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Abstract 

 Antibodies are among the most frequently used tools in biomedical research, but 

they are often subject to many pitfalls including cross-reactivity, production lot-to-lot 

variability, and loss of activity.  Despite the multiple laboratory applications for which 

antibodies are used, there are few standardized scientific guidelines for validation of 

antibody usage.  Much of the blame for the recent reproducibility crisis in biomedical 

research has been placed on the failure of antibodies to perform consistently over time.  

In chapter one, we report a case study of an anti-BTBD7 antibody that displays cross-

reactivity, extreme lot-to-lot variability, and loss of activity across multiple applications.  

We determined the major cross-reacting protein of interest to be ZCCHC8 and provide a 

general framework for determining the identity of cross-reacting proteins.  We also 

surveyed a panel of anti-ZCCHC8 antibodies that show an array of non-specificity and 

in some instances apparent cross-reactivity with BTBD7.   

 A mechanistic study of ZCCHC8 and its role in regulating non-coding RNA is 

detailed in chapter two.  The vast majority of mammalian genomes are transcribed as 

non-coding RNA in what is referred to as “pervasive transcription.”  Recent studies have 

uncovered various families of non-coding RNA transcribed upstream of transcription 

start sites.  In particular, highly unstable promoter upstream transcripts known as 

PROMPTs have been shown to be targeted for exosomal degradation by the nuclear 

exosome targeting complex (NEXT) consisting of the RNA helicase MTR4, the zinc-

knuckle scaffold ZCCHC8, and the RNA binding protein RBM7.  Here, we report that in 

addition to its known RNA substrates, ZCCHC8 and/or the NEXT complex are 

responsible for the targeted degradation of pervasive transcripts produced at CTCF 
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binding sites, open chromatin regions, promoters, promoter flanking regions, and 

transcription factor binding sites.  Additionally, we report that a significant number of 

RIKEN cDNAs and predicted genes display the hallmarks of PROMPTs and are also 

substrates for ZCCHC8 and/or NEXT complex regulation suggesting these are unlikely 

to be functional genes.  Our results suggest that ZCCHC8 and/or the NEXT complex 

may play a larger role in the global regulation of pervasive transcription than previously 

reported. 
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Preface 
 
 This preface is intended to serve as an orientation, of sorts, for the general 

reader that could not have possibly been privy to the peculiar series of events that led to 

the work contained herein.  In brief, I began my project studying the role of the 

extracellular matrix in branching morphogenesis and ended it studying non-coding RNA 

degradation in the nucleus.  This wild transition was the result of a cross-reacting 

commercial antibody designed to detect BTBD7, a regulator of branching 

morphogenesis, that I was ultimately able to determine actually detects ZCCHC8, a key 

member of a complex that helps degrade non-coding RNA.  I dare say that this was not 

an “ordinary” case of antibody non-specificity.  The first chapter, then, is dedicated to 

the many trials and tribulations that occurred, and to which I devoted a significant 

amount of time, while studying “BTBD7”.  This chapter has been styled as a case study 

of antibody cross-reactivity and the methods I used to uncover the identity of the cross-

reacting target protein, ZCCHC8.   

 To be frank, the first chapter does not contain novel methods or findings—it is 

intended to serve as a cautionary tale of the impacts of the current reproducibility crisis 

in biomedical research and provide a blueprint for overcoming issues encountered when 

working with antibodies.  Hopefully, it also demonstrates the many different areas of 

expertise I developed over this time. 

 The second chapter is dedicated to the signature research for which this 

dissertation is named.  This chapter details novel research regarding the role of 

ZCCHC8 and the nuclear exosome targeting complex in degrading pervasive 

transcription of non-coding RNA.  
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Chapter 1 

 

A Case Study of Antibody Cross-Reactivity   
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Introduction 

 Perhaps the most used tool in the biologist’s toolbox is that of the antibody.  

From protein quantitation to structural imaging, disease diagnostics to disease therapy, 

the multipurpose nature of this tool has made it invaluable to both basic and medical 

research.  According to Antibodypedia, there are currently more than 4.3 million 

antibodies targeting over 19,000 gene products available from 92 different providers (1).  

Grand View Research estimated the global research antibody market size to be USD 

3.9 billion in 2019 with a predicted 6.2% growth rate through 2027 (2).  Clearly, the 

importance of commercially produced antibodies in laboratory research is indisputable, 

yet there are currently few scientific standardized guidelines for validation of antibody-

to-target specificity (3,4).  This may not be entirely surprising considering the myriad 

antibody-based research techniques.  However, the recently acknowledged 

reproducibility crisis in biomedical research has shone a bright spotlight on results 

produced with improperly validated antibodies (5-17), and the subsequent calls for 

validation standards have grown in number and volume (3,4,16,18-25). 

 Antibodies are a product of life’s extraordinary immunological defense system, 

and the naive researcher can be forgiven for the misconception (no doubt perpetuated 

somewhat by imprecise terminology disseminated on commercial antibody product 

datasheets) that a specific antibody is capable of recognizing and binding to only a 

specific epitope.  The more remarkable case, in fact, may be the antibody that is only 

capable of recognizing and binding a single epitope.   

 Most antibodies are Y-shaped hetero-oligomers comprised of two identical light 

chains and two identical heavy chains bound together by disulfide bonds.  Each light 
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chain consists of a constant (CL) and a variable region (VL) whereas each heavy chain 

consists of three constant regions (CH1-3) and a single variable region (VH) (26-29).  

The stem of the “Y” is a heavy chain dimer of constant regions (CH2-3) referred to as the 

Fc fragment and binds to specific receptors on various immune cells as part of the 

immune response (26-29).  The upper “Y” portions are dimers of light and heavy chains 

(CL VL and CH1 VH) referred to as Fab or F(ab) fragments and bind to antigens (26-29).  

The Fab and Fc fragments are connected by a protease-cleavable hinge region within 

the heavy chains (26-29). 

 Antibodies recognize antigens through six complementarity determining regions 

(CDRs) that associate non-covalently and form the antigen binding site located at the N-

terminal tip of each Fab fragment (26-29).  These CDRs have enormous sequence 

variability and are often referred to as hypervariable loops.  Within the antigen binding 

site is a cleft of 50-70 amino acids with several overlapping 15-20 amino acid sites 

called paratopes (26-29).  Paratopes provide structural and chemical complementarity 

to surface regions of antigens known as epitopes (26-29).   

 Epitopes can consist of virtually any biomolecule and are not restricted to 

peptides alone (30-35).  Often, epitopes consist of modified proteins with 

phosphorylated or glycosylated residues, for example.  Protein epitopes are usually 

classified as continuous or discontinuous depending on the continuity of the amino 

acids within the protein that forms the epitope (28,36,37).  Continuous epitopes are 

linear amino acid sequences, and recent studies suggest the sequence that serves as 

the epitope ranges from four to twelve residues (36).  The majority of protein epitopes 
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are discontinuous and consist of two to five short stretches of amino acids that are 

brought together at the surface due to protein folding (28,37).   

 As an antibody binding site encompasses several individual paratopes, each 

able to bind differing (or the same) epitopes present in one or more antigens, a single 

antibody is never monospecific for a single binding partner (28,29,36,37).   To be so 

would require that the remaining majority of amino acids in the antibody binding cleft 

that do not bind the “specific” binding partner are also unable to bind any other antigenic 

structure.   

 While steric hindrance may prevent two antigen molecules from binding 

simultaneously within the same antibody binding cleft, there is little to prevent two 

separate antigens from binding the same antibody binding site individually and 

independently, provided there is sufficient chemical and structural recognition.  Within 

the context of an organism’s robust immunological response, such non-specificity may 

be of little impact overall.  It is of great import to the bench researcher. 

 Antibody cross-reactivity is not the only pitfall.  Antibodies are also subject to lot-

to-lot variation and loss of function/activity that may or may not be linked to storage 

conditions or variable shelf life.  Though companies generally provide some validation 

data, ultimately, it is up to the researcher to validate a particular antibody and 

subsequently determine its capability to perform well in the required application.  The 

ideal antibody would be target-specific and selective with reproducible results and an 

absence of variability between production lots.  Practically, researchers often must 

settle for relative specificity, selectivity, and variability while maintaining absolute 

reproducibility.  Validation of an antibody for a particular application, therefore, must be 
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carried out with same care and rigor as the experiments devoted to hypothesis testing.  

Critical analysis of validation results is imperative as haphazard acceptance can lead to 

unfavorable research outcomes at best, disastrous at worst. 

 Here we present a case study of an antibody (anti-BTBD7, Novus NBP2-14364) 

that, despite careful validation, was ultimately determined to be highly cross-reactive 

with an unrelated protein.  Further, this anti-BTBD7 antibody was found to suffer from 

broad lot-to-lot variation and application inconsistency.  Through extensive efforts, we 

identified the major cross-reacting protein of interest to be that of the unrelated protein, 

ZCCHC8.  We also examined a panel of anti-ZCCHC8 antibodies and found extensive 

variability in western blot and immunofluorescence staining patterns.  Despite having no 

amino acid sequence homology between the BTBD7 and ZCCHC8 antigen peptides, 

our results suggest these two proteins share a common structural epitope.   
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Background 

 BTBD7 is the seventh member of the BTB/POZ-domain family of proteins and 

derives its name from the Drosophila Bric á brac, Tramtrack, and Broad-complex 

proteins that contain a highly conserved structural domain (38).  BTBD7 is a 126 kD 

protein that is highly conserved across vertebrate species and is somewhat unique in 

that it contains two BTB domains.  These two BTB domains are in the N-terminal half of 

the protein and are followed closely by a BACK/Kelch domain (BTB and C-terminal 

Kelch; a domain found in most BTB-containing proteins) (39).  A putative, classical 

bipartite nuclear localization sequence is located near the N-terminus.  A schematic of 

BTBD7 is shown in Figure 1.1. 

