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Abstract

Computed Tomography (CT) is an essential technology for the treatment, diagnosis,

and study of disease, providing detailed three-dimensional images of patient anatomy.

While CT image quality and resolution has improved in recent years, many clinical

tasks require visualization and study of structures beyond current system capabilities.

Model-Based Iterative Reconstruction (MBIR) techniques offer improved image qual-

ity over traditional methods by incorporating more accurate models of the imaging

physics. In this work, we seek to improve image quality by including high-fidelity

models of CT physics in a MBIR framework. Specifically, we measure and model

spectral effects, scintillator blur, focal-spot blur, and gantry motion blur, paying par-

ticular attention to shift-variant blur properties and noise correlations. We derive a

novel MBIR framework that is capable of modeling a wide range of physical effects,

and use this framework with the physical models to reconstruct data from various sys-

tems. Physical models of varying degrees of accuracy are compared with each other

and more traditional techniques. Image quality is assessed with a variety of metrics,

including bias, noise, and edge-response, as well as task specific metrics such as seg-

mentation quality and material density accuracy. These results show that improving

the model accuracy generally improves image quality, as the measured data is used

more efficiently. For example, modeling focal-spot blur, scintillator blur, and noise
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correlations enables more accurate trabecular bone visualization and trabecular thick-

ness calculation as compared to methods that ignore blur or model blur but ignore

noise correlations. Additionally, MBIR with advanced modeling typically outper-

forms traditional methods, either with more accurate reconstructions or by including

physical effects that cannot otherwise be modeled, such as shift-variant focal-spot

blur. This work provides a means to produce high-quality and high-resolution CT

reconstructions for a wide variety of systems with different hardware and geome-

tries, providing new tradeoffs in system design, enabling new applications in CT, and

ultimately improving patient care.

iii



Thesis Committee Members

J. Webster Stayman, Ph.D. (Advisor)

Assistant Professor, Department of Biomedical Engineering

Johns Hopkins University

Jeffrey H. Siewerdsen, Ph.D.

Professor, Department of Biomedical Engineering

Johns Hopkins University

Jerry L. Prince, Ph.D.

Professor, Department of Electrical and Computer Engineering

Johns Hopkins University

Katsuyuki Taguchi, Ph.D.

Associate Professor, Department of Radiology and Radiological Science

Johns Hopkins University

iv



Acknowledgments

As with all research, this work would not have been possible without the help and

support of many people. First, I’d like to thank my advisor, Web Stayman, for being

an excellent mentor. Throughout my time in his lab, Web has provided fantastic

guidance while giving me the freedom to explore my own ideas. He has been an

invaluable advisor, colleague, and friend.

I would also like to thank Jeff Siewerdsen and Wojtek Zbijewski, who have likewise

been patient sources of much assistance and insight. Thanks also to Jerry Prince and

Katsuyuki Taguchi, who have provided extremely valuable guidance over the years.

I’d like to thank Chris Schaffer and Nozomi Nishimura at Cornell University, who

first started me on the researcher’s path.

A big thanks to the members of the AIAI and I-STAR labs, whose combined

expertise and skills provide for an excellent and unique research environment. They

have been and will continue to be excellent colleagues and friends, and I’ll miss our

daily lunches taking up a considerable portion of the daily grind and consuming vast

quantities of food-truck meals.

A huge thanks and much love to my parents, Steven and Patricia, and my brother,

Michael, who have fostered in me the curiosity and drive that made this work possible.

Thank you for the unending love, encouragement, and support.

v



I would also like to express my gratitude and love to my wife, Heather, who has

been a constant source of support, encouragement, and companionship throughout

this process. Having met her just after graduate student orientation, it feels truly

special to have gone on this journey with her from beginning to end, and I look

forward to our next journey together.

This work used some fantastic open sourced software, including Python

(python.org), SciPy [1], and Matplotlib [2]. It also made use of algorithm implemen-

tations written by Ali Uneri and Yoshito Otake. Much of this work was conducted

using computational resources at the Maryland Advanced Research Computing

Center (MARCC).

This dissertation was supported in part by NIH grants R21 EB014964,

T32 EB010021, R01 EB018896, F31 EB023783, R01 EB025470, and R21 EB026849,

as well as academic-industry partnerships with Varian Medical Systems (Palo Alto,

CA), and Carestream (Rochester, NY). Thanks to Sungwon Yoon and Kevin Holt

from Varian for their insights.

vi



Dedicated to my parents

vii



Table of Contents

Table of Contents viii

List of Tables xiv

List of Figures xv

List of Acronyms xxx

1 Introduction 1

2 Background 5

2.1 CT physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 The X-ray source . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 X-ray attenuation . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.3 X-ray detection . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 CT image reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Analytic reconstruction . . . . . . . . . . . . . . . . . . . . . . 21

2.2.2 Model-based iterative reconstruction . . . . . . . . . . . . . . 25

2.2.2.1 PL derivation example: post-log Gaussian model . . 30

2.2.3 Advanced modeling in MBIR: overview and prior work . . . . 32

viii



2.2.3.1 Fidelity term . . . . . . . . . . . . . . . . . . . . . . 34

2.2.3.2 Prior/penalty term . . . . . . . . . . . . . . . . . . . 35

3 A general model-based iterative reconstruction framework 38

3.1 Forward model and objective function . . . . . . . . . . . . . . . . . . 39

3.2 Optimization strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 Separable quadratic surrogates optimizer . . . . . . . . . . . . 40

3.2.1.1 Optimum curvature derivation . . . . . . . . . . . . 46

3.2.1.2 Ordered subsets and Nesterov acceleration . . . . . . 48

3.2.1.3 Useful approximations . . . . . . . . . . . . . . . . . 50

3.2.2 Staged linearized optimizer . . . . . . . . . . . . . . . . . . . . 51

3.2.2.1 Line integral covariance matrix derivation . . . . . . 57

3.3 Accommodation of an isotropic Huber penalty . . . . . . . . . . . . . 58

4 Relative effects of shift-invariant source and detector blur with a

linearized model 64

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.1 Simulation studies . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2.2 Bench characterization . . . . . . . . . . . . . . . . . . . . . . 78

4.2.3 Test-bench data reconstructions . . . . . . . . . . . . . . . . . 80

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3.1 Simulation studies . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3.2 Bench characterization . . . . . . . . . . . . . . . . . . . . . . 91

4.3.3 Test-bench data reconstructions . . . . . . . . . . . . . . . . . 95

ix



4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5 Shift-invariant source and detector blur with a nonlinear forward

model 104

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2.1 Comparison with linearized method . . . . . . . . . . . . . . . 107

5.2.2 System characterization of a high-resolution prototype extrem-

ities scanner . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.2.3 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2.3.1 Parameter sweep . . . . . . . . . . . . . . . . . . . . 113

5.2.3.2 Algorithm comparison . . . . . . . . . . . . . . . . . 113

5.2.4 Extremities prototype experiment . . . . . . . . . . . . . . . . 114

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.3.1 Comparison with linearized method . . . . . . . . . . . . . . . 116

5.3.2 System characterization of a high-resolution prototype extrem-

ities scanner . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.3.3 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.3.3.1 Parameter sweep . . . . . . . . . . . . . . . . . . . . 120

5.3.3.2 Algorithm comparison . . . . . . . . . . . . . . . . . 121

5.3.4 Extremities prototype experiment . . . . . . . . . . . . . . . . 124

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6 Shift-variant focal-spot blur and gantry-motion blur 131

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

x



6.2 Focal-spot blur modeling . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.2.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.2.1.1 Projection Domain blur modeling . . . . . . . . . . . 134

6.2.1.1.1 Mathematical derivation . . . . . . . . . . . 134

6.2.1.1.2 Simulation study . . . . . . . . . . . . . . . 136

6.2.1.1.3 Focal-spot measurement . . . . . . . . . . . 139

6.2.1.1.4 Resolution phantom study . . . . . . . . . . 140

6.2.1.2 Trabecular probe study . . . . . . . . . . . . . . . . 140

6.2.1.2.1 Phantom and data generation . . . . . . . . 141

6.2.1.2.2 Reconstruction . . . . . . . . . . . . . . . . 143

6.2.1.3 Bench data reconstructions with full sourcelets model 146

6.2.1.3.1 Focal-spot modeling and measurement . . . 147

6.2.1.3.2 Multiresolution forward model . . . . . . . . 149

6.2.1.3.3 Reconstruction . . . . . . . . . . . . . . . . 151

6.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.2.2.1 Projection Domain blur modeling . . . . . . . . . . . 154

6.2.2.1.1 Simulation study . . . . . . . . . . . . . . . 154

6.2.2.1.2 Focal-spot measurement . . . . . . . . . . . 157

6.2.2.1.3 Resolution phantom study . . . . . . . . . . 158

6.2.2.2 Trabecular probe study . . . . . . . . . . . . . . . . 160

6.2.2.2.1 FDK short scan maps . . . . . . . . . . . . 160

6.2.2.2.2 MBIR . . . . . . . . . . . . . . . . . . . . . 163

6.2.2.3 Bench data reconstructions with full sourcelets model 169

6.2.2.3.1 Focal-spot modeling and measurement . . . 169

xi



6.2.2.3.2 Reconstruction . . . . . . . . . . . . . . . . 173

6.3 Gantry motion blur modeling . . . . . . . . . . . . . . . . . . . . . . 179

6.3.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

6.3.1.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . 179

6.3.1.2 Simulation study . . . . . . . . . . . . . . . . . . . . 180

6.3.1.3 Test bench study . . . . . . . . . . . . . . . . . . . . 181

6.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

6.3.2.1 Simulation study . . . . . . . . . . . . . . . . . . . . 183

6.3.2.2 Test bench study . . . . . . . . . . . . . . . . . . . . 185

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

7 Model-based material decomposition 189

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

7.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

7.2.1 Reconstruction algorithm . . . . . . . . . . . . . . . . . . . . . 193

7.2.2 Image domain decomposition . . . . . . . . . . . . . . . . . . 197

7.2.3 Water/calcium simulation study . . . . . . . . . . . . . . . . . 198

7.2.4 Iodine sensitivity simulation study . . . . . . . . . . . . . . . 201

7.2.5 Kilovolt-switching with split-filtration simulation studies . . . 202

7.2.6 Kilovolt-switching with filtration physical test bench studies . 205

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

7.3.1 Water/calcium simulation study . . . . . . . . . . . . . . . . . 208

7.3.2 Iodine sensitivity simulation study . . . . . . . . . . . . . . . 208

7.3.3 Kilovolt-switching with split-filtration simulation studies . . . 214

7.3.4 Kilovolt-switching with filtration physical test bench studies . 217

xii



7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

8 Conclusion 221

8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

8.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

Appendix A Test-Bench Gain Estimation 226

Appendix B Sourcelet Projector 228

B.1 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

B.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

B.3 Jacobian Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

B.3.1 Transaxial coordinate system . . . . . . . . . . . . . . . . . . 236

B.3.2 Axial coordinate system . . . . . . . . . . . . . . . . . . . . . 237

xiii



List of Tables

2.1 Notation conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 Systems with varying degrees of source and detector blur were sim-

ulated to investigate reconstruction performance over a range of sce-

narios. These scenarios are lettered a–g and permit two experiments

where (1) the total blur is constant and the proportion of source and

detector blur is varied; and (2) the proportion of source and detector

blur is constant and the total blur is varied. Note that scenario d

appears in both experiments. . . . . . . . . . . . . . . . . . . . . . . 76

5.1 Trabecular bone metric results. © 2017 IEEE . . . . . . . . . . . . . 128

6.1 Summary of blur models . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.2 Noise levels in each of the four reconstructions in Figure 6.23 . . . . . 173

7.1 Notation summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

xiv



List of Figures

2.1 Schematic of a MDCT system showing the X-ray source and detec-

tor. X-ray photons are generated at the source, travel through the

patient/object (in this case a box), and then are absorbed by the de-

tector. Both the source and detector are fixed to a gantry (not shown)

that rotates about the y axis along the path indicated by the dotted

line. The direction indicated by y is referred to as to axial direction. . 6

2.2 Schematic of a FP CBCT system. As compared to the MDCT sys-

tem in Figure 2.1, FP CBCT systems have a flat detector and often

have smaller pixels. Flat panel detectors are usually more square then

MDCT detectors, leading to a larger cone angle in the axial direction

but less lateral coverage. . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Schematic from Figure 2.2 viewed from the side. The dotted line is the

axis of rotation, and y is the same as in Figure 2.2. The cone angle is

indicated by γ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Schematic of the anode and cathode inside an X-ray tube. The anode

is rotated about the axis indicated with the dashed line. An X-ray

photon shown is traveling along the central ray, towards the patient. . 8

xv



2.5 X-ray focal spot appearance from different positions. In the center

image the viewing angle is aligned with the central ray, or z axis in

this figure. The other positions correspond to shifting the viewing

angle 5° about the x and/or y axes. In this example the anode angle

is 11.3°. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6 Example X-ray spectrum with 120 kVp. The peaks are due to charac-

teristic X-ray photons. . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.7 Mass attenuation coefficients of water, calcium, and iodine. . . . . . . 15

2.8 Schematic of X-ray detection process. An X-ray photon enters the

scintillator and is converted into multiple visible light photons, which

are then detected by the photodiodes on right of each image. Subfigure

A shows a pixelated scintillator, as is common in MDCT detectors.

The light photons reflect off the septa and only hit one photodiode.

Subfigure B shows a non-pixelated scintillator, where the light photons

can spread to multiple detector photodiodes. This schematic assumes

a 100% fill factor for simplicity. . . . . . . . . . . . . . . . . . . . . . 17

2.9 Parallel beam geometry. The detector is rotated about an angle θ from

the y axis. The integration path for measurement y(s, θ) is indicated

by the thick line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

xvi



2.10 Example of FBP (with a fan beam geometry). A simple truth image

(A) is forward projected to calculate the sinogram (B). Backproject-

ing a single angle effectively “smears” the projection back across the

volume (C). Repeating for all angles results in a blurry reconstruc-

tion (D), while filtering prior to backprojecting results in an accurate

reconstruction (E). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.11 Gaussian and Poisson distributions with mean and variance equal to

1, 10, and 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.12 Comparison of different potential functions. The vertical line indicates

the value of δ for the Huber penalty. The quadratic penalty is scaled

to ease comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1 Representation of deblur masking. The original blur (a) tends towards

zero at higher frequencies. To account for this, those frequencies are

masked. Subfigure (a) shows b+ from equation (3.51) and (b) shows

b− from equation (3.49). . . . . . . . . . . . . . . . . . . . . . . . . . 55

xvii



4.1 Model for the mean (bottom) and covariance (top) of quanta at vari-

ous stages. (1) After X-ray photon generation, quanta are independent

with a variance equal to the mean. (2) When X-ray photons are atten-

uated by the object, the spatial distribution of the mean and variance

change, but remain equal and independent. An operator that includes

source blur is also included. (3) In the scintillator, X-ray photons in-

teract with a scintillating material creating many light photons which

spread spatially, blurring the mean distribution and adding correlation

to the noise. (4) Photodiodes detect the light photons with possible

additive readout noise. . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Digital phantom used in simulation studies emulating an extremity

imaging scan with (i) fat, (ii) muscle, (iii) bone, (iv) line pairs, and

(v) a uniform disc. For noise evaluations, sample variance was calcu-

lated in the disc interior indicated with a circle. Spatial resolution was

estimated using the edge response between the disc and fat background. 73

4.3 Test bench with flat panel detector (left) and X-ray source (right). The

wrist phantom used is shown at the axis of rotation. . . . . . . . . . . 77

xviii



4.4 Spatial resolution-variance tradeoff for different reconstructions in a

simulated tomographic system with a 0.34 mm FWHM scintillator blur

and a 0.70 mm FWHM source blur. Variance and spatial resolution

are shown for MBIR reconstructions using the correlated and uncorre-

lated noise models and FDK with no deblurring, PD deblurring, and

ID deblurring. The square data points are either noise-matched or

resolution-matched to the square data point in the correlated model

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5 (a) Reconstructions from the simulation study corresponding to the

noise-matched and resolution-matched data points in Figure 4.4. (b)

Difference images show the difference between the reconstruction and

truth. Zoomed images focus on the bone in the center of the phantom,

with the line pairs inset in the lower right. . . . . . . . . . . . . . . . 85

4.6 Evaluation of reconstruction algorithms for systems with differing

source and detector blur. The schematic (top) illustrates the different

imaging system scenarios with varying amounts of source and

detector blur. These scenarios have a constant total system blur

and a varying blur distribution — from detector-dominated (point

a) to source-dominated (point e). The subfigures (a-e) show the

resolution-variance tradeoff for each of the systems with blur scenarios

corresponding to points a-e in the schematic. Note that the correlated

noise model shows the greatest advantage over the uncorrelated noise

model for the scenario where source blur dominates. . . . . . . . . . . 86

xix



4.7 Performance evaluation of reconstructions under varying total blur con-

ditions. The points in the left figure show three different system sce-

narios, each with the same ratio of source to scintillator blur. The

different total system blur conditions represented by points f, d, and g

correspond to the resolution-variance plots on the right. . . . . . . . . 87

4.8 (a) Detector MTF measurements and parameterized fit. The model

used for fitting was a Gaussian multiplied by a sinc function. (b) Focal

spot image from the CBCT test-bench. (c) A source MTF derived

from the focal spot image approximately scaled for focal spot blur at

the center of rotation. (d) Trans-axial, axial, and 45° profiles of the

pinhole-derived source MTF. (e) Source MTFs as estimated from edge

responses at the center of rotation. (f) Zoomed version of (e), with

solid lines indicating the corresponding profiles of the parameterized fit. 90

4.9 This figure shows horizontal, vertical, and 45° slices of the 2D measured

NPS at the center of the detector, along with the theoretical 1D NPS

(assuming radial symmetry). . . . . . . . . . . . . . . . . . . . . . . . 93

4.10 Horizontal and vertical NPS slices for NPSs acquired at different po-

sitions on the detector, indicated by distance from the center in the

horizontal direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

xx



4.11 Test-bench data reconstructions. (a) High resolution reference image.

The large box denotes the ROI used for (b-f). (b) FDK reconstruc-

tion. (c) FDK reconstruction on deblurred data. (d) High resolution

reference image with an arrow indicating cartilage-equivalent plastic.

(e) Reconstruction obtained using the uncorrelated noise model. (f)

Reconstruction obtained using the correlated noise model and noise

matched with (e). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.12 Difference images between the high-resolution reference image and the

various reconstruction methods: (a) FDK; (b) PD deblur + FDK; (c)

uncorrelated MBIR; and (d) correlated MBIR (corresponding to b, c, e,

and f in Figure 4.11). The smallest differences from the high-resolution

reference are observed in the correlated MBIR reconstruction. . . . . 98

4.13 (a) Blurred high-resolution reference image. (b) correlated MBIR re-

construction. (c) Difference image between (a) and (b). . . . . . . . . 99

5.1 Digital phantom with line pairs and bone inserts. The background

attenuation value in the oval is 0.019 mm−1 and the bone attenuation

is 0.060 mm−1. The line pair attenuation values are either 0.060 mm−1

(left and center) or 0.019 mm−1 (right). The line pair frequency is

2.38 mm−1. © 2017 IEEE . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2 Resolution-variance tradeoff of the nonlinear and the linear reconstruc-

tion methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

xxi



5.3 System characterization results. A: Measured axial and trans-axial

MTF slices derived from tungsten edge responses. Inset: Pinhole image

of the X-ray focal spot, resampled to match the PSF of the focal-spot

blur experienced by an object at isocenter. B: MTF models. The

detector model has the form given in (5.6). The isocenter models are

slices of the MTF derived from the final PSF multiplied by the detector

MTF model. © 2017 IEEE . . . . . . . . . . . . . . . . . . . . . . . 119

5.4 Parameter sweep results. Each point is the maximum mJac over β

for a given δ, reconstruction method, and noise realization. The left

column is MBIR-I and the right column is MBIR-BC. The top row is

the low photon flux results and the bottom row is the high photon flux

results. © 2017 IEEE . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.5 Bias/noise (A) and mJac (B) plots. The large markers in (A) corre-

spond to the maximum mJacs in (B). The frequency cutoffs for the

dFeldkamp-Davis-Kress (FDK) data in B (x-axis) are indicated at the

top of the plot. © 2017 IEEE . . . . . . . . . . . . . . . . . . . . . . 121

5.6 The center line pairs from the reconstructions in Figure 5.5. Each row

corresponds to a different reconstruction method. Note that different

values of β were used for different MBIR methods. The reconstruc-

tions with the red border correspond to the ones with the maximum

mJac in Figure 5.5(B). The lower half of each image shows the best

segmentation for that β/cutoff (i.e., the one resulting in the maximum

Jaccard index over threshold values). © 2017 IEEE . . . . . . . . . . 122

xxii



5.7 Maximum Jaccard (mJac) for each reconstruction method and regu-

larization strength for the test bench-data. © 2017 IEEE . . . . . . . 124

5.8 Axial slice of trabecular bone reconstructions. Rows correspond to

different reconstruction methods. The red background in the µCTmv

segmentation image indicates a slice of the mask used for registration

and metric calculation. Note the attenuation values of the µCT and

µCTmv scans are arbitrary and do not correspond to the gray-level

map on the bottom. © 2017 IEEE . . . . . . . . . . . . . . . . . . . . 125

5.9 Trans-axial slice of trabecular bone reconstructions. µCT and µCTmv

attenuation units are arbitrary. © 2017 IEEE . . . . . . . . . . . . . 126

6.1 Geometry used to calculate the focal-spot blur impulse response. The

focal spot is represented by the bold line on the side of the anode.

All coordinates are in detector coordinates. The origin of the anode

coordinate system is at (u0, v0, SDD). . . . . . . . . . . . . . . . . . 136

6.2 Digital extremities phantom with medial (c) and lateral (d) bones, line

pairs (a), and a uniform disc (b). . . . . . . . . . . . . . . . . . . . . 137

6.3 Axial (A) and Coronal (B) slice of trabecular bone phantom. The

phantom consists of bone (0.060 mm−1) surrounded by fat (0.019 mm−1).141

6.4 Focal spot model for data generation. Each pixel represents a

sourcelet, and the relative intensity indicates the relative weight

of that sourcelet’s measurements. Due to the anode angle, fewer

samples were required along the long axis of the focal spot, resulting

in anisotropic sourcelets. . . . . . . . . . . . . . . . . . . . . . . . . . 142

xxiii



6.5 Sourcelet modeling illustration with two different types of projector.

On the left, the sourcelets are modeled as point sources, and the vox-

els as rectangles/cubes. On the right, the sourcelets are modeled as

lines/rectangles, and the voxels are modeled as points. . . . . . . . . 147

6.6 Demonstration of the line-pair contrast calculation. The reconstruction

was averaged over slices to reduce noise (left). The rows were averaged

between the dotted lines, resulting in the profile on the right. The

mean of the peak values (triangles) and trough values (squares) were

found and subtracted to get the final contrast measurement. A slice of

the mask used for noise calculation is shown in red. . . . . . . . . . . 153

6.7 Best mutual overlap versus β. A) Medial and B) Lateral bone. . . . . 154

6.8 Reconstructions of the medial bone with the highest mutual overlap

over all thresholds and β’s. The top half of each reconstruction is

thresholded at the optimum threshold value. . . . . . . . . . . . . . . 156

6.9 MTFs and fits for the detector and the detector+source blur at differ-

ent displacements from the center of rotation. . . . . . . . . . . . . . 157

6.10 Physical CBCT reconstructions. Each subfigure shows a portion of the

phantom from the edge to one of the line pairs. Each reconstruction

has approximately the same noise level (indicated in each subplot in

units of mm−1 and denoted by σ). . . . . . . . . . . . . . . . . . . . . 159

xxiv



6.11 A: Schematic of the Field of View (FOV) sampling. Each ring was sam-

pled using the FDK algorithm. For a given sample point (for example

the red dot), the phantom was placed at that location and scanned

using a short scan with the source centered at (0, 0, 381.0) and the

detector centered at (0, 0, -132.0). The angular range covered by the

source is represented by the red arc. The data were then reconstructed

using FDK. B-G: Root Mean Squared Error (RMSE) of FDK recon-

structions for each sample point. Data at a constant radius corresponds

to sampling along one of the black circles in A. The red dots indicate

the corresponding location in A. . . . . . . . . . . . . . . . . . . . . 161

6.12 Example β sweep results at the red dot in Figure 6.11A with a transax-

ial focal-spot orientation. . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.13 Minimum RMSE from each β sweep along with the FDK RMSE values.

Data is wrapped around at 360° (i.e., the 360° data are the same as the

0° data). Subfigures A-D correspond to B-E, respectively, in Figure 6.11.164

6.14 Axial slices of reconstructions. Each set of 16 reconstruction corre-

sponds to a X-ray tube orientation (columns) and plane in the FOV

(rows). Within each set, columns correspond to the location of the

phantom (in degrees rotated about the y axis) and rows to reconstruc-

tion method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.15 Coronal slices of reconstructions. Images are arranged as in Figure 6.14.166

6.16 Simple 1D focal-spot distribution used to test focal-spot sampling prop-

erties with different projectors. . . . . . . . . . . . . . . . . . . . . . . 169

xxv



6.17 Simulated impulse responses using the focal spot in Figure 6.16 and

either the separable footprints projector (blue) or the proposed sepa-

rable sourcelets projector (orange). For each plot a different number of

sourcelets were sampled from the distribution in Figure 6.16 (indicated

at the top of each plot). . . . . . . . . . . . . . . . . . . . . . . . . . 170

6.18 Pinhole measurements at different positions on the detector with the

axial bench. There are some residual artifacts (vertical streaks) due

to bad pixels. Approximate position relative to the piercing point (the

point on the detector closest to the focal spot) is given in mm. . . . . 171

6.19 Focal spot model for the axial bench. Each pixel in the image is a

sourcelet and represents an area on the anode that emits X-rays, The

intensity of each pixel indicates the relative intensity of the correspond-

ing sourcelet. The coordinates indicate the position on the anode surface.172

6.20 Simulated pinhole measurements for the axial bench based on the focal-

spot model and separable sourcelets projector. . . . . . . . . . . . . . 174

6.21 Focal spot model for the transaxial bench. . . . . . . . . . . . . . . . 175

6.22 SI blur kernel for the transaxial bench. . . . . . . . . . . . . . . . . . 175

6.23 Reconstructions from each scan type (rows) and blur model (columns)

for the transaxial bench. The reconstructions are approximately noise

matched. The noise for each reconstruction is give in Table 6.2. . . . 176

6.24 Contrast-noise plots for each scan type and reconstruction method for

the transaxial bench reconstructions. . . . . . . . . . . . . . . . . . . 178

xxvi



6.25 The digital phantom used in the motion blur study. The ROI indicated

by the orange box in the left image is shown on the right. The left

most circle in this ROI is at the center of the phantom. The circles are

separated by 20 mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

6.26 “Harp” phantom containing 25 spans of wire (labeled 1–25). The phan-

tom was positioned off-center, with the center of rotation indicated by

the star. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

6.27 Bias/noise curves (top) and reconstructions (bottom) for each ROI in

Figure 6.25. Each column corresponds to a distance from the center of

rotation. The top row reconstructions use the identity model and the

bottom row reconstructions use the gantry motion blur model. . . . . 184

6.28 “Harp” phantom reconstructions for the identity model (left) and blur

model (right). Each ROI corresponds to one of the wires in Figure 6.26.185

7.1 Iodine sensitivity phantom. The numbers indicate the iodine concen-

tration in each adjacent ROI in mg mL−1. ROI specific CNR was cal-

culated as the ratio of the mean in the regions indicated by the circles

along the edge of the phantom to the standard deviation in the inner

circle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

7.2 Schematic of the kV-switching/split-filter acquisition protocol. The

kVp was switched every projection (i.e., every 1°). . . . . . . . . . . . 203

7.3 Digital water, iodine, and gadolinium phantom. Inserts are numbered

in the iodine image, and corresponding Regions of Interest (ROIs) for

metric evaluation are indicated with circles. Iodine and gadolinium

concentrations are next to each ROI in mg mL−1. . . . . . . . . . . . 203

xxvii



7.4 (a) Mass attenuation coefficients. (b) Spectral responses (S) for the

kV-switching/split-filter simulation study. . . . . . . . . . . . . . . . . 204

7.5 (a) Iodine/gadolinium phantom. Each vial contains different mixtures

of iodine- and gadolinium-based contrast agents. In (b) and (c) we

show a schematic of the phantom identifying insert/ROI labels. The

concentration of iodine in each vial is indicated in (b), and the concen-

tration of gadolinium in each vial is in (c). . . . . . . . . . . . . . . . 206

7.6 Schematic of tiled filter acquisition. The filter was translated each

frame to improve sampling (not shown). . . . . . . . . . . . . . . . . 207

7.7 Water/calcium simulation reconstructions. The insert ROIs are num-

bered from top to bottom. The standard deviations of the calcium con-

centrations in insert 1 are 7.82 mg mL−1 for IDD KV1:1, 12.41 mg mL−1

for PDD KV1:1, 8.11 mg mL−1 for MBMD KV1:1, 8.42 mg mL−1 for

Image Domain Decomposition (IDD) KV10:10, and 8.71 mg mL−1 for

MBMD KV10:10. The percentages indicate the root mean squared

fractional errors in the calcium ROIs. . . . . . . . . . . . . . . . . . 209

7.8 Average concentration in each insert in Figure 7.7 for water (left) and

calcium (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

7.9 RMSE for each penalty strength combination for the (a) IDD and (b)

Model-Based Material Decomposition (MBMD) methods. The mini-

mum RMSE in each plot is indicated with a star. . . . . . . . . . . . 210

xxviii



7.10 IDD (top) and MBMD (bottom) reconstructions of water (left) and

iodine (middle and right) concentrations. The right column is the

same as the center but with a tighter window to better visualize the

low concentration ROIs. . . . . . . . . . . . . . . . . . . . . . . . . . 212

7.11 CNR values in each ROI from the optimal reconstruction with each

method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

7.12 Digital iodine/gadolinium phantom reconstructions. Each column is a

different material density image. . . . . . . . . . . . . . . . . . . . . . 214

7.13 Concentrations of each material (columns) and ROI in the digital io-

dine/gadolinium phantom. The true concentrations are indicated by

vertical lines. ROI numbers correspond to those in Figure 7.3. . . . . 215

7.14 Iodine and gadolinium estimates for the physical test bench experi-

ment. The top row shows the split filter results and the bottom shows

the tiled filtered results. . . . . . . . . . . . . . . . . . . . . . . . . . 216

7.15 Concentration values for each material and ROI in the physical io-

dine/gadolinium phantom. Insert/ROI locations are indicated in Fig-

ure 7.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

B.1 Geometry and coordinates for a transaxial oriented x-ray source. . . . 228

xxix



List of Acronyms

BMD Bone Mineral Density

BV/TV Bone Volume to Total Volume

CBCT Cone-Beam CT

CG Conjugate Gradient

CNR Contrast-to-Noise Ratio

CsI Cesium Iodide

CT Computed Tomography

ESF Edge Spread Function

FBP Filtered Backprojection

FDK Feldkamp-Davis-Kress

FP Flat Panel

FPD Flat Panel Detector

FOV Field of View

xxx



FWHM Full Width at Half Maximum

GPU Graphics Processing Unit

I Identity

ID Image Domain

IDD Image Domain Decomposition

MAP Maximum A Posteriori

MBIR Model-Based Iterative Reconstruction

MBMD Model-Based Material Decomposition

MBSR Model-Based Sinogram Restoration

MDCT Multi-Detector CT

mJac maximum Jaccard index

MTF Modulation Transfer Function

mv matched voxel size

NPS Noise Power Spectrum

PET Positron Emission Tomography

PD Projection Domain

PDD Projection Domain Decomposition

PL Penalized-Likelihood

xxxi



PSF Point Spread Function

qCBCT quantitative CBCT

ROI Region of Interest

RMSE Root Mean Squared Error

SI Shift Invariant

SNR Signal-to-Noise Ratio

SQS Separable Quadratic Surrogates

SV Shift Variant

Tb.Sp. Trabecular Spacing

Tb.Th. Trabecular Thickness

TV Total Variation

µCT micro CT

xxxii



Chapter 1

Introduction

Since its invention in 1972 [3, 4], Computed Tomography (CT) has been an invaluable

clinical and research tool. Prior to the adoption of CT, X-ray imaging was focused on

projection images. While projection images are useful, they contain overlapping bio-

logical structures and limited soft tissue visualization. Conventional tomography [5]

mitigates this overlap by “blurring out” structures outside of a single plane with X-

ray source and detector motion. In contrast to projection imaging, modern CT is

capable of rapidly imaging multiple slices of the patient to produce three-dimensional

images. Additionally, these images may be used for soft tissue differentiation. Since

their inception, CT hardware and software have improved dramatically, decreasing

scan time and increasing spatial and temporal resolution.

Most medical CT scanners can be classified as either Multi-Detector CT (MDCT)

(i.e., multi-slice CT) or Flat Panel (FP) Cone-Beam CT (CBCT). MDCT scanners

are general-purpose machines capable of rapidly acquiring large images of patients.

Currently available commercial systems have reported resolutions of approximately

0.23 mm to 0.7 mm [6–8], with one state-of-the-art system (Canon’s Precision Aquil-

ion) reporting a resolution of 0.15 mm [9]. In contrast, FP CBCT scanners are gen-
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erally higher resolution (0.18 mm to 0.5 mm [10]), but have longer scan times and

are more application specific (e.g., extremities imaging [11], dental imaging [12], and

radiotherapy [13]).

Many imaging tasks and biological structures lie below this resolution. For ex-

ample, visualization of trabecular bone (0.05 mm to 0.15 mm [14]) is important in

osteoarthritis and fracture healing studies and detection and classification of micro-

calcifications (<0.1 mm [15]) are important in mammography. An increase in spatial

resolution has the potential to dramatically improve the research and treatment of

various diseases, particularly those that are currently just below current resolution

limits. Improved resolution may also improve feature extraction in radiomics [16]

potentially leading to more accurate tumor characterization.

Another critical component of image quality is quantitative accuracy (e.g., the

accuracy of attenuation values or derived quantities). This is particularly important

in applications such as Bone Mineral Density (BMD) measurement [17] and mate-

rial decomposition, which seek accurate density values to assess bone health and to

determine the concentration of specific materials in the body, respectively.

The data processing chain used to generate the final image can have a dramatic

effect on image quality. The raw data measured by a CT scanner are projections of

the patient, from which the slice or volume image is reconstructed. Reconstruction al-

gorithms vary dramatically in complexity, making different assumptions and tradeoffs

depending on the CT system, computation constraints, and imaging task. Recently,

Model-Based Iterative Reconstruction (MBIR) algorithms have become increasingly

popular for CT reconstruction. These algorithms rely on accurate physical and sta-

tistical measurement models for the CT scanner to derive an objective function, or
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goodness-of-fit metric. The reconstruction is the optimum of this objective function.

MBIR methods generally offer improved image quality over traditional methods, and

provide an excellent opportunity to further improve resolution and quantitative ac-

curacy by increasing the fidelity of these physical and statistical models.

This dissertation seeks to improve image quality and accuracy using MBIR

with high-fidelity system and noise models, and consists of three aims:

Aim 1. develop a generalized MBIR framework capable of incorporating a wide

range of physical effects including realistic noise models;

Aim 2. characterize different physical effects and the resulting noise properties on

multiple CT devices and designs, and develop mathematical and computational

models of those effects; and

Aim 3. incorporate these models into the MBIR framework to improve image

quality, and assess image quality improvements in simulation and physical data

studies.

This dissertation is organized by the physical effects being modeled instead of follow-

ing the order of the above aims.

Chapter 2 presents the relevant background information for this work. It contains

an overview of the CT imaging chain, focusing on the physical effects that will be

modeled in later chapters. It then provides an overview of CT reconstruction, in-

cluding Filtered Backprojection (FBP) and MBIR, followed by a brief overview of

previous high-fidelity modeling in CT reconstruction.
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Chapter 3 presents the generalized MBIR framework and derives associated op-

timization algorithms (Aim 1). The MBIR framework permits modeling of many

physical effects without changing the underlying optimizer.

Chapters 4 and 5 address Aims 2 and 3 for focal-spot and scintillator blur as well

as noise correlations using a Shift Invariant (SI) model. Focal-spot blur, scintillator

blur, and noise correlations are measured and modeled for multiple systems. The

models are incorporated into the MBIR framework to improve image quality, which

is assessed using a variety of metrics.

