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Abstract

In the last decade or so, deep learning has revolutionized entire domains of

machine learning. Neural networks have helped achieve significant improve-

ments in computer vision, machine translation, speech recognition, etc. These

powerful empirical demonstrations leave a wide gap between our current

theoretical understanding of neural networks and their practical performance.

The theoretical questions in deep learning can be put under three broad but

inter-related themes: 1) Architecture/Representation, 2) Optimization, and 3)

Generalization. In this dissertation, we study the landscapes of different deep

learning problems to answer questions in the above themes.

First, in order to understand what representations can be learned by neural

networks, we study simple Autoencoder networks with one hidden layer of

rectified linear units. We connect autoencoders to the well-known problem in

signal processing of Sparse Coding. We show that the squared reconstruction

error loss function has a critical point at the ground truth dictionary under an

appropriate generative model.

Next, we turn our attention to a problem at the intersection of optimization

and generalization. Training deep networks through empirical risk minimiza-

tion is a non-convex problem with many local minima in the loss landscape.
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A number of empirical studies have observed that “flat minima” for neural

networks tend to generalize better than sharper minima. However, quanti-

fying the flatness or sharpness of minima has been an issue due to possible

rescaling in neural networks with positively homogenous activations. We use

ideas from Riemannian geometry to define a new measure of flatness that is

invariant to rescaling. We test the hypothesis that flatter minima generalize

better through a number of different experiments on deep networks.

Finally we apply deep networks to computer vision problems with com-

pressed measurements of natural images and videos. We conduct experiments

to characterize the situations in which these networks fail, and those in which

they succeed. We train deep networks to perform object detection and classifi-

cation directly on these compressive measurements of images, without trying

to reconstruct the scene first. These experiments are conducted on public

datasets as well as datasets specific to a sponsor of our research.
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Chapter 1

Introduction

Machine Learning is a powerful computational paradigm that uses the large

amounts of data being collected to make predictions and inferences about the

world around us. It is at the core of a data-driven way of understanding the

world, that uses datasets to develop models, usually without much innate

structure, to understand and predict phenomena occurring in our world.

Machine learning can be broadly defined as an approach to developing

computational methods that perform better on a task with more experience.

We can make this more precise by formalizing what we mean by each of

the italicized terms in the previous definition. In the supervised learning

paradigm, for instance, our task is to find a mapping f : X → Y between

inputs x in an input domain X and outputs y in an output domain Y . To find

a “good” mapping we are given a set of examples S = {(xi, yi)}N
i=1 that are

drawn from a distribution D. These examples signify the experience that our

machine learning algorithm gains. The performance of our chosen mapping

on this task is usually measured by a loss function that can score how close

our mapping f (x) comes to predicting the desired output y as ℓ( f (x), y). The
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goal of machine learning is to find a mapping f that performs well not only

on the sample S , but also generalizes to the population:

f ∗ = argmin E(x,y)∼D [ℓ( f (x), y)]

Of course searching for the best mapping over all possible mappings

in YX is a daunting task, so we typically restrict our search to a certain

class of functions - linear, polynomial, etc. and try to find the best function

within that class. Different function classes give us different types of machine

learning algorithms, like linear regression, polynomial regression, support

vector machines, among others. In most of these formulations we usually

have parametric forms of the function classes, which means that solving our

machine learning problem boils down to finding the best set of parameters.

w∗ = argmin
w∈W⊆Rd

E(x,y)∼D [ℓ( fw(x), y)]

Neural networks are a specific kind of function class that consist of multiple

layers of linear transformations followed by nonlinearities. The linear transfor-

mations could be straightforward matrix multiplications, or convolutions, etc.

The nonlinearities are usually applied entrywise to each layer. Common non-

linearities used in neural networks are tanh(x), sigmoid(x) = (1 + e−x)−1, or

ReLU(x) = max(x, 0), among others. Deep learning is usually used to refer to

the practice of machine learning using deep (many-layered) neural networks

along with gradient-based optimization techniques to find the best functions.

2



fW(x) = WLϕ(WL−1ϕ(. . . W2ϕ(W1x + b1) + b2 . . .) + bL−1) + bL

In the last decade or so, deep learning (LeCun, Bengio, and Hinton, 2015)

and neural networks have revolutionized entire domains of machine learn-

ing. They have helped achieve significant improvements in computer vision

(Krizhevsky, Sutskever, and Hinton, 2012; Ren et al., 2015), machine transla-

tion (Sutskever, Vinyals, and Le, 2014; Jean et al., 2014), speech recognition

(Sainath et al., 2013; Hinton et al., 2012), etc. These powerful empirical demon-

strations leave a wide gap between our current theoretical understanding of

neural networks, and their practical performance.

It is useful to divide the theoretical questions in deep learning into three

broad themes: Architecture/Representations, Optimization, and Generaliza-

tion (this framework was popularized by Vidal et al., 2017 among others).

Architecture/Representation: There are a lot of choices to be made while

designing neural networks for machine learning problems. The number of

layers to use, the size of each layer in the network, the types of nonlinearities to

use, and so on. The approximation properties of the networks is influenced by

these design choices, as well as the type of transformations that the network

applies to the data and the type of representations that different network

designs can learn. Understanding the effects of different architectural design

choices is thus one key piece of a theory of deep learning.
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Optimization: Even though our goal in machine learning is to do well on a

population, we only have access to the population through samples in S . A

popular framework used to solve machine learning problems is the empirical

risk minimization framework, in which the mapping (or parameter vector) that

minimizes the empirical average of the loss function over the sample S is

chosen

wERM = argmin
w∈W⊆Rd

1
N

N

∑
i=1

ℓ( fw(xi), yi)

Deep learning also involves optimizing the sample average of the loss func-

tion (possibly with some regularization added) over the space of parameters.

Due to the layered structure of deep networks, the objective function in these

spaces is non-convex, making this a hard problem to solve. Understanding

how to solve these high-dimensional, non-convex optimization problems to

global optimality is thus another component in understanding deep learning.

Generalization: While in most approaches to machine learning we minimize

the sample average of our loss function, it is always important to remember

that our actual goal is to perform well on the population. We would thus

like to be able to characterize how solutions obtained through (regularized)

empirical risk minimization will perform on unseen examples that are drawn

from the same distribution.

These themes are only a rough delineation of the types of questions that can

be asked about understanding deep learning from a theoretical perspective.

There are questions that can fall under more than one theme and results from

4



problems in each of these themes have implications beyond just the bucket

that they fall under.

1.1 Thesis Contributions and Outline

Our main contributions and the bulk of this dissertation are described below:

1. Representations: Neural networks are not only useful in supervised

learning, but are also used to learn representations that might be use-

ful in understanding a dataset or useful in a downstream classifica-

tion/regression task. Autoencoders are a type of neural network archi-

tecture in which the networks try to reconstruct the input from nonlinear

transformations of the input. They are used to learn representations

of data in a wide range of applications for vision, speech, time series

analysis, etc. Autoencoders have been used either as building blocks

within larger data analysis pipelines, or even for layer-wise pre-training

of deeper networks. Understanding what sort of representations they

can learn is an important step to consider in applying autoencoders to

different problems.

Through analysis of the loss landscape of autoencoders, we establish

connections between autoencoders and Sparse Coding or Dictionary Learn-

ing, a well known problem in signal processing (Rangamani et al., 2018).

We show that under a sparse coding generative model, the landscape

of the squared reconstruction error of a ReLU autoencoder has a critical

point at the ground truth dictionary. Simulations also tell us that if

we start a gradient descent algorithm far away from the ground truth
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dictionary, we end up close to it after enough iterations. This theoretical

investigation supported by simulations tells us that when we train ReLU

autoencoders, we are essentially solving a sparse coding problem. This

work is presented in Chapter 2.

2. Generalization: One heuristic that tries to explain why deep networks

are able to generalize is that training algorithms like stochastic gradient

descent tend to drive the parameters of the network to shallow, wide

wells that are referred to as “flat minima” (Keskar et al., 2016). While this

observation has been around for a long time (Hochreiter and Schmid-

huber, 1997), it was recently shown (Dinh et al., 2017) that for deep

networks with positively homogenous activation functions (like ReLU)

quantitative measures of “flatness” could be made arbitrarily large or

small through a simple rescaling of the deep network.

In order to be able to test whether “flatness” is indeed correlated with

generalization, we first need a procedure to measure flatness quantita-

tively. By approaching this problem using techniques from manifold

geometry, we propose a flatness metric (Rangamani et al., 2019) that

is invariant to these rescalings. We then apply this technique to com-

pare minima obtained using large-batch and small-batch gradient based

methods, and was able to empirically confirm the observation that “flat-

ter minima” generalize better. Our work is one of the first to consider the

space of deep network parameters as a differentiable quotient manifold

rather than a Euclidean space. This work is presented in Chapter 3.

3. Computer Vision with Compressive Measurements: In resource-constrained

6



situations, compressive sensing can help us reduce the amount of data

we have to collect and transmit. We build an object detection and track-

ing system based on deep networks that can work with a custom image

sensor Zhang et al., 2016 that collects compressive measurements of

scenes. We analyze the scenes directly using the compressive measure-

ments, instead of trying to reconstruct the images and then performing

object detection/classification. We propose and empirically atudy some

training schemes that allow us to adapt deep networks for object detec-

tion from natural images to our setting Nair et al., 2018. We also apply

these networks to video sequences in specialized settings that come from

our research sponsor. We present this work in Chapter 4.
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Chapter 2

Sparse Coding and Autoencoders

Machine learning problems can broadly be classified as supervised or unsuper-

vised learning problems. In unsupervised learning problems, we usually do

not have access to labels for data that we want to learn from. This means our

task is also not the same as it is in supervised learning, which is finding a map-

ping from an input space to a label space. As a consequence there are many

different kinds of tasks which can fall under the category of unsupervised

learning. One important task is learning representations of data that can be use-

ful in downstream tasks, for instance, if we would like to classify the data or

perform clustering. Principal Components Analysis and Independent Components

Analysis are familiar instances of representation learning problems.

Neural networks and deep learning are powerful approaches to solve

unsupervised learning problems as well. One of the fundamental neural net-

work based approaches for representation learning is the Autoencoder, which

attempts to reconstruct its input from nonlinear transformations of the same.

In the earlier parts of the resurgence of deep learning, Autoencoders were
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used to pre-train layers of deep neural networks and find better initializa-

tions of deep architectures. While autoencoders were ubiquitous objects in

machine learning and representation learning, the question of what kinds of

representations they could learn was still open. In this chapter we answer this

question by showing that expansive autoencoders (those with hidden layers

larger than the input dimension) can solve the Sparse Coding problem, and

can learn overcomplete, incoherent Dictionaries. We answer this question by

analyzing the loss landscape of the objective used to train autoencoders. The

work in this chapter was presented earlier in Rangamani et al., 2018

2.1 Introduction

In Dictionary Learning/Sparse Coding one receives samples of vectors y ∈ Rn

that have been generated as yi = A∗x∗i where A∗ ∈ Rn×h and x∗i ∈ Rh and

h > n. We typically assume that the number of non-zero entries in x∗i to be no

larger than some sub-linear function of the dimension h and that A∗ satisfies

certain incoherence properties. The question now is to recover A∗ from the

samples yi. There have been renewed investigations into the hardness of

this problem (Tillmann, 2015) and many former results have recently been

reviewed in (Gilbert, 2017; Schnass, 2015a). Ever since the ground-breaking

paper, (Olshausen and Field, 1997) (a recent review by the same authors can be

found in Olshausen and Field, 2005), many algorithms have been developed

to solve sparse coding in both heuristic and provable approaches - Donoho

and Huo, 2001; Aharon, Elad, and Bruckstein, 2006; Spielman, Wang, and

Wright, 2012; Błasiok and Nelson, 2016; Agarwal et al., 2014; Arora et al.,

11



2015; Sun, Qu, and Wright, 2015; Barak, Kelner, and Steurer, 2014; Remi and

Schnass, 2010; Geng and Wright, 2014; Schnass, 2015b. A detailed comparison

among these various approaches can be found in Błasiok and Nelson, 2016.

Recent investigations have led to the conjecture/belief that many neural

unsupervised learning approaches are sparse coding problems in disguise

(Makhzani and Frey, 2013; Makhzani and Frey, 2015). Olshausen and Field

had already made the connection between sparse coding and training neural

architectures and in today’s terminology this is reminiscent of the architecture

of an autoencoder (Olshausen and Field, 1996). Provable training of neural

nets has been a long standing open question and many recent works have fo-

cussed on such proofs for nets with one hidden layer (Li and Yuan, 2017; Tian,

2017) However, to the best of our knowledge it is not clear if the techniques

in these papers can be adapted to analyze the landscape of a loss function

for autoencoders. In this chapter we bridge the gap between autoencoders

and sparse coding. Specifically, we investigate the landscape of the squared

loss function of an autoencoder in the vicinity of the ground truth dictio-

nary, and make progress towards understanding whether gradient descent on

autoencoder architectures can solve the Dictionary Learning problem.

In the rest of this chapter, we will discuss our results. In section 2.2 we

define our autoencoder model as well as the generative model for our data. In

section 2.3 we present our main results. Section 2.4 presents the proof of 2.3.1

and section 2.5 presents the proof of our main theorem 2.3.2. We verify our

theoretical results through simulations in 4.4, and summarize the chapter in

section 2.7
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2.2 Introducing the neural architecture and the dis-
tributional assumptions

For any n, h ∈ {1, 2, ..}, we consider autoencoders which are fully connected

Rn → Rn neural networks with a single hidden layer of h activations. We

focus on networks that use the Rectified Linear Unit (ReLU) activation which

is the function ReLU : Rh → Rh mapping x → (max{0, xi})h
i=1. In this case,

the autoencoder can be seen as computing the following function ŷ(W, y, ϵ)

as follows,

r = ReLU (Wy− ϵ)

ŷ = W⊤r (2.1)

Here y ∈ Rn is the input to the autoencoder, W ∈ Rh×n is the linear trans-

formation implemented by the first layer, r ∈ Rh is the output of the layer of

activations, ϵ ∈ Rh is the bias vector and ŷ ∈ Rn is the output of the autoen-

coder. Note that we impose the condition that the second layer of weights is

simply the transpose of the first layer; this setting with tied weights turned

out to yield the desired connections to sparse coding. We define the columns

of W⊤ (rows of W) as {Wi}h
i=1.

2.2.1 Assumptions on the dictionary and the sparse code

We assume that our signal y is generated using sparse linear combinations

of atoms/vectors of an overcomplete dictionary, i.e., y = A∗x∗, where A∗ ∈

Rn×h is a dictionary, and x∗ is a compactly supported non-negative sparse
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code. x∗ is assumed to have at most k = hp (for some 0 < p < 1) non-zero

elements and each non-zero coordinate of x∗ is contained in [a(h), b(h)] with

a(h) > 0. The columns of the original dictionary A∗ (labeled as {A∗i }h
i=1) are

assumed to be normalized and also satisfying the incoherence property such

that maxi,j=1,..,h
i ̸=j

|⟨A∗i , A∗j ⟩| ≤
µ√
n = h−ξ for some ξ > 0.

We assume that the sparse code x∗ is sampled from a distribution with the

following properties. We fix a set of possible supports of x∗, denoted by

S ⊆ 2[h], where each element of S has at most k = hp elements. We consider

any arbitrary discrete probability distribution DS on S such that the probability

q1 := PS∼S[i ∈ S] is the same for all i ∈ [h], and the probability q2 :=

PS∈S[i, j ∈ S] is the same for all i, j ∈ [h]. A special case is when S is the

set of all subsets of size k, and DS is the uniform distribution on S. For

every S ∈ S there is a distribution say DS on (R≥0)h which is supported on

vectors whose support is contained in S and which is uncorrelated for pairs

of coordinates i, j ∈ S. Further, we assume that the distributions DS are such

that each coordinate i is compactly supported over an interval [a(h), b(h)],

where a(h) and b(h) are independent of both i and S but will be functions of h.

Moreover, m1(h) := Ex∗∼DS [x
∗
i ], and m2(h) := Ex∗∼DS [x

∗2
i ] are assumed to be

independent of both i and S but allowed to depend on h. For ease of notation

henceforth we will keep the h dependence of these variables implicit and refer

to them as a, b, m1 and m2. All of our results will hold in the special case when

a, b, m1, m2 are constants (no dependence on h).
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2.3 Main Results

2.3.1 Recovery of the support of the sparse code by a ReLU
layer

First we prove the following theorem which precisely quantifies the sense in

which a layer of ReLU gates is able to recover the support of the sparse code

when the weight matrix of the deep net is close to the original dictionary.

Theorem 2.3.1 (Recovering the Sparse Code Support at the Hidden Layer)

Let each column of W⊤ be within a δ-ball of the corresponding column of A∗, where

δ = O
(

h−p−ν2
)

for some ν > 0, such that p + ν2 < ξ. We further assume that

a = ω
(

bh−ν2
)

. Let the bias of the hidden layer of the autoencoder, as defined in

(2.1) be ϵ = 2m1k
(

δ + µ√
n

)
. Let r be the vector defined in (2.1). Then ri ̸= 0 if i ∈

supp(x∗), and ri = 0 if i /∈ supp(x∗) with probability at least 1− exp
(
− 2hpm2

1
(b−a)2

)
(with respect to the distribution on x∗).

As long as hpm2
1

(b−a)2 is large, i.e., an increasing function of h, we can interpret

this as saying that the probability of the adverse event is small, and we have

successfully achieved support recovery at the hidden layer in the limit of large

sparse code dimension.
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2.3.2 Asymptotic Criticality of the Autoencoder around A∗

In this work we analyze the following standard squared loss function for the

autoencoder,

L =
1
2
||ŷ− y||2 (2.2)

In the above we continue to use the variables as defined in equation 2.1. If we

consider a generative model in which A∗ is a square, orthonormal matrix and

x∗ is a non-negative vector (not necessarily sparse), it is easily seen that the

standard squared reconstruction error loss function for the autoencorder has

a global minimum at W = A∗⊤. However in our generative model A∗ is an

incoherent and overcomplete dictionary.

Theorem 2.3.2 (The Main Theorem) Assume that the hypotheses of Theorem

2.3.1 hold, and p < min{ 1
2 , ν2} (and hence ξ > 2p). Further, assume that the

distribution parameters are such that exp
(

hpm2
1

2(b−a)2

)
is superpolynomial in h (which

holds, for example, when m1, a, b are O(1)). Then for i = 1, . . . , h,E

[
∂L

∂Wi

] 
2
≤ o

(
max{m2

1, m2}
h1−p

)
.

Since the sparse code dimension (h) is usually large, this theorem tells us that

the norm of the gradient is small around A∗. Thus we have shown that this δ

ball around A∗ is asymptotically (in h) critical for the squared loss function

for this autoencoder.
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2.4 A Layer of ReLU Gates can Recover the Sup-
port of the Sparse Code (Proof of Theorem 2.3.1)

Most sparse coding algorithms are based on an alternating minimization

approach, where one iteratively finds a sparse code based on the current

estimate of the dictionary, and then uses the estimated sparse code to update

the dictionary. The analogue of the sparse coding step in an autoencoder,

is the passing through the hidden layer of activations of a certain affine

transformation (W which behaves as the current estimate of the dictionary)

of the input vectors. We show that under certain stochastic assumptions, the

hidden layer of ReLU gates in an autoencoder recovers with high probability

the support of the sparse vector which corresponds to the present input.

Proof 2.4.1 (Proof of Theorem 2.3.1) From the model assumptions, we know that

the dictionary A∗ is incoherent, and has unit norm columns. So, |⟨A∗i , A∗j ⟩| ≤
µ√
n

for all i ̸= j, and ||A∗i || = 1 for all i. This means that for i ̸= j,

|⟨Wi, A∗j ⟩| = |⟨Wi − A∗i , A∗j ⟩|+ |⟨A∗i , A∗j ⟩|

≤ ||Wi − A∗i ||2||A∗j ||2 +
µ√
n
≤ (δ +

µ√
n
) (2.3)

Here the second inequality follows from Cauchy-Schwarz.

Otherwise for i = j,

⟨Wi, A∗i ⟩ = ⟨Wi − A∗i , A∗i ⟩+ ⟨A∗i , A∗i ⟩ = ⟨Wi − A∗i , A∗i ⟩+ 1,
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and thus,

1− δ ≤ ⟨Wi, A∗i ⟩ ≤ 1 + δ, (2.4)

where we use the fact that |⟨Wi − A∗i , A∗i ⟩| ≤ δ.

Let y = A∗x∗ and let S be the support of x∗. Then we define the input to the

ReLU activation Q− ϵ = Wy− ϵ as

Qi = ∑
j∈S
⟨Wi, A∗j ⟩x∗j = ⟨Wi, A∗i ⟩x∗i 1i∈S + ∑

j∈S\i
⟨Wi, A∗j ⟩x∗j

= ⟨Wi, A∗i ⟩x∗i 1i∈S + Zi

First we try to get bounds on Qi when i ∈ supp(x∗). From our assumptions on the

distribution of x∗i we have, 0 < a ≤ x∗i ≤ b and E[x∗i ] = m1 for all i in the support

of x∗. For i ∈ supp(x∗),

Qi = ⟨Wi, A∗i ⟩x∗i + Zi

=⇒ Qi ≥ (1− δ)a + Zi

where we use (2.4). Using (2.3), Zi has the following bounds:

−bk
(

δ +
µ√
n

)
≤ Zi ≤ bk

(
δ +

µ√
n

)
Plugging in the lower bound for Zi and the proposed value for the bias, we get

Qi − ϵ ≥ (1− δ)a− bk
(

δ +
µ√
n

)
− 2m1k

(
δ +

µ√
n

)
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For Qi − ϵ > 0, we need:

a >
(b + 2m1)

(
δ + µ√

n

)
k

1− δ

Now plugging in the values for the various quantities, µ√
n = h−ξ and k = hp and

δ = O
(

h−p−ν2
)

, if we have a = ω
(

bh−ν2
)

, then Qi − ϵ > 0.