 

 
 
Figure 1.1  Schematic depicting the locations of the major structural domains within the human 
BTBD7 protein.  The red, dashed box represents the location of the peptide sequence used to 
generate the anti-BTBD7 antibody used in this case study.  Amino acid numbers are in 
parenthesis. 

 
  

 Previous research in our lab identified BTBD7 as a regulator of branching 

morphogenesis (40).  At the time of this research, Btbd7 was relatively unstudied, and 

commercially produced anti-BTBD7 antibodies were not readily available.  Our lab 

contracted with multiple companies to produce an antibody but ultimately these 
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products were deemed unsuitable for our desired applications.  Thus, BTBD7 

expression studies were relegated to mRNA and GFP-fusion cDNA constructs.  

Consequently, our lab generated a Btbd7 knockout mouse in order to more thoroughly 

explore epithelial dynamics in branching tissues.  These knockout mice displayed a high 

rate of embryonic mortality with most deaths occurring between days E13 and E17 

(though occasional pups were born but succumbed after a few days).  The Btbd7 

knockout mice displayed diminished branching of certain epithelial tissues including 

salivary glands, an important model for developmental epithelial dynamics used 

extensively in our lab (Figure 1.2). 

 

 
 
Figure 1.2  Ex vivo cultures of E13.5 submandibular salivary glands taken from wild-type (left) 
and Btbd7 knockout (right) mice.  Glands were cultured for two hours before imaging.  Experiment 
and images courtesy of Will Daley. 
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Immunofluorescence Validation 

 In the time between the publication of Btbd7 as a regulator of branching 

morphogenesis and the generation of our lab’s knockout mouse, commercial anti-

BTBD7 antibodies for various applications became available.  We purchased an anti-

BTBD7 antibody from Novus Biologicals (NBP2-14364) for use in 

immunocytochemistry/immunofluorescence (ICC/IF) experiments.  For simplicity, we will 

refer to the antibody production lot numbers as k0 for the initial production lot used in 

our experiments with increasing subscripts for each successive production lot.  The 

product details from the accompanying data sheet are listed in Table 1.1.  Of note, this 

antibody was developed against a 104-amino acid sequence that partially spans the two 

BTB domains (Figure 1.1) and is stated to work for immunohistochemistry (IHC) and 

ICC/IF in human, mouse, and rat tissues.  The 104-amino acid region is highly 

conserved with only two amino acid substitutions between humans and mice (amino 

acids 35 and 83 of the antigen) and only one substitution between both humans and 

rats, and humans and canines (amino acid 83 of the antigen).  Thus, the antibody might 

reasonably be predicted to work in multiple species of cell lines. 

 Immunofluorescence staining of knockout tissues using anti-BTBD7 antibody lot 

k0 revealed a unique staining pattern in wild-type mice and an absence of staining in 

knockout tissues (Figure 1.3).  BTBD7 staining appeared uniform across mesenchymal 

cell nuclei, and large cytoplasmic granules were visible throughout the epithelium and 

mesenchyme (Figure 1.4A-B).  Close examination of BTBD7 immunofluorescence 

revealed an enriched, nuclear staining pattern in peripheral epithelial cells (Figure 1.4A-
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B).  Higher resolution imaging of peripheral epithelial nuclei revealed a uniquely 

punctate BTBD7 staining pattern (Figure 1.4C). 

 

Table 1.1  Anti-BTBD7 (NBP2-14364) product information  

Summary  

Reactivity  Human, Mouse, Rat 

Applications ICC/IF, IHC, IHC-Paraffin 

Clonality Polyclonal 

Host Rabbit 

Conjugate Unconjugated 

  
BTBD7 Antibody Summary  

Immunogen 

This antibody was developed against a recombinant protein 
corresponding to amino acids: 
LLHYLYTGEFGMEDSRFQNVDILVQLSEEFGTPNSLDVD 
MRGLFDYMCYYDVVLSFSSDSELVEAFGGNQNCLDEEL 
KAHKAVISARSPFFRNLLQRRIRTGEE 

Specificity 
Specificity of human BTBD7 antibody verified on a Protein 
Array containing target protein plus 383 other non-specific 
proteins. 

Predicted Species Mouse (98%), Rat (99%).  Backed by 100% Guarantee. 

Isotype IgG 

Clonality Polyclonal 

Host Rabbit 

Gene Symbol/Gene ID Btbd7/55727 

Purity Immunogen affinity purified 

Unit Size 0.1 ml 

Concentration 
Concentrations vary lot to lot. See vial label for concentration. If 
unlisted, please contact technical services.  

Storage 
Store at 4C short term. Aliquot and store at -20C long term. 
Avoid freeze-thaw cycles. 

  
Applications/Dilutions  

Dilutions 

• Immunocytochemistry/Immunofluorescence 0.25-2 
ug/ml 

• Immunohistochemistry 1:200 - 1:500 

• Immunohistochemistry-Paraffin 1:200 - 1:500 

Application Notes 
For IHC-Paraffin, HIER pH 6 retrieval is recommended.  
ICC/IF Fixation Permeabilization: Use PFA/Triton X-100. 

https://www.novusbio.com/products/btbd7-antibody_nbp2-14364 
 
 

  

https://www.novusbio.com/products/btbd7-antibody_nbp2-14364
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Figure 1.3  Ex vivo cultures of E13.5 submandibular salivary glands taken from Btbd7 knockout 
(top) and wild-type (bottom) mice.  BTBD7 is absent from the epithelial bud in knockout tissue 
(middle).  Glands were cultured for two hours before imaging.  Note the presence of multi-channel, 
auto-fluorescent cells that are abundant in the mesenchyme.  These cells are frequently present 
in varying number during ex vivo salivary gland culture.  Experiment and images courtesy of Will 
Daley. 
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Figure 1.4  (A) 20X IF images of E11.5 submandibular salivary glands from wild-type mice.  
Epithelial tissues are delineated by E-cadherin in cyan.  BTBD7 staining is in magenta and 
grayscale.  Note the enhanced staining of BTBD7 in peripheral epithelial cells (grayscale).  Scale 

bar = 100 m.  (B) 100X IF images of E11.5 submandibular salivary glands from wild-type mice.  
Epithelial cells and BTBD7 are stained as in (A).  Note the large cytoplasmic granules in both the 

epithelium and mesenchyme.  Scale bar = 20 m.  (C) 150X IF images of E11.5 submandibular 
salivary glands from wild-type mice.  Epithelial cells and BTBD7 are stained as in (A).  Note the 
punctate pattern of BTBD7 staining in the epithelial cell nuclei.  Images were processed using a 

rolling-ball background subtraction method.  Scale bar = 5 m.  Images in (A-C) are from single 
axial planes taken mid-gland.  Images in (A) and (B) courtesy of Shaohe Wang. 

 

  

 In the initial characterization of BTBD7 as a regulator of branching 

morphogenesis, our lab showed that fibronectin could induce Btbd7 mRNA expression 

(40).  Later, preliminary immunofluorescence experiments seemed to confirm these 

results.  Madin-Darby canine kidney cells (MDCK.2) plated on fibronectin coated 

MatTek dishes displayed increased BTBD7 staining compared to cells plated on 

uncoated dishes.  BTBD7 staining was enhanced in peripheral blebs of cells undergoing 

cell spreading.  Over time, BTBD7 staining appeared uniformly diffuse and enriched in 

the cytoplasm of spread cells with lesser diffuse staining evident in nuclei.  These 

results are displayed in Figure 1.5.  It should be noted that this staining pattern differs 

from the staining pattern seen in vivo (Figure 1.4C). 

 These preliminary findings went unexplored for some time.  Eventually, our lab’s 

focus returned to mechanistic studies of Btbd7 regulation.  Attempts to reproduce the 

findings depicted in Figure 1.5 were confounding.  Under identical experimental 

conditions, BTBD7 staining of MDCK.2 cells plated on fibronectin-coated MatTek dishes 

were indistinguishable from cells on uncoated dishes.  Further, rather than the uniformly 

diffuse cytoplasmic enrichment of the initial experiments, BTBD7 staining was highly 
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enriched in the nucleus with a unique punctate pattern.  The now scarce cytoplasmic 

staining displayed large, non-uniform granules.  These results are displayed in Figure 

1.6 and more closely resemble the in vivo staining shown in Figure 1.4C. 

 

 

 

Figure 1.5  Madin-Darby Canine Kidney (MDCK.2) cells were plated on uncoated (FN -) or 
fibronectin-coated (FN +; 100 µg/ml) MatTek dishes.  At the indicated intervals of post-plating 
time, cells were fixed and stained for BTBD7, actin (rhodamine phalloidin), and nuclei (DAPI).  
The anti-BTBD7 antibody was from production lot k0. Note the insets at 20 and 120 minutes show 
individual BTBD7 and ACTIN staining channels.  BTBD7 staining changes from highly 
concentrated at peripheral blebs to uniformly diffuse throughout the cytoplasm over time.  BTBD7 
staining is enriched in the cytoplasm versus the nucleus at 120 minutes.  Images are maximum 

intensity projections.  Scale bar = 10 m.  Experiment and images courtesy of Will Daley. 

