satisfying the determinant constraint det(B) ≡ ac− b2 =

0. These partial sub-models can be viewed as one-dimensional and two-dimensional

(parameter) regions in the open unit cube, (0, 1)3, respectively.

Similarly, the collection of sub-models B2 further decomposes into the disjoint

union of PD2 ∩ B2 and IND2 ∩ B2, where PD2 denotes the set of positive definite

matrices in R2×2 and IND2 := {B ∈ B2 : ∃X ∈ R2×2, rank(X) = 2,B = XI1
1X
>}.

Here only I2
0 ≡ I2 and I1

1 are necessary for computing edge probabilities via inner

products of the latent positions. Both of these partial sub-models can be viewed as

three-dimensional (parameter) regions in (0, 1)3.

Remark 21 (Latent position parametrization). One might ask whether or not for our

purposes there exists a “best” latent position representation for some or even every

SBM. To this end and more generally, for any K ≥ 2 and M ∈ PDK ⊂ RK×K , there

exists a unique lower-triangular matrix L ∈ RK×K with positive diagonal entries such

that M = LL> by the Cholesky matrix decomposition. This yields a canonical choice
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for the matrix of latent positions X when B is positive definite. In particular, for

B ∈ PD2, then B = XI2X> with X :=
[ √

a 0

b/
√
a
√
ac−b2/

√
a

]
. In contrast, for B ∈ IND2,

then B = XI1
1X
> with X :=

[ √
a 0

b/
√
a
√
b2−ac/

√
a

]
, keeping in mind that in this case

b2 − ac > 0. The latter factorization may be viewed informally as an indefinite

Cholesky decomposition under I1
1. For the collection of rank one sub-models B1, the

latent positions ν1 and ν2 are simply taken to be scalar-valued.

5.5.1.1 Homogeneous balanced network structure

We refer to the two-block SBM sub-model with B =
[
a b
b a

]
and π = (1

2
, 1

2
)>

as the homogeneous balanced two-block SBM. The cases when a > b, a < b, and

a = b correspond to the cases when B is positive definite, indefinite, and reduces to

Erdős–Rényi, respectively. The positive definite parameter regime has the network

structure interpretation of being assortative in the sense that the within-block edge

probability a is larger than the between-block edge probability b, consistent with the

affinity-based notion of community structure. In contrast, the indefinite parameter

regime has the network structure interpretation of being disassortative in the sense

that between-block edge density exceeds within-block edge density, consistent with

the “opposites attract” notion of community structure.

For this SBM sub-model, ρ? can be simplified analytically (see Section 6.4 for

additional details) and can be expressed as a translation with respect to the value
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Figure 5.1: The ratio ρ? for the homogeneous balanced sub-model in Section 5.5.1.1.
The empty diagonal depicts the Erdős–Rényi model singularity.

one, namely

ρ? ≡ ρ?a,b = 1 +
(a− b)2(3a(a− 1) + 3b(b− 1) + 8ab)

4(a+ b)2(a(1− a) + b(1− b))
:= 1 + ca,b × ψa,b, (5.14)

where ψa,b := 3a(a−1)+3b(b−1)+8ab and ca,b > 0. By recognizing that ψa,b functions

as a discriminating term, it is straightforward to read off the relative performance of

ASE and LSE according to Table 5.1.

Table 5.1: Summary of embedding performance in Section 5.5.1.1

ρ? = 1⇐⇒ ψa,b = 0 ; (ASE = LSE)
ρ? > 1⇐⇒ ψa,b > 0 ; (ASE > LSE)
ρ? < 1⇐⇒ ψa,b < 0 ; (ASE < LSE)

Further investigation of Eq. (5.14) leads to the observation that ASE < LSE for

all 0 < b < a ≤ 3
7
, thereby yielding a parameter region for which LSE dominates

ASE. On the other hand, for any fixed b ∈ (0, 1) there exist values a1 < a2 such
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that ASE < LSE under a1, whereas ASE > LSE under a2. Figure 5.1 demonstrates

that for homogeneous balanced network structure, LSE is preferred to ASE when the

entries in B are sufficiently small, whereas conversely ASE is preferred to LSE when

the entries in B are not too small.

Remark 22 (Model spectrum and ASE dominance I). Here λmax(B) = a+ b, hence

λmax(B) > 1 implies ASE > LSE by Eq. (5.14). This observation amounts to a

network structure-based (i.e., B-based) spectral sufficient condition for determining

when ASE is preferred to LSE.

Remark 23 (A balanced one-dimensional SBM restricted sub-model). When b =

1 − a, the homogeneous balanced sub-model further reduces to a one-dimensional

parameter space such that ρ? simplifies to

ρ? = 1 + 1
4
(2a− 1)2 ≥ 1, (5.15)

demonstrating that ASE uniformly dominates LSE for this restricted sub-model. Ad-

ditionally, it is potentially of interest to note that in this setting the marginal co-

variance matrices from Theorem 36 for ASE coincide for each block. In contrast, the

same behavior is not true for LSE.
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5.5.1.2 Core-periphery network structure

We refer to the two-block SBM sub-model with B =
[
a b
b b

]
and π = (π1, 1− π1)>

as the core-periphery two-block SBM. We explicitly consider the balanced (block size)

regime in which π = (1
2
, 1

2
)> and an unbalanced regime in which π = (1

4
, 3

4
)>. Here,

the cases a > b, a < b, and a = b correspond to the cases when B is positive definite,

indefinite, and reduces to the Erdős–Rényi model, respectively.

For this sub-model, the ratio ρ? is not analytically tractable in general. That is to

say, simple closed-form solutions do not simultaneously exist for the numerator and

denominator in the definition of ρ?. As such, Figure 5.2 is obtained numerically by

evaluating ρ? on a grid of points in (0, 1)2 followed by smoothing.

For a > b, graphs generated from this SBM sub-model exhibit the popular in-

terpretation of core-periphery structure in which vertices forming a dense core are

attached to surrounding periphery vertices with comparatively smaller edge connec-

tivity. Provided the core is sufficiently dense, namely for a > 1
4
in the balanced regime

and a > 1
2
in the unbalanced regime, Figure 5.2 demonstrates that ASE > LSE. Con-

versely, ASE < LSE uniformly in 0 < b < a for small enough values of a in both the

balanced and unbalanced regime.

In contrast, when a < b, the sub-model produces graphs whose network structure

is interpreted as having a comparatively sparse induced subgraph which is strongly

connected to all vertices in the graph but for which the subgraph vertices exhibit

comparatively weaker connectivity. Alternatively, the second block may itself be
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Figure 5.2: The ratio ρ? for the core-periphery sub-model in Section 5.5.1.2. The
empty diagonal depicts the Erdős–Rényi model singularity.

viewed as a dense core which is simultaneously densely connected to all vertices in

the graph. Figure 5.2 illustrates that for the balanced regime, LSE is preferred for

sparser induced subgraphs. Put differently, for large enough dense core with dense

periphery, then ASE is the preferable spectral embedding procedure. LSE is preferred

to ASE in only a relatively small region corresponding approximately to the triangular

region where 0 < b < 1− 4a, which as a subset of the unit square has area 1
8
. Similar

behavior holds for the unbalanced regime for approximately the (enlarged) triangular

region of the parameter space where 0 < b < 1 − 2a, which as a subset of the unit

square has area 1
4
.

Figure 5.2 suggests that as π1 decreases from 1
2
to 1

4
, LSE is favored in a growing

region of the parameter space, albeit still in a smaller region than that for which ASE

is to be preferred. Together with the observation that LSE dominates in the lower-left

corner of the plots in Figure 5.2 where a and b have small magnitude, we are led to
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say in summary that LSE favors relatively sparse core-periphery network structure.

To reiterate, sparsity is interpreted with respect to the parameters a and b, keeping

in mind the underlying simplifying assumption that nk = nπk for k = 1, 2.

Remark 24 (Model spectrum and ASE dominance II). For 0 < b < a < 1, then

λmax(B) = 1
2

(
a+ b+

√
a2 − 2ab+ 5b2

)
. Numerical evaluation (not shown) yields

that λmax(B) > 1
2
implies ASE > LSE. Along the same lines as the discussion in

Section 5.5.1.1, this observation provides a network structure (i.e. B-based) spec-

tral sufficient condition for this sub-model for determining the relative embedding

performance ASE > LSE.

5.5.1.3 Two-block rank one sub-models

The sub-model for which B =
[
a b
b c

]
with a, b, c ∈ (0, 1) and det(B) = 0 can be re-

parameterized according to the assignments a 7→ p2 and c 7→ q2, yielding B =
[
p2 pq
pq q2

]
with p, q ∈ (0, 1). Here rank(B) = 1 and B is positive semidefinite, corresponding to

the one-dimensional RDPG model with latent positions given by the scalars p and q

with associated probabilities π1 and π2, respectively. Explicit computation yields the

expression

ρ? =
(
√
p+
√
q)2(π1p2+π2q2)2

(√
π1p(1−p2)+π2q(1−pq)+

√
π1p(1−pq)+π2q(1−q2)

)2
4(π1p+π2q)2

(√
π1p4(1−p2)+π2pq3(1−pq)+

√
π1p3q(1−pq)+π2q4(1−q2)

)2 , (5.16)
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Figure 5.3: The ratio ρ? for the two-block rank one sub-model in Section 5.5.1.3.
The empty diagonal depicts the Erdős–Rényi model singularity.

whereby ρ? is given as an explicit, closed-form function of the parameter values p, q,

and π1 with π2 = 1− π1. The simplicity of this sub-model together with its analytic

tractability with respect to both B and π makes it particularly amenable to study for

the purpose of elucidating network structure. Below, consideration of this sub-model

further illustrates the relationship between (parameter-based) sparsity and relative

embedding performance.

Figure 5.3 demonstrates how LSE favors sparse graphs in the sense of the edge

probabilities, p and q, as well as how relative performance changes in light of block

sizes, reflected by π1. Here the underlying B matrix is always positive semidefinite,

and each of the regions p > q and p < q corresponds to a modified notion of core-

periphery structure. For example, when p > q, then B =
[
p1 p2
p2 p3

]
with p1 > p2 > p3,

yielding a hierarchy of core-periphery structure when passing from vertices that are

both in block one to vertices that are in different blocks and finally to vertices that are
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Figure 5.4: The ratio ρ? for p, π1 ∈ (0, 1), q = pγ, γ ∈ {2, 4, 6} in Section 5.5.1.3.
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Figure 5.5: The ratio ρ? for p ∈ (0, 1), γ ∈ [2, 7] when q = pγ in Section 5.5.1.3.

both in block two. Note the similar behavior in the bottom-right triangular regions

in Figure 5.3a–5.3b and in the same bottom-right triangular region in Figure 5.2.

Remark 25 (The two-block polynomial p SBM restricted sub-model). Consider the

restricted sub-model in which B =
[

p2 pγ+1

pγ+1 p2γ

]
, where γ > 1 and π1 ∈ (0, 1). For

γ � 1 and π1 fixed, then ρ? in Eq. (5.16) satisfies the approximate behavior

ρ? ≈
(

1+
√

1−p2
)2

4(1−p2)
. (5.17)
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The above approximation exceeds the value one since 1 >
√

1− p2 for p ∈ (0, 1) and is

simultaneously agnostic with respect to π1. Moreover, for large values of γ, the block

edge probability matrix is approximately of the form B ≈
[
p1 p2
p2 p3

]
with p1 � p2 ≈ p3,

where p2 and p3 are very small. This restricted sub-model can therefore be viewed

as exhibiting an extremal version of core-periphery structure corresponding to the

extremal regions in Figure 5.2 where ASE is preferred.

In Figure 5.4, the progression from left to right corresponds to tending towards

the approximation presented in Eq. (5.17). For larger values of γ when q = pγ

(not shown), the region where ASE > LSE continues to expand. We do not discuss

or pursue the taking of limits within the parameter space(s) in light of degenerate

boundary value behavior and in order to avoid possible misinterpretation.