Chapter 6 addresses Aims 2 and 3 for Shift Variant (SV) focal-spot blur and

SV gantry motion blur. Both types of blur are location and orientation dependent,

requiring more complicated mathematical modeling. This chapter presents a general

strategy for measuring SV focal-spot blur and models blur in a manner consistent

with the developed MBIR framework. The effects of these types of blur and the

image quality improvements due to the resulting MBIR algorithm are studied with

multiple simulated systems as well as physical experiments.

Chapter 7 demonstrates that the generalized MBIR framework is capable of mod-

eling the polyenergetic properties of CT acquisition, and exploits this to perform

Model-Based Material Decomposition (MBMD) in multiple challenging data acquisi-

tion scenarios. Spectral properties are measured and modeled (Aim 2) and used with

the MBIR framework to improve image quality (Aim 3), specifically by removing

artifacts and providing accurate density measurements for improved quantification.

Chapter 8 concludes with additional observations and proposals for future work.
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Chapter 2

Background

This chapter begins with an overview of CT imaging. The measurement process from

X-ray generation to detection is explained, with an emphasize on the aspects that

will be modeled in later chapters. Next, an overview of the reconstruction process is

provided, focusing on MBIR methods.

2.1 CT physics

A typical CT image is an estimate of the internal X-ray attenuation properties of a

patient. A CT scanner measures the degree of X-ray attenuation along various paths

through the patient, with each path corresponds to a particular detector pixel and

gantry position. These measurements are then used to reconstruct the final image.

Figures 2.1 and 2.2 show the source and detector configuration of a MDCT and FP

CBCT scanner, respectively. X-ray photons are generated at the X-ray source which

then travel through the patient. The X-ray beam is attenuated as it travels through

the patient, and then unattenuated X-ray photons are detected and converted into a

digital signal at the detector. This section provides a brief overview of this imaging
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Source

Detector

y

Figure 2.1: Schematic of a MDCT system showing the X-ray source and detector.

X-ray photons are generated at the source, travel through the patient/object (in this

case a box), and then are absorbed by the detector. Both the source and detector are

fixed to a gantry (not shown) that rotates about the y axis along the path indicated

by the dotted line. The direction indicated by y is referred to as to axial direction.

process. More detailed descriptions may be found in Prince and Links [18], Hsieh

[19], and Bushberg et al. [20].

2.1.1 The X-ray source

The X-ray source produces photons at the desired energy and fluence from a small

area called the focal spot. The properties of the focal spot and of the X-ray beam can
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Source

Detector

y

Figure 2.2: Schematic of a FP CBCT system. As compared to the MDCT system in

Figure 2.1, FP CBCT systems have a flat detector and often have smaller pixels. Flat

panel detectors are usually more square then MDCT detectors, leading to a larger

cone angle in the axial direction but less lateral coverage.

SourceDetector

y

γ

Figure 2.3: Schematic from Figure 2.2 viewed from the side. The dotted line is the

axis of rotation, and y is the same as in Figure 2.2. The cone angle is indicated by γ.
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α

e− e−

X-ray photon

Anode Cathode

Figure 2.4: Schematic of the anode and cathode inside an X-ray tube. The anode

is rotated about the axis indicated with the dashed line. An X-ray photon shown is

traveling along the central ray, towards the patient.

dramatically effect image quality. This section discusses these properties and how

they are determined by X-ray source.

The primary component of an X-ray source is the X-ray tube, a glass vacuum tube

containing a tungsten anode and cathode. To generate X-ray photons, an electric

current (typically ≤7 A [20]) is passed through the cathode, heating it and releasing

electrons via thermionic emission. When a voltage difference is applied between the

anode and cathode, these electrons are accelerated towards the positively charged

anode. This voltage difference is usually in the range of 60 kV to 140 kV, and may

be continuous or pulsed to produce either a continuous or pulsed X-ray beam. (A

pulsed X-ray beam may also be controlled using a grid [21] or by applying a pulsed
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current.) When the electrons collide with the anode, some are decelerated by the

atomic nuclei, causing them to shed energy in the form of X-ray photons. This is

known as “Bremsstrahlung,” or breaking radiation. Electrons may also transfer their

energy to an inner shell electron, ejecting that electron from the atom. When an

outer shell electron takes it’s place, a characteristic X-ray photon is released, with an

energy equal to the energy difference between the inner and outer shells. The area

where electrons interact with the anode to release X-ray photons is the focal spot. A

focusing cup around the cathode helps direct the electrons to the focal spot, although

the spatial electron distribution (and hence, focal-spot distribution) is general not

uniform. The three main parameters defining an imaging technique are the voltage,

which determines the energy of the X-ray photons; the pulse time (for pulsed sources);

and the current flow of electrons from cathode to anode, which determines the rate of

X-ray photon generation (fluence). The current is controlled by changing the current

through the cathode.

The conversion of electrons to X-ray photons is very inefficient, and most of the

energy released by the bombarding electrons is converted to heat. To reduce heat

buildup, many X-ray sources feature a rotating anode, such as the one in Figure 2.4.

By rotating the anode about it’s central axis, any given area of the anode is only

bombarded with electrons for a small fraction of its rotational period, giving time

for heat to dissipate. Note that while the focal spot moves relative to the surface of

the anode, it remains fixed1 relative to the X-ray tube and the system as a whole. A

large focal spot area also improves heat dissipation but larger focal spots will degrade
1The focal-spot can be shifted slightly throughout a scan, for example to reduce gantry motion

artifacts. Additionally, the focal-spot may experience small perturbations in position, although these
are typically much smaller than the focal-spot size.
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resolution. To address this, focal spots are often designed long and narrow, with a

relatively steep angle (α in Figure 2.4) between the anode surface and the central ray

(the direction the X-ray photon is traveling in Figure 2.4). This allows the focal spot

to be relatively large, while appearing small from a point along the central ray. The

non-zero size of the focal spot causes its apparent size and shape to change based on

location in the imaging volume (illustrated in Figure 2.5). In other words, the impulse

response of the focal spot is position dependent, leading to a Shift Variant (SV)

blur. In Chapters 4 and 5 the focal-spot blur is modeled using a Shift Invariant (SI)

approximation. In Chapter 6 the SV effects on image quality are explored, along with

proper modeling and reconstruction techniques to mitigate these effects.

There is inherent randomness associated with X-ray generation, causing Poisson

noise, or shot noise, in measurements. The probability distribution of a given number

of X-ray photons emitted in a given time period is modeled by a Poisson distribution,

with a probability density function given by

p[y = k] = exp (−n)nk
k! (2.1)

where y is the emitted number of X-ray photons, and n is the theoretical mean

number of emitted photons [22]. A random variable with a Poisson distribution has

a mean equal to its variance. Therefore the Signal-to-Noise Ratio (SNR), calculated

as the mean divided by the standard deviation, increases as the square root of the

mean. In other words, in order to double SNR, the X-ray beam intensity must be

increased by a factor of four.

The energy of the X-ray photons produced by the source is determined by the

voltage difference between the anode and cathode. The individual photon energies
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Figure 2.5: X-ray focal spot appearance from different positions. In the center image

the viewing angle is aligned with the central ray, or z axis in this figure. The other

positions correspond to shifting the viewing angle 5° about the x and/or y axes. In

this example the anode angle is 11.3°.
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are not constant, but follow a distribution from 0 keV to the applied voltage difference

in eV (electron volts). For example, applying a 120 kV potential produces X-ray

photons with an energy range of 0 keV to 120 keV. An electron which is completely

decelerated by an atomic nucleus in the anode will produce a 120 kV photon, while an

electron which is only partially decelerated will produce a lower energy photon. For

this reason, the voltage difference is referred to as kVp for kilovolt peak. The lower

energy photons (<10 keV) are almost entirely attenuated by inherent filtration in the

system (e.g., the glass of the X-ray tube) or additional filtration outside the X-ray

tube. If these lower energy, or “soft,” X-ray photons were not filtered out, they would

be almost complete absorbed in the patient, increasing radiation dose without adding

any signal. The process of filtering lower energy photons is referred to as “hardening”

the beam, and results in a distribution with more higher energy, or “hard,” photons.

An example spectrum (computed using Spektr [23]) is shown in Figure 2.6.

Most reconstruction techniques assume the X-ray beam is monoenergetic. Unless

this discrepancy is accounted for, either with preprocessing or advanced reconstruc-

tion techniques, the reconstruction may exhibit beam hardening artifacts. These

artifacts arise because the patient hardens the X-ray beam by preferentially atten-

uating softer X-ray photons. This results in a higher energy X-ray spectrum at the

detector, and more photons being detected than would be expected with a monoener-

getic assumption. Therefore, the reconstructed attenuation values are underestimated

to account for the increase in detected photons. This underestimation is most pro-

nounced along paths of high attenuation through the patient. This work addresses

beam hardening as part of the material decomposition studies in Chapter 7.
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Figure 2.6: Example X-ray spectrum with 120 kVp. The peaks are due to character-

istic X-ray photons.
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2.1.2 X-ray attenuation

Contrast in CT is due to attenuation differences between different materials/tissue

types and different local material densities. Transmissivity is a measure of the

fraction of X-ray photons that are transmitted through an object along a particular

path, and is given by

y0 = exp(−µℓ) (2.2)

for a uniform object, where y0 is transmissivity, µ is the attenuation coefficient of the

object (in units of inverse distance), and ℓ is the length of the path. Water has an

attenuation coefficient of about 0.018 mm−1, while cortical bone is about 0.044 mm−1

at 80 kVp [24, 25]. Attenuation coefficients are energy dependent, generally with

higher attenuation at lower energies. This, combined with the polyenergetic source

spectrum, leads to the beam hardening artifacts discussed in §2.1.1. Attenuation is

often given as the mass attenuation coefficient, which is the attenuation coefficient

of a material normalized by density. Mass attenuation curves of select materials are

shown in Figure 2.7. Heavier elements, such as iodine, often have a K-edge, or a

sharp increase in attenuation at a specific energy (specifically, the energy required

to eject an electron from the K-shell).

The fact that materials have different mass attenuation curves may be exploited

to separate, or decompose, materials with similar overall attenuation. For example,

iodine and calcium have similar overall attenuations at diagnostic energies, but differ-

ent energy-dependent properties due to the iodine K-edge. Material decomposition

requires measurements with different spectral properties (e.g., measurements acquired

at different kVp). Material decomposition is the topic of Chapter 7.
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The predominant mechanisms of X-ray attenuation at CT energies are the photo-

electric effect and Compton scattering. For the photoelectric effect, all of the X-

ray energy is absorbed and an electron is released from the atom. With Compton

scattering, an incoming X-ray photon imparts some energy in deflecting an electron,

and the remainder is released as a scattered X-ray photon. This scattered photon has

lower energy and a different trajectory than the initial photon. Scattered photons may

still be detected, but because their paths through the object cannot be determined, the

signal cannot be used for traditional attenuation estimation. (The fact that the initial

photon was scattered in the first place is useful, and is part of the overall attenuation.)

Detected scatter is a low frequency effect which may effect quantification and cause

“cupping” artifacts. With small cone angles scatter effects are minimal, as a scattered

photon must remain within the slice to be detected. (Cone angle is described in

Figure 2.3.) However, MDCT scanners with many detector slices and FP CBCT

systems may have large cone angles, and as such are more susceptible to scatter.

This work largely assumes that X-ray scatter is either negligible or can be corrected

for prior to reconstruction.

2.1.3 X-ray detection

A CT detector absorbs X-ray photons and converts them to an electronic signal.

There are many types of detectors with different physical properties and trade-offs.

MDCT scanners use a curved array of pixels with the X-ray focal spot at the center

of curvature (Figure 2.1). In contrast the Flat Panel Detectors (FPDs) used in FP

CBCT systems typically have smaller pixels and are generally longer in the axial
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X-ray
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B Scintillator
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Figure 2.8: Schematic of X-ray detection process. An X-ray photon enters the scintil-

lator and is converted into multiple visible light photons, which are then detected by

the photodiodes on right of each image. Subfigure A shows a pixelated scintillator,

as is common in MDCT detectors. The light photons reflect off the septa and only

hit one photodiode. Subfigure B shows a non-pixelated scintillator, where the light

photons can spread to multiple detector photodiodes. This schematic assumes a 100%

fill factor for simplicity.
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direction but shorter in the trans-axial dimension as compared to MDCT detectors

(Figure 2.2). This results in a larger cone angle (Figure 2.3) in FP CBCT.

The term CBCT refers to systems with a large cone angle (i.e., a large detector

extent in the axial direction). Traditionally only FP systems met this criteria. How-

ever, as MDCT scanners add wider detectors, the distinction is more ambiguous. In

this work we use CBCT to specifically refer to FP CBCT.

Both MDCT and CBCT typically use indirect detectors, where the X-ray pho-

tons first interact with a scintillating material which converts them to many visible

light photons. These light photons, or secondary photons, are then detected by pho-

todiodes which convert them into an electronic signal. (In a direct detector, the

X-ray photons are directly converted into an electronic signal.) A typical detector

has one photodiode per pixel. A schematic of this process is shown in Figure 2.8.

The light photons spread from the point of X-ray interaction before being detected

by the photodiode. In CBCT (Figure 2.8B) this may result in a single X-ray photon

being detected at multiple pixels, causing scintillator blur. Cesium Iodide (CsI) is

often used as a scintillating material in CBCT because it can be manufactured with

a columnar structure, which reduces scintillator blur by discouraging light spreading

outside the columns [26]. MDCT scanners generally avoid much of the scintillator

blur by using a pixelated detector, which divides the scintillator with a reflective

coating (Figure 2.8A). However, there is still some optical crosstalk between detec-

tor elements [27]. Because multiple visible light photons are generated from a single

X-ray photon, they are statistically dependent. Scintillator blur also correlates the

noise. The noise properties of scintillator blur are explored in Chapters 4 and 5. A

thorough exploration of FPD noise properties can be found in Siewerdsen et al. [28].
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The visible light photons are converted to an electronic signal in each pixel. Each

photodiode integrates the signal over its aperture into a single value. Mathematically,

this results in a blurring and then sampling of the signal. The photodiode aperture is

often smaller than full extent of the pixel, with the ratio between aperture area and

pixel area referred to as the fill factor. A fill factor less than one results in signal loss as

X-ray photons that fall outside the aperture are not detected. Typical fill factors are

60 % to 70 % [29, 30] for FPDs. The sampling step may result in aliasing of higher

frequencies. In most CBCT scanners, system blur usually modulates any aliasing

frequencies to low levels. Finally, the signal stored in each pixel is read out and

stored in a computer. The photodiode and readout electronics can add (potentially

correlated [31]) electronic noise, or readout noise, to the signal.

Most detectors integrate the incoming signal over a period of time before it is

read out to the computer. On a system with a continuously rotating source and

detector this leads to a type of motion blur, where the source and detector are moving

during the integration time. Such blur appears in the azimuthal direction in the

reconstructed image. In MDCT systems, integration times are around 0.2 ms to

0.5 ms [20], while for CBCT they are approximately 5 ms to 25 ms [30, 32]. Gantry

motion may be reduced by operating in step-and-shoot mode, where the gantry is

stationary during X-ray exposure and signal integration, or by using short X-ray

pulses. Additionally, some MDCT systems shift the focal spot during an exposure to

offset the gantry rotation.

CT detectors are also susceptible to detector lag and afterglow, where the signal

is “trapped” in the detector during one exposure and then counted as signal in sub-

sequent exposures. Lag is primarily due to the detector electronics, while afterglow
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is the delayed release of optical light photons in the scintillator. These are usually

subtle effects, but can last for many frames. Because these are one-sided projection

domain convolutions, they can easily be corrected for in preprocessing [33].

An increasingly popular class of detector is the photon counting detector. These

are typically direct detectors which are capable of detecting individual X-ray photons.

Because these detectors are not integrating the signal from multiple photons over time,

each signal corresponds to a single X-ray photon, and the strength of that signal can

often be related to the photon energy. This additional energy information enables

spectral CT and material decomposition. While this work does not deal with photon

counting detectors directly, the material decomposition method in Chapter 7 may be

applied to data collected with such detectors.

In this section we provided an overview of many physical effects present in CT systems.

In later chapters we will present mathematical models of these effects for incorporation

into reconstruction algorithms.

2.2 CT image reconstruction

CT image reconstruction is the process of using the projection data from the X-ray

detector to form an image of attenuation values2 in the patient. Reconstruction algo-

rithms may be divided into one of two classes, analytic methods which are based on

the Radon transform, and model-based methods which are often based on statistical
2As will be shown in Chapter 7, one can reconstruct other properties instead of attenuation

values.
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x
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θ

s

Figure 2.9: Parallel beam geometry. The detector is rotated about an angle θ from

the y axis. The integration path for measurement y(s, θ) is indicated by the thick line

likelihood functions. Because model-based methods are typically solved iteratively,

they are often referred to as Model-Based Iterative Reconstruction (MBIR) methods.

Hybrid methods also exist, where data is preprocessed with model-based algorithms

prior to analytic reconstruction.

2.2.1 Analytic reconstruction

Most analytic reconstruction techniques are variations of FBP. Basic FBP is derived

using a two-dimensional parallel-beam geometry where each integration path is per-

pendicular to the detector (Figure 2.9). Modern implementations (e.g., for fan beam

and cone beam systems) can be thought of as modifications of parallel beam Filtered

Backprojection (FBP). In this section we show a derivation of parallel FBP. More

detailed derivations may be found in Prince and Links [18] and Kak and Slaney [34].
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The signal detected at a point one the X-ray detector may be modeled by:

y (s, θ) = g(s) exp (−ℓ (s, θ)) (2.3)

ℓ (s, θ) =
∫ ∞

x=−∞

∫ ∞

y=−∞
µ (x, y) δ(s− y sin(θ)− x cos(θ)) dy dx (2.4)

where y is the measured data, s is the position along the detector, θ is the gantry

rotation angle, g(s) is the bare beam photon flux at location s, and µ is a function

describing the map of attenuation values. The integral sums the attenuation values

along a line perpendicular to the detector that intersects at point s (Figure 2.9).

Equation (2.4) is also known as the Radon transform. Analytic methods tend to use

the line integrals (ℓ) instead of the measurements (y), which can be estimated by

ℓ̂(s, θ) = − log
(
y(s, θ)
g(s)

)
. (2.5)

Taking the Fourier transform of ℓ with respect to s yields

L(ρ, θ) ≜ F1D(ℓ(s, θ)) =
∫ ∞

s=−∞
exp(−2πisρ)ℓ(s, θ) ds (2.6)

=
∫ ∞

x=−∞

∫ ∞

y=−∞
exp(−2πiρ(x cos(θ) + y sin(θ)))µ (x, y) dy dx (2.7)

= F2D(µ)(u, v) (2.8)

where

u ≜ ρ cos(θ) (2.9)

v ≜ ρ sin(θ). (2.10)
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This results state that the one-dimensional Fourier transform of ℓ at a given angle

is equivalent to a one-dimensional slice of the two-dimensional Fourier transform

of µ. This is known as the Fourier Slice Theorem. One could therefore calculate µ

by Fourier transforming the line integrals, arranging them in the correct slice, and

then inverse Fourier transforming the results. In practice, a more computationally

efficient technique is used, which is derived starting with a rewritten form of the

Fourier Slice Theorem:

µ(x, y) =
∫ ∞

u=−∞

∫ ∞

v=−∞
exp(2πi(ux+ vy))L(ρ, θ) du dv (2.11)

µ(x, y) =
∫ 2π

θ=0

∫ ∞

ρ=0
exp(2πiρt)L(ρ, θ)ρ dρ dθ (2.12)

where

t ≜ (x cos(θ) + y sin(θ)) (2.13)

µ(x, y) =
∫ π

θ=0

∫ ∞

ρ=0
exp(2πiρt)L(ρ, θ)ρ dρ dθ (2.14)

+
∫ π

θ=0

∫ ∞

ρ=0
exp(−2πiρt)L(ρ, θ + π)ρ dρ dθ (2.15)

µ(x, y) =
∫ π

θ=0

∫ ∞

ρ=0
exp(2πiρt)L(ρ, θ)ρ dρ dθ (2.16)

+
∫ π

θ=0

∫ −∞

ρ′=0
− exp(2πiρ′t)L(−ρ′, θ + π)(−ρ′) dρ′ dθ (2.17)

µ(x, y) =
∫ π

θ=0

∫ ∞

ρ=0
exp(2πiρt)L(ρ, θ)ρ dρ dθ (2.18)

+
∫ π

θ=0

∫ 0

ρ′=−∞
exp(2πiρ′t)L(−ρ′, θ + π)(−ρ′) dρ′ dθ . (2.19)

23



2.2. CT IMAGE RECONSTRUCTION CHAPTER 2. BACKGROUND

x

y

A: Truth (µ)

s

θ

B: Sinogram (`)

x

y

C: Single angle
backprojection

x

y

D: All angles
backprojection

x

y

E: Filtered
backprojection

Figure 2.10: Example of FBP (with a fan beam geometry). A simple truth image

(A) is forward projected to calculate the sinogram (B). Backprojecting a single angle

effectively “smears” the projection back across the volume (C). Repeating for all

angles results in a blurry reconstruction (D), while filtering prior to backprojecting

results in an accurate reconstruction (E).

Using the facts that L(p, θ) = L(−p, θ) and L(ρ, θ) = L(ρ, θ + π)

µ(x, y) =
∫ π

θ=0

∫ ∞

ρ=−∞
exp(2πiρt)L(ρ, θ)|ρ| dρ dθ (2.20)

µ(x, y) =
∫ π

θ=0
f(t, θ) dθ (2.21)

where

f(t, θ) =
∫ ∞

ρ=−∞
exp(2πiρt)L(ρ, θ)|ρ| dρ (2.22)

is the line integrals filtered with ramp filter |ρ|. Equation 2.21 is the backprojection

operation, and may be visualized as “smearing” f back across the volume. This is

illustrated in Figure 2.10. Note that backprojecting without filtering (Figure 2.10D)

results in a blurred reconstruction (specifically a |ρ−1| blur).
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Table 2.1: Notation conventions

Description Format Example
Matrix Bold, upright, uppercase A
Vector Bold, italic, lowercase a
Matrix Element at i, j Subscripted, bold, upright, uppercase Aij

Vector Element at i Subscripted, bold, italic, lowercase ai

This parallel beam FBP algorithm may be modified for fan beam and cone-beam

systems [35]. While this section doesn’t go into detail describing these algorithms,

the basic principle is the same (i.e., high pass filtering followed by backprojection).

2.2.2 Model-based iterative reconstruction

While FBP algorithms are based on an analytic solution to the Radon transform,

MBIR methods are based on optimizing an objective function which is a goodness-

of-fit measure for an image estimate based on the measured data. A forward model

is a mathematical description of the imaging chain, and describes the mean and

statistical properties of the measured data for a given image of attenuation values.

It is used to derive the objective function. The reconstruction process is then finding

an image which minimizes this objective function, e.g., finding the most likely image

given the measured data.

MBIR methods are based on discrete system models. Equations (2.3,2.4) can be

approximated in a discrete form as

ȳ = D{g} exp(−ℓ) (2.23)

ℓ = Aµ. (2.24)
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Table 2.1 lists the matrix and vector notation used throughout this work (unless

otherwise noted). Vector µ is a discretization of µ using some basis function b. In

three dimensions

µkNxNy+jNx+i ≜
∫∫∫

µ(x, y, z)b(x, y, z; i, j, k,∆x,∆y,∆z) dz dy dx (2.25)

where ∆x is the sampling period and Nx is the number of samples in the x direction

(likewise defined for the y and z directions). The most common basis functions are

boxes, given by

b(x, y, z; i, j, k,∆x,∆y,∆z) ≜ rect(i∆x − x
∆x

) rect(j∆y − y
∆y

) rect(k∆z − z
∆z

). (2.26)

Vectors ℓ and y are defined similarly. Discretizing µ and ℓ allows the integral in

(2.4) to be represented as a matrix multiplication. The matrix, A, is referred to as

the system matrix. The exponential in (2.23) is applied element-wise. D{·} creates

a diagonal matrix with its argument on the diagonal. For example, D{g} is the gain

term with the gain for each measurement (i.e. the number of photons detected by

the pixel during a bare-beam scan) given by vector g. For CT sized problems, the

matrices A and D{g} are typically too large to be formed and stored on a computer,

and are instead applied functionally.

MBIR algorithms may use either pre-log data (y) or post-log data (ℓ) as an input.

As previously, post-log data may be estimated as

ℓ̂ = − log
(
D{g−1}y

)
. (2.27)
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Note that (2.23) models the mean measurements (ȳ) in contrast to the actual

observed measurements (y). The observed measurements are modeled as a random

variable. The two most common models are independent Poisson and independent

Gaussian, given by:

yi ∼ Poisson(ȳi), (2.28)

y ∼ N (ȳ,D{ȳ}), (2.29)

or

ℓ̂ ∼ N (ℓ̄,D{ȳ−1}) (2.30)

where N is a multivariate Gaussian distribution. Equation 2.30 operates in the post-

log domain. The Poisson model is based on the fact that the predominant source of

noise in CT measurements is quantum noise, which follows a Poisson distribution.

The Gaussian model uses the same variance as the Poisson model, and is a good

approximation to the Poisson model except for very low photon count rates (Fig-

ure 2.11). For (2.30), the variance is estimated with a Taylor expansion about ȳ [36]:

− log
(
x

g

)
≈ − log

(
ȳ

g

)
− x1

ȳ
(2.31)

var
(
− log

(
x

g

))
≈ varx

ȳ2 = ȳ

ȳ2 = 1
ȳ
. (2.32)

Likelihood based MBIR methods seek the most likely µ given the measured y (or

ℓ̂ if operating in the post-log domain):

µ̂ = arg max
µ

P (µ|y) (2.33)
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Figure 2.11: Gaussian and Poisson distributions with mean and variance equal to 1,

10, and 20.
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where µ̂ is the reconstruction. Using Bayes theorem, this may be rewritten as

µ̂ = arg max
µ

P (y|µ)P (µ)
P (y) . (2.34)

Because the log function increases monotonically, the log of the probability has the

same optimum. Taking the negative log yields

µ̂ = arg min
µ

ψ(µ) (2.35)

ψ(µ) ≜ − log(P (y|µ))− log(P (µ)) + log(P (y)). (2.36)

ψ is the general negative log likelihood objective function, and has three terms. The

first term is a fidelity term, and measures the likelihood of the measurements given

a particular reconstruction. The second is the prior term, and is a measure of the

likelihood of a given reconstruction independent of measurements. For example, a

smoothness penalty is a means of saying that smooth reconstructions are more likely

than non-smooth reconstructions. The last term is a constant (independent of µ) and

therefore doesn’t effect the location of the optima.

The minimum of ψ is often referred to as the Maximum A Posteriori (MAP)

estimator for µ. However, in practice the prior term is usually a form of roughness

penalty, often implicitly assuming a Gibbs prior distribution [37, 38]. Samples of

these distributions do not resemble medical images [39], suggesting the assumed dis-

tributions are not true priors of the data. Therefore, these estimators are typically

referred to as Penalized-Likelihood (PL) estimators instead of MAP estimators.

CT objective functions are high-dimensional and may require complex optimiza-

tion algorithms to minimize. These algorithms are often derived for specific classes
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of objective functions. A major contribution of this work is the derivation of an op-

timization algorithm that is applicable to a large class of objective functions. This

algorithm is derived in Chapter 3.

2.2.2.1 PL derivation example: post-log Gaussian model

In this section we derive the objective function for the post-log forward model with

a Gaussian noise model (2.30). While this is the arguably the simplest model, it

illustrates the process of deriving a MBIR algorithm.

The probability density function for ℓ̂ is

P (ℓ̂|µ) = k exp
(
−1

2(ℓ− ℓ̄)T D{ȳ}(ℓ− ℓ̄)
)

(2.37)

where k is a constant which normalizes the distribution. Substituting this into (2.36)

and dropping constants yields the following penalized least-squares objective function

ψ(µ) = 1
2(ℓ̂−Aµ)T D{ȳ}(ℓ̂−Aµ) + β R(µ) (2.38)

where the prior term has been replaced by the penalty function R multiplied by

constant β. This is equivalent to assuming a prior distribution given by

P (µ) ∝ exp(−β R(µ)). (2.39)

These distributions often take the form of a Gibbs prior distribution which describes

a Markov random field [37, 38, 40]. The simplest common penalty is a quadratic
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penalty Rq:

Rq = 1
4
∑
j

∑
k∈Nj

(µk − µj)2 (2.40)

where Nj is the set of voxel indices in some neighborhood of j. This penalizes dif-

ferences between neighboring pixels, enforcing smoothness. This may be rewritten in

matrix form

Rq = 1
2µTQµ (2.41)

where

Qij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

size(Ni) if i = j

−1 if j ∈ Ni

0 otherwise.

(2.42)

When a quadratic penalty is used the solution may be rewritten as

µ̂ = arg min
µ

ψ(µ) (2.43)

where

ψ(µ) = 1
2 ℓ̂T D{ȳ}ℓ̂ + 1

2µTAT D{ȳ}Aµ− µTAT D{ȳ}ℓ + 1
2βµTQµ (2.44)

which may be simplified to

µ̂ = arg min
µ

1
2µT

[
AT D{ȳ}A + βQ

]
µ− µTAT D{ȳ}ℓ. (2.45)
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Using the fact that the gradient of ψ equals zero at µ̂ yields

▽ψ =
[
AT D{ȳ}A + βQ

]
µ̂−AT D{ȳ}ℓ = 0 (2.46)

µ̂ = [AT D{ȳ}A + βQ]−1AT D{ȳ}ℓ̂. (2.47)

The matrix inverse in (2.47) is generally too expensive to be calculated directly. Thus,

µ̂ is usually estimated iteratively, for example with the Conjugate Gradient (CG)

method in Hestenes and Stiefel [41].

2.2.3 Advanced modeling in MBIR: overview and prior work

Measurements on real systems may deviate from the presented forward models in a

variety of ways (see §2.1). Discrepancies between the model assumptions and reality

may lead to image degradation, such as blur or loss of quantitative accuracy. MBIR

offers a natural way to mitigate this degradation by incorporating additional phys-

ical effects in the forward model. For example, including a scintillator blur in the

forward model will enable the MBIR algorithm to invert/deblur the data as part of

the reconstruction process.

Other techniques to improve image quality rely on either preprocessing or post-

processing steps (e.g., deblurring the projection data prior to FBP, or deblurring an

FBP reconstruction). These methods require that the physical effect can be accu-

rately modeling in either the measurement domain (preprocessing) or image domain

(postprocessing). Complicated effects such as SV focal-spot blur can only be approx-

imated in these domains, and accurate modeling requires a full MBIR approach. For

example, depth dependent focal-spot blur depends on both the location within the
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volume (not available in preprocessing) and the gantry angle (not available in post-

processing. Additionally, such processing steps are often ill-conditioned and therefore

require regularization, which may require more degrees of freedom (e.g., regularization

strength). In contrast, the regularization in MBIR applies to both the reconstruc-

tion and any implicit processing (e.g. deblurring) simultaneously. This regularization

also occurs within the domain of interest (the final image), which is often advanta-

geous. Nevertheless, pre/postprocessing methods are often very effective, providing

adequate image quality and fast computation time. Some preprocessing methods are

formulated similarly to MBIR, estimating ideal line integrals using mean and noise

models [42]. In this work these techniques are referred to as Model-Based Sinogram

Restoration (MBSR). One can also model the effects of the preprocessing step itself,

and incorporate these effects into a subsequent MBIR method. For example, the noise

properties of various artifact correction techniques may be used to change the data

weights in MBIR [36].

Advanced modeling in MBIR was first applied to nuclear imaging (e.g., SPECT,

PET) [43–47]. Nuclear imaging modalities have a linear forward model, allowing much

of the advanced modeling to be incorporated into the system matrix. In contrast, the

exponential operation due to Beer’s Law in CT makes the forward model nonlinear,

complicating blur modeling. While operating in the post-log domain linearizes CT

reconstruction, much of the effects (e.g., scintillator blur) exist in the pre-log domain.

The size of CT images and measurements are also much larger than those of nuclear

imaging, making high-fidelity modeling and MBIR, in general, more computationally

demanding. However, with the ever increasing power of computing hardware, high-

fidelity modeling and MBIR have increasingly been applied to CT.
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Most MBIR algorithms include a noise model and a penalty term. This leads to more

efficient use of the measurement data as compared to FBP and therefore better image

quality [48]. More advanced penalties/priors and forward models may be incorporated

into MBIR to further improve image quality.

2.2.3.1 Fidelity term

The fidelity term has two components, the mean model and the noise model. The

mean model may be modified to include blur and spectral effects, allowing the MBIR

algorithm to deblur data or decompose materials during the reconstruction process.

Changing the noise model effects the relative weights of different measurements in

determining the final reconstruction.

The most common blur modeled in MBIR is pixel aperture blur, which is usually

part of the projector derivation [49, 50]. In this case, the blur is applied as part of the

system matrix, although it would be more accurate to model it outside the exponen-

tial. However, in general, this is a reasonable approximation [51], the exception being

nonlinear partial volume effects [52] (i.e., when the projections contain sharp contrast

within a pixel)3. Additional system blur may be modeled in the system matrix as well,

e.g. by overestimating the size of the voxels [53]. MBIR methods have been devel-

oped to include measurement (pre-log) domain blur [54] such as scintillator blur, SV

focal-spot blur [51, 55, 56], SV gantry motion blur [57], and spectral effects [58–65].
3While not a focus of this work, nonlinear partial volume effects may be modeled with the

techniques presented here by oversampling the number of pixels and binning the results, similar to
the gantry motion model in §6.3.1.1.
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SV focal-spot blur and gantry motion blur are addressed in Chapter 6, and spectral

effects are addressed in Chapter 7.

The noise model may also be modified to improve image quality. Most noise

models either assume independent Poisson noise or independent Gaussian noise. A

Poisson noise model assumes all of the noise is due to quantum noise, and ignores

effects such as readout noise and noise due to the visible light conversion in the

scintillator. A Gaussian noise model may easily accommodate many different types

of noise, so long as they may all be approximated as Gaussian. This is less accurate

at low photon counts, where the Poisson nature of quantum noise is more apparent.

Ding et al. [66] have developed an MBIR method that uses a Poisson plus Gaussian

noise model to capture both low dose quantum statistics and readout noise, and

other modifications on the standard Poisson assumption exist to accurately model

low photon counts and other effects [67]. Noise correlations may also be modeled,

in which case the covariance matrix is non-diagonal. Noise correlations have been

modeled in MBSR [68] and in tomosynthesis [69]. Correlated noise modeling is a

major component of Chapters 4 and 5.

2.2.3.2 Prior/penalty term

Many common prior terms penalize roughness. These typically take the difference

between neighboring pixels, apply a one-dimensional potential function, and sum the

results. Mathematically,

R(µ) = 1
2
∑
i

∑
j∈Ni

ϕ(µi − µj). (2.48)
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For example, the penalty in §2.2.2.1 used ϕ(t) = 0.5t2. Another popular potential

function is the absolute value function, resulting in a Total Variation (TV) penalty [70]

which tends to enforce piece-wise constant images. Many researchers view CT recon-

struction in terms of a compressed sensing problem, in which case the TV penalty

encourages sparse solutions for the image gradient. The absolute value function is

non-differentiable at zero, complicating optimization. A compromise is the Huber

penalty [71], which is quadratic for arguments and linear for larger arguments

ϕ(t; δ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
t2

2δ if |t| ≤ δ

|t− δ
2 sign t| otherwise.

(2.49)

Different potential functions are compared in Figure 2.12.

More advanced penalties may further improve image quality. Advanced penalties

include dictionary based methods [72], roughness penalties with spatially varying

β [73], and neural network derived auto encoders [74]. In many cases a prior scan of

the patient may exist, such as in follow-up studies. In these scenarios, the previous

scan may be used as prior information by penalizing the difference between the new

reconstruction and the previous scan [75–77]. By incorporating this patient specific

prior information, dose can be considerably reduced while maintaining image quality.
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Figure 2.12: Comparison of different potential functions. The vertical line indicates

the value of δ for the Huber penalty. The quadratic penalty is scaled to ease compar-

ison.
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Chapter 3

A general model-based iterative

reconstruction framework
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3.1. FORWARD MODEL AND OBJECTIVE FUNCTIONCHAPTER 3. MBIR FRAMEWORK

Portions of this chapter are © 2017 IEEE. Reproduced here with permission.

This chapter derives the MBIR framework used in the rest of this work. A forward

model and associated objective function is defined which is capable of modeling a wide

range of physical effects. Two different reconstruction strategies are then derived,

offering different tradeoffs between model assumptions, algorithm complexity, and

reconstruction time.