      



 14 

 

Figure 1.6  Madin-Darby Canine Kidney (MDCK.2) cells were plated on uncoated (FN -) or 
fibronectin coated (FN +; 100 µg/ml) MatTek dishes.  At the indicated intervals of post-plating 
time, cells were fixed and stained for BTBD7, actin (rhodamine phalloidin), and nuclei (DAPI).  
The anti-BTBD7 antibody was from production lot k1. Note the insets at 20 and 120 minutes show 
individual BTBD7 and ACTIN staining channels.  BTBD7 now appears consistent over time with 
obvious enrichment in the nucleus versus the cytoplasm.  Cytoplasmic staining is scarce with 

large granules present.  Images are maximum intensity projections.  Scale bar = 10 m. 

 
 

 Initially, this discrepancy was attributed to polyclonal antibody lot-to-lot variation 

as the experiment in Figure 1.5 used production lot k0 and the experiment in Figure 1.6 

used production lot k1.  However, side-by-side comparison immunofluorescence 

revealed highly similar results across antibody production lots in both MDCK.2 cells and 

SIMS mouse submandibular salivary gland cells (Figure 1.7).  After identical 

immunofluorescent staining parameters, microscopy settings, and image processing, 
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the nuclear staining pattern appeared highly similar between anti-BTBD7 lots k0 and k1.  

Cytoplasmic staining using lot k1 appeared slightly diminished relative to lot k0 giving the 

impression of reduced, non-specific background staining. 

 The extreme differences in results between the experiment depicted in Figure 

1.5, and those repeated experiments for which the results are depicted in Figure 1.6, 

were ultimately attributed to variances in experimenter handling.  Nevertheless, we 

sought to re-validate the anti-BTBD7 antibody for use in cell-culture based 

immunofluorescence.  As our supply of anti-BTBD7 lot k0 was nearing depletion, we 

focused our validation efforts on lot k1.  We first performed peptide competition assays 

using the 104-amino acid peptide that served as the antigen for producing the antibody.  

The anti-BTBD7 antibody was incubated with a 10X excess amount of BTBD7 peptide 

prior to immunostaining MDCK.2 cells.  A slight residual staining was still evident after 

immunostaining, though this was likely due to secondary antibody background staining 

as a comparable weak staining pattern was evident in the control condition lacking the 

primary anti-BTBD7 antibody (Figure 1.8).  The results show that anti-BTBD7 lot k1 

antibodies preferentially bind to the BTBD7 antigen.   

 In previous research, our lab created an MDCK.2 cell line that stably expresses a 

tetracycline-regulated, GFP-BTBD7 fusion protein (40).  We used this cell line to test if 

lot k1 anti-BTBD7 antibodies would immunostain this fusion protein.  The results of this 

experiment are shown in Figure 1.9 and confirm that anti-BTBD7 lot k1 successfully 

binds BTBD7 when over-expressed.     

 With limited information, resources, and tools readily available for working with 

BTBD7 in mouse and canine cells, we looked to expand our capabilities by using  
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Figure 1.7  MDCK.2 and SIMS cells were stained for BTBD7 using two different production lots 
(k0 and k1) of the same antibody.  The nuclear staining pattern appears consistent, while the 
cytoplasmic staining appears diminished in lot k1.  Immunofluorescence, microscopy settings, and 
image processing are identical across antibody lots.  Images are maximum intensity projections.  

Scale bar = 15 m. 
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Figure 1.8  MDCK.2 cells were used for peptide competition assays.  Anti-BTBD7 lot k1 was 
incubated with 10X excess BTBD7 peptide for 30 minutes at room temperature prior to staining.  
Cells were then immunostained with either anti-BTBD7 plus peptide (left), neither (center), or anti-
BTBD7 alone (right).  Immunofluorescence, microscopy settings, and image processing were 

identical across conditions.  Images are maximum intensity projections.  Scale bar = 15 m. 

 

 

Figure 1.9  MDCK.2 cells stably expressing a GFP-BTBD7 fusion protein were immunostained 
for anti-GFP (left) and anti-BTBD7 lot k1 (center).  Note the enriched, diffuse cytoplasmic staining.  

Images are maximum intensity projections.  Scale bar = 15 m. 
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human cells.  Immunostaining HeLa cells with anti-BTBD7 lot k1 displayed only a slight 

nuclear enrichment in contrast to the prominent nuclear enrichment in MDCK.2 or SIMS 

cells (Figure 1.10A).  We performed BTBD7 siRNA knockdown experiments in HeLa 

cells and confirmed the results with immunofluorescence.  HeLa cells were transfected 

with four separate Btbd7 siRNA constructs and mRNA expression was measured 48 

hours post-transfection using qRT-PCR.  Three of the four siRNAs resulted in 

decreased mRNA expression when compared to controls (Figure 1.10B).  In 

complementary experiments, siRNA transfected cells were immunostained for BTBD7 

and the results closely mirrored the qRT-PCR results (Figure 1.10C).  These results 

confirmed the relative specificity of anti-BTBD7 lot k1 in HeLa cells and also served as a 

validation of anti-BTBD7 lot k1 for immunostaining human cells. 

 Based on the results of multiple validation strategies, we concluded that the anti-

BTBD7 antibody from Novus Biologicals (NBP2-14364) was adequately target specific 

and sensitive for use in immunofluorescence experiments.   

 As mechanistic research regarding BTBD7 continued in our lab, we eventually 

turned our attention to CRISPR/Cas9 gene deletion experiments.  In order to precisely 

mimic the conditions used in producing the Btbd7 knockout mouse (40), a 

CRISPR/Cas9 strategy was developed to delete the first two coding exons in Btbd7 

(Figure 1.11A).  Multiple Btbd7 knockout clones in SIMS cells were generated and 

genomic analysis revealed an inversion of the CRISPR/Cas9 targeted region (Figure 

1.11B) resulting in the complete ablation of functional Btbd7 mRNA expression (Figure 

1.11C). 
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Figure 1.10  (A)  Immunostaining for BTBD7 in HeLa cells.  Images are maximum intensity 

projections.  Scale bar = 15 m.  (B)  qRT-PCR results for mRNA expression of Btbd7 48 hours 
post siRNA transfection in HeLa cells.  Mean expression +/- s.d. (n = 3) is relative to non-
transfected control (NTC).  (C)  Immunofluorescence images of HeLa cells transfected with 
siRNAs as in (B).  Images are maximum intensity projections of representative fields of view taken 

with a 20X objective.  Scale bar = 25 m.  
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Figure 1.11  (A)  CRISPR/Cas9 strategy for disrupting Btbd7 in SIMS and NIH/3T3 cells.  (B)  
Genomic PCR results confirming the successful disruption of Btbd7 in multiple SIMS clones.  The 
upper band is the product of inverting the targeted gene region in (A) during the DNA repair 
process.  Note the presence of two bands in lane 3 signifying at least one wild-type Btbd7 copy 
exists and at least one inversion event occurred.  (C)  RT-PCR results confirming the absence of 
functional Btbd7 mRNA for the three homozygous knockout clones in (B).  Experiments courtesy 
of Shaohe Wang. 
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 We then attempted to verify Btbd7 gene disruption through immunofluorescence 

for BTBD7 protein.  Unexpectedly, each Btbd7 knockout clone tested was 

indistinguishable from the wild-type (Figure 1.12A).  Considering our extensive antibody 

validation results, we assumed that our CRISPR/Cas9 deletion attempts were 

incomplete and that perhaps the SIMS cells contained multiple copies of the Btbd7 

gene.  Indeed, karyotyping of the SIMS cells revealed 60-65 chromosomes with at least 

3 copies of chromosome 12 which contains Btbd7.  Additionally, there were numerous 

dicentric and marker chromosomes present (Figure 1.12B). 

 Considering the potential difficulty of disrupting an unknown number of Btbd7 

gene copies in SIMS cells, we opted to use our CRISPR/Cas9 deletion strategy in 

NIH/3T3 cells.  Shockingly, after multiple strategies confirmed successful Btbd7 gene 

disruption in these cells, immunofluorescence for BTBD7 protein was indistinguishable 

between control and knockout cells (Figure 1.13). 



 22 

 

 
Figure 1.12 (A) Immunofluorescence for BTBD7 in SIMS wild-type and knockout clones 
suggesting either anti-BTBD7 antibody cross-reactivity or incomplete knockout of Btbd7.  Images 
are maximum intensity projections.  Experiment courtesy of Shaohe Wang.  (B)  Karyotype of 
SIMS wild-type cells showing at least three copies of Btbd7 on chromosome 12 are present.  Note 
the numerous dicentric and marker chromosomes of unknown origin.   
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Figure 1.13 (A) Immunofluorescence for BTBD7 in NIH/3T3 wild-type and knockout clones 
confirming cross-reactivity of the anti-BTBD7 antibody. Images are maximum intensity 
projections.  Experiment courtesy of Shaohe Wang. 
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Determination of the Anti-BTBD7 Cross-Reacting Protein  

 We were now confronted with the unpleasant reality that the results of our 

experiments that relied heavily on immunofluorescence with this anti-BTBD7 antibody 

were invalid.  Nevertheless, we were intrigued by several properties revealed by the 

staining patterns of the unknown, cross-reacting protein (hereafter referred to as protein 

X).  First, protein X expression in developing salivary glands displayed a remarkable 

enrichment in peripheral epithelial cells as early as day E11.5 (Figure 1.14A).  This 

peripheral enrichment is largely absent by day E16.5, suggesting a potential early 

developmental role for protein X (Figure 1.14B).  Second, protein X staining in the cell 

nucleus displayed a unique pattern of ~1,000 puncta up to ~200 nm in diameter 

consisting of multiple individual proteins in DAPI sparse regions, as revealed by super-

resolution imaging (Figure 1.15A-C).  We sought to uncover the true identity of protein X 

in order to study these intriguing properties.   