Figure 5.5 offers a different perspective in which γ is allowed to vary continuously

for both the balanced and the unbalanced regime. As in Figure 5.3, Figure 5.5

demonstrates that LSE is preferred for network structure wherein the block with

comparatively higher edge probability exhibits smaller block membership size.

5.5.1.4 Full rank two-block stochastic block models

This section presents a macroscopic view of full rank two-block SBMs with B =[
a b
b c

]
, (a, b, c) ∈ (0, 1)3, for the regimes π = (1

2
, 1

2
)> and π = (1

4
, 3

4
)>. The parameter

space is partitioned via the latent space geometry of B, namely according to whether

B is either positive definite or indefinite.
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(a) ρ? < 1; rank(B) = 2; π = (1
2 ,

1
2)
> (b) ρ? < 1; rank(B) = 2; π = (1

4 ,
3
4)
>

Figure 5.6: Parameter region where ASE < LSE for full rank B in Section 5.5.1.4.
The plots depict numerical evaluations of ρ? for a, b, c ∈ [0.01, 0.99] with step size
0.01.
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Figure 5.7: A top-down view of the positive definite region where ASE < LSE in
Section 5.5.1.4, with a, b, and c corresponding to length, depth, and width, respec-
tively. The plots depict numerical evaluations of ρ? for a, b, c ∈ [0.01, 0.99] with step
size 0.01.
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Figure 5.6a and Figure 5.6b each present a three-dimensional view of the region in

the parameter space where ASE < LSE. The separate positive definite and indefinite

parameter regions exhibiting ASE < LSE can be seen extending from faces of the unit

cube. Specifically, the conic-like region rising up from the b = 0 face corresponds to

B for which B ∈ PD2, whereas the hyperbolic-like regions extending from the a = 0

and c = 0 faces corresponds to B for which B ∈ IND2.

For the balanced case reflected in Figure 5.6a, let a ≥ c without loss of gener-

ality by symmetry, and hence ρ? is symmetric about the plane defined by a = c.

For the unbalanced case shown in Figure 5.6b, symmetry no longer holds, and geo-

metric warping behavior can be seen with respect to the a = c plane. Figure 5.7a

and Figure 5.7b provide a birds-eye view of the three-dimensional positive definite

parameter region from the vantage point b = “∞”. The latter provides another view

of the warping phenomenon observed for π = (1
4
, 3

4
)> that holds in general for all

unbalanced regimes.

In both block size regimes depicted in Figure 5.6, the colored parameter region

occupies less than one-fourth of the unit cube volumetrically, thereby quantitatively

providing a coarse overall sense in which ASE is to be preferred to LSE for numerous

two-block SBM models.
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5.5.2 TheK-block model with homogeneous balanced

affinity network structure

This section generalizes the analysis in Section 5.5.1.1 to the setting of K-block

homogeneous balanced affinity SBMs where Bij = a for all i = j, Bij = b for all

i 6= j, 0 < b < a < 1, and πi = 1
K

for 1 ≤ i ≤ K.

Theorem 38. For K-block homogeneous balanced affinity SBM models as in Sec-

tion 5.5.2, the ratio ρ? in Eq. (5.12) can be expressed analytically as

ρ? = 1 + (a−b)2(3a(a−1)+3b(b−1)(K−1)+4abK)
4(a+(K−1)b)2(a(1−a)+b(1−b)) := 1 + ca,b,K × ψa,b,K , (5.18)

where ψa,b,K := 3a(a− 1) + 3b(b− 1)(K − 1) + 4abK and ca,b,K > 0.

As in Table 5.1, the function ψa,b,K is the discriminating term that explicitly

characterizes the relative performance of ASE and LSE.

Here ψa,b,K satisfies (4ab− 3(a− b2))K < ψa,b,K < (4ab)K, and there are explicit

constants c(1)
a,b and c

(2)
a,b depending only on a and b such that 1

K
c

(1)
a,b < ca,b,K × ψa,b,K <

1
K
c

(2)
a,b. Taking a and b to be fixed, these observations allow Eq. (5.18) to be summa-

rized in terms of K as

ρ? = 1 + Θa,b

(
1
K

)
, (5.19)

demonstrating that ρ? → 1 as K →∞. In words, for the class of SBMs under consid-

eration, ASE and LSE in a sense have asymptotically (in K) equivalent embedding
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performance (via ρ?). This amounts to a statement concerning a sequence of mod-

els with a necessarily growing number of vertices in order to ensure the underlying

assumption of equal block sizes.

Rewriting the level-set ψa,b,K = 0, which holds if and only if ρ? = 1, yields

(
1− a
b

)
1

K
+

(
1− b
a

)
K − 1

K
=

4

3
, (5.20)

together with the observation that ASE > LSE (resp. ASE < LSE) when the left-hand

side of Eq. (5.20) is less than (resp. greater than) the value 4
3
. The above equation

perhaps interestingly depicts a convex combination in K of a reparameterization in

terms of the variables 1−a
b

and 1−b
a
, where the value 4

3
is interpretable as a Chernoff-

based information theoretic threshold.

The observation that ψa,b,K > (4ab − 3(a − b2))K in the context of Eq. (5.18)

implies a sufficient condition for determining a parameter region in which ASE >

LSE uniformly in K. Specifically, the condition (4ab − 3(a − b2)) > 0, equivalently

written as a−b2
ab

< 4
3
, ensures that ψa,b,K > 0 and hence that ρ? > 1.

Remark 26 (Detectability and phase transitions in random graph models). With

respect to the random graph literature, the setting considered in this chapter cor-

responds to a strong consistency regime (i.e., exact recovery) in which the block

membership of each individual vertex is recovered almost surely for graphs on n ver-

tices with n → ∞. For different regimes where edge probabilities are allowed to
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decrease as a function of n, numerous deep and fascinating detectability and phase

transition phenomena are known, some of which also employ Chernoff divergence and

related considerations (Abbe, 2018). In the context of homogeneous balanced affinity

SBMs, the quantity SNR := (a−b)2
K(a+(K−1)b)

has been shown to function as an important

information-theoretic signal-to-noise ratio. Here too the SNR appears, albeit with

respect to ca,b,K , in the sense that

ca,b,K :=
(a− b)2

4(a+ (K − 1)b)2(a(1− a) + b(1− b))
≡
(

(a− b)2

K(a+ (K − 1)b)

)
c̃a,b,K

for some constant c̃a,b,K > 0. Perhaps more interestingly,

ca,b,K ≡
1

4

(
λmin(B(K))

λmax(B(K))

)2(
1

σ2(B11(K)) + σ2(B12(K))

)
,

where σ2(Bij(K)) is the edge variance corresponding to a pair of vertices in blocks

i and j, together with λmin(B(K)) = a − b and λmax(B(K)) = a + (K − 1)b, noting

that the constant factor 1
4
could just as easily be absorbed by redefining ψa,b,K . We

believe that these observations warrant further investigation in future work.

5.6 Discussion

Loosely speaking, Laplacian spectral embedding may be viewed as a degree-

normalized version of adjacency spectral embedding in light of Eq. (5.3). As such,
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our analysis complements existing literature that seeks to understand normalization

in the context of spectral methods (Sarkar and Bickel, 2015; Von Luxburg, 2007).

Moreover, our work together with Rubin-Delanchy et al. (2017) addresses network

models exhibiting indefinite geometry, an area that has received comparatively lim-

ited attention in the statistical network analysis literature. The ability of indefinite

modeling considerations to reflect widely-observed disassortative community structure

is encouraging and suggests future research activity in this and related directions.

Core-periphery network structure, broadly construed, is demonstrably ubiquitous

in real-world networks (Csermely et al., 2013; Holme, 2005; Leskovec et al., 2009).

With this understanding and the ability of the SBM to serve as a building block for

hierarchically modeling complex network structure, our findings pertaining to spectral

embedding for core-periphery structure may be of particular interest.

This chapter examines the information-theoretic relationship between the perfor-

mance of two competing, widely popular graph embeddings and subsequent vertex

clustering with an eye towards underlying network model structure. The findings pre-

sented in Section 5.5 support the claim that, for sparsity interpreted as B having en-

tries that are small, loosely speaking, “Laplacian spectral embedding favors relatively

sparse graphs, whereas adjacency spectral embedding favors not-too-sparse graphs.”

Moreover, our results provide evidence in support of the claim that “adjacency spectral

embedding favors certain core-periphery network structure.” Of course, caution must

be exercised when making such general assertions, since our findings demonstrate in-
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tricate and nuanced functional relationships linking spectral embedding performance

to network model structure. Nevertheless, we believe such summary statements are

both faithful and useful for conveying a high-level, macroscopic overview of the in-

vestigation presented in this chapter.
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Chapter 6

Proofs and supplementary material

6.1 Proofs for Chapter 2

6.1.1 Singular subspace geometric bounds

LetU, Û ∈ Op×r andWU ∈ Or denote the Frobenius-optimal Procrustes transfor-

mation. We shall use the fact that ‖ sin Θ(Û,U)‖2 = ‖U>⊥Û‖2 = ‖(I−UU>)ÛÛ
>
‖2

(Bhatia (1997), Chapter 7).

Lemma 39. Let T ∈ Rr×r be arbitrary. Then

∥∥sin Θ(Û,U)
∥∥

2
=
∥∥Û−UU>Û

∥∥
2
≤ ‖Û−UT‖2, (6.1)

1

2

∥∥sin Θ(Û,U)
∥∥2

2
≤
∥∥U>Û−WU

∥∥
2
≤
∥∥sin Θ(Û,U)

∥∥2

2
. (6.2)

127



CHAPTER 6. PROOFS

Proof. The matrix difference (Û − UU>Û) ∈ Rp×r represents the residual of Û

after orthogonally projecting onto the subspace spanned by the columns of U. Note

that ‖A‖2
2 = ‖A>A‖2 = sup‖x‖2=1 |〈A>Ax,x〉|, and so several intermediate steps of

computation yield that for any T ∈ Rr×r,

∥∥Û−UU>Û
∥∥2

2
= sup
‖x‖2=1

∣∣〈(Û−UU>Û
)>(Û−UU>Û

)
x,x

〉∣∣
= sup
‖x‖2=1

∣∣〈(I− Û
>
UU>Û

)
x,x

〉∣∣
≤ sup
‖x‖2=1

(∣∣〈(I− Û
>
UU>Û

)
x,x

〉∣∣+
∥∥(T−U>Û

)
x
∥∥2

2

)
= sup
‖x‖2=1

∣∣〈(Û−UT)>(Û−UT)x,x
〉∣∣

= ‖Û−UT‖2
2.

On the other hand, by Proposition 4 and the above observation,

∥∥Û−UU>Û
∥∥

2
=
∥∥ÛÛ

>
−UU>ÛÛ

>∥∥
2

=
∥∥(I−UU>

)
ÛÛ

>∥∥
2

=
∥∥sin Θ(Û,U)

∥∥
2
.

The matrix difference (U>Û−WU) ∈ Rr×r represents the extent to which U>Û with

singular value decompositionW1ΣUW>
2 is “almost” the Frobenius-optimal Procrustes

transformation WU ≡ W1W>
2 . The orthogonal invariance of the spectral norm

together with the interpretation of canonical angles between Û and U, denoted by
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{θi} with cos(θi) = σi(U>Û) ∈ [0, 1], yields

∥∥U>Û−WU
∥∥

2
=
∥∥W1ΣUW>

2 −W1W>
2

∥∥
2

= ‖ΣU − Ir‖2 = 1−min
i

cos(θi).

Thus, both

∥∥U>Û−WU
∥∥

2
≤ 1−min

i
cos2(θi) = max

i
sin2(θi) =

∥∥sin Θ(Û,U)
∥∥2

2

and

∥∥U>Û−WU
∥∥

2
≥ 1

2

(
1−min

i
cos2(θi)

)
=

1

2
max
i

sin2(θi)

=
1

2

∥∥sin Θ(Û,U)
∥∥2

2
.

Lemma 40. The quantity ‖Û−UWU‖2 satisfies the lower bound

∥∥sin Θ(Û,U)
∥∥

2
≤
∥∥Û−UW?