3.1 Forward model and objective function

In this work we use the following forward model

ȳ = B exp(−Aµ) (3.1)

y ∼ N (ȳ,KY ). (3.2)

This differs from a common Gaussian forward model (2.23, 2.24, 2.29) by replacing

the gain term D{g} with a general matrix B, and permitting a general covariance

matrix KY instead of a diagonal matrix. As will be seen in later chapters, these

changes permit modeling of many physical effects, including scintillator blur (with

correlated noise), focal-spot blur, gantry motion blur, and multienergy acquisitions.

A Gaussian noise model was chosen over a Poisson noise model because it more

naturally accommodates a non-diagonal covariance matrix. This is an acceptable

approximation for all but highly photon starved measurements.

The negative log likelihood objective function for this forward model is

ψ(µ) = 1
2 [y −B exp(−Aµ)]T W [y −B exp(−Aµ)] + β R(µ) (3.3)
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where

W ≜ K−1
Y . (3.4)

This objective function is nonconvex and nonlinear, making optimization particularly

challenging. Additionally, it contains a matrix inversion in the objective function

K−1
Y , which may potentially require a separate iterative solver.

3.2 Optimization strategies

Two optimization strategies are discussed. The first is a novel Separable Quadratic

Surrogates (SQS) optimizer, and is used for most reconstructions in this dissertation.

The second uses preprocessing to derive a linearized objective function while keeping

track of noise correlations. This objective function may be minimized using standard

linear solvers (e.g., the CG method [41]).

3.2.1 Separable quadratic surrogates optimizer

This section contains work originally published in

S. Tilley II et al. “Penalized-Likelihood Reconstruction with High-

Fidelity Measurement Models for High-Resolution Cone-Beam Imaging”.

In: IEEE Transactions on Medical Imaging 37.4 (Dec. 4, 2017),

pp. 988–999. issn: 0278-0062. doi: 10.1109/TMI.2017.2779406. url:

https://ieeexplore.ieee.org/document/8125700/.

Reproduced here with permission.

40

https://doi.org/10.1109/TMI.2017.2779406
https://ieeexplore.ieee.org/document/8125700/


3.2. OPTIMIZATION STRATEGIES CHAPTER 3. MBIR FRAMEWORK

The objective function (3.3) is equivalent (within an additive constant) to

ψ2 = θ + β R(µ), (3.5)

where

θ ≜
1
2[x]TBTK−1

Y Bx− yTK−1
Y Bx. (3.6)

x ≜ exp (−Aµ) . (3.7)

(3.8)

We derive an algorithm to optimize (3.5) in a manner similar to that of [80], i.e.,

minimizing a separable quadratic surrogate of the objective function at each itera-

tion. Each surrogate matches the objective function in value and first derivative at

an operating point, and otherwise majorizes the objective function. Surrogate func-

tions are chosen such that their optima have closed form solutions, in contrast to

the objective function which may be difficult to minimize. To minimize the objective

function, we therefore minimize successive surrogate functions. Such an optimization

approach is desirable since the separability of the surrogates permits a high degree of

parallelization (e.g., facilitating implementation on high-performance Graphics Pro-

cessing Units (GPUs)), while the surrogates framework can guarantee monotonicity.

However, there is a classic trade-off between parallel algorithms, which require many

fast iterations, and sequential algorithms, which require fewer slow iterations. A sep-

arable/parallel algorithm is well suited to GPU hardware. In [80], separable surrogate

functions are found for the data fit term and the penalty term (in this work given

by θ and β R, respectively). The same formulation may be used for the penalty term
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surrogate, but a new formulation for the data fit term surrogate is required. A series

of surrogates are calculated for (3.6): Q, Q2, and Q3. Q is a surrogate to θ which

is separable in an intermediate term, Q2 is a quadratic surrogate to Q, and Q3 is a

surrogate to Q2 which is both separable in µ and quadratic, and can thus be easily

minimized. Each surrogate function has the same function value and first derivative

as θ at the current iterate (µ(n)). Therefore, minimizing the final surrogate at every

iteration will monotonically decrease θ [81]. Throughout this chapter, a lower case

superscript in parenthesis denotes the current iteration. For example µ(n) is the value

of µ at iteration n.

To aid in deriving surrogates matched at the current iterate, θ may be expressed as

θ = 1
2(x− x(n))TBTWB(x− x(n)) + [x(n)]TBTWBx

− yTWBx− 1
2[x(n)]TBTWBx(n). (3.9)

A separable surrogate to θ may be found by replacing the Hessian (BTWB) with

D{η} where

η ≜ BTWB1 (3.10)

and 1 is a vector of ones [80, 82, 83]. The quadratic surrogate may be expressed as

Q
(n)
X (x) ≜

Ny∑
i

(1
2x2

iηi + ρ
(n)
i xi

)
+ ξ(n) (3.11)
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where

ρ(n) ≜ BTWBx(n) −D{η}x(n) −BTWy (3.12)

ξ(n) ≜
1
2
[
[x(n)]T

(
D{η} −BTWB

)
x(n)

]
(3.13)

and Ny is the number of measurements. Note that ξ(n) is a constant, which can

be ignored for the purposes of optimization. Equation (3.11) is written using

summation notation to highlight it’s separability. The first surrogate function, Q, is

QX expressed as a function of the line integrals ℓ:

Q(n)(ℓ) ≜ Q
(n)
X (exp (−ℓ)) =

Ny∑
i

Q
(n)
i =

Ny∑
i

1
2 exp(−2ℓi)ηi+exp(−ℓi)ρ(n)

i +ξ(n) (3.14)

where

ℓ ≜ Aµ. (3.15)

Q
(n)
i is analogous to the marginal negative log-likelihood functions in [81, Eq. 2].

A quadratic surrogate to Q(n)
i is

Q
(n)
2,i (ℓi) = Q

(n)
i (ℓ(n)

i ) + (ℓi − ℓ
(n)
i )dQ(n)

dℓi

⏐⏐⏐⏐
ℓ

(n)
i

+ 1
2(ℓi − ℓ

(n)
i )2c

(n)
i . (3.16)

The curvatures c
(n)
i should be as small as possible while preserving the majorization

property of the surrogate. A small curvature results in a wider surrogate function and

therefore a larger step size and faster convergence. Erdoğan and Fessler [81] derived

the optimum curvatures for a class of functions, taking advantage of the nonnegativity

of ℓ. In §3.2.1.1 we show that (3.16) is one of these functions when η is positive. Thus,
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the optimal curvatures are [81, Eq. 28]

c
(n)
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎣2
Q

(n)
i (0)−Q(n)

i (ℓ(n)
i ) + ℓ

(n)
i

dQ(n)
i

dℓi
(ℓ(n)
i )

(ℓ(n)
i )2

⎤⎥⎥⎥⎥⎦
+

ℓ
(n)
i > 0

⎡⎣d2Q
(n)
i

dℓ2
i

(0)
⎤⎦

+

ℓ
(n)
i = 0

(3.17)

where the [·]+ operator returns the element-wise maximum of its argument and zero.

Finally, a surrogate to Q(n)
2 can be defined in a similar manner to Q(n)

X (3.11) and

as shown in [80]:

Q
(n)
2 (ℓ) =

Ny∑
i

Q
(n)
2,i (

Nµ∑
j

Aijµj) ≤ Q3(µ) (3.18)

where

Q
(n)
3 (µ) ≜

Ny∑
i

Nµ∑
j

Aij

γi
Q

(n)
2,i (γi(µj − µ

(n)
j ) +

Nµ∑
j

Aijµ
(n)
j ) (3.19)

γ ≜ A1 (3.20)

and Nµ is the number of elements in µ. This new function Q(n)
3 is quadratic, separable

with respect to µ, and matches θ in function value and derivative for µ = µ(n).

After obtaining a separable surrogate Φ for the penalty function R using [80]

and [81], the combined surrogate of the full objective function (3.5) may be minimized.
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Using the following definitions for compactness:

f
(n)
j ≜

dQ(n)
3,j

dµj

⏐⏐⏐⏐
µ=µ(n)

(3.21)

h
(n)
j ≜

d2Q
(n)
3,j

dµ2
j

⏐⏐⏐⏐
µ=µ(n)

(3.22)

r
(n)
j ≜

dΦ(n)
j

dµj

⏐⏐⏐⏐
µ=µ(n)

(3.23)

s
(n)
j ≜

d2Φ(n)
j

dµ2
j

⏐⏐⏐⏐
µ=µ(n)

(3.24)

the minimization is given by

arg min
µj≥0

Q
(n)
3,j (µj) + βΦ(n)

j (µj) =
⎡⎣µ

(n)
j −

f
(n)
j + βr

(n)
j

h
(n)
j + βs

(n)
j

⎤⎦
+

. (3.25)

Note that µ is constrained to physically realistic nonnegative values by the [·]+ oper-

ator. All derivatives are evaluated at µj = µ
(n)
j , yielding

f
(n)
j =

Ny∑
i

Aij

dQ(n)
2,i

dℓi

⏐⏐⏐⏐
ℓi=ℓ

(n)
i

(3.26)

f = AT
(
D{η} exp

(
−2Aµ(n)

)
−D{ρ(n)} exp

(
−Aµ(n)

))
(3.27)

h
(n)
j =

Ny∑
i

Aijγi
d2Q

(n)
2,i

dℓ2
i

⏐⏐⏐⏐
ℓi=ℓ

(n)
i

(3.28)

h = AT D{γ}c(n) (3.29)

where η, ρ, γ, and c are given in (3.10), (3.12), (3.20), and (3.17), respectively.

Because Q
(n)
3 is separable in µ, each µj can be updated simultaneously. This

update step is the core iterative estimator shown in Algorithm 1. It can be shown
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that the surrogate is jointly continuous in µ and µ(n). Therefore, if the sequence

{µ(n)} generated using this update step has a limit, that limit is a stationary point

of the objective function (3.3) [84, Thm. 4.1].

3.2.1.1 Optimum curvature derivation

Erdoğan and Fessler [81] have shown that (3.17) is the optimum curvature for a

function Q(ℓ) (see Appendix of [81]) if:

1. (a) Q̈ > 0 when ℓ ≥ 0.

(b)
...
Q < 0 when ℓ ≥ 0.

2. OR

(a) Q ∈ C2.

(b) Q̇(ℓ∗) is a local maximum of Q̇.

(c) ℓ∗ is the only critical point of Q̇.

(d)
...
Q < 0 when ℓ < ℓ∗.

(e) Q̈ > 0 when ℓ < ℓ∗.

We use dot notation to indicate derivatives with respect to ℓ.

In this section, Q refers to Q(n)
i in (3.14). Without the subscripts and superscripts,

Q(ℓ) = 1
2η exp(−2ℓ) + ρ exp(−ℓ) + k. (3.30)
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Algorithm 1 Algorithm to minimize (3.3), with ordered subsets and optional Nes-
terov acceleration (§3.2.1.2). The number of iterations is given by P and the number
of ordered subsets by M . The combined iteration and subset index is given by a
fractional value, n. For Nesterov acceleration, use both initialization columns and the
right update column. Otherwise, use the left initialization column and the left update
column. Element-wise multiplication is denoted by the ◦ operator. The [·]+ operator
returns the (element-wise) maximum of its argument and 0.

Common Initialization AND Nesterov Initialization

Initialize µ(0)

η ← BTWB1
γ ← A1
Calculate BTWy

z ← µ(0), w ← 0
t(0) ← 1, tsum ← t(0)

for p← 0..P − 1 do
for m← 0..M − 1 do
n← p+m/M
l(n) ← A(m)µ

(n)

x(n) ← exp
(
−l(n)

)
ρ(n) ← [BTWB](m)x

(n) − [BTWy](m) − η(m) ◦ x(n)

f (n) ←MAT
(m)[−η(m) ◦ x(n) ◦ x(n) − ρ(n) ◦ x(n)]

c
(n)
i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎣2

0.5ηi+ρ
(n)
i −0.5ηi(x(n)

i )2−x
(n)
i ρ

(n)
i −ℓ

(n)
i

(
ηi(x(n)

i )2+ρ
(n)
i x

(n)
i

)
(ℓ(n)

i )2

⎤⎦
+

ℓ
(n)
i > 0[

2ηi + ρ
(n)
i

]
+

ℓ
(n)
i = 0

h(n) ←MAT
(m)

(
γ(m) ◦ c(n)

)
Calculate penalty surrogate gradient (r(n)) and curvature (s(n))
∆µ← f (n) + r(n)

h(n) + s(n)

Normal Update OR Nesterov Update

µ(n+1/M) ← [µ(n) −∆µ]+

t(n+1/M) ← 1
2(1 +

√
1 + 4(t(n))2)

tsum ← tsum + t(n+1/M)

z ← [µ(n) −∆µ]+
w ← w + t(n)∆µ
v ← [µ(0) −w]+
µ(n+1/M) ← z + t(n+1/M)t−1

sum(v − z)
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The first, second, and third derivatives are given by

Q̇ = −η exp(−2ℓ)− ρ exp(−ℓ) (3.31)

Q̈ = 2η exp(−2ℓ) + ρ exp(−ℓ) (3.32)
...
Q = −4η exp(−2ℓ)− ρ exp(−ℓ). (3.33)

If either η or ρ is zero, or both η and ρ are positive, 1 is true.

We will show that if ρ is negative and η is positive, 2 is true. By definition, 2a is

true. Q̈(ℓ) is 0 only when

ℓ = ℓ∗ ≜ − log
(
−ρ
2η

)
, (3.34)

satisfying 2c.
...
Q(ℓ∗) = −ρ

2

2η < 0, (3.35)

implying Q̇(ℓ∗) is a maximum, and therefore 2b.
...
Q only has one root at ℓ =

− log(−ρ/4η), which is greater than ℓ∗. This combined with the fact that
...
Q(ℓ∗) < 0

implies 2d. Finally, because ℓ∗ is the only root of Q̈ and
...
Q(ℓ∗) < 0, 2e is satisfied.

3.2.1.2 Ordered subsets and Nesterov acceleration

Additional modifications to the underlying update in (3.25) are also shown in Algo-

rithm 1. Specifically, the algorithm uses the ordered-subsets approach [80] to acceler-

ate estimation. With ordered subsets, the gradient and curvature of the fidelity term

are calculated using only a subset of the projection angles (e.g., every 10th projection

angle). This is repeated for each for each set of projection angles until every angle

is used. The ordered-subsets approach takes advantage of the fact that subsequent
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projections contain similar information. Using M ordered subsets (where each subset

uses every Mth projection angle) decreases computation time by about a factor of M .

The variable m in Algorithm 1 denotes the subset index and subscripts in parentheses

indicate that the argument is modified for the corresponding subset (e.g. A(m)µ is a

forward projection of µ using only the projection angles in the mth subset). While

p indexes the outer loop of iterations using all of the data, the current iterate n is

permitted to take on fractional values indicating progress through the inner loop of

ordered-subsets updates.

Algorithm 1 also includes a second column of calculations to optionally apply

Nesterov acceleration [83, 85] to further improve the rate of convergence. Nesterov

acceleration is a momentum based acceleration approach, where a weighted average

of previously calculated updates is used to modify the current update.

Note that using ordered subsets or acceleration results in an algorithm that might

not converge. Ordered-subsets may result in a limit cycle, and acceleration is only

guaranteed to preserve convergence when the objective function is convex. Combining

ordered-subsets and acceleration can also result in instability. However, in practice the

number of subsets can be chosen such that updates are well-behaved. Additionally,

ordered subsets and acceleration can be used to get close to the solution, followed

by several iterations without subsets or acceleration. The sequence of iterates in [83]

with the desired convergence properties corresponds to z(n) in Algorithm 1. However,

Algorithm 1 only returns µ(n) at each iteration, which simplifies implementation.
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3.2.1.3 Useful approximations

Algorithm 1 requires one application of BTWB each iteration. In cases where noise

correlation is modeled, calculating W (i.e., K−1
Y ) is nontrivial, and may require an it-

erative method. However, physical effects in tomography often fit the following model:

B ≜ BcBn D{g} (3.36)

KY ≜ Bc D{q}BT
c + Kro (3.37)

where Bc is a correlating blur, Bn is a non-correlating blur, g is a vector of gain

terms, q is a vector of quantum noise (pre-correlating blur) variance, and Kro is the

readout noise covariance matrix. The physical justification for this model will be

discussed in chapter 4. When readout noise is much less than quantum noise

KY ≈ Bc D{q}BT
c (3.38)

K−1
Y ≈

[
BT
c

]−1
D{q−1}B−1

c (3.39)

BTWB ≈ D{g}BT
nBT

c

[
BT
c

]−1
D{q−1}B−1

c BcBn D{g} (3.40)

BTWB ≈ D{g}BT
n D{q−1}Bn D{g}. (3.41)

Thus, the only inversion in this approximation is a diagonal matrix, which may be

computed explicitly. In the case where Kro is not negligible, but is diagonal, the

readout noise improves the condition number of KY and allows the inversion to be

solved with relatively few iterations.
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3.2.2 Staged linearized optimizer

This section derives a staged, linearized optimizer for a simplified forward model.

Specifically

ȳ = BcBn D{g} exp(−Aµ) (3.42)

y ∼ N (ȳ,KY ) (3.43)

KY = Bc D{Bn D{g} exp(−Aµ)}BT
c + D{σ2}. (3.44)

Where Bc is a correlating blur, Bn is a non-correlating blur, g is a vector of measure-

ment gains, and σ is a vector of readout noise standard deviations for each measure-

ment (the square in (3.44) is applied element-wise). For convenience, the total blur

is defined as

Bt ≜ BcBn. (3.45)

The overall strategy is to define an estimate for the line integrals (ℓ = Aµ), and

track the resulting noise properties of that estimate for input into a subsequent linear

reconstruction. The estimate and covariance matrix are then used to derive a linear

least squares objective function with a non-diagonal weighting matrix.

The line integrals may be estimated as

ℓ̂ = log
(
D{g−1}C′y

)
(3.46)

where we introduce a general data deblurring operation, C′ ≈ B−1
t . We note that an

exact inversion of Bt may not be desirable or even possible depending on the form of
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the total system blur. This will be discussed in greater detail below. Naturally, the

transformation in (3.46) changes the covariance structure. One can show that the

covariance for the line integrals may be approximated as:

KL ≈ D{ 1
C′ȳ
}C′KY [C′]T D{ 1

C′ȳ
}. (3.47)

This approximate form is derived using a Taylor approximation and is described

in detail in §3.2.2.1. It is this expression that we will use for noise modeling in a

statistical reconstruction method.

One must take care in choosing the exact form for the deblur operator C′. If Bt

is not full rank, then there is a null space that cannot be recovered. Similarly, if Bt

is highly ill-conditioned with near zero singular values, extreme noise amplification

and sensitivity to finite precision computing may occur. To avoid these scenarios, we

introduce a modified deblur operator below that avoids these undesirable features.

For this algorithm, we assume the system blur is shift-invariant, which allows

blurring and deblurring operations to be performed using Fourier methods. In this

case, zero or near zero singular values associated with null-spaces and ill-conditioning

can be identified at specific spatial frequencies in the transfer function, since Fourier

operators diagonalize the circulant system blur operator, Bt. Thus, one simple so-

lution is to mask the nulled or near null frequencies. If b is the unmodified Fourier

transfer function such that

F∗ D{b}F = Bt (3.48)
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where F is the discrete Fourier transform, then we may apply a modified deblur

operator with threshold parameter ϵ as

C′ ≜ F∗ D{b−}F (3.49)

where

b−
i ≜

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if

⏐⏐⏐ bi

b0

⏐⏐⏐ < ϵ

1
bi

otherwise.
(3.50)

where bi are individual frequency components of the blur, and b0 is the zero fre-

quency component (unity for an energy preserving blur). Similarly, we may define an

approximate inverse to this thresholded deblur operation as

[C′]−1 ≜ C ≜ F∗ D{b+}F (3.51)

where

b+
i ≜

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if

⏐⏐⏐ bi

b0

⏐⏐⏐ < ϵ

bi otherwise.
(3.52)

The masked deblur and blur transfer functions are illustrated in Figure 3.1. A repre-

sentation of (3.51) is shown in Figure 3.1(a), which is a blur transfer function with the

high frequencies masked out, as indicated by the gray hatched area. A representation

of (3.49) is shown in figure Figure 3.1(b), which is an inversion of (3.51) within the

unmasked region, and zero otherwise.

The diagonal terms in (3.47) can easily be inverted by inverting each element on

the diagonal. This fact and (3.51) give expressions for the inverse of each term in
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(3.47) except KY . The inverse of (3.47) can therefore be written as:

K−1
L ≈ D{C′ȳ}CTK−1

Y C D{C′ȳ}. (3.53)

KY is approximated as:

KY ≈ Cc D{C′y}CT
c + D{σ2} (3.54)

where Cc is a thresholded correlating blur. This thresholded blur is defined in

(3.51), using Bd instead of Bt. The term D{Bn D{g} exp(−Aµ)} from equation

3.44 requires unavailable mean pre-detection data, and is estimated by the deblurred

measurement data.

With the previously described processing in (3.46) which linearizes the system

model, and the presumption of Gaussian distributed noise with zero mean and known

covariance, we may form an objective function. Under these assumptions the implic-

itly defined objective is a generalized least-squares fit with a weighting by the inverse

of the covariance matrix. Specifically, we may write

µ̂ = arg min
µ

1
2 [ℓ−Aµ]T K−1

L [ℓ−Aµ] + β R(µ). (3.55)

As discussed in §2.2.2.1, when a quadratic penalty is used the solution is

µ̂ = [ATK−1
L A + βQ]−1ATK−1

L ℓ̂. (3.56)

where Q is defined in (2.42).
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Figure 3.1: Representation of deblur masking. The original blur (a) tends towards

zero at higher frequencies. To account for this, those frequencies are masked. Subfig-

ure (a) shows b+ from equation (3.51) and (b) shows b− from equation (3.49).
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Sauer and Bouman [86] derived this general form (with a diagonal weighting ma-

trix) using a second order Taylor series approximation to a fidelity term based on a

Poisson noise model and a Gaussian Markov random field prior. Fessler [87] modified

the derivation to include scatter, and used a more general penalty term.

Beside the additional deblurring step in (3.46), the key difference between equa-

tion (3.56) and the work of Sauer, Bouman, and Fessler, is the use of a non-diagonal

weighting matrix—the inverse of KL—which may not necessarily exist. For the for-

mulation used above, the masked frequencies in C result in a degenerate KL which

cannot be inverted (i.e. information at certain frequencies cannot be recovered). If

we replace the inverse in (3.55) with a generalized inverse, the unregularized solution

to (3.55) is the maximum-likelihood solution in the span of KL. For line integral fre-

quencies in the null space, the fidelity term evaluates to zero and the reconstruction

relies only on the penalty function. For this algorithm, we will use inverse notation to

mean generalized inverse where appropriate. See Rao [88] for a detailed explanation

of Gaussian density functions with degenerate covariance matrices.

Equation (3.56) can be logically separated into two sections (see Algorithm 2).

The preprocessing section requires estimating the line integrals, applying the inverse

covariance matrix, and backprojecting (applying AT ) the result. The application of

the inverse covariance matrix is performed in steps in accordance with (3.53). The

iterative section involves two iterative optimization algorithms, the “outer” system

algorithm, which solves for µ̂, and the “inner” inversion of KY within K−1
L . The

inversions of KY and (ATK−1
L A + βQ) can be performed using a variety of solvers,

such as LSQR(A-1) [89], a momentum based approach [83, 85], or the CG method [41].
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Algorithm 2 Overview and pseudocode for the proposed linearized algorithm.
ydb ← C′y ▷ Start of preprocessing section
ℓ̂← − log(D{g−1}ydb)
z ← apply_inv_cov(ℓ̂)
b← ATz
µ̂← apply_inv(b) ▷ Iterative section
function apply_inv_cov(ℓ̂)

p← CT D{ydb}ℓ̂
Solve KY a = p for a ▷ Inner loop
return D{ydb}Ca

function apply_inv(b)
Solve [ATK−1

L A + βQ]µ̂ = b for b ▷ Outer loop

3.2.2.1 Line integral covariance matrix derivation

We show how the preprocessing steps transform the covariance matrix of the data.

We start with the mean (ȳ) and covariance (KY ) of the measurement data. The

deblurring and normalization steps are represented by the linear operators C′ and

D{g−1}, respectively, resulting in deblurred normalized data (ydbn) with mean and

covariance given in (3.57) and (3.58) respectively.

ȳdbn = D{g−1}C′ȳ (3.57)

KYdbn
= D{g−1}C′KY [C′]T D{g−1} (3.58)

To calculate the effects of the log transform on the covariance matrix, we estimate

log(x) as a linear function using a Taylor series expansion about x0.

log(x) ≈ log(x0) + x− x0

x0
(3.59)
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For each element of ydbn we expand about its current value. For some input a

log(ai) ≈ log(ydbn,i) + ai − ydbn,i
ydbn,i

(3.60)

log(a) ≈ log(ydbn) + D{y−1
dbn}a− 1. (3.61)

Addition of constants does not affect the covariance matrix, so the alterations to the

covariance simply involve two multiplications by the diagonal matrix in the middle

term in (3.61). The covariance of the line integral estimates is therefore

KL = D{y−1
dbn}D{g−1}C′KY [C′]T D{g−1}D{y−1

dbn}. (3.62)

Because

D{y−1
dbn} = D{g}D{ 1

C′y
} (3.63)

equation 3.62 can be reduced to

KL = D{ 1
C′y
}C′KY [C′]T D{ 1

C′y
}. (3.64)

3.3 Accommodation of an isotropic Huber penalty

An isotropic Huber penalty is used in some studies in this work. Erdoğan and Fessler

[80, 81] present a general strategy for obtaining surrogates to penalties with the form

of (2.48). However, the isotropic Huber penalty does not fit this form. The isotropic

penalty does not prefer gradients with particular orientations. In contrast, the Huber

penalty using the form of (2.48) and the eight nearest voxel neighborhood tends to
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prefer gradients oriented with the voxel grid. This chapter derives the surrogates,

gradient, and curvature approximations for the isotropic Huber penalty.

We define the penalty as

R (µ) = R1 (µ) + R2 (µ) (3.65)

R1 (µ) =
∑
i

ϕ (gi (µ)) (3.66)

R2 (µ) =
∑
i

ϕ (g∗
i (µ)) (3.67)

(3.68)

where gi and g∗
i are different calculations of the gradient of µ at index i and ϕ is the

Huber function (2.49). Specifically,

gi (µ) =
√

(µi − µi−sx)2 +
(
µi − µi−sy

)2
+ (µi − µi−sz)2 (3.69)

g∗
i (µ) =

√
(µi − µi+sx)2 +

(
µi − µi+sy

)2
+ (µi − µi+sz)2 (3.70)

(3.71)

where sx, sy, and sz are the offsets to move one element in that direction. If using

the indexing scheme in (2.25), the values of sx, sy, and sz are 1, Nx, and NxNy,

respectively, where Nx is the number of elements in the x direction, etc. By defining

Ni as the set {i− sx, i− sy, i− sz} and N∗
i = {i+ sx, i+ sy, i+ sz}, gi and g∗

i can be
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written as

gi (µ) =
√∑
j∈Ni

(µi − µj)2 (3.72)

g∗
i (µ) =

√∑
j∈N∗

i

(µi − µj)2. (3.73)

If any element of Ni or N∗
i is not in the image (i.e., i is a boundary point), that

element is dropped from the set.

We seek a surrogate function for R that is greater than or equal to R everywhere

and matches R in value and derivative at a point t̂. We derive this specifically for R1,

as the derivation for R2 is similar.

From Erdoğan and Fessler [81] we define this function as

ϕ̂(t; t̂) = ϕ(t̂) + ϕ̇(t̂)(t− t̂) + ϕ̇(t̂)(t− t̂)2

2t̂
(3.74)

which can be simplified to

ϕ̂(t) = ϕ̇(t̂) t
2

2t̂
+ k (3.75)

k = ϕ(t̂)− ϕ̇(t̂)( 3̂t
2 ). (3.76)

We therefore define a surrogate penalty function at point µ(n) as

Q(n) (µ) =
∑
i

ϕ̂
(
gi (µ) ; µ(n)

)
=
∑
i

α
(n)
i gi (µ)2 + k ≥ R1 (µ) (3.77)

α
(n)
i = 1

2
ϕ̇
(
gi
(
µ(n)

))
gi (µ(n)) . (3.78)
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Substituting g yields

Q(n) (µ) =
∑
i

∑
j∈Ni

α
(n)
i (µi − µj)2 + k. (3.79)

From this point we drop k because it does not effect the derivative of the result.

Using the technique in Lange and Fessler [90, Eq. 12]

Q
(n)
2 (µ) =

∑
i

[ ∑
j∈Ni

α
(n)
i

2
(
2µi − µ

(n)
j − µ

(n)
i

)2

+
∑
j∈Ni

α
(n)
i

2
(
2µj − µ

(n)
j − µ

(n)
i

)2
]
≥ Q (µ) . (3.80)

Q
(n)
2 (µ) =

∑
i

[ ∑
j∈Ni

α
(n)
i

2
(
2µi − µ

(n)
j − µ

(n)
i

)2

+
∑
j∈N∗

i

α
(n)
j

2
(
2µi − µ

(n)
j − µ

(n)
i

)2
]
≥ Q (µ) . (3.81)

Repeating the above process for R2 and adding the surrogates together yields

T (n) (µ) =
∑
i

[ ∑
j∈Ni

[
α

(n)
i

2
(
2µi − µ

(n)
j − µ

(n)
i

)2
+

γ
(n)
j

2
(
2µi − µ

(n)
j − µ

(n)
i

)2
]

∑
j∈N∗

i

[α
(n)
j

2
(
2µi − µ

(n)
j − µ

(n)
i

)2
+ γ

(n)
i

2
(
2µi − µ

(n)
j − µ

(n)
i

)2
]]

(3.82)

where

γ
(n)
i = 1

2
ϕ̇
(
g∗
i

(
µ(n)

))
g∗
i (µ(n)) . (3.83)
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The first and second derivatives at µ(n) needed for optimization are

Ṫ (n)
(
µ(n)

)
=
∑
j∈Ni

2
(
α

(n)
i + γ

(n)
j

) (
µ

(n)
i − µ

(n)
j

)
+

∑
j∈N∗

i

2
(
α

(n)
j + γ

(n)
i

) (
µ

(n)
i − µ

(n)
j

)
(3.84)

T̈ (n) =
∑
j∈Ni

4 (αi + γj) +
∑
j∈N∗

i

4 (αj + γi) (3.85)

The calculation is summarized in Algorithms 3 and 4.

Algorithm 3 Algorithm for the isotropic Huber penalty gradient (r) and curvature
(s) calculation.

α← Calc_alpha
(
µ(n), δ

)
γ ← Calc_gamma

(
µ(n), δ

)
for i = 0..length

(
µ(n)

)
− 1 do

ri ← 0 ▷ Gradient at i
si ← 0 ▷ Curvature at i
for s ∈ {sx, sy, sz} do
j ← i− s
if j ≥ 0 then

ri ← ri + 2 (αi + γj)
(
µ

(n)
i − µ

(n)
j

)
si ← si + 4 (αi + γj)

j ← i+ s
if j < Ni then

ri ← ri + 2 (αj + γi)
(
µ

(n)
i − µ

(n)
j

)
si ← si + 4 (αj + γi)
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Algorithm 4 Functions used by Algorithm 3
function Calc_alpha(µ(n), δ)

for i = 0..length
(
µ(n)

)
− 1 do

g ← 0
for s ∈ {sx, sy, sz} do

if i− s ≥ 0 then
g ← g + (µ(n)

i − µ
(n)
i−s)2

g ← √g
αi ← phiprime_g_over_g (g, δ)

return α
function Calc_gamma(µ(n), δ)

for i = 0..length
(
µ(n)

)
− 1 do

g ← 0
for s ∈ {sx, sy, sz} do

if i+ s < length
(
µ(n)

)
then

g ← g + (µ(n)
i − µ

(n)
i+s)2

g ← √g
γi ← phiprime_g_over_g (g, δ)

return γ

function phiprime_g_over_g(g, δ)
if g ≤ δ then

return (2δ)−1

else
return (2g)−1
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Chapter 4

Relative effects of shift-invariant source

and detector blur with a linearized model

This chapter contains work originally published in

Steven Tilley II, Jeffrey H. Siewerdsen, and J. Webster Stayman. “Model-

Based Iterative Reconstruction for Flat-Panel Cone-Beam CT with Focal

Spot Blur, Detector Blur, and Correlated Noise”. In: Physics in Medicine

and Biology 61.1 (2016), p. 296. issn: 0031-9155. doi: 10.1088/0031-

9155/61/1/296. url: http://stacks.iop.org/0031-9155/61/i=1/a=

296 (visited on 12/09/2015)

and

Steven Tilley II, Jeffrey H Siewerdsen, and J Webster Stayman. “Iterative

CT Reconstruction Using Models of Source and Detector Blur and Corre-

lated Noise”. In: Proc. 3rd Intl. Mtg. on Image Formation in X-Ray CT.

2014, pp. 363–367. url: http://www.ucair.med.utah.edu/CTmeeting/

ProceedingsCTMeeting2014.pdf.
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Reproduced here with permission. Preliminary work was also presented in

J Webster Stayman et al. “Generalized Least-Squares CT Reconstruction

with Detector Blur and Correlated Noise Models”. In: Proc. SPIE. San

Diego, CA, 2014, pp. 903335–903335–6. isbn: 4-10-955111-0. doi: 10.

1117/12.2043067. url: http://dx.doi.org/10.1117/12.2043067

and

Steven Tilley II, Jeffrey H Siewerdsen, and J Webster Stayman. “Iterative

CT Reconstruction Using Models of Source and Detector Blur and Corre-

lated Noise”. In: Proc. 3rd Intl. Mtg. on Image Formation in X-Ray CT.

2014, pp. 363–367. url: http://www.ucair.med.utah.edu/CTmeeting/

ProceedingsCTMeeting2014.pdf.

4.1 Introduction

CBCT is a promising modality for many clinical applications due, in large part, to

its adaptable open geometry and capacity for high, isotropic spatial resolution. A

broad variety of geometries exist, each driven by application requirements as well as

tradeoffs between X-ray scatter (favoring greater object-detector distance) and spatial

resolution. In some cases, the extended system geometry increases the influence of

focal spot blur. Many CBCT systems would benefit from even greater resolution ca-

pabilities. Clinical examples in which improved spatial resolution is required include

the detection of microcalcifications in CBCT mammography [15, 93] and the charac-

terization of trabecular structure in CBCT extremities imaging [94]. In both of these

cases, there are important image features that are just beyond the typical spatial
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resolution of CBCT systems. While the image quality (including the spatial resolu-

tion) of current CBCT systems can be improved through hardware changes (smaller

detector pixels, thinner scintillator, smaller X-ray source focal spot, etc.) and the

redesign of other system characteristics (increased magnification, increased exposure,

etc.), improved reconstruction algorithms can also lead to dramatic improvements

in image quality. Moreover, improvements to the data processing pipeline have the

potential to alter traditional tradeoffs in the design of new systems.

Much work on improved data processing in CBCT has concentrated on improved

system modeling for reconstruction. This includes models for data corrections to ac-

count for scatter, beam hardening, and source and detector effects [42, 68, 95–99] as

well as changes to the reconstruction algorithm [36, 100, 101]. MBIR algorithms have

demonstrated higher image quality than traditional analytical approaches like FBP

in both multi-detector CT [48] as well as CBCT [36, 102–104]. Much of this success

comes from an accurate statistical model of measurement noise. Typically, statistical

approaches model the data-dependent variance of measurements and implicitly or ex-

plicitly weigh the relative contributions of data with differing noise levels. Nearly all

MBIR methods have made the assumption that the measurements are statistically in-

dependent. However, a few counterexamples can be found in the literature in Fourier

rebinned Positron Emission Tomography (PET) [105], multienergy CT reconstruction

[106–108], and tomosynthesis [69]. While the independence assumption may be ap-

propriate for some MDCT systems, CBCT data can exhibit significant spatial noise

correlation due to the detection process (e.g. as part of the indirect X-ray detection

and light spread in the scintillator). In this chapter we discuss and model the effect
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of noise correlation and use the results of chapter 3 to integrate the effect of noise

correlation in the reconstruction algorithm.

For high spatial resolution reconstructions, accurate modeling of system blur is

also potentially important. System blur modeling has been used extensively in MBIR

for nuclear imaging to achieve higher spatial resolution reconstructions [43, 54, 56,

109]. Such methods have also been attempted in MDCT; however, it should be noted

that in many cases, sophisticated blur modeling does not yield significant improve-

ments. For example, Hofmann, Knaup, and Kachelrieß [110] showed that, under

typical diagnostic CT conditions (0.5 mm to 2.0 mm focal spot size, 1.3 mm detector

pixel size), modeling the effects of an extended source focal spot was not beneficial.