Now, for i /∈ supp(x∗) we would like to analyze the following probability:

Pr[Qi − ϵ ≥ 0|i /∈ supp(x∗)]

We first simplify the quantity Pr[Qi − ϵ ≥ 0|i /∈ supp(x∗)] as follows

Pr[Qi ≥ ϵ|i /∈ supp(x∗)] = Pr[Zi ≥ ϵ]

= Pr

⎡⎣ ∑
j∈S\i
⟨Wi, A∗j ⟩x∗j ≥ ϵ

⎤⎦
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Using the Chernoff’s bound, we can obtain

Pr[Zi ≥ ϵ] ≤ inf
t≥0

e−tϵE

⎡⎣ ∏
j∈S\i

[
et⟨Wi,A∗j ⟩x

∗
j
]⎤⎦

= inf
t≥0

e−tϵ ∏
j∈S\i

E
[
et⟨Wi,A∗j ⟩x

∗
j
]

≤ inf
t≥0

e−tϵEk
[

et
(

δ+
µ√
n

)
x∗j
]

≤ inf
t≥0

e−tϵ

⎛⎝et
(

δ+
µ√
n

)
m1e

t2
(

δ+
µ√
n

)2
(b−a)2

8

⎞⎠k

where the second inequality follows from (2.3) and the fact that t and x∗i are both

nonnegative, and the third inequality follows from Hoeffding’s Lemma. Next, we also

have

Pr[Zi ≥ ϵ] ≤ inf
t≥0

e−t
(

ϵ−k
(

δ+
µ√
n

)
m1

)
+t2 k

8

(
δ+

µ√
n

)2
(b−a)2

= e
−

(ϵ−k(δ+ µ√
n
)m1)

2

k
2 (δ+

µ√
n
)2(b−a)2

.

Finally, since k = hp and ϵ = 2m1k
(

δ + µ√
n

)
, we have

exp

(
−

2(ϵ− km1(δ +
µ√
n ))

2

hp(δ + µ√
n )

2(b− a)2

)
= exp

(
−

2hpm2
1

(b− a)2

)
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2.5 Criticality of a neighborhood of A∗ (Proof of
Theorem 2.3.2)

First, we can evaluate the gradient of the squared loss function, with respect

to the i-th column of W⊤ as:

∂L
∂Wi

= Th(W⊤i y− ϵi)
[
(W⊤i y− ϵi)I + yW⊤i

]

×
(

h

∑
j=1

ReLU(W⊤j y− ϵj)Wj − Dy

)

where Th(z) = 1z>0.

It turns out that the expectation of the full gradient of the loss function (2.2)

is difficult to analyze directly. Hence corresponding to the true gradient

with respect to the ith−column of W⊤ we create a proxy, denoted by ∇̂iL,

by replacing in the expression for the true expectation ∇iL = E
[

∂L
∂Wi

]
every

occurrence of the random variable Th(W⊤i y − ϵi) = Th(W⊤i A∗x∗ − ϵi) by

the indicator random variable 1i∈supp(x∗). This proxy is shown to be a good

approximant of the expected gradient in the following lemma.

Lemma 2.5.1 Assume that the hypotheses of Theorem 2.3.1 hold and additionally let

b be bounded by a polynomial in h. Then we have for each i (indexing the columns of

W⊤), ⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐∇̂iL−E

[
∂L

∂Wi

] ⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐
2

≤ poly(h)exp

(
−

hpm2
1

2(b− a)2

)
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Lemma 2.5.2 Assume that the hypotheses of Theorem 2.3.1 hold, and p < min{1
2 , ν2}

(and hence ξ > 2p). Then for each i indexing the columns of W⊤, there exist real

valued functions αi and βi, and a vector ei such that ∇̂iL = αiWi − βi A∗i + ei, and

αi = Θ(m2hp−1) + o(m2
1hp−1)

βi = Θ(m2hp−1) + o(m2
1hp−1)

αi − βi = o(max{m2
1, m2}hp−1)

||ei||2 = o(max{m2
1, m2}hp−1)

The proof of lemma 2.5.1 is given in section 2.8 and that of lemma 2.5.2 in

2.9 Given the above results, we are now in a position to assemble the proof of

Theorem 2.3.2.

Proof 2.5.3 (Proof of Theorem 2.3.2) Consider any i indexing the columns of W⊤.

Recall the definition of the proxy gradient ∇̂iL at the beginning of this section. Let

us define γi = ∇̂iL−E
[

∂L
∂Wi

]
. Using αi, βi and ei as defined in Lemma ??, we can

write the expectation of the true gradient as, E
[

∂L
∂Wi

]
= αiWi − βi A∗i + ei − γi.

Further, by Lemma ??,

∥γi∥ ≤ poly(h)exp

(
−

hpm2
1

2(b− a)2

)
.

Since exp
(

hpm2
1

2(b−a)2

)
is superpolynomial in h, we obtain
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E

[
∂L

∂Wi

] 
2
= ||αiWi − βi A∗i + ei − γi||2

= ||αi(Wi − A∗i ) + (αi − βi)A∗i + ei − γi||2

≤ |αi|∥Wi − A∗i ∥2 + |αi − βi|+ ||ei − γi||2

≤ Θ(m2hp−1)

h2p+θ2 + o(max{m2
1, m2}hp−1)

+ o(max{m2
1, m2}hp−1)

= o(max{m2
1, m2}hp−1)

2.6 Simulations

We conduct some experiments on synthetic data in order to check whether the

gradient norm is indeed small within the columnwise δ-ball of A∗. We also

make some observations about the landscape of the squared loss function,

which has implications for being able to recover the ground-truth dictionary

A∗.

2.6.1 Data Generation Model

We generate random gaussian dictionaries (A∗) of size n× h where n = 50, and

h = 256, 512, 1024, 2048 and 4096. For each h, we generate a dataset containing

N = 5000 sparse vectors with hp non-zero entries, for various p ∈ [0.01, 0.5].

In our experiments, the coherence parameter ξ was approximately 0.1. The
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support of each sparse vector x∗ is drawn uniformly from all sets of indices

of size hp, and the non-zero entries in the sparse vectors are drawn from a

uniform distribution between a = 1 and b = 10. Once we have generated the

sparse vectors, we collect them in a matrix X∗ ∈ Rh×N and then compute the

signals Y = A∗X∗. We set up the autoencoder as defined through equation 2.1.

We analyze the squared loss function in (2.2) and its gradient with respect to a

column of W through their empirical averages over the signals in Y.

2.6.2 Results

Once we have generated the data, we compute the empirical average of

the gradient of the loss function in (2.2) at 200 random points which are

columnwise δ
2 = 1

2h2p away from A∗. We average the gradient over the 200

points which are all at the same distance from A∗, and compare the average

column norm of the gradient to hp−1. Our experimental results shown in Table

2.1 demonstrate that the average column norm of the gradient is of the order

of hp−1 (and thus falling with h for any fixed p) as expected from Theorem

2.3.2.

We also plot the squared loss of the autoencoder along a randomly chosen

direction to understand the geometry of the landscape of the loss function

around A∗. We draw a matrix ∆W from a standard normal distribution, and

normalize its columns. We then plot f (t) = L(A∗ + t∆W⊤), as well as the

gradient norm averaged over all the columns. For purposes of illustration,

we show these plots for p = 0.01, 0.1, 0.3. The plots for h = 256 are in Figure

2.1, and those for h = 4096 in Figure 2.2. From the plots for p = 0.01 and
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HHH
HHHh

p 0.01 0.02 0.05 0.1

256 (0.0137, 0.0041) (0.0138, 0.0044) (0.0126, 0.0052) (0.0095, 0.0068)
512 (0.0058, 0.0021) (0.0058, 0.0022) (0.0054, 0.0027) (0.0071, 0.0036)
1024 (0.0025, 0.0010) (0.0024, 0.0011) (0.0026, 0.0014) (0.0079, 0.0020)
2048 (0.0011, 0.0005) (0.0012, 0.0006) (0.0025, 0.0007) (0.0031, 0.0010)
4096 (0.0006, 0.0003) (0.0012, 0.0003) (0.0013, 0.0004) (0.0026, 0.0006)

HHH
HHHh

p 0.2 0.3 0.5

256 (0.0284, 0.0118) (0.0464, 0.0206) (0.0343, 0.0625)
512 (0.0104, 0.0068) (0.0214, 0.0127) (0.0028, 0.0442)
1024 (0.0078, 0.0039) (0.0099, 0.0078) (0.00, 0.0313)
2048 (0.0032, 0.0022) (0.0036, 0.0048) (0.00, 0.0221)
4096 (0.0020, 0.0013) (0.0008, 0.0030) (0.00, 0.0156)

Table 2.1: Average gradient norm for points that are columnwise δ
2 away from A∗.

For each h and p we report
(
||E
[

∂L
∂Wi

]
||, hp−1

)
. We note that the gradient norm and

hp−1 are of the same order, and for any fixed p the gradient norm is decreasing with h
as expected from Theorem 2.3.2

0.1, we can observe that the loss function value, and the gradient norm keeps

decreasing as we get close to A∗. Figure 2.1 and 2.2 are representative of the

shapes obtained for every direction, ∆W that we checked. This suggests that

A∗ might conveniently lie at the bottom of a well in the landscape of the loss

function. For the value of p = 0.3, (which is much larger than the coherence

parameter ξ), Theorem 2.3.1 is no longer valid. We see that the value of the

loss function decreases a little as we move away from A∗, and then increases.

We suspect that A∗ is now in a region where ReLU(A∗⊤y− ϵ) = 0, which

means the function is flat in a small neighborhood of A∗.

We also tried to minimize the squared loss of the autoencoder using gradient

descent. In these experiments, we initialized W⊤ far away from A∗ (precisely
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Figure 2.1: Loss function plot for h = 256, n = 50

Figure 2.2: Loss function plot for h = 4096, n = 50
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at a columnwise distance of h
5 × δ), and did gradient descent until the gradient

norm dropped below a factor of 2× 10−5 of the initial norm of the gradient.

We then computed the average columnwise distance between W⊤final and A∗,

and report the % decrease in the average columnwise distance from the initial

point. These results are reported in Table 2.2 below. These experiments suggest

that there is a neighborhood of A∗ (the radius of which is increasing with h),

such that gradient descent initialized at the edge of that neighborhood, greatly

reduces the average columnwise distance between W⊤ and A∗.

h p = 0.05 p = 0.1
256 97.7% 96.9%
512 98.6% 98.2%
1024 99% 98.8%
2048 99.2% 99%
4096 99.4% 99.2%

Table 2.2: Fraction of initial columnwise distance covered by the gradient descent
procedure

2.7 Conclusion

In this chapter we have undertaken a rigorous analysis of the squared loss of

an autoencoder when the data is assumed to be generated by sensing of sparse

high dimensional vectors by an overcomplete dictionary. We have proven

and have given supporting experiments that the expected gradient of this loss

function is very close to zero in a neighborhood of the generating overcomplete

dictionary. Our results could shed some light on the observation that gradient

descent based algorithms train autoencoders to low reconstruction error for

natural data sets, like MNIST.
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2.8 The proxy gradient is a good approximation of
the true expectation of the gradient (Proof of
Lemma 2.5.1)

Proof 2.8.1 To make it easy to present this argument let us abstractly think of the

function f (defined for any i ∈ {1, 2, 3, .., h}) as f (y, W, X) = ∂L
∂Wi

where we have

defined the random variable X = Th[W⊤i y− ϵi]. It is to be noted that because of

the ReLU term and its derivative this function f has a dependency on y = A∗x∗

even outside its dependency through X. Let us define another random variable

Y = 1i∈supp(x∗). Then we have,

Ex∗ [ f (y, W, X)]−Ex∗ [ f (y, W, Y)]

ℓ2

≤Ex∗ [| f (y, W, X)− f (y, W, Y)|ℓ2 ]

≤Ex∗ [| f (y, W, X)(1X=Y + 1X ̸=Y)− f (y, W, Y)(1X=Y + 1X ̸=Y)|ℓ2 ]

≤Ex∗ [|( f (y, W, X)− f (y, W, Y))|ℓ21X ̸=Y]

≤
√

Ex∗ [
⏐⏐ f (y, W, X)− f (y, W, Y)

⏐⏐2
2]
√

Ex∗ [1X ̸=Y]

In the last step above we have used the Cauchy-Schwarz inequality for random

variables. We recognize that Ex∗ [ f (y, W, Y)] is precisely what we defined as the

proxy gradient ∇̂iL. Further for such W as in this lemma the support recovery

theorem (Theorem 2.3.1) holds and that is precisely the statement that the term,
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Ex∗ [1X ̸=Y] is small. So we can rewrite the above inequality as,Ex∗ [
∂L

∂Wi
]− ∇̂iL


2
≤
√

Ex∗ [
⏐⏐ f (y, W, X)− f (y, W, Y)

⏐⏐2
2] exp

(
−

hpm2
1

2(b− a)2

)

We remember that f is a polynomial in h because its h dependency is through Frobe-

nius norms of submatrices of W and ℓ2 norms of projections of Wy. But the ℓ∞ norm

of the training vectors y (that is b) have been assumed to be bounded by poly(h).

Also we have the assumption that the columns of W⊤ are within a 1
hp+ν2−ball of the

corresponding columns of A∗ which in turn is a n× h dimensional matrix of bounded

norm because all its columns are normalized. So summarizing we have,

Ex∗ [
∂L

∂Wi
]− ∇̂iL


2
≤ poly(h) exp

(
−

hpm2
1

2(b− a)2

)

The above inequality immediately implies the claimed lemma.
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2.9 The asymptotics of the coefficients of the gradi-
ent of the squared loss (Proof of Lemma 2.5.2)

To recap we imagine being given as input signals y ∈ Rn (imagined as column

vectors), which are generated from an overcomplete dictionary A∗ ∈ Rn×h of

a fixed incoherence. Let x∗ ∈ Rh (imagined as column vectors) be the sparse

code that generates y. The model of the autoencoder that we now have is

ŷ = W⊤ReLU(Wy− ϵ). W is a h× n matrix and the ith column of W⊤ is to be

denoted as the column vector Wi.

2.9.1 Derivative of the standard squared loss of a ReLU au-
toencoder

Using the above notation the squared loss of the autoencoder is 1
2 ||ŷ− y||2.

But we introduce a dummy constant D = 1 to be multiplied to y because this

helps read the complicated equations that would now follow. This marker

helps easily spot those terms which depend on the sensing of x∗ (those with

a factor of D) as opposed to the terms which are “purely” dependent on the

neural net (those without the factor of D). Thus we think of the squared loss

L of our autoencoder as,

L =
1
2
||ŷ−Dy||2 =

1
2
(W⊤ReLU(Wy− ϵ)−Dy)⊤(W⊤ReLU(Wy− ϵ)−Dy) =

1
2

f T f

where we have defined f ∈ Rn as,

f = W⊤ReLU(Wy− ϵ)− Dy
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Then we have,

JWi( f )ab =
∂ fa

∂Wib
= ReLU(W⊤i y− ϵ)δab + Th(W⊤i y− ϵ)Wiayb

In the form of a n× n derivative matrix this means,

JWi( f ) =
[

∂ fa

∂Wib

]
= ReLU(W⊤i y− ϵ)I + Th(W⊤i y− ϵ)Wiy⊤

This helps us write,

∂L
∂Wi

= JWi( f ))⊤ f

= (ReLU(W⊤i y− ϵ)I + Th(W⊤i y− ϵ)Wiy⊤)⊤[W⊤ReLU(Wy− ϵ)− Dy]

= Th(W⊤i y− ϵi)
[
(W⊤i y− ϵi)I + yW⊤i

] ( h

∑
j=1

ReLU(W⊤j y− ϵj)Wj − Dy

)

Now going over to the proxy gradient ∇̂iL corresponding to this term we

define the vector Gi as,

∇̂iL = ES∈S

[
1i∈S ×Ex∗S

[[
(W⊤i y− ϵi)I + yW⊤i

] (
∑
j∈S

(W⊤j y− ϵj)Wj − Dy

)]]

= ES∈S [1i∈S × Gi]
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Thus we have,

Gi = Ex∗S

[[
(W⊤i A∗x∗ − ϵi)I + (A∗x∗)W⊤i

] (
∑
j∈S

(W⊤j A∗x∗ − ϵj)Wj − DA∗x∗
)]

= Ex∗S

[
(W⊤i A∗x∗ − ϵi)

(
∑
j∈S

(W⊤j A∗x∗ − ϵj)Wj − DA∗x∗
)]

  
Term 1

+ Ex∗S

[
(A∗x∗)W⊤i

(
∑
j∈S

(W⊤j A∗x∗ − ϵj)Wj − DA∗x∗
)]

  
Term 2

= Ex∗S

[
∑
j∈S

ϵiϵjWj − ∑
j,k∈S

ϵi(W⊤j A∗k)Wjx∗k − ∑
j,k∈S

ϵj(W⊤i A∗k)Wjx∗k  
From Term 1

+ ∑
j,k,l∈S

(W⊤i A∗k)(W
⊤
j A∗l )Wjx∗l x∗k

]
  

From Term 1

+ Ex∗S

[
−D ∑

j,k∈S
(W⊤i A∗k)A∗j x∗k x∗j + D ∑

j∈S
ϵi A∗j x∗j

]
  

From Term 1

+Ex∗S

[
−D ∑

j,k∈S
(A∗⊤k Wi)A∗j x∗k x∗j

]
  

From Term 2

+ Ex∗S

[
− ∑

j,k∈S
ϵj A∗k(W

⊤
i Wj)x∗k

]
  

From Term 2

+Ex∗S

[
∑

j,k,l∈S
(W⊤i Wj)(W⊤j A∗l )A∗k x∗k x∗l

]
  

From Term 2
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Now we invoke the distributional assumption about i.i.d sampling of the

coordinates for a fixed support and the definition of m1 and m2 to write,

Ex∗S
[x∗i x∗j ] = E2

x∗S
[x∗i ] = m2

1 for all i ̸= j and for i = j, m2 = Ex∗S
[x∗i x∗j ]. Thus we

get,

Gi = ∑
j∈S

ϵiϵjWj −m1 ∑
j,k∈S

(W⊤j A∗k)Wjϵi −m1 ∑
j,k∈S

ϵj(W⊤i A∗k)Wj  
G1

i From Term 1

+ m2 ∑
j,k∈S

(W⊤i A∗k)(W
⊤
j A∗k)Wj + m2

1 ∑
j,k,l∈S

k ̸=l

(W⊤i A∗k)(W
⊤
j A∗l )Wj

  
G2

i From Term 1

+

⎡⎢⎢⎣−Dm2
1 ∑

j,k∈S
j ̸=k

(W⊤i A∗k)A∗j − Dm2 ∑
j∈S

(W⊤i A∗j )A∗j + m1D ∑
j∈S

ϵi A∗j

⎤⎥⎥⎦
  

G3
i From Term 1

−

⎡⎢⎢⎣Dm2
1 ∑

j,k∈S
j ̸=k

(A∗⊤k Wi)A∗j + Dm2 ∑
j∈S

(A∗⊤j Wi)A∗j

⎤⎥⎥⎦
  

G4
i From Term 2

−m1

[
∑

j,k∈S
ϵj(W⊤i Wj)A∗k

]
+

⎡⎢⎢⎣m2 ∑
j,k∈S

(W⊤i Wj)(W⊤j A∗k)A∗k + m2
1 ∑

j,k,l∈S
k ̸=l

(W⊤i Wj)(W⊤j A∗l )A∗k

⎤⎥⎥⎦
  

G5
i From Term 2
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Each term in the above sum is a vector. Now we separate out from the sums

the terms which are in the directions of Wi or A∗i and the rest. We remember

that this is being under the condition that i ∈ S. To make this easy to read

we do this separation for each line of the above equation separately in a

different equation block. Also inside every block we do the separation for

each summation term in a separate line.
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G1
i = ∑

j∈S
ϵiϵjWj −m1 ∑

j,k∈S
(W⊤j A∗k)Wjϵi −m1 ∑

j,k∈S
ϵj(W⊤i A∗k)Wj

=

⎡⎢⎢⎣ϵ2
i Wi + ∑

j∈S
j ̸=i

ϵiϵjWj

⎤⎥⎥⎦

−m1

⎡⎢⎢⎣∑
k∈S

ϵi(W⊤i A∗k)Wi + ∑
j,k∈S
j ̸=i

(W⊤j A∗k)Wjϵi

⎤⎥⎥⎦

−m1

⎡⎢⎢⎣∑
k∈S

ϵi(W⊤i A∗k)Wi + ∑
j,k∈S
j ̸=i

ϵj(W⊤i A∗k)Wj

⎤⎥⎥⎦

G2
i = m2 ∑

j,k∈S
(W⊤i A∗k)(W

⊤
j A∗k)Wj + m2

1 ∑
j,k,l∈S

k ̸=l

(W⊤i A∗k)(W
⊤
j A∗l )Wj

= m2

⎡⎢⎢⎣∑
k∈S

(W⊤i A∗k)(W
⊤
i A∗k)Wi + ∑

j,k∈S
j ̸=i

(W⊤i A∗k)(W
⊤
j A∗k)Wj

⎤⎥⎥⎦

+ m2
1

⎡⎢⎢⎢⎢⎢⎣ ∑
k,l∈S
k ̸=l

(W⊤i A∗k)(W
⊤
i A∗l )Wi + ∑

j,k,l∈S
j ̸=i
k ̸=l

(W⊤i A∗k)(W
⊤
j A∗l )Wj

⎤⎥⎥⎥⎥⎥⎦

G3
i = −D

⎡⎢⎢⎣m2
1 ∑

j,k∈S
j ̸=k

(W⊤i A∗k)A∗j + m2 ∑
j∈S

(W⊤i A∗j )A∗j −m1 ∑
j∈S

ϵi A∗j

⎤⎥⎥⎦

= −D

⎡⎢⎢⎢⎢⎢⎣m2
1 ∑

k∈S
k ̸=i

(W⊤i A∗k)A∗i + m2
1 ∑

j,k∈S
j ̸=i
j ̸=k

(W⊤i A∗k)A∗j

⎤⎥⎥⎥⎥⎥⎦

− D

⎡⎢⎢⎣m2(W⊤i A∗i )A∗i + m2 ∑
j∈S
j ̸=i

(W⊤i A∗j )A∗j

⎤⎥⎥⎦

− D

⎡⎢⎢⎣−m1ϵi A∗i −m1 ∑
j∈S
j ̸=i

ϵi A∗j

⎤⎥⎥⎦
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G4
i = −

⎡⎢⎢⎣Dm2
1 ∑

j,k∈S
j ̸=k

(A∗⊤k Wi)A∗j + Dm2 ∑
j∈S

(A∗⊤j Wi)A∗j

⎤⎥⎥⎦

= −D

⎡⎢⎢⎢⎢⎢⎣m2
1 ∑

k∈S
k ̸=i

(A∗⊤k Wi)A∗i + m2
1 ∑

j,k∈S
j ̸=k
j ̸=i

(A∗⊤k Wi)A∗j

⎤⎥⎥⎥⎥⎥⎦

− D

⎡⎢⎢⎣m2(A∗⊤i Wi)A∗i + m2 ∑
j∈S
j ̸=i

(A∗⊤j Wi)A∗j

⎤⎥⎥⎦

G5
i = −m1

[
∑

j,k∈S
ϵj(W⊤i Wj)A∗k

]