2

∥∥
2
≤ ‖Û−UWU‖2 (6.3)

and satisfies the upper bound

‖Û−UWU‖2 ≤
∥∥sin Θ(Û,U)

∥∥
2

+
∥∥sin Θ(Û,U)

∥∥2

2
. (6.4)

Taken together with Lemma 1 in Cai and Zhang (2018), an improved upper bound is
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given by

‖Û−UWU‖2 ≤ min
{

1 +
∥∥sin Θ(Û,U)

∥∥
2
,
√

2
}∥∥sin Θ(Û,U)

∥∥
2
. (6.5)

Proof. The lower bound follows from setting T = W?
2 in Lemma 39 together with

the definition of W?
2. Again by Lemma 39 and together with the triangle inequality,

‖Û−UWU‖2 ≤
∥∥Û−UU>Û

∥∥
2

+
∥∥U(U>Û−WU

)∥∥
2

≤
∥∥sin Θ(Û,U)

∥∥
2

+
∥∥sin Θ(Û,U)

∥∥2

2
.

The proof of Lemma 1 in Cai and Zhang (2018) establishes that

inf
W∈Or

‖Û−UW‖2 ≤ ‖Û−UWU‖2 ≤
√

2
∥∥sin Θ(Û,U)

∥∥
2
,

which completes the proof.

For ease of reference and notation, Theorem 41 below states a version of the

Davis–Kahan sin Θ theorem Davis and Kahan (1970) in the language of Yu et al.

(2015). This amounts to a recasting of Theorem VII.3.2 in Bhatia (1997), and so we

omit the proof.

Theorem 41. Let M, M̂ ∈ Rp×p be symmetric matrices with eigenvalues λ1 ≥ · · · ≥

λp and λ̂1 ≥ · · · ≥ λ̂p, respectively. Write E := M̂−M and fix 1 ≤ r ≤ s ≤ p. Assume

that δgap := min(λr−1 − λr, λs − λs+1) > 0 where λ0 :=∞ and λp+1 := −∞. Let d =
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s− r+ 1 and let V := [vr|vr+1| . . . |vs] ∈ Rp×d and V̂ := [v̂r|v̂r+1| . . . |v̂s] ∈ Rp×d have

orthonormal columns satisfying Mvj = λjvj and M̂v̂j = λ̂j v̂j for j = r, r + 1, . . . , s.

Then ∥∥sin Θ(V̂,V)
∥∥

2
≤
(

2‖E‖2

δgap

)
. (6.6)

6.1.2 Proof of Theorem 5

Proof. For ease of presentation, we use C > 0 to denote various constants that are

allowed to depend on one another. Both n and d are taken to be large.

By hypothesis max{r(Γ), log d} = o(n), where r(Γ) := trace(Γ)/σ1(Γ) denotes the

effective rank of Γ. In the present multivariate Gaussian covariance matrix setting,

it follows from Koltchinskii and Lounici (2017a,b) that there exists some constant

C > 0 such that with probability at least 1− 1
3
d−2,

‖En‖2 ≤ Cσ1(Γ)

√
max{r(Γ), log d}

n
.

By hypothesis σ1(Γ)/σr(Γ) ≤ C, and so together with the above observations, then
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σr(Γ) ≥ 2‖En‖2 with high probability. Theorem 10 thus yields

‖Û−UWU‖2→∞ ≤ C
∥∥(U⊥U>⊥)En

(
UU>

)∥∥
2→∞/σr(Γ)

+ C
∥∥(U⊥U>⊥)En

(
U⊥U>⊥

)∥∥
2→∞

∥∥sin Θ(Û,U)
∥∥

2
/σr(Γ)

+ C
∥∥(U⊥U>⊥)Γ(U⊥U>⊥)∥∥2→∞

∥∥sin Θ(Û,U)
∥∥

2
/σr(Γ)

+
∥∥sin Θ(Û,U)

∥∥2

2
‖U‖2→∞.

Moving forward, we record several important observations:

• By Proposition 3, ‖(U⊥U>⊥)En(UU>)‖2→∞ ≤ ‖U⊥U>⊥‖∞‖EnU‖2→∞.

• By the (bounded coherence) assumption that ‖U‖2→∞ ≤ C
√
r/d, then

∥∥U⊥U>⊥∥∥∞ =
∥∥I−UU>

∥∥
∞ ≤ 1 +

√
d
∥∥UU>

∥∥
2→∞ ≤ (1 + C)

√
r.

• The random (Gaussian) vector U>⊥Y has covariance matrix U⊥Σ⊥U>⊥, so by

Koltchinskii and Lounici (2017a,b) there exists some constant C > 0 such that

with probability at least 1− 1
3
d−2,

∥∥(U⊥U>⊥)En

(
U⊥U>⊥

)∥∥
2
≤ Cσr+1(Γ)

√
max{r(Σ⊥), log d}

n

≤ C
√
σr+1(Γ)

√
σ1(Γ)

√
max{r(Γ), log d}

n
,
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where the final inequality holds since

r(Σ⊥) =

(
σ1(Γ)

σr+1(Γ)

)(
r(Γ)− tr(Σ)

σ1(Γ)

)
≤
(

σ1(Γ)

σr+1(Γ)

)
r(Γ).

• Note that ‖(U⊥U>⊥)Γ(U⊥U>⊥)‖2→∞ = ‖U⊥Σ⊥U>⊥‖2→∞ ≤ σr+1(Γ).

• Theorem 41 yields the bound ‖ sin Θ(Û,U)‖2 ≤ C‖En‖2/δr(Γ) with population

gap given by δr(Γ) := σr(Γ)− σr+1(Γ) ≥ c2σr(Γ) > 0.

Together, these observations yield

‖Û−UWU‖2→∞ ≤ C
√
r‖EnU‖2→∞/σr(Γ)

+ C

(
max{r(Γ), log d}

n

)√
σr+1(Γ)/σr(Γ)

+ C

√
max{r(Γ), log d}

n

(
σr+1(Γ)/σr(Γ)

)
+ C

(
max{r(Γ), log d}

n

)√
r/d.

Now let ei denote the ith standard basis vector in Rd and uj denote the jth column of

U. The matrix En is symmetric, and EnU ∈ Rd×r can be bounded in two-to-infinity

norm in the manner

‖EnU‖2→∞ ≤
√
r‖EnU‖max =

√
rmaxi∈[d],j∈[r]

∣∣〈Enei,uj〉
∣∣.
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For each (i, j) ∈ [d]× [r], the scalar 〈Enei,uj〉 can be expanded as

〈Enei,uj〉 =
1

n

n∑
k=1

((
u>j Yk

)(
Y >k ei

)
− u>j Γei

)
=

1

n

n∑
k=1

(
〈Yk,uj〉Y (i)

k − 〈Γei,uj〉
)
.

The product of (sub-)Gaussian random variables is sub-exponential, so for i and j

fixed, (〈Yk,uj〉Y (i)
k − 〈Γei,uj〉) with 1 ≤ k ≤ n is a collection of independent and

identically distributed, centered sub-exponential random variables (Vershynin, 2018).

To this end, the (univariate) sub-exponential norm, the (univariate) sub-Gaussian

norm, and the vector sub-Gaussian norm are respectively,

∥∥(Y (i)
)2∥∥

ψ1
:= sup

p≥1
p−1
(
E
[∣∣(Y (i)

)2∣∣p])1/p
;

∥∥Y (i)
∥∥
ψ2

:= sup
p≥1

p−1/2
(
E
[∣∣Y (i)

∣∣p])1/p
;

‖Y ‖ψ2 := sup
‖x‖2=1

∥∥〈Y,x〉∥∥
ψ2
.

By properties of these (Orlicz) norms (Vershynin, 2018), there exists some constant

C > 0 such that the above sub-exponential random variables satisfy the bound

∥∥〈Yk,uj〉Y (i)
k − 〈Γei,uj〉

∥∥
ψ1
≤ 2
∥∥〈Yk,uj〉Y (i)

k

∥∥
ψ1
≤ C

∥∥〈Y,uj〉∥∥ψ2

∥∥Y (i)
∥∥
ψ2
.

The random vector Y is mean zero multivariate Gaussian, hence for each 1 ≤ i ≤ d,
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the norm of the ith component satisfies the variance-based bound

∥∥Y (i)
∥∥
ψ2
≤ C max

1≤i≤d

√
Var
(
Y (i)

)
≡ Cν(Y ).

For each j ∈ [r], Var(〈Y,uj〉) = u>j Γuj = σj(Γ), where 〈Y,uj〉 is univariate Gaussian,

so we have the spectral-based bound ‖〈Y,uj〉‖ψ2 ≤ C
√
σ1(Γ). Taken together, these

observations establish a uniform bound over all i, j, k of the form

∥∥〈Yk,uj〉Y (i)
k − 〈Γei,uj〉

∥∥
ψ1
≤ Cν(Y )

√
σ1(Γ).

By combining a union bound with Bernstein’s inequality for sub-exponential random

variables (Vershynin, 2018), it follows that there exists a constant C > 0 such that

with probability at least 1− 1
3
d−2,

‖EnU‖2→∞ ≤ Cν(Y )
√
σ1(Γ)

√
r

√
max{r(Γ), log d}

n
.

The r largest singular values of Γ bound each other up to absolute multiplicative

constants for all values of d by assumption. Moreover, δr(Γ) ≥ c2σr(Γ) by assumption.
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Aggregating the above observations yields that with probability at least 1− d−2,

‖Û−UWU‖2→∞ ≤ C

√
max{r(Γ), log d}

n

(
ν(Y )r√
σr(Γ)

+
σr+1(Γ)

σr(Γ)

)

+ C

(
max{r(Γ), log d}

n

)(√
σr+1(Γ)

σr(Γ)
+

√
r

d

)
,

which completes the proof.

6.1.3 Proof of Theorem 6

Proof. The matrices M and M̂ have rank at least r, so Û ≡ M̂V̂Σ̂−1 and UWU ≡

MVΣ−1WU by the block matrix formulation in Section 1.5. The explicit correspon-

dence betweenWU andU>Û along with subsequent left-multiplication by the matrix

U motivates the introduction of the projected quantity ±UU>Û and leads to

Û−UWU =
(
Û−UU>Û

)
+
(
UU>Û−UWU

)
=
(
I−UU>

)
M̂V̂Σ̂−1 + U

(
U>Û−WU

)
.

The matrix U(U>Û−WU) can be meaningfully bounded in both spectral and two-

to-infinity norm by Lemma 40 and Proposition 3. Ignoring U for the moment, the

difference U>Û −WU represents the geometric approximation error between U>Û

and the orthogonal matrix WU.

It is not immediately clear how to control (I−UU>)M̂V̂Σ̂−1 given the dependence
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on the perturbed quantity M̂. If instead we replace M̂ withM and consider the matrix

(I−UU>)MV̂Σ̂−1, then by the block matrix form in Section 1.5 one can check that

(I − UU>)M = M(I − VV>). Since (I − UU>) is an orthogonal projection and

hence is idempotent, (I−UU>)MV̂Σ̂−1 = (I−UU>)M(V̂ −VV>V̂)Σ̂−1. Thus,

(
I−UU>

)
M̂V̂Σ̂−1 =

(
I−UU>

)
EV̂Σ̂−1 +

(
I−UU>

)
M
(
V̂ −VV>V̂

)
Σ̂−1.

By Lemma 39 and Proposition 3, the terms comprising the matrix product (I −

UU>)M(V̂ −VV>V̂)Σ̂−1 can be suitably controlled in norm. At times, it shall be

useful to further decompose (I−UU>)M(V̂ −VV>V̂)Σ̂−1 as

((
I−UU>

)
M(V̂ −VWV)Σ̂−1

)
+
((
I−UU>

)
MV

(
WV −V>V̂

)
Σ̂−1

)
,

where the second term vanishes since (I−UU>)MV vanishes.

As for the matrix (I − UU>)EV̂Σ̂−1, we do not assume explicit control of V̂,

so we rewrite the above matrix product in terms of V and a corresponding residual

quantity. A natural choice is to incorporate the orthogonal factor WV. Specifically,

introducing ±(I−UU>)EVWVΣ̂−1 yields

(
I−UU>

)
EV̂Σ̂−1 =

(
I−UU>

)
E(V̂ −VWV)Σ̂−1 +

(
I−UU>

)
EVWVΣ̂−1.