However, there is a large opportunity for improvement in CBCT systems that often

have smaller detector pixel pitches, larger (fixed anode) X-ray focal spots, and more

varied geometries than clinical MDCT.

Previous work to improve the accuracy of the system model has accounted for

blur in the reconstruction algorithm but without modeling noise correlation [54, 56].

Other staged reconstruction approaches perform a sinogram restoration step to ac-

count for system blur, [42] and noise correlation [68, 111]. In this chapter we present

a forward model that includes source and scintillator blur and is compatible with the

reconstruction algorithm developed in §3.2.2. This reconstruction algorithm tracks

noise correlation through a deblurring step and incorporates this correlation in an iter-

ative optimization algorithm. We evaluate the method by comparing reconstructions

using the correlated noise model with results obtained using a model that assumes

spatially independent noise. We evaluate the performance of the MBIR algorithm de-

veloped in §3.2.2 under different noise model assumptions and compare reconstructed
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image quality in a digital extremities phantom in a variety of system configurations

with different combinations of source and detector blur sizes. The MBIR algorithms

are also compared with FBP with Projection Domain (PD) deblurring, Image Do-

main (ID) deblurring, and no deblurring. Additionally, we demonstrate performance

advantages using the proposed approach in physical CBCT data of an anthropomor-

phic wrist phantom from an X-ray test bench for which we have measured system

blur associated with both the X-ray source and the detector.

This chapter uses a SI assumption for both scintillator blur and focal-spot blur.

While this is usually accurate for scintillator blur, focal-spot blur may exhibit strong

shift-variant properties depending on the focal spot and the system geometry. How-

ever, for a small Field of View (FOV) and low magnification, the SI approximation

is reasonably accurate. The SV nature of focal-spot blur is explored in chapter 6.

4.2 Methods

In Figure 4.1 we present an idealized model of a CBCT system. The measurements are

modeled as a random vector which has undergone a series of transformations as the

signal propagates through the system. We presume that the statistical distribution

of quanta at each stage is approximately Gaussian and concentrate only on the first-

and second-order statistics of this random vector. In each of four stages of the CBCT

system we identify the mean (across the bottom of the figure) and the covariance

matrix (top) for this random vector.

In the first stage, we presume the X-ray tube generates a spatial distribution of

X-ray photons with a mean vector g. These primary quanta are independent with
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Bd D{ȳ0}BT
d

D{g} D{ȳ0} Bd D{ȳ0}BT
d + D{σ2}Covariance:

Mean: g ȳ0 = Bs D{g} exp(−Aµ) ȳ = BdBs D{g} exp(−Aµ)

Bs Bd
Extended

X-ray Source

Object
Scintillator

1.

2.

3.

4.

X-ray
Photons

Light
Photons

Photo-
diodes

Figure 4.1: Model for the mean (bottom) and covariance (top) of quanta at various

stages. (1) After X-ray photon generation, quanta are independent with a variance

equal to the mean. (2) When X-ray photons are attenuated by the object, the spatial

distribution of the mean and variance change, but remain equal and independent.

An operator that includes source blur is also included. (3) In the scintillator, X-

ray photons interact with a scintillating material creating many light photons which

spread spatially, blurring the mean distribution and adding correlation to the noise.

(4) Photodiodes detect the light photons with possible additive readout noise.
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a Poisson distribution. Thus, the covariance is given by a diagonal matrix with the

vector g on the diagonal.

At the second stage, X-ray photons have been attenuated by the object in ac-

cordance with Beer’s law and the signal has been blurred by the extended X-ray

source. The pre-detection mean distribution of X-ray photons is given be the vector

ȳ0. Similarly, since source blur does not correlate noise [112], the covariance matrix

remains diagonal with values updated to match the mean vector. The mean vector

ȳ0 is modeled using Beer’s law along line integrals obtained by applying a forward

projection operator (A) to the vector of attenuation values (µ). A scaling by the

primary quanta distribution is also applied (D{g}).

Focal spot blur is modeled as a linear operator (Bs) on the (unblurred) trans-

mission values. Ideally, this focal-spot blur might be modeled by an integration of

transmission values over a fine sampling of rays distributed over the extended fo-

cal spot, which would accommodate the depth-dependent blur associated with the

source. However, while the above mathematical model is general, a model with very

fine sampling is expensive to compute. In this chapter we presume that the object

being scanned has a small width relative to the source-detector distance (i.e., that

magnification is fairly constant throughout the object) so that Bs may be approxi-

mated as a single convolutional blur function acting within the object plane (at the

source-object distance). (More advanced focal-spot modeling is addressed in chap-

ter 6.) This blur is applied for each projection using a system model with the number

of rays equal to the number of detector elements. Moreover, we choose a separable

footprints projector/backprojector pair [50] that explicitly models the detector aper-

ture and cubic voxels. This approximation moves the physical integration over the

70



4.2. METHODS CHAPTER 4. SI BLUR WITH LINEAR MODEL

detector aperture (ideally modeled in Bs or Bd) inside the exponential (as part of

A). While not strictly correct, this approximation accounts for a degree of blur due

to the detector aperture at reduced computational cost.

In the detector scintillator (stage 3), individual X-ray photons are converted into

many visible light photons with a broad angular distribution in trajectories. This

results in a single X-ray photon contributing signal to multiple pixels. This is mod-

eled as a second blurring operator (Bd) which modifies the mean vector. Because

of the one-to-many conversion of primary to secondary quanta in the detector, the

scintillator also correlates the noise associated with each X-ray quanta, resulting in

a non-diagonal covariance matrix. In this chapter, it is assumed that any blur as-

sociated with the pixel aperture is negligible compared to scintillator blur and that

aliasing is not a dominating effect.

At the final stage (position 4), we include additional zero-mean electronic readout

noise associated with the detector. This is modeled by adding the readout noise

covariance matrix D{σ2} to the current covariance matrix, where σ is a vector of the

readout noise standard deviation for each measurement. Thus, the final mean and

covariance of the measurement random vector are given by equations (4.1) and (4.2).

ȳ = BdBs D{g} exp(−Aµ) (4.1)

KY = Bd D{Bs D{g} exp(−Aµ)}BT
d + D{σ2}. (4.2)

For convenience, the total blur is defined as

Bt ≜ BdBs. (4.3)
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The linear reconstruction model (§3.2.2) was used with Bc = Bd, Bn = Bs, and

KY approximated as in (3.54). The same method was used but without correlated

noise modeling for comparison. Specifically,

Kuncorr
L = D

{
1

C′y + σ2

}
. (4.4)

Additionally, for comparison with traditional FBP, reconstructions were performed

on both deblurred and non-deblurred data using the Feldkamp-Davis-Kress (FDK)

algorithm [35] using an unapodized ramp filter with a cutoff at the Nyquist frequency.

FDK on deblurred data is referred to as Projection Domain (PD) deblurring.

The actions of A and AT were performed on a GPU using the separable footprints

algorithm [50] and an in-house CUDA [113] library.

4.2.1 Simulation studies

Simulation studies were conducted using the digital phantom illustrated in Fig-

ure 4.2. This phantom contains a number of different regions that include the fol-

lowing tissue types and attenuation values: (i) fat (µ = 0.018 75 mm−1); (ii) muscle

(µ = 0.021 50 mm−1); and (iii) bone (µ = 0.060 44 mm−1). There are additional

features for qualitative and quantitative performance analysis, including a medium-

contrast (v) disc and (iv) line pairs (µ = 0.03 mm−1). Simulated mean projection

data were generated for a C-arm geometry (120 cm source detector distance and 60 cm

source axis distance) with a 1D detector with 1750 pixels and a 0.14 mm pixel pitch.

To approximate a continuous domain projection operator, line integrals were obtained

by projecting a high resolution version of the phantom (4000× 4000 with 0.025 mm
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Figure 4.2: Digital phantom used in simulation studies emulating an extremity imag-

ing scan with (i) fat, (ii) muscle, (iii) bone, (iv) line pairs, and (v) a uniform disc.

For noise evaluations, sample variance was calculated in the disc interior indicated

with a circle. Spatial resolution was estimated using the edge response between the

disc and fat background.
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voxels) onto a subsampled detector (7000 pixels with 0.035 mm pixel pitch) followed

by an integration in the line-integral domain (over four detector sub-elements) to

match the detector grid.

Noisy projection measurements were generated using Gaussian noise. The readout

noise (σ) was 1.9 equivalent photons and the bare-beam fluence was a constant 106

photons per detector element. Noiseless projection data were blurred by applying Bs

to obtain an intermediate mean vector ȳ0 . This vector was then blurred by applying

Bd to obtain the noiseless measurement data. Quantum noise was modeled as zero

mean Gaussian noise with variance equal to ȳ0 . This noise was blurred by Bd to add

correlations and then added to the mean vector. Lastly, zero mean Gaussian readout

noise with a variance of σ2 was added to yield the noisy measurement data.

Data were reconstructed into a 1000× 1000 2D image volume with 0.1 mm voxels

for each of the three reconstruction methods: MBIR with the proposed correlated

noise model, MBIR with the uncorrelated noise model, and FDK. In the preprocessing

section K−1
L was applied using 1000 iterations of the CG method [41], and in the

iterative section K−1
L was applied with 100 iterations (inner loop). The outer loop

used 100 iterations of CG. The CG method was terminated early if the residual vector

reached zero. Before deblurring, the data were padded with I0. Both Cc, C , and C′

had a threshold (ϵ) equal to 10−2. When performing covariance operations, padding

prior to blur operations was performed using nearest neighbor extrapolation.

FDK reconstructions were also deblurred using a Image Domain (ID) Wiener

deblur filter for comparison. Specifically, the deblur transfer function in the Fourier
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domain was

H

H2 + λF(Q) . (4.5)

H is a Gaussian transfer function with the width parameter found by fitting an error

function to the disc (v. in Figure 4.2) edge response in a noiseless FDK reconstruction.

Q is defined in (2.42), and the Fourier transform is

F(Q) = (4− 2 cos(2πfx)− 2 cos(2πfy)) (4.6)

where fx and fy are the frequencies in the x and y directions. The regularization

strength is given by λ. This assumes the same prior distribution on µ as a quadratic

penalty and that the image noise is white.

For performance assessment in simulation studies, noise-resolution tradeoffs were

investigated for each MBIR reconstruction and the ID deblurring. Specifically,

resolution-variance curves were obtained by sweeping the regularization parameter

(β or λ) across a range of values (e.g. lower β/λ induces a higher resolution image

with more noise, higher β/λ yields an image with lower resolution and less noise).

To quantify resolution, the width of the edge response of the disc (Figure 4.2) was

estimated using an error function fit. Specifically, attenuation values, µj, from a

noiseless reconstruction were fit to the following equation which is a function of

distance, xj, from the center of the disc in the phantom (from 0.1 mm to 10.0 mm):

µj(xj) = a+ b erf
⎛⎝2

√
log(2)(xj − d)

FWHM

⎞⎠ (4.7)
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Experiment
System
Scenario

Scintillator
Blur (Bd)

FWHM (mm)

Source
Blur (Bs)

FWHM (mm)

Constant
Total Blur

a 0.77 0.00
b 0.70 0.34
c 0.55 0.55
d 0.34 0.70
e 0.00 0.77

Constant
Blur Ratio

d 0.34 0.70
f 0.25 0.52
g 0.42 0.88

Table 4.1: Systems with varying degrees of source and detector blur were simulated to

investigate reconstruction performance over a range of scenarios. These scenarios are

lettered a–g and permit two experiments where (1) the total blur is constant and the

proportion of source and detector blur is varied; and (2) the proportion of source and

detector blur is constant and the total blur is varied. Note that scenario d appears

in both experiments.

The Full Width at Half Maximum (FWHM) is derived from this fitting operation.

Noise was quantified as the sample variance of attenuation values inside the disc

(within a 2.5 mm radius indicated in Figure 4.2) for a noisy data reconstruction.

To assess how performance varies with different blur properties, data generation

and reconstruction were performed with Gaussian source blur and scintillator blur of

various sizes (Table 4.1). Seven scenarios were chosen, five in which the total system

blur was constant and three in which the ratio of the types of blur was constant

(with one scenario belonging to both groups). Evaluation of systems with constant

total blur and varying levels of source and detector blur permits an investigation

into the relative performance of methods under varying levels of noise correlation.
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118 cm
60 cm

Figure 4.3: Test bench with flat panel detector (left) and X-ray source (right). The

wrist phantom used is shown at the axis of rotation.

(Recall that source blur does not introduce noise correlation, whereas detector blur

does impart correlation). The constant blur ratio scenarios permit investigation of

performance when the total amount of blur is varied. In all studies, for all deblurring

and reconstructions, blur models were matched with those used in data generation

(except for ID deblurring which was in a different domain).

The original 4000× 4000 voxel phantom was downsampled by a factor of four in

both dimensions to obtain a truth image with the same dimensions as the recon-

structions. This truth image was used to generate difference images to visualize the

accuracy of different reconstructions.
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4.2.2 Bench characterization

To apply the proposed methodology to physical data, a system characterization was

necessary to estimate system blur. The experimental setup and CBCT test-bench

used for investigations is illustrated in Figure 4.3. This system is composed of a

flat-panel detector (4030CB, Varian, Palo Alto CA) and an X-ray tube (Rad-94,

Varian, Salt Lake City UT). Modulation Transfer Function (MTF) measurements

were acquired using a technique similar to that of Samei, Flynn, and Reimann [114].

Multiple projections (720) of a tungsten edge were acquired and gain/offset corrected.

These projections were then averaged to reduce noise. The location of the edge was

found by fitting error functions to the pixel values along either rows or columns, and

fitting a line to the center points of the error functions. The location of this edge

was then used to extract the Edge Spread Function (ESF), which was then binned,

differentiated, and Fourier transformed to obtain the MTF.

Both detector and source MTFs were computed. The detector MTF was acquired

by placing the tungsten edge on the face of the FPD. The MTF was modeled as

a Gaussian (scintillator) multiplied by a sinc. This model was fit to the measured

MTF by varying the width of the Gaussian. It was assumed that the scintillator

blur is radially symmetric, so only one edge orientation was needed. The source

MTF was acquired by placing the tungsten edge at isocenter, and rotating the edge

about the source-detector axis to measure different slices of the MTF. The edge

was (approximately) oriented to obtain an edge response along the axis of rotation

(axial), perpendicular to the axis of rotation (trans-axial), and at 45° to the axis of

rotation. These experiments yielded the composition of both source and detector blur.
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Thus, to find the source blur, the combined source and detector MTF was divided by

the detector MTF. Gaussians were fit to the main lobe of the axial and trans-axial

slices of the source MTF, and combined into a separable 2D MTF estimate in the

reconstruction algorithm.

As an additional check on the nature of the source blur, focal spot images were

obtained. A pinhole image of the focal spot was taken using a large source-detector

distance to obtain a source magnification of approximately 14. Multiple projections

(100) were acquired and averaged. The background of the pinhole image was de-

trended by fitting a paraboloid to the background and subtracting it from the entire

image. This removes low frequency effects (e.g. off-focal radiation) that are not

particularly important for resolution recovery. Fourier transforming the pinhole image

permitted profiles of the 2D MTF to be compared with the measurements obtained

using the tungsten edge.

Noise Power Spectrum (NPS) measurements were acquired to validate the corre-

lated noise model and the SI scintillator blur assumption. These measurements were

performed on a different test bench, with a different, but similar, detector (4343CB,

Varian, Palo Alto CA). The measured NPS was compared with the theoretical NPS

calculated with a detector blur measurement. The NPS was also measured at multiple

locations to determine if the scintillator blur is SV. The local NPS at a location on the

detector was calculated with a 201 pixel× 201 pixel square centered at that location

and 500 gain and offset corrected exposures. Dead pixel values were replaced with

the average value of the neighboring working pixels. The NPS calculation was [115]

NPS = meani(|(F(yi − ȳi))2|)∆u∆v(201× 201)−1I−1
0 (4.8)
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where I0 is the estimated photon flux, yi is a single cropped and corrected exposure

multiplied by I0 (i.e., in photon units), and ∆u and ∆v are the column and row

pixel pitches, respectively. Note that yi here refers to a vector of measurements

at frame i, not a single element of y. Assuming pixel aperture blur is negligible

compared to scintillator blur and that obliquity effects are small, the theoretical

NPS is approximately radially symmetric, with the 1D slice given by

NPStheoretical = MTF 2
detector∆u∆vk (4.9)

where k was found by fitting to the measured NPS at the center of the detector.

The detector MTF was calculated with 100 averaged exposures of the tungsten edge.

Note that this is a simplified NPS model that assumes a 100% fill fraction.

4.2.3 Test-bench data reconstructions

To investigate the performance of the proposed reconstruction algorithm on physical

data, we scanned a custom wrist phantom (The Phantom Laboratory, Greenwich,

NY). This phantom includes a natural human skeleton of the arm, wrist, and hand

bones in a tissue-equivalent plastic including simulated cartilage and tendon features.

Projections were obtained over 720 angles in a 360° circular orbit in a C-arm geometry

(source to detector distance of 118 cm and source to axis distance of 60 cm). The

reconstruction volume was 600× 600× 210 voxels with cubic voxels 0.15 mm to a side.

The X-ray tube on the test-bench had two focal spot settings. All projection data

for system characterization (except the NPS study) and reconstruction comparisons

were acquired with the large focal spot (0.8 specification). However, one acquisition
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was also obtained using the small focal spot (0.4 specification). These data were

reconstructed using FDK to generate a high-resolution reference image with which

to compare images from the various reconstructions of projection data with larger

focal spot blur. Data were preprocessed according to the methodology in §3.2.2;

however, a few additional calibrations were required for the physical data. Specifically,

following traditional gain and offset correction and individual frame normalization of

the projection data, the model gain term associated with the primary quanta was

estimated. The gain of the system was estimated as a constant equal to the ratio

of the mean and variance of an air portion of the normalized projection data (i.e.

fitting the Poisson assumption). Data were padded with nearest neighbor values

prior to deblurring. Subsequent preprocessing of the data was as described in §3.2.2,

with the addition of a thresholding operation on the deblurred data so the minimum

was approximately equal to the measurement that would be expected for X-rays

attenuated by 40 cm of water.

The data were reconstructed as previously described, using FDK, the uncorrelated

noise model, and the correlated noise model. Gaussian approximations for source

and scintillator blur were used for deblurring and applying K−1
L . For the proposed

reconstruction with a correlated noise model, Cc had a threshold (ϵ) of zero and

padding with zeros. Readout noise was estimated as 1.9 photons. The threshold (ϵ)

for C and C′ was 10−2 with data padded using nearest neighbor extrapolation. For

the Ky inversion in the proprocessing section of Algorithm 2, 1000 iterations of the

conjugate gradient method were used. In the iterative section, the conjugate gradient

method was used for both the inner and outer loops, with 100 iterations for the inner

loop and 300 for the outer loop.
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Performance evaluation of the physical data reconstructions was conducted using

qualitative comparisons to each other and the high resolution reference. Spatial vari-

ance was measured in a constant region of a center slice, and used to noise match

the reconstructions (by choosing appropriate values for β) obtained using iterative

methods for fair comparison.

4.3 Results

4.3.1 Simulation studies

Figure 4.4 shows the spatial resolution-variance tradeoff for MBIR reconstructions

using the correlated noise model and the uncorrelated noise model as well as ID de-

blurring in a simulation study with a 0.34 mm FWHM scintillator blur and a 0.70 mm

FWHM source blur (system scenario d). Different positions on each curve were ob-

tained by varying regularization strength (β or λ). When βs are chosen such that the

uncorrelated and correlated reconstructions have the same resolution (i.e. the verti-

cally aligned squares in Figure 4.4 are resolution matched), the uncorrelated model

yields a variance more than an order of magnitude larger than that of the correlated

noise model. Similarly, when βs are chosen such that the variance is the same (i.e.

horizontally aligned squares in Figure 4.4 are noise matched), the correlated noise

model reconstruction has a smaller edge response than the uncorrelated noise model

reconstruction, by about 0.17 mm (i.e. 42% decreased FWHM). In this scenario,

the ID deblurring was roughly equivalent to the correlated noise model (discussed

below). Non-deblurred FDK is represented by a star demonstrating the traditional

spatial resolution limit when no system blur models are adopted. Both the FDK
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Figure 4.4: Spatial resolution-variance tradeoff for different reconstructions in a sim-

ulated tomographic system with a 0.34 mm FWHM scintillator blur and a 0.70 mm

FWHM source blur. Variance and spatial resolution are shown for MBIR reconstruc-

tions using the correlated and uncorrelated noise models and FDK with no deblurring,

PD deblurring, and ID deblurring. The square data points are either noise-matched

or resolution-matched to the square data point in the correlated model dataset.
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and PD deblurring resolution-variance points are close to the uncorrelated model

resolution-variance tradeoff.

Noise- and spatial resolution-matched reconstructions from Figure 4.4 are shown

in Figure 4.5(a). These zoomed images show the central portion of the digital phan-

tom with trabecular bone details, as well as an additional zoom inset that shows

the line pair object. When the reconstructions are noise-matched, both trabecular

details and the line pairs in the uncorrelated reconstruction are blurrier than those

in the correlated reconstruction. The ID deblurring appears similar to the correlated

noise method, consistent with the resolution-variance plot. To better visualize noise,

Figure 4.5(b) shows the difference images where the true image has been subtracted

from each reconstruction. In spatial resolution-matched reconstructions, the noise

magnitude of the uncorrelated noise reconstruction is larger than that of the corre-

lated noise reconstruction. Note that the noise texture and specific resolution prop-

erties also differ between approaches. For example, the correlated noise model and

the ID deblurring produce lower frequency noise than the uncorrelated noise model.

Thus, despite matching noise in terms of variance, the NPS clearly differ between the

three approaches. Similar observations can be made for spatial resolution. While the

FWHM edge response is matched, side lobe performance is clearly different between

methods. This is particularly evident in the difference images in the trabecular bone

and the line pairs.

To get a better understanding of the performance for different levels of source and

detector blur, resolution-variance tradeoffs were evaluated for the seven system blur

scenarios delineated in Table 4.1, represented graphically by the large dots labeled

with letters at the top and left of figures 4.6 and 4.7, respectively. Scenarios a-e
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Figure 4.5: (a) Reconstructions from the simulation study corresponding to the noise-

matched and resolution-matched data points in Figure 4.4. (b) Difference images

show the difference between the reconstruction and truth. Zoomed images focus on

the bone in the center of the phantom, with the line pairs inset in the lower right.
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Figure 4.6: Evaluation of reconstruction algorithms for systems with differing source

and detector blur. The schematic (top) illustrates the different imaging system scenar-

ios with varying amounts of source and detector blur. These scenarios have a constant

total system blur and a varying blur distribution — from detector-dominated (point

a) to source-dominated (point e). The subfigures (a-e) show the resolution-variance

tradeoff for each of the systems with blur scenarios corresponding to points a-e in the

schematic. Note that the correlated noise model shows the greatest advantage over

the uncorrelated noise model for the scenario where source blur dominates.
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Figure 4.7: Performance evaluation of reconstructions under varying total blur con-

ditions. The points in the left figure show three different system scenarios, each with

the same ratio of source to scintillator blur. The different total system blur conditions

represented by points f, d, and g correspond to the resolution-variance plots on the

right.
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(Figure 4.6) represent systems with constant total blur and varying blur distribution.

Specifically, system a is dominated by scintillator blur and system e is dominated by

source blur. Scenarios f, d, and g (Figure 4.7) represent systems in which the ratio

of the source and detector blur is constant, but the total blur changes, with f having

the smallest blur and g the largest. The remaining plots in figures 4.6 and 4.7 show

the resolution-variance curves for each scenario a-e and f, d, and g, respectively. The

FDK points indicate the approximate resolution limit without deblurring. Better

imaging performance is found toward the bottom and left of each plot (e.g. lower

variance and/or higher resolution).

In all cases, deblurring methods lead to an increase in achievable resolution when

compared with non-deblurred FDK. In terms of the resolution-variance tradeoff, the

correlated noise model is equivalent to or better than the uncorrelated noise model in

all seven cases. When total blur is constant (a-e), the correlated noise model yields

the greatest advantage when the blur is due to the source, and yields essentially no

advantage when the blur is due only to the scintillator. Intuitively, when source blur

is negligible, the deblurring operation is only removing the scintillator blur, thereby

whitening the data. In this case, a diagonal covariance matrix becomes an accurate

assumption, and the correlated and uncorrelated noise models are essentially equiva-

lent. However, this assumption only holds for low readout noise. As shown in Stayman

et al. [92], a system dominated by detector blur will still benefit from a correlated

noise model since deblurring will add correlations due to additive readout noise.

When the system has non-negligible source blur, the deblurring of source blur

(which, again, in itself does not correlate the noise) adds correlations to the data,

which are accounted for in the correlated noise model but not the uncorrelated noise
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model, resulting in the advantages seen in figures 4.6(c)–(e). Holding the blur ratio

constant while increasing total blur does not have a large effect on the relative per-

formance of the two methods, but does decrease the finest achievable resolution for

all methods (figures 4.7(d), (f), (g)).

The FDK and PD deblurring resolution-variance points lie near the uncorrelated

model’s resolution-variance curve indicating similar performance. While one often

sees an advantage of statistical methods over direct approaches like FDK, the similar

performance in this case suggests that the quantum noise modeling1 does not play a

large role in this example (i.e. the dynamic range in variance isn’t particularly large

for this object), and it is the correlated noise modeling that is important.

The ID deblurring method is roughly equivalent to the correlated noise model in

all cases. The penalty/prior terms between the two methods are equivalent, so the

relative performance of the Wiener filter is likely dominated by the noise assumption.

While a white noise assumption was used, FBP reconstruction noise is not white

and exhibits strong frequency dependence [116]. This suggests that the overall noise

magnitude was too low for this discrepancy to matter. Another possibility is that

there is a difference between these two methods, but it is not captured by the relatively

simple resolution metric used in this study.
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Figure 4.8: (a) Detector MTF measurements and parameterized fit. The model used

for fitting was a Gaussian multiplied by a sinc function. (b) Focal spot image from the

CBCT test-bench. (c) A source MTF derived from the focal spot image approximately

scaled for focal spot blur at the center of rotation. (d) Trans-axial, axial, and 45°

profiles of the pinhole-derived source MTF. (e) Source MTFs as estimated from

edge responses at the center of rotation. (f) Zoomed version of (e), with solid lines

indicating the corresponding profiles of the parameterized fit.
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4.3.2 Bench characterization

Figure 4.8(a) shows the test-bench detector MTF and the corresponding model ap-

proximation. We expect the MTF to be composed of a scintillator MTF and a sinc

function (due to pixel sampling). The pixel pitch is 0.388 mm, which would put the

first zero of the sinc function at about 2.58 cycles mm−1. This is consistent with the

measured MTF, which has a first minimum at slightly less than 2.5 cycles mm−1. The

approximation is a Gaussian multiplied by a sinc of the expected width. The width

of the Gaussian in the approximation was found by fitting to the data in the primary

lobe. The Gaussian-sinc model is a good approximation to the data at frequencies in

this primary lobe.

The pinhole image of the source is shown in Figure 4.8(b). It is approximately a

2D rect function, but a higher order approximation could model the bright horizontal

“horns” at the top and bottom of the rect. The pinhole image was Fourier transformed

to obtain the 2D MTF shown in Figure 4.8(c). Along the axial and trans-axial

directions the modulation intensity appears similar to a sinc function, consistent with

the 2D rect model. The bright horizontal horns at the top and bottom introduce the

asymmetry between these two profiles. The source MTF is not radially symmetric,

with a noticeably different profile along the 45° line. These observations are confirmed

in the profiles shown in Figure 4.8(d), in which modulation intensity is plotted as a

function of position along the trans-axial, axial, or 45° lines in the 2D MTF.
1We note that one of the other advantages of model-based approaches is the use of more sophisti-

cated regularization strategies (e.g. non-quadratic penalties). In this chapter we have concentrated
on quadratic penalties and the improvements due to system modeling. Thus, the similar perfor-
mance of FDK and MBIR with a traditional noise model and quadratic penalty is not completely
unexpected.
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Figures 4.8(e) and (f) show the line profiles of the source MTF acquired using a

tungsten edge. The shapes of the MTF profiles are approximately equal to those in

Figure 4.8(d). The axial and trans-axial MTFs are similar to each other at frequencies

below the first zero, and the axial MTF is larger in the first side lobe, consistent

with the profiles in Figure 4.8(d). The first zero appears to be at about 0.8 cycles

mm−1, which corresponds to a 1.3 mm rect function. The 0.8 specification of this spot

indicates a focal spot size of 0.8 mm to 1.1 mm, which is close to our estimate [20].

The 45° MTF has its first zero at a higher frequency, which is consistent with a 2D

rect function approximation of the focal spot. This approximation would cause the

45° profile to be a squared sinc, resulting in a different shape than the axial and

trans-axial profiles, as is seen. The solid lines in Figure 4.8(e) show the Gaussian

approximation used for the test-bench data reconstructions. This model captures

most of the shape before the first zero, while ignoring the higher frequencies.

Differences between the MTF derived from the pinhole and edge measurements

have two main causes. First, because the exact magnification used to acquire the

pinhole image was not known, the frequency axes in figures 4.8(c) and (d) were

scaled so the zeros approximately matched those in Figure 4.8(e). The MTF derived

from the tungsten edge measurement was taken with no source magnification (edge

placed at isocenter), so the frequency axis in Figure 4.8(e) should be considered more

accurate. Second, the pinhole image and its derived MTFs were not corrected for

detector blur nor for blur associated with the pinhole itself (whose diameter was

inexactly known).

Figure 4.9 shows the measured vs theoretical NPSs. The widths of the plots are

approximately the same, indicating that the correlation length is determined by the
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Figure 4.9: This figure shows horizontal, vertical, and 45° slices of the 2D measured

NPS at the center of the detector, along with the theoretical 1D NPS (assuming radial

symmetry).
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Figure 4.10: Horizontal and vertical NPS slices for NPSs acquired at different posi-

tions on the detector, indicated by distance from the center in the horizontal direction.

detector blur. The fact that the horizontal, vertical, and 45° NPSs are the same

supports the assumption that scintillator blur is radially symmetric. Note that the

theoretical NPS was calculated using the full detector blur (scintillator and pixel

aperture), while the MBIR approach only models the scintillator blur as causing

correlations. This discrepancy may prove important in systems where pixel aperture

is a large effect.

Figure 4.10 shows NPSs acquired at different horizontal positions along the detec-

tor. Note that all the NPSs are the same, e.g., are not location dependent, indicating

that the underlying detector blur is not SV.
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4.3.3 Test-bench data reconstructions

The correlated noise model was tested on a wrist phantom imaged using the test-

bench. Two Regions of Interest (ROIs) are marked in the high-resolution reference

reconstruction (Figure 4.11(a)) with white rectangles. Figure 4.11(d) shows the larger

ROI (distal radius) from the same reconstruction. This ROI contains cortical bone

surrounding trabecular bone. Within this ROI the phantom also contains cartilage-

equivalent plastic on the upper left aspect of the cortical bone (marked by an arrow).

Images were reconstructed using the FDK algorithm (Figure 4.11(b)), a combina-

tion of PD deblurring and FDK (Figure 4.11(c)), the uncorrelated noise model (Fig-

ure 4.11(e)), and the correlated noise model (Figure 4.11(f)). Figures 4.11(e) and (f)

are noise-matched in the smaller ROI indicated in Figure 4.11(a), with a variance

of 8.75× 10−7 mm−2. The trabecular structure in the FDK reconstruction is present

but details are difficult to discern. Deblurring prior to FDK reconstruction results

in an unacceptably noisy image. Using the uncorrelated noise model (which includes

deblurring) is slightly worse than FDK in terms of resolution at the chosen noise level,

although these images are not strictly noise matched. Noting that the uncorrelated

MBIR image is both lower resolution and higher noise than FDK underscores the high

degree of noise magnification due to the deblurring step. In contrast, the proposed

reconstruction method including a correlated noise model recovers more trabecular

bone details compared to the noise-matched conventional model-based reconstruction

method. We note that the proposed method appears to contain more noise streaks

on the upper aspect of the cortical bone. While the exact cause of this increased

streaking is unclear and needs additional investigation in future studies, this may be
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Figure 4.11: Test-bench data reconstructions. (a) High resolution reference image.

The large box denotes the ROI used for (b-f). (b) FDK reconstruction. (c) FDK

reconstruction on deblurred data. (d) High resolution reference image with an arrow

indicating cartilage-equivalent plastic. (e) Reconstruction obtained using the uncor-

related noise model. (f) Reconstruction obtained using the correlated noise model

and noise matched with (e).
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the result of incomplete physical modeling. Specifically, we note that the data was not

corrected for beam hardening nor scatter effects and it is possible that blur modeling

(and deconvolution) will exaggerate streaking due to these uncompensated biases.

Figure 4.12 shows the difference between the reconstructions in Figure 4.11(b),

(c), (e), (f) and the high-resolution reference reconstruction (Figure 4.11(d)). The

correlated noise model reconstruction is the closest to the high-resolution reference

with the flattest difference image. The (non-deblurred) FDK and uncorrelated noise

model difference images show quite a bit of structure, indicating a resolution mismatch

with the reference image. The FDK reconstruction of deblurred data is overwhelmed

by noise. The difference images also show a difference in noise texture between the

uncorrelated and correlated model reconstructions, similar to that seen in simulation.

To check whether the structure in the correlated MBIR (Figure 4.11(f)) is repre-

sentative of real anatomy and not mid-frequency noise, this reconstruction was com-

pared with a blurred version of the high-resolution reference image (Figure 4.11(d)).

The reference image was convolved with a Gaussian kernel with a width parame-

ter determined by minimizing the Root Mean Squared Error (RMSE) between the

blurred reference image and the correlated MBIR reconstruction. The results are in

Figure 4.13. The two images are similar, with structures appearing in both images,

indicating that these structures represent real anatomy.
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Figure 4.12: Difference images between the high-resolution reference image and the

various reconstruction methods: (a) FDK; (b) PD deblur + FDK; (c) uncorrelated

MBIR; and (d) correlated MBIR (corresponding to b, c, e, and f in Figure 4.11). The

smallest differences from the high-resolution reference are observed in the correlated

MBIR reconstruction.
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Figure 4.13: (a) Blurred high-resolution reference image. (b) correlated MBIR recon-

struction. (c) Difference image between (a) and (b).
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4.4 Discussion

In this chapter, we have presented a CBCT forward model that accounts for source

and detector blur as well as noise correlation in the data. We used an MBIR al-

gorithm from §3.2.2 with a staged data processing chain where projections are first

deblurred and log-transformed, data correlations are modeled through both the de-

tection and deblurring processes, and reconstruction is performed through a penalized

generalized linear least-squares algorithm with a non-diagonal weighting matrix. We

have demonstrated the relative performance of the proposed method in comparison

to a traditional MBIR approach without a correlated noise model and a FDK ap-

proach with PD deblurring and without deblurring. Experiments in both simulated

projections and in CBCT test-bench data demonstrate improved performance of the

proposed approach over uncorrelated MBIR and FDK with PD deblurring. Specifi-

cally, while any approach that applies deblurring to the projection data permits higher

spatial resolution reconstructions, our method can yield significant improvements in

noise performance since it maintains an accurate noise model. These improvements

vary with the degree of blur and the dominant source of system blur with the greatest

advantages for systems with larger focal spot blur.

The proposed method did not offer an advantage over FDK with ID deblurring.

This is likely due to the relatively low noise (high photon flux) of the simulation study.

At higher noise levels, we expect ID deblurring to perform worse than the proposed

method due to noise model mismatch. This may also depend on the choice of image

quality metric. The resolution metric used in this chapter makes inherent assumptions

about the image estimation process (e.g., local linearity) and may not be a suitable
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metric for all reconstruction algorithms or imaging tasks. Additionally, the blur used

in the simulation study is relatively simple, and possibly well estimated in the ID.

Other types of blur, such as SV focal-spot blur (chapter 6), can not be modeled

accurately in the ID, and require integration into an MBIR algorithm. Future work

is required to explore the relative performance of the proposed method to various ID

deblurring techniques with different noise levels and image quality metrics.

Despite the advantages illustrated in this chapter, there are a number of additional

opportunities for future work in the development of reconstruction methods that

accommodate system blur and data correlation. For example, one could adopt a

similar staged deblur and reconstruction method that deconvolves only the correlating

(scintillator) blur, whitening the data, and thereby permitting an objective function

that accounts for non-correlating source blur while using an uncorrelated noise model,

such as that of Feng, Fessler, and King [54] or Yu, Fessler, and Ficaro [56]. This

method would permit use of a nonlinear objective function, permit use of Poisson (or

other) noise models, eliminate bias imparted by the log transform, and potentially

be more computationally efficient since the statistical weightings are independent.