 

Epitope mapping of the immunogen amino acid sequence 

 We first performed a BLAST search using the 104-amino acid sequence of the 

immunogen used to generate the anti-protein X (anti-BTBD7) antibody.  These results 

were specific to BTBD7 only.  Further, relaxed BLAST alignment parameters resulted in 

too many candidates to be of practical benefit.  Thus, we conducted epitope mapping 

assays of the immunogen sequence to narrow the target region for BLAST alignment.  

We synthesized four overlapping peptides of 31 amino acids that spanned the entire 

immunogen sequence and then performed immunofluorescence-based, peptide 

competition assays (Figure 1.16A-B).  Based on these results, we found the epitope  
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Figure 1.14  (A)  100X immunofluorescence images of E11.5 submandibular salivary glands from 
wild-type mice.  Epithelial tissues are delineated by E-cadherin in cyan.  Protein X staining is in 
magenta and grayscale.  Note the enhanced staining of protein X in peripheral epithelial cells.  
(B)  100X immunofluorescence images of E16.5 submandibular salivary glands from wild-type 
mice.  Epithelial cells and protein X are stained as in (A).  Note the diminished staining of protein 

X in peripheral epithelial cells.  Scale bar = 20 m for both.  Images in (A-B) are from single axial 
planes taken mid-gland.  Experiment courtesy of Shaohe Wang. 
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Figure 1.15  (A)  DeltaVision OMX structured illumination super-resolution imaging of protein X 

in an MDCK.2 nucleus.  Image is of a single mid-nuclear axial plane.  Scale bar = 5 m.  (B)  
Nikon N-STORM super-resolution 2D mapping of individual protein X molecules from the middle 
600 nm of the nucleus.  Colors represent axial depth relative to the focal plane (0 nm).  AF647-

labeled anti-BTBD7 lot k1 was used for STORM imaging.  Scale bar = 5 m.  (C)  Gaussian 3D 

rendering of the individual protein X molecules from (B).  Inset scale bar = 1 m.  Note the large 
clusters of protein X molecules. 

 

 

region responsible for the nuclear staining of protein X resides in the 31-amino acid 

region of peptide 3 depicted in Figure 1.16A (see Materials and Methods for peptide 

sequence). 

 Additionally, though not stated as a validated application on the company’s 

antibody product datasheet, we performed western blots using lysates from SIMS wild-

type and Btbd7 knockout cells.  We found that probing with the anti-protein X antibody 

resulted in multiple, prominent bands of varying molecular weight (Figure 1.16C).  

Notably, there was no difference in the banding pattern between SIMS wild-type and 

Btbd7 knockout cells.  We then asked if western-blot-based peptide competition assays 

using the same peptides above would reveal the apparent molecular size of protein X.  

Indeed, we found that the 31 amino acid peptide that resulted in the loss of nuclear 

immunofluorescence staining also resulted in the loss of a 105 kD band in western blots 

(Figure 1.16D).  

 We then performed extensive BLAST analyses and searched for nuclear-

localized candidate proteins.  We found 27 candidates ranging in molecular weight from 

359 to 48 kD.  To account for molecular weight shifts due to post-translational 

modifications, we limited candidates to those between 85 and 125 kD.  These criteria 

resulted in four primary candidates:  KDM4A, PHF8, KDM7A, and TACC1.   
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Figure 1.16  (A)  Schematic depicting the overlapping peptides used for epitope mapping of the 
immunogen sequence used to generate the anti-BTBD7 antibody used in this case study.  (B)  
Peptide competition assay results confirming the epitope responsible for the nuclear 
immunofluorescence staining pattern resides on the 31-amino acid region of peptide 3.  (C)  
Western blot of cell lysates from SIMS wild-type and Btbd7 knockout cells.  Westerns were probed 
using the same anti-BTBD7 antibody as in (B).  Note that the banding pattern is identical in both 
samples.  (D)  Peptide competition assay results confirming the epitope for a 105 kD protein 
resides on the 31-amino acid region of peptide 3. 
 

 

Mass spectrometry 

 In order to determine if the candidate proteins were expressed in our SIMS cells, 

and if these candidates were post-translationally modified in such a way as to result in 

an apparent 105 kD molecular weight, we contracted with MS Bioworks to perform 

mass spectrometry analysis on the 105 kD region excised from a Coomassie-stained 

gel.  We found a total of 187 proteins in our sample.  Filtering these results for proteins 

that localize to the nucleus resulted in 79 candidates.  The proteins with the greatest 

number of peptides detected were ACTN4, TIF1B, ZCCHC8, SNUT1, and HS105.  

Interestingly, though perhaps not surprising, cross-referencing the 79 mass 

spectrometry candidates with the 27 from our BLAST analysis resulted in zero matches. 

 

 Immunoprecipitation for protein X 

 With too many candidates to be of practical benefit, we sought strategies to 

refine our candidate list.  Based on the results of the peptide competition assays, we 

reasoned that the protein X antibody would work in IP assays with the goal of identifying 

the IP product with mass spectrometry analysis.   

 After initial refinement of the IP conditions, we were able to successfully IP 

protein X (Figure 1.17A).  However, our success was short-lived, and repeated attempts 
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failed before we could perform mass spectrometry on the IP product (Figure 1.17B).  

After multiple attempts, our supply of protein X antibody lot k1 was nearing depletion, 

and we opted to reserve a small supply for future validation experiments.  Attempts to IP 

protein X with new antibody production lot k2 were also unsuccessful (Figure 1.17C). 

 

Two-dimensional electrophoresis 

 We next sought to refine our candidate list using 2D electrophoresis followed by 

mass spectrometry.  We contracted with Kendrick Laboratories to perform the 2D 

electrophoresis and gel transfer of our SIMS cell lysate.  We then performed our peptide 

competition assays to identify any protein X candidate spots on the 2D membrane.  Two 

highly phosphorylated proteins in regions corresponding to molecular weights of ~105 

kD and ~65 kD were chosen for mass spectrometry (Figure 1.18A-B).  A single protein 

corresponding to each region was identified:  ZCCHC8 and PDIA3, respectively. 

 Interestingly, ZCCHC8, a 76 kD protein, is highly phosphorylated and results in a 

105 kD band on western blots.  In addition, it was among the highest scoring candidates 

in our initial mass spectrometry results.  PDIA3 was not present in our initial mass 

spectrometry results.  Therefore, we chose ZCCHC8 as the primary candidate for 

validation studies.   
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Figure 1.17  (A)  Immunoprecipitation for protein X using the cross-reacting anti-BTBD7 antibody.  
Arrow marks the 105 kD protein X band.  Note the enhanced signal in the IP lane with little residual 
signal in the flow-through.  (B)  Failed protein X IP results due to unknown circumstances.  The 
conditions in (A) and (B) are identical.  Arrow marks the location of the expected 105 kD protein 
X band.  Note the increased residual signal in the flow-through.  (C)   Failed protein X IP results 
using two different production lots of the anti-BTBD7 antibody (k1 and k2).  The conditions in (A) 
and (C) are identical.  Arrow marks the location of the expected 105 kD protein X band.  Note the 

increased residual signal in the flow-through lanes. 
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Figure 1.18  (A)  2D western blot for protein X using the cross-reacting anti-BTBD7 antibody (lot 
k1).  Arrow marks a highly phosphorylated protein of ~105 kD.  Arrowhead marks a highly 
phosphorylated protein of ~65 kD.  (B)  Peptide competition assay results on a 2D western blot 
reveal two major candidates for protein X.  Note the absence of the ~105 kD spot (arrow) and the 
~65 kD spot (arrowhead).  The antibody was incubated with 10X excess peptide 3, on which the 
protein X epitope resides, prior to western blot probing. 
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Antibody cross-reactive candidate validation 

 Considering our experience with previous antibody validation techniques, we 

opted to use the CRISPR/Cas9 system to knockout Zcchc8 in the SIMS cell line (Figure 

1.19A).  We then isolated >20 clonal populations using standard single-cell cloning 

techniques.  After western blotting for ZCCHC8, we randomly selected three individual 

cell lines from those with depleted ZCCHC8 expression.  Genetic sequencing confirmed 

differing two-base-pair deletions near the CRISPR/Cas9 target sequence that resulted 

in newly generated stop codons shortly downstream from the deletion site in each clone 

(Figure 1.19A).  Follow-up western blotting and immunofluorescence analyses 

confirmed the absence of ZCCHC8 protein expression in the selected clones (Figure 

1.19B-C).  After successful knockout of Zcchc8 in SIMS cells, we then confirmed 

ZCCHC8 as the identity of protein X through comparison western blotting and 

immunofluorescence in SIMS Btbd7 and Zcchc8 knockout cells (Figure 1.20).  
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Figure 1.19  (A) Schematic depicting the CRISPR/Cas9 strategy for disrupting Zcchc8 in SIMS 
mouse salivary gland cells. Single-cell cloning produced three separate knockout clones with two-

base-pair deletions ~12-15 bp downstream of the TSS.  The resulting frameshift produced a 
translational stop codon at amino acid position 16. (B) Western blot confirmation of ZCCHC8 
ablation in three separate clones.  Western blots were probed with a rabbit, polyclonal anti-