Gathering right-hand sides of the above equations yields Theorem 6. Corollaries 7
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and 8 are evident given that U>U and V>V are both simply the identity matrix.

Corollary 9 is obtained from Corollary 8 by additional straightforward algebraic ma-

nipulations. In applications, (I − UU>)EVWVΣ̂−1 ≈ EVWVΣ̂−1 can often be

shown to function as the leading order term.

6.1.4 Proof of Theorem 10

Proof. The assumption σr(M) ≥ 2‖E‖2 implies that σr(M̂) ≥ 1
2
σr(M) since by

Weyl’s inequality for singular values, σr(M̂) ≥ σr(M)− ‖E‖2 ≥ 1
2
σr(M). The result

then follows from Corollary 9 together with Proposition 3 and Lemma 39.

6.1.5 Proof of Theorem 11

Proof. By Corollary 8, consider the decomposition

Û−UWU =
(
I−UU>

)
E
(
VV>

)
VWVΣ̂−1

+
(
I−UU>

)
(E + M)(V̂ −VWV)Σ̂−1

+ U
(
U>Û−WU

)
.
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Applying Proposition 3 and Lemma 39 yields

‖Û−UWU‖2→∞ ≤
∥∥(U⊥U>⊥)E(VV>

)∥∥
2→∞/σr(M̂)

+ (CE,U + CM,U)‖V̂ −VWV‖2→∞/σr(M̂)

+
∥∥sin Θ(Û,U)

∥∥2

2
‖U‖2→∞

and similarly

‖V̂ −VWV‖2→∞ ≤
∥∥(V⊥V>⊥)E>(UU>

)∥∥
2→∞/σr(M̂)

+ (CE,V + CM,V)‖Û−UWU‖2→∞/σr(M̂)

+
∥∥sin Θ(V̂,V)

∥∥2

2
‖V‖2→∞.

By assumption,

σr(M) ≥ max
{

2‖E‖2, (2/α)CE,U,
(
2/α′

)
CE,V, (2/β)CM,U,

(
2/β′

)
CM,V

}

for some constants 0 < α, α′, β, β′ < 1 such that δ := (α + β)(α′ + β′) < 1. The

assumption σr(M) ≥ 2‖E‖2 implies that σr(M̂) ≥ σr(M)−E‖2 ≥ 1
2
σr(M) by Weyl’s

inequality for singular values. Combining the above observations and rearranging
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terms yields

(1− δ)‖Û−UWU‖2→∞ ≤ 2
∥∥(U⊥U>⊥)E(VV>

)∥∥
2→∞/σr(M)

+ 2(α + β)
∥∥(V⊥V>⊥)E>(UU>

)∥∥
2→∞/σr(M)

+
∥∥sin Θ(Û,U)

∥∥2

2
‖U‖2→∞

+ (α + β)
∥∥sin Θ(V̂,V)

∥∥2

2
‖V‖2→∞.

The first claim follows since (α+β) < 1. When rank(X) = r, thenU⊥U>⊥M vanishes.

Corollary 7 then yields the simpler form

Û−UWU =
(
I−UU>

)
E
(
VV>

)
VWVΣ̂−1

+
(
I−UU>

)
E(V̂ −VWV)Σ̂−1

+ U
(
U>Û−WU

)
,

and similarly for V̂−VWV. In this case, the bound holds without needing to consider

either CM,U or CM,V.
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6.1.6 Proof of Corollary 12

Proof. By Theorem 11, we have

(1− δ)‖Û−UWU‖2→∞ ≤ 2
∥∥(U⊥U>⊥)E(VV>

)∥∥
2→∞/σr(M)

+ 2
∥∥(V⊥V>⊥)E>(UU>

)∥∥
2→∞/σr(M)

+
∥∥sin Θ(Û,U)

∥∥2

2
‖U‖2→∞

+
∥∥sin Θ(V̂,V)

∥∥2

2
‖V‖2→∞.

Applying Wedin’s sin Θ theorem with the assumption σr(M) ≥ 2‖E‖2 and the norm

relation ‖E‖2 ≤ max{‖E‖∞, ‖E‖1} yields

max
Z∈{U,V}

{∥∥sin Θ(Ẑ,Z)
∥∥

2

}
≤ min

{(
2×max{‖E‖∞, ‖E‖1}

σr(M)

)
, 1

}
.

By invoking properties of the two-to-infinity norm, it follows that

∥∥(U⊥U>⊥)E(VV>
)∥∥

2→∞ ≤
∥∥E(VV>

)∥∥
2→∞ +

∥∥(UU>
)
E
(
VV>

)∥∥
2→∞

≤ ‖EV‖2→∞ + ‖U‖2→∞
∥∥U>EV∥∥

2

≤ ‖E‖∞‖V‖2→∞ + ‖U‖2→∞max
{
‖E‖∞, ‖E‖1

}
≤ 2× max

η∈{1,∞}

{
‖E‖η

}
× max

Z∈{U,V}

{
‖Z‖2→∞

}
.
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Similarly,

∥∥(V⊥V>⊥)E>(UU>
)∥∥

2→∞

≤ ‖E‖1‖U‖2→∞ + ‖V‖2→∞max
{
‖E‖∞, ‖E‖1

}
≤ 2× max

η∈{1,∞}

{
‖E‖η

}
× max

Z∈{U,V}

{
‖Z‖2→∞

}
.

Hence

(1− δ)‖Û−UWU‖2→∞ ≤ 12× max
η∈{1,∞}

{
‖E‖η
σr(M)

}
× max

Z∈{U,V}
{‖Z‖2→∞}.

6.1.7 Proof of Theorem 14

Proof. Specializing Corollary 8 to the case when M is symmetric with rank(M) = r

yields the decomposition

Û−UWU = E(Û−UWU)Λ̂−1 −
(
UU>

)
E(Û−UWU)Λ̂−1 + EUWUΛ̂−1

−
(
UU>

)
EUWUΛ̂−1 + U

(
U>Û−WU

)
.

142



CHAPTER 6. PROOFS

Applying the technical results in Sections 1.3 and 6.1.1 yields the term-wise bounds

∥∥E(Û−UWU)Λ̂−1
∥∥

2→∞ ≤ ‖E‖∞‖Û−UWU‖2→∞|λ̂r|−1,∥∥(UU>
)
E(Û−UWU)Λ̂−1

∥∥
2→∞ ≤ ‖U‖2→∞‖E‖2‖Û−UWU‖2|λ̂r|−1,∥∥EUWUΛ̂−1
∥∥

2→∞ ≤ ‖E‖∞‖U‖2→∞|λ̂r|−1,∥∥(UU>
)
EUWUΛ̂−1

∥∥
2→∞ ≤ ‖U‖2→∞‖E‖2||λ̂r|−1,∥∥U(U>Û−WU

)∥∥
2→∞ ≤ ‖U‖2→∞

∥∥U>Û−WU
∥∥

2
.

The matrix E is symmetric by assumption, therefore, ‖E‖2 ≤ ‖E‖∞. Furthermore,

‖Û−UWU‖2 ≤
√

2‖ sin Θ(Û,U)‖2 by Lemma 40, and Theorem 41 guarantees that

‖ sin Θ(Û,U)‖2 ≤ 2‖E‖2|λr|−1. Therefore,

∥∥E(Û−UWU)Λ̂−1
∥∥

2→∞ ≤ ‖E‖∞‖Û−UWU‖2→∞|λ̂r|−1,∥∥(UU>
)
E(Û−UWU)Λ̂−1

∥∥
2→∞ ≤ 4‖E‖2

∞‖U‖2→∞|λ̂r|−1|λr|−1,∥∥EUWUΛ̂−1
∥∥

2→∞ ≤ ‖E‖∞‖U‖2→∞|λ̂r|−1,∥∥(UU>
)
EUWUΛ̂−1

∥∥
2→∞ ≤ ‖E‖∞‖U‖2→∞|λ̂r|−1,∥∥U(U>Û−WU

)∥∥
2→∞ ≤ 4‖E‖2

∞‖U‖2→∞|λr|−2.
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By assumption |λr| ≥ 4‖E‖∞, so |λ̂r| ≥ 1
2
|λr|. As a consequence, it follows that

‖E‖∞|λ̂r|−1 ≤ 2‖E‖∞|λr|−1 ≤ 1
2
. Thus,

∥∥E(Û−UWU)Λ̂−1
∥∥

2→∞ ≤
1

2
‖Û−UWU‖2→∞,∥∥(UU>

)
E(Û−UWU)Λ̂−1

∥∥
2→∞ ≤ 2‖E‖∞‖U‖2→∞|λr|−1,∥∥EUWUΛ̂−1
∥∥

2→∞ ≤ 2‖E‖∞‖U‖2→∞|λr|−1,∥∥(UU>
)
EUWUΛ̂−1

∥∥
2→∞ ≤ 2‖E‖∞‖U‖2→∞|λr|−1,∥∥U(U>Û−WU

)∥∥
2→∞ ≤ ‖E‖∞‖U‖2→∞|λr|−1.

Hence, ‖Û−UWU‖max ≤ ‖Û−UWU‖2→∞ ≤ 14
(‖E‖∞
|λr|

)
‖U‖2→∞.

6.1.8 Proof of Theorem 15

Proof. Rewriting Corollary 8 in terms of the matrix V̂−VWV as described in The-

orem 6 yields the decomposition

V̂ −VWV =
(
V⊥V>⊥

)
E>
(
UU>

)
UWUΣ̂−1

+
(
V⊥V>⊥

)(
E> + M>)(Û−UWU)Σ̂−1

+ V
(
V>V̂ −WV

)
.

Observe that (UU>)U ≡ U, while the assumption rank(M) = r implies that the

matrix (V⊥V>⊥)M> vanishes. Applying Proposition 3, Lemma 39, and Lemma 40 to
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the remaining terms therefore yields

∥∥(V⊥V>⊥)E>UWUΣ̂−1
∥∥

2→∞ ≤
∥∥(V⊥V>⊥)E>U∥∥2→∞/σr(M̂),∥∥(V⊥V>⊥)E>(Û−UWU)Σ̂−1

∥∥
2→∞

≤ C
∥∥(V⊥V>⊥)E>∥∥2→∞

∥∥sin Θ(Û,U)
∥∥

2
/σr(M̂),∥∥V(V>V̂ −WV

)∥∥
2→∞ ≤

∥∥sin Θ(V̂,V)
∥∥2

2
‖V‖2→∞.

The columns of (V⊥V>⊥)E> ∈ Rp2×p1 are centered independent multivariate nor-

mal random vectors with covariance matrix (V⊥V>⊥), so row i of (V⊥V>⊥)E> is

a centered multivariate normal random vector with covariance matrix σ2
i I, where

σ2
i := (V⊥V>⊥)i,i ≤ 1 and I ∈ Rp1×p1 denotes the identity matrix. By Gaussian

concentration and applying a union bound with p2 � p1, then ‖(V⊥V>⊥)E>‖2→∞ ≤

Cr
√
p1 log(p2) with high probability.

As for (V⊥V>⊥)E>U ∈ Rp2×r, the above argument implies that entry (i, j) is

N(0, σ2
i ). Hence by the same approach, ‖(V⊥V>⊥)E>U‖2→∞ ≤ Cr log(p2) with high

probability.

By hypothesis r � p1 � p2 and σr(M) ≥ Cp2/
√
p1, where ‖E‖2 ≤ C

√
p2 with

high probability. In this setting, via Cai and Zhang (2018),

∥∥sin Θ(Û,U)
∥∥

2
≤ C

( √
p1

σr(M)

)
and

∥∥sin Θ(V̂,V)
∥∥

2
≤ C

( √
p2

σr(M)

)
.
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Combining these observations yields

(
‖(V⊥V>⊥)E>U‖2→∞

σr(M̂)

)
≤ Cr

(
log(p2)

σr(M)

)
,(

‖(V⊥V>⊥)E>‖2→∞

σr(M̂)

)∥∥sin Θ(Û,U)
∥∥

2
≤ Cr

(
log(p2)

σr(M)

)(
p1

σr(M)

)
,

∥∥sin Θ(V̂,V)
∥∥2

2
‖V‖2→∞ ≤ Cr

(
log(p2)

σr(M)

)( √
p1

log(p2)

)
‖V‖2→∞.