Alternately, one might use the non-staged reconstruction process in §3.2.1, where the

entire forward model including system blur is integrated into a nonlinear objective

function. Such an approach is attractive since it eliminates any parameter tuning

associated with a deblurring step. This is explored in chapter 5. While we have

focused on 3D imaging in this paper, the 2D projection noise modeling of the processed

measurements might also be applied to 2D restoration with the potential to improve

projection radiography.
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In addition to algorithm development, further improvement will be more accurate

modeling of system blur, especially the higher order (high-frequency) properties of

the source blur. The current blur model makes an assumption of shift-invariance.

Both the SV nature of the apparent focal spot size and shape, as well as the depth-

dependent nature of source blur are a subject of chapter 6.

The bench-data reconstructions shown here suggest applicability to current CBCT

systems. However, in addition to different blur properties, different systems and scans

will have varying degrees of scatter, patient motion, and gantry jitter. Similarly, in

this chapter, we have focused on an extremity imaging example. We would expect

other body sites to be potentially more challenging due to increased attenuation and

likely increased scatter fractions. Our conjecture is that increased attenuation will

predominantly increase noise, while increased scatter will likely reduce contrast but

have relatively small effects on high-spatial resolution properties (since scatter effects

are largely at low spatial frequencies). These properties will have to be investigated in

more detail in future work to determine how they affect reconstruction image quality

in real systems, how scatter and other artifact corrections interact with the proposed

algorithm, and whether current correction schemes are sufficiently accurate for high

resolution reconstructions.

In summary, we have developed a reconstruction method that breaks from the

traditional assumption of spatially independent measurement noise. This is important

since noise correlation due to FPDs is significant, and accurate noise models are a key

element of MBIR methods. We have demonstrated improvements in the resolution-

variance tradeoff, opening the opportunity for higher spatial resolution in flat-panel-

based CBCT systems, including high-resolution extremities and breast imaging. We
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have also conducted preliminary investigations on the system designs that would

benefit most from the proposed reconstruction method. This analysis is potentially

important for future CBCT system design since the proposed reconstruction method

provides an alternate (software-based) route to achieving high spatial resolution. That

is, the proposed methodology may permit alternate hardware designs (e.g. the ability

to use larger focal spots with higher power limits) while still achieving the desired

spatial resolution. Thus, this work has the potential to both extend the clinical

performance of existing CBCT systems and improve the tradeoffs and design choices

for future clinical systems.
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Chapter 5

Shift-invariant source and detector blur

with a nonlinear forward model

This chapter contains work originally published in

S. Tilley II et al. “Penalized-Likelihood Reconstruction with High-

Fidelity Measurement Models for High-Resolution Cone-Beam Imaging”.

In: IEEE Transactions on Medical Imaging 37.4 (Dec. 4, 2017),

pp. 988–999. issn: 0278-0062. doi: 10.1109/TMI.2017.2779406. url:

https://ieeexplore.ieee.org/document/8125700/.

Portions of this chapter are © 2017 IEEE. Reproduced here with permission.

5.1 Introduction

As in chapter 4, this chapter explores the importance of SI scintillator blur, SI focal-

spot blur, and correlated noise modeling in MBIR methods for CBCT resolution

recovery. Of particular interest are high resolution clinical tasks such as microcalcifi-

cation detection in mammography [93, 117] and trabecular bone analysis and quan-
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tification in extremities imaging [118, 119], which require resolutions just beyond

current system capabilities. In contrast to chapter 4, this chapter uses the nonlinear

SQS MBIR algorithm derived in §3.2.1. The optimization algorithm utilizes opti-

mization transfer and separable surrogates, similar to the algorithm in Erdoğan and

Fessler [80, 81]. We evaluate the performance of this algorithm in the context of

trabecular bone segmentation and derived quantitative metrics such as Trabecular

Thickness (Tb.Th.).

MBIR reconstructions in this chapter use a Huber [71] potential function in

the penalty term, which may permit sharper edges in the reconstructed image as

compared to the quadratic penalty. Using this penalty violates the assumption that

the reconstruction is locally linear, and thus prevents us from using the ESF based

resolution metric from chapter 4. In other words, a Huber penalty may smooth

out high-resolution structures while maintaining sharp edges, and capturing this

behavior requires a different image quality metric. In this chapter we focus on a

segmentation task. Images are evaluated based on segmentation accuracy and, in the

case of trabecular bone segmentation, on the accuracy of derived, clinically relevant

trabecular bone metrics.

The nonlinear method is first compared with the linear method studied in chap-

ter 4. The remainder of this chapter evaluates the nonlinear method in simulation

and physical test bench studies. Specifically, blur measurements from a prototype

extremities quantitative CBCT (qCBCT) test bench [119] were used to construct

a simulation study measuring the image quality of reconstructed line-pairs. The

nonlinear MBIR algorithm with Blur and Correlated noise modeling (MBIR-BC) is

compared with the same algorithm but using simpler forward models, specifically
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MBIR-I with no blur in the model (Identity blur) and MBIR-B with Blur but no

noise correlations. These MBIR methods are compared to PD deblurring + FDK

(dFDK). To emphasize the effects of noise modeling, the simulation study used an

elliptical phantom and a much lower dose than the simulation study in chapter 4.

The qCBCT test bench was also used to scan a sample of human trabecular bone.

Reconstructions of the trabecular bone using FDK, MBIR-I, MBIR-B, and MBIR-BC

are compared to each other as well as a registered micro CT (µCT) scan of the same

sample. Finally, quantitative metrics of Tb.Th., Trabecular Spacing (Tb.Sp.), and

Bone Volume to Total Volume (BV/TV) are compared for each approach [120–122].

5.2 Methods

We apply the algorithm in §3.2.1 using a model of focal-spot blur and scintillator

blur, where the latter adds spatial correlation to the noise. Both of these types of

blur can be represented as factors of the B matrix in §3.2.1:

B ≜ BdBs D{g} (5.1)

where Bs is focal-spot blur, Bd is scintillator blur, and D{g} scales the data by the

bare-beam photon flux per pixel. The covariance matrix was modeled as

KY = Bd D{y}BT
d + D{σ2

ro} (5.2)

where the pre-scintillator quantum noise is estimated with y and σro is the standard

deviation of the readout noise. The weighting matrix W is equal to the inverse of KY ,
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which is typically impractical to calculate explicitly. Reconstructions in this chapter

use either an iterative solver or the approximation in §3.2.1.3:

BTWB ≈ D{g}BT
s D{y−1}Bs D{g}. (5.3)

The inverse covariance matrix is also included in the term BTWy, which appears

in the initialization section of the algorithm. This may be calculated once using an

iterative method (e.g. CG).

5.2.1 Comparison with linearized method

For comparison with the linear method studied in chapter 4, the phantom in §4.2.1 was

reconstructed with the nonlinear SQS method (§3.2.1). A detector blur dominated

scenario was examined, specifically scenario b in Figure 4.6. Data were generated

as described in §4.2.1. Reconstructions ran for 2000 iterations with 10 subsets and

Nesterov acceleration. The reconstruction volume contained 0.1 mm voxels as in

§4.2.1. A correlated noise model was used with

KY = Bd D{y}BT
d + D{σ2

ro}. (5.4)

The approximation in (5.3) was used, and BTWy was calculated with 1000 iterations

of the preconditioned CG method [41, 123]. The preconditioning matrix was D{y +

σ2
ro}. Resolution and variance were calculated as in §4.2.1.
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5.2.2 System characterization of a high-resolution prototype

extremities scanner

To evaluate the proposed reconstruction method, scintillator and focal-spot blur prop-

erties of a prototype extremities qCBCT test bench [119] were first characterized. This

characterization was then used to ensure an accurate simulation study (§5.2.3) and to

generate accurate blur models for MBIR-BC reconstructions of physical test-bench

data (§5.2.4). The test bench uses an IMD RTM37 rotating anode X-ray source

(with dual 0.3/0.6 focal spots) and a Teledyne DALSA Xineos-3030HR CMOS X-ray

detector (100 µm pixel pitch and CsI scintillator). The geometry emulates that of a

prototype extremities qCBCT system, with a source-to-detector distance of 51 cm and

a source-to-axis distance of 38 cm. X-ray focal-spot and detector blur were estimated

from a pinhole image of the focal spot, ESF measurements at the detector (where

focal-spot blur is negligible), and ESF measurements at isocenter. The readout noise

(σro) was estimated using dark scans.

Images of a tungsten edge were used to calculate ESFs, which in turn were used to

calculate MTFs as described in §4.2.2. MTFs were measured in two directions along

the detector: parallel to the axes of rotation (axial) and perpendicular to the axis of

rotation (trans-axial). This chapter assumes the detector scintillator MTF is radially

symmetric and uses the model of Siewerdsen et al. [124] with an additional Gaussian

component to capture observed low frequency characteristics:

MTFd = ge−f2/σ2 + (1− g)(1 +Hf 2)−1 (5.5)
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where f is frequency and g is the relative strength of the Gaussian term (between 0

and 1). Combined with pixel sampling, the MTF model at the detector is

MTFda = sinc(fT )MTFd (5.6)

where T is the pixel pitch. Because the pixels are square and the scintillator MTF

is assumed to be radially symmetric, (5.6) models both the horizontal and vertical

MTFs. We estimated the parameters g, σ, and H by fitting (5.6) to the MTFs

measured at the detector.

Pinhole images of the X-ray focal spot were acquired using a pinhole assem-

bly (Model #07–633 Fluke Electronics, Everett, WA) with a nominal diameter of

0.010 mm. A Point Spread Function (PSF) that models the focal-spot blur experi-

enced by an object at isocenter was found using this pinhole image. Because the

pinhole was imaged at a high magnification (∼34), multiple manipulations were re-

quired to obtain the final PSF. First, scale factors were found for each axes to match

the shape of the pinhole image to that of the focal-spot PSF at isocenter. We chose

the scaling parameters by fitting the axial and trans-axial slices of the pinhole derived

MTF to the MTFs measured with the tungsten edge at isocenter. The axial and trans-

axial scaling parameters are not necessarily the same due to different SV properties

in these two directions, and the possibility that the pinhole was slightly misaligned.

The pinhole image was resampled using these scaling parameters to produce a super-

sampled PSF of the focal-spot blur at isocenter. In order to account for the aperture

of each pixel, the super-sampled PSF was convolved with a 100 µm× 100 µm rect

function corresponding to the pixel pitch and then binned and normalized to produce

a PSF with 100 µm pixels (i.e., in native measurement dimensions).
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Figure 5.1: Digital phantom with line pairs and bone inserts. The background atten-

uation value in the oval is 0.019 mm−1 and the bone attenuation is 0.060 mm−1. The

line pair attenuation values are either 0.060 mm−1 (left and center) or 0.019 mm−1

(right). The line pair frequency is 2.38 mm−1. © 2017 IEEE

5.2.3 Simulation study

Data were generated using the digital phantom in Figure 5.1 and a simulated system

model based on the test bench geometry and characterization. Specifically, the high-

resolution phantom was created with 17.5 µm× 17.5 µm× 70 µm voxels (with the long

axis of the voxel parallel to the axis of rotation) and high contrast line pairs with

an attenuation of 0.060 mm−1 (bone) and a background attenuation of 0.019 mm−1

(fat). To model nonlinear partial volume effects, this phantom was forward projected

onto a 87.5 mm detector of subpixels with a small pixel pitch (25 µm× 100 µm) at

720 equally spaced angles using a separable footprints model [50] for the projector.

The forward model for data generation used finite integration over the extended focal

spot and detector elements:

y = SB̃d D{g̃}
nk∑
k

ωke
−Akµ (5.7)
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where Ak is a projection matrix corresponding to an individual sourcelet with relative

intensity ωk, B̃d is a scintillator blur (5.5) matrix which operators on subpixels, D{g̃}

scales the subpixels by the photon flux, and S bins the subpixels to 100 µm× 100 µm

pixels. To obtain a final photon flux of 103 photons pixel−1, D{g̃} scaled each subpixel

by 250 photons pixel−1. The scintillator blur matrix was applied functionally using

Fourier operations and nearest neighbor substitution at the boundaries. Focal-spot

blur was modeled by forward projecting with 354 sourcelets derived from the super-

sampled PSF from §5.2.2 (summed to one dimension). The modeled anode angle

was 17.5°. Noisy data were generated from a Poisson distribution with the mean

equal to the pre-scintillator-blur data (e.g., the vector before application of B̃d), and

these noisy data were blurred by B̃d. Finally, we added Gaussian readout noise with

a standard deviation of 7.109 equivalent photons (based on bench data dark scan

values) to obtain the final measurements.

In all simulation studies the reconstruction volume was 70 mm× 35 mm with

0.07 mm cubic voxels (i.e., approximately equal to the demagnified pixel size). Data

were reconstructed with the presented MBIR-BC algorithm incorporating the blur

models derived in §5.2.2. Specifically, B in (5.1) was applied, where Bs and Bd

convolve their inputs with the focal-spot PSF (summed to one dimension) and the

scintillator blur (5.5), respectively, and D{g} scales each value by 103 photons pixel−1.

BTWy was calculated with 200 iterations of preconditioned CG as described in §5.2.1.

With the low photon flux of the simulation study, the measurement data is not sub-

stantially higher than readout noise, and (5.3) is not a valid approximation. Therefore,

20 iterations of the preconditioned conjugate gradient method were used to apply W

every iteration. For comparison, the same optimization strategy was used with two
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different forward models. The first, MBIR-B, assumed the noise was uncorrelated

(i.e., K = D{y + σ2
ro}). The second, MBIR-I, also assumed the noise was uncorre-

lated, and additionally assumed there was no blur (i.e., B = D{g}). Finally, the data

were also reconstructed using Fourier domain deblurring (using the same blur models

as MBIR-B and MBIR-BC) followed by FDK (dFDK) with multiple cutoff frequen-

cies. All model-based reconstructions used the separable footprints projector [50].

Reconstructions were assessed with three metrics: bias, noise, and maximum Jac-

card index (mJac) [125]. Bias and noise were chosen as traditional image quality

metrics, while mJac was picked as a metric specific to trabecular bone analysis. These

metrics were calculated for the set of line pairs in the middle of Figure 5.1. The terms

are defined based on the truth image t (binned to match voxel size), reconstructions

of noiseless data µ̂nl(β, δ), reconstructions of noisy data µ̂(β, δ), and the number of

voxels in the ROI (Nroi)

bias(β, δ) = ∥µ̂nl(β, δ)− t∥/Nroi (5.8)

noise(β, δ) = ∥µ̂(β, δ)− µ̂nl(β, δ)∥/Nroi. (5.9)

These metrics were calculated in an ROI encompassing the central line pairs. To cal-

culate mJac, a truth segmentation tb was calculated by thresholding the truth image

t at 0.040 mm−1 (the average attenuation value of fat and bone). The reconstruction

µ̂ was thresholded by a value t for 101 values of t between the attenuation values of

fat and bone, inclusive. The mJac value for a given reconstruction is the maximum

Jaccard index between the truth segmentation and the segmented µ̂ over all t:

mJac(β, δ) = max
t

[jaccard (µ̂(β, δ) > t, tb)] . (5.10)
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The Jaccard index ranges from zero to one, with one indicating perfect correspondence

with the truth segmentation.

5.2.3.1 Parameter sweep

This work used a Huber penalty for the regularizer (R) [71] based on (2.48) and a

four voxel neighborhood (not the isotropic Huber penalty). The Huber penalty has

an additional parameter, δ, which is the value below which pixel differences will be

penalized quadratically. We conducted a parameter sweep over β and δ in order to pick

an appropriate value for δ. Phantom data were reconstructed using MBIR-BC and

MBIR-I. Additionally, two photon fluxes were used: 103 photons pixel−1 (low photon

flux) to match the simulation study, and 4× 104 photons pixel−1 (high photon flux)

to approximate the bench study. The high photon flux data utilized the covariance

matrix approximation in (5.3). Both algorithms used 501 iterations, 10 subsets, and

momentum-based acceleration. The mJac metric was calculated for each (β, δ) pair.

5.2.3.2 Algorithm comparison

dFDK, MBIR-I, MBIR-B, and MBIR-BC were compared by analyzing the bias/noise

tradeoff and mJac over a range of regularization strengths. A large number of it-

erations (20 000) were used to ensure nearly converged estimates. We utilized a

scheduling approach for acceleration and the number of subsets, with 50 iterations

of acceleration and 10 subsets, followed by 50 iterations of acceleration and 5 sub-

sets, 10 000 iterations of acceleration and no subsets, and finally 9000 iterations of

no acceleration and no subsets. We used a Huber penalty with δ = 10−2 mm−1. A

bias/noise plot and a plot of mJac as a function of β (or cutoff frequency in the case
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of dFDK) were analyzed for the center set of line pairs in Figure 5.1 and each of the

four reconstruction methods. For direct visual comparison we present reconstructions

of the line pairs, along with the corresponding optimum segmentations.

5.2.4 Extremities prototype experiment

To investigate the performance of the proposed algorithm on physical data, a hu-

man iliac-crest bone-biopsy core was scanned on the test bench described in §5.2.2.

The bone sample comprised both trabecular and cortical bone. B was modeled as

described previously (5.1), with Bs and Bd representing applications of the models

developed in §5.2.2. Blur matrices were applied functionally as in the simulation

study. Bd was applied using Fourier methods and Bs was applied using convolution.

The covariance approximation (5.3) was used. D{g} was a matrix which scaled the

values of each pixel by the estimated bare-beam photon flux and each frame by a nor-

malization factor (details are given in Appendix A). The projection operator A used

the separable footprints algorithm as in the simulation study. The MBIR methods

used the same readout noise value as the simulation study.

Reconstructions were initialized with FDK and ran for 650 iterations with 10

subsets to obtain well-converged estimates. BTWy was calculated as in §5.2.1 with

200 iterations. The trabecular bone was also reconstructed with MBIR-I and MBIR-

B using the same number of iterations and subsets. Momentum-based acceleration

was applied in all cases. A Huber regularization penalty based on (2.48) was used

with a range of penalty strengths and δ equal to 1× 10−3 mm−1 [71]. The penalty

neighborhood was the eight nearest voxels. We also computed an FDK reconstruction

(frequency cutoff at Nyquist and no additional apodization) for comparison. In all
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cases the reconstruction volume was 60 mm× 60 mm× 30 mm with 0.075 mm voxels

(i.e., voxel size was approximately equal to the demagnified pixel size). The projection

area was 120 mm× 25 mm with 0.1 mm pixel pitch and 720 frames.

Reconstructions of qCBCT data were compared with high resolution µCT data

using mJac (5.10), Trabecular Thickness (Tb.Th.), Trabecular Spacing (Tb.Sp.), and

Bone Volume to Total Volume (BV/TV) [120–122]. Bench data were acquired at

90 kV and 90.7 mA s. The µCT data were acquired on a SkyScan 1172 CT scanner

(Bruker microCT, Kontich, Belgium) at 65 kV. To find the “true” trabecular bone

segmentation with the same voxel size as the reconstructions, the µCT image of the

trabecular bone was first binned from 0.0076 mm voxel−1 to 0.0380 mm voxel−1 and

then registered with an FDK reconstruction of the qCBCT bench data. The regis-

tration algorithm also reduced the voxel size of the µCT image to match that of the

FDK reconstruction (and therefore the model-based reconstructions). The resulting

image is referred to as µCTmv for matched voxel size (mv). The Elastix software

package [126] registered the images using the binned µCT reconstruction as the mov-

ing image, a similarity transformation, and the Mutual Information Metric. A mask

was used to limit the evaluation of the registration metric to a sub-volume containing

only trabecular bone. The µCTmv image was thresholded to generate the “truth

segmentation.” The threshold value was chosen using a visual histogram inspection.

The FDK, MBIR-I, MBIR-B, and MBIR-BC reconstructions were thresholded at

101 equally spaced attenuation values between 0 mm−1 and 0.07 mm−1, inclusive, to

calculate mJac. The mJac metric was only computed within the trabecular region

(using the same mask as the registration). This metric was plotted for each MBIR

reconstruction method as a function of regularization strength. The most accurate
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segmented reconstruction from each MBIR method was selected as the one with the

highest mJac over all regularization strengths, and the most accurate reconstruction

was selected as the corresponding pre-thresholded image. The optimal FDK seg-

mentation was defined as the one with the highest mJac over all threshold values.

A Tb.Th. map was calculated from the optimal segmented reconstruction for each

reconstruction method and the µCTmv image. Tb.Th. and Tb.Sp. were calculated

with BoneJ [127], a plug-in for ImageJ [128]. Average Tb.Th., Tb.Sp., and BV/TV

were computed over the area defined by the registration/mJac mask. The Tb.Th.

and BV/TV of the original µCT image (before binning and registration) were also

calculated using the same mask (transformed to the µCT coordinates). (Tb.Sp. was

not calculated for this image due to computation constraints.) Slices of the µCT scan

and µCT Tb.Th. map were transformed using the registration parameters calculated

previously, facilitating visual comparison to the other methods. Optimal reconstruc-

tions, optimal segmentations, and Tb.Th. maps for FDK, MBIR-I, MBIR-B, and

MBIR-BC were compared with corresponding µCTmv and original µCT images.

5.3 Results

5.3.1 Comparison with linearized method

The resolution-variance tradeoff between the nonlinear SQS method and the linear

method from chapter 4 are shown in Figure 5.2. The two methods are roughly equiv-

alent at the low noise, low resolution side of the plot. The linear method has a

resolution limit at about 0.15 mm, likely due to the regularization in the deblurring
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Figure 5.2: Resolution-variance tradeoff of the nonlinear and the linear reconstruction

methods.
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preprocessing step. In contrast, the nonlinear method has no such limit and is able

to achieve much higher resolutions.

5.3.2 System characterization of a high-resolution prototype

extremities scanner

The system characterization results are shown in Figure 5.3. The measured MTFs are

plotted in Figure 5.3A and show that, for the prototype test bench, detector blur is

a larger effect than focal-spot blur. Because detector blur (scintillator blur and pixel

aperture blur) is the same at the detector and at isocenter, the difference between the

isocenter MTF and the detector MTF is due to focal spot blurring. This difference

is relatively small, indicating that this system is dominated by detector blur. The

axial and trans-axial detector MTFs are almost equivalent, supporting the radially

symmetric assumption used in the model. The MTF models (Figure 5.3B) strongly

match the measured data.

The focal-spot pinhole image was scaled and resampled to match the magnitude

of the blur experienced by an object at isocenter (Figure 5.3). The focal spot has a

primary trapezoidal component with a higher intensity on two of the edges, similar

to those observed on the rectangular focal spot studied in chapter 4. This focal spot

has an additional, lower intensity, trapezoidal component with a different orientation,

creating a cross pattern. Because of this complicated structure, we decided to derive

a PSF directly from the pinhole image instead of using a mathematical model. The

scale bar illustrates that the focal spot blur is relatively small (about the size of a

detector pixel) for an object at isocenter.
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Figure 5.3: System characterization results. A: Measured axial and trans-axial MTF

slices derived from tungsten edge responses. Inset: Pinhole image of the X-ray focal

spot, resampled to match the PSF of the focal-spot blur experienced by an object

at isocenter. B: MTF models. The detector model has the form given in (5.6). The

isocenter models are slices of the MTF derived from the final PSF multiplied by the

detector MTF model. © 2017 IEEE
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Figure 5.4: Parameter sweep results. Each point is the maximum mJac over β for

a given δ, reconstruction method, and noise realization. The left column is MBIR-I

and the right column is MBIR-BC. The top row is the low photon flux results and

the bottom row is the high photon flux results. © 2017 IEEE

5.3.3 Simulation study

5.3.3.1 Parameter sweep

Figure 5.4 shows the maximum mJac over β as a function of δ for two noise real-

izations. These results indicate that mJac is relatively insensitive to δ (compare the

ranges in the plots in Figure 5.4 to those in Figure 5.5). This is potentially due to the

fact that mJac is insensitive to edge smoothness. The measurements are relatively

noisy at this scale, especially with low gain and low δ. For MBIR-BC the optimal δ

is higher than any contrast in the phantom, indicating a “near” quadratic penalty is

ideal. The simulation data were reconstructed with δ = 10−2 mm−1 (where mJac val-

ues are high and stable) and the bench data with δ = 10−3 mm−1 (which potentially

gives a slight advantage to MBIR-I).
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Figure 5.5: Bias/noise (A) and mJac (B) plots. The large markers in (A) correspond

to the maximum mJacs in (B). The frequency cutoffs for the dFDK data in B (x-axis)

are indicated at the top of the plot. © 2017 IEEE

5.3.3.2 Algorithm comparison

Figure 5.5 shows the bias/noise trade-off (A) and maximum Jaccard index (mJac)

(B) for the center set of line pairs. Results are similar but less dramatic for the other

two sets of line pairs (not shown). At lower regularization strengths, reconstructions

of noiseless data are more accurate (lower bias), but reconstructions of noisy

data result in noisy reconstructions. On the other hand, for higher regularization

strengths, noise is suppressed at the cost of increased smoothing/blurring of the

image, imparting bias. Methods with blur modeling (MBIR-BC and MBIR-B) were

able to achieve a lower bias than the method without blur modeling (MBIR-I).
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Figure 5.6: The center line pairs from the reconstructions in Figure 5.5. Each row

corresponds to a different reconstruction method. Note that different values of β

were used for different MBIR methods. The reconstructions with the red border

correspond to the ones with the maximum mJac in Figure 5.5(B). The lower half of

each image shows the best segmentation for that β/cutoff (i.e., the one resulting in

the maximum Jaccard index over threshold values). © 2017 IEEE
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MBIR-BC and MBIR-B have a similar bias/noise trade-off, with MBIR-BC showing

a slight advantage. Because it does not include a blur model, MBIR-I encounters a

bias limit at about 0.013 mm−1. dFDK can achieve lower bias reconstructions than

MBIR-I, but suffers from increased noise as compared to MBIR-B and MBIR-BC.

However, there is a small range (near the best dFDK mJac performance) where

dFDK performs comparably to MBIR-B and MBIR-BC.

Figure 5.5B shows similar trends. For each method the “best” reconstruction is

defined as the one with the maximum mJac. This maximum mJac value is used to

compare the different methods. MBIR-BC results in the best reconstruction, followed

by MBIR-B, dFDK, and MBIR-I. The advantage of MBIR-BC over MBIR-B is more

apparent in the mJac plot than the bias/noise plot.

Figure 5.6 shows reconstructions of the center line pairs. The bottom half of

each image shows the optimal segmentation (i.e., the one resulting in the best mJac).

MBIR-I results in the worst performance with low contrast line pairs. The line pairs in

the dFDK reconstruction are more distinct but both the line pairs and the background

exhibit increased noise. Finally, the MBIR-B and MBIR-BC reconstructions have

less noise than the dFDK reconstruction without sacrificing line pair visualization.

The difference between the MBIR-BC and MBIR-B reconstructions is subtle, but

can be appreciated in the thresholded image, where the MBIR-BC method results in

thicker and more uniform line pairs. The noise difference between MBIR-BC/MBIR-B

and dFDK is particularly evident in the background of the segmented image, where

the dFDK reconstruction contains noisy values above the segmentation threshold,

resulting in a “splotchy” segmented background image. Qualitatively, the visually
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Figure 5.7: Maximum Jaccard (mJac) for each reconstruction method and regular-

ization strength for the test bench-data. © 2017 IEEE

“best” reconstructions correspond to those with the best mJac (indicated by a red

outline), confirming the suitability of this metric.

5.3.4 Extremities prototype experiment

This section presents the results of the prototype test-bench study with human trabec-

ular bone. The mJac for each reconstruction is shown as a function of regularization

strength in Figure 5.7. The MBIR-BC method is able to achieve the highest maxi-

mum mJac, followed by MBIR-B, MBIR-I, and FDK (indicated by the black line).

The optimal segmentation thresholds for the most accurate MBIR-I, MBIR-B, and

MBIR-BC reconstructions (i.e., those with the maximum mJac over regularization
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indicates a slice of the mask used for registration and metric calculation. Note the
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to the gray-level map on the bottom. © 2017 IEEE
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strength, corresponding to the maxima in Figure 5.7) are 0.0322 mm−1, 0.0385 mm−1,

and 0.0378 mm−1, respectively.

The most accurate reconstructions are shown in Figure 5.8 and Figure 5.9, along

with the corresponding segmented trabecular bone images (using the optimal thresh-

olds) and Tb.Th. maps. The FDK reconstruction, the registered µCT reconstruction

with Matched Voxel size (µCTmv), and the registered µCT reconstruction slices with

the original µCT voxel size (µCT) are also included. While the µCT reconstruction

is the best approximation of the true image volume, the µCTmv image is a better

approximation of the best achievable reconstruction at the chosen voxel size.

The MBIR-BC reconstruction has improved resolution as compared to the MBIR-

B, MBIR-I, and FDK reconstructions, with sharper trabecular bone boundaries. Con-

sequently, MBIR-BC results in a more accurate trabecular segmentation. This is

particularly evident when comparing to FDK and MBIR-I, where the segmentation

images contain less detailed trabeculae. This effect is well illustrated in the Tb.Th.

maps. The FDK and MBIR-I maps show fewer, thicker trabeculae, while the MBIR-

BC map is similar to the µCTmv and µCT maps with thinner and more numerous

trabeculae. The MBIR-B map is more similar to the MBIR-BC map, but still contains

thicker trabeculae. The mean Tb.Th. calculations (Table 5.1) confirm this observa-

tion, with MBIR-BC resulting in a Tb.Th. value closer to those of µCTmv and µCT

than do FDK, MBIR-I, and MBIR-B. In contrast, MBIR-BC shows no advantage

with respect to Tb.Sp. and BV/TV. BV/TV values are similar for all methods, sug-

gesting the loss of fine trabecular structures and the increase in apparent trabecular

thickness tend to cancel each other out in terms of BV/TV. The same mechanism is

a potential cause for the better accuracy of the FDK and MBIR-I mean Tb.Sp. val-
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Table 5.1: Trabecular bone metric results. © 2017 IEEE

mean Tb.Th. mean Tb.Sp. BV/TV
(mm) (mm)

FDK 0.335 0.860 0.214
MBIR-I 0.309 0.824 0.216
MBIR-B 0.271 0.785 0.224
MBIR-BC 0.255 0.775 0.219
µCTmv 0.232 0.826 0.189
µCT 0.193 — 0.190

ues: the spacing lost to thicker trabeculae is recovered by the loss of fine trabeculae.

In contrast, MBIR-BC does a better job in general at recovering small trabeculae,

but still reconstructs trabeculae as thicker than they should be, reducing the mean

Tb.Sp. Optimizing reconstructions based on one of these metrics instead of mJac may

improve metric accuracy, or show that MBIR-BC is ill-suited to that metric.

5.4 Discussion

In this chapter we studied the generalized reconstruction algorithm from §3.2.1 in

a scintillator blur dominated scenario in simulation and on a prototype CBCT test

bench. These studies show that high fidelity modeling with this MBIR-BC method

can improve resolution and produce more accurate reconstructions as compared

to more traditional models and FDK approaches. The improved accuracy of the

trabecular bone segmentation and Tb.Th. measurement suggest that MBIR-BC

can increase the accuracy of quantitative metrics used to study trabecular bone

health [14, 129, 130]. Additionally, the improved bias/noise trade-off suggests that

MBIR-BC produces more accurate attenuation values than dFDK and MBIR-I,
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which is critical for quantitative CT [131] (however, note that bias includes both

attenuation value error and blurring).

The nonlinear method discussed in this chapter is preferable to the linear method

in chapter 4 for high resolution reconstructions. It is likely the frequency cutoff in the

preprocessing step in chapter 4 makes resolution recovery difficult or impossible be-

yond a certain point. Whether to use the linear or the nonlinear method depends on

the target resolution, imaging task, preprocessing technique, and computation con-

straints. Future work could expand upon the preliminary comparison in this chapter

by varying these parameters (e.g., using wiener filter deblurring) and increasing the

number of iterations in each method to ensure converged estimates.

As algorithms enable increased resolution, proper choice of voxel size will be criti-

cal [132]. If one were not attempting resolution recovery, the ideal voxel size would be

about the size of the demagnified system blur (0.33 mm for this system). (The large

system blur relative to pixel pitch results in most CBCT systems binning projection

data to increase effective pixel pitch.) In this work voxel size was approximately equal

to the demagnified pixel pitch (i.e., much smaller than the limit imposed by system

blur). Angular sampling also effects voxel size. CT data is almost always angularly

undersampled. To limit the effect of undersampling we acquire data in half angle

increments (double the sampling of traditional CBCT). In summary, we believe the

choices of voxel size and angular sampling in this work are appropriate for the system

blur studied, and allow a fair comparison of the different MBIR system models.

While not a focus of this study, we note that incorporating blur into the model

decreases the convergence rate. In order to compare nearly converged solutions, many

iterations were used. (This is particularly important for regularization sweeps, as dif-
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ferent regularization strengths may require different numbers of iterations.) However,

we believe that tuning the subset/acceleration schedule can improve the convergence

rate in practice. With the current (only partially optimized) implementation, the

bench data reconstructions took approximately 10 min to 15 min per iteration. (Note

the reconstruction volume was much larger than the ROI shown.) When the ROI is

small, as in this chapter, a multi-resolution reconstruction method may be employed

to decrease iteration time [133].

The main limitation of the objective function presented is the application of the

inverse covariance matrix, which may be computationally expensive if noise correla-

tions are modeled. In the bench data study, we make assumptions to avoid computing

this inversion every iteration, but such assumptions will not always be valid (as in the

simulation study). In such cases, one may need to make additional approximations to

reduce computation time. Additionally, patient motion may be a resolution limiting

factor on high-resolution systems. However, if patient motion is properly estimated, it

may be incorporated into the system matrix to reduce this image degradation without

altering the presented algorithm [134].

The success of MBIR methods illustrates the importance of high-fidelity mod-

eling in CT reconstruction. Accurate modeling of CBCT systems, enabled by the

proposed method, improves image quality and permits high-resolution tasks such as

microcalcification detection and analysis of trabecular bone morphology. In addition

to improving the capabilities of current CBCT systems, this method has the potential

to alter the trade-offs between hardware/geometry choices and image quality, poten-

tially effecting future CBCT system designs, including those that aren’t necessarily

aiming for high resolution.
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Chapter 6

Shift-variant focal-spot blur and

gantry-motion blur

This chapter contains work originally published in
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Image Formation in X-Ray CT. 2016,

Steven Tilley II, Wojciech Zbijewski, and J. Webster Stayman. “High-

Fidelity Modeling of Shift-Variant Focal-Spot Blur for High-Resolution

CT”. in: Int’l Mtg. Fully 3D Image Recon. in Radiology and Nuc. Med.

Xi’an, China, June 18, 2017,
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Reproduced here with permission.
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6.1 Introduction

As has been shown in previous chapters, modeling physical effects with MBIR has

the potential to dramatically improve resolution and image quality. Some effects,

such as focal-spot blur and gantry motion blur, result in location-dependent, or Shift

Variant (SV), image quality properties. SV blur precludes traditional convolutional

modeling, complicating analysis and deblurring. Application specific CT systems are

becoming more widespread, and can vary dramatically in geometry and hardware

choices. SV blur modeling may be particularly important in some of these systems,

particularly those with high magnification. For example, smaller, more economic

systems may opt for a fixed-anode X-ray tube to decrease cost, often resulting in a

larger focal-spot and more dramatic SV blur properties. In this chapter we model

and analyze SV imaging properties of high-resolution CT systems caused by focal-spot

blur and gantry motion blur. MBIR is used to improve image quality by incorporating

models of these effects into the reconstruction algorithm.

The X-ray source can be a significant source of location-dependent image quality

in CBCT. X-ray tubes emit X-rays from a small area (focal spot) on a tungsten

anode. To enable better heat dissipation (and permit higher current settings for

lowering noise or decreasing acquisition time), larger focal spots are often employed.

However, the anode is angled such that the focal spot has a small cross-sectional

area when viewed from isocenter. Due to this angulation, the apparent size and

shape of the focal spot can vary dramatically with location, contributing different

amounts of blur to data depending on location. The location-dependence is more

pronounced for larger cone- and fan-angles. Modeling SV focal-spot properties due
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to anode angulation may therefore be important for systems with high-magnification

and objects that cover a large fan/cone angle. Additionally, blur induced by the focal

spot is subject to variable magnification for positions parallel to the source-detector

axis. This effect will be most pronounced in systems where the object has a large

extent along this axis (relative to the source-detector distance). Thus, source blur due

to the X-ray focal spot is complex with significant potential shift-variance throughout

the FOV. Previous work has incorporated SV focal-spot blur models into MBIR in

2D simulation studies [51, 55, 56].