ZCCHC8 antibody from Proteintech and a mouse, monoclonal anti--Tubulin antibody from 
MilliporeSigma.  (C) Immunofluorescence confirmation of ZCCHC8 ablation in three separate 
clones.  The same anti-ZCCHC8 antibody as in (B) was used.  Note the presence of antibody 
cross-reactivity to primary cilia before and after Zcchc8 knockout.  Actin fibers were stained with 

rhodamine-labeled phalloidin from Thermo Fisher.  Scale bar = 20m. 
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Figure 1.20  (A)  Western blots confirming the identity of protein X as ZCCHC8.  SIMS wild-type, 
Btbd7, and Zcchc8 knockout cell lysates were transferred to nitrocellulose and probed with either 
the anti-BTBD7 lot k1 antibody (left) or an anti-ZCCHC8 (Proteintech, 23374-1-AP) antibody 
(right).  Note the absence of the 105 kD band in the Zcchc8 knockout lane of both blots.  (B)  
Immunofluorescence confirming the identity of protein X as ZCCHC8.  SIMS wild-type, Btbd7, 
and Zcchc8 knockout cells were immunostained with same antibodies as in (A).  Note the absence 
of nuclear staining in the Zcchc8 knockout cells probed with both antibodies.  Images are 

maximum intensity projections.  Scale bar = 5m. 
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ZCCHC8 expression in salivary glands and cell nuclei 

 Having discovered the identity of protein X as that of ZCCHC8, we asked if the 

intriguing expression pattern we had originally observed would be recapitulated with 

antibodies intended explicitly for ZCCHC8.  We first examined immunofluorescence 

staining patterns in developing salivary glands using an anti-ZCCHC8 antibody 

purchased from Proteintech (23374-1-AP).  ZCCHC8 staining of E13.5 submandibular 

salivary glands displayed primarily nuclear and uniform staining throughout the 

epithelium and mesenchyme (Figure 1.21A) and remained consistent in E16.5 glands 

(Figure 1.21B).  In contrast, original staining with the cross-reacting, anti-BTBD7 lot k0 

antibody displayed a remarkable enrichment in peripheral epithelial cells with large 

cytoplasmic granules present throughout (Figure 1.4A-B, 1.14A).  Anti-BTBD7 staining 

of epithelial cells in E16.5 glands was largely absent (Figure 1.4B).   

 We also noticed that ZCCHC8 immunofluorescence staining of cell nuclei 

appeared more diffuse and less punctate.  Airyscan imaging of MDCK.2 nuclei stained 

with the cross-reactive anti-BTBD7 lot k1 antibody revealed distinct, large puncta 

located primarily throughout the nucleoplasm and, to a lesser extent, within the 

nucleolus (Figure 1.22A).  Conversely, staining with an anti-ZCCHC8 antibody resulted 

in a dense and diffuse pattern with fewer apparent puncta (Figure 1.22A).  N-STORM 

super-resolution imaging confirmed these results (Figure 1.22B).  Particle analysis of 

the images in Figure 1.22B revealed 116 puncta within the nucleus stained with anti-

BTBD7 lot k1 and only 20 puncta within the nucleus stained with anti-ZCCHC8. 
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Figure 1.21  (A)  63X immunofluorescence images of E13.5 submandibular salivary glands from 
wild-type mice.  Epithelial tissues are delineated by E-cadherin in cyan.  ZCCHC8 staining is in 
magenta and grayscale.  (B)  63X immunofluorescence images of E16.5 submandibular salivary 
glands from wild-type mice.  Epithelial cells and ZCCHC8 are stained as in (A).  Note the 

diminished staining of protein X in peripheral epithelial cells at this later stage.  Scale bar = 20 m 
for both.  Images in (A-B) are from single axial planes taken mid-gland. 
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Figure 1.22  (A)  Zeiss 880 immunofluorescence Airyscan images of MDCK.2 cell nuclei 
immunostained with anti-BTBD7 (lot k1) or anti-ZCCHC8.  Anti-BTBD7 results in large, distinct 
puncta throughout the nucleus.  Anti-ZCCHC8 results in a more diffuse pattern with fewer puncta.  

Images are of a single mid-nuclear axial plane.  Scale bar = 5 m.  (B)  Nikon N-STORM super-
resolution molecular density mappings of MDCK.2 nuclei immunostained with AF647-labeled anti-
BTBD7 (lot k1) or anti-ZCCHC8.  Note the more diffuse staining with fewer puncta in the nucleus 

immunostained with anti-ZCCHC8.  Scale bar = 2.5 m. 
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Non-Specificity in a Panel of Antibodies 

Direct western blot and immunofluorescence comparison 

 During our validation efforts, we nearly exhausted our remaining supply of anti-

BTBD7 lot k1.  We acquired a new production lot of anti-BTBD7 (lot k2) and performed 

comparison immunofluorescence and western blot experiments against lot k1.  Our 

initial immunofluorescence staining appeared indistinguishable.  However, western blots 

showed a molecular weight shift in the expected bands.  Alarmed at the implications of 

such lot-lot-lot variability, we then contracted with Covance to produce a rabbit, 

polyclonal antibody using the BTBD7 31-amino acid peptide sequence we previously 

identified as carrying the epitope for protein X/ZCCHC8.  We then performed 

comparison immunofluorescence and western blot analysis using the three lots of anti-

BTBD7 and our Covance antibody in mouse, canine, and human cell lines.  We found 

that anti-BTBD7 lot k0 and k1 were indistinguishable in immunofluorescence but differed 

greatly in western blots.  In western blots (Figure 1.23), both lots of antibody detected 

multiple nonspecific proteins, but lot k0 failed to detect either a 105 kD (ZCCHC8) or 126 

kD (BTBD7) band.  Lot k1 detected a 105 kD band that corresponded to ZCCHC8 but 

not a 126 kD band.  Conversely, lot k2 produced a faint band at 126 kD that 

corresponded to BTBD7 and another distinct band at ~101 kD that did not correspond to 

ZCCHC8.  Further, our purified Covance antibody also produced multiple non-specific 

bands and a prominent 105 kD band that correlated with ZCCHC8. 

 Immunofluorescence staining (Figure 1.24) with anti-BTBD7 lots k0, k1, and k2 

appear nearly indistinguishable in SIMS wild-type and Btbd7 knockout cells.  As 

demonstrated previously, lots k0 and k1 do not produce the characteristic nuclear  
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Figure 1.23  Western blots using different production lots of the same anti-BTBD7 antibody 
(Novus NBP2-14364) or a custom antibody (Covance) showing non-specific staining in a panel 
of cell lines.  The custom antibody from Covance was generated using the BTBD7 31-amino acid 
peptide used in our peptide competition assays as the immunogen.  Asterisks mark the position 
of BTBD7.  Red arrowheads mark the position of ZCCHC8.  Note the extreme lot-to-lot variability 
of the Novus antibody. 
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Figure 1.24  Immunofluorescence using different production lots of the same anti-BTBD7 
antibody (Novus NBP2-14364) or a custom antibody (Covance) showing non-specific staining in 
a panel of cell lines.  The custom antibody from Covance was generated using the BTBD7 31-
amino acid peptide used in our peptide competition assays as the immunogen.  The Btbd7 
knockout cells are denoted in red.  Note all production lots of the Novus anti-BTBD7 antibody 
produce a strong, cross-reacting nuclear pattern in Btbd7 knockout cells.  This nuclear staining is 
absent in Zcchc8 knockout cells stained with anti-BTBD7 lots k0 and k1 but not k2.  The enhanced 
nuclear pattern produced with the Covance antibody is diminished in both Btbd7 and Zcchc8 

knockout cells.  Images are maximum intensity projections.  Scale bar = 5 m. 
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staining pattern in Zcchc8 knockout cells.  Strangely, lot k2 stains the nucleus in an 

identical manner in both SIMS wild-type and Zcchc8 knockout cells.  Further, lot k2 

showed enhanced nuclear staining in MDCK.2 and HeLa cells compared to lots k0 and 

k1. 

 Immunofluorescence staining with our Covance antibody produced a 

characteristic enhanced nuclear staining pattern in SIMS wild-type, MDCK.2, and HeLa 

cells.  This staining was diminished, though not eliminated, in both Btbd7 and Zcchc8 

knockout SIMS cells (Figure 1.24). 

 We noticed that the anti-ZCCHC8 antibody that we used also seemed to suffer 

from non-specific staining artifacts.  In particular, this antibody appears to stain primary 

cilia in both wild-type and Zcchc8 knockout SIMS cells (Figure 1.19C, Figure 1.20B).  

While this artifact can be easily differentiated from the expected nuclear staining, we, 

nevertheless, sought to find an antibody that did not suffer from such cross-reactivity.  

 After an exhaustive search, we identified a total of five anti-ZCCHC8 antibodies 

that were produced using unique immunogens.  We purchased these antibodies from 

Proteintech (23374-1-AP, rabbit polyclonal), Abcam (ab181152, rabbit monoclonal), and 

MilliporeSigma (HPA037483, rabbit polyclonal; HPA037484 rabbit polyclonal; 

SAB1407675, mouse polyclonal).  We then performed comparison immunofluorescence 

and western blot analysis using these antibodies.  In western blots (Figure 1.25), we 

found three of these antibodies produced distinct bands at 105 kD that corresponded to 

ZCCHC8 in mouse, canine, and human cells.  The Abcam rabbit monoclonal antibody 

appeared to detect only the human form of ZCCHC8.  All of the antibodies displayed 

non-specific cross-reactivity. 
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 Immunofluorescence staining with these antibodies produced a range of results 

(Figure 1.26).  In general, all of the antibodies displayed some form of cross-reactivity.  

The Proteintech (23374-1-AP) antibody appeared to cross-react with primary cilia but 

otherwise displayed little cross-reactivity.  Interestingly, the Abcam rabbit monoclonal 

antibody (ab181152) appeared to produce a nuclear staining pattern due to BTBD7 

rather than ZCCHC8.  The rabbit polyclonal antibodies (HPA037483 and HPA037484) 

from MilliporeSigma gave similar results to each other, and both appeared to cross-

react with an undetermined cytoplasmic protein.  Of interest, and at the time of this 

writing, these two antibodies are featured in the Human Protein Atlas as confirmation of 

nuclear localization for ZCCHC8 in a panel of human cell lines.  Our results with 

HPA037484 in HeLa cells differ from the human A-431, U-2 OS, and U-251 cells used 

in the Human Protein Atlas, suggesting possible lot-to-lot variation with this antibody.  