Hence, with high probability

‖V̂ −VWV‖2→∞ ≤ Cr

(
log(p2)

σr(M)

)(
1 +

(
p1

σr(M)

)
+

( √
p1

log(p2)

)
‖V‖2→∞

)
.

If in addition σr(M) ≥ cp1 and ‖V‖2→∞ ≤ cr/
√
p2 for some c, cr > 0, then the above

bound simplifies to the form

‖V̂ −VWV‖2→∞ ≤ Cr

(
log(p2)

σr(M)

)
,

which completes the proof.

6.1.9 Proof of Theorem 18

Proof. We seek to bound ‖Û−UWU‖2→∞ and allow the constant C > 0 to change

from line to line. Our analysis considers appropriate groupings of matrix elements in

order to handle the graph correlation structure.

146



CHAPTER 6. PROOFS

By assumption rank(O) = r which implies that the matrix (I−UU>)O vanishes.

Via Corollary 7, this yields the bound

‖Û−UWU‖2→∞ ≤
∥∥(I−UU>

)
(Ô−O)UWUΣ̂−1

∥∥
2→∞

+
∥∥(I−UU>

)
(Ô−O)(Û−UWU)Σ̂−1

∥∥
2→∞

+ ‖U‖2→∞
∥∥U>Û−WU

∥∥
2
,

which can be further weakened to the form

‖Û−UWU‖2→∞ ≤
∥∥(Ô−O)U

∥∥
2→∞

∥∥Σ̂−1
∥∥

2

+ ‖U‖2→∞
∥∥U>(Ô−O)U

∥∥
2

∥∥Σ̂−1
∥∥

2

+ ‖Ô−O‖2‖Û−UWU‖2

∥∥Σ̂−1
∥∥

2

+ ‖U‖2→∞
∥∥U>Û−WU

∥∥
2
.

Applying the triangle inequality to the block matrix Ô −O yields a spectral norm

bound of the form

‖Ô−O‖2 ≤ C ×max
{∥∥A1 −P

∥∥
2
,
∥∥A2 −P

∥∥
2

}
.

By assumption, for i = 1, 2, the maximum expected degree of Gi, ∆, satisfies

∆ � log4(n), hence ‖Ai − P‖2 = O(
√

∆) with probability 1 − o(1) by Lu and Peng

(2013). The assumption σr(O) ≥ c∆ implies that σr(Ô) ≥ C∆ with probability
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1 − o(1) by Weyl’s inequality, so ‖Σ̂−1‖2 = O(1/∆). Combining these observations

with Theorem 41 and the proof of Lemma 40 produces

‖Û−UWU‖2 ≤ C
∥∥sin Θ(Û,U)

∥∥
2
≤ C‖Ô−O‖2/σr(O) = O(1/

√
∆),

which we note simultaneously provides a naïve bound for ‖Û −UWU‖2→∞. As for

the matrix, (Ô−O)U ∈ R2n×r,

∥∥(Ô−O)U
∥∥

2→∞ ≤
√
r max
i∈[2n],j∈[r]

∣∣〈(Ô−O)uj, ei
〉∣∣.

For all 1 ≤ k ≤ n, u(k+n),j = uk,j, and for each 1 ≤ i ≤ n and 1 ≤ j ≤ r,

〈
(Ô−O)uj, ei

〉
= e>i (Ô−O)uj =

n∑
k=1

(
3

2
a1
i,k +

1

2
a2
i,k − 2pi,k

)
uk,j.

Above, the roles of A1 and A2 are interchanged for n+ 1 ≤ i ≤ 2n.

For any 1 ≤ i ≤ n, the above expansion is a sum of independent (in k), bounded,

mean zero random variables taking values in [−2uk,j, 2uk,j].

Hence by Hoeffding’s inequality, with probability 1− o(1) in n,

∥∥(Ô−O)U
∥∥

2→∞ = Or(log n).
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Similarly, for the matrix U>(Ô−O)U ∈ Rr×r,

∥∥U>(Ô−O)U
∥∥

2
≤ r max

i∈[r],j∈[r]

∣∣〈(Ô−O)uj,ui
〉∣∣,

so for 1 ≤ i, j ≤ r, then

〈
(Ô−O)uj,ui

〉
= u>i (Ô−O)uj =

∑
1≤l<k≤n

4
(
a1
l,k + a2

l,k − 2pl,k
)
uk,jul,i.

This sum decomposes as a sum of independent, mean zero, bounded random variables

taking values in [−8uk,jul,i, 8uk,jul,i]. By another application of Hoeffding’s inequality,

with probability 1− o(1),

∥∥U>(Ô−O)U
∥∥

2
= Or(log n).

Lemma 39 bounds ‖U>Û−WU‖2 by ‖ sin Θ(Û,U)‖2
2 which is O(1/∆). Cumulatively,

this demonstrates that ‖Û −UWU‖2→∞ = Or((log n)/∆) with probability 1 − o(1)

as n→∞.

6.2 Proofs for Chapter 3

This section contains a joint proof of the theoretical results in Chapter 3 as well

as additional simulation examples.
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6.2.1 Proof of Theorems 19, 20, and 21

Proof. We begin with several important observations, namely that

‖(I−UU>)Û‖2 = ‖ sin Θ(Û,U)‖2 = O
(
‖E‖|Λr,r|−1

)
= OP

{
(nρn)−1/2

}
, (6.7)

and that there exists W ∈ Or depending on Û and U such that

‖U>Û−W‖2 ≤ ‖ sin Θ(Û,U)‖2
2 = OP

{
(nρn)−1

}
. (6.8)

In particular, W can be taken to be the product of the left and right orthogonal

factors in the singular value decomposition of U>Û. See Section 1.4.

Importantly, the relation ÛΛ̂ = M̂Û = (M + E)Û yields the matrix equation

ÛΛ̂− EÛ = MÛ. The spectra of Λ̂ and E are disjoint from one another with high

probability as a consequence of Assumptions 2 and 3, so it follows that Û can be

written as the matrix series (Bhatia, 1997, Section 7.2)

Û =
∞∑
k=0

EkMÛΛ̂−(k+1) =
∞∑
k=0

EkUΛU>ÛΛ̂−(k+1), (6.9)

where the second equality holds since rank(M) = r.
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For any choice of W ∈ Or, the matrix Û−UW can be decomposed as

Û−UW = EÛΛ̂−1 + UΛ(U>ÛΛ̂−1 −Λ−1U>Û) + U(U>Û−W)

= EÛΛ̂−1 + R(1) + R(2)
W .

For R(2)
W = U(U>Û−W), it follows that for W satisfying Eq. (6.8), then

‖R(2)
W‖2→∞ ≤ ‖U>Û−W‖2‖U‖2→∞ = OP

{
(nρn)−1‖U‖2→∞

}
.

For R(1) = UΛR(3) where R(3) = (U>ÛΛ̂−1 −Λ−1U>Û) ∈ Rr×r, the entries of R(3)

satisfy

R(3)
ij = 〈ui, ûj〉

{
(Λ̂j,j)

−1 − (Λi,i)
−1
}

= 〈ui, ûj〉(Λi,i − Λ̂j,j)(Λi,i)
−1(Λ̂j,j)

−1.

Define the matrix H1 ∈ Rr×r entrywise according to (H1)ij = (Λi,i)
−1(Λ̂j,j)

−1. Then,

with ◦ denoting the Hadamard matrix product,

R(3) = −H1 ◦ (U>ÛΛ̂−ΛU>Û).

The rightmost matrix factor can be expanded as

(U>ÛΛ̂−ΛU>Û) = U>EÛ = U>EUU>Û + U>E(I−UU>)Û,
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and is therefore bounded in spectral norm using Eq. (6.7) in the manner

‖U>ÛΛ̂−ΛU>Û‖2 ≤ ‖U>EU‖2 +OP(1).

Combining the above observations together with properties of matrix norms yields

the following two-to-infinity norm bound on R(1).

‖R(1)‖2→∞ = ‖UΛR(3)‖2→∞ ≤ r‖U‖2→∞‖Λ‖2‖H1‖max‖U>ÛΛ̂−ΛU>Û‖2

= OP
{
r(nρn)−1(‖U>EU‖2 + 1)‖U‖2→∞

}

Assumptions 2 and 3 with an application of Weyl’s inequality (Bhatia, 1997,

Corollary 3.2.6) guarantee that there exist constants C1, C2 > 0 such that ‖E‖2 ≤

C1(nρn)1/2 and ‖Λ̂−1‖2 ≤ C2(nρn)−1 with high probability for n sufficiently large.

Therefore, by applying the earlier matrix series expansion,

‖EÛΛ̂−1‖2→∞ =

∥∥∥∥∥
∞∑
k=1

EkUΛU>ÛΛ̂−(k+1)

∥∥∥∥∥
2→∞

≤
k(n)∑
k=1

‖EkU‖2→∞‖Λ‖2‖Λ̂−1‖k+1
2 +

∞∑
k=k(n)+1

‖E‖k‖Λ‖2‖Λ̂−1‖k+1
2

= OP
{
r1/2(nρn)−1/2(log n)ξ‖U‖2→∞ + (nρn)−1/2‖U‖2→∞

}
,

where we have used the fact that nρn = ω{(log n)2ξ}, (nρn)−k(n)/2 ≤ n−1/2 ≤ ‖U‖2→∞

for n sufficiently large, and that by Assumption 4, for each k ≤ k(n), with high
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probability

‖EkU‖2→∞ ≤ r1/2 max
i∈[n],j∈[r]

|〈Ekuj, ei〉| ≤ r1/2(CEnρn)k/2(log n)kξ‖U‖2→∞.

Since ‖U>EU‖2 ≤ ‖E‖2 and r1/2 ≤ (log n)ξ with nρn = ω{(log n)2ξ}, then

‖Û−UW‖2→∞ ≤ ‖EÛΛ̂−1‖2→∞ + ‖R(1)‖2→∞ + ‖R(2)
W‖2→∞

= OP
{
r1/2(nρn)−1/2(log n)ξ‖U‖2→∞

}
.

This completes the proof of Theorem 19.

Next, we further decompose the matrix EÛΛ̂−1 by extending the above proof

techniques in order to obtain second-order fluctuations. Using the matrix series form

in Eq. (6.9) yields

EÛΛ̂−1 = EUΛU>ÛΛ̂−2 +
∞∑
k=2

EkUΛU>ÛΛ̂−(k+1)

= EUΛ−1W + EUΛ(U>ÛΛ̂−2 −Λ−2U>Û) + EUΛ−1(U>Û−W)

+
∞∑
k=2

EkUΛU>ÛΛ̂−(k+1)

= EUΛ−1W + R(1)
2 + R(2)

2,W + R(∞)
2 .
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The final term satisfies the bound

‖R(∞)
2 ‖2→∞ = OP

{
r1/2(nρn)−1(log n)2ξ‖U‖2→∞

}
,

which follows from Assumption 4 holding up to k(n) + 1, namely

‖R(∞)
2 ‖2→∞ ≤

k(n)+1∑
k=2

‖EkU‖2→∞‖Λ‖2‖Λ̂−1‖k+1
2 +

∞∑
k=k(n)+2

‖E‖k2‖Λ‖2‖Λ̂−1‖k+1
2

= OP
{
r1/2(nρn)−1(log n)2ξ‖U‖2→∞ + (nρn)−1‖U‖2→∞

}
.

On the other hand, modifying the previous analysis used to bound R(2)
W yields

‖R(2)
2,W‖2→∞ ≤ ‖EU‖2→∞‖Λ−1‖2‖U>Û−W‖2

= OP
{
r1/2(nρn)−3/2(log n)ξ‖U‖2→∞

}
.