+

⎡⎢⎢⎣m2 ∑
j,k∈S

(W⊤i Wj)(W⊤j A∗k)A∗k + m2
1 ∑

j,k,l∈S
k ̸=l

(W⊤i Wj)(W⊤j A∗l )A∗k

⎤⎥⎥⎦
= −m1 ∑

j∈S
ϵj(W⊤i Wj)A∗i −m1 ∑

j,k∈S
k ̸=i

ϵj(W⊤i Wj)A∗k

+ m2 ∑
j∈S

(W⊤i Wj)(W⊤j A∗i )A∗i + m2 ∑
j,k∈S
k ̸=i

(W⊤i Wj)(W⊤j A∗k)A∗k

+ m2
1 ∑

j,l∈S
l ̸=i

(W⊤i Wj)(W⊤j A∗l )A∗i + m2
1 ∑

j,k,l∈S
k ̸=i,l

(W⊤i Wj)(W⊤j A∗l )A∗k
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So combining the above we have,

∇̂iL = αiWi − βi A∗i + ei
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where,

αi = ES∈S

[
1i∈S ×

{
m2 ∑

k∈S
(W⊤i A∗k)(W

⊤
i A∗k) + m2

1 ∑
k,l∈S
k ̸=l

(W⊤i A∗k)(W
⊤
i A∗l )

− 2m1 ∑
k∈S

ϵi(W⊤i A∗k) + ϵ2
i

}]

βi = ES∈S

[
1i∈S ×

{
2Dm2

1 ∑
k∈S
k ̸=i

(W⊤i A∗k) + 2Dm2(W⊤i A∗i )− Dm1ϵi + m1 ∑
j∈S

ϵj(W⊤i Wj)

−m2 ∑
j∈S

(W⊤i Wj)(W⊤j A∗i )−m2
1 ∑

j,l∈S
l ̸=i

(W⊤i Wj)(W⊤j A∗l )

}]

ei = ES∈S

[
1i∈S ×

{
∑
j∈S
j ̸=i

ϵiϵjWj −m1 ∑
j,k∈S
j ̸=i

ϵi(W⊤j A∗k)Wj −m1 ∑
j,k∈S
j ̸=i

ϵj(W⊤i A∗k)Wj

+ m2 ∑
j,k∈S
j ̸=i

(W⊤i A∗k)(W
⊤
j A∗k)Wj + m2

1 ∑
j,k,l∈S

j ̸=i
k ̸=l

(W⊤i A∗k)(W
⊤
j A∗l )Wj

− 2Dm2
1 ∑

j,k∈S
j ̸=i
j ̸=k

(W⊤i A∗k)A∗j − 2Dm2 ∑
j∈S
j ̸=i

(W⊤i A∗j )A∗j + Dm1 ∑
j∈S
j ̸=i

ϵi A∗j

−m1 ∑
j,k∈S
k ̸=i

ϵj(W⊤i Wj)A∗k + m2 ∑
j,k∈S
k ̸=i

(W⊤i Wj)(W⊤j A∗k)A∗k + m2
1 ∑

j,k,l∈S
k ̸=i,l

(W⊤i Wj)(W⊤j A∗l )A∗k

}]

We will now estimate bounds on each of the terms αi, βi, ||ei||. We will separate
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them as αi = α̃i + α̂i (similarly for the other terms). Where the tilde terms are

those that come as a coefficient of m2, and the hat terms are the ones that come

as coefficient of m1 or ϵ or both.

2.9.2 Estimating the m2 dependent parts of the derivative

Since ||A∗i || = 1 and Wi is being assumed to be within a 0 < δ < 1 ball of A∗i

we can use the following inequalities:

||Wi|| = ||Wi − A∗i + A∗i || ≤ ||Wi − A∗i ||+ ||A∗i || = δ + 1

||Wi|| ≥ 1− δ

⟨Wi, A∗i ⟩ = ⟨Wi − A∗i , A∗i ⟩+ ⟨A∗i , A∗i ⟩ ≤ ||Wi − A∗i ||||A∗i ||+ 1 ≤ δ + 1

⟨Wi, A∗i ⟩ ≥ 1− δ

|⟨Wj, A∗i ⟩| = |⟨Wj − A∗j , A∗i ⟩+ ⟨A∗j , A∗i ⟩| ≤
µ√
n
+ ||Wj − A∗j ||||A∗i || =

µ√
n
+ δ

|⟨Wi, Wj⟩| = |⟨Wi − A∗i , Wj⟩+ ⟨A∗i , Wj⟩| ≤ δ(1 + δ) + (δ +
µ√
n
) = δ2 + 2δ +

µ√
n

⟨Wi, Wi⟩ = ||Wi||2 ≥ (1− δ)2

⟨Wi, Wi⟩ = ||Wi||2 ≤ (1 + δ)2
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Bounding β̃i

β̃i = ES∈S

[
1i∈S

{
2Dm2(W⊤i A∗i )−m2 ∑

j∈S
(W⊤i Wj)(W⊤j A∗i )

}]

= ES∈S

⎡⎢⎢⎣1i∈S

⎧⎪⎪⎨⎪⎪⎩2Dm2⟨Wi, A∗i ⟩ −m2||Wi||2⟨Wi, A∗i ⟩ −m2 ∑
j∈S
j ̸=i

⟨Wi, Wj⟩⟨Wj, A∗i ⟩

⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎦
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Evaluating the outer expectation we get,

β̃i = ∑
{S∈S:i∈S}

qS2Dm2⟨Wi, A∗i ⟩ − ∑
{S∈S:i∈S}

qSm2||Wi||2⟨Wi, A∗i ⟩

−m2

h

∑
j=1
j ̸=i

⟨Wi, Wj⟩⟨Wj, A∗i ⟩ ∑
{S∈S:i,j∈S,i ̸=j}

qS (2.5)

= 2Dqim2⟨Wi, A∗i ⟩ − qim2||Wi||2⟨Wi, A∗i ⟩ −m2

h

∑
j=1
j ̸=i

qij⟨Wi, Wj⟩⟨Wj, A∗i ⟩

Upper bounding the above we get,

β̃i ≤ 2Dm2hp−1(1 + δ)−m2hp−1(1− δ)3 + m2h2p−1
(

δ +
µ√
n

)(
δ2 + 2δ +

µ√
n

)

= 2Dm2hp−1(1 + h−p−ν2
)−m2hp−1(1− 3h−p−ν2

+ 3h−2p−2ν2 − h−3p−3ν2
)

+ m2h2p−1(h−3p−3ν2
+ 2h−2p−2ν2

+ h−2p−2ν2−ξ + 3h−p−ν2−ξ + h−2ξ) (2.6)

Similarly for the lower bound on βi we get,

β̃i ≥ 2Dm2hp−1(1− δ)−m2hp−1(1 + δ)3 −m2h2p−1
(

δ +
µ√
n

)(
δ2 + 2δ +

µ√
n

)

= 2Dm2hp−1(1− h−p−ν2
)−m2hp−1(1 + 3h−p−ν2

+ 3h−2p−2ν2
+ h−3p−3ν2

)

−m2h2p−1(h−3p−3ν2
+ 2h−2p−2ν2

+ h−2p−2ν2−ξ + 3h−p−ν2−ξ + h−2ξ) (2.7)

Thus for 0 < p < 2ξ and D = 1, we have β = Θ
(
m2hp−1)
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Bounding α̃i

α̃i = ES∈S

[
1i∈S

{
m2 ∑

k∈S
(W⊤i A∗k)

2

}]

= ES∈S

⎡⎢⎣1i∈S

⎧⎪⎨⎪⎩m2⟨Wi, A∗i ⟩2 + m2 ∑
k∈S
k ̸=i

⟨Wi, A∗k⟩2

⎫⎪⎬⎪⎭
⎤⎥⎦

= ∑
{S∈S:i∈S}

m2⟨Wi, A∗i ⟩2qS +
h

∑
k=1
k ̸=i

∑
{S∈S:i,k∈S}

⟨Wi, A∗k⟩2qS

= m2⟨Wi, A∗i ⟩2 ∑
{S∈S:i∈S}

qS + m2

h

∑
k=1
k ̸=i

⟨Wi, A∗k⟩2
⎛⎝ ∑
{S∈S:i,k∈S,i ̸=k}

qS

⎞⎠

= qim2⟨Wi, A∗i ⟩2 + m2

h

∑
k=1
k ̸=i

qik⟨Wi, A∗k⟩2

= hp−1m2⟨Wi, A∗i ⟩2 + m2h2p−1 max ⟨Wi, A∗k⟩2

The above implies the following bounds,

hp−1m2(1− h−p−ν2
)2 ≤ α̃i ≤ hp−1m2(1 + h−p−ν2

)2 + m2h2p−1(h−p−ν2
+ h−ξ)2

(2.8)

As long as 0 < p < 2ξ, α̃i = Θ
(
m2hp−1)
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Bounding ||ẽi||2

ẽi = ES∈S

⎡⎢⎢⎣1i∈S ×

⎧⎪⎪⎨⎪⎪⎩m2 ∑
j,k∈S
j ̸=i

(W⊤i A∗k)(W
⊤
j A∗k)Wj + (−2D)m2 ∑

j∈S
j ̸=i

(W⊤i A∗j )A∗j

⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎦

+ ES∈S

⎡⎢⎢⎣1i∈S ×

⎧⎪⎪⎨⎪⎪⎩m2 ∑
j,k∈S
k ̸=i

(W⊤i Wj)(W⊤j A∗k)A∗k

⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎦

= ES∈S

[
1i∈S ×m2

{
∑

j(=k)∈S\i
(W⊤i A∗j )(W

⊤
j A∗j )Wj + ∑

j∈S\i
k∈S\i,j

(W⊤i A∗k)(W
⊤
j A∗k)Wj

+ ∑
j∈S\i
k=i

(W⊤i A∗i )(W
⊤
j A∗i )Wj

}]

+ ES∈S

⎡⎢⎢⎣1i∈S × (−2D)m2

⎧⎪⎪⎨⎪⎪⎩∑
j∈S
j ̸=i

(W⊤i A∗j )A∗j

⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎦

+ ES∈S

[
1i∈S ×m2

{
∑

k(=j)∈S\i
(W⊤i Wk)(W⊤k A∗k)A∗k + ∑

k∈S\i
j∈S\i,k

(W⊤i Wj)(W⊤j A∗k)A∗k

+ ∑
k∈S\i

j=i

(W⊤i Wi)(W⊤i A∗k)A∗k

}]
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ẽi = m2

{
h

∑
j=1,j ̸=i

(W⊤i A∗j )(W
⊤
j A∗j )Wj ∑

{S∈S:i,j∈S,i ̸=j}
qS

+
h

∑
j,k=1
j ̸=k ̸=i

(W⊤i A∗k)(W
⊤
j A∗k)Wj ∑

{S∈S:i,j,k∈S,i ̸=j ̸=k}
qS

+
h

∑
j=1
j ̸=i

(W⊤i A∗i )(W
⊤
j A∗i )Wj ∑

{S∈S:i,j∈S,i ̸=j}
qS

}

+ (−2D)m2

⎧⎪⎪⎨⎪⎪⎩
h

∑
j=1
j ̸=i

(W⊤i A∗j )A∗j ∑
{S∈S:i,j∈S,i ̸=j}

qS

⎫⎪⎪⎬⎪⎪⎭
+ m2

{
h

∑
k=1
k ̸=i

(W⊤i Wk)(W⊤k A∗k)A∗k ∑
{S∈S:i,k∈S,i ̸=k}

qS

+
h

∑
j,k=1
j ̸=i ̸=k

(W⊤i Wj)(W⊤j A∗k)A∗k ∑
{S∈S:i,j,k∈S,i ̸=j ̸=k}

qS

+
h

∑
k=1
k ̸=i

(W⊤i Wi)(W⊤i A∗k)A∗k ∑
{S∈S:i,k∈S,i ̸=k}

qS

}
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ẽi = m2

{
h

∑
j=1,j ̸=i

qij(W⊤i A∗j )(W
⊤
j A∗j )Wj +

h

∑
j,k=1
j ̸=k ̸=i

qijk(W⊤i A∗k)(W
⊤
j A∗k)Wj

+
h

∑
j=1
j ̸=i

qij(W⊤i A∗i )(W
⊤
j A∗i )Wj

}
+ (−2D)m2

⎧⎪⎪⎨⎪⎪⎩
h

∑
j=1
j ̸=i

qij(W⊤i A∗j )A∗j

⎫⎪⎪⎬⎪⎪⎭
+ m2

{
h

∑
k=1
k ̸=i

qik(W⊤i Wk)(W⊤k A∗k)A∗k +
h

∑
j,k=1
j ̸=i ̸=k

qijk(W⊤i Wj)(W⊤j A∗k)A∗k

+
h

∑
k=1
k ̸=i

qik(W⊤i Wi)(W⊤i A∗k)A∗k

}

Upper bounding the norm of this vector ẽi we get,

45



||ẽi|| ≤ m2h2p−1
(

δ +
µ√
n

)
(1 + δ)2 + m2h3p−1

(
δ +

µ√
n

)2

(1 + δ)

+ m2h2p−1
(

δ +
µ√
n

)
(1 + δ)2 + 2Dm2h2p−1

(
δ +

µ√
n

)

+ m2h2p−1
(

δ2 + 2δ +
µ√
n

)
(1 + δ) + m2h3p−1

(
δ2 + 2δ +

µ√
n

)(
δ +

µ√
n

)

+ m2h2p−1
(

δ +
µ√
n

)
(1 + δ)2

≤ m2h2p−1(h−p−ν2
+ 2h−2p−2ν2

+ h−3p−3ν2
+ 2h−p−ν2−ξ + h−2p−2ν2−ξ + h−ξ)

+ m2h3p−1(h−2p−2ν2
+ h−3p−3ν2

+ 2h−p−ν2−ξ + 2h−2p−2ν2−ξ + h−2ξ + h−p−ν2−2ξ)

+ m2h2p−1(h−p−ν2
+ 2h−2p−2ν2

+ h−3p−3ν2
+ 2h−p−ν2−ξ + h−2p−2ν2−ξ + h−ξ)

+ 2Dm2h2p−1(h−p−ν2
+ h−ξ)

+ m2h2p−1(2h−p−ν2
+ 3h−2p−2ν2

+ h−3p−3ν2
+ h−p−ν2−ξ + h−ξ)

+ m2h3p−1(2h−2p−2ν2
+ h−3p−3ν2

+ 3h−p−ν2−ξ + h−2p−2ν2−ξ + h−2ξ)

+ m2h2p−1(h−p−ν2
+ 2h−2p−2ν2

+ h−3p−3ν2
+ 2h−p−ν2−ξ + h−2p−2ν2−ξ + h−ξ)

(2.9)

If D = 1 and 0 < p < ξ, we get ||ẽi|| = o(m2hp−1)
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2.9.3 Estimating the m1 dependent parts of the derivative

We continue working in the same regime for the W matrix as in the previous

subsection. Hence the same inequalities as listed at the beginning of the

previous subsection continue to hold and we use them to get the following

bounds,
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Bounding α̂i

α̂i = ES∈S

[
1i∈S ×

{
m2

1 ∑
k,l∈S
k ̸=l

(W⊤i A∗k)(W
⊤
i A∗l )− 2m1 ∑

k∈S
ϵi(W⊤i A∗k) + ϵ2

i

}]

= ES∈S

[
1i∈S ×

{
m2

1 ∑
k∈S
k ̸=i

⟨Wi, A∗k⟩⟨Wi, A∗i ⟩+ m2
1 ∑

l∈S
l ̸=i

⟨Wi, A∗i ⟩⟨Wi, A∗l ⟩

+ m2
1 ∑

k,l∈S
k ̸=l
k ̸=i
l ̸=i

⟨Wi, A∗k⟩⟨Wi, A∗l ⟩

− 2m1ϵi⟨Wi, A∗i ⟩ − 2m1 ∑
k∈S
k ̸=i

ϵi⟨Wi, A∗k⟩+ ϵ2
i

}]

= 2m2
1

h

∑
k=1
k ̸=i

⟨Wi, A∗k⟩⟨Wi, A∗i ⟩ ∑
{S∈S:i,k∈S,k ̸=i}

qS

+ m2
1

h

∑
k,l=1
k ̸=l
k ̸=i
l ̸=i

⟨Wi, A∗k⟩⟨Wi, A∗l ⟩ ∑
{S∈S:i,k,l∈S,k ̸=i ̸=l}

qS

− 2m1ϵi⟨Wi, A∗i ⟩ ∑
{S∈S:i∈S}

qS − 2m1

h

∑
k=1
k ̸=i

ϵi⟨Wi, A∗k⟩ ∑
{S∈S:i,k∈S,k ̸=i}

qS + ϵ2
i ∑
{S∈S:i∈S}

qS

=⇒ α̂i = 2m2
1

h

∑
k=1
k ̸=i

qik⟨Wi, A∗k⟩⟨Wi, A∗i ⟩+ m2
1

h

∑
k,l=1
k ̸=l
k ̸=i
l ̸=i

qikl⟨Wi, A∗k⟩⟨Wi, A∗l ⟩

− 2m1qiϵi⟨Wi, A∗i ⟩ − 2m1

h

∑
k=1
k ̸=i

qikϵi⟨Wi, A∗k⟩+ qiϵ
2
i
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We plugin ϵi = 2m1hp
(

δ + µ√
n

)
for i = 1, . . . , h

|α̂i| ≤ 2m2
1h2p−1

(
δ +

µ√
n

)
(1 + δ) + m2

1h3p−1
(

δ +
µ√
n

)2

+ 4m2
1h2p−1(1 + δ)

(
δ +

µ√
n

)

+ 4m2
1h3p−1

(
δ +

µ√
n

)2

+ 4m2
1h3p−1

(
δ +

µ√
n

)2

= 2m2
1h2p−1(h−p−ν2

+ h−2p−2ν2
+ h−p−ν2−ξ + h−ξ)

+ m2
1h3p−1(h−2p−2ν2

+ 2h−p−ν2−ξ + h−2ξ)

+ 4m2
1h2p−1(h−p−ν2

+ h−2p−2ν2
+ h−ξ + h−p−ν2−ξ)

+ 4m2
1h3p−1(h−2p−2ν2

+ 2h−p−ν2−ξ + h−2ξ)

+ 4m2
1h3p−1(h−2p−2ν2

+ 2h−p−ν2−ξ + h−2ξ)

This means that if p < ξ, |α̂i| = o(m2
1hp−1). Putting this together with the

bounds obtained below 2.8, we get that αi = Θ(m2hp−1) + o(m2
1hp−1).
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Bounding β̂i

β̂i = ES∈S

[
1i∈S ×

{
2Dm2

1 ∑
k∈S
k ̸=i

(W⊤i A∗k)− Dm1ϵi + m1 ∑
j∈S

ϵj(W⊤i Wj)

−m2
1 ∑

j,l∈S
l ̸=i

(W⊤i Wj)(W⊤j A∗l )

}]