Gantry motion blur is due to movement of the gantry during X-ray exposure and

detection. This blur occurs within a single measurement — effectively integrating

an arc of projection images based on how far the source and detector have rotated

during an integration period. Such blur exhibits as an azimuthal smearing of the CT

volume and is most pronounced toward the edge of the FOV. Gantry motion effects

have been addressed in hardware (e.g., collecting data with a step-and-shoot protocol

or more complicated methods [138]) and in software (e.g., incorporating a blur model

into a linearized forward model for MBIR [57]).

This chapter contains multiple experiments to assess the impact of SV blur on

image quality and the advantages gained with advanced modeling and MBIR. For

focal-spot blur, simulation and bench studies are conducted using a simplified SV

model that ignores depth dependence. A simulation study is then conducted using

a small phantom to simplify computation while assessing image quality at various

points throughout a 3D volume with different X-ray tube orientations. This model

includes depth dependent effects. A full sourcelets model is then applied to physical

data of a line pair phantom to assess improvements on a real system. For gantry
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motion blur, a SV model is incorporated into MBIR and used to improve image

quality in a simulation study and a physical data study.

All MBIR reconstructions in this chapter use the nonlinear method in §3.2.1 with

the mean forward model

ȳ = B exp(−Aµ). (6.1)

6.2 Focal-spot blur modeling

Three focal spot blur models were assessed multiple systems. The three focal-spot

blur studies use different modeling approximations. The first study only models blur

parallel to the detector (Projection Domain (PD) blur), and ignores variable magni-

fication. It also assumes the focal-spot distribution is rectangular and uniform. The

second assumes the imaged object is small relative to the shift-variance, permitting a

SI approximation for each projection angle. The third approach uses a full sourcelets

model with a custom projector to model both PD blur and variable magnification for

arbitrarily sized objects. The models in the second and third studies permit arbitrary

focal-spot distributions.

6.2.1 Methods

6.2.1.1 Projection Domain blur modeling

6.2.1.1.1 Mathematical derivation In this section we model the SV focal-spot

blur along directions parallel to the detector. The model approximates a depth-

independent blur. Therefore, the blur model can be included in the B term in (6.1).

This approximation is appropriate when the object covers a wide fan/cone angle but
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is small relative to the source-detector distance. To estimate a continuous source-

blur model for discrete inputs and outputs, we use nearest neighbor interpolation

to create a continuous approximation of the input image, integrate with a location-

dependent impulse response, then discretize the signal using a rectangular kernel with

the dimensions of a pixel and sampling at pixel centers. The full operation is:

g[k, l] =
∫
x,y

∫
ξ,η

∑
i,j

f [i, j] rect(ξ − iTx
Tx

,
η − jTy
Ty

)TxTy

h(x, y; ξ, η) rect(x− lTx
Tx

,
y − kTy
Ty

) dξ dη dx dy (6.2)

where f and g are the input and output images, Tx and Ty are the pixel widths along

the corresponding directions and h(·, ·; ξ, η) is the impulse response of a point source

at ξ, η. Equation (6.2) can be approximated by discretizing variables and assuming

h is constant over small displacements. We sample x and ξ at intervals of Tx/s and y

and η at intervals of Ty/s, where the sampling factor s is an odd integer (the number

of samples is equal to 2s−1). Applying these approximations and simplifying leads to:

g[k, l] ≈
∑
j,i,a,b

f [i, j]|1 − a||1 − b|h ((a+ l)Tx, (b+ k)Ty; iTx, jTy)TxTy/s2 (6.3)

where a and b range from −(s−1)/s to (s−1)/s in increments of 1/s. The transpose

operation (e.g. for BT ) requires switching the indices for f and g, and summing over

k, l instead of i, j.

The impulse response (h) centered at a given point (uc, vc) is assumed to be

a binary function, with values either equal to 0 or k = area(h(·, ·;uc, vc))−1. To

determine the value of h(u, v;uc, vc), the point (u, v) is backprojected through a
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Figure 6.1: Geometry used to calculate the focal-spot blur impulse response. The

focal spot is represented by the bold line on the side of the anode. All coordinates

are in detector coordinates. The origin of the anode coordinate system is at (u0, v0,

SDD).

pinhole onto the anode. A two dimensional cross section of the geometry is illustrated

in Figure 6.1. The pinhole is placed a distance wp from the detector and along the

line connecting (uc, vc) with the center of the focal spot. If the backprojected point

is in the rectangular focal spot, h(u, v;uc, vc) = k, otherwise h(u, v;uc, vc) = 0. The

area of h was found by forward projecting the corners of the focal spot through the

pinhole, and applying Bretschneider’s formula to the resulting points [139].

6.2.1.1.2 Simulation study Data were generated using the digital extremities

phantom in Figure 6.2. Line integrals were generated from a high-resolution truth

image (3300× 2300 image of 30 µm voxels) projected onto a one-dimensional detector

with 8192 subpixels and a 48.5 µm pixel pitch. A high-magnification geometry was
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Figure 6.2: Digital extremities phantom with medial (c) and lateral (d) bones, line

pairs (a), and a uniform disc (b).
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used, with a source-detector distance of 1200 mm, a source-axis distance of 250 mm,

and an angular spacing of 0.5°. These line integrals were downsampled by a factor

of four to give a simulated pixel pitch of 194 µm. Measurements were generated from

the downsampled line integrals (ℓ) according to:

ȳ = BsI0 exp(−ℓ) (6.4)

y = ȳ +N (0,D{ȳ}) +N (0,D{σ2
ro}) (6.5)

where I0 is 104 photons pixel−1, Bs is the focal-spot blur operator (we assume there is

no detector blur), and the readout-noise standard deviation (σro) is 3.32 equivalent

photons for each measurement. The focal-spot was modeled as a 5 mm× 0.8 mm

rectangle on a 14° anode with the anode-cathode axis parallel to the detector row.

The sampling factor (s) was equal to 41. (Note that BsI0 is equivalent to B in (6.1).)

Data were generated using two short scans (short-1 and short-2) spaced 180° apart,

and a full scan. The short-1 scan placed the medial bone (Figure 6.2c) predominately

on the anode side, and the lateral bone (6.2d) predominately on the cathode side.

The reverse is true for the short-2 scan.

Data from each scan were reconstructed using the nonlinear SQS algorithm

with three models for focal-spot blur: identity (no blur), SI blur, and SV blur.

The sampling factor (s) used in reconstructions was 11. Data were reconstructed

into a 1650× 1150 volume of 60 µm voxels using a Huber penalty (δ = 10−4). The

covariance matrix was modeled as D{y + σ2
ro}. Nesterov acceleration was used with

20 ordered subsets.
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The accuracy of trabeculae segmentation in the medial and lateral bones was

used as a measure of image quality. The truth segmentation for each bone was

found by downsampling the high-resolution phantom to match the reconstruction

volume dimensions and thresholding at the average attenuation of bone and fat. Data

were reconstructed at several penalty strengths and thresholded at regularly spaced

values between the attenuation values of fat and bone. Accuracy was quantified

as the mutual overlap between the thresholded truth image, t, and the thresholded

reconstruction, r [140]:

mutual overlap(t, r) = 2(
∑

tr)(
∑

(t+ r))−1. (6.6)

6.2.1.1.3 Focal-spot measurement To apply the approach to physical data, we

characterized the focal-spot blur of a CBCT test bench consisting of a Rad-94 x-ray

tube (Varian, Salt Lake City UT), a PaxScan 4343CB flat-panel detector (Varian,

Palo Alto CA), and a SDD of 108 cm. In this work we focus on two-dimensional

reconstructions, and therefore only measure one dimensional MTFs along the u axis.

MTFs were measured using a tungsten edge placed at isocenter (40 cm from the

source) and translated in the ±u directions. The detector MTF was measured by

placing the edge at the detector. We assume the detector MTF is SI and fit it to the

following model [124]:

|MTFd(fu)| =
⏐⏐⏐⏐⏐sinc(fuTx)

1 +Hf 2
u

⏐⏐⏐⏐⏐ (6.7)

where fu is the spatial frequency in mm−1 and H is a constant blur parameter. The

focal-spot MTF at each position up was modeled as a rect function with an apparent
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length L(up), resulting in the combined MTF:

|MTFsd|(fu;up) = |sinc(fuL(up))MTFd(fu)| (6.8)

Theoretical apparent blur lengths from anode angle (θ) and focal-spot length (L)

were fit to the measured lengths to yield estimates for θ and L.

6.2.1.1.4 Resolution phantom study A cylindrical resolution phantom (Cat-

Phan CTP528 High Resolution Module, Phantom Laboratory, Salem, NY) with vari-

able frequency line pairs was scanned on the CBCT test bench. The source-detector

and source-axis distances were 108 cm and 40 cm respectively. A full scan of 720

projections was collected at 80 kVp and 0.504 mA s per projection. Data were recon-

structed using the identity and SV blur models, as well as three SI blur models. The

three SI blur models were the blur at the center of the detector (as in the simulation

study) and the blur at either edge of the detector. The presented MBIR algorithm was

used with 800 iterations to ensure a nearly converged solution. The reconstruction vol-

ume was 170 mm× 170 mm with 100 µm voxels. The blur model used the focal-spot

length and anode angle from §6.2.1.1.3 and a subset parameter (s) of 5. We assume

that detector blur is negligible and do not model it in the reconstruction algorithm.

6.2.1.2 Trabecular probe study

We would like to characterize high-resolution CT system performance with highly

accurate forward models both in the simulation of data and incorporation into ad-

vanced reconstruction methods. Performing this characterization over the entire FOV

is a computational challenge due to the small pixel sizes, small voxel sizes, focal-spot
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Figure 6.3: Axial (A) and Coronal (B) slice of trabecular bone phantom. The phan-

tom consists of bone (0.060 mm−1) surrounded by fat (0.019 mm−1).

complexities (shift-variance, depth-dependence), etc. Thus, a strategy for local inves-

tigation within the larger FOV was devised. This strategy is discussed below.

6.2.1.2.1 Phantom and data generation A µCT scan of a human iliac crest

biopsy sample was thresholded and used to create a realistic and clinically pertinent

digital phantom (Figure 6.3). The volume was binned to 0.038 mm cubic voxels prior

to propagation through the imaging chain model. The digital phantom is intentionally

small, serving as a high-resolution “probe” that can be scanned in various positions

throughout the entire FOV. The small support of the digital phantom permits both

computationally efficient data generation and reconstruction for a detailed analysis

of regional performance.

For a realistic system characterization, a pinhole image of an X-ray focal spot

from an IMD RTM 37 source (IMD, Grassobbio, Italy) was used to form a two-

dimensional focal-spot model for simulation. This X-ray tube has a 17.5° anode

angle and a nominal focal spot of 0.6 mm. The source distribution on the anode is

shown in Figure 6.4. This model was used to generate the SV apparent focal-spot
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Figure 6.4: Focal spot model for data generation. Each pixel represents a sourcelet,

and the relative intensity indicates the relative weight of that sourcelet’s measure-

ments. Due to the anode angle, fewer samples were required along the long axis of

the focal spot, resulting in anisotropic sourcelets.

distributions based on position within the FOV. Sampling of the source distribu-

tion into “sourcelets” for projection and scaling by regional focal-spot intensity was

anisotropic (0.096 mm× 0.058 mm) with finer sampling along the short axis of the

source and coarser sampling on the long axis since oblique views of the source result

in finer sampling of the apparent focal spot.

Measurement data were generated according the following forward model:

y = Bd Poisson
(
I0S

[∑
k

wk exp (−Akµ)
])

+N (0,σro) (6.9)

where Bd is the scintillator blur, I0 is the bare-beam source intensity, S is a data

binning operator, wk is the relative intensity of sourcelet k, and Ak is a system

matrix with the focal spot centered at sourcelet k. In short, at the core of (6.9), a

volume of attenuation values, µ, is forward projected (on a fine grid of sub-pixels)

for each focal-spot sourcelet, k. The results are subsequently summed to form pre-

detection projections. These finely sampled projections are binned using the operator
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S (representing pixel aperture and sampling) to account for nonlinear partial-volume

effects. In this section, data were binned by a factor of two in each direction, for

a detector pixel pitch of 0.1 mm. Pre-detection, incoming photons are presumed to

be Poisson-distributed and undergo a detector blur based on the operator Bd. This

blur operation presumes a scintillator blur whose MTF is modeled by a Gaussian-

Lorentzian mixture given by

H = a exp
(
−q2/σ2

)
+ (1− a)(1 +Hq2)−1. (6.10)

Lastly, measurements are subject to an additive uniform Gaussian readout noise.

6.2.1.2.2 Reconstruction While various reconstruction methods are explored,

in all cases, data were reconstructed with 0.0767 mm voxels. The phantom was placed

20 mm, 40 mm, 60 mm and 80 mm from the axis of rotation and offset from the positive

x axis 0° to 355° in 5° increments (rotated about the y axis, see Figure 6.11a). At the

center of the short scan, the focal spot was at z = 381.0 mm and the detector was at

z = −132.0 mm. The source and detector rotated about the y axis during scans. We

conducted this experiment at three planes: the central plane (y = 0 mm) and 60 mm

above and below the central plane (y = ±60 mm). FDK reconstructions used a ramp

filter with no apodization and a cutoff at the Nyquist frequency. Additionally, the X-

ray tube’s anode-cathode axis was modeled in two different orientations: Transaxial

with the anode-cathode axis parallel to the plane of rotation; and Axial with the

anode-cathode axis parallel to the axis of rotation.

We also reconstructed the phantom with three MBIR methods: MBIR-I, MBIR-

SI, and MBIR-SV. Each MBIR method used the nonlinear SQS method in §3.2.1,
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which uses the forward model in (6.1), with the covariance matrix given by

KY = Bd D{y}BT
d + D{σro}. (6.11)

and

B ≜ BdBsI0 (6.12)

where Bd is the scintillator blur, Bs is the source blur, and I0 is the photon flux. A

standard reconstruction system matrix (A, without sourcelets) is used.

Each reconstruction approach uses a different approximation of system blur. The

blur models used for each MBIR method are summarized in Table 6.1. MBIR-I did not

include blur and is similar to a traditional MBIR approach presuming uncorrelated

Gaussian noise. MBIR-SI and MBIR-SV model scintillator blur, matched with that

used in the data generation step, and focal-spot blur, with convolution kernels based

on simulated impulse responses at particular locations. The impulse responses were

generated using sourcelets as in the data generation step, but with sourcelet sampling

reduced by a factor of two in each dimension. Specifically, impulse responses (h)

were found by calculating the line integrals through a single voxel for each sourcelet,

weighting each line integral by the sourcelet intensity, and summing over sourcelets:

h =
∑
k

wkAkµ (6.13)

where µ is a length one vector with value 1. MBIR-SI’s focal-spot blur model used

a single blur kernel calculated from an impulse placed at isocenter (origin in Fig-

ure 6.11A). MBIR-SV used a different blur kernel for each projection. Specifically,
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Table 6.1: Summary of blur models

Bs Bd

MBIR-I Identity (no blur) Identity
MBIR-SI Blur kernel from isocenter impulse response Equation (6.10)
MBIR-SV Different blur kernels for each projection, calcu-

lated from impulse at phantom location
Equation (6.10)

the location of the impulse corresponded to the center of the phantom probe location.

The blur kernel changes for every projection due to 1) change in magnification at the

impulse location as a function of angle and 2) change in apparent focal-spot shape

due to varying obliquity of the ray from the source to the impulse. The focal-spot

blur model for each projection is SI, but because a different blur model (impulse re-

sponse) was used for each projection, the overall effect of this blur model is SV when

reconstruction is applied.

All of these assumptions are a mismatch with the source model in data generation

to varying degrees. However, the MBIR-SV model is an excellent approximation for

a small ROI since location-dependent effects are marginal and the variable magnifi-

cation and angular-dependence of the apparent focal spot are handled by the view-

dependent blur. Thus, the MBIR-SV investigation is a good indicator of regionally

optimized performance, and potentially a good approximation of performance should

a more sophisticated reconstruction with a global model for SV blur be adopted (e.g.,

a full sourcelets model).

The inverse covariance (K−1
Y ) was applied using an iterative solution for MBIR-SI

and MBIR-SV. Similarly, readout noise was assumed negligible in certain computation

steps to avoid application of K−1
Y every iteration, as described in §3.2.1.3. The term
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K−1
Y y was precomputed using 200 iterations of the preconditioned CG method. All

MBIR methods used a Huber Penalty [71] with δ = 10−5 and were optimized in

terms of RMSE over a range of penalty strengths (β’s). Each reconstruction ran for

500 iterations using 10 subsets and Nesterov acceleration [83, 85]. The phantom was

reconstructed using the three MBIR methods at the locations indicated by circles

in Figure 6.11A (80 mm from isocenter; 0°, 90°, 180°, and 360° about the y axis; y =

0 mm and y = 60 mm; and using both tube orientations).

6.2.1.3 Bench data reconstructions with full sourcelets model

Focal-spots were measured and modeled on two CBCT test benches, one with an

axially oriented X-ray tube and one with a transaxially oriented X-ray tube. A line

pair phantom was scanned and reconstructed on the transaxial bench using a full

sourcelets model. Specifically, the mean forward model was

ȳ = D{g}
∑
k

wk exp(−Akµ) (6.14)

where Ak is the system matrix associated with sourcelet k and wk is the relative

intensity of that sourcelet. This may be written in matrix form demonstrating it is

consistent with (6.1)

ȳ = D{g}
[
Iw1 Iw2 . . . Iwk

]
  

B

exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1

A2

...

Ak

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
  

A

µ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (6.15)
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Figure 6.5: Sourcelet modeling illustration with two different types of projector.

On the left, the sourcelets are modeled as point sources, and the voxels as rect-

angles/cubes. On the right, the sourcelets are modeled as lines/rectangles, and the

voxels are modeled as points.

6.2.1.3.1 Focal-spot modeling and measurement Matrix A in (6.15) may

be implemented with multiple applications of a standard projector, such as separa-

ble footprints [50], which assumes the focal spot is a point source. Each Ak matrix

would model the focal-spot at the center of the corresponding sourcelet. However, this

requires fine sampling of the focal spot (i.e., many sourcelets) to prevent sampling

artifacts, and therefore requires many expensive projection operations. To reduce

sampling requirements, we developed a novel projector which models the sourcelets

as rectangles with separable projections on the detector. The voxels in this model are

point sources, moving the sampling requirements from the focal-spot domain to the

volume domain. The schematic in Figure 6.5 illustrates these different assumptions.
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This model is suitable when focal-spot blur is large relative to voxel size. The sepa-

rable sourcelets projector is derived in Appendix B. Simulated impulse responses of a

simple digital focal spot were computed using (6.13) with varying levels of sampling

to compare this new projector to the separable footprints projector.

The focal spot was measured on two X-ray benches, one with an axially oriented

X-ray tube and one with a transaxially oriented X-ray tube. Each bench had two focal

spots. For this study the large focal-spots were used for measuring, modeling, and

reconstruction. On the axial bench, a 07–633 pinhole assembly (Fluke Electronics,

Everett, WA, 0.010 mm) diameter was attached to a pan-tilt stage and a translation

stage. Pinhole images from multiple view angles were acquired by translating the

pinhole on the horizontal axis and angling the pinhole towards the source with the

pan-tilt stage. Vertical translations were achieved by moving both the source and

detector vertically relative to the pinhole. The approximate center of each pinhole

image was found, and used to estimate the magnification by comparing pinhole image

translation distances on the detector with the distances moved by the stages. The

focal-spot distribution on the anode was estimated from the pinhole image acquired

near the center of the detector using the estimated magnification. The anode angle

was assumed to be 14° based on the source specifications. This focal-spot model was

then used to generate simulated pinhole images using (6.13). These were compared

with the measured pinhole images at each position on the detector to verify the

accuracy of the model.

The axial bench did not have a pan-tilt stage, so only a single pinhole image

was acquired. In order to estimate the pinhole magnification, multiple MTFs were

acquired by translating a tungsten edge along the horizontal dimension of the de-
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tector. The magnification was found by calculating the focal-spot distribution at a

given magnification using the single pinhole image, simulating pinhole images at the

measured MTF locations on the detector, and fitting the horizontal component of the

simulated-pinhole derived MTFs to the horizontal MTFs acquired with the tungsten

edge. The magnification resulting in the best fit was used to derive the final focal-spot

distribution. While we assumed a specific anode angle, this method could modified

to solve for anode angle as well magnification.

6.2.1.3.2 Multiresolution forward model Reconstruction with a full

sourcelets model is expensive, requiring a projection operation for each sourcelet.

While the separable sourcelets projector reduces the number of projection operations

by reducing the number of sourcelets, a full volume reconstruction may still be quite

slow. Additionally, small voxels are required both to ensure voxel size does not limit

resolution and to meet the requirements of the separable sourcelets projector. In

many clinical applications, only a small ROI needs to be studied at high-resolution

(e.g., trabecular bone) while other portions of the image may be reconstructed at

a lower-resolution (e.g., soft tissue). (While FDK is capable of reconstructing only

a subset of the scanned object, the reconstruction volume in MBIR must be large

enough to account for all the projection data.) Many multiresolution techniques

have been explored [133, 141–144]. In this chapter we use a technique based on Cao

et al. [133] where different ROIs are reconstructed with different voxel sizes. This

may be written as

y =

⎡⎢⎢⎣y1

y2

⎤⎥⎥⎦ =

⎡⎢⎢⎣B1 0

0 B2

⎤⎥⎥⎦ exp

⎛⎜⎜⎝−
⎡⎢⎢⎣A1,lr 0

A2,lr A2,hr

⎤⎥⎥⎦
⎡⎢⎢⎣µlr

µhr

⎤⎥⎥⎦
⎞⎟⎟⎠ (6.16)
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where µhr is the high resolution ROI and µlr is the low resolution ROI (i.e., the

remainder of the volume). The measurement data is divided into two regions as well:

y2 is a subset of the measurement data which contains all the projections from the

high-resolution ROI, and y1 is the remainder of the measured data. In other words,

any measurement whose path from source to pixel intersects the high-resolution ROI

must be included in y2. Equation 6.16 contains three system matrices, mapping the

low- and high-resolution images to the appropriate projection domain pixels. Note

that by design, the high-resolution ROI does not contributed to y1. Finally, each

region of the measurement data has an associated B matrix. In this chapter the high-

resolution ROI was a box and y2 was composed of rectangular ROIs for simplicity.

Equation 6.16 not only permits different voxel sizes in the low- and high-resolution

ROIs, but different forward models as well. For example, B1 could be a diagonal

matrix while B2 models scintillator blur. In this chapter, we apply the full sourcelets

model only to the high-resolution ROI and y2. Specifically, we may expand (6.16) as

y =

⎡⎢⎢⎣y1

y2

⎤⎥⎥⎦ =

⎡⎢⎢⎣B1 0 0 . . . 0

0 w1I w2I . . . wkI

⎤⎥⎥⎦ exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1,lr 0

A2,lr A2,hr,1

A2,lr A2,hr,2

... ...

A2,lr A2,hr,k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎣µlr

µhr

⎤⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(6.17)

where A2,hr,k is the system matrix from µhr to y2 with sourcelet k. The same system

matrix (A2,lr) mapping µhr to y1 is used for each sourcelet, so focal-spot blur is not

modeled in the y1 measurements. Note that while A2,lr appears multiple times, it
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only needs to be evaluated once for each application of the forward model. While

(6.17) still contains one projection operation for each focal-spot (plus two projection

operations for the low-resolution ROI), each of these operates on much fewer voxels

and pixels, dramatically reducing computation time. Equation 6.17 is consistent with

(6.1), permitting use of the nonlinear SQS algorithm derived in §3.2.1.

Care must be taken with regards to the penalty function when using this approach.

One option is to regularize across the boundary of the low- and high-resolution regions,

using upsampling and binning operations, while another option is to regularize each

region separately. Details about regularizing across boundaries can be found in Cao

et al. [133]. In this chapter ROIs were regularized across the boundary.

6.2.1.3.3 Reconstruction A ≈15 cm water phantom containing a custom line

pair target was scanned on the bench with the transaxially oriented X-ray tube.

The line pair phantom contained alternating sheets of aluminum and plastic, each

0.4 mm thick, glued together with epoxy. The phantom was placed off center on the

X-ray bench, with the line pairs near the edge of the phantom and the field of view

(≈12 cm from the center of rotation). The line pairs were oriented such that X-rays

passed parallel to the aluminum and plastic sheets when the line pairs were near

the edge of the FOV. Data were acquired at 80 kVp and 0.5 mA s per frame with

1° rotational sampling. The source-detector distance was 115 cm and the source-axis

distance was 87 cm. The measurements were divided into two short scans, one with

the line pairs predominately on the anode side of the detector and one with the line

pairs predominately on the cathode side. Each short scan covered 210°.

Data were reconstructed using the multiresolution strategy described in §6.2.1.3.2,

with 0.05 mm× 0.05 mm× 0.05 mm voxels in the high-resolution ROI (containing the
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line pairs) and 0.5 mm× 0.5 mm× 0.5 mm voxels in the low resolution ROI. Three

focal-spot blur models were used: an Identity model which assumed no focal-spot blur,

a SI model (modeled in B2 in (6.16)), and a sourcelets model using the separable

sourcelets projector. The SI blur kernel was a simulated pinhole image using the

derived focal-spot model and the source-detector distance/source-axis distance used

for data acquisition. The SI model was only applied to the y2 data. Data were

acquired and reconstructed with the smaller focal spot to provide a “truth” image.

This reconstruction did not model any blur. The isotropic Huber penalty (§3.3) was

used with δ = 10−3. Regularization strength was varied in the high-resolution ROI

(β = 10i where i = −2, −1.75, −1.5, −1.25, −1, −0.75, −0.5 and −0.25), but was

constant in the low resolution ROI (β = 103). Reconstructions used 300 iterations

with Nesterov acceleration and 10 subsets.

Reconstructions were compared qualitatively with approximately noise matched

reconstructions. Noise was measured as the standard deviation in a region

of the high-resolution reconstruction surrounding the line pairs (indicated in

Figure 6.6). The contrast of the reconstructed line pairs was also calculated for each

model/regularization strength. To calculate contrast, 11 slices of the reconstruction

were first averaged together. The resulting line pair image was then averaged over

125 rows, resulting in a 1D profile. Contrast was calculated as the average of

the peak values minus the average of the trough values. Peak and trough values

were calculated as the max or min values in predefined ranges of the 1D profile.

This is illustrated in Figure 6.6. The contrast-noise tradeoff was plotted for each

reconstruction method and scan type.
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Figure 6.6: Demonstration of the line-pair contrast calculation. The reconstruction

was averaged over slices to reduce noise (left). The rows were averaged between

the dotted lines, resulting in the profile on the right. The mean of the peak values

(triangles) and trough values (squares) were found and subtracted to get the final

contrast measurement. A slice of the mask used for noise calculation is shown in red.
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Figure 6.7: Best mutual overlap versus β. A) Medial and B) Lateral bone.

6.2.2 Results

6.2.2.1 Projection Domain blur modeling

6.2.2.1.1 Simulation study The best mutual overlap values (over all threshold

values) for each (β) are shown in Figure 6.7. Results are shown for reconstructions

with an Identity (I) blur model and the SV blur model. Each line represents a

blur model and scan type combination, and each point represents a reconstruction. A

higher best mutual overlap indicates that a segmentation based on that reconstruction

is closer to the truth segmentation, and the reconstruction is therefore more accurate.

All methods that used the SV model were more accurate than those that used the
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I model, which is evident by comparing the maximum of each line. With the I

model, the best quality segmentation of the medial bone is achieved with data from

the short-1 scan, which placed the medial bone projections primarily on the high-

resolution (anode) side of the detector. The lowest quality was the short-2 scan, which

placed the projections primarily on the low-resolution (cathode) side. The full scan

reconstructions with the I model rank between the reconstructions from the two short

scans. Neglecting a blur model is equivalent to assuming that classically redundant

projections in the full scan (i.e., those with the same integration path but reversed

direction) contain the same information, despite the fact that they are subject to

different degrees of blurring, which results in a reconstruction whose image quality is

a compromise between that of the two short scan reconstructions. Predictably, the

lateral bone reconstructions are best when using the short-2 scan and worst when

using the short-1 scan, in which the lateral bone projection data was on the high-

and low-resolution sides of the detector, respectively.

When using the SV model, the full scan provides the best reconstruction of

both bones, followed by the short-1 scan and then the short-2 scan in the case of

the medial bone, and the short-2 scan and then the short-1 scan for the lateral

bone. The better image quality of the full scan images over the corresponding

high-resolution short-scan reconstructions can be attributed to the additional

(low-resolution) data. The SV model can use this additional information to improve

the reconstruction without losing details provided by the high-resolution data. In

effect, rather than averaging the redundant data, the low-frequency data is used

to reduce noise while the high-frequency data maintains spatial resolution. The

corresponding low-resolution scan for each bone (short-2 for the medial bone and
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Figure 6.8: Reconstructions of the medial bone with the highest mutual overlap over

all thresholds and β’s. The top half of each reconstruction is thresholded at the

optimum threshold value.

short-1 for the lateral bone) results in the lowest quality reconstructions due to the

increased difficulty in deblurring the data.

Figure 6.8 shows the medial-bone reconstructions (bottom of each image) and

segmentations (top of each image) corresponding to the best possible mutual overlap

(optimal threshold and β values) with each scan type and blur model combination.

All SV reconstructions depict more trabecular structure than the SI or I models.

The difference in image quality among I reconstructions is readily apparent in these

images, with the short-1 scan resulting in the most trabecular detail. Finally, the SI
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Figure 6.9: MTFs and fits for the detector and the detector+source blur at different

displacements from the center of rotation.

images depict more detail than the I model but less detail than the SV reconstructions.

However, the SI model results in a ringing artifact, particularly evident on the lower

left aspect of the medial bone in the full scan reconstruction. This is likely due to

blur/model mismatch (the SI model is accurate at the center of the detector but less

accurate at the edges).

6.2.2.1.2 Focal-spot measurement The detector MTF and the combined focal-

spot and detector MTFs at different positions are shown in Figure 6.9. The mag-

nification in this system was about 2.7, so that the focal-spot blur dominates over

the detector blur. Each combined focal-spot and detector MTF is labeled by the

distance of the tungsten edge from the central ray. At positive positions, the edge is
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on the cathode side, and at negative positions the edge is on the anode side. There

is a dramatic difference in MTFs at different positions due to the angulation of the

anode. Fits for each MTF are also shown. These fits give the apparent length of the

focal spot at each position, which was used to estimate the actual length of the focal

spot and the angle of the anode. The focal-spot length was found to be 5.23 mm and

the anode angle was 14.3°.

6.2.2.1.3 Resolution phantom study Figure 6.10 shows the same ROI of five

reconstructions, each of which used a different blur model. The three SI blur models

are the apparent focal-spot size at the center, anode side, and cathode side of the de-

tector. The reconstructions have approximately the same amount of noise (estimated

by computing standard deviation in a flat region at the center of the phantom). The

line pairs in the SV (Figure 6.10c) and center SI (Figure 6.10b) reconstructions are

much sharper than those in the I reconstruction (Figure 6.10a). That the SI recon-

struction line-pairs are roughly as sharp as those of the SV reconstruction suggests

that at this distance from isocenter (approximately 4.75 cm) the SI approximation

is fairly accurate. However, at the edge of the phantom (approximately 7.5 cm from

isocenter), this assumption breaks down, and the resulting mismatch between the

model and the actual blur results in a “ringing” artifact. The anode-side SI blur

model (6.10d) underestimates the blur over most of the detector, reducing ringing

compared to the center SI blur model but also reducing the sharpness of the line

pairs. The cathode-side SI blur model (6.10e) overestimates the blur over much of

the detector, increasing the ringing artifact.
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Figure 6.10: Physical CBCT reconstructions. Each subfigure shows a portion of the

phantom from the edge to one of the line pairs. Each reconstruction has approxi-

mately the same noise level (indicated in each subplot in units of mm−1 and denoted

by σ).
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6.2.2.2 Trabecular probe study

6.2.2.2.1 FDK short scan maps The results of the FDK sweep can be seen in

Figure 6.11. Figure 6.11A is a schematic of the locations sampled, with each circular

path corresponding to a constant radius in one of the plots in Figure 6.11B-G. The

y = ± 60 mm planes (Figure 6.11B-C,F-G) have a substantially higher RMSE than

the y = 0 mm plane (Figure 6.11D-E). Because this RMSE increase occurs with both

X-ray tube orientations and is similar in magnitude above and below y = 0 mm, most

of this image quality decrease is likely due to the large cone angle (e.g., incomplete

sampling and cone-beam artifacts).

Within the y = 0 mm plane, the transaxial orientation (Figure 6.11D) exhibits

more variance in image quality as compared to the axial orientation (Figure 6.11E).

This is mainly a spatial resolution effect since the focal-spot blur shift-variance is

predominately along the anode-cathode axis, which is in-plane in D (parallel to the x

axis at middle of the scan) but perpendicular to the plane in E (parallel to the y axis).

For the transaxial orientation, the RMSE varies more along the x axis than the z axis,

as expected, with the lowest RMSE on the left side of the image, corresponding to

the side with a smaller apparent focal-spot blur (i.e., the anode side). In other words,

as the source travels around isocenter, the apparent focal spot at the negative x axis

is generally smaller than at isocenter. The exception to this being when the source is

at the extremes of the scan, specifically, in the negative z half plane. However, this is

a minority of the projection angles, and the net result is a smaller blur at an object

on the −x axis than at isocenter. The axial orientation (Figure 6.11E) shows little

variation along the x axis. Figure 6.11D-E also show depth-dependent effects, with

the minimum RMSE offset in the positive z direction. As the source orbits isocenter,
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Figure 6.11: A: Schematic of the FOV sampling. Each ring was sampled using the

FDK algorithm. For a given sample point (for example the red dot), the phantom was

placed at that location and scanned using a short scan with the source centered at (0,

0, 381.0) and the detector centered at (0, 0, -132.0). The angular range covered by the

source is represented by the red arc. The data were then reconstructed using FDK.

B-G: RMSE of FDK reconstructions for each sample point. Data at a constant radius

corresponds to sampling along one of the black circles in A. The red dots indicate the

corresponding location in A.
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the apparent focal-spot blur size will change as magnification changes. However, even

though increasing magnification increases focal-spot blur, it also decreases the effect

of detector blur (scintillator blur and pixel sampling). Thus there is an optimum

magnification where these two effects are balanced. Placing the phantom at locations

with an average magnification close to this optimum should result in superior image

quality. In this system, this optimum magnification appears to be more than the

magnification at isocenter. Thus, with a transaxial tube orientation, the best image

quality is achieved by placing the phantom as far to the anode side of the FOV

as possible, and potentially offset in z, while the optimum position with an axial

orientation is along the z axis, with the optimal location along the axis dependent on

the tradeoff between focal-spot blur, scintillator blur, and pixel sampling.

With the transaxial orientation, the y = ± 60 mm planes exhibit a similar pattern,

favoring the −x direction to reduce focal-spot blur. The axial orientation shows a

dramatic difference between these two planes, due to the anode-cathode axis being

parallel to the y axis. The overall RMSE is lower in Figure 6.11G (0.006 05 mm−1)

than Figure 6.11C (0.006 22 mm−1), consistent with the fact that the apparent focal

spot is smaller below the y = 0 mm plane. The RMSE values in Figure 6.11G also

vary dramatically as compared to Figure 6.11C, as apparent focal-spot size is more

sensitive to magnification (z position) on the anode side of the anode-cathode axis

(i.e., y < 0) as compared to the cathode side.

With both orientations, the minimum RMSE location is partially dependent on

the optimum magnification, which is a function of focal-spot blur, scintillator blur,

and pixel sampling. With a transaxial tube orientation, position along the anode-

cathode axis is particularly important, resulting in large in-plane variance in RMSE.
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Figure 6.12: Example β sweep results at the red dot in Figure 6.11A with a transaxial

focal-spot orientation.

Moving out of the central plane reduces image quality due to cone-beam artifacts

and incomplete sampling. With an axial orientation, in-plane variance is reduced.

However, image quality at different locations above and below the central plane is

effected by shift-variant blur along the anode-cathode axis as well as cone beam

effects. Thus, the optimum position may be slightly off the y = 0 mm plane (in this

case in the negative y direction) because of the reduction in focal-spot blur.

6.2.2.2.2 MBIR Figure 6.12 shows the results of a β sweep in the y = 0 mm plane

with a transaxial orientation. Comparing the minimum RMSE for each reconstruction

method, MBIR-SV results in the best image quality, followed by MBIR-SI, MBIR-I,

and finally FDK.
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Figure 6.13: Minimum RMSE from each β sweep along with the FDK RMSE values.