We now bound R(1)
2 = EUΛ(U>ÛΛ̂−2 − Λ−2U>Û) by extending the previous ar-

gument used to bound R(1). For R(1)
2 = EUΛR(3)

2 where R(3)
2 = (U>ÛΛ̂−2 −

Λ−2U>Û) ∈ Rr×r, the entries of R(3)
2 satisfy

R(3)
ij = 〈ui, ûj〉

{
(Λ̂j,j)

−2 − (Λi,i)
−2
}

= 〈ui, ûj〉(Λ2
i,i − Λ̂2

j,j)(Λi,i)
−2(Λ̂j,j)

−2.

Define the matrix H2 ∈ Rr×r entrywise according to (H2)ij = (Λi,i)
−2(Λ̂j,j)

−2. Then,
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with ◦ denoting the Hadamard matrix product,

R(3)
2 = −H2 ◦ (U>ÛΛ̂2 −Λ2U>Û).

The rightmost matrix factor can be written as

(U>ÛΛ̂2 −Λ2U>Û) = U>(M̂)2Û−U>M2Û = U>(ME + EM)Û,

and has spectral norm on the order of OP{(nρn)3/2}. Hence,

‖R(1)
2 ‖2→∞ = ‖EUΛR(3)

2 ‖2→∞ ≤ r‖EU‖2→∞‖Λ‖2‖H2‖max‖U>ÛΛ̂2 −Λ2U>Û‖2

= OP
{
r3/2(nρn)−1(log n)ξ‖U‖2→∞

}
.

For R = R(1) + R(2)
W + R(1)

2 + R(2)
2,W + R(∞)

2 , we have therefore shown that

Û−UW = EUΛ−1W + R, (6.10)

where since r1/2 ≤ (log n)ξ, the residual matrix R satisfies

‖R‖2→∞ = OP
[
(nρn)−1 × r ×max

{
(log n)2ξ, ‖U>EU‖2 + 1

}
× ‖U‖2→∞

]
.
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The leading term agrees with the order of the bound in Theorem 19, namely

‖EUΛ−1W‖2→∞ = OP
{

(nρn)−1/2 × r1/2(log n)ξ‖U‖2→∞
}
.

This establishes Theorem 20 en route to proving Theorem 21, which we now finish.

Since M = ρnXX> ≡ UΛU>, there exists an orthogonal matrix WX (depending

on n) such that ρ1/2
n X = UΛ1/2WX, hence ρnX>X = W>

XΛWX. Following some

algebraic manipulations, the matrix EUΛ−1W can therefore be written as

EUΛ−1W = ρ−1
n EX(X>X)−3/2(W>

XW).

Plugging this observation into Eq. (6.10) and subsequent matrix multiplication to-

gether yield the relation

(
ÛW>WX −UWX

)
= ρ−1

n EX(X>X)−3/2 + RW>WX.

For fixed i, let Ûi, Ui, and Ri be column vectors denoting the i-th rows of Û, U, and

R, respectively. By hypothesis, it follows that nρ1/2
n ‖Ri‖2 → 0 in probability. In addi-

tion, (n−1X>X)−3/2 → Ξ−3/2 by Assumption 5 together with the continuous mapping

theorem. The scaled i-th row of EX converges in distribution to Yi ∼ Nr(0,Γi) by

Assumption 5, so combining the above observations together with Slutsky’s theorem
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yields that there exist sequences of orthogonal matrices (W) and (WX) such that

nρ1/2
n W>

X

(
WÛi −Ui

)
=
(
n−1X>X

)−3/2 {
(nρn)−1/2(EX)i

}
+ nρ1/2

n W>
XWRi

⇒ Ξ−3/2Yi + 0.

In particular, we have the row-wise convergence in distribution

nρ1/2
n W>

X

(
WÛi −Ui

)
⇒ Nr(0,Σi)

where Σi = Ξ−3/2ΓiΞ
−3/2. This completes the proof of Theorem 21.

6.3 Proofs for Chapter 4

6.3.1 Proof of Theorem 26

Proof. Let P,E ∈ Rn×n be real symmetric matrices such that E satisfies Proposi-

tion 25. Denote the d largest eigenvalues of P and A by

0 < λ1(P) ≤ λ2(P) ≤ · · · ≤ λd(P),

0 < λ1(A) ≤ λ2(A) ≤ · · · ≤ λd(A).
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Let {wi}di=1 denote a collection of orthonormal eigenvectors of P corresponding to the

collection of eigenvalues {λi(P)}di=1. Similarly, let {ui}di=1 denote a collection of or-

thonormal eigenvectors ofA corresponding to the collection of eigenvalues {λi(A)}di=1.

For each i ∈ [d] define ηi to be an “approximate eigenvalue of A close to λi(P)”

in the sense that

ηi := 〈Awi,wi〉 = λi(P) + 〈Ewi,wi〉, (6.11)

and define a corresponding “residual quantity” εi as

εi := ‖(A− ηiI)wi‖. (6.12)

6.3.1.1 Proof of Theorem 26: upper bound

Now for fixed k ∈ [d] define the k-dimensional linear manifold Mk by

Mk := span{u1, . . . ,uk}.

We now define a collection of “aggregate quantities”:

• Define w to be an “aggregate approximate eigenvector of A” in the sense that

w :=
∑k

i=1 riwi for a collection of normalized coefficients {ri}ki=1 such that

‖w‖2 =
∑k

i=1 riwi = 1, and satisfying the under-determined linear system

158



CHAPTER 6. PROOFS

〈w,ui〉 = 0 for i = 1, 2, . . . , k − 1.

• Define η to be an “aggregate approximate eigenvector of A” in the sense that

η := 〈Aw,w〉.

• Define ε to be the “aggregate residual quantity” ε := ‖(A− ηI)w‖.

By Lemma 1 in Kato (1950), the interval
(
α, η + ε2

η−α

]
contains a point in the spec-

trum of A. Note that by construction, w ∈M⊥k−1 =: Nk−1; moreover, Aw ∈ Nk−1 as

a function of {ri}ki=1. In the Hilbert space Nk−1, however, the spectrum of A does not

contain λ1(A), . . . , λk−1(A) since u1, . . . ,uk−1 /∈ Nk−1. Thus, by another application

of Lemma 1 in Kato (1950), the eigenvalue of A in the interval given by
(
α, η + ε2

η−α

]
must be λk(A) with associated unit eigenvector uk. Hence,

λk(A) ≤ η +
ε2

η − α
=
η2 + ε2 − αη

η − α
. (6.13)

We pause briefly to make several computational observations. First,

η2 + ε2 = 〈Aw,w〉2 + ‖(A− 〈Aw,w〉I)w‖2 (6.14)

= ‖Aw‖2 =
k∑

i,j=1

rirj〈Awi,Awj〉. (6.15)

Let δi,j := I{i = j} denote the Kronecker delta function. For each i, j ∈ [d],

〈Awi,Awj〉 = 〈(A− ηiI)wi, (A− ηjI)wj〉+ (ηi + ηj)〈Awi,wj〉 − η2
i δi,j, (6.16)
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while

〈Awi,wj〉 = 〈Ewi,wj〉 for i 6= j. (6.17)

It will also prove useful to recognize the expansion

η = 〈Aw,w〉 =
k∑
i=1

r2
i ηi +

∑
1≤i<j≤k

2rirj〈Ewi,wj〉. (6.18)

Combining these observations yields

η2 + ε2 =
k∑

i,j=1

rirj〈Awi,Awj〉

=

(
k∑
i=1

r2
i 〈Awi,Awi〉

)
+

( ∑
1≤i<j≤k

2rirj〈Awi,Awj〉

)

=
k∑

i,j=1

rirj〈(A− ηiI)wi, (A− ηjI)wj〉

+
k∑
i=1

r2
i η

2
i +

∑
1≤i<j≤k

2rirj(ηi + ηj)〈Awi,wj〉.

An application of the Cauchy–Schwarz inequality coupled with subsequent computa-

tion yields

k∑
i,j=1

rirj〈(A− ηiI)wi, (A− ηjI)wj〉 ≤
k∑

i,j=1

rirj (‖(A− ηiI)wi‖‖(A− ηjI)wj‖)

=
k∑

i,j=1

(riεi)(rjεj) ≤

(
k∑
i=1

εi|ri|

)2

.
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Hence,

η2 + ε2 ≤

(
k∑
i=1

εi|ri|

)2

+
k∑
i=1

r2
i η

2
i +

∑
1≤i<j≤k

2rirj(ηi + ηj)〈Ewi,wj〉. (6.19)

Returning to Eq. (6.13), the numerator then becomes

(
k∑
i=1

εi|ri|

)2

+
k∑
i=1

r2
i ηi(ηi − α) +

∑
1≤i<j≤k

2rirj(ηi + ηj − α)〈Ewi,wj〉 (6.20)

while the denominator becomes

(
k∑
i=1

r2
i (ηi − α)

)
+

( ∑
1≤i<j≤k

2rirj〈Ewi,wj〉

)
. (6.21)

By a simple union bound, observe that for t > 0,

P [max1≤i≤j≤k|〈Ewi,wj〉| > t] ≤
(
k +

(
k

2

))
C exp(−ctγ), (6.22)

in which case with high probability,

(
k∑
i=1

r2
i (ηi − α)

)
≥ λ1(P)− α− t, (6.23)( ∑

1≤i<j≤k

2rirj〈Ewi,wj〉

)
≥ −k(k − 1)t, (6.24)
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while with high probability,

∑
1≤i<j≤k

2rirj(ηi + ηj − α)〈Ewi,wj〉 ≤ (2λk(P)− α + 2t)k(k − 1)t, (6.25)(
k∑
i=1

r2
i ηi

)
k(k − 1)t ≤ (λk(P) + t)k(k − 1)t. (6.26)

By adding and subtracting
(∑k

i=1 r
2
i ηi

)
k(k − 1)t to the numerator of Eq. (6.13) we

obtain the following bound in which the first term on the right-hand side is the leading

term while the second term on the right hand side corresponds to a residual term.

λk(A) ≤

(∑k
i=1 εi|ri|

)2

+
(∑k

i=1 r
2
i ηi(ηi − α− k(k − 1)t)

)
(∑k

i=1 r
2
i (ηi − α− k(k − 1)t)

)
+

(3λk(P)− α + 3t)k(k − 1)t

λ1(P)− α− (k(k − 1) + 1)t
.

Now by the same arguments as in Kato (1950), Section 3, Eq. (22–30), the constants

{ri}ki=1 can be removed. To this end, the quantity

(∑k
i=1 εi|ri|

)2

+
(∑k

i=1 r
2
i ηi(ηi − α− k(k − 1)t)

)
(∑k

i=1 r
2
i (ηi − α− k(k − 1)t)

) (6.27)

is bounded above by the quantity

max
1≤i≤k

ηi +

(
k∑
i=1

ε2i
ηi − α− k(k − 1)t

)
. (6.28)
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Note that max
1≤i≤k

ηi ≤ λk(P) + t, with high probability, while a simple computation

reveals that for each i ∈ [k],

ε2i = ‖Ewi‖2 − |〈Ewi,wi〉|2 ≤ ‖Ewi‖2 ≤ ‖E‖2
2. (6.29)

Combining these observations produces an upper bound on λk(A) of the form

λk(A) ≤ λk(P) + t+ ζ+, (6.30)

where ζ+ :=
k‖E‖22+(3λk(P)−α+3t)k(k−1)t

λ1(P)−α−(k(k−1)+1)t
.

6.3.1.2 Proof of Theorem 26: lower bound

Fix k ∈ [d] and let l := d−k+1. Define Ml to be the l-dimensional linear manifold

Ml := span{uk, . . . ,ud}.

We now define a collection of “aggregate quantities” similar to the formulation in

Section 6.3.1.1:

• Define w to be an “aggregate approximate eigenvector of A” in the sense that

w :=
∑d

i=k riwi for a collection of normalized coefficients {ri}di=k such that

‖w‖2 =
∑d

i=k riwi = 1, and satisfying the under-determined linear system

〈w,ui〉 = 0 for i = k + 1, . . . , d.
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• Define η to be an “aggregate approximate eigenvector of A” in the sense that

η := 〈Aw,w〉.