= 2Dm2
1

h

∑
k=1
k ̸=i

⟨Wi, A∗k⟩ ∑
{S∈S:i,k∈S,k ̸=i}

qS − Dm1ϵi ∑
{S∈S:i∈S}

qS + m1ϵi||Wi||2 ∑
{S∈S:i∈S}

qS

+ m1

h

∑
j=1,j ̸=i

ϵj⟨Wi, Wj⟩ ∑
{S∈S:i,j∈S,j ̸=i}

qS −m2
1

h

∑
l=1
l ̸=i

||Wi||2⟨Wi, A∗l ⟩ ∑
{S∈S:i,l∈S,l ̸=i}

qS

−m2
1

h

∑
l=1
l ̸=i

⟨Wi, Wl⟩⟨Wl, A∗l ⟩ ∑
{S∈S:i,l∈S,l ̸=i}

qS −m2
1

h

∑
j,l=1
l ̸=i

j ̸=l,i

⟨Wi, Wj⟩⟨Wj, A∗l ⟩ ∑
{S∈S:i,j,l∈S,l ̸=i ̸=i}

qS

= 2Dm2
1

h

∑
k=1
k ̸=i

qik⟨Wi, A∗k⟩ − Dm1ϵiqi + m1ϵi||Wi||2qi + m1

h

∑
j=1,j ̸=i

ϵjqij⟨Wi, Wj⟩

−m2
1

h

∑
l=1
l ̸=i

||Wi||2⟨Wi, A∗l ⟩qil −m2
1

h

∑
l=1
l ̸=i

⟨Wi, Wl⟩⟨Wl, A∗l ⟩qil −m2
1

h

∑
j,l=1
l ̸=i

j ̸=l,i

⟨Wi, Wj⟩⟨Wj, A∗l ⟩qijl

We plugin ϵi = 2m1hp
(

δ + µ√
n

)
for i = 1, . . . , h
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|β̂i| ≤ 4Dm2
1h2p−1

(
δ +

µ√
n

)
+ 2m2

1h2p−1
(

δ +
µ√
n

)
(1 + δ)2

+ 2m2
1h3p−1

(
δ +

µ√
n

)(
δ2 + 2δ +

µ√
n

)

+ m2
1h2p−1(1 + δ)2

(
δ +

µ√
n

)
+ m2

1h2p−1
(

δ2 + 2δ +
µ√
n

)
(1 + δ)

+ m2
1h3p−1

(
δ2 + 2δ +

µ√
n

)(
δ +

µ√
n

)

= 4Dm2
1h2p−1(h−p−ν2

+ h−ξ)

+ 2m2
1h2p−1(h−p−ν2

+ 2h−2p−2ν2
+ h−3p−3ν2

+ h−ξ + 2h−p−ν2−ξ + h−2p−2ν2−ξ)

+ 2m2
1h3p−1(2h−2p−2ν2

+ h−3p−3ν2
+ 3h−p−ν2−ξ + h−2p−2ν2−ξ + h−2ξ)

+ m2
1h2p−1(h−p−ν2

+ 2h−2p−2ν2
+ h−3p−3ν2

+ h−ξ + 2h−p−ν2−ξ + h−2p−2ν2−ξ)

+ m2
1h2p−1(3h−2p−2ν2

+ h−3p−3ν2
+ h−p−ν2−ξ + 2h−p−ν2

+ h−ξ)

+ m2
1h3p−1(2h−2p−2ν2

+ h−3p−3ν2
+ 3h−p−ν2−ξ + h−2p−2ν2−ξ + h−2ξ)

This means that if p < ξ, |β̂i| = o(m2
1hp−1). Putting this together with the

bounds obtained below 2.5, we get that βi = Θ(m2hp−1) + o(m2
1hp−1).
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Bounding ||êi||2

êi = ES∈S

⎡⎢⎢⎣1i∈S ×

⎧⎪⎪⎨⎪⎪⎩∑
j∈S
j ̸=i

ϵiϵjWj −m1 ∑
j,k∈S
j ̸=i

(W⊤j A∗k)Wjϵi −m1 ∑
j,k∈S
j ̸=i

ϵj(W⊤i A∗k)Wj

⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎦

  
ˆei1

+ ES∈S

⎡⎢⎢⎢⎢⎢⎣1i∈S ×

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
m2

1 ∑
j,k,l∈S

j ̸=i
k ̸=l

(W⊤i A∗k)(W
⊤
j A∗l )Wj

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⎤⎥⎥⎥⎥⎥⎦
  

ˆei2

+ ES∈S

⎡⎢⎢⎢⎢⎢⎣1i∈S ×

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−2Dm2

1 ∑
j,k∈S
j ̸=i
k ̸=i

(W⊤i A∗k)A∗j + Dm1 ∑
j∈S
j ̸=i

ϵi A∗j

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⎤⎥⎥⎥⎥⎥⎦
  

ˆei3

+ ES∈S

⎡⎢⎢⎣1i∈S ×

⎧⎪⎪⎨⎪⎪⎩−m1 ∑
j,k∈S
k ̸=i

ϵj(W⊤i Wj)A∗k + m2
1 ∑

j,k,l∈S
k ̸=i,l

(W⊤i Wj)(W⊤j A∗l )A∗k

⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎦

  
ˆei4

We estimate the different summands separately.

52



ˆei1 = ES∈S

⎡⎢⎢⎣1i∈S ×

⎧⎪⎪⎨⎪⎪⎩∑
j∈S
j ̸=i

ϵiϵjWj

⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎦

+ ES∈S

⎡⎢⎢⎣1i∈S × (−m1)

⎧⎪⎪⎨⎪⎪⎩ ∑
j(=k)∈S\i

(W⊤j A∗j )Wjϵi + ∑
j∈S\i

k∈S\i,j

(W⊤j A∗k)Wjϵi + ∑
j∈S\i
k=i

(W⊤j A∗i )Wjϵi

⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎦

+ ES∈S

⎡⎢⎢⎣1i∈S × (−m1)

⎧⎪⎪⎨⎪⎪⎩ ∑
j(=k)∈S\i

ϵj(W⊤i A∗j )Wj + ∑
j∈S\i

k∈S\i,j

ϵj(W⊤i A∗k)Wj + ∑
j∈S\i
k=i

ϵj(W⊤i A∗i )Wj

⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎦

We substitute, ϵ = 2m1hp(h−p−ν2
+ h−ξ) and for any two vectors x and y and

any two scalars a and b we use the inequality, ||ax + by||2 ≤ |a|max||x||2,max +

|b|max||y||2,maxto get,
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|| ˆei1||2 ≤ 4m2
1h2p

(
δ +

µ√
n

)2 h

∑
j=1,j ̸=i

qij||Wj||

+ 2m2
1hp

(
δ +

µ√
n

)( h

∑
j=1,j ̸=i

qij⟨Wj, A∗j ⟩Wj +
h

∑
j,k=1,j ̸=i,k ̸=i,j

qijk⟨Wj, A∗k⟩Wj

+
h

∑
j=1,j ̸=i

qij⟨Wj, A∗i ⟩Wj

)

+ 2m2
1hp

(
δ +

µ√
n

)( h

∑
j=1,j ̸=i

qij⟨Wi, A∗j ⟩Wj +
h

∑
j,k=1,j ̸=i,k ̸=i,j

qijk⟨Wi, A∗k⟩Wj

+
h

∑
j=1,j ̸=i

qij⟨Wi, A∗i ⟩Wj

)

=⇒ || ˆei1||2 ≤ 4m2
1h2ph2p−1(1 + δ)

(
δ +

µ√
n

)2

+ 2m2
1hp

(
δ +

µ√
n

)(
h2p−1(1 + δ)2 + h3p−1

(
δ +

µ√
n

)
(1 + δ)

+ h2p−1
(

δ +
µ√
n

)
(1 + δ)

)

+ 2m2
1hp

(
δ +

µ√
n

)(
h2p−1

(
δ +

µ√
n

)
(1 + δ) + h3p−1

(
δ +

µ√
n

)
(1 + δ)

+ h2p−1(1 + δ)2

)
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=⇒ || ˆei1||2 ≤ 4m2
1h4p−1(1 + δ)

(
δ +

µ√
n

)2

+ 2m2
1h3p−1

(
δ +

µ√
n

)
(1 + δ)2 + 2m2

1h4p−1
(

δ +
µ√
n

)2

(1 + δ)

+ 2m2
1h3p−1

(
δ +

µ√
n

)2

(1 + δ) + 2m2
1h3p−1

(
δ +

µ√
n

)2

(1 + δ)

+ 2m2
1h4p−1

(
δ +

µ√
n

)2

(1 + δ) + 2m2
1h3p−1

(
δ +

µ√
n

)
(1 + δ)2

=⇒ || ˆei1||2 ≤ 8m2
1h4p−1(1 + δ)

(
δ +

µ√
n

)2

+ 4m2
1h3p−1

(
δ +

µ√
n

)
(1 + δ)2

+ 4m2
1h3p−1

(
δ +

µ√
n

)2

(1 + δ)

=⇒ || ˆei1||2 ≤ 8m2
1h4p−1(h−2p−2ν2

+ h−3p−3ν2
+ 2h−p−ν2−ξ

+ 2h−2p−2ν2−ξ + h−p−ν2−2ξ + h−2ξ)

+ 4m2
1h3p−1(h−p−ν2

+ h−3p−3ν2
+ 2h−2p−2ν2

+ h−ξ + h−2p−2ν2−ξ + 2h−p−ν2−ξ)

+ 4m2
1h3p−1(h−2p−2ν2

+ h−3p−3ν2
+ 2h−p−ν2−ξ

+ 2h−2p−2ν2−ξ + h−p−ν2−2ξ + h−2ξ)
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=⇒ || ˆei1||2 ≤ 8m2
1hp−1(hp−2ν2

+ h−3ν2
+ 2hp−ν2+p−ξ + 2h−2ν2+p−ξ + h−ν2+2p−2ξ + h3p−2ξ)

+ 4m2
1hp−1(hp−ν2

+ h−p−3ν2
+ 2h−2ν2

+ h2p−ξ + h−2ν2−ξ + 2h−ν2+p−ξ)

+ 4m2
1hp−1(h−2ν2

+ h−p−3ν2
+ 2h−ν2+p−ξ + 2h−2ν2−ξ + h−ν2+p−2ξ + h2p−2ξ)

From the above it follows that, || ˆei1||2 = o(m2
1hp−1) for p < ν2 and 2p < ξ .

ˆei2 = ES∈S

⎡⎢⎢⎢⎢⎢⎣1i∈S ×m2
1

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∑

j,k,l∈S
j ̸=i
k ̸=l

(W⊤i A∗k)(W
⊤
j A∗l )Wj

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⎤⎥⎥⎥⎥⎥⎦

= ES∈S

[
1i∈S ×m2

1

{
∑
j∈S
j ̸=i

(W⊤i A∗j )(W
⊤
j A∗i )Wj + ∑

j,k∈S
k ̸=j ̸=i

(W⊤i A∗k)(W
⊤
j A∗i )Wj

+ ∑
j∈S
j ̸=i

(W⊤i A∗i )(W
⊤
j A∗j )Wj + ∑

j,l∈S
l ̸=j ̸=i

(W⊤i A∗i )(W
⊤
j A∗l )Wj

+ ∑
j,l∈S

l ̸=j ̸=i

(W⊤i A∗j )(W
⊤
j A∗l )Wj + ∑

j,k∈S
k ̸=j ̸=i

(W⊤i A∗k)(W
⊤
j A∗j )Wj

+ ∑
j,k,l∈S

l ̸=k ̸=j ̸=i

(W⊤i A∗k)(W
⊤
j A∗l )Wj

}]
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=⇒ ˆei2 = m2
1

{
h

∑
j=1
j ̸=i

qij(W⊤i A∗j )(W
⊤
j A∗i )Wj +

h

∑
j,k=1

k ̸=j ̸=i

qijk(W⊤i A∗k)(W
⊤
j A∗i )Wj

+
h

∑
j=1
j ̸=i

qij(W⊤i A∗i )(W
⊤
j A∗j )Wj

  
a

+
h

∑
j,l=1

l ̸=j ̸=i

qijl(W⊤i A∗i )(W
⊤
j A∗l )Wj +

h

∑
j,l=1

l ̸=j ̸=i

qijl(W⊤i A∗j )(W
⊤
j A∗l )Wj

+
h

∑
j,k=1

k ̸=j ̸=i

qijk(W⊤i A∗k)(W
⊤
j A∗j )Wj + ∑

j,k,l∈S
l ̸=k ̸=j ̸=i

qijkl(W⊤i A∗k)(W
⊤
j A∗l )Wj

}
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=⇒ || ˆei2|| ≤ m2
1

{
h2p−1

(
δ +

µ√
n

)2

(1 + δ) + h3p−1
(

δ +
µ√
n

)2

(1 + δ) + ||a||

+ h3p−1
(

δ +
µ√
n

)
(1 + δ)2 + h3p−1

(
δ +

µ√
n

)2

(1 + δ)

+ h3p−1
(

δ +
µ√
n

)
(1 + δ)2 + h4p−1

(
δ +

µ√
n

)2

(1 + δ)

}

=⇒ || ˆei2|| ≤ m2
1

{
h2p−1(h−2p−2ν2

+ h−3p−3ν2
+ 2h−p−ν2−ξ

+ 2h−2p−2ν2−ξ + h−p−ν2−2ξ + h−2ξ) + h3p−1(h−2p−2ν2
+ h−3p−3ν2

+ 2h−p−ν2−ξ + 2h−2p−2ν2−ξ + h−p−ν2−2ξ + h−2ξ)

+ ||a||

+ h3p−1(h−p−ν2
+ h−3p−3ν2

+ 2h−2p−2ν2
+ h−2p−2ν2−ξ + 2h−p−ν2−ξ + h−ξ)

+ h3p−1(h−2p−2ν2
+ h−3p−3ν2

+ 2h−p−ν2−ξ + 2h−2p−2ν2−ξ + h−p−ν2−2ξ + h−2ξ)

+ h3p−1(h−p−ν2
+ h−3p−3ν2

+ 2h−2p−2ν2
+ h−2p−2ν2−ξ + 2h−p−ν2−ξ + h−ξ)

+ h4p−1(h−2p−2ν2
+ h−3p−3ν2

+ 2h−p−ν2−ξ + 2h−2p−2ν2−ξ + h−p−ν2−2ξ + h−2ξ)

}
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=⇒ || ˆei2|| ≤ m2
1

{
hp−1(h−p−2ν2

+ h−2p−3ν2
+ 2h−ν2−ξ + 2h−p−2ν2−ξ + h−ν2−2ξ + hp−2ξ)

+ hp−1(h−2ν2
+ h−p−3ν2

+ 2h−ν2+p−ξ + 2h−2ν2−ξ + h−ν2+p−2ξ + h2p−2ξ)

+ ||a||

+ hp−1(hp−ν2
+ h−p−3ν2

+ 2h−2ν2
+ h−2ν2−ξ + 2h−ν2+p−ξ + h2p−ξ)

+ hp−1(h−2ν2
+ h−p−3ν2

+ 2h−ν2+p−ξ + 2h−2ν2−ξ + h−ν2+p−2ξ + h2p−2ξ)

+ hp−1(hp−ν2
+ h−2p−3ν2

+ 2h−2ν2
+ h−2ν2−ξ + 2h−ν2+p−ξ + h2p−ξ)

+ hp−1(hp−2ν2
+ h−3ν2

+ 2hp−ν2+p−ξ + 2h−2ν2+p−ξ + h−ν2+2p−2ξ + h3p−2ξ)

}

Now let us find a bound for ||a||.

a =
h

∑
j=1
j ̸=i

qij(W⊤i A∗i )(W
⊤
j A∗j )Wj

= ⟨Wi, A∗i ⟩qijW⊤−jdiag(W−j A∗−j)

Where A∗−j is the dictionary A∗ with the jth column set to zero, W−j is the dic-

tionary W with the jth row set to zero, and diag(W−j A∗−j) is the h-dimensional

vector containing the diagonal elements of the matrix W−j A∗−j. We also make

use of the distributional assumption that qij is the same for all i, j in order to
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pull qij out of the sum.

||a||2 = h2p−2⟨Wi, A∗i ⟩||W⊤−jdiag(W−j A∗−j)||2

≤ h2p−2(1 + δ)||W⊤−j||2||diag(W−j A∗−j)||2

≤ h2p−2(1 + δ)2h1/2
√

λmax(W⊤−jW−j)

≤ h2p−2(1 + δ)2h1/2

√
h
(

δ2 + 2δ +
µ√
n

)
+ (1 + δ)2

= hp−1

√
h2p−2 × h× (1 + δ)4 ×

(
h
(

δ2 + 2δ +
µ√
n

)
+ (1 + δ)2

)

= hp−1
√

h2p−1 × (1 + h−p−ν2
)4 ×

(
h(h−2p−2ν2

+ 2h−p−ν2
+ h−ξ) + (1 + h−p−ν2

)2
)

= hp−1
√
(1 + h−p−ν2

)4 × (h−2ν2 + 2hp−ν2
+ h2p−ξ + h2p−1(1 + h−p−ν2

)2)

Here ||W⊤−j||2 is the spectral norm of W⊤−j, and is the top singular value of the

matrix. We use Gershgorin’s Circle theorem to bound the top eigenvalue of

W⊤−jW−j by its maximum row sum.

If p < ξ
2 , p < 1

2 , and p < ν2, then || ˆei2|| = o(m2
1hp−1)
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ˆei3 = ES∈S

⎡⎢⎢⎢⎢⎢⎣1i∈S ×

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Dm1 ∑

j∈S
j ̸=i

ϵi A∗j − 2Dm2
1 ∑

j,k∈S
j ̸=i
k ̸=i

(W⊤i A∗k)A∗j

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⎤⎥⎥⎥⎥⎥⎦

= ES∈S

⎡⎢⎢⎣1i∈S ×

⎧⎪⎪⎨⎪⎪⎩Dm1 ∑
j∈S
j ̸=i

ϵi A∗j − 2Dm2
1 ∑

j∈S
j ̸=i

(W⊤i A∗j )A∗j − 2Dm2
1 ∑

j,k∈S
k ̸=j ̸=i

(W⊤i A∗k)A∗j

⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎦

= Dm1

h

∑
j=1
j ̸=i

ϵi A∗j ∑
{S∈S:i,j∈S,i ̸=j}

qS − 2Dm2
1

h

∑
j=1
j ̸=i

(W⊤i A∗j )A∗j ∑
{S∈S:i,j∈S,i ̸=j}

qS

− 2Dm2
1

h

∑
j,k=1

k ̸=j ̸=i

(W⊤i A∗k)A∗j ∑
{S∈S:i,j,k∈S,i ̸=j ̸=k}

qS

= Dm1

h

∑
j=1
j ̸=i

qijϵi A∗j − 2Dm2
1

h

∑
j=1
j ̸=i

qij(W⊤i A∗j )A∗j − 2Dm2
1

h

∑
j,k=1

k ̸=j ̸=i

qijk(W⊤i A∗k)A∗j

We plugin ϵi = 2m1hp
(

δ + µ√
n

)
for i = 1, . . . , h

|| ˆei3|| ≤ 2Dm2
1h3p−1

(
δ +

µ√
n

)
+ 2Dm2

1h2p−1
(

δ +
µ√
n

)
+ 2Dm2

1h3p−1
(

δ +
µ√
n

)

= 4Dm2
1h3p−1(h−p−ν2

+ h−ξ) + 2Dm2
1h2p−1(h−p−ν2

+ h−ξ)

= 4Dm2
1hp−1(hp−ν2

+ h2p−ξ) + 2Dm2
1hp−1(h−ν2

+ hp−ξ)
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This means for D = 1, p < ν2 and p < ξ
2 , we have || ˆei3|| = o(m2

1hp−1)
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ˆei4 = ES∈S

⎡⎢⎢⎣1i∈S ×

⎧⎪⎪⎨⎪⎪⎩−m1 ∑
j,k∈S
k ̸=i

ϵj(W⊤i Wj)A∗k + m2
1 ∑

j,k,l∈S
k ̸=i,l

(W⊤i Wj)(W⊤j A∗l )A∗k

⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎦

= ES∈S

[
1i∈S × (−m1)

{
∑

k(=j)∈S\i
ϵk(W⊤i Wk)A∗k + ∑

j∈S\i
k∈S\i,j

ϵj(W⊤i Wj)A∗k

+ ∑
k∈S\i

j=i

ϵj(W⊤i Wi)A∗k

}]

+ ES∈S

⎡⎢⎢⎣1i∈S ×m2
1

⎧⎪⎪⎨⎪⎪⎩ ∑
j,k,l∈S
k ̸=i,l

(W⊤i Wj)(W⊤j A∗l )A∗k

⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎦

= ES∈S

[
1i∈S × (−m1)

{
∑

k(=j)∈S\i
ϵk(W⊤i Wk)A∗k + ∑

j∈S\i
k∈S\i,j

ϵj(W⊤i Wj)A∗k

+ ∑
k∈S\i

j=i

ϵj(W⊤i Wi)A∗k

}]