The Sigma mouse polyclonal antibody (SAB1407675) displayed diminished staining in 

Zcchc8 knockout cells though the overall pattern lacked the nuclear enrichment 

characteristic of the other antibodies. 

 

Human protein atlas comparison 

 Over the course of our investigation for the identity of protein X, the Human 

Protein Atlas validated and confirmed that BTBD7 was localized to focal adhesions in 

human RT4 cells using the anti-BTBD7 antibody that we used extensively (Figure 

1.27A). 
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Figure 1.25  Western blots using different anti-ZCCHC8 antibodies showing non-specific staining 
in a panel of cell lines.  Asterisks mark the position of BTBD7.  Red arrowheads mark the position 
of ZCCHC8.  Antibodies were purchased from Proteintech (23374-1-AP), Abcam (ab181152), 
and MilliporeSigma (HPA037483, HPA037484, SAB1407675). 
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Figure 1.26  Immunofluorescence using different anti-ZCCHC8 antibodies showing non-specific 
staining in a panel of cell lines.  The Zcchc8 knockout cells are denoted in red.  Note antibody 
ab181152 apparently stains BTBD7 in the nucleus but not ZCCHC8.  Antibodies were purchased 
from Proteintech (23374-1-AP), Abcam (ab181152), and MilliporeSigma (HPA037483, 

HPA037484, SAB1407675).  Images are maximum intensity projections.  Scale bar = 5 m. 
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 We noticed that the staining pattern in human HeLa cells often displayed a faint 

but perceptible focal adhesion pattern with anti-BTBD7 lots k0 and k1.  However, lot k2 

immunofluorescence displayed an enhanced nuclear staining not previously observed.  

We wondered if this discrepancy would be evident in the RT4 cells featured in the 

Human Protein Atlas. We purchased RT4 cells from ATCC and performed comparison 

immunofluorescence using anti-BTBD7 lots k1 and k2.  As expected, the results 

revealed a high, lot-to-lot variability with lot k2 displaying high nuclear enrichment and 

little focal adhesion staining (Figure 1.27B). 

 

Sequence Alignment Between ZCCHC8 and BTBD7 

 Our results from the immunofluorescence comparison of anti-BTBD7 and anti-

ZCCHC8 antibodies suggest that ZCCHC8 and BTBD7 may share a common epitope.  

We asked if an amino acid sequence alignment of the antigen regions would reveal a 

shared, continuous epitope.  Sequence alignment between the BTBD7 104-amino acid 

immunogen sequence and the ZCCHC8 353-amino acid immunogen sequence (C-

terminal region 355-707) found no sequence similarities despite varying the alignment 

algorithm parameters.  Attempts at sequence alignment using the narrowed BTBD7 31-

amino acid epitope region and the ZCCHC8 immunogen sequence also produced no 

similarities.  Finally, we aligned the entire amino acid sequences of both proteins and 

found a partial match between amino acids 7-28 in ZCCHC8 and 745-766 in BTBD7, 

regions well outside the immunogen sequences used to produce the respective 

antibodies (Figure 1.28).  
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Figure 1.27 (A) Screenshot taken from the Human Protein Atlas of immunofluorescence staining 
in RT4 cells using the anti-BTBD7 antibody used in this case study (production lot unknown).  
Note the strong focal adhesion-like pattern and lack of nuclear staining. (B) Comparison 
immunofluorescence staining in RT4 cells using two production lots (k1 and k2). Staining with lot 
k1 recapitulates the Human Protein Atlas results while staining with lot k2 shows extreme cross-
reactivity with an unknown nuclear protein. Images are maximum intensity projections. Scale bar 

= 25 m. 
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Figure 1.28  Protein sequence alignment of full-length BTBD7 and ZCCHC8 reveals only a small 
region of similarity.  This aligned region falls outside of the immunogen sequences used to 
produce antibodies used in this case study. 
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Discussion 

Antibody Validation  

 This case study provides a broad examination of the potential pitfalls of antibody 

usage in laboratory applications.  Our results show that reliance on traditional validation 

techniques is not always sufficient to ascertain an antibody’s target specificity and 

selectivity. 

 We employed peptide competition assays as part of our validation strategy.  But, 

can peptide competition assays reveal cross-reactivity?  Perhaps, if the conditions are 

just right.  Competition assays typically employ antibody pre-incubation with large 

excess of the peptide/antigen used to generate the antibody.  If the antibody has a high 

binding affinity to this antigen (as one would expect), then most, if not all, of the 

antibody will bind preferentially to the excessive antigen and cross-reactivity will not be 

observed. Ultimately, then, these competition assays assess an antibody’s preference 

to bind to the antigen used to generate the antibody. 

 We also employed a target over-expression system as part of our validation.  

Once again, this system relies on an excess of the target, and so binding affinity is at 

the core of the results.  However, rather than assessing the antibody’s ability to bind to 

the antigen against which it was raised, this assay determines the antibody’s ability to 

bind to the protein/target containing the antigen.  This is an important added aspect, yet 

it does not fully account for possible cross-reactivity.  Assessing cross-reactivity is 

possible under the ideal conditions but, for many of the same reasons as with peptide 

competition assays, not guaranteed. 
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 As another validation strategy, we employed siRNA knockdown of target gene 

expression.  Again, this strategy is helpful but insufficient to deduce specificity.  Cells 

expressing various siRNA constructs showed reduced immunofluorescence staining in 

our experiments.  What of the remaining immunofluorescence staining?  Is this 

remaining immunofluorescence due to existing target protein or non-specific staining?  

Knockdown validation assays can show relative target specificity but may be insufficient 

to show absolute or even adequate specificity. 

 Perhaps the gold standard of validation assays is that of gene knockout to wild-

type comparison.  Indeed, the strength of our conviction in the specificity of the anti-

BTBD7 antibody was due, almost entirely, to the presence and absence of 

immunofluorescence staining in wild-type and Btbd7 knockout mouse tissues.  Here, 

again, there is an important caveat in this validation: Btbd7 knockout in mice resulted in 

embryonic lethality.  The tissues used in our immunofluorescence experiments were 

from embryos with extreme developmental defects.  It is likely that these embryos 

suffered severe disruption to the proteome and that potential antibody cross-reacting 

proteins were degraded, improperly processed, or not expressed at all and therefore 

undetectable through immunofluorescence.  Though the practicality of generating a 

knockout mouse strictly for antibody validation purposes is unreasonable, should this 

approach be available, it may be best reserved for use with fully developed, adult mice.  

This, of course, limits the targets that can be successfully validated as not all gene 

knockouts result in viable offspring.  

 Though the results of experiments we conducted using the anti-BTBD7 antibody 

were often unpredicted, confused, and difficult to interpret, it was not until the need for 
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CRISPR/Cas9 knockout cell culture experiments arose that we were forced to 

acknowledge the off-target reactivity of this antibody.  Here again, however, our 

conviction in the knockout mouse results was so strong that we dismissed the initial 

CRISPR/Cas9 knockout cell line as an incomplete knockout and only after a second, 

independent NIH/3T3 knockout cell line was created did we fully realize the extent of 

cross-reactivity. 

 It is tempting to think of gene knockout in cell lines as the ultimate antibody 

validation effort.  In large part, this may be true.  But, this strategy is not without 

difficulty.  Some genes are essential for cell survival and proliferation, and therefore 

complete knockout may not be achievable.  Many genes are part of extensive pathways 

with products of one gene or pathway inducing expression of many others.  An unlucky 

researcher may unknowingly have ablated the downstream expression of cross-reacting 

products after deleting the target gene.  As unlikely as these scenarios may be, knowing 

of the possibilities precludes gene knockout as the end-all, be-all validation strategy.  To 

be successful, validation strategies must work in concert with one another and must 

take into account careful consideration of the results. 

  

Identification of Cross-Reacting Proteins 

 Often, understanding that antibody cross-reactivity occurs is sufficient to 

eliminate, or retain, a particular antibody for a desired application.  Occasionally, 

identifying cross-reacting proteins may be desirable.  Our work provides a framework for 

such identification. 
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 The first requirement for identifying cross-reacting proteins is a candidate list.  In 

the absence of experimental evidence for particular candidates, a mass spectrometry 

approach is advisable.  Thanks to large, online repositories of proteome informatics, 

such as UniProt or NCBI, candidate lists can be easily filtered based on properties like 

cell line expression or subcellular localization.  One can seek to validate these 

candidates through “brute force” or “trial and error” methods but, often, with further 

refinement of the candidate list, much effort can be saved.   

 Ideally, candidates are generated in a manner that limits the initial possibilities.  

Immunoprecipitation (if possible) or 2D-gel electrophoresis followed by mass 

spectrometry are excellent methods for limiting candidates.  However, IP may not 

successfully capture sufficient quantities of protein for detection by mass spectrometry.  

If the cross-reacting protein of interest displays subcellular compartmentalization, then 

subcellular fractionation may successfully limit candidates in subsequent mass 

spectrometry. 

 Sequence alignment, in some instances, may also identify potential candidates.  