• Define ε to be the “aggregate residual quantity” ε := ‖(A− ηI)w‖.

By Lemma 2 in Kato (1950), the interval
[
η − ε2

β−η , β
)
contains a point in the spec-

trum of A. Note that by construction, w ∈M⊥l−1 =: Nl−1; moreover, Aw ∈ Nl−1 as a

function of {ri}di=k. In the Hilbert space Nl−1, however, the spectrum of A does not

contain λk+1(A), . . . , λd(A) since uk+1, . . . ,ud /∈ Nl−1. Thus, by another application

of Lemma 2 in Kato (1950), the eigenvalue of A in the interval
[
η − ε2

β−η , β
)
must be

λk(A) with associated unit eigenvector uk.

Consider first the special case when β = ∞. By a simple union bound, observe

that for t > 0,

P [maxk≤i≤j≤d|〈Ewi,wj〉| > t] ≤
(
l +

(
l

2

))
C exp(−ctγ), (6.31)

hence with high probability

d∑
i=k

r2
i ηi ≥ min

k≤i≤d
ηi ≥ λk(P)− t (6.32)
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and

λk(A) ≥ η =
d∑
i=k

r2
i ηi +

∑
k≤i<j≤d

2rirj〈Ewi,wj〉 (6.33)

≥ λk(P)− (l(l − 1) + 1)t. (6.34)

Now suppose that β <∞. Then for the lower bound of the above interval, one has

λk(A) ≥ η − ε2

β − η
=
βη − η2 − ε2

β − η
=
−(η2 + ε2) + βη

β − η
.

Reversing the direction of the previous application of the Cauchy–Schwarz inequality

in Eq. (6.19) permits the numerator to be bounded below by

−(
d∑
i=k

εi|ri|)2 +
d∑
i=k

r2
i ηi(β − ηi) +

∑
k≤i<j≤d

2rirj(β − ηi − ηj)〈Ewi,wj〉,

whereas the denominator has the expansion

d∑
i=k

r2
i (β − ηi) +

∑
k≤i<j≤d

2rirj〈Ewi,wj〉.
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For the denominator terms, note that with high probability

d∑
i=k

r2
i (β − ηi) ≥ β − λd(P)− t,

∑
k≤i<j≤d

2rirj〈Ewi,wj〉 ≥ −l(l − 1)t,

while in the numerator, with high probability,

∑
k≤i<j≤d

2rirj(β − ηi − ηj)〈Ewi,wj〉 ≥ −(β − λk(P) + λd(P) + 2t)l(l − 1)t.

In the numerator of Eq. (6.33), add and subtract the quantity
(∑d

i=k r
2
i ηi

)
l(l − 1)t

which is bounded below by (λk(P)− t)l(l− 1)t. Combining these observations yields

λk(A) ≥−(
∑d

i=k εi|ri|)2 +
∑d

i=k r
2
i ηi(β − ηi − l(l − 1)t)∑d

i=k r
2
i (β − ηi − l(l − 1)t)

+
−(β − λk(P) + λd(P)− λk + 3t)l(l − 1)t

β − λd(P)− (l(l − 1) + 1)t
.

By employing the same approach used to obtain the upper bound and taking negatives

when necessary (thereby reversing the direction in which bounds hold), we obtain the

lower bound for λk(A) of the form

λk(A) ≥ λk(P)− t− ζ−, (6.35)

where ζ− :=
l‖E‖22+((β−λk(P))+(λd(P)−λk(P))+3t)l(l−1)t

β−λd(P)−(l(l−1)+1)t
.
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6.3.2 Proof of Theorem 27

Proof. The hypotheses imply by Lu and Peng (2013) that ‖A−P‖2 = O(
√

∆) with

probability 1 − o(1) as n → ∞. Set α = (C − c)∆/2 and β = ∞ as Kato–Temple

threshold values. Choose δ ∈ (0, 1] and set t = Θ(logδ n). Then in Theorem 26, for

sufficiently large n, one has ζ+, ζ− = O(t) where the underlying constant depends

upon k, d, as well as underlying (unspecified) constants. So for n ≥ n0, then |σ̂k −

σk| ≤ ck,dt with probability 1− o(1) as claimed.

6.3.3 Proof of Theorem 30

Proof. The proof follows essentially mutatis mutandis as in Theorem 26 via Re-

mark 12, Definition 28, and Lemma 29. Observe that 〈 ˜̂Mw̃i, w̃j〉 = σiδi,j + 〈Ẽw̃i, w̃j〉

for each pair i, j, while at the same time ‖Ẽ‖2 = ‖E‖2.

6.3.4 Proof of Lemma 31

Proof. Let E ∈ Rm×n be a (C, c, γ)-concentrated random matrix. Take X and Y to

be 1
4
-nets of the spheres Sn−1 and Sm−1, respectively, with cardinalities at most 9n
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and 9m, respectively. Then a standard net argument yields that for t > 0,

P [‖E‖2 > t] ≤ P
[
2 max
x∈X,y∈Y

|〈Ex,y〉| > t

]
≤ 9m+nP [|〈Ex,y〉| > t/2]

≤ C exp((m+ n) log(9)− c(t/2)γ)

≤ C exp(2 log(9)max{m,n} − c(t/2)γ).

Choose ε > 0 such that 2 + ε > 2 (2 log(9)/c)1/γ and set t = (2 + ε)max{m,n}1/γ .

Then for cε,c,γ := (c(1 + ε/2)γ − 2 log(9)) > 0, we have

P
[
‖E‖2 > (2 + ε)max{m,n}1/γ

]
≤ C exp(−cε,c,γmax{m,n}).

If in addition m = n and E is symmetric, then since ‖E‖2 ≡ sup‖x‖2=1|〈Ex,x〉|, one

need only consider the 1
4
-net X for the purposes of a union bound.
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6.4 Proofs and supplementary material for

Chapter 5

6.4.1 Latent position geometry

All stochastic block models in Definition 33 can be formulated as instantiations

of generalized random dot product graph models possessing inherent latent position

(vector) structure. Earlier observations for the two-block SBM in Section 5.5 are

summarized in the following table, for which the implicit underlying vector π may be

viewed as an additional parameter space dimension that weights the latent positions

ν1 and ν2 by π1 and π2, respectively.

Model geometry: Canonical latent positions:

Positive definite B(a, b, c) ν1 = (
√
a, 0)>,ν2 = (b/

√
a,
√
ac− b2/

√
a)> in R2

Indefinite B(a, b, c) ν1 = (
√
a, 0)>,ν2 = (b/

√
a,
√
b2 − ac/

√
a)> in R2

Rank one B(p2, pq, q2) ν1 = p,ν2 = q in R

For the homogeneous balanced affinity two-block network structure investigated

in Section 5.5.1.1, the latent position geometry can be equivalently reparameterized

as two vectors on the circle of radius r :=
√
a separated by the angle θ := arccos(b/a).

This behavior generalizes to the homogeneous balanced affinity K-block model.

When B ≡ B(K) ∈ (0, 1)K×K has value a on the main diagonal and value b on

the off-diagonal with 0 < b < a < 1, we can write B = XX> via the Cholesky
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decomposition, where X has rows given by X = [x1|x2| . . . |xK ]>. For each i ∈ [K]

let the zero-dilation of the RK vector xi be denoted by x◦i := (xi, 0)> ∈ RK+1. For

K = 2, 3, 4, X is given by

X(2) :=


√
a 0

b√
a

√
(a−b)(a+b)

a

 , (6.36)

X(3) :=


√
a 0 0

b√
a

√
(a−b)(a+b)

a
0

b√
a

√
(a−b)(a+b)

a
b

a+b

√
(a−b)(a+2b)

a+b

 , (6.37)

X(4) :=



√
a 0 0 0

b√
a

√
(a−b)(a+b)

a
0 0

b√
a

√
(a−b)(a+b)

a
b

a+b

√
(a−b)(a+2b)

a+b
0

b√
a

√
(a−b)(a+b)

a
b

a+b

√
(a−b)(a+2b)

a+b
b

a+2b

√
(a−b)(a+3b)

a+2b


. (6.38)

By induction, for K ≥ 3, the entries of the vector xK are given by

xK =

(
x1
K−1,x

2
K−1, . . . ,x

K−2
K−1,

(
b

a+(K−2)b

)
xK−1
K−1,

√
(a−b)(a+(K−1)b)

a+(K−2)b

)>
∈ RK . (6.39)

Only IK0 and I1
K−1 are necessary with respect to combining possible inner products

on account of the sign-flip involving a−b. Beginning with the second row in each of the

X matrices, the first column of each matrix can be written in the more illuminating

170



CHAPTER 6. PROOFS

form
√
a b
a
.

For this specific K-block model, symmetry with respect to equally-spaced vec-

tors on the
√
a-radius sphere in RK together with block membership balancedness

translates into shared covariance structure such that Eq. (5.12) reduces to Eq. (5.13).

The first two rows of X are ideal candidates to serve as canonical latent positions

for subsequent computation, since these vectors are maximally sparse in the sense of

having the fewest non-zero entries and merely become zero-inflated as a function of

K. These geometric considerations are crucial in the subsequent proof of Theorem 38.

6.4.2 Analytic derivations for the two-block SBM

The value of ρ? in Eq. (5.14) for the homogeneous balanced two-block SBM can

be computed by brute force; however, such an approach offers only limited insight

and understanding of how the covariance structure in Theorem 36 and Theorem 37

interact to yield differences in relative spectral embedding performance as measured

via Chernoff information. This section offers a different approach to understanding

ρ? as a covariance-based spectral quantity.

The following lemma is a general matrix analysis observation that establishes a

correspondence between the inverse of a convex combination of 2×2 matrices and the

inverses of the original 2× 2 matrices. The proof of Lemma 42 follows directly from

elementary computations and is therefore omitted. Extending Lemma 42 to n × n

invertible matrices is intractable in general.
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Lemma 42. Let M0,M1 ∈ R2×2 be two invertible matrices. For each t ∈ [0, 1] define

the matrix Mt := (1−t)M0 +tM1. Provided Mt is invertible, then the inverse matrix

M−1
t can be expressed as

M−1
t ≡

(1−t)M−1
0 +det(M1M−1

0 )tM−1
1

det(M1M−1
0 )t2+tr(M1M−1

0 )t(1−t)+(1−t)2 . (6.40)

If, in the context of Lemma 42, det(M1M−1
0 ) = 1, then Eq. (6.40) simplifies to

M−1
t ≡

(1−t)M−1
0 +tM−1

1

t2+tr(M1M−1
0 )t(1−t)+(1−t)2 ,

which is nearly a convex combination of the inverse matrices M−1
0 and M−1

1 modulo

division by a degree two polynomial in the parameter t. If, in addition, tr(M1M−1
0 ) 6=

−2 (which always holds when M0 and M1 are both positive definite), then the inverse

matrix at the value t = 1
2
further simplifies to

M−1
1/2 ≡

(
2

2+tr(M1M−1
0 )

) (
M−1

0 + M−1
1

)
. (6.41)

For the homogeneous balanced two-block SBM considered in Section 5.5.1.1, one can

explicitly check that the above det(·) and tr(·) conditions are satisfied. Moreover, the

value t? = 1
2
achieves the supremum in both the numerator and denominator of ρ? in

Eq. (5.12). With these observations in hand, it follows by subsequent computations

that for both the positive definite and indefinite regimes,
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ρ? =
‖ν1 − ν2‖2

Σ−1
1,2(1/2)

‖ν̃1 − ν̃2‖2
Σ̃−1

1,2(1/2)

=

(
( 2

2+tr(Σ(ν1)Σ−1(ν2))
)

( 2
2+tr(Σ̃(ν1)Σ̃−1(ν2))

)

)
×
(

(ν1 − ν2)>(Σ−1(ν1) + Σ−1(ν2))(ν1 − ν2)

(ν̃1 − ν̃2)>(Σ̃−1(ν1) + Σ̃−1(ν2))(ν̃1 − ν̃2)

)

=

(
2 + tr(Σ̃(ν1)Σ̃−1(ν2))

2 + tr(Σ(ν1)Σ−1(ν2))

)
× 1

= 1 +
tr(Σ̃(ν1)Σ̃−1(ν2))− tr(Σ(ν1)Σ−1(ν2))

2 + tr(Σ(ν1)Σ−1(ν2))

= 1 +
(a− b)2(3a(a− 1) + 3b(b− 1) + 8ab)

4(a+ b)2(a(1− a) + b(1− b))
.