+ ES∈S

[
1i∈S ×m2

1

{
∑
k∈S
k ̸=i

(W⊤i Wi)(W⊤i A∗i )A∗k + ∑
k∈S
k ̸=i

(W⊤i Wk)(W⊤k A∗i )A∗k

+ ∑
j,k∈S
j ̸=k ̸=i

(W⊤i Wj)(W⊤j A∗i )A∗k + ∑
k,l∈S
̸=k ̸=i

(W⊤i Wi)(W⊤i A∗l )A∗k + ∑
k,l∈S
l ̸=k ̸=i

(W⊤i Wk)(W⊤k A∗l )A∗k

+ ∑
k,l∈S
l ̸=k ̸=i

(W⊤i Wl)(W⊤l A∗l )A∗k + ∑
j,k,l∈S

j ̸=k ̸=l ̸=i

(W⊤i Wj)(W⊤j A∗l )A∗k

}]
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ˆei4 = (−m1)

⎧⎪⎪⎨⎪⎪⎩
h

∑
k=1,k ̸=i

qikϵk(W⊤i Wk)A∗k +
h

∑
j,k=1
j ̸=k ̸=i

qijkϵj(W⊤i Wj)A∗k +
h

∑
k=1
k ̸=i

qikϵi(W⊤i Wi)A∗k

⎫⎪⎪⎬⎪⎪⎭
+ m2

1

{
h

∑
k=1
k ̸=i

qik(W⊤i Wi)(W⊤i A∗i )A∗k

  
b

+
h

∑
k=1
k ̸=i

qik(W⊤i Wk)(W⊤k A∗i )A∗k

+
h

∑
j,k=1
j ̸=k ̸=i

qijk(W⊤i Wj)(W⊤j A∗i )A∗k +
h

∑
k,l=1
l ̸=k ̸=i

qikl(W⊤i Wi)(W⊤i A∗l )A∗k

+
h

∑
k,l=1
l ̸=k ̸=i

qikl(W⊤i Wk)(W⊤k A∗l )A∗k +
h

∑
k,l=1
l ̸=k ̸=i

qikl(W⊤i Wl)(W⊤l A∗l )A∗k

+
h

∑
j,k,l=1

j ̸=k ̸=l ̸=i

qijkl(W⊤i Wj)(W⊤j A∗l )A∗k

}

We plugin ϵi = 2m1hp
(

δ + µ√
n

)
for i = 1, . . . , h in the above to get,
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|| ˆei4|| ≤ 2m2
1h3p−1

(
δ +

µ√
n

)2

+ 2m2
1h4p−1

(
δ +

µ√
n

)(
δ2 + 2δ +

µ√
n

)

+ 2m2
1h3p−1

(
δ +

µ√
n

)
(1 + δ)2 + m2

1||b||+ m2
1h2p−1

(
δ +

µ√
n

)(
δ2 + 2δ +

µ√
n

)

+ m2
1h3p−1

(
δ +

µ√
n

)(
δ2 + 2δ +

µ√
n

)
+ m2

1h3p−1(1 + δ)2
(

δ +
µ√
n

)

+ m2
1h3p−1

(
δ +

µ√
n

)(
δ2 + 2δ +

µ√
n

)

+ m2
1h3p−1(1 + δ)

(
δ2 + 2δ +

µ√
n

)
+ m2

1h4p−1
(

δ +
µ√
n

)(
δ2 + 2δ +

µ√
n

)

=⇒ || ˆei4|| ≤ 2m2
1h3p−1

(
δ +

µ√
n

)2

+ 3m2
1h4p−1

(
δ +

µ√
n

)(
δ2 + 2δ +

µ√
n

)

+ 3m2
1h3p−1

(
δ +

µ√
n

)
(1 + δ)2 + m2

1||b||+ m2
1h2p−1

(
δ +

µ√
n

)(
δ2 + 2δ +

µ√
n

)

+ 2m2
1h3p−1

(
δ +

µ√
n

)(
δ2 + 2δ +

µ√
n

)
+ m2

1h3p−1(1 + δ)

(
δ2 + 2δ +

µ√
n

)
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=⇒ || ˆei4|| ≤ 2m2
1h3p−1(h−2p−2ν2

+ 2h−p−ν2−ξ + h−2ξ)

+ 3m2
1h4p−1(h−3p−3ν2

+ 2h−2p−2ν2
+ 3h−p−ν2−ξ + h−2p−2ν2−ξ + h−2ξ)

+ 3m2
1h3p−1(h−3p−3ν2

+ 2h−2p−2ν2
+ 2h−p−ν2−ξ + h−2p−2ν2−ξ + h−ξ + h−p−ν2

)

+ m2
1||b||

+ m2
1h2p−1(h−3p−3ν2

+ 2h−2p−2ν2
+ 3h−p−ν2−ξ + h−2p−2ν2−ξ + h−2ξ)

+ 2m2
1h3p−1(h−3p−3ν2

+ 2h−2p−2ν2
+ 3h−p−ν2−ξ + h−2p−2ν2−ξ + h−2ξ)

+ m2
1h3p−1(h−3p−3ν2

+ 3h−2p−2ν2
+ h−p−ν2−ξ + h−ξ + 2h−p−ν2

)

=⇒ || ˆei4|| ≤ 2m2
1hp−1(h−2ν2

+ 2h−ν2+p−ξ + h2p−2ξ)

+ 3m2
1hp−1(h−3ν2

+ 2h−p−2ν2
+ 3hp−ν2+p−ξ + h−2ν2+p−ξ + h3p−2ξ)

+ 3m2
1hp−1(h−p−3ν2

+ 2h−2ν2
+ 2h−ν2+p−ξ + h−2ν2−ξ + h2p−ξ + hp−ν2

)

+ m2
1||b||

+ m2
1hp−1(h−2p−3ν2

+ 2h−p−2ν2
+ 3h−ν2−ξ + h−p−2ν2−ξ + hp−2ξ)

+ 2m2
1hp−1(h−p−3ν2

+ 2h−2ν2
+ 3h−ν2+p−ξ + h−2ν2−ξ + h2p−2ξ)

+ m2
1hp−1(h−p−3ν2

+ 3h−2ν2
+ h−ν2+p−ξ + h2p−ξ + 2hp−ν2

)
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Now let us find a bound for ||b||.

b =
h

∑
k=1
k ̸=i

qik(W⊤i Wi)(W⊤i A∗i )A∗k

= ⟨Wi, Wi⟩⟨Wi, A∗i ⟩qik A∗−i1h

Where A∗−i is the dictionary A∗ with the ith column set to zero, and 1h ∈ Rh is

the h-dimensional vector of all ones. Here we make use of the distributional

assumption that qik is the same for all i, k in order to pull qik out of the sum.

||b||2 = h2p−2⟨Wi, Wi⟩⟨Wi, A∗i ⟩||A∗−i1h||2

≤ h2p−2(1 + δ)3||A∗−i||2||1h||2

= h2p−2(1 + δ)3h1/2
√

λmax(A∗⊤−i A∗−i)

= h2p−2(1 + δ)3h1/2
√

h
µ√
n
+ 1

= hp−1

√
h2p−2 × h× (1 + δ)6 ×

(
h

µ√
n
+ 1
)

= hp−1
√

h2p−1 × (1 + h−p−ν2
)6 × (h1−ξ + 1)

= hp−1
√
(1 + h−p−ν2

)6 × (h2p−ξ + h2p−1)

Here ||A∗−i||2 is the spectral norm of A∗−i, and is the top singular value of the

matrix. We use Gershgorin’s Circle theorem to bound the top eigenvalue of

A∗⊤−i A∗−i by its maximum row sum.

If p < ξ
2 , p < 1

2 , and p < ν2, then || ˆei4|| = o(m2
1hp−1). Now we combine the
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above obtained bounds for ∥êit∥ (for t ∈ {1, 2, 3, 4}) with the bound obtained

below equation 2.9 to say that, ∥ei∥ = o(max{m2
1, m2}hp−1)

2.9.4 About αi − βi

Remembering that D = 1 and doing a close scrutiny of the terms in 2.8 and

2.5 will indicate that the coefficients are the same for the m2hp−1 term in each

of them. (which is the term with the highest h scaling in the m2 dependent

parts of αi and βi). So this largest term cancels off in the difference and we are

left with the sub-leading order terms coming from both their m2
1 as well as the

m2 parts and this gives us,

αi − βi = o(max{m2
1, m2}hp−1)
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Chapter 3

A Scale Invariant Measure of
Flatness for Deep Network Minima

3.1 Introduction

In the past few years, while deep learning (LeCun, Bengio, and Hinton, 2015)

has had empirical successes in several domains such as object detection and

recognition (Krizhevsky, Sutskever, and Hinton, 2012; Ren et al., 2015), ma-

chine translation (Sutskever, Vinyals, and Le, 2014; Jean et al., 2014), and

speech recognition (Hinton et al., 2012; Sainath et al., 2013), there is still a gap

between their practical performance and our understanding of generalization

in deep learning. Several empirical studies (Chaudhari et al., 2016; Keskar

et al., 2016) observe that the generalization ability of a deep network model is

related to the spectrum of the Hessian matrix of the training loss at the solution

obtained during training. It is also noted that solutions with smaller Hessian

spectral norm tend to generalize better. These are popularly known as Flat

Minima, which have been studied since 1995 (Hochreiter and Schmidhuber,

1995; Hochreiter and Schmidhuber, 1997).
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The flat minima heuristic is also related to a more formal framework for

generalization – PAC-Bayesian analysis of generalization behavior of deep

networks. PAC-Bayes bounds (Dziugaite and Roy, 2017) are concerned with

analyzing the behavior of solutions drawn from a posterior distribution. One

posterior distribution the bounds are valid for are perturbations about the

original solution obtained from empirical risk minimization. Neyshabur et al.,

2017 relate the generalization of this distribution to the flatness of the minima

obtained.

A number of quantitative definitions of flatness have been proposed both

recently (Chaudhari et al., 2016; Keskar et al., 2016) as well as in the early

literature (Hochreiter and Schmidhuber, 1997). These authors formalize the

notions of “flat" or “wide" minima by either measuring the size of the con-

nected region that is within ϵ of the value of the loss function at the minimum

or by finding the difference between the maximum value of the loss function

and the minimum value within an ϵ-radius ball of the minimum. Note that the

second notion of flatness is closely related to the spectral norm of the Hessian

of the loss function at the minimum (through a Taylor expansion).

Definition 1 If B2(ϵ, θ) is the Euclidean ball of radius ϵ centered at a local minimum

θ of a loss function L, then the ϵ-sharpness of the minimum is defined as:

maxθ
′∈B2(ϵ,θ)L(θ

′
)− L(θ)

1 + L(θ)
.

However, Dinh et al., 2017 show that deep networks with positively ho-

mogeneous layer activations (ϕ(x) is positively homogenous if ϕ(αx) =

αϕ(x), ∀α > 0, like the common ReLU activation ϕrect(x) = max(0, x)) can
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be rescaled to make their ϵ-sharpness arbitrarily small or large with a sim-

ple transformation that implements the same neural network function but

have widely different sharpness measures. To formalize this we consider a

2-layer neural network with parameters θ = (θ1, θ2) where the network is

given by y = θ2ϕrect(θ1x). We can transform the parameters of the network

by α > 0 in the following manner: Tα(θ) = (αθ1, α−1θ2). We notice that for

positively homogeneous activations, the networks parameterized by θ and

Tα(θ) implement the same function.

Theorem 3.1.1 (Theorem 4 in Dinh et al., 2017) For a one hidden layer rectified

neural network of the form y = θ2ϕrect(θ1x) where θ = (θ1, θ2) is a minimum for L

such that ∇2L(θ) ̸= 0, for any real number M > 0, we can find a number α > 0

such that ||∇2L(Tα(θ))||2 ≥ M.

In addition to ϵ-sharpness, there are other notions of sharpness like expected

sharpness. Expected sharpness arises from the PAC-Bayesian framework which

provides guarantees on the expected error of a randomized predictor drawn

from a "posterior" distribution that depends on the training data. If fθ is any

predictor, we consider a distribution over predictors with weights of the form

θ + ν, where θ is learned from the training set, and ν is a random variable.

This "posterior" distribution and its KL distance from a "prior" distribution

can be used to bound the generalization performance of the predictor fθ, and

one of the terms in the bound is the expected sharpness:

Eν [L(θ + ν)− L(θ)]
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This notion of flatness is also related to the trace norm of the Hessian of

the loss function at the minimum (through a Taylor expansion).

This tells us that Hessian based measures like ϵ-sharpness and expected

sharpness are not very meaningful since we can transform the parameters

of the network to get as large or small a quantity as we want. This is also

the case for other generalization metrics which are related to the Hessian,

such as the one proposed by Wang et al., 2018. In this chapter, we propose

an alternative measure for quantifying the sharpness/flatness of minima

of empirical loss functions. This measure is based on defining a quotient

manifold of parameters which gives us a flatness measure that is invariant

to rescalings of the form described above. We use our flatness measure to

then test whether flatter minima indeed generalize better. In order to obtain

minima that have different generalization properties, we use minibatch SGD

training with different batch sizes.

The rest of this chapter is organized as follows. In section 3.2 we give

a brief overview of manifold geometry and quotient manifolds. In 3.3 we

formalize the rescaling that can change the flatness of minima without chang-

ing the function and show that the relation described by rescaling is indeed

an equivalence relation, which in turn induces a manifold structure in the

space of deep network parameters. In section 3.4 we describe an algorithm

analogous to the power method that can be used to estimate the spectral norm

of the Riemannian Hessian, which in turn can be employed as a measure of

flatness of the deep network minima. In section 3.5 we present several experi-

mental results of applying our measure to small-batch vs large-batch training
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of various deep networks. Our results confirm that minima that generalize

better are flatter.

3.1.1 Related Work

In this chapter, we propose a Hessian based measure for the flatness of minima,

which follows pioneering works in Hochreiter and Schmidhuber, 1997 and

Keskar et al., 2016 in attempting to measure the sharpness/flatness of deep

network minima. Flatter minima are believed to be robust to perturbation

of the neural network parameters. Novak et al., 2018 connect generalization

to the sensitivty of the network to perturbations to the inputs. In a recent

work, Wang et al., 2018 obtain a measure of generalization that is also related

to the Hessian at the minima, but still have not resolved the rescaling issue

that results in arbitrarily large or small Hessian spectra for the same neural

network function.

Manifold approaches to training neural networks have mostly focused

on batch normalization (Cho and Lee, 2017; Hoffer et al., 2018). A common

approach is to restrict the weights of the linear layers to the manifold of weight

matrices with unit norm, or an oblique manifold (Huang et al., 2017), or the

Stiefel manifold. To the best of our knowledge, we are the first to propose a

quotient manifold of neural network parameters and successfully employ it

to resolve the question of how to accurately measure the Hessian of the loss

function at minima.

75



3.2 Preliminaries

In this section we recap some basic ideas in differential geometry and quotient

manifolds at a high level. For a more rigorous and detailed exposition please

refer to Absil, Mahony, and Sepulchre, 2009

3.2.1 Manifolds, Tangent Spaces, Riemannian Metrics, Con-
nections

A differentiable manifoldM is a set that comes along with a collection of diffeo-

morphic coordinate maps or “charts” that maps subsets ofM to subsets in Rd

(where d is the manifold dimension). Each point x ∈ M has a tangent space

TxM which is a d-dimensional vector space which helps us approximate the

first order local structure ofM. A Riemannian metric g gives each tangent space

TxM an inner product. If ηx, ξx ∈ TxM are two tangent vectors, gx(ηx, ξx) is

their inner product. Once we define a metric, (M, g) is called a Riemannian

manifold.

We can define smooth functions f :M→ R and think of tangent vectors

at x ∈ M as differential operators on functions defined on the manifold (ηx f

is the directional derivative of f along the tangent vector ηx). The Riemannian

gradient of a function is the tangent vector whose inner product with every

vector in the tangent space yields the directional derivative along that vector.

Retractions are maps from the tangent space back to the manifold and can

be thought of as finding the point on the manifold which is at unit distance

from the current point along the specified tangent vector. For example, in a

Euclidean space, E , Rx(ξ) = x + ξ is a retraction.
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An affine connection∇ onM generalizes the notion of directional derivative

of a vector field to vector fields onM (∇ηξ is analagous to the directional

derivative of the vector field ξ along the direction η). Every Riemannian

manifold has a unique Riemannian connection that is compatible with the

metric and is symmetric (Theorem 5.3.1 of Absil, Mahony, and Sepulchre,

2009).

3.2.2 Quotient Manifolds

If a manifoldM comes equipped with an equivalence relation ∼, then [x] =

{y ∈ M, y ∼ x} is the equivalence class of x. The set of all equivalence

classesM/ ∼= {[x], x ∈ M} is called the quotient ofM by ∼. Under some

conditions,M/ ∼ admits a manifold structure and can be referred to as a

quotient manifold (M =M/ ∼). Quotient manifolds are usually referred

to in the abstract, and quantities on a quotient manifold (M/ ∼) are usually

represented using quantities from the structure manifold or total manifoldM.

Tangent vectors for quotient manifolds are represented using tangent

vectors in the total manifold. However, there are infinitely many elements of

the tangent space of the total manifold that can represent the tangent vector

of a quotient manifold. To handle this, we partition the total tangent space

into two subspaces. If M/ ∼ has a quotient manifold structure, then the

equivalence class [x] of x ∈ M is a submanifold ofM. We call its tangent

space the vertical space Vx = Tx([x]) and the complementary space as the

horizontal space Hx, Hx
⨁ Vx = TxM. In some cases, Hx and Vx are defined

as orthogonal complements of each other. There is a unique vector inHx that
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can represent the corresponding tangent vector in the quotient manifoldM,

which is called the horizontal lift of the tangent vector. Horizontal lifts are

always used to represent tangent vectors on quotient manifolds. Functions

defined on quotient manifolds are invariant within an equivalence class, and

the Riemannian gradient of a function defined on the quotient manifold is an

element of the horizontal space.

Let (M, g) be a Riemannian manifold, and ηx, ξx be horizontal lifts of

two tangent vectors in the tangent space of the corresponding point on the

quotient manifoldM. If gx(ηx, ξx) = gy(ηy, ξy) for y ∼ x, then we can define

a Riemannian metric forM through the metric g forM. Similarly Riemannian

connections onM can be defined through Riemannian connections onM.

3.3 Characterizing a Quotient Manifold of Deep
Network Parameters

Let us define a neural network as a function F : Rn0 → RnL which takes

an n0-dimensional input and outputs an nL-dimensional vector which could

be a vector of class labels or a continuous measurement, depending on the

task. We consider neural networks which consist of a series of nonlinear

transformations, represented as

FW(x) = WLϕL−1(WL−1ϕL−2(. . . ϕ1(W1x))).

Here Wi ∈ Rni×ni−1 is a linear transformation, and ϕi is a positively ho-

mogeneous nonlinear function, usually applied pointwise to a vector. Each

combination of a linear and nonlinear transformation is referred to as a “layer",
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and the linear transformation Wi is referred to as the parameter or weights

of the layer. Even if Wi has a matrix/convolutional structure, we will be

concerned only with the vectorized version, vec(Wi) ∈ Rdi , which we will use

interchangeably with Wi. First, we consider networks without bias vectors in

each layer. We will extend our manifold construction to networks with bias at

the end of this section. The proofs of Propositions 3.3.1 and 3.3.2 are given in

section 3.7.

Proposition 3.3.1 Let W = (W1, . . . , WL) ∈ R
d1∗ × . . .×R

dL∗ be the parameters of

a neural network with L layers, and λ = (λ1, . . . , λL) ∈ RL
+ be a set of multipliers.

Here R
di∗ = Rdi\{0}. We can transform the layer weights by λ in the following

manner: Tλ(W) = (λ1W1, . . . , λLWL). We introduce a relation from R
d1∗ × . . .×

R
dL∗ to itself, W ∼ Y if ∃λ such that Y = Tλ(W) and ∏L

i=1 λi = 1. Then, the

relation ∼ is an equivalence relation.

This equivalence relation is of interest to us because if W ∼ Y, FW(x) =

FY(x) for all inputs x ∈ Rn0 . Denote Mi = Rdi as the Euclidean vector

space and the product manifoldM =M1 × . . .×ML that covers the entire

parameter space. We can use the equivalence relation defined in Proposition

3.3.1 to obtain a quotient manifold induced by the equivalence relationM :=

M/ ∼.

Proposition 3.3.2 The setM :=M/ ∼ obtained by mapping all points within an

equivalence class to a single point in the set has a quotient manifold structure, making

M a differentiable quotient manifold.
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In order to impart a Riemannian structure to our quotient manifold, we

need to define a metric onM that is invariant within an equivalence class.

Proposition 3.3.3 Let ηW and ξW be two tangent vectors at a point W ∈ M. The

Riemannian metric g : TWM×TWM defined by:

gW(ηW , ξW) =
L

∑
i=1

⟨
ηWi

, ξWi

⟩
||vec(Wi)||22

is invariant within an equivalence class, and hence induces a metric forM, gπ(W) =

gW . Here ⟨·, ·⟩ is the Euclidean inner product and ηWi
, ξWi

are the components of

ηW , ξW corresponding toMi.