Interestingly, the first mention of Zcchc8 in the literature came as the result of one 

laboratory’s undertaking to uncover conflicting immunofluorescence results of 

subnuclear localization by c-Myc in HeLa cells (41).  Gustafson and coworkers noticed 

an apparent paradox in subnuclear localization of c-Myc to the nucleolus when 

performing immunofluorescence with an anti-pT58 c-Myc antibody.  By carefully 

examining the antibody staining patterns in western blots and immunofluorescence 

assays, Gustafson et al., identified at least two cross-reacting proteins.  Using partially 

purified nucleoli followed by mass spectrometry, they identified the major nucleolar 
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protein to be Ebp2.  Subsequently, they performed IP followed by mass spectrometry 

and identified Zcchc8 as the other non-nucleolar, cross-reacting protein of interest.  In 

this instance, c-Myc, Ebp2, and Zcchc8 all share a common epitope region including the 

pT58 residue of c-Myc (41):  

    

   c-Myc (56-69)  L  P T P P L S P 

   Ebp2  (1-8)  M D T P P L S D 

   Zcchc8 (490-497) K G T P P L T P 

 

 Caution must be used with this approach.  The majority of antigens are of the 

discontinuous variety.  Sequence alignments may yield continuous, false candidates, 

and considerable time and effort could be lost in ensuing validation efforts.  As we have 

shown, BLAST alignment of the 31-amino acid peptide recognized by the anti-BTBD7 

antibody generated multiple candidates.  Mass spectrometry analysis failed to detect 

these proteins in our samples, and we therefore de-prioritized them as candidates. 

Eventually, ZCCHC8 was identified as the anti-BTBD7 cross-reacting protein.  ZCCHC8 

and BTBD7 have no sequence similarity within the regions used to generate the 

immunogens.   

 Our efforts demonstrate that multiple approaches may be required to 

successfully identify cross-reacting proteins.  Success is not guaranteed, however, as 

much depends on the antibody in question.  Within our case study, we also encountered 

considerable lot-to-lot variability and even the complete loss of activity/function in IP 

assays.  The final production lot of anti-BTBD7 (lot k2) apparently detects a protein that 



 55 

is neither the intended target, BTBD7, nor the major cross-reacting target, ZCCHC8, 

detected by the initial production lots!  One antibody, three production lots, three 

different results—one begins to understand why antibodies receive much of the blame 

for the reproducibility crisis. 

 

ZCCHC8 and BTBD7 Shared Epitope 

  Interestingly, despite no sequence similarities detected in their respective 

immunogen regions, our results suggest that BTBD7 and ZCCHC8 may share a higher-

order protein folding domain.  First, the anti-BTBD7 antibody, generated with a 104-

amino acid peptide that is unique to BTBD7, detects a nuclear protein in 

immunofluorescence and 105 kD protein in western blots that was determined to be 

ZCCHC8 (Figure 1.23, Figure 1.24).  Second, at least one anti-ZCCHC8 antibody, 

generated with a 101-amino acid peptide unique to ZCCHC8, appears to bind BTBD7 

(Figure 1.26).  Lastly, through epitope mapping, we narrowed the antigenic region of the 

peptide bound by the anti-BTBD7 antibody to a 31-amino acid sequence.  We then used 

this 31-amino acid peptide to generate a polyclonal antibody that produces enhanced 

nuclear staining in wild-type cells but shows diminished staining in both Btbd7 and 

Zcchc8 knockout cells (Figure 1.24).   

 The cross-reactivity of anti-BTBD7 antibodies to ZCCHC8, and anti-ZCCHC8 

antibodies to BTBD7, demonstrates a shared epitope within these proteins, at a 

minimum.  The complete lack of sequence similarity between the BTBD7 and ZCCHC8 

immunogens further demonstrates that the epitope is of the discontinuous variety.  

Therefore, the epitope must be the product of higher dimensional protein folding.   



 56 

 Alas, diminished supplies of the initial antibody production lots, and the extreme 

variability in the final production lot, prevented any further elucidation.  Further, any 

investigative efforts beyond those discussed fall well beyond the scope of research 

interests in our lab.  

 

Variation in Staining Patterns of ZCCHC8 

 Our initial interest in identifying the anti-BTBD7 cross-reacting protein was three-

fold.  First, expression in developing salivary glands displayed a remarkable enrichment 

in peripheral epithelial cells as early as day E11.5 (Figure 1.14A), which suggested the 

possibility of a developmental niche.  Second, this peripheral enrichment, indeed 

expression altogether, was largely absent by day E16.5, suggesting an early 

developmental requirement (Figure 1.14B).  Lastly, staining in the cell nucleus displayed 

a unique pattern of ~1,000 puncta up to ~200 nm in diameter consisting of multiple 

individual proteins that were concentrated in DAPI-sparse regions (Figure 1.15A-C). 

 Unfortunately, after confirming ZCCHC8 as the cross-reacting target, 

immunofluorescence staining with anti-ZCCHC8 antibodies did not recapitulate these 

findings.  Rather than the peripheral epithelial enrichment initially seen only at early 

developmental stages in salivary glands, ZCCHC8 staining is largely uniform throughout 

(Figure 1.21A) and consistently expressed during development (Figure 1.21B).   

 This discrepancy is difficult to reconcile.  The peripheral enhancement may be 

due to staining and/or imaging artifacts.  Salivary glands are large, three dimensional 

objects that are rarely positioned such that the imaging plane neatly bisects every, or 

any one, bud.  Consequently, a 2D image may capture regions that are not within the 
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same axial plane thereby giving the artificial impression of an enriched region.  Further, 

differences in light penetration through dense tissue may enhance this effect. Lastly, 

insufficient permeabilization of the entire gland may prevent uniform antibody 

penetration, resulting in an uneven, artificial staining appearance.  Indeed, in the time 

since our original salivary gland images were produced, our lab has refined our salivary 

gland imaging and staining techniques resulting in deeper penetrance for antibodies 

and molecular probes.   

 Cell culture imaging, on the other hand, should not be subject to these pitfalls, 

and yet we observed a marked difference in nuclear staining.  Super-resolution imaging 

of cell nuclei stained with an anti-ZCCHC8 antibody revealed fewer puncta and a more 

diffuse overall staining pattern (Figure 1.22).  One possibility for this discrepancy may 

be due to quaternary structural limitations of antibody binding.  ZCCHC8 is a scaffold 

protein for a ternary association known as the nuclear exosome targeting complex.  It is 

possible that the anti-ZCCHC8 antibody binds primarily free ZCCHC8, resulting in a 

diffuse pattern, while the anti-BTBD7 antibody primarily binds ZCCHC8 in a complex 

resulting in the more punctate appearance. 

 In the final analysis, it is difficult to ascribe to a protein, with any certainty, a 

unique expression pattern when the antibody used to produce the results is so 

obviously flawed.  Contrary to our initial interest, our results suggest that ZCCHC8 is not 

expressed in a unique development niche.  However, ZCCHC8 is a relatively 

understudied protein and, even though we were unable to recapitulate the results that 

captured our initial interest, we decided to undertake a mechanistic study in the hope of 
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uncovering a unique function for ZCCHC8.  We will explore this undertaking in the next 

chapter. 

 

Material and Methods 

Cell culture and maintenance 

MDCK.2, HeLa, and RT4 cells were purchased from ATCC (CRL-2936, CCL-2, and 

HTB-2, respectively).  MDCK.2, HeLa, and SIMS cells were maintained in phenol red-

free DMEM (GE Healthcare/Cytiva, SH30284.01) supplemented with 10% fetal bovine 

serum (FBS; GE Healthcare/Cytiva, SH30070.03) and incubated at 37℃ with 10% CO2.  

RT4 cells were maintained in McCoy’s 5a Modified Medium (ATCC, 30-2007) 

supplemented with 10% fetal bovine serum.  Cells were passaged every three to four 

days using trypsin-EDTA (Thermo Fisher, 25300120) after rinsing with HBSS (Thermo 

Fisher, 14170161).  Cell concentrations were determined using an automated cell 

counter (Nexcelom Cellometer Auto 2000). 

 

CRISPR/Cas9 knockout of Zcchc8 in SIMS cells 

The Zcchc8 KN2.0 non-homology mediated mouse gene knockout kit (KN519669) was 

purchased from OriGene.  Either the pCas-Guide CRISPR vector (OriGene, 

KN519669G1) containing a single guide RNA target sequence 5'-

TAGGTCGCCAAAATCCACAC-3' or the pCas-Guide CRISPR vector (OriGene, 

KN519669G2) containing a single guide RNA target sequence 5'-

CGAGGCGTTTGACCCACCAG-3' or a combination of the two was transfected into the 

SIMS cell line using Thermo Fisher's Lipofectamine 3000 Reagent kit (L3000008) in the 
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following manner.  Approximately 1 × 105 SIMS cells were plated in each well of a 6-

well plate the day prior to transfection.  On the day of transfection, either 3.75 or 7.5 𝜇l 

of Lipofectamine 3000 reagent was diluted into 125 𝜇l of serum-free Opti-MEM in 

separate 1.5 ml microfuge tubes for each guide RNA or the combination.  In separate 

1.5 ml microfuge tubes, 1.0 𝜇g of either pCas-Guide CRISPR vector or the combination, 

1.0 𝜇g of linear donor cassette with EF1a promoter followed by eGFP-P2A-Puromycin 

resistance (OriGene, KN519669D), and 2.0 𝜇l of P3000 reagent per 𝜇l DNA was diluted 

into 125 𝜇l of serum-free Opti-MEM.  The diluted DNA mixtures were then added to the 

respective Lipofectamine microfuge tubes and the reactions were incubated for 15 

minutes at room temperature.  After incubation, the DNA-lipid mixtures were added 

drop-wise to the SIMS cells in the respective individual wells.  After 48 hours post-

transfection, the cells were split 1:10 into DMEM (Thermo Fisher, 11965118) + 10% 

FBS every three days for a total of 4 passages.  The cells were then grown in the 

selective medium DMEM + 10% FBS + 2 𝜇g/ml puromycin (MilliporeSigma, P8833) for 

approximately one month.  A subset of cells was harvested to check for Zcchc8 

knockout efficiency via western blot, immunofluorescence, and PCR.  At this time, it was 

determined that the greatest knockout efficiency had been achieved using the pCas-

Guide CRISPR vector with guide RNA sequence of 5'-TAGGTCGCCAAAATCCACAC-3' 

(OriGene, KN519669G1).  These cells were chosen to produce individual clones using 

standard single cell cloning techniques in 96-well plates. 
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CRISPR/Cas9 knockout of Btbd7 in SIMS cells 

Aneuploidy in SIMS cells required multiple rounds of CRISPR/Cas9 transfection to 

achieve complete Btbd7 knockout.  Separate single guide RNA sequences were cloned 

into separate plasmids containing a Cas9 and puromycin selection cassette: sgRNA1 

5’-CACTCCGGCATTCCATCTGC-3’ and sgRNA2 5’-TATCATCAGTAATGAATGCT-3’.  