6.4.3 Proof of Theorem 38

This section is dedicated to proving Theorem 38 for K ≥ 2 block SBMs exhibiting

homogeneous balanced affinity structure. The proof is divided into two parts which

separately evaluate the suprema in the numerator and denominator of ρ? in Eq. (5.12).

By invoking underlying symmetries in latent space and the covariance structure of the

ASE and LSE limit results, respectively, we shall leverage the (considerably simpler)

ASE computations (numerator) when working with LSE (denominator). Simplifying

the numerator and denominator yields the more easily interpretable (shifted) expres-

sion of ρ? provided in Eq. (5.18).

Proof: First recall the discussion of latent space geometry in Section 6.4.1, specif-

ically that for the homogeneous balanced affinity K-block SBM, the canonical latent
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positions can be arranged row-wise as a lower-triangular matrix X where each latent

position vector has norm
√
a and each pair of distinct latent position vectors has

common inner-product b. This rotational symmetry implies rotational symmetry for

the block-conditional covariance matrices in Theorems 36 and 37, and as such, the

formulation of ρ? in Eq. (5.18) can be reduced to simply working with the latent posi-

tion pair {ν1,ν2} without loss of generality. This pair is attractive, since the non-zero

entries of these vectors remain unchanged for all K ≥ 2. One need only work with

the standard inner product since d− = 0.

6.4.3.1 Proof of Theorem 38: ASE (numerator)

Let g(x, X1) := 〈x, X1〉(1− 〈x, X1〉) and for 0 < t < 1 define

gt(x1,x2, X1) := tg(x1, X1) + (1− t)g(x2, X1).

By Theorem 36, Σ(x) = ∆−1E[g(x, X1)X1X
>
1 ]∆−1, and therefore

Σ1,2(t) := tΣ(ν1) + (1− t)Σ(ν2) = ∆−1E[gt(ν1,ν2, X1)X1X
>
1 ]∆−1.
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Evaluating the inner expectation yields

E[gt(ν1,ν2, X1)X1X
>
1 ]

=
K∑
i=1

1
K

(t〈ν1,νi〉(1− 〈ν1,νi〉) + (1− t)〈ν2,νi〉(1− 〈ν2,νi〉))νiν>i

= b(1− b)∆ +
(
a(1−a)−b(1−b)

K

) [
tν1ν

>
1 + (1− t)ν2ν

>
2

]
= b(1− b)∆ + N(c0Dt)N>,

where N := [ν1|ν2] ∈ RK×2, c0 :=
(
a(1−a)−b(1−b)

K

)
, and Dt := diag(t, 1 − t). Clearly

c0Dt is invertible, as is ∆ since the underlying distribution F is non-degenerate.

Moreover, X is also invertible since the K-block model under consideration is also

rank K. The relation X>X = K∆ implies ∆−1 = KX−1(X>)−1 and therefore

X∆−1X> = KI, so ν>i ∆−1νj = KIij where Iij denotes the indicator function for

indices i and j. Thus, (c0Dt)
−1 + 1

b(1−b)N
>∆−1N = (c0Dt)

−1 + K
b(1−b)I, which is also

invertible. By an application of the Sherman–Morrison–Woodbury matrix inversion

formula (Horn and Johnson (2012), Section 0.7.4), then

E[gt(ν1,ν2, X1)X1X
>
1 ]−1

=
(
b(1− b)∆ + N(c0Dt)N>

)−1

=
(

1
b(1−b)

)
∆−1 −

(
1

b(1−b)

)2

∆−1N
(

1
c0
D−1
t + K

b(1−b)I
)−1

N>∆−1.
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For ν := ν1 − ν2 =
(
a−b√
a
,−
√

(a−b)(a+b)
a

,0,...,0

)>
∈ RK , then ν>∆ν = 2

K
(a − b)2 and

N>ν = (a − b)(1,−1)> ∈ R2. These observations together with subsequent compu-

tations yield the following chain of equalities.

‖ν‖2
Σ−1

1,2(t)
= ν>

(
∆−1E[gt(ν1,ν2, X1)X1X

>
1 ]∆−1

)−1
ν

= ν>(∆E[gt(ν1,ν2, X1)X1X
>
1 ]−1∆)ν

= ν>∆

(
1

b(1−b)∆
−1 −

(
1

b(1−b)

)2

∆−1N
(

1
c0
D−1
t + K

b(1−b)I
)−1

N>∆−1

)
∆ν

= ν>
(

1
b(1−b)∆−

(
1

b(1−b)

)2

N
(

1
c0
D−1
t + K

b(1−b)I
)−1

N>
)
ν

=
(

1
b(1−b)

)
ν>∆ν −

(
1

b(1−b)

)2

ν>N
(

1
c0
D−1
t + K

b(1−b)I
)−1

N>ν

=
(

2(a−b)2
b(1−b)K

)
−
(

a−b
b(1−b)

)2

(1,−1)
(

1
c0
D−1
t + K

b(1−b)I
)−1

(1,−1)>

=
(

2(a−b)2
b(1−b)K

)
−
(

a−b
b(1−b)

)2

tr

((
1
c0
D−1
t + K

b(1−b)I
)−1
)

=
(

2(a−b)2
b(1−b)K

)
−
(

a−b
b(1−b)

)2 (
(a(1−a)−b(1−b))b(1−b)t

((a(1−a)−b(1−b))t+b(1−b))K + (a(1−a)−b(1−b))b(1−b)(1−t)
((a(1−a)−b(1−b))(1−t)+b(1−b))K

)
= (a−b)2(a(a−1)+b(b−1))

(a(1−a)+(a(a−1)−b(b−1))t)(b(b−1)+(a(a−1)−b(b−1))t)K
.

In particular,

sup
t∈(0,1)

[
t(1− t)‖ν‖2

Σ−1
1,2(t)

]
= 1

K
(a−b)2

a(1−a)+b(1−b) , (6.42)

where by underlying symmetry the supremum is achieved at t? = 1
2
over the entire

parameter region 0 < b < a < 1.
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6.4.3.2 Proof of Theorem 38: LSE (denominator)

Recall that for this model Id
+

d− ≡ Id since d− = 0. From Theorem 37 for LSE, the

block conditional covariance matrix for each latent position x can be written in the

modified form

Σ̃(x) = E
[(

g(x,X1)
〈x,µ〉

)(
∆̃−1X1

〈X1,µ〉 −
x

2〈x,µ〉

)(
∆̃−1X1

〈X1,µ〉 −
x

2〈x,µ〉

)>]
.

We begin with several preliminary observations in order to define the quantities

c1, c2, and c3. Namely, for each latent position (row) x of X,

〈x,µ〉 =
(
a+(K−1)b

K

)
=: c1; (6.43)

E[g(x, X1)] =
(
a(1−a)+(K−1)b(1−b)

K

)
=: c2; (6.44)

E[g(x, X1)X1] :=
(
a(1−a)−b(1−b)

K

)
x + b(1− b)µ =: c3x + b(1− b)µ. (6.45)

Subsequent computations yield

∆x =
(
a−b
K

)
x + bµ;(

∆−
(
a−b
K

)
I
)
xx> = bµx>;

〈∆x,x〉 =
(
a2+(K−1)b2

K

)
;

∆̃ ≡ E
[

1
〈X1,µ〉X1X

>
1

]
= 1

c1
∆.
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The above observations allow us to write Σ̃(x) as

E
[(

g(x,X1)
〈x,µ〉

)(
∆̃−1X1

〈X1,µ〉 −
x

2〈x,µ〉

)(
∆̃−1X1

〈X1,µ〉 −
x

2〈x,µ〉

)>]
= ∆̃−1E

[
g(x,X1)
〈x,µ〉

(
X1

〈X1,µ〉 −
∆̃x

2〈x,µ〉

)(
X1

〈X1,µ〉 −
∆̃x

2〈x,µ〉

)>]
∆̃−1

= 1
c1

∆−1E
[
g(x, X1)

(
X1 − 1

2c1
∆x
)(

X1 − 1
2c1

∆x
)>]

∆−1.

Expanding the term inside the expectation and applying linearity of expectation

allows us to analyze each piece in turn. The first term in the expansion can be

analyzed via the previous computations under ASE. For the second term,

E
[

1
2c1
g(x, X1)X1x>∆

]
= 1

2c1
E[g(x, X1)X1]x>∆

= 1
2c1

(
c3xx> + b(1− b)µx>

)
∆

= 1
2c1

(
c3xx> + (1− b)

[
∆− (a−b

K
)I
]
xx>

)
∆

=
(

1−b
2c1

)
∆xx>∆ +

(
Kc3−(a−b)(1−b)

2c1K

)
xx>∆

=
(

1−b
2c1

)
∆xx>∆ +

(
a(b−a)
2c1K

)
xx>∆.

The transpose of this matrix corresponds to the third term in the implicit expansion

of interest (not shown). Finally, the fourth term simply reduces to the form

E
[
g(x, X1)

(
1

2c1
∆x
)(

1
2c1

∆x
)>]

= c2

(
1

2c1
∆x
)(

1
2c1

∆x
)>

=
(
c2
4c21

)
∆xx>∆.
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Thus,

E
[
g(x, X1)

(
X1 − 1

2c1
∆x
)(

X1 − 1
2c1

∆x
)>]

= E[g(x, X1)X1X
>
1 ]− E[ 1

2c1
g(x, X1)X1x>∆]

− E[ 1
2c1
g(x, X1)X1x>∆]> + E[g(x, X1)( 1

2c1
∆x)( 1

2c1
∆x)>]

= E[g(x, X1)X1X
>
1 ]−

(
a(b−a)
2c1K

)
xx>∆−

(
a(b−a)
2c1K

)
∆xx> +

(
c2
4c21
− 1−b

c1

)
∆xx>∆.

Let M1 ≡M1(t) := NDtN> and M2 := ∆ with respect to the notation introduced

earlier in the derivation for ASE. By completing the appropriate matrix product,

there are explicit constants {di}4
i=1 depending on a, b, and K, such that

Σ̃1,2(t) = tΣ̃(ν1) + (1− t)Σ̃(ν2)

= ∆−1
(
d1∆ + d2NDtN> + d3NDtN>∆ + d3∆NDtN>

+ d4∆NDtN>∆
)
∆−1

= ∆−1 ((d1M2 + d5M1) + (I + d6M2)(d7M1)(I + d6M2)) ∆−1

=: ∆−1 (M3 + M4) ∆−1,

where

M3 ≡M3(t) := d1M2 + d5M1(t);

M4 ≡M4(t) = (I + d6M2)(d7M1(t))(I + d6M2).
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Note that ν̃k :=
(

1
〈νk,µ〉

)1/2

× νk =
(

K
a+(K−1)b

)1/2

× νk for k = 1, 2, so

‖ν̃‖2
Σ̃−1

1,2(t)
= ν̃>Σ̃−1

1,2(t)ν̃ =
(

K
a+(K−1)b

)
ν>∆ (M3 + M4)−1 ∆ν.

The above matrix inversion can again be carried out via the Sherman–Morrison–

Woodbury formula. We omit the algebraic details. Subsequent computations and

simplification yield

sup
t∈(0,1)

{
t(1− t)‖ν̃‖2

Σ̃−1
1,2(t)

}
= 4(a−b)2(a+(K−1)b)2

4(a(1−a)+b(1−b))(a+(K−1)b)2K+(a−b)2K(3a(a−1)+3b(b−1)(K−1)+4abK)
, (6.46)

where by underlying symmetry the supremum is achieved at t? = 1
2
over the entire

parameter region 0 < b < a < 1. Taken together, Eq. (6.42) and Eq. (6.46) simplify

to yield ρ? as in Eq. (5.18), thereby completing the proof. �
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