Proof 3.3.4 Let U belong to the equivalent class π−1(π(W)), and ηW , ξW be tan-

gent vectors in TWM. Since U and W are in the same equivalence class, ∃λ =

(λ1, . . . , λL) such that U = (U1, ..., UL) = (λ1W1, ..., λLWL) with ∏i λi = 1. This

means that ηU = (ηU1
, ..., ηUL

) = (λ1ηW1
, ..., λLηWL

) (Example 3.5.4 in Absil,

Mahony, and Sepulchre, 2009). The same holds for ξU

Thus,

gU(ηU, ξU) =
L

∑
i=1

⟨
λiηWi

, λiξWi

⟩
||λivec(Wi)||22

= gW(ηW , ξW),

Example 3.3.5 Consider a simple three layer linear neural network f : R → R,

f (x) = wu⊤vx (where u, v ∈ Rd) that is trained using a squared error loss

ℓ(w, u, v) = 1
2(y− wu⊤vx)2. We can explicity compute the trace of the Rieman-

nian Hessian and see that it is scale invariant. We know that the Riemannian

gradient of a function can be computed by hand using the formula gradℓ(w, u, v) =

G−1
(w,u,v)EGradℓ(w, u, v) where EGrad refers to the euclidean gradient (Using Eq

3.32 in Absil, Mahony, and Sepulchre, 2009).
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Using the metric defined in 3.3.3, we have that:

G(w,u,v) =

⎡⎢⎣
1

w2 0 0
0 1

||u||2 Id 0
0 0 1

||v||2 Id

⎤⎥⎦
This means that the trace of the Riemannian Hessian can be computed as:

Tr(Hess ℓ(w, u, v)) = w2 ∂2ℓ

∂w2 + ||u||2Tr
(

∂2ℓ

∂u2

)
+ ||v||2Tr

(
∂2ℓ

∂v2

)

= w2 × (u⊤vx)2 + ||u||2 × Tr
(

w2x2vv⊤
)
+ ||v||2 × Tr

(
w2x2uu⊤

)
If we compute the Trace of the Riemannian Hessian at a transformed point, that

still implements the same function, i.e., (λww, λuu, λvv) instead of (w, u, v) where

λw × λu × λv = 1, then we get:

Tr(Hess ℓ(λww, λuu, λvv)) = λ2
ww2 × (λuu⊤λvvx)2 + ||λuu||2 × Tr

(
λ2

ww2x2λvvλvv⊤
)

+ ||λvv||2 × Tr
(

λ2
ww2x2λuuλuu⊤

)

= (λwλuλv)
2 ×

(
w2(u⊤vx)2 + ||u||2Tr

(
w2x2vv⊤

)

+ ||v||2Tr
(

w2x2uu⊤
))

= Tr(Hess ℓ(w, u, v))
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3.3.1 Deep Networks with Biases

A deep neural network with biases is a function F : Rn0 → RnL which takes an

n0-dimensional input and outputs an nL-dimensional vector through a series

of nonlinear transformations can be represented as

F(W,b)(x) =WLϕL−1(WL−1ϕL−2(WL−2 . . . ϕ1(W1x + b1)

. . . + bL−2) + bL−1) + bL.

Here, bi ∈ Rni are the bias parameters for each layer. Once again, due to

the positive homogeneity of the nonlinear functions ϕi, we can rescale the

weights and biases of the network to obtain a different set of weights and

biases that implement the same function.

Suppose we have λi ∈ R+, i = 1, . . . , L, such that ∏L
i=1 λi = 1. Consider

the following transformation:

Tλ((W, b)) = (λLWL, . . . , λ1W1,

L

∏
i=1

λibL,
L−1

∏
i=1

λibL−1, . . . , λ1b1).

Now, if (Y, c) = Tλ((W, b)), then F(W,b)(x) = F(Y,c)(x) for all x ∈ Rn0 . Let

us denoteMi = Rdi ×Rni , as the Euclidean space for each layer. The product

spaceM =M1 × . . .×ML is the entire space of parameters for the neural

networks with biases. Using arguments similar to Propositions 3.3.1 and

3.3.2, we can see that this new transformation also introduces an equivalence

relation onM and thatM :=M/ ∼ admits a quotient manifold structure.

We provide the formal propositions and their proofs in section 3.7. We modify
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Proposition 3.3.3 slightly to get a new metric for the tangent space ofM.

Proposition 3.3.6 Let η(W,b) and ξ(W,b) be two tangent vectors at a point (W, b) ∈

M. The Riemannian metric g : T(W,b)M×T(W,b)M defined by:

g(W,b)(η(W,b), ξ(W,b)) =
L

∑
i=1

⎛⎝
⟨

ηWi
, ξWi

⟩
||vec(Wi)||22

+

⟨
ηbi

, ξbi

⟩
||bi||22

⎞⎠
is invariant within an equivalence class and hence induces a metric forM, gπ(W,b) =

g(W,b). Here, ⟨·, ·⟩ is the usual Euclidean inner product and (ηWi
, ηbi

) and (ξWi
, ξbi

)

are are the components of η(W,b), ξ(W,b) corresponding toMi.

3.4 Computing the Scale Invariant Flatness Mea-
sure

In the previous section, we introduced a quotient manifold structure that

captures the rescaling that is natural to the space of parameters of neural

networks with positively homogeneous activations. Now, similar to how the

spectral norm of the Euclidean Hessian is used as a measure of flatness, we

can use the Taylor expansion of real-valued functions on a manifold to give us

an analogous measure of flatness using the spectral norm of the Riemannian

Hessian. The definition of Riemannian Hessian as per Absil, Mahony, and

Sepulchre, 2009 is as follows.

Definition 2 For a real valued function f on a Riemannian manifoldM, the Rie-

mannian Hessian is the linear mapping of TxM onto itself, defined by

Hess f (W)[ξW ] = ∇ξW grad f
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for all ξW ∈ TWM, where ∇ is a Riemannian connection defined onM.

To see how the Riemmannian Hessian is related to the flatness of the

function f around a minimum W, we consider a retraction RW : TWM→M.

The flatness of a function around a minimum is defined (similar to Definition

1) using the value of the function in a "neighborhood" of the minimum. To

formalize what we mean by an ϵ-neighborhood of W, it is the set of points

that can be reached through a retraction using tangent vectors of norm at most

ϵ, B2(ϵ, W) = {RW(ξ), ||ξ||g ≤ ϵ}. Here || · ||g is the norm induced by the

Riemannian metric g. This gives us the following flatness measure:

maxW ′∈B2(ϵ,W) f (W
′
)− f (W)

1 + f (W)
.

Using the fact that TWM is a vector space, and that f̂W = f ◦ RW is a

function on a vector space that admits a Taylor expansion, we get the following

approximation for f (W
′
) when W

′ ∈ B2(ϵ, W), and W
′
= RW(ξW):

f (W
′
) ≈ f (W) + g(grad f (W), ξW) +

1
2

g(ξW , Hess f (W)[ξW ])

Using the approximation, recognizing that at a minimum, grad f (W) = 0,

and using a Cauchy-Schwarz argument, we can bound the flatness measure

by the spectral norm of the Riemannian Hessian. We define it similar to the

spectral norm of a linear map in Euclidean space.

Definition 3 The spectral norm of the Riemannian Hessian of a function f :M→
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R is defined as

||Hess f (W)||2,g = max
ξW∈TWM,||ξW ||g=1

g(ξW , Hess f (W)[ξW ])

With the definition of the spectral norm of the Riemannian Hessian, we

now would like to be able to compute it for any function defined on a manifold.

To achieve this, we present a Riemannian Power Method in Algorithm 1.

Algorithm 1 Riemannian Power Method

1: procedure RIEMANNIANPM( f , W)
2: Initialize ξ0

W randomly in TWM
3: while not converged do (We use relative change in the eigenvector

as a stopping criterion)
4: ξt+1/2

W ← Hess f (W)[ξt
W ]

5: ξt+1
W ← ξt+1/2

W
||ξt+1/2

W ||g
6: t← t + 1
7: end while
8: return ξt

W
9: end procedure

3.4.1 Implementation

Our procedure to compute the flatness measure is presented in Algorithm 1.

Similar to the power method for computing the spectral norm of linear maps

in Euclidean space each iteration involves finding the map-vector product,

which in our case is a Hessian-vector product, followed normalizing the

updated iterate of the top eigenvector of the Hessian.
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3.4.1.1 Mathematical Expression for Riemannian Hessian-vector product:

Using Proposition 5.5.2 from Absil, Mahony, and Sepulchre, 2009, we have:

g(ξ, Hess f [ξ]) = ξ(ξ f )− (∇ξξ) f

Since we are only interested in computing the product between the Hessian

and the tangent vector at W, ξW , let us set ξ such that it evaluates to ξW at W

and
(
∇ξξ

)
W = 0. One possible choice for ξ for our quotient manifold is such

that its total manifold representation ξ is constant. The Riemannian connection

∇ of a quotient manifoldM = M/ ∼ is defined through the Riemannian

connection ∇ of the total manifold M (Prop 5.3.3 in Absil, Mahony, and

Sepulchre, 2009). We define ∇ by extending the connection in Theorem 3.4 of

Absil, Mahony, and Sepulchre, 2004 to the product manifold.

∇ξξ = PH
((
∇ξξ

)
W

)
= PH

(
d
dt

ξW+tξW

⏐⏐⏐⏐⏐
t=0

)
= 0

This means that g(ξ, Hess f [ξ]) = ξ(ξ f ). Now from the definition of the

Riemannian gradient of a function (equation 3.31 of Absil, Mahony, and Sepul-

chre, 2009), we have that ξ f = g(grad f , ξ) and ξ(ξ f ) = g(ξ, Hess f [ξ]) =

g(ξ, grad g(grad f , ξ)) Which means the Riemannian Hessian vector product

can be computed as:

Hess f (W)[ξW ] = grad g(grad f (W), ξW)
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3.4.1.2 Practical Implementation of Riemannian Hessian-vector product:

As we noted in section 3.2, the abstract quotient manifold gradients and

Hessian-vector products are represented using their counterparts in the total

manifold, which in our case is the space of deep network parameters. We

implement the Riemannian Hessian-vector product using the steps below.

1. Find the Euclidean gradient of f (EGrad f (W)) using backpropagation

2. Compute the representation of the Riemannian gradient of f as grad f (W) =

G−1
W EGrad f (W) (Eq 3.32 in Absil, Mahony, and Sepulchre, 2009). Here

G−1
W is the inverse of the matrix representation of the metric (gW) at W,

given by G−1
W = diag(. . . , ||vec(Wi)||2 Idi×di , . . .)

3. Compute the inner product (as defined by our Riemannian metric) be-

tween grad f (W) and ξW (representation of vector whose Hessian-vector

product is desired)

4. Find the Riemannian gradient of the inner product by first finding its

Euclidean gradient using backpropagation and subsequently premulti-

plying by G−1
W

3.4.2 Simulations

To validate our Riemannian Power Method Algorithm, we consider two

deep network architectures described in Table 3.1. For each architecture, we

generate a synthetic dataset containing N = 500 samples in R784 which belong

to one of 10 different classes with randomly generated class labels. For each

network, we consider softmax cross-entropy as the loss function.
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Network Architecture

F1
[FC(784, 300), FC(300, 100),
FC(100, 10)]

C1

[conv(5, 5, 10), conv(5, 5, 20),
FC(320, 120), FC(120, 84),
FC(84, 10)]

Table 3.1: Network Architectures for Simulations

We compute the spectral norms of the Hessians of their losses at different

points within the equivalence class by considering (Y, c) = Tλ((W, b)) for

different settings of λ. Let σ(W,b) be the spectral norm computed at (W, b),

and σ(Y,c) be the spectral norm computed at (Y, c). We define the relative

difference between the two measurements as follows:

Relative Difference =
|σ(W,b) − σ(Y,c)|

σ(W,b)

Results for F1 are reported in Table 3.2 whereas results for C1 are reported in

Table 3.3.

λ Relative Difference
(5, 4, 1

20) 1.7× 10−7

(100, 30, 1
3000) 7.17× 10−7

Table 3.2: Relative Difference in Spectral Norms for F1 under different transforma-
tions

λ Relative Difference
(5, 4, 3, 2, 1

120) 1.28× 10−7

(50, 24, 30, 1
6 , 1

6000) 5.1× 10−6

Table 3.3: Relative Difference in Spectral Norms for C1 under different transfor-
mations averaged over 20 runs (negligible variance)
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In Figure 3.1, we can observe how our power method based algorithm

converges for an F1 network. From the tables, we notice that the spectral

norm that we compute using the eigenvectors obtained using the Riemannian

Power Method is invariant to transformations within the equivalence class.

That is, the values for Relative Difference are small.

Figure 3.1: Convergence of Riemannian Power Method for a synthetic dataset for an
F1 network averaged over 20 runs (negligible variance)

3.5 Experiments

Now that we have proposed a measure of flatness for deep network minima,

we turn to the empirical question at hand - does flatness correlate with the

generalization ability of the deep network? We have so far established a

quantitative measure of flatness (spectral norm of the Riemannian Hessian)

that will allow us to answer this question. Now in order to test this proposition,

we need a way to find global minima of the deep network loss which may

generalize worse or generalize better.
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In order to find these solutions we turn to large-batch training vs small-

batch training of neural networks. In an empirical study Keskar et al., 2016

observe that small-batch gradient methods with 32-512 samples per batch tend

to converge to flatter minima than large-batch methods which have batch sizes

of the order of 1000s of samples. However, since Dinh et al., 2017 have shown

that measures of flatness can be gamed by rescaling the network appropriately,

we cannot trust the current quantitative measures to compare the flatness of

these solutions. Instead, we use the spectral norm of the Riemannian Hessian

as a measure of flatness and compare the flatness of the solutions obtained

using large-batch and small-batch training. Our goal in this set of experiments

is not to achieve state of the art performance on these datasets. Instead, we

are interested in characterizing the flatness of the solutions obtained and

studying how that correlates with test set accuracy. The datasets and network

architectures used in our experiments are listed in Table 3.4.

Dataset Network 1 Network 2

MNIST
MNIST-FC
512 fully-connected ×5

LeNet
2 conv-pool layers,
120, 84 fully-connected

Fashion MNIST MNIST-FC LeNet
KMNIST MNIST-FC LeNet

CIFAR10 AlexNet
shallow convnet

VGG16
deep convnet

Table 3.4: Datasets and Deep Network Architectures used in our experiments

Our experiments were run on a machine with 4 Tesla P40 GPUs with 24GB

of GPU memory each. The machine itself has 256 GB of RAM and an Intel

Xeon processor with 24 cores. Even so, we ran into memory issues when

trying to estimate the flatness for AlexNet and VGG16 on CIFAR10. We had to
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use a subset of the training set to approximate the empirical loss function. We

used 5000 samples for AlexNet and 2000 samples for VGG16. The subset was

the same for all batch sizes. Table 3.5 has the details for the other datasets.

Dataset Train Size Test Size Samples used for
Flatness Measurement

MNIST 50000 10000 50000
KMNIST 60000 10000 60000

Fashion MNIST 60000 10000 60000

CIFAR10 50000 10000 AlexNet - 5000
VGG16 - 2000

Table 3.5: Train Test splits for the datasets used. Last column reports number of
training samples used to estimate our Flatness Measure

The hyperparameters and training algorithms used are reported below

in Table 3.6 . These were chosen so as to ensure that all networks could be

trained to global optimality on the empirical loss on the training set.

3.5.1 Visualizing the Loss Landscape

We generate parametric line plots along different random directions for

AlexNet and VGG16. These plots are shown in Figure 3.2. These plots are

layer normalized Li et al., 2018, which means that the random directions cho-

sen are scaled according to the norms of the layers of the trained networks.

More precisely, if the minimum obtained from training AlexNet/VGG is

W = (W1, . . . , WL), we generate random direction V = (V1, . . . , VL), and plot

the loss along the curve Ŵ(t) for t ∈ [−1, 1]. Here Ŵ(t) is given by:

Ŵ(t) =
(

. . . , Wi + t× ||vec(Wi)||2
||vec(Vi)||2

Vi, . . .
)

.

From the plots we see that the large-batch plots are above the small-batch

91



Dataset + Network Optimizer Epochs

MNIST-FC Adam, lr=1e-3
small batch - 200
large batch - 500

MNIST-LeNet Adam, lr=1e-3
small batch - 200
large batch - 500

KMNIST-FC Adam, lr=1e-3
small batch - 200
large batch - 500

KMNIST-LeNet Adam, lr=1e-3
small batch - 200
large batch - 500

Fashion MNIST-FC
Adam, lr=1e-3
0.5 schedule every 200 epochs

small batch - 500
large batch - 500

Fashion MNIST-LeNet
Adam, lr=5e-3
0.5 schedule every 50 epochs

small batch - 200
large batch - 500

CIFAR10 - AlexNet
SGD
small batch lr=1e-3, momentum=0.9
large batch lr=1e-4, momentum=0.99

small batch - 200
large batch - 500

CIFAR10 - VGG16
SGD
small batch lr=1e-3, momentum=0.9
large batch lr=1e-4, momentum=0.99

small batch - 400
large batch - 600

Table 3.6: Training algorithms and hyperparameters used in our experiments. Last
column reports the number of epochs used to train with small batch sizes and large
batch sizes respectively.

plots, indicating that the large-batch minima are sharper than the small-batch

counterparts.

3.5.2 Results

For each network architecture and dataset, we trained the network to 100%

training accuracy using SGD or Adam, until the training cross-entropy loss

values were smaller than 10−6. This means we attain global minima of the cross

entropy loss in each case. We would like to note that in our experiments we

did not attempt to tune the learning rate as we changed the batch size since

our goal was to obtain different global minima with different generalization

properties. Adjusting hyperparameters in order to enable large batch training
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(a) AlexNet (b) VGG16

Figure 3.2: Parametric line plots for convolutional networks trained on CIFAR-10

of deep networks is an active area of research, but it is not the focus of our

experiments.

Now, in order to quantify the flatness and see how it correlates with gener-

alization, we report the test accuracy and spectral norm of the Riemannian

Hessian at minima for each of the networks trained on MNIST and CIFAR10

in Table 3.7. We observe that the estimated spectral norms for the large-batch

minima are orders of magnitude larger than those of the small-batch minima

for every network and dataset. This also correlates with test accuracy, with

the flatter minima having better generalization abilities.

The complete set of results for the experiments we ran are presented in

Table 3.7, and all scatter plots of all experimental runs are shown in Figures

3.3, 3.4, 3.5, 3.6. We observe that the estimated spectral norms for the large-

batch minima are orders of magnitude larger than those of the small-batch

minima for every network and dataset. This also correlates with test accuracy,
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with the flatter minima having better generalization abilities. In the scatter

plots, we can see that the top left and bottom right sections of the plots tend

to be populated, meaning minima that are flatter have better generalization

performance as measured using the test set than sharper minima.

Batch Size Test Accuracy Spectral Norm
MNIST / Fully-Connected (25 runs)

200 98.5± 0.1% 0.00086± 0.0012
5000 97.6± 0.1% 32.99± 17.13

MNIST / LeNet (25 runs)
200 99.2± 0.1% 0.38± 0.55

5000 98.9± 0.1% 7.41± 5.64
KMNIST / Fully-Connected (25 runs)

200 92.9± 0.1% 0.0325± 0.0644
5000 89.7± 0.3% 30.45± 7.15

KMNIST / LeNet (25 runs)
200 95.3± 0.1% 0.356± 0.531

5000 93.5± 0.05% 2870.35± 634.21
Fashion MNIST / Fully-Connected (25 runs)
200 90.1± 0.3% 7.057± 8.83

5000 89.3± 0.3% 7466.98± 1494.75
Fashion MNIST / LeNet (25 runs)

200 90.8± 0.3% 62.17± 67.49
5000 89.5± 0.4% 7685.64± 4778.15

CIFAR-10 / AlexNet (15 runs)
200 72.76± 0.92% 12.664± 3.589

2000 67.36± 0.23% 406.22± 236.49
CIFAR-10 / VGG16 (15 runs)

200 75.42± 0.93% 19.58± 14.97
2000 65.98± 0.73% 300055.02± 58257.42

Table 3.7: Test Accuracy and Spectral Norm of Riemannian Hessian at Minima for
different trained networks. All quantities reported as Mean ± Standard Deviation
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(a) MNIST-FC (25 runs)
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(b) MNIST - LeNet (25 runs)

Figure 3.3: Visualizing the relationship between flatness of minima (as measured
by our proposed method) and generalization for MNIST. Smaller flatness measure
means the minima is flatter and higher test accuracy means better generalization.
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(a) KMNIST-FC (25 runs)
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Figure 3.4: Visualizing the relationship between flatness of minima (as measured
by our proposed method) and generalization for KMNIST. Smaller flatness measure
means the minima is flatter and higher test accuracy means better generalization.
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Figure 3.5: Visualizing the relationship between flatness of minima (as measured by
our proposed method) and generalization for Fashion MNIST. Smaller flatness mea-
sure means the minima is flatter and higher test accuracy means better generalization.
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Figure 3.6: Visualizing the relationship between flatness of minima (as measured by
our proposed method) and generalization for CIFAR10. Smaller flatness measure
means the minima is flatter and higher test accuracy means better generalization.
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3.6 Conclusion and Future Work

In this chapter, we observe that natural rescalings of neural networks with

positively homogeneous activations induce an equivalence relation in the

parameter space which in turn leads to a quotient manifold structure in the

parameter space. We provide theoretical justification for these claims and then

adopt the manifold structure to propose a Riemannian Hessian based flatness

measure for deep network minima. We provide an algorithm to compute this

measure and run experiments to confirm that flatter minima tend to generalize

better. Our framework provides a principled path to estimate properties of

the loss landscape such that they are invariant to rescaling of deep networks.

We believe this quotient manifold view of the parameter space of neural

networks can have implications for training deep networks as well. We

would like to study how descent techniques on this manifold will compare

to algorithms like weight normalization Salimans and Kingma, 2016 and

Path-SGD Neyshabur, Salakhutdinov, and Srebro, 2015.