Data is wrapped around at 360° (i.e., the 360° data are the same as the 0° data).

Subfigures A-D correspond to B-E, respectively, in Figure 6.11.

164



6.2. FOCAL-SPOT BLUR MODELING CHAPTER 6. SV BLUR

F
D

K

A
Transaxial Tube

Orientation

M
B

IR
-I

y
=

60
(m

m
)

M
B

IR
-S

I

0°

M
B

IR
-S

V

90° 180° 270°
0.000

0.008

0.016

0.024

0.032

0.040

0.048

0.056

0.064

m
m

−
1

F
D

K

C

M
B

IR
-I

y
=

0
(m

m
)

M
B

IR
-S

I

0°

M
B

IR
-S

V

90° 180° 270°
0.000

0.008

0.016

0.024

0.032

0.040

0.048

0.056

0.064

m
m

−
1

F
D

K

B
Axial Tube
Orientation

M
B

IR
-I

M
B

IR
-S

I
0°

M
B

IR
-S

V
90° 180° 270°

0.000

0.008

0.016

0.024

0.032

0.040

0.048

0.056

0.064

m
m

−
1

F
D

K
D

M
B

IR
-I

M
B

IR
-S

I

0°

M
B

IR
-S

V

90° 180° 270°
0.000

0.008

0.016

0.024

0.032

0.040

0.048

0.056

0.064

m
m

−
1

Figure 6.14: Axial slices of reconstructions. Each set of 16 reconstruction corresponds

to a X-ray tube orientation (columns) and plane in the FOV (rows). Within each set,

columns correspond to the location of the phantom (in degrees rotated about the y

axis) and rows to reconstruction method.
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Figure 6.15: Coronal slices of reconstructions. Images are arranged as in Figure 6.14.
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We conducted β sweeps similar to Figure 6.12 for both X-ray tube orientations at

80 mm from the axis of rotation in the y = 0 mm and 60 mm planes and at 0°, 90°,

180°, and 270° rotations (i.e., the green/red circles in Figure 6.11A). The minimum

RMSE across β’s was plotted as a function of angle (Figure 6.13), along with the

FDK reconstruction RMSEs. In all cases, the rank ordering of performance across

reconstruction methods is the same as in Figure 6.12, with MBIR-SV providing the

best image quality. The most dramatic improvement is between MBIR-I and MBIR-

SI, due to the introduction of the blur model. Improving the accuracy of the blur

model with MBIR-SV further improves image quality as compared to MBIR-SI.

Unlike FDK, the MBIR methods result in similar RMSE values in the y = 0 mm

plane (Figure 6.13C,D) and the y = 60 mm plane (Figure 6.13A,B). This is likely due

to the advantages of the Huber regularizer which better handles the incomplete data

at high cone angles.

With the axial orientation and in the y = 60 mm plane (Figure 6.13B), the blur

at the axis of rotation is larger than at isocenter. Therefore at 0° and 180° MBIR-SI

generally underestimates the blur, causing MBIR-SI to have reduced image quality

as compared to MBIR-SV. At 90°, the blur is reduced relative to the blur at 0° and

180° due to a decrease in magnification, decreasing RMSE in both MBIR-SI and

MBIR-SV. Additionally, the MBIR-SI blur model is more accurate at this location,

resulting in the similar performance of MBIR-SI and MBIR-SV. At 270° the reverse

occurs, and the RMSE values of both methods increase. While MBIR-SI further

underestimates the blur, in this experiment there was not a substantial increase in

the RMSE difference between MBIR-SI and MBIR-SV at 270° as compared to 0°
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and 180°. MBIR-I and FDK both exhibited less variance in RMSE with angle than

MBIR-SI and MBIR-SV.

The RMSE results are supported by a qualitative analysis of the reconstructions

(Figure 6.14 and Figure 6.15). The reconstructions show the dramatic improvement

due to incorporation of the blur model. In all cases (both tube orientations and both

planes), the FDK and MBIR-I reconstructions (top two rows), have substantially more

blur than the MBIR-SI and MBIR-SV reconstructions (bottom two rows). The FDK

coronal slices in the y = 60 mm plane (Figure 6.15A-B) have substantial cone-beam

artifacts near the top of the phantom, as compared to the MBIR coronal slices. In

the y = 0 mm plane with the transaxial orientation (Figure 6.14C and Figure 6.15C),

the FDK reconstruction at 180° is sharper than the reconstruction at 0°, consistent

with the RMSE results. Differences between MBIR-SI and MBIR-SV are subtle, but

are apparent when comparing how the performance of these two methods vary with

angle. For example, with an axial tube orientation and in the y = 60 mm plane

(Figure 6.14B and Figure 6.15B), MBIR-SI produces the sharpest reconstruction at

90° (consistent with the RMSE results). On the other hand, the MBIR-SV method

produces visually similar reconstructions. This is particularly evident in the coronal

slices (Figure 6.15B).

In general, axial tube orientations result in more uniform image quality, while

transaxial tube orientations result in better image quality in a specific region of in-

terest, at the cost of reduced image quality elsewhere. MBIR and blur modeling were

able to improve image quality as compared to FDK in all cases, with more accu-

rate models resulting in more accurate reconstructions. Even without blur modeling,

MBIR-I was able to reduce cone-beam artifact and improve image quality at high
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Figure 6.16: Simple 1D focal-spot distribution used to test focal-spot sampling prop-

erties with different projectors.

cone angles as compared to FDK, resulting in more uniform image quality as a func-

tion of slice. However, the best results were obtained with the accurate, SV model of

focal-spot blur.

6.2.2.3 Bench data reconstructions with full sourcelets model

6.2.2.3.1 Focal-spot modeling and measurement Impulse responses of the

digital focal-spot distribution in Figure 6.16 were generated using the separable foot-

prints projector and the presented separable sourcelets projector with different num-

bers of sourcelets (i.e., different focal-spot sampling). The results are shown in Fig-

ure 6.17. As the number of sourcelets decreases, the impulses acquired with the

separable footprints projector contain more high-frequency sampling artifacts. In

contrast, the separable sourcelets projector can tolerate fewer sourcelets without ar-

tifacts. At the lowest number of sourcelets (11), the separable sourcelets projector

results in a slightly misshapen impulse response. However, most of the shape is pre-

served, and the distortion is much less than the severe high-frequency artifacts in the

separable footprints response.
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Figure 6.17: Simulated impulse responses using the focal spot in Figure 6.16 and

either the separable footprints projector (blue) or the proposed separable sourcelets

projector (orange). For each plot a different number of sourcelets were sampled from

the distribution in Figure 6.16 (indicated at the top of each plot).
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Figure 6.18: Pinhole measurements at different positions on the detector with the

axial bench. There are some residual artifacts (vertical streaks) due to bad pixels.

Approximate position relative to the piercing point (the point on the detector closest

to the focal spot) is given in mm.
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Figure 6.19: Focal spot model for the axial bench. Each pixel in the image is a

sourcelet and represents an area on the anode that emits X-rays, The intensity of each

pixel indicates the relative intensity of the corresponding sourcelet. The coordinates

indicate the position on the anode surface.

Figure 6.18 shows the pinhole measurements at different positions on the detector

for the bench with the axially oriented X-ray tube. The images are magnified by

about a factor of 5. This focal spot is oriented axially, so the primary SV is in

the vertical direction. Towards the top of the detector (the anode side), the focal

spot has a smaller vertical extent, while towards the bottom of the detector (cathode

side) the focal spot appears larger. Moving horizontally along the detector shears the

pinhole images, but doesn’t change the overall size as dramatically as movement in

the vertical direction.

Figure 6.19 shows the modeled focal-spot distribution on the anode. The focal

spot is approximately a trapezoid, with higher intensity horns as seen previously.

The fact that the model is a trapezoid and not a rectangle may reflect the true focal

spot, or may be the model compensating for a slightly rotated X-ray tube. However,
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Table 6.2: Noise levels in each of the four reconstructions in Figure 6.23

Small focal
spot µm−1 Identity µm−1 SI µm−1 Sourcelets µm−1

Anode side 9.93 9.37 12.6 8.74
Cathode side 9.37 8.91 12.2 11.9

this discrepancy is not critical so long as the simulated pinhole images match the

measured pinhole images. The focal spot is sampled more coarsely along its long

axis, as this axis will appear smaller due to the anode angle.

The simulated pinhole measurements are shown in Figure 6.20. These capture

the shape of the true pinhole images from Figure 6.18 very well, indicating that the

focal-spot model is accurate. While many pinhole images were acquired, the focal-

spot model is based on a single pinhole image and the magnification. Therefore, only

one pinhole image of the transaxial X-ray bench focal-spot was acquired to develop

the model for that bench. The transaxial X-ray bench focal-spot model is shown in

Figure 6.21, and the blur kernel for the SI model is shown in Figure 6.22.

6.2.2.3.2 Reconstruction Figure 6.23 shows reconstructions from each scan

type and blur model. On the high-resolution anode side, the identity model is able

to resolve the line pairs, while on the low resolution side the line pairs are more

difficult to visualize. A comparison to the other blur models is difficult, partially due

to imperfect noise matching. However, the anode side line pairs with SI modeling

appear sharper than the identity method and the sourcelets method (although the SI

model has higher noise as well, as indicated in table 6.2). On this side of the detector

the SI model overestimates the focal-spot blur, which may cause artificial contrast
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Figure 6.20: Simulated pinhole measurements for the axial bench based on the focal-

spot model and separable sourcelets projector.
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Figure 6.21: Focal spot model for the transaxial bench.

0 2 4 6
pixel

0

1

2

3

4

5

6

pi
xe

l

0.00

0.05

0.10

0.15

0.20

0.25
W

ei
gh

t

Figure 6.22: SI blur kernel for the transaxial bench.
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Figure 6.23: Reconstructions from each scan type (rows) and blur model (columns)

for the transaxial bench. The reconstructions are approximately noise matched. The

noise for each reconstruction is give in Table 6.2.
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enhancement (i.e., more contrast than the true object). On the cathode side, the

two methods with blur modeling are closely noise matched, but the sourcelets model

produces line pairs that are easier to visualize. Each reconstruction method (except

for the small focal-spot reconstruction) used the same geometry for fair comparison.

Note that the small focal-spot reconstruction still contains scintillator blur and

focal-spot blur due to the small focal spot.

Figure 6.24 shows the contrast-noise tradeoff for each scan type and reconstruc-

tion method. Better image quality is at the top left of the plots (high contrast, low

noise). On the anode (high-resolution) side, the identity and small focal-spot recon-

structions are roughly the same, as focal-spot blur is small and the identity model is

fairly accurate. The sourcelets model slightly increases contrast as compared to the

identity model and small focal spot-reconstruction, and the SI model dramatically

increases contrast. Because the SI model overestimates the focal-spot blur on the

anode side, one would expect contrast at certain frequencies to be larger than the

true values. However, because the small focal-spot reconstruction still contains blur,

it is unclear whether this contrast improvement is due to over-deblurring or if the SI

model is undoing real blur which is present in the image. We note that scintillator

blur is present but not modeled, so depending on the amount of scintillator blur over-

estimating focal-spot blur may actually be advantageous. The sourcelets model also

contains higher contrast than small focal-spot reconstruction, although the difference

is much less. Further studies are required to determine if the SI model (and possibly

the sourcelets model) are over-deblurring the data and artificially boosting contrast.

On the cathode (low-resolution) side, the small focal-spot reconstruction has

higher contrast at almost all noise levels, and the identity model is among the lowest
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Figure 6.24: Contrast-noise plots for each scan type and reconstruction method for

the transaxial bench reconstructions.
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contrasts at all noise levels. At low noise levels, the high regularization prevents the

SI and sourcelets models from recovering contrast. As regularization decreases, both

models provide improved contrast. However, the SI model underestimates the blur,

and is unable to match the contrast level of the sourcelets model. At high noise levels,

the sourcelets model has higher contrast than small focal-spot reconstruction. This

may be due to the fact that the small focal-spot reconstruction still contains some

focal-spot blur, although future studies are required to properly assess this.

6.3 Gantry motion blur modeling

In this section we assess the importance of gantry motion modeling in a simulated

MDCT system and with physical test bench data.

6.3.1 Methods

6.3.1.1 Model

Gantry motion blur is the result of a continuous integration over angle, and may be

modeled as

ȳi = B2

∫ θi+∆θ/2

ψ=θi−∆θ/2
exp(−Aψµ)dψ (6.18)

where ȳi is the mean measurement vector at projection i and gantry angle θi, ∆θ

is the angular distance over which data is collected for projection i, and Aψ is the

projection matrix at angle ψ. A discrete approximation is achieved by oversampling

179



6.3. GANTRY MOTION BLUR MODELING CHAPTER 6. SV BLUR

40.0 mm40.0 mm40.0 mm40.0 mm40.0 mm40.0 mm40.0 mm40.0 mm40.0 mm40.0 mm40.0 mm40.0 mm40.0 mm40.0 mm40.0 mm40.0 mm40.0 mm

0.00

0.07

m
m

−
1

Figure 6.25: The digital phantom used in the motion blur study. The ROI indicated

by the orange box in the left image is shown on the right. The left most circle in this

ROI is at the center of the phantom. The circles are separated by 20 mm.

in projection angle and summing the results to obtain the measurement sampling:

ȳi = B2J
−1

J∑
j=0

exp (−Aψµ) (6.19)

ψ(j) = θi + ∆θ (j/J − 1/2) (6.20)

where J is the angular oversampling factor. B from (6.1) contains B2 and the sum-

mation term in (6.19), and A contains all the Aψ used in (6.19). For example, if the

measurement data contains 360 projections and J is 3, then A results in 1080 pro-

jections, and every three consecutive projections are summed together as part of B.

6.3.1.2 Simulation study

A circular simulation phantom (Figure 6.25) with a diameter of 25 cm and multi-

ple round ROIs at different distances from the center of rotation was used to eval-

uate the proposed algorithm. A continuous motion system was simulated with a

500 mm source-to-axis distance, a 1000 mm source-to-detector distance, and 1000

projections per rotation. This geometry was chosen to approximate high-resolution

MDCT systems. Data were generated from a phantom with 0.1 mm× 0.1 mm voxels
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and a detector with 0.125 mm pixel pitch. We projected the data at 51 000 equally

spaced angles over a 360° rotation. Poisson noise was added prior to binning to

1000 projections and spatially binning to 0.25 mm pixels. The photon flux after bin-

ning was 105 photons pixel−1. Finally, readout noise was added to the data (σro =

7.11 equivalent photons).

Data were reconstructed with 0.2 mm× 0.2 mm voxels. We used two blur models:

an identity blur model (no blur, A produces 1000 projections), and a gantry motion

blur model with an angular oversampling factor of J = 5 (A produces 5000 projec-

tions). We used an uncorrelated noise model, the isotropic Huber penalty from §3.3

(δ = 10−3) [71], and the separable footprints projector [50]. Nesterov acceleration was

used with 1000 iterations and 10 subsets. Bias/noise measurements were calculated

for each ROI. Bias was computed as the RMSE between a noiseless reconstruction

and truth at the ROI, and noise was computed as the RMSE between a noisy re-

construction and a noiseless reconstruction in a nearby region. Bias and noise were

calculated for multiple penalty strengths to obtain a bias/noise curve for each method.

6.3.1.3 Test bench study

A “harp” phantom (Figure 6.26) consisting of 25 vertically oriented spans of

wire submerged in water was scanned on a CBCT test bench. The phantom was

scanned with a 109 cm source-to-detector distance, a 82 cm source-to-axis distance,

and 0.139 mm× 0.139 mm pixels. The FPD on the test bench is not designed for

continuous exposure, so a continuous operation was emulated by oversampling

in angle by a factor of 10 and binning the results. Specifically, 3600 projections

were acquired in 0.1° increments, which were then binned to 360 projections. The
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Figure 6.26: “Harp” phantom containing 25 spans of wire (labeled 1–25). The phan-

tom was positioned off-center, with the center of rotation indicated by the star.
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phantom was positioned off-center in the FOV, such that the edge of the phantom

approached the edge of the FOV. The center of rotation is indicated in Figure 6.26.

Data were reconstructed with 0.1 mm× 0.1 mm× 0.1 mm voxels using the non-

linear SQS algorithm, 1000 iterations, 10 subsets, Nesterov acceleration, and the

isotropic Huber penalty (δ = 10−3). Two models were used for reconstruction, an

identity model (J = 1) and a blur model (J = 5). Reconstructions were compared

qualitatively at a single regularization strength (β = 10).

6.3.2 Results

6.3.2.1 Simulation study

Gantry motion simulation results are summarized in Figure 6.27. The bias/noise

tradeoff is shown for each ROI at varying distances from the center of rotation. The

identity model suffers from increased bias at large distances from the center of ro-

tation, while the blur model bias is relatively unchanged (suggesting a recovery of

spatial resolution). The identity model appears to outperform the blur model at

20 mm to 40 mm from the center of rotation, although the difference is small.

These results are confirmed in the reconstructions in Figure 6.27. These recon-

structions were approximately noise matched at the ROI furthest from the center

of rotation by altering penalty strength (noise is 2.719× 10−4 mm for the identity

model and 2.622× 10−4 mm for the blur model). The circles in the identity model

reconstruction get blurrier along the direction of rotation as distance from the center

increases. However, with the blur model the circles are accurately reconstructed.
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Figure 6.27: Bias/noise curves (top) and reconstructions (bottom) for each ROI in

Figure 6.25. Each column corresponds to a distance from the center of rotation. The

top row reconstructions use the identity model and the bottom row reconstructions

use the gantry motion blur model.
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Figure 6.28: “Harp” phantom reconstructions for the identity model (left) and blur

model (right). Each ROI corresponds to one of the wires in Figure 6.26.

6.3.2.2 Test bench study

The “harp” phantom reconstructions are shown in Figure 6.28. With the identity

blur model, the wires near the center of rotation (e.g., ROI 1) are reconstructed

well, but wires far from the center of rotation (e.g., ROI 25) are blurred out almost

entirely. With this model contrast decreases as distance from the center of rotation

increases. The blur model is able to reconstruct all the wires fairly well, and with

better contrast than the identity model at locations far from the center of rotation.

The noise properties throughout the blur model reconstruction vary considerably, with

much less noise towards the edge of the FOV. This method may benefit considerably

from position-dependent regularization [145].
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6.4 Discussion

MBIR with SV blur modeling can provide improved image quality over SI models

by making more efficient use of the acquired data. Such modeling can enable MBIR

to use high-resolution data where available (e.g., on the anode side of the detector)

while using low-resolution data to reduce noise. Disregarding this resolution difference

can lead to an averaging effect, where high-resolution information is lost, or ringing

artifacts due to inaccurate modeling at certain locations.

By modeling multiple CBCT imaging systems we have shown that SV blur can

cause image quality to vary with position throughout a FOV. Understanding these

properties can aid design of application and system specific acquisition protocols.

For example, when imaging a small object with a short scan and reconstructing using

FDK, the best image quality will be obtained with a transaxial X-ray tube orientation

and the object at the edge of the FOV on the anode side of the anode–cathode axis

(−x in 6.11). Similarly, placing the object at the cathode side should be avoided. On

the other hand, when scanning a large object which requires image-quality uniformity,

an axial X-ray tube orientation should be used. The results show that MBIR methods

may alter these trade-offs depending on the incorporated blur models. For example,

in the trabecular probe study with an axial X-ray tube orientation and an object in

the y = 60 mm plane, position of the object is more important when using a SI model

as compared to an identity model or FDK when minimizing RMSE.

When modeling SV blur, the wrong approximation can lead to drastically reduced

image quality. In particular, modeling a highly SV blur as SI may lead to a mismatch

between the true blur and the model. If the blur is underestimated, resolution recovery
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will be limited, while if the blur is overestimated, ringing artifacts may occur. With-

out SV blur modeling, these two effects may appear at different locations in the same

reconstruction. Overestimating the blur could also lead to contrast boosting (i.e., ar-

tificially high contrast that does not reflect the true object). This is likely what was

observed in the sourcelets study. While in many cases contrast enhancement may be

desirable, it presents problems when accurate quantification is required. Future stud-

ies are required to determine if this is the effect seen in the sourcelets study, and the

degree to which blur mismatch may effect quantification in various clinical scenarios.

MBIR often results in location-dependent resolution and noise properties through-

out the FOV [145]. Incorporating SV blur modeling may exacerbate this effect, as

shown in the gantry motion bench study. One solution is location dependent penalty

strengths as shown in Fessler and Rogers [145]. Such a solution may need to be

modified to account for more advanced blur modeling. Uniform resolution and noise

properties in the context of SV blur modeling are a potential subject of future work.

SV blur modeling can be computationally expensive. In this chapter we explored

simplifications such as ignoring depth-dependence and multiresolution reconstruction.

Whether such high-fidelity modeling is worth the computational cost will depend on

the system properties and clinical task. High-fidelity SV modeling may also be used

to reconstruct “gold-standard” images to validate or train more efficient techniques

(MBIR with less accurate models, convolutional neural network denoising, etc.).

Through analysis of shift-variant blur properties of multiple systems, we have

demonstrated how understanding location-dependent blur can improve acquisition

protocol design (e.g., favoring the anode side of the X-ray source) and system de-

sign (e.g., axial tube orientation for uniformity, transaxial for ROI imaging). It was
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also shown that proper modeling of shift-variant blur properties with MBIR leads to

improved image quality. As CT systems target increasingly high-resolution applica-

tions, understanding and accounting for SV system blur may be essential to providing

better accuracy and improved clinical outcomes.
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Chapter 7

Model-based material decomposition
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http://iopscience.iop.org/10.1088/1361-6560/aaf973 (visited on

01/01/2019).

Reproduced here with permission.

7.1 Introduction

Spectral CT has found clinical application in a number of imaging scenarios, in-

cluding contrast enhanced applications such as anthrography [148, 149], angiography

[150], and lung ventilation [151], as well as urinary stone classification [152] and bone

marrow lesion detection [153]. Spectral CT permits separation of different materials

(material decomposition) which may have similar attenuation values by exploiting dif-

ferences in their spectral properties. For example, while iodinated contrast agents and

calcified plaques can appear similar in traditional CT angiography, they can be distin-

guished in spectral CT [150]. Additionally, material decomposition results in density

estimates for each material, as compared to overall attenuation in traditional CT,

which are often more physiologically relevant than attenuation — e.g. in bone min-

eral density studies [131]. Finally, spectral CT facilitates reduction of beam hardening

artifacts, which are caused by monoenergetic model assumptions in traditional CT.

Material decomposition utilizes multiple types, or channels, of measurements with

different spectral properties. Such channels can be obtained in many ways. Strategies

include multiple energy bins in photon counting detectors [154] and data acquired with

different incident X-ray spectra, either via different tube voltages [60, 155, 156] or

differential filtering [58, 157–159]. Combining this multi-channel data with knowledge
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of the X-ray spectra and the attenuation properties of the materials being imaged

enables reconstruction of individual material density images.

Traditionally, material decomposition is performed separately from the recon-

struction. In Projection Domain Decomposition (PDD) [160] material specific line

integrals are estimated from the measurements using a polyenergetic forward model.

Because this is done independently for each integration path (i.e., each “ray” through

the object from source to detector), this method requires multiple channels for each

ray. In other words, the different energy channels need to be geometrically matched

so they correspond to the same integration paths through the object. This is the

case in photon counting detectors, where each detector element has multiple energy

bins. However, other approaches may not meet this criteria — e.g., kV switching

[60] — or only meet this criteria after re-binning — e.g., split filter with sufficient

sampling [159]. In Image Domain Decomposition (IDD), the spectral channels are

reconstructed independently, and material density images are estimated from the

reconstructions [161–163]. The IDD method is capable of using unmatched measure-

ments, but because the channels are reconstructed separately, each channel needs

sufficient sampling. Additionally, IDD may require separate correction for spectral

effects such as beam-hardening [164].

MBMD techniques perform the decomposition and the reconstruction simultane-

ously. MBMD is a form of MBIR, which minimizes an objective function derived

from a physical and statistical model of the measurement process. MBMD includes

a polyenergetic forward model which relates material densities to the measurement

data, allowing direct estimation of the material image volumes. Such a direct ap-

proach has many advantages as compared to traditional methods. MBMD does not
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require matched data as in PDD, and does not necessarily require each channel to

be sufficiently sampled as in IDD (because the densities are reconstructed from all

channels simultaneously). Because MBMD uses a polyenergetic forward model, beam

hardening effects can be eliminated (in contrast to traditional IDD, where removing

beam-hardening artifacts requires a pre-correction). Lastly, regularization in MBMD

acts jointly on both the decomposition and reconstruction, as opposed to traditional

methods which either only regularize the reconstruction (potentially resulting in noisy

decomposition) or require separate regularization for each step (increasing the num-

ber of free parameters). Multiple MBMD methods have been developed [58–65, 165].

Additionally, Zhang et al. [166] have developed a hybrid approach, in which the noise

properties of the initial PDD (e.g., correlation between material line integrals) are

modeled in the subsequent MBIR reconstruction.

The mathematical model used to derive the nonlinear SQS algorithm in §3.2.1 is

sufficiently general to accommodate a polyenergetic forward model, and can therefore

be used for MBMD. This approach differs from the aforementioned MBMD methods

in that it is the only penalized weighted least-squares MBMD method (Gaussian noise

model) utilizing optimization transfer and operating on pre-log data.

In this chapter we provide an in-depth description on how to apply the general

MBIR method in §3.2.1 to material decomposition, resulting in the proposed MBMD

method. We compare this MBMD method to IDD and PDD in a simulated CBCT kV-

switching scenario decomposing water and calcium. Both fast and slow kV-switching

schemes are explored. (While this work uses CBCT systems, all reconstructions are

at or near the central plane, so cone beam artifacts are minimal.) We also com-

pare MBMD to IDD in a simulated CBCT kV-switching scenario with water-iodine
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decomposition, focusing on the sensitivity of each method to iodine concentration.

We then use MBMD to decompose water, iodine, and gadolinium in both a CBCT

simulation study and in a CBCT test bench study with a unique acquisition protocol:

combining a split filter with kV-switching to obtain four spectral channels. The test

bench data was also used to evaluate a novel tiled filter acquisition, which has four

spectral channels but more challenging sampling properties then the split filter.

7.2 Methods

7.2.1 Reconstruction algorithm

All MBIR methods generally consist of a forward model, which is a mathematical

description of the measurement process and associated statistical properties, and

a corresponding objective function, which is a goodness-of-fit measure between the

measurements and an image volume estimate. The reconstruction process seeks

to find an optimal volume estimate for this objective function. In this section we

demonstrate how to adapt the general MBIR approach described in §3.2.1 to a

MBMD estimation framework.

In §3.2.1, we presented a general algorithm for image estimation with the following

forward model:

ȳ = B exp (−Mx) (7.1a)

y ∼ N (ȳ,K) (7.1b)

where y denotes a vector of measurements and x is the (image) vector to be estimated.
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To accommodate the MBMD objective, one must relate densities of specific ma-

terials to the tomographic measurements. Moreover, since material decomposition

relies on energy-dependent attenuation differences between materials, the forward

model must encompass the polyenergetic nature of the measurement process and the

mechanisms of spectral discrimination. Towards this end, we define the following

data model. For simplicity, we present the mean model in terms of an individual

measurement, ȳi:

ȳi =
∫
E
S(i)(E) exp

⎡⎣− Nm∑
m=1

µ(m)(E)
∑
j

Aijρ
(m)
j

⎤⎦ dE . (7.2)

This forward model presumes the object is composed of Nm basis materials. For

each material (m), a (image volume) vector of material density values (ρ(m)) is for-

ward projected using a system matrix (A). For each energy (E), line integrals for

that basis material are multiplied by the material-specific mass attenuation coefficient

(µ(m)(E)) to obtain material- and energy-dependent line integrals. After summing

over basis materials, Beer’s law is applied to the energy-dependent line integrals, and

the result is scaled by the energy-dependent system response (S(i)(E)). The expected

value of each measurement is obtained by integrating over energy. The system re-

sponse is a general function that permits modeling of both source spectra (including

filtration) as well as detector response. Note that S(i)(E) is also indexed by the

measurement (i), which allows modeling of a wide variety of spectral CT strategies

including multiple spectral filters, view-dependent energies (e.g., kV switching), and

energy-discriminating detector bins. The number of spectral channels of an acquisi-

tion is the number of unique normalized spectral responses. For example, in a simple

kV-switching acquisition, all the S(i) for even numbered projections would be equal,
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Table 7.1: Notation summary.

Variable Description Units Size
Nj Number of voxels in the im-

age
— —

Ni Number of measurements — —
Nm Number of materials — —
NE Number of energies — —
A System matrix mm Ni ×Nj

ρ(m) Vector of densities for mate-
rial m

g mm−3 Nj × 1

µ(m)(E) Mass attenuation coefficient
of material m at energy E

mm2 g−1

S(i)(E) System spectral response of
measurement i at energy E

photons kV−1

x Concatenated density vec-
tors of all materials

g mm−3 (Nm ·Nj)× 1

M mm3 g−1 (NE ·Ni)× (Nm ·Nj)
B photons Ni × (NE ·Ni)

and likewise for odd numbered projections, resulting in two spectral channels. All of

the pertinent variables of this forward model are summarized in Table 7.1. In this

paper we adopt a version of (7.2) that is discretized in energy:

ȳi =
NE∑
k=1

S(i)(Ek)∆E exp
⎡⎣− Nm∑

m=1
µ(m)(Ek)

∑
j

Aijρ
(m)
j

⎤⎦ (7.3)

where NE is the number of energy bins and ∆E is the width of each bin (in this work

1 kV). One may also scale by mass attenuation coefficients and sum over materials

prior to the forward projection, but this would result in NE forward projections as

opposed to Nm forward projections. In this work NE is much larger than Nm, so

performing projection operations first is more efficient.
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Equation 7.3 can be written in the form of (7.1a), permitting use of the previously

developed MBIR algorithm. Denoting I(n) as an n× n identity matrix, we may write

the terms in (7.1a) as

x ≡

⎡⎢⎢⎢⎢⎢⎢⎣
ρ(1)

...

ρ(Nm)

⎤⎥⎥⎥⎥⎥⎥⎦ (7.4)

M ≡

⎡⎢⎢⎢⎢⎢⎢⎣
µ(1)(E1)I(Ni) . . . µ(Nm)(E1)I(Ni)

... . . . ...

µ(1)(ENE
)I(Ni) . . . µ(Nm)(ENE

)I(Ni)

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
A 0

. . .

0 A

⎤⎥⎥⎥⎥⎥⎥⎦ (7.5)

B ≡ ∆E

⎡⎢⎢⎢⎢⎢⎢⎣
S(E1, 1) 0 0 . . . S(ENE

, 1) 0 0

0 . . . 0 0 . . . 0

0 0 S(E1, Ni) . . . 0 0 S(ENE
, Ni)

⎤⎥⎥⎥⎥⎥⎥⎦ . (7.6)

The outputs of the MBMD algorithm with these substitutions are images of the local

density of each base material (ρ(m)), as opposed to images of attenuation values as

in traditional methods. While some multienergy methods produce images of atten-

uation values at different energies (e.g., monoenergetic reconstructions), the MBMD

approach estimates material density values directly.

Note that explicit formation of these matrices is not required, nor desirable for

implementation due to their size. For computational implementation, a functional

approach is adopted — computing the result of each matrix multiplication without

explicitly creating the matrix. For example, to apply B, each element of the input is

scaled by the appropriate term in S, and then the result is summed over energy.
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Though the noise model is general, in this work, we presume uncorrelated mea-

surement noise such that

K = D {y}+ I(Ni)σ2
ro (7.7)

where D {·} forms a diagonal matrix with its argument on the diagonal, and σro is the

equivalent readout noise standard deviation in photons. In order to utilize existing

penalty functions, the penalty is applied separately for each material density image

R (x) =
Nm∑
m

β(m) Rρ

(
ρ(m)

)
(7.8)

where β(m) is the penalty strength for material m and Rρ is a penalty function for an

individual material density image.

7.2.2 Image domain decomposition

We used the following IDD approach for comparison with MBMD. Each energy chan-

nel is reconstructed with standard MBIR with system matrix M = A and a simple

B = D {I0} that accommodates a gain due to photon flux (I0 photons per pixel).

These assumptions are typical for MBIR, and implicitly assume a monoenergetic

spectrum. IDD is then applied to these reconstructions. Traditionally, IDD is ap-

plied to analytical reconstructions (e.g., FDK). However, in this work MBIR is used

as a more fair comparison to MBMD. A comparison between different reconstruction

methods with IDD can be found in Zbijewski et al. [149]. We used the following

model for each voxel in the reconstructions of Nc spectral channels:

r = Ûτ (7.9)
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where Û is a Nc ×Nm matrix of effective attenuation values, r is a Nc × 1 vector of

voxel attenuation values from each spectral channel reconstruction, and τ is a Nm×1

vector of material densities for that voxel. (In this work only two materials were

estimated using IDD from two spectral channels, so there was no need to incorporate

a volume constraint.) Each effective attenuation value is defined as the average mass

attenuation value weighted by energy [161]

Ûcm ≡
∑NE
k S(c)(Ek)µ(m)(Ek)∑NE

k S(c)(Ek)
(7.10)

where S(c) is the system spectral response of channel c. The normal equations are

used to find a least squares estimate for τ

τ̂ =
[
ÛT Û

]−1
ÛT

r. (7.11)

This estimation process is applied to each voxel separately.

7.2.3 Water/calcium simulation study

A digital cylindrical water phantom with 0.125 mm× 0.125 mm voxels was created

containing three calcium inserts, two with 600 mg mL−1 Ca and the other with

100 mg mL−1. Data were generated from this phantom using (7.3) with a source-

detector distance of 120 cm, a source-axis distance of 60 cm, and a detector with

0.097 mm pixels. Two X-ray spectra were used, 60 kVp and 120 kVp, with the latter

containing additional filtration (4 mm of aluminum and 0.254 mm of silver) [23].

Each energy response curve was normalized to sum to one, and then scaled by

2.5× 105 photons pixel−1. Finally, we added Poisson noise to the data, binned it by a
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factor of four (resulting in a photon flux of 106 photons pixel−1), and added readout

noise equivalent to 2.8 photons. Kilovolt switching was simulated by alternating the

spectrum as a function of projection angle, resulting in 180 projections acquired

with the 60 kVp spectrum and 180 with the 120 kVp spectrum, with consecutive

projections separated by 1°. Two kV-switching schemes were used: switching every

other frame (KV1:1), and switching every 10 frames (KV10:10).

Data were reconstructed using three methods: PDD, IDD, and MBMD. For

PDD, (7.3) was used to generate a map from pairs of measurements to pairs of

line integrals using interpolation [160]. This relationship was used to estimate ideal

line-integrals for each material (i.e., Aρ(m) in (7.3)). In order to obtain matched

projection data, the 60 kVp data and the 120 kVp data were upsampled to 360 projec-

tions each using linear interpolation. Because of the required interpolation, we only

applied PDD to the KV1:1 case. The decomposed line integrals were then used to

generate ideal (i.e., monoenergetic) measurements, which were reconstructed using

MBIR. The nonlinear SQS MBIR method (§3.2.1) was used with B = D{I0} where

I0 = 106 photons and M was the system matrix, using the notation from (7.1a). IDD

was calculated as in §7.2.2. To ensure nearly converged reconstructions, all MBIR

algorithms ran for 20 000 iterations using 10 subsets. Additionally, Nesterov momen-

tum acceleration[83, 85] was used for the first 15 000 iterations. A Huber penalty[71]

was used with δ = 10−3. For each method the penalty strength was the same between

each channel/material (e.g., all β(m) were the same for a given reconstruction).
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Figure 7.1: Iodine sensitivity phantom. The numbers indicate the iodine concentra-

tion in each adjacent ROI in mg mL−1. ROI specific CNR was calculated as the ratio

of the mean in the regions indicated by the circles along the edge of the phantom to

the standard deviation in the inner circle.
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7.2.4 Iodine sensitivity simulation study

We compared the sensitivity of IDD and MBMD to iodine concentration using the

digital phantom in Figure 7.1. Data were generated using a kV-switching scheme [60,

155, 156, 167] with 80 kVp and 140 kVp spectra alternating every frame. This experi-

ment investigates whether MBMD offers improvements over traditional methods with

standard acquisition schemes.

The phantom was created with 0.25 mm× 0.25 mm voxels. Data were generated

according to (7.1a) with a 60 cm source-to-isocenter distance, a 120 cm source-to-

detector distance, a 0.278 mm pixel pitch, and 360 projections in 1° increments. The

data were binned to 0.556 mm pixels to model nonlinear partial volume effects. The

bare-beam intensity was 104 photons/pixel after binning. Lastly, Poisson noise and

readout noise (σro = 7.109 equivalent photons/pixel) were added to the data.