The plasmids were then co-transfected into SIMS cells using the Lipofectamine 3000 

Reagent kit with a reverse transfection procedure in 12-well plates.  Briefly, SIMS wild-

type cells were incubated with trypsin-EDTA at 37℃ for ~20 minutes.  During this 

incubation, 1 µg of each Cas9-sgRNA expressing plasmid was mixed with 55.5 µl of 

Opti-MEM for each well of the 12-well plate followed by 4 µl of P3000 reagent (DNA 

mixture).  In a separate tube, 3.3 µl of Lipofectamine 3000 reagent was mixed with 55.5 

µl of Opti-MEM for each well of the 12-well plate (Lipofectamine mixture).  Next, 58 µl of 

the Lipofectamine mixture was added to each tube of the DNA mixture, mixed 

thoroughly, and incubated at RT for 15 minutes.  During the Lipofectamine-DNA 

incubation, the trypsin-treated cells were resuspended to a concentration of 

4 × 105cells/ml.  After the incubation, 111 µl of the Lipofectamine-DNA mixture were 

added to each well of the 12-well plate followed by 1.25 ml of cell suspension.  The cells 

were incubated for 48 hours before switching the growth media to selective growth 

media containing 2 𝜇g/ml puromycin.   

 Standard single cell cloning techniques were used to produce multiple clones for 

genotyping.  Genotyping was performed using the following PCR probes oSW84, 5’-

TGCCATCAAACCCCTTACTTG-3’, oSW233, 5’-GATGCTGTGGCAAACTTCAA-3’, 
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oSW338, 5’-CTCTGTGGGGAGTCTCAGTG-3’ with expected PCR products of 1,365 bp 

wild-type band, 1,755 bp inversion, or no product for a complete deletion. 

 After genotyping, clones with at least one knockout allele were selected for 

another round of CRISPR/Cas9 transfections using two new sgRNA sequences: 

sgRNA3 5’- GTGAATTTCCCCCTACCCTT-3’ and sgRNA4 5’-

TATCATCAGTAATGAATGCT-3’.  Transfections, clonal selection, and genotyping was 

performed as above.  Absence of functional Btbd7 mRNA was confirmed with RT-PCR 

using the probes oSW336, ACATGACCAGGGCAGAAGAA 

oSW337, CACACAGGAAATGCACAGCT. 

 

Antibodies 

The following antibodies were used for immunofluorescence and western blots (see 

below for concentrations):  Anti-BTBD7 (Novus, NBP2-14364), anti-E-cadherin (Thermo 

Fisher, 13-1900), anti-GFP (MilliporeSigma, MAB3580), Anti-ZCCHC8 (Abcam, 

ab181152; Proteintech, 23374-1-AP; MilliporeSigma, HPA037483, HPA037484, 

SAB1407675), Amersham ECL Mouse IgG, HRP-linked whole Ab (Cytivia, NA931), 

Amersham ECL Rabbit IgG, HRP-linked whole Ab (Cytivia, NA934). 

 Production of a custom, polyclonal anti-BTBD7 antibody was performed by 

Covance in the following manner.  A KLH-conjugated, 31-amino acid peptide 

(YDVVLSFSSDSELVEAFGGNQNCLDEELKAH) was synthesized and subsequently 

immunized into two specific pathogen-free rabbits over the course of a 77-day protocol.  

On day 0, pre-bleed serum (5 ml) was collected from each rabbit followed by primary 

subcutaneous (SC) injection of 250 µg of immunogen emulsified in Freund’s Complete 
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Adjuvant.  On days 21, 42, and 63, the rabbits received an SC booster injection of 125 

µg of immunogen emulsified in Freund’s Incomplete Adjuvant.  Ten days after each 

booster injection production bleeds of 20 ml serum were collected from each rabbit and 

a small aliquot was used for ELISA screening.  On day 77, a termination bleed of 50 ml 

serum was collected from each rabbit.  The serum was then pooled and affinity purified 

for anti-BTBD7 antibodies. 

Antibody Primary/Secondary WB IF 

Anti-BTBD7 NBP2-14364 Primary 0.04 µg/ml 0.5 µg/ml 

Anti-BTBD7 Covance Primary 0.178 µg/ml 0.5 µg/ml 

Anti-ZCCHC8 ab181152 Primary 0.1 µg/ml 0.5 µg/ml 

Anti-ZCCHC8 23374-1-AP Primary 0.025 µg/ml 0.5 µg/ml 

Anti-ZCCHC8 HPA037483 Primary 0.04 µg/ml 0.5 µg/ml 

Anti-ZCCHC8 HPA037484 Primary 0.12 µg/ml 0.5 µg/ml  

Anti-ZCCHC8 SAB1407675 Primary 0.04 µg/ml 0.5 µg/ml  

Anti-E-cadherin 13-1900 Primary N/A 1 µg/ml 

Anti-GFP MAB3580 Primary N/A 1 µg/ml 

HRP Anti-Mouse NA931 Secondary 1:5,000 N/A 

HRP Anti-Rabbit NA934 Secondary 1:5,000 N/A 

Anti-Rabbit AF647 711-606-152 Secondary N/A 1.5 µg/ml 

Anti-Rabbit AF488 711-546-152 Secondary N/A 1.5 µg/ml 

Anti-Rat AF488 712-545-150 Secondary N/A 1.5 µg/ml 

 

 

Western blots 

Approximately 1 × 106 cells from MDCK.2, HeLa, SIMS wild-type, Btbd7- and Zcchc8-

knockout clones were seeded into 10 cm dishes.  At ~75% confluence, cells were 

washed with pre-chilled PBS followed by the addition of 500 𝜇l of pre-chilled RIPA buffer 

(25 mM Tris, pH 7.4, 150 mM NaCl, 1.0% NP-40, 0.5% sodium deoxycholate, 0.1% 

SDS) supplemented with 1× Halt Protease and Phosphatase Inhibitor Cocktail (Thermo 

Fisher, 78444).  Cells were scraped on ice and collected in pre-chilled 1.5 ml tubes 
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(Eppendorf, 022363212).  The cell suspensions were incubated on ice for 30 minutes 

followed by centrifugation at 13,000 rpm for 15 min at 4℃.  Supernatants were 

transferred to pre-chilled 1.5 ml tubes and stored at -20℃.  Lysate protein 

concentrations were quantified using the Pierce BCA Protein Assay Kit (Thermo Fisher, 

23227).  Aliquots of 25 𝜇g lysate were denatured in 1X Laemmli sample buffer (Bio-Rad, 

1610747) at 99℃ for 5 min.  Using a Bio-Rad Mini-PROTEAN Tetra Vertical 

Electrophoresis Cell, lysates and 5 𝜇l of Precision Plus Protein Kaleidoscope Standards 

(Bio-Rad, 1610375) were run on Bio-Rad 7.5% Mini-PROTEAN TGX precast gels with 

Tris/Glycine/SDS (Bio-Rad, 1610732) running buffer at 115 V followed by transfer to 

Bio-Rad Trans-Blot Turbo 0.2 𝜇m nitrocellulose via a Bio-Rad Trans-Blot Turbo Transfer 

system.  Membranes were then incubated in blocking solution consisting of 5% nonfat 

dry milk in TBST (Tris Buffered Saline with 0.5% Tween-20; Quality Biological, 351-086-

101; MilliporeSigma, P2287) for 1 hour at room temperature followed by incubation with 

primary antibodies diluted in blocking solution overnight at 4℃.  Membranes were 

washed 3 times for 15 min each in TBST and incubated with secondary antibodies 

diluted in Blocking Solution for 1 hour at room temperature.  The membranes were then 

washed 3 times for 15 min each in TBST at room temperature followed by 

chemiluminescence detection using SuperSignal West Femto Maximum Sensitivity 

Substrate (Thermo Fisher, 34095).  The blots were imaged using an Amersham Imager 

680 (GE Healthcare, 29270769).   
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Immunofluorescence  

Approximately 1 × 105 cells from MDCK.2, HeLa, SIMS wild-type, Btbd7- and Zcchc8-

knockout clones were seeded into 35 mm MatTek dishes (MatTek, P35G-1.5-20-C) and 

grown for 48 hours.  Cell medium was removed, and the cells were fixed with 2 ml of 

4% PFA in PBS (Electron Microscopy Sciences, 15710) for 20 min at room temperature.  

Cells were then quickly washed with 2 ml of PBS followed by permeabilization with 1 ml 

of PBS with 0.1% Triton X-100 (Thermo Fisher, 28314