3.7 Missing Proofs from Section 3.3

3.7.1 Deep Networks without Biases

Proposition 3.7.1 Let W = (W1, . . . , WL) ∈ R
d1∗ × . . .×R

dL∗ be the parameters of

a neural network with L layers, and λ = (λ1, . . . , λL) ∈ RL
+ be a set of multipliers.

Here R
di∗ = Rdi\{0}. We can transform the layer weights by λ in the following

manner: Tλ(W) = (λ1W1, . . . , λLWL). We introduce a relation from R
n1×n0
∗ ×

. . .×R
nL×nL−1
∗ to itself, W ∼ Y if ∃λ such that Y = Tλ(W) and ∏L

i=1 λi = 1. The
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relation ∼, is an equivalence relation.

Proof 3.7.2 1. It is self evident that W ∼W, with λ = (1, . . . , 1)

2. If W ∼ Y, then ∃λ such that Y = Tλ(W). Set λ̃ = (λ−1
1 , . . . , λ−1

L ), then

λ̃i > 0 and ∏L
i=1 λ̃i =

1
∏L

i=1 λi
= 1. Also, W = Tλ̃(Y), which means Y ∼W.

3. Let W ∼ Y, and Y ∼ Z. This means, ∃λ1 such that Y = Tλ1(W), and

∃λ2 such that Z = Tλ2(Y) Let λ̃ = (λ1
1λ2

1, . . . , λ1
Lλ2

L). We see that λ̃i > 0,

and ∏L
i=1 λ̃i = ∏L

i=1 λ1
i ×∏L

j=1 λ2
j = 1. Since Z = Tλ̃(W), we have that

W ∼ Z.

Hence ∼ is an equivalence relation.

Proposition 3.7.3 The setM :=M/ ∼ obtained by mapping all points within an

equivalence class to a single point in the set has a quotient manifold structure, making

M a differentiable quotient manifold.

Proof 3.7.4 In order to prove thatM is a manifold, we need to show that:

1. graph(∼) = {(W, Y) : W, Y ∈ M, W ∼ Y} is an embedded submanifold of

M×M.

2. The projection π1 : graph(∼)→M, π1(W, Y) = W is a submersion.

3. graph(∼) is a closed subset ofM×M.

First, we look at a point (W0, Y0) ∈ graph(∼). This means ∃λ ∈ RL
+, ∏L

i=1 λi =

1, such that Y0 = Tλ(W0). For every V ∈ Rd1 × . . . × RdL we can define

98



γ(t) = (W0 + tV, Tλ(W0 + tV)) which is a smooth curve and an injection from

R to graph(∼), and π1(γ(t)) = W0 + tV. Since dπ1(γ(t)
dt = V, we see that

dim(range(Dπ1)) = dim(M), where Dπ1 is the Jacobian of π1. This means that

π1 is a submersion, proving point 2.

Next we will prove point 3. For this, we define a function F : M×M →

Rd1 × . . .×RdL ×R

F(W, Y) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Y1 − ⟨W1,Y1⟩
||vec(W1)||22

W1

...
YL − ⟨WL,YL⟩

||vec(WL)||22
WL

log
(

∏L
i=1 ||vec(Yi)||22

∏L
j=1 ||vec(Wj)||22

)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Under F, the preimage of 0d1×...×dL×1, is graph(∼). Since the preimage of a closed

set is a closed set, we have that graph(∼) is a closed subset ofM×M.

Finally we will prove 1, by defining a submersion fromM to Rd1−1×...×dL−1×1.

Suppose there is a smooth function F1 fromM to St(d1 − 1, d1)× . . .× St(dL −

1, dL) (where St(p, n) is the p-dimensional Stiefel manifold), such that:

F1(W) =

⎡⎢⎣W⊥1
...

W⊥L

⎤⎥⎦
Here W⊥i is an orthogonal basis for the di− 1 dimensional subspace that is orthogonal

to vec(Wi), for all W ∈ M. Such an F1 always exists, since given Wi we can find

W⊥i by performing a Gram-Schmidt orthogonalization on [vec(Wi)|E] and taking

the last di − 1 columns. Here E is chosen such that [vec(Wi)|E] is full rank.
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Now given F1, we can define F2 :M×M→ Rd1−1 × . . .×RdL−1 ×R

F2(W, Y) =

⎡⎢⎢⎢⎢⎣
(W⊥1 )⊤vec(Y1)

...
(W⊥L )⊤vec(YL)

∑L
i=1 log ⟨vec(Wi),vec(Yi)⟩

||vec(Wi)||22

⎤⎥⎥⎥⎥⎦
For any [X1, . . . , XL, x] ∈ Rd1−1 × . . .×RdL−1 ×R, we can define Ỹ such that

vec(Ỹ) =
[
W⊥1 X1 +

x
L

vec(Y1), . . . , W⊥L XL +
x
L

vec(YL)
]

which means, for points (W, Y) ∈ graph(∼):

DF2(W, Y)[0, Ỹ] =

[
(W⊥1 )⊤W⊥1 X1 +

x
L
(W⊥1 )⊤vec(Y1),

. . . , (W⊥L )⊤W⊥L XL +
x
L
(W⊥L )⊤vec(YL),

L

∑
i=1

||vec(Wi)||22
⟨vec(Wi), vec(Yi)⟩

×
vec(Wi)

⊤ (W⊥i Xi +
x
L vec(Yi)

)
||vec(Wi)||22

]

= [X1, . . . , XL, x]

This means that F2 is a submersion at each point of graph(∼), and the set F−1
2 (0) =

graph(∼) is an embedded submanifold ofM×M. This concludes our proof that

M =M/ ∼ is a quotient manifold.
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3.7.1.1 Characterizing the Vertical Tangent Space of the Quotient Mani-
fold

One invariant property of the equivalence class is the product of the norms of

all the layers. That is, if U ∈ ≈−1(≈(W)), then ∏i ∥vec(Ui)∥2
2 = ∏i ∥vec(Wi)∥2

2.

For calculation convenience, we can replace the product by the sum by ap-

plying the log operator which gives ∑i log ∥vec(Ui)∥2
2 = ∑i log ∥vec(Wi)∥2

2.

Lemma 3.7.5 The tangent space of ≈−1(≈(W)) at U is (β1U1, ..., βLUL) with

∑i βi = 0.

Proof 3.7.6 Consider the curves Ui(t) ∈ Mi with Ui(0) = Ui, we have

∑
i

log ∥vec(Ui(t))∥2
2 = ∑

i
log ∥vec(Wi)∥2

2 .

Taking the derivative on both sides with respect to t gives

∑
i

⟨
U̇i(t), Ui(t)

⟩
∥vec(Ui(t))∥2

2

= 0.

It is clear that U̇i(t) = βiUi(t) with ∑i βi = 0 satisfies the above equation.

Therefore the tangent space TU of ≈−1(≈(W)) contains all tangent vectors U̇ =

(β1U1, ..., βLUL) with ∑i βi = 0.

The tangent space to the embedded submanifold ≈−1(≈(W)) of M is

usually referred to as the Vertical Tangent space (VW) of the quotient manifold

M. The orthogonal complement of the vertical space from the tangent space

TWM is referred to as the horizontal space HW . We note that all smooth
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curves γ(t) : R → M such that γ(0) = W and γ̇(0) ∈ VW , lie within the

equivalence class ≈−1(≈(W)).

3.7.2 Deep Networks with Biases

We recall that Deep Networks with biases are defined as follows:

F(W,b)(x) =WLϕL−1(WL−1ϕL−2(WL−2 . . . ϕ1(W1x + b1)

. . . + bL−2) + bL−1) + bL

The equivalence relation for the parameter space of deep networks with

biases is defined through the following transformation. Suppose we have

λi ∈ R+, i = 1, . . . , L, such that ∏L
i=1 λi = 1. Consider the following transfor-

mation:

Tλ((W, b)) = (λLWL, . . . , λ1W1,

L

∏
i=1

λibL,
L−1

∏
i=1

λibL−1, . . . , λ1b1)

Now, if (Y, c) = Tλ((W, b)), then F(W,b)(x) = F(Y,c)(x), ∀x ∈ Rn0 . Thus

we define the equivalence relation ∼, where (Y, c) ∼ (W, b) if ∃λ such that

(Y, c) = Tλ((W, b)).

Let us denoteMi = Rdi ×Rni , as the Euclidean space for each layer. The

product space M = M1 × . . . ×ML is the entire space of parameters for

neural networks with biases.

Proposition 3.7.7 The setM :=M/ ∼ obtained by mapping all points within an
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equivalence class to a single point in the set has a quotient manifold structure, making

M a differentiable quotient manifold.

Proof 3.7.8 In order to prove thatM is a manifold, we need to show that:

1. graph(∼) = {((W, b), (Y, c)) : (W, b), (Y, c) ∈ M, (W, b) ∼ (Y, c)} is an

embedded submanifold ofM×M.

2. The projection π1 : graph(∼) → M, π1((W, b), (Y, c)) = (W, b) is a

submersion.

3. graph(∼) is a closed subset ofM×M.

First, we look at a point ((W0, b0), (Y0, c0)) ∈ graph(∼). This means ∃λ ∈ RL
+,

∏L
i=1 λi = 1, such that (Y0, c0) = Tλ((W0, b0)). For every (V, v) ∈ Rd1 × . . .×

RdL ×Rn1 × . . .×RnL we can define γ(t) = ((W0, b0) + t(V, v), Tλ((W0, b0) +

t(V, v))) which is a smooth curve and an injection from R to graph(∼), and

π1(γ(t)) = (W0, b0)+ t(V, v). Since dπ1(γ(t)
dt = (V, v), we see that dim(range(Dπ1)) =

dim(M), where Dπ1 is the Jacobian of π1. This means that π1 is a submersion,

proving point 2.

Next we will prove point 3. For this, we define a function F : M×M →

Rd1 × . . .×RdL ×Rn1 × . . .×RnL ×RL+1
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F((W, b), (Y, c)) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y1 − ⟨W1,Y1⟩
||vec(W1)||22

W1

...
YL − ⟨WL,YL⟩

||vec(WL)||22
WL

c1 − ⟨b1,c1⟩
||b1||22

b1

...
cL − ⟨bL,cL⟩

||bL||22
bL

log
(

∏L
i=1 ||vec(Yi)||22

∏L
j=1 ||vec(Wj)||22

)
log
(
||c1||22
||b1||22

)
− log

(
||vec(Y1)||22
||vec(W1)||22

)
log
(
||c2||22
||b2||22

)
− log

(
||c1||22
||b1||22

× ||vec(Y2)||22
||vec(W2)||22

)
...

log
(
||cL||22
||bL||22

)
− log

(
||cL−1||22
||bL−1||22

× ||vec(YL)||22
||vec(WL)||22

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Under F, the preimage of 0d1×...×dL××n1×...×nL×L+1, is graph(∼). Since the

preimage of a closed set is a closed set, we have that graph(∼) is a closed subset of

M×M.

Finally we will prove 1, by defining a submersion fromM to Rd1−1×...×dL−1×n1−1×...×nL−1×L+1.

Suppose there is a smooth function F1 fromM to St(d1 − 1, d1)× . . .× St(dL −

1, dL)× St(n1 − 1, n1)× . . .× St(nL − 1, nL) (where St(p, n) is the p-dimensional

Stiefel manifold), such that:

F1((W, b)) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

W⊥1
...

W⊥L
b⊥1
...

b⊥L

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Here W⊥i is an orthogonal basis for the di − 1 dimensional subspace that is orthog-

onal to vec(Wi), and b⊥i is an orthogonal basis for the ni − 1 dimensional subspace

orthogonal to bi, for all (W, b) ∈ M. Such an F1 always exists, since given Wi

(alternatively bi) we can find W⊥i (alternatively b⊥i ) by performing a Gram-Schmidt

orthogonalization on [vec(Wi)|E] (or [bi|E]) and taking the last di − 1 (or ni − 1)

columns. Here E is chosen such that [vec(Wi)|E] (or [bi|E]) is full rank.

Now given F1, we can define F2 :M×M→ Rd1−1 × . . .×RdL−1 ×R

F2((W, b), (Y, c)) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(W⊥1 )⊤vec(Y1)
...

(W⊥L )⊤vec(YL)
(b⊥1 )

⊤c1
...

(b⊥L )
⊤cL

∑L
i=1 log ⟨vec(Wi),vec(Yi)⟩

||vec(Wi)||22
log
(
⟨b1,c1⟩
||b1||22

)
− log

(
⟨vec(W1),vec(Y1)⟩
||vec(W1)||22

)
log
(
⟨b2,c2⟩
||b2||22

)
− log

(
⟨b1,c1⟩
||b1||22

× ⟨vec(W1),vec(Y1)⟩
||vec(W1)||22

)
...

log
(
⟨bL,cL⟩
||bL||22

)
− log

(
⟨bL−1,cL−1⟩
||bL−1||22

× ⟨vec(WL−1),vec(YL−1)⟩
||vec(WL−1)||22

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
For any [X1, . . . , XL, z1, . . . , zL, x, u1, . . . uL] ∈ Rd1−1 × . . .×RdL−1 ×Rn1−1 ×

. . .×RnL−1 ×RL+1, we can define (Ỹ, c̃) such that

vec(Ỹ) =
[
W⊥1 X1 +

x
L

vec(Y1), . . . , W⊥L XL +
x
L

vec(YL)
]
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c̃ =

[
b⊥1 z1 +

(
u1 +

x
L

)
c1,

b⊥2 z2 +

(
u2 + u1 +

2x
L

)
c2,

. . . ,

b⊥L zL +

(
uL + uL−1 +

Lx
L

)
cL

]

which means, for points (W, Y) ∈ graph(∼):

DF2((W, b), (Y, c))[0, (Ỹ, c̃)] =[X1, . . . , XL, z1, . . . , zL,

x, u1, . . . , uL]

This means that F2 is a submersion at each point of graph(∼), and the set F−1
2 (0) =

graph(∼) is an embedded submanifold ofM×M. This concludes our proof that

M =M/ ∼ is a quotient manifold.

3.7.2.1 Characterizing the Vertical Tangent Space of the Quotient Mani-
fold

Let us now introduce a new invariant property of the equivalence class for

network parameters with biases. First, for a point (W, b) in the space of

parameters, we know that W = (W1, . . . , WL) and b = (b1, . . . , bL). For each

layer, let us define W̃i ∈ Rdi+ni as follows

W̃i =

⎧⎨⎩ [vec(Wi);
bi

∥bi−1∥
], if i > 1,

[vec(Wi); bi], if i = 1.
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We then have that for each (U, c) ∈ ≈−1(≈((W, b))) if ∏i
Ũi

2
2 = ∏i

W̃i
2

2,

which is the invariant property of the equivalence class. We can also get a

description of the tangent space of π−1(π((W, b))) from the following lemma.

Lemma 3.7.9 The tangent space of≈−1(≈((W, b))) at (U, c) is (β1U1, ..., βLUL, γ1c1, . . . , γLcL)

with ∑i βi = 0, βi = γi − γi−1.

Proof 3.7.10 Consider the curves (Ui(t), ci(t)) ∈ Mi with Ui(0) = Ui, ci(0) = ci,

we have

∑
i

log
Ũi(t)

2
2 = ∑

i
log
W̃i

2
2 .

=⇒ ∑
i

log

(
∥Ui(t)∥2

F +
∥ci(t)∥2

∥ci−1(t)∥2

)

= ∑
i

log

(
∥Wi∥2

F +
∥bi∥2

∥bi−1∥2

)
.

Taking the derivative on both sides with respect to t gives

∑
i

1

∥Ui(t)∥2
F +

∥ci(t)∥2

∥ci−1(t)∥2

×
( ⟨

U̇i(t), Ui(t)
⟩

+
⟨ċi(t), ci(t)⟩
∥ci−1(t)∥2 −

⟨ċi−1(t), ci−1(t)⟩ × ∥ci(t)∥2

∥ci−1(t)∥4

)
= 0.

It is clear that U̇i(t), ċi(t) = βiUi(t), γici(t) with ∑i βi = 0 and βi = γi− γi−1

satisfies the above equation. Therefore the tangent space T≈−1(≈((W,b)))(U, c) at U, c

contains all tangent vectors (β1U1, ..., βLUL, γ1c1, . . . , γLcL) with ∑i βi = 0 and

βi = γi − γi−1.
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Chapter 4

Vision with Compressive
Measurements

In this chapter we study the ability of deep network based computer vision

systems (object classification and detection systems) to be able to work with

compressive measurements of natural scenes and videos. The work in this

chapter was earlier presented in the papers - Kwan et al., 2019c; Kwan et al.,

2019b; Kwan et al., 2019a; Nair et al., 2018

4.1 Introduction

In the era of big data, Convolutional Neural Networks (CNNs) today have be-

come one of the most powerful methods for visual tasks. They have achieved

success in problems such as image classification (Krizhevsky, Sutskever, and

Hinton, 2012; Simonyan and Zisserman, 2014; He et al., 2016) and object de-

tection (Ren et al., 2015). Key to the success is the ability to learn rich feature

hierarchies (Girshick et al., 2014) , with low-level features like edges and colors

learned at lower layers, which are combined together in the higher layers
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to detect complex shapes and patterns in a fully-differentiable end-to-end

framework.

Traditionally, CNNs are trained on fully observed images. However, in

challenging real imaging scenarios sensing systems are often energy demand-

ing or need to operate with limited bandwidth and exposure-time budgets

like in (Zhang et al., 2016). Or exposed to high level noise in communication

channels, the collected data suffers from severe missing information. A de-

cision framework based on inference from partially observed data is needed

for more energy-efficient hardware system design and robust performance for

noisy environment.

Compressed sensing (CS) theory (Candes and Tao, 2006; Donoho, 2006)

guarantees the exact recovery of signals at sub-Nyquist sampling rates with

sparsity assumptions. It provides theoretical foundations for designing CS

hardware systems and reconstructing signals from compressed measurements

(Duarte et al., 2008). Consequently, efficient systems have been developed for

generating compressed measurements for demanding applications include

underwater sensing (Fazel, Fazel, and Stojanovic, 2011), drone-based imag-

ing (Shetti and Vijayakumar, 2015; Zhang et al., 2016), satellite imaging (Michel

et al., 2012), high-speed imaging (Sonoda et al., 2016; Reddy, Veeraraghavan,

and Chellappa, 2011) and magnetic resonance imaging (Lustig, Donoho, and

Pauly, 2007).

However, CS entails the need for slow iterative algorithms to perform

recovery and/or inference on the sampled data. In addition, CS methods do

not scale to the sizes of training data sets that the modern data deluge affords.
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To compensate for these disadvantages, CNN-based approaches have been

considered to deal with compressed measurements.

Reconstruction algorithms such as ReconNet (Kulkarni et al., 2016), Deep-

Inverse (Mousavi and Baraniuk, 2017) and classification algorithm (Lohit,

Kulkarni, and Turaga, 2016) have shown promising performances. However,

in those cases the sampling/sensing operators are assumed to be known,

fixed a-priori and tied to the particular neural network being trained. In addi-

tion, they hinge on the availability of very specialized hardware like a Digital

micro-mirror (DMD) array in order to allow efficient sensing implementations.

In this chapter, we attempt to overcome these difficulties by directly per-

forming classification on partially observed measurements. The test images

here are various fraction of the image scene’s pixels chosen randomly, which

model measurements from CS hardware and partial observations due to noise.

We demonstrate the sensitivity of pre-trained convolutional neural networks,

which fail miserably with only a small portion of missing pixels and pro-

pose a framework to overcome it through making the network learn from

fully-observed and compressed images in the training procedure. We also

empirically verify that our approach generalizes to unseen observation ratios

without retraining the network.

Our framework is low-cost, efficient, and hardware friendly. It has several

advantages: (i) Reconstruction-free in discriminative applications; (ii) Robust

to changes in the partial observation mask; (iii) Retraining-free and generaliz-

able to test data with unseen partial observation ratios; (iv) Transfers across

visual tasks. (v) Efficiently deals with missing and incomplete data as long as
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Figure 4.1: Overview of our framework in image classification. During training, we
input full images and images with missing pixel ratios of .5, .25, .125 to a VGG16 (Si-
monyan and Zisserman, 2014) network. The test data to the network with partial
observation ratio randomly generated between (0, 1]

the label information is correct.

4.2 Related work

4.2.1 Reconstructing CS measurements via CNNs

The CS measurements y ∈ Rm of a signal x ∈ Rn, are generated using y = Φx

with a smaller dimension than the signal dimension, where the sensing matrix

Φ ∈ Rm×n is a random matrix (Candes and Tao, 2006). Recent work such as

ReconNet (Kulkarni et al., 2016) and DeepInverse (Mousavi and Baraniuk,

2017) propose using CNNs to perform reconstruction from CS measurements.

In ReconNet (Kulkarni et al., 2016), CNNs are then employed to reconstruct

the CS measurements of each image block. All reconstructed blocks are then

arranged and fed into a denoiser. DeepInverse (Mousavi and Baraniuk, 2017)

on the other hand proposes using CNNs to learn the inverse transformation
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of to invert CS measurements y to signals x.

There are several drawbacks to either employing a reconstruction algo-

rithm before CNNs for partially-observed data or incorporating the recon-

struction network into the entire framework. First, reconstruction is power-

consuming. Second, the reconstruction network does not generalize well for

test images with unseen and various partial observation ratios.