Mass attenuation coefficients were obtained from NIST [24], and emitted X-ray

spectra were calculated using Spektr [23] with an inherent filtration of 1.6 mm of

aluminum. Mass attenuation curves were interpolated to match the energy sampling

of the spectra (one sample per kV from 5 kV to 140 kV). Emitted spectra had peak

kVs of 80 and 140 and were both modified by filtration with 2.0 mm of aluminum and

0.2 mm of copper. Peak kV was switched every projection (1°). The CsI scintillator

in the indirect detector was modeled with 0.6 mm thickness.

Data were reconstructed with both MBMD and MBIR with the monoenergetic

model (for IDD) with 0.5 mm× 0.5 mm voxels, 2000 iterations, 9 ordered subsets, and

momentum-based acceleration [83, 85]. Monoenergetic MBIR for IDD was initialized

with a FDK reconstruction [35]. MBMD reconstructions also used a FDK reconstruc-
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tion, which was segmented to determine the support of the object. The support was

assumed to be uniformly water with constant density. MBMD was initialized with

this water-only image.

A quadratic regularizer was used for all reconstructions (2.40). Both IDD and

MBMD require two regularization strengths (either for each energy reconstruction

or for each material density image, respectively). A two-dimensional sweep was per-

formed for each method, and the optimal reconstruction was determined as the one

with the minimum RMSE over the entire reconstruction (x in (7.1a)). The Contrast-

to-Noise Ratio (CNR) for each ROI from these optimal reconstructions was calculated

as the average value in the ROI divided by the standard deviation in the center of

the image (ROI locations are indicated in Figure 7.1). CNR values were compared

to evaluate the sensitivity of each method to iodine concentration.

7.2.5 Kilovolt-switching with split-filtration simulation stud-

ies

We evaluate the application of this MBMD approach in another simulated spectral

CT scenario that uses a combination of kV-switching and split-filters to obtain differ-

ent spectral channels (illustrated in Figure 7.2). Kilovolt-switching [60, 155, 156, 167]

and split-filters [159, 168, 169] may be used to acquire multiple channels of spectral

data by altering the incident spectra temporally or spatial, respectively. Each tech-

nique presents different sampling trade-offs, either reducing angular sampling (kV-

switching) or spatial sampling (split-filters). Both techniques result in non-coincident

rays, precluding PDD (without interpolation/re-binning). By combining both tech-
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Figure 7.2: Schematic of the kV-switching/split-filter acquisition protocol. The kVp

was switched every projection (i.e., every 1°).
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Figure 7.3: Digital water, iodine, and gadolinium phantom. Inserts are numbered in

the iodine image, and corresponding ROIs for metric evaluation are indicated with

circles. Iodine and gadolinium concentrations are next to each ROI in mg mL−1.
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Figure 7.4: (a) Mass attenuation coefficients. (b) Spectral responses (S) for the

kV-switching/split-filter simulation study.

niques, both the number of spectral channels and the sampling challenges are com-

pounded, providing a unique scenario with which to evaluate the MBMD method.

Two filters and two kVp settings were used to produce four spectral channels, from

which three basis materials were reconstructed. Data were generated as in the previ-

ous study (§7.2.4), but used a different, 3-material phantom (Figure 7.3) and the addi-

tional split filter. The phantom contains ROIs with different concentrations and mix-

tures of iodine and gadolinium. Half of the beam was filtered with 0.25 mm of erbium,

and the other half was filtered with 0.254 mm of silver. The spectra were normalized

such that the bare beam intensity after the erbium filter was 5× 105 photons/pixel

(2.5× 105 photons/pixel bare beam before binning). Mass attenuation curves for the

different materials and spectral responses for each channel are shown in Figure 7.4.
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Data were reconstructed using MBMD as in the previous study. However, sim-

plifying assumptions were made to avoid a three-dimensional parameter sweep in

penalty strengths. Specifically, the ratio of regularization strength for each material

image (β(m) in (7.8)) to the regularization strength for the water image was set to the

(approximate) ratio of the density of water to the maximum density of that material:

100 for iodine and 200 for gadolinium. For example, if the regularization strength

for water was 103, it was 105 for iodine and 2× 105 for gadolinium. Therefore, the

reconstruction method had only one degree of freedom, which was varied to select a

reconstruction with an acceptable level of noise. Reconstructions were initialized as

in the previous study.

7.2.6 Kilovolt-switching with filtration physical test bench

studies

The proposed MBMD algorithm was also evaluated in physical data. Specifically, we

conducted spectral CT data acquisitions using a CBCT test bench emulating a setup

similar to the kV-switching/split-filter simulation study. The phantom (Figure 7.5)

consisted of four vials of different mixtures of iodine (0 mg mL−1 to 75 mg mL−1) and

gadolinium (0 mg mL−1 to 20 mg mL−1). Iodine and gadolinium solutions were ob-

tained by diluting Omnipaque (300 mg mL−1 iodine, GE Healthcare, Chicago, IL.) and

Magnevist (469.01 mg mL−1 gadopentetate dimeglumine, Bayer, Leverkusen, Ger-

many), respectively. The vials were placed in a 10 cm plastic cylinder. Data were

acquired with a Varian (Salt Lake City, UT) PaxScan 4343CB detector (0.278 mm

pixel pitch, 0.6 mm CsI scintillator), 120 cm source-to-detector distance, and 72.7 cm

source-to-axis distance. The x-ray beam was filtered with 0.25 mm erbium and
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Figure 7.5: (a) Iodine/gadolinium phantom. Each vial contains different mixtures of

iodine- and gadolinium-based contrast agents. In (b) and (c) we show a schematic of

the phantom identifying insert/ROI labels. The concentration of iodine in each vial

is indicated in (b), and the concentration of gadolinium in each vial is in (c).

0.254 mm silver, at both 80 kVp and 130 kVp. These four data sets were acquired

separately, and then combined in post-processing to emulate the kV-switching/split-

filter protocol. The data were reconstructed as in the previous study, using a quadratic

penalty and the same material penalty strength ratios. The reconstructions were ini-

tialized with a segmented FDK reconstruction as in the previous studies. Readout

noise was estimated from dark scans for each channel and averaged. Data were re-

constructed at multiple penalty strengths, and a reconstruction with an acceptable

noise level was chosen for further analysis.

To further stress robustness to unique sampling properties, we also emulated a

tiled filtered acquisition [170]. The tiled filtered consisted of repeating elements of

erbium and silver, each 8 pixels wide on the detector. The filter was translated 1 pixel

every frame to improve sampling. A tiled filter permits more than two materials, as

opposed to the split filter design, increasing the number of spectral channels. However,

206



7.2. METHODS CHAPTER 7. MBMD

Tiled filter location

Source
Detector

130 kVp, Silver
130 kVp, Erbium

80 kVp, Silver

80 kVp, Erbium

Figure 7.6: Schematic of tiled filter acquisition. The filter was translated each frame

to improve sampling (not shown).

in this work only two materials were used, but with kV-switching. As with the split-

filter data, the tiled filter data was emulated in post-processing. The tiled-filter

acquisition is illustrated in Figure 7.6.

We developed a spectral response model of the test bench by fitting to the trans-

missivity of each vial from the phantom in Figure 7.5. Specifically, we obtained pro-

jections of the vials (without the plastic cylinder) arranged such that each ray only

passed through one vial. We used spectra from Spektr modified with aluminum, cop-

per, tungsten, and glass filters. CMA-ES [171] was used to estimate the thicknesses

of these filters by matching simulated transmissivities with physical transmissivities

through the center of each vial.
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7.3 Results

7.3.1 Water/calcium simulation study

Figures 7.7 and 7.8 summarizes decomposition performance. PDD and MBMD pro-

duced the best reconstructions in terms of concentration accuracy and artifact reduc-

tion. Because IDD does not model the full spectrum through the phantom, it was

unable to remove beam hardening artifacts in the center insert (visible in the zoomed

image of insert 2 for the IDD in Figure 7.7). The average concentration values in

each insert ROI are compared in Figure 7.8. PDD and MBMD produced the most

accurate concentration values, while IDD underestimated calcium concentration and

overestimated water concentration, particularly for the 600 mg mL−1 inserts. MBMD

also produced accurate concentration values in the challenging KV10:10 case.

7.3.2 Iodine sensitivity simulation study

A two-dimensional penalty-strength sweep was performed for each reconstruction

method to find the optimal reconstruction (in terms of RMSE) and examine the

relationship between penalty strengths. The RMSEs for each method are shown in

Figure 7.9. For IDD, the penalty strengths resulting in the lowest RMSE were 106

for the 80 kVp channel and 106 for the 140 kVp channel (indicated by the star in

Figure 7.9a). For MBMD, to optimal penalty strengths were 108 for the water image

and 1012 for the iodine image.

Figure 7.9a has a line of low RMSE values along the diagonal, indicating that the

two penalty strengths should be equal for IDD in this scenario. In MBMD the optimal

208



7.3. RESULTS CHAPTER 7. MBMD

W
at

er 10 cm

0

400

800

1200

m
gm

L−
1

C
al

ci
um

1
2

3
0
200
400
600

m
gm

L−
1

Truth

C
al

ci
um

Image
KV1:1

38.28%

Proj.
KV1:1
0.89%

MBMD
KV1:1
0.43%

Image
KV10:10
38.26%

MBMD
KV10:10

0.27%

0
50
100
150
200

m
gm

L−
1

Figure 7.7: Water/calcium simulation reconstructions. The insert ROIs are numbered

from top to bottom. The standard deviations of the calcium concentrations in insert

1 are 7.82 mg mL−1 for IDD KV1:1, 12.41 mg mL−1 for PDD KV1:1, 8.11 mg mL−1

for MBMD KV1:1, 8.42 mg mL−1 for IDD KV10:10, and 8.71 mg mL−1 for MBMD

KV10:10. The percentages indicate the root mean squared fractional errors in the

calcium ROIs.
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Figure 7.9: RMSE for each penalty strength combination for the (a) IDD and (b)

MBMD methods. The minimum RMSE in each plot is indicated with a star.
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iodine image penalty strength is 104 times the water image penalty strength. This is

the ratio of the density of water to the density of iodine in the lowest concentration

ROI. Because the density of the water image is much greater than the densities in

the iodine image, changing the water image penalty strength has a more dramatic

effect on RMSE than changing the iodine penalty strength by the same amount.

Figure 7.10 shows the minimum RMSE reconstructions for each method. The

IDD reconstructions contain more noise than the MBMD reconstructions. The noise

difference may be explained by the fact that MBMD regularizes the material density

images (the values of interest), while IDD regularizes the intermediate individual-

channel attenuation images, prior to an unregularized decomposition step which can

amplify noise in the density estimates. Low concentration regions are more discernible

in the MBMD reconstruction, although concentrations below 0.5 mg mL−1 cannot be

visualized with either reconstruction method. Differences between the MBMD and

IDD reconstructions also include the presence of a ring in the MBMD iodine image

and biases in the MBMD water image at the high iodine concentration ROIs. These

differences are likely due to the quadratic penalty smoothing objects in one material

image, and the MBMD algorithm compensating by changing the density of the other

material at that location. For example, the smoothed edge in the water image results

in less overall attenuation due to water, which is compensated for with the ring in

the iodine image.

The CNR values in each ROI are plotted in Figure 7.11. MBMD has higher CNR

at all concentrations. If we define a detectable concentration as having a CNR of at

least two (indicated by the black line), then MBMD is sensitive to iodine concentra-

tions as low as 0.5 mg mL−1, while IDD is only sensitive to concentrations as low as
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Figure 7.10: IDD (top) and MBMD (bottom) reconstructions of water (left) and

iodine (middle and right) concentrations. The right column is the same as the center

but with a tighter window to better visualize the low concentration ROIs.
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method.
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Figure 7.12: Digital iodine/gadolinium phantom reconstructions. Each column is a

different material density image.

3 mg mL−1. This result is specific to comparing the minimum RMSE reconstructions,

and choosing the reconstructions from each method using a different metric might

improve the relative performance of IDD. For example, noise-matching the recon-

structions would likely increase IDD CNR relative to MBMD but reduce resolution.

We chose minimum RMSE because it captures both resolution and noise effects and

is straightforward to apply to the two-dimensional parameter sweeps.

7.3.3 Kilovolt-switching with split-filtration simulation stud-

ies

The reconstruction from the kV-switching/split-filter simulation study is shown in

Figure 7.12. The reconstruction appears similar to the true phantom in Figure 7.3,

with accurate relative iodine and gadolinium concentration estimates. The gadolin-

214



7.3. RESULTS CHAPTER 7. MBMD

950 1000 1050

mg/mL

1

2

3

4

5

6

7

R
O
I

Water

Truth MBMD

0 5

mg/mL

1

2

3

4

5

6

7

R
O
I

Iodine

0 2 4

mg/mL

1

2

3

4

5

6

7

R
O
I

Gadolinium

Figure 7.13: Concentrations of each material (columns) and ROI in the digital io-

dine/gadolinium phantom. The true concentrations are indicated by vertical lines.

ROI numbers correspond to those in Figure 7.3.

ium image contains a ring at the edge of the phantom as in the iodine image in the

previous study.

Estimated concentration values are presented in Figure 7.13. These estimates are

fairly accurate, although gadolinium is slightly underestimated and water is slightly

overestimated. RMSE concentration values for each material are 4.86 mg mL−1,

0.108 mg mL−1, and 0.170 mg mL−1 for water, iodine, and gadolinium, respectively.
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Figure 7.14: Iodine and gadolinium estimates for the physical test bench experiment.

The top row shows the split filter results and the bottom shows the tiled filtered

results.

216



7.3. RESULTS CHAPTER 7. MBMD

0 500 1000
mg/mL

1

2

3

4

R
O

I
Water

Truth MBMD Split MBMD Tiled

0 50
mg/mL

1

2

3

4

R
O

I

Iodine

0 10 20
mg/mL

1

2

3

4

R
O

I

Gadolinium

Figure 7.15: Concentration values for each material and ROI in the physical io-

dine/gadolinium phantom. Insert/ROI locations are indicated in Figure 7.5.

7.3.4 Kilovolt-switching with filtration physical test bench

studies

Figure 7.14 shows the reconstructions for the physical iodine/gadolinium phantom

in Figure 7.5. The results are similar to the simulation study results, although the

gadolinium image contains strong ring artifacts around ROIs 1 and 3, and does not

contain a ring artifact at the boundary of the phantom. The tiled filter results

are similar to the split filter results, indicating MBMD is robust against different

sampling. However, the tiled filter does result in more high-frequency artifacts.

The concentration values from the physical phantom reconstructions are shown in

Figure 7.15. Iodine and gadolinium concentration values are slightly underestimated
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while water concentration is slightly overestimated, although the relative concentra-

tions among ROIs for each material is preserved. With the split filter, the RMSE

for each material is 134 mg mL−1, 5.26 mg mL−1, and 1.85 mg mL−1 for water, iodine,

and gadolinium, respectively. With the tiled filter, the RMSEs are 134 mg mL−1,

5.11 mg mL−1, and 2.05 mg mL−1.

7.4 Discussion

With a conventional kV-switching acquisition protocol, MBMD maintained a CNR

greater than two for iodine concentrations as low as 0.5 mg mL−1. This was more sen-

sitive than a traditional IDD method, indicating that MBMD is a suitable candidate

for traditional acquisition schemes with the potential to extend low concentration

limits. Additionally, MBMD was able to remove beam-hardening artifacts that were

present in IDD reconstructions. However, we note that IDD may potentially be

improved by using different effective attenuation values in (7.11), a non-negativity

constraint, beam hardening pre-correction, and/or a nonlinear decomposition [163,

172]. Common IDD techniques include preprocessing projection data to correct for

beam hardening [163], and using effective attenuation coefficients obtained with a

calibration step, which can also mitigate beam hardening effects [173]. Bench recon-

structions may be improved with a more accurate spectral model. In this work we

proposed a simple spectral calibration procedure using transmissivity measurements

of the base materials to estimate effective filtration of the X-ray system. MBMD

achieved satisfactory decomposition accuracy of K-edge contrast materials (iodine

and gadolinium) and water with the resulting spectral model. However, errors in the

218



7.4. DISCUSSION CHAPTER 7. MBMD

spectral model lead to biases in the material decompositions, with larger biases occur-

ring in harder decomposition problems. Future work will explore more sophisticated

modeling and calibration methods to improve decomposition accuracy [174].

MBMD produced accurate concentration estimates using unique acquisition pro-

tocols combining kV-switching and filtration. This suggests that MBMD may be used

with other non-traditional acquisition protocols such as unconventional filtration [170,

175, 176], multiple limited angle scans [64], and systems with multiple axially oriented

X-ray sources [177]. Related work has applied the MBMD approach to X-ray beam

spectral filtering [170] scenarios. This study further supports the robustness of this

approach, demonstrating its application in additional acquisition strategies. All of

these methods preclude the use of PDD due to unmatched measurement data (al-

though in specific scenarios matched data may be acquired via re-binning). Similarly,

IDD may be infeasible for these methods depending on the sampling of each channel.

For example, reconstructing multiple limited angle scans separately would result in

artifacts if the rotation angle of each scan were less than 180° plus the fan angle.

Furthermore, MBMD may enable new acquisition protocols that are impractical with

traditional methods. Applying MBMD to more unique acquisition protocols is a focus

of future work.

Another future consideration is regularization design and strength. Because

the search space is large, we may require better techniques to select regularization

strengths, or relative regularization strengths, a priori (similar to the work by Zhang

et al. [178] in prior image reconstruction). Regularization type is also likely to be

important in future applications. For example, the ring artifacts in the MBMD

reconstructions are probably caused by the quadratic penalty, and may be prevented
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with edge-preserving or low rank penalties [70, 71]. Future work will also explore

regularizers that enforce low rank jointly across material density images, thereby

taking advantage of the common structure among these images [179].

This chapter primarily focused on discrimination of K-edge contrast agents.

MBMD may also be used to decompose materials without a K-edge (e.g., the

water/calcium simulation study in §7.2.3). Such decomposition can be more

challenging due to the similarity of energy-dependent attenuation but may still be

accommodated in the MBMD approach with appropriate material basis selection.

Previous work [165, 180] has shown elemental decomposition can be effective in

modeling spectral dependencies and estimating density across many tissue types.

That strategy may be extended to MBMD which could offer further improvements.

Future work will explore application of the methods discussed in this chapter to a

larger number of materials with more similar attenuation properties.

Because the MBMD method is derived from a general MBIR forward model, it is

straightforward to include models of more physical effects in the reconstruction, such

as those modeled in previous chapters. Such changes can be made without altering

the underlying reconstruction algorithm. Future work will take advantage of the gen-

erality of the presented MBMD algorithm for high-resolution material decomposition.

We have presented a material decomposition algorithm that is capable of model-

ing a wide variety of systems, including those with unique spectral acquisitions. In

addition to improving the sensitivity of material density estimates, this method may

enable novel multi-spectral systems and acquisition protocols, ultimately increasing

access to material decomposition in pre-clinical and clinical applications.
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Chapter 8

Conclusion

8.1 Summary

In this dissertation we have improved the image quality and accuracy of CT recon-

structions by combining high-fidelity models of measurement physics and statistics

with MBIR. A generalized MBIR framework was presented in chapter 3 that is capa-

ble of incorporating a wide range of physical effects. This framework is an important

contribution to the field in that it enables advanced physical modeling without deriv-

ing custom reconstruction algorithms. We then measured and modeled many physical

effects, and demonstrated that including these models in the MBIR framework im-

proved image quality. Specifically

Chapters 4 and 5 modeled focal-spot and scintillator blur with noise correlations

using a SI model. In addition to demonstrating improvements due to blur modeling,

these results show that modeling noise correlations due to scintillator blur is also

important for high-resolution reconstruction. To our knowledge, this is the first

221



8.1. SUMMARY CHAPTER 8. CONCLUSION

time noise correlations have been incorporated into MBIR for physical CT data

reconstruction.

Chapter 6 demonstrated that some types of blur are SV and result in location-

dependent blurring of the image. Two types of SV blur were explored, focal-spot blur

and gantry motion blur. Focal-spot blur was extensively measured and modeled in

a variety of ways suitable for different applications. By incorporating these models

into MBIR we showed that certain systems require SV modeling to efficiently use

the measurement data for high-resolution reconstructions. Gantry motion blur was

also modeled and included in the MBIR framework to correct this radially dependent

effect, restoring resolution at the edge of the FOV.

Chapter 7 applied the MBIR framework to model-based material decomposition.

First, we demonstrated that the framework presented in chapter 3 is sufficiently gen-

eral to model the polyenergetic nature of CT systems. We then incorporated this

polyenergetic model into the framework to accurately decompose different materials

as part of the reconstruction process. This method was applied to data with unique

spatial/spectral sampling properties, and proved robust to various types of spectral

data acquisition.

Additionally, we have presented a novel sourcelet projector that enables efficient

focal-spot modeling, and derived a surrogate function for the isotropic Huber penalty

for use with existing SQS methods.
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8.2 Future work

This dissertation provides many opportunities for future work, including comparing

MBIR with high-fidelity modeling to more methods, improving the presented algo-

rithm, and applying the presented approaches to numerous applications.

In this work we compared MBIR methods with different models and more tradi-

tional approaches. However, some questions remain unanswered. For example, the ID

deblurring in chapter 4 performed about as well as the MBIR method with correlated

noise modeling. We expect that MBIR will outperform ID deblurring in the presence

of higher noise, less circular phantoms (leading to more heterogeneous measurements

and noise properties), and different image quality metrics. For example, one could

apply ID deblurring to the line-pair phantom in chapter 5 and evaluate performance

with the maximum Jaccard, bias, and noise metrics. However, certain SV blurs such

as focal-spot blur cannot be accurately modeled in the ID due to the view-dependent

nature of the effect.

While SV blur was studied in numerous scenarios in chapter 6, some aspects were

not explored. Specifically, full sourcelet reconstructions with an axially oriented X-

ray tube were not presented. Additionally, another simulation study could clarify

some of the observations of the physical data reconstructions with the transaxially

oriented X-ray tube, specifically whether contrast is artificially increased with the

SI blur model. The gantry motion bench study suggests that location dependent

regularization strength may be important when modeling SV blur, but this needs to

be explored further.
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In chapter 7 we presented preliminary results using a tiled spectral filter. Because

these filters have yet to be built, the data was emulated in post-processing, which

ignores many effects that may be present in real systems. For example, the projection

of the filter will be effected by focal-spot blur, resulting in blurred spectral properties

in the measurements. This and other potential challenges creating physical tiled filters

are subjects of ongoing work [181].

The nonlinear SQS algorithm presented in chapter 3 was designed to model a

wide range of physical effects. Many of these effects, particularly blur and energy-

dependent attenuation, can dramatically alter the convergence properties of the re-

construction. This seems particularly true for MBMD. This dissertation focused

primarily on the modeling and image quality aspects of the reconstruction. Thus,

there are opportunities to study the convergence properties of the presented algo-

rithm with different models and different techniques to decrease reconstruction time

(e.g., preconditioning).

Instead of being used directly in commercial CT systems, the presented meth-

ods may be used to provide “gold standard” reconstructions to test the tradeoffs

between image quality and algorithm/model selection. For example, the techniques

in chapter 6 may be used to determine whether a system would benefit from SV blur

modeling. These “gold standards” may also be used to train deep-learning based

reconstruction or image restoration techniques [182], potentially permitting these al-

gorithms to learn the relevant physical effects for a given system.

The algorithms, models, and techniques presented in this work provide a means

to ensure CT measurement data is used as efficiently as possible by incorporating

detailed knowledge of the imaging physics. The resulting improvements in image
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quality may permit CT to be used for clinical applications that were previously out

of reach, such as analyzing fine trabecular structure. By increasing resolution and

image quality, high-fidelity modeling and MBIR have the potential to improve the

study and diagnosis of disease, ultimately leading to better patient outcomes.
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Appendix A

Test-Bench Gain Estimation

This section describes a strategy for gain estimation in physical bench data.

To accommodate nonuniform illumination of the FP detector, photon flux may be

modeled with the following equations [18]:

gi = pifi (A.1)

fi ∼ Poisson(I0 cos3(θi)) (A.2)

where gi is a random variable representing an offset corrected gain (bare-beam) scan

value for pixel i, I0 is a constant value representing the photon flux at the piercing

point, pi is the detector gain for pixel i (detector units per photon), and θi is the angle

between pixel i and the piercing ray. The parameters I0 and pi may be estimated

using the mean and noise properties of offset corrected gain scans. Measurements can

then be corrected for detector gain (i.e., divided by pi) to obtain measurements in

photon units. To account for focal-spot intensity variations, a normalization factor

nv may be calculated for each frame (v) using an unobstructed (bare-beam) region
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of the projection data. Using this method, D{g} is a matrix which scales the value

of each pixel i by I0 cos3(θi) and the values in each frame v by nv.
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Appendix B

Separable Sourcelet Projector

Here we derive the separate sourcelet projector used in this work. The geometry

and definition of coordinates for the trans-axially oriented x-ray source are shown in

Figure B.1. (The axially oriented geometry is similar, except the anode coordinates

are rotated 90 degrees about z.)

Focal Spot

θ

Anode Coords.

Detector
Anode SideCathode Side

(0, 0, 0)
x

z
y

World Coordinates

(vx, vy, vz)

(0, 0, SDD)

(px, py, 0)

α
β

AnodeCathode

Figure B.1: Geometry and coordinates for a transaxial oriented x-ray source.
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B.1 Derivation

The transformation from anode coordinates (α and β) to world coordinates (x, y, z)

of a point f on the anode is given by

fx = − sin(θ)fα (B.1)

fy = −fβ (B.2)

fz = cos(θ)fα + SDD (B.3)

for a trans-axial orientation and

fx = fβ (B.4)

fy = − sin(θ)fα (B.5)

fz = cos(θ)fα + SDD (B.6)

for an axial orientation.

We model the intensity distribution on the anode as a collection of rectangular

sourcelets, and proceed with the derivation for an individual sourcelet. This sourcelet

has and indicator function h that is 1 inside the sourcelet and 0 otherwise. Sourcelet

intensity is accounted for outside the exponential in a separate step (see (6.15)).
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For an individual sourcelet the line integral g of an object f at a point p on the

detector is given by

g (px, py) =
∫
fα,fβ

∫
vx,vy ,vz

f (vx, vy, vz)h (fα, fβ) δ
(
vx −

px (fz − vz) + fxvz
fz

)

δ

(
vy −

py (fz − vz) + fyvz
fz

)
dvx dvy dvz dfα dfβ (B.7)

where δ is the Dirac delta function.

Integrating over vx and vy eliminates the delta functions to yield

g (px, py) =
∫
fα,fβ

∫
vz

f

(
px (fz − vz) + fxvz

fz
,
py (fz − vz) + fyvz

fz
, vz

)

h (fα, fβ) dvz dfα dfβ . (B.8)

We approximate the imaging volume f as a collection of points:

f̂ (vx, vy, vz) =
∑
a,b,c

f (a∆x, b∆y, c∆z) ∆x∆y∆z

δ (vx − a∆x) δ (vy − b∆y) δ (vz − c∆z) . (B.9)

Substituting f̂ for f and integrating over vz yields

g (px, py) ≈
∫
fα,fβ

∑
a,b,c

f (a∆x, b∆y, c∆z) ∆x∆y∆z

δ

(
px (fz − c∆z) + fxc∆z

fz
− a∆x

)

δ

(
py (fz − c∆z) + fyc∆z

fz
− b∆y

)
h (fα, fβ) dfα dfβ . (B.10)
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Note that this approximation assumes the projected voxel size is relatively small as

compared to the projected sourcelet size.

We define g̃ as the discrete approximation of g obtained by integrating over pixel

areas, yielding

g̃[i, j] =
∫ i′=i+0.5

i′=i−0.5

∫ j′=j+0.5

j′=j−0.5
g (px (i′, j′) , py (i′, j′)) (∆u∆v)−1 di′ dj′ (B.11)

g̃[i, j] ≈
∫ i′=i+0.5

i′=i−0.5

∫ j′=j+0.5

j′=j−0.5

∫
fα,fβ

∑
a,b,c

f (a∆x, b∆y, c∆z) ∆x∆y∆z

δ

(
px (i′, j′) (fz − c∆z) + fxc∆z

fz
− a∆x

)

δ

(
py (i′, j′) (fz − c∆z) + fyc∆z

fz
− b∆y

)

h (fα, fβ) (∆u∆v)−1 dfα dfβ di′ dj′ . (B.12)

Let

ϕ ≜
px (i′, j′) (fz − c∆z) + fxc∆z

fz
− a∆x (B.13)

ψ ≜
py (i′, j′) (fz − c∆z) + fyc∆z

fz
− b∆y. (B.14)

We now convert the integrations over fα and fβ to integrations over ϕ and ψ.

g[i, j] ≈
∫ i′=i+0.5

i′=i−0.5

∫ j′=j+0.5

j′=j−0.5

∫
ψ,ϕ

∑
a,b,c

f (a∆x, b∆y, c∆z) ∆x∆y∆zδ (ϕ) δ (ψ)

h (fα, fβ) (∆u∆v)−1 |J|−1 dψ dϕ di′ dj′ (B.15)
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where

J =

⎡⎢⎢⎣
∂ϕ
∂fα

∂ϕ
∂fβ

∂ψ
∂fα

∂ψ
∂fβ

⎤⎥⎥⎦ . (B.16)

Integrating over ϕ and ψ yields

g[i, j] ≈
∫ i′=i+0.5

i′=i−0.5

∫ j′=j+0.5

j′=j−0.5

∑
a,b,c

f (a∆x, b∆y, c∆z) ∆x∆y∆z

h
(
f ∗
α, f

∗
β

)
(∆u∆v)−1 |J|−1 di′ dj′ (B.17)

where f ∗
α and f ∗

β are the zeros of ϕ and ψ.

If we assume h is separable, ∂ϕ
∂j
≈ 0, and ∂ψ

∂i
≈ 0 (i.e., minimal panel rotation), then

g[i, j] ≈
∑
a,b,c

f (a∆x, b∆y, c∆z) ∆x∆y∆z

(∆u∆v)−1 |J|−1
∫ i′=i+0.5

i′=i−0.5
hα (f ∗

α) di′
∫ j′=j+0.5

j′=j−0.5
hβ
(
f ∗
β

)
dj′ (B.18)

for a trans-axial tube orientation and

g[i, j] ≈
∑
a,b,c

f (a∆x, b∆y, c∆z) ∆x∆y∆z

(∆u∆v)−1 |J|−1
∫ i′=i+0.5

i′=i−0.5
hβ
(
f ∗
β

)
di′
∫ j′=j+0.5

j′=j−0.5
hα (f ∗

α) dj′ (B.19)

for an axial tube orientation.

Because the projected sourcelet is approximated as separable in each dimension, it

is relatively straightforward to calculate the integral of this projection for each pixel.

The pseudocode for a transaxial orientation is in §B.2.
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B.2 Algorithm

This section presents the algorithm used to calculate the projections for a single

sourcelet. In this algorithm, f̃ is the voxelized representation of f , and Pi(fα −

0.5∆α, fβ, a, b, c) calculates the i pixel coordinate of the point on the detector that

marks the intersection of the detector plane and the line connecting (a∆x, b∆y, c∆z)

and (fα − 0.5∆α, fβ).

function Separable Sourcelet Projection

for all (a, b, c) do

fscaled← f̃ [a, b, c]|J|−1∆x∆y∆z (∆u∆v)−1

i1 ← Pi(fα − 0.5∆α, fβ, a, b, c)

i2 ← Pi(fα − 0.5∆α, fβ, a, b, c)

j1 ← Pj(fα, fβ − 0.5∆β, a, b, c)

j2 ← Pj(fα, fβ − 0.5∆β, a, b, c)

i1, i2 ← sort(i1, i2)

j1, j2 ← sort(j1, j2)

if i1 + 0.5 is an integer then

imin ← i1 − 0.5 ▷ Ensure the starting pixel edge is outside projection

else

imin ← round(i1)

if jmin + 0.5 is an integer then

jmin ← j1 − 0.5

else

jmin ← round(j1)

233



B.2. ALGORITHM APPENDIX B. SOURCELET PROJECTOR

imax ← round(i2)

jmax ← round(j2)

for i = max(imin, 0)..min(imax, Ni − 1) do

for j = max(jmin, 0)..min(jmax, Nj − 1) do

out← fscaled

if i == imin and i == imax then ▷ 1D projection entirely within pixel

out← out ∗ (i2 − i1)

else if i == imin then ▷ Projection partially in pixel

out← out ∗ (i+ 0.5− i1)

else if i == imax then ▷ Projection partially in pixel

out← out ∗ (i2 + 0.5− i)

else ▷ Entire pixel in projection (in this dimension)

Do nothing

if j == jmin and j == jmax then

out← out ∗ (j2 − j1)

else if j == jmin then

out← out ∗ (j + 0.5− j1)

else if j == jmax then

out← out ∗ (j2 + 0.5− j)

else

Do nothing

g̃[i, j]← out
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B.3 Jacobian Calculation

In this section we calculate the determinant of the Jacobian matrix, which contributes

to the scale factor in the above algorithm.

First, using the chain rule, we have

∂ϕ

∂fα
= ∂ϕ

∂fx

∂fx
∂fα

+ ∂ϕ

∂fz

∂fz
∂fα

(B.20)

∂ϕ

∂fβ
= ∂ϕ

∂fx

∂fx
∂fβ

+ ∂ϕ

∂fz

∂fz
∂fβ

(B.21)

∂ψ

∂fα
= ∂ψ

∂fy

∂fy
∂fα

+ ∂ψ

∂fz

∂fz
∂fα

(B.22)

∂ψ

∂fβ
= ∂ψ

∂fy

∂fy
∂fβ

+ ∂ψ

∂fz

∂fz
∂fβ

(B.23)

where

∂ϕ

∂fx
= c∆vz

fz
(B.24)

∂ϕ

∂fz
= c∆vz(px(i′, j′)− fx)

f 2
z

(B.25)

∂ψ

∂fy
= c∆vz

fz
(B.26)

∂ψ

∂fz
= c∆vz(py(i′, j′)− fy)

f 2
z

. (B.27)

The other portions of the derivative depend on whether we’re using the transaxial or

axial coordinate system.
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B.3.1 Transaxial coordinate system

With a transaxial coordinate system we have

∂ϕ

∂fα
= −c∆vz

fz
sin(θ) + c∆vz(px(i′, j′)− fx)

f 2
z

cos(θ) (B.28)

= c∆vz(px(i′, j′) cos(θ)− fx cos(θ)− fz sin(θ))
f 2
z

(B.29)

= c∆vz(px(i′, j′) cos(θ) + fα sin θ cos(θ)− fα cos(θ) sin(θ)− SDD sin(θ))
(fα cos(θ) + SDD)2

(B.30)

= c∆vz(px(i′, j′) cos(θ)− SDD sin(θ))
(fα cos(θ) + SDD)2 (B.31)

≈ c∆vz(px(i′, j′) cos(θ)− SDD sin(θ))
SDD2 (B.32)

≈ c∆vzpx(i′, j′) cos(θ)
SDD2 − c∆vz sin(θ)

SDD
(B.33)

≈ (M(c)− 1)
M

(px(i′, j′) cos(θ)SDD−1 − sin(θ)) (B.34)

where M(c) is the magnification and is equal to

M = SDD − c∆vz
SDD

. (B.35)
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Because ∂ϕ
∂fβ

= 0, there is no need to calculate ∂ψ
∂fα

for the Jacobian determinent. The

remaining term is then

∂ψ

∂fβ
= −c∆vz

fz
(B.36)

≈ − c∆vz
SDD

(B.37)

≈ −M(c)− 1
M(c) . (B.38)

Therefore

|J| =
(

(M(c)− 1)
M

)2

(px(i′, j′) cos(θ)SDD−1 − sin(θ)). (B.39)

B.3.2 Axial coordinate system

Because ∂ψ
∂fβ

= 0, there is no need to calculate ∂ϕ
∂fα

.

The remaining terms are similar to the transaxial coordinate system:

∂ϕ

∂fβ
= c∆vz

fz
(B.40)

≈ M(c)− 1
M(c) (B.41)

and

∂ψ

∂fα
= −c∆vz

fz
sin(θ) + c∆vz(py(i′, j′)− fy)

f 2
z

cos(θ) (B.42)

≈ (M(c)− 1)
M

(py(i′, j′) cos(θ)SDD−1 − sin(θ)). (B.43)
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Therefore, the Jacobian determinant has a very similar form:

|J| =
(

(M(c)− 1)
M

)2

(py(i′, j′) cos(θ)SDD−1 − sin(θ)). (B.44)
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