4.2.2 Classification on CS measurements using CNNs

To the best of our knowledge, the only work that proposes a classification

algorithm on CS measurements using CNNs is (Lohit, Kulkarni, and Turaga,

2016). Instead of reconstructing images from compressive measurements

y before feeding to CNNs, they perform a projection on the measurements

ΦTy, and which is then resized into the original image size. Their framework

performs well on MNIST and ImageNet with low measurement rates.

Their work demonstrates the promise of classification directly on CS Mea-

surements using CNNs. However, the huge disadvantage of this framework is

that the sensing matrix is fixed. In several image sensing models, the sensing

operation of training data varies each time. Also, it does not generalize to new

unseen sampled data without re-training the network.
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4.3 Method: Extracting information from partially
observed images

We propose a framework to extract information from visual data with an un-

known fraction of pixels missing using CNNs, without performing reconstruc-

tion or re-training the neural network for every possible partial observation

ratio.

We first generate partially observed training data corresponding to k ratios

between 0 and 1. In this chapter, we use the original fully-observed data, along

with data observed at three ratios of 0.5, 0.25 and 0.125. We then train neural

network with the enlarged training set. The ratio of the randomly observed

pixels in the testing data need not match the ratios used during training, so

as the random observation masks. An overview of our framework in image

classification is shown in Figure 4.1.

In the image classification task, the neural network that we use is the

VGG-16 (Simonyan and Zisserman, 2014) network. Our proposed framework

is also tested on object detection, in which Faster-RCNN, based on VGG-16

features, is employed.

4.4 Experiments

In this section, we test with our method on two common visual tasks - image

classification and object detection. For image classification, we evaluate our

network on the standard CIFAR-10 (Krizhevsky and Hinton, 2009) dataset,

while we use the Pascal-VOC 2007 (“The PASCAL Visual Object Classes
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(a) Averaged classification
accuracies for VGG-16 (Si-
monyan and Zisserman,
2014) network and our
method denoted as VGG-16-
Ours

(b) Testing times on data
for reconstruction plus VGG-
16 network (Recon+VGG-16)
and our reconstruction-free
method

(c) Mean Average Preci-
sion(mAP) for Faster-RCNN
and our framework: Faster-
RCNN-Ours

Figure 4.2: (a) and (c) Classification accuracy and object detection performance for
classical CNNs and ours with various partial observation ratios. (b) Testing times for
doing reconstruction algorithm vs ours with various observation ratios

Challenge 2007 (VOC2007) Results”) dataset for testing object detection.

4.4.1 Image Classification

The CIFAR-10 (Krizhevsky and Hinton, 2009) dataset contains 60000 images

equally split between 10 object categories, with 50000 images marked as

training and 10000 as test. Each image has 32× 32 pixels.

We first train the VGG-16 CNN with default parameters from (Simonyan

and Zisserman, 2014) on the dataset with full images, and as we see from

Fig. 4.2a and Table 4.1, the classification accuracy is 0.93. We call this model

‘VGG-16’ henceforth. However, testing it on partially observed data, the classi-

fication accuracy drops sharply. To remedy this, we retrain the VGG-16 CNN

network on full images as well as partially observed images. We used SGD
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Partial Observation Ratios 1.0 0.9 0.8 0.7 0.6 0.5
VGG-16 0.93 0.51 0.21 0.12 0.11 0.11

VGG-16-Ours 0.81 0.81 0.81 0.80 0.80 0.80
Recon+VGG-16 0.93 0.93 0.93 0.92 0.91 0.89

Recon+VGG-16-Ours 0.81 0.81 0.81 0.81 0.81 0.80

Partial Observation Ratios 0.4 0.3 0.2 0.1 Random
VGG-16 0.11 0.11 0.12 0.13 0.19

VGG-16-Ours 0.80 0.79 0.77 0.71 0.76
Recon+VGG-16 0.86 0.79 0.65 0.35 -

Recon+VGG-16-Ours 0.80 0.78 0.74 0.62 -

Table 4.1: Averaged classification accuracies with various partial observationratios for
four different methods: (i) VGG-16; (ii) VGG-16-Ours; (iii) Recon+VGG-16: reconstruct
first and then use VGG-16; and (iv) Recon+VGG-16-Ours: reconstruct first and then
use the network trained by our method. “Random” denotes the case that each test
datum is randomly partially-observed by a ratio generated from (0, 1] uniformly at
random. The two dashes (−) in the last column denote that the experiments are
not performed since the reconstruction method is not robust to unknown partial
observation ratios.

with momentum= 0.9, learning rate= 0.1, learning rate decay= 10−6, batch

size= 128 for 250 epochs with data augmentation through random transla-

tions, flips and rotations. We noted that only three partial observation ratios

of 0.5, 0.25 and 0.125 were sufficient to ensure robustness to such corruption

as displayed in Fig. 4.2a. These three partial observation ratios were chosen

empirically as a trade-off between magnitude of training data required and

robustness to random missing. This is interesting, as it suggests the CNN has

learned to generalize to randomly missing data. We term the network trained

as such ‘VGG-16-Ours’ for purposes of discussion.

We see from Fig. 4.2a and Table 4.1 that as as we miss more data, per-

formance degrades. However, even in the challenging scenario of having

118



available a mere 10% of pixels, the network is achieves a classification accu-

racy of 0.71.

In order to compare our solution with the standard paradigm of reconstruct-

then-classify, we train a set of 9 de-noising convolutional autoencoders on

the CIFAR-10 dataset, one for each partial observation ratio from 0.1, 0.2, ...0.9.

We then passed test images with each of those ratios being observed through

the corresponding autoencoder to reconstruct it, and fed the output to a pre-

trained VGG-16 network. We term this experimental pipeline ’Recon+VGG-16’

and refer to it as the same. As seen from the results in Table 4.1, this pipeline

outperforms VGG-16-Ours, trained to classify on the partially-observed data

directly at high observation ratios. However, for the more challenging cases

of 0.3., 0.2 and especially for the 0.1 case, VGG-16-Ours performs just as well

if not substantially better than the standard reconstruction pipeline. Keeping

our end-goal of sensing as little as we can get away with in mind, our results

suggest that discrimination should be performed directly on the compressed

data.

In addition, we also study the time required for the Recon+VGG-16 pro-

cessing pipeline versus VGG-16-Ours in Fig. 4.2b. As both the networks are

feed-forward neural networks, they each process the data by repeatedly ap-

plying basic arithmetic operations like multiplication, addition and a simple

non-linearity on the data, once trained. This means testing performance for

both pipelines is quite fast and the room of improvement is small. However,

we note that direct classification on the compressed data is accomplished

twice as fast (taking only 2.78 seconds averaging across all partial observation
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ratios) for classifying all 10000 test examples in CIFAR-10 as compared to

Recon+VGG-16 (which takes 6.42 seconds averaging across all partial observa-

tion ratios). This obvious advantage stems from skipping the unnecessary step

of reconstruction, speeding up the imaging as well as classification processes.

In order to better understand the behavior of VGG-16-Ours, we also used

it to classify compressed data after reconstruction. Interestingly, as the results

in Table 4.1 confirm, it would appear that the act of training VGG-16-Ours on

partially observed data as well (which we term ‘Recon+VGG-16-Ours’ in the

table) has made it more robust to perturbations in the input space, leading to a

much higher classification performance in the challenging 0.1 observation ratio

case (obtaining 0.62 classification accuracy) versus just passing the partially-

observed data through the convolutional autoencoder and classifying it using

a VGG-16 network trained only on fully-sampled data (yielding just 0.35

classification accuracy). The reconstructed data from the autoencoder loses a

lot of high frequency information. This experiment suggests that including

data with various observatio ratios has the added bonus of making a neural

network robust to blur.

For the last column in Table 4.1, we randomly take a fraction of pixels

in each test image by an unknown fraction si ∈ (0, 1], and then passed the

test images through VGG-16 and VGG-16-Ours. As expected, VGG-16-Ours

obtained a much higher classification accuracy (a respectable 0.76, close to the

average of the accuracies on the different partial observation ratios previously

tested) on the test data than VGG-16 (0.19). We did not run Recon+VGG-16 and

Recon+VGG-16-Ours experiments on this test set as the partial observation

120



ratio was not constrained to match with the 9 partial observation ratios for

which we had trained the autoencoders.

4.4.2 Object Detection

The Pascal VOC 2007 detection dataset (“The PASCAL Visual Object Classes

Challenge 2007 (VOC2007) Results”) contains images corresponding to 20

different object categories as part of various natural scenes, with close to

5000 images provided for training and cross-validation, with approximately

another 5000 provided for testing.

Aiming to understand if the phenomenon of CNNs learning to handle

arbitrary partial observation ratios extends to tasks besides object classification,

we train a Faster RCNN network on the Pascal VOC 2007 dataset for object

detection. We use the mean average precision (mAP) as our evalutaion metric.

Details for the measure are contained in the original paper (Ren et al., 2015).

Similar to Section 4.4.1, we initially train the network purely on fully-observed

images. We term this trained network ‘Faster-RCNN’. Then, we train another

model with the same Faster-RCNN architecture on the fully-observed images

as well as partially-observed images at observation ratios of 0.5, 0.25 and 0.125.

We then tested both networks on object detection from partially-observed test

images of various unseen partial observation ratios.

The results of the experiments are displayed in Fig. 4.2c. We note the trends

here mirror those of the classification case, with Faster-RCNN’s performance

dropping quickly in the presence of random missing , while the performance

of Faster-RCNN-Ours remains much more stable. In addition, we again
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observe that Faster-RCNN-Ours generalizes to unseen partial observation

ratios here as well.

4.5 Target Tracking and Classification using a Com-
pressive Sensing Camera

One of the motivations behind our study of deep networks to be able to

handle compressive measurements in the previous sections, is our desire to

use Pixelwise Coded Exposure (PCE) cameras to track targets in the videos

that they collect. Figure 4.3 illustrates the differences between a conventional

video sensing scheme and PCE, where random spatial pixel activation is

combined with fixed temporal exposure duration. First, conventional cameras

capture frames at certain frame rates, such as 30 frames per second. In contrast,

the PCE camera captures a compressed frame called motion coded image over

a fixed period of time (Tv). For example, a user can compress 30 conventional

frames into a single motion coded frame. This will yield significant data

compression ratio. Second, the PCE camera allows a user to use different

exposure times for different pixel locations. For low lighting regions, more

exposure times can be used and for strong light areas, short exposure can be

exerted. This will allow high dynamic range. Moreover, power can also be

saved via low sampling rate in the data acquisition process. As shown in Fig.

4.3, one conventional approach to using the motion coded images is to apply

sparse reconstruction to reconstruct the original frames and this process may

be very time-consuming.

Suppose the video scene is contained in a data cube X ∈ RM×N×T where
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Figure 4.3: Conventional camera vs. pixel-wise coded exposure (PCE) compressed
image/video sensor

M × N is the image size and T is the number of frames. A sensing data

cube is defined by S ∈ RM×N×T which contains the exposure times for pixel

located at (m, n, t). The value of S(m, n, t) is 1 for frames t ∈ [tstart, tend] and 0

otherwise. [tstart, tend] denotes the start and end frame numbers for a particular

pixel. The measured coded aperture image Y ∈ RM×N is obtained by:

Y(m, n) =
T

∑
t=1

S(m, n, t) · X(m, n, t)

Instead of doing sparse reconstruction on PCE images or frames, our

scheme directly acts on the PCE or coded aperture images, which contain

raw sensing measurements without the need for any reconstruction effort.

Utilizing raw measurements has several challenges. First, moving targets may

be smeared if the exposure times are long. Second, there are also missing

pixels in the raw measurements because not all pixels are activated during the

data collection process. Third, there are much fewer frames in the raw video
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because many original frames are compressed into a single coded frame.

In this section we will show that by simulating the measurements that

should be produced by the PCE-based compressive sensing (CS) sensor, we

can show that detecting, tracking, and even classifying moving objects of

interest in the scene is entirely feasible with a minor sacrifice in discrimination

accuracy.

4.5.1 Task and Dataset

We have a custom dataset of videos of three kinds of trucks (Ram, Silverado,

and Frontier) driving in a parking lot. All of the videos are short wave IR

videos, each about 1 min long, with 30 frames/sec. This means we have 1800

frames per video. There are two videos for each truck, each recorded on a

different day. We used all the frames from one of the days for training and the

other day’s videos for testing. Our task is to detect and track the moving truck

through a video, as well as identify the type of truck in the video. A sample

frame from this video and its subsampled versions are shown in Fig 4.4

In addition to the above dataset, we have two other videos where all three

trucks travel back and forth between a parking lot and a remote location.

These two videos are more challenging because they have multiple targets,

and the targets change in size as they travel. In order to adapt our systems for

this task, we fine-tuned a network trained on the previous dataset to one of

the videos here, and used the other video to obtain test results.
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Figure 4.4: Sample Frame of a Frontier truck from the training dataset

(a) Sample Frame
(b) Sample Frame with 50% PCE mea-
surements

(c) Sample Frame with 25% PCE mea-
surements

(d) Sample Frame with 12.5% PCE mea-
surements
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4.5.2 Deep Networks used for Tracking and Classification

We perform tracking by detection, meaning we perform object detection on

each motion coded image to achieve tracking across a video. Object detection

on each frame is performed using a deep network, specifically the You Only

Look Once (YOLO) architecture (Redmon and Farhadi, 2016). The YOLO

tracker is fast and has similar performance to the Faster R-CNN (Ren et al.,

2015). YOLO has 24 convolutional layers and 2 fully connected layers. The

inputs are resized to 448× 448, and the output is 7× 7× 30. We have used

YOLOv2 because it is more accurate than YOLO version 1.

Since YOLO’s built-in classifier did not perform too well on our task, we

decided to use another network to perform classification. The ResNet-18

model is an 18-layer convolutional neural network (CNN) that has the advan-

tage of avoiding performance saturation and/or degradation when training

deeper layers, which is a common problem among other CNN architectures.

The ResNet-18 model avoids the performance saturation by implementing an

identity short cut connection, which skips one or more layers and learns the

residual mapping of the layer rather than the original mapping.

Our pipeline was implemented as follows - YOLO was used to determine

where, in each frame, the trucks were located. YOLO generated bounding

boxes for those trucks and that data were used to crop the trucks from the

image. The cropped trucks would be fed into the ResNet-18 for classification,

and classification results were generated.
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4.5.3 Tracking and classification results

We trained our deep networks using SGD (learning rate = 0.001) with mo-

mentum (0.9) for 2000 epochs on the dataset of individual truck videos with

complete frames and 12.5% subsampled PCE frames. We started with a models

pretrained on the Pascal VOC dataset for the YOLO network and Imagenet for

the ResNet-18 network. We then tested our model on the held out videos, with

complete as well as PCE frames with subsampling rates of 6.25%, 12.5%, 25%,

and 50%. To evaluate detections we measured the following:

• Detection Rate - Fraction of the frames of the videos in which a detection

was made

• DICE score - given a detection A and a ground truth A∗, the DICE score

is defined as 2|A∩A∗|
|A|+|A∗|

• Centroid distance - ℓ2 distance between the centroids of the detection

and the ground truth, in pixels.

• Classification accuracy

These results are presented in Tables 4.2, 4.3, 4.4 and sample detection

frames are shown in Fig. 4.5.
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Figure 4.5: Detection and classification on a sample frame

(a) 100% PCE measurements (b) 50% PCE measurements

(c) 25% PCE measurements (d) 12.5% PCE measurements
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Coded Aperture Fraction Silverado Ram Frontier
6.25% 63% 65% 68%
12.5% 96% 95% 97%
25% 93% 93% 95%
50% 94% 93% 95%

100% 97% 98% 98%

Table 4.2: Detection Rates - Fraction of frames in which a target was detected

Coded Aperture Fraction DICE score Centroid ℓ2 distance (in pixels)
6.25% 0.782 8.22
12.5% 0.834 7.75
25% 0.816 8.04
50% 0.801 8.13

100% 0.852 7.52

Table 4.3: Detection Scores, averaged over all frames in which a target was detected

4.6 Conclusion

This chapter presents an efficient, reconstruction-free training paradigm to

extract information from sparsely-sensed images, overcoming the sensitivity

that CNNs naturally have to such input mismatches. Moreover, the proposed

method generalizes to different, unseen, arbitrary partial observation ratios

without retraining. Our method outperforms the pre-trained CNNs and

reconstruction-first-classify-later technique in challenging cases with small

observation ratios.

Investigation of the role of missing information may play in making a net-

work more robust to adversarial interference is an interesting open question.

Finally, extending our framework to handle missing/incomplete or partially

corrupted data and sensor failure is a possible future research direction.
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Coded Aperture Fraction Silverado Ram Frontier
6.25% 65% 72% 74%
12.5% 79% 94% 96%
25% 81% 95% 94%
50% 74% 93% 83%

100% 95% 98% 100%

Table 4.4: Classification Rates - Fraction of frames in which the target was correctly
classified
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Chapter 5

Summary and Future Work

Machine learning techniques in general and deep learning in particular are

gaining popularity as a approaches to solve to all sorts of problems. Deep

learning is being applied with great success to a number of different problems,

but the success depends on careful engineering of features, choice of architec-

ture, choice of training schemes, etc. It is critical to understand why and how

deep networks work, and when they are the best approach for a problem.

In this dissertation we saw results that helped us understand the repre-

sentations that neural networks learn and which solutions of deep network

training are more likely to generalize. We also saw some applications of deep

learning to vision problems with subsampled measurements.

In Chapter 2 we analyzed the loss landscape of autoencoders and were

able to establish connections between autoencoders and Sparse Coding or

Dictionary Learning. We showed that under a sparse coding generative model,

the landscape of the squared reconstruction error of a ReLU autoencoder has a

critical point at the ground truth dictionary. Simulations also tell us that if we

start a gradient descent algorithm far away from the ground truth dictionary,
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we end up close to it after enough iterations.

In Chapter 3 we studied the “flat minima” problem. While the idea that

flatter minima could generalize better has been around for a long time (Hochre-

iter and Schmidhuber, 1997), it was recently shown (Dinh et al., 2017) that

for deep networks with positively homogenous activation functions (like

ReLU) quantitative measures of “flatness” could be made arbitrarily large

or small through a simple rescaling of the deep network. Using techniques

from manifold geometry, we proposed a flatness metric that is invariant to

these rescalings. We then applied this technique to compare minima obtained

using large-batch and small-batch gradient based methods, and were able to

empirically confirm the observation that “flatter minima” generalize better.

Our work is one of the first to consider the space of deep network parameters

as a differentiable quotient manifold rather than a Euclidean space.

Finally, in Chapter 4 we presented a deep learning pipeline to train net-

works to solve vision problems from compressed measurements. We built an

object detection and tracking system based on deep networks that can work

with a custom image sensorthat collects compressive measurements of scenes.

We studied some training schemes that allow us to adapt deep networks for

object detection from natural images to our setting (Nair et al., 2018). We

also presented results on tracking objects in video sequences in specialized

settings, using compressive measurements that simulate the sensor presented

in (Zhang et al., 2016)
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5.1 Future Work

• Understanding Recurrent Neural Networks (RNNs): Recurrent Neu-

ral Networks have been shown to be successful in many tasks like speech

recognition and machine translation. While they have also been applied

to time series data with varying degrees of success, we still do not have

insight into the kinds of problems that can be solved using recurrent

networks. There is some evidence that we can learn linear dynamical

systems using linear RNNs Hardt, Ma, and Recht, 2018, while the behav-

ior of more complicated, nonlinear models is not yet understood. We

can use an approach similar to the one used to study autoencoders in

order to understand RNNs.

• Sparse Neural Networks: An intriguing property of neural networks

is that they can be compressed to a fraction of their original size, while

retaining performance levels similar to that of the original network Han,

Mao, and Dally, 2015. There is also some evidence that the compress-

ibility of a deep network is related to its generalization Zhou et al., 2018.

One promising direction in understanding deep networks is exploring

whether the connections between compressibility and generalization

also extend to sparsity and generalization. This would have implica-

tions for practical applications of deep learning in resource constrained

settings, since sparse neural networks are smaller, and computationally

cheaper to implement.

Current approaches to the compression of neural networks involve
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training a large deep network model first, followed by retraining a

sparser model after removing connections that are not salient. One can

also investigate approaches to training sparse neural networks “from

scratch", that is, without having to train the large models first. Training

techniques that are not based on gradient based algorithms, like the

Alternating Direction Method of Multipliers (ADMM) (Taylor et al.,

2016), are one possible line of research.

• Training Deep Networks on the Manifold: The quotient manifold of

parameters that we presented in Chapter 3 is a promising view for

not just obtaining invariant measurements of the flatness of deep net-

work minima, but also training deep networks. Instead of performing

stochastic gradient descent type algorithms in the Euclidean space of

parameters, we would like to learn deep networks by optimizing the ob-

jective function on the quotient manifold of neural network parameters.

It would also be interesting to explore the connections between training

deep networks on manifolds and techniques like Batch Normalization

and Weight Normalization.

• Neural Networks for Coded Aperture Video Reconstruction: While

we can use traditional dictionary learning and sparse recovery based

methods to reconstruct video sequences from Pixelwise Coded Exposure

(PCE) measurements, these dictionaries and sparse recovery algorithms

are limited to the particular frame rate, exposure time, and other param-

eters of the measurement process. In order to reconstruct these video
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sequences in a number of different settings, we can explore deep learn-

ing based solutions. Recurrent architectures might be well suited to this

approach of reconstructing videos agnostic to the frame rate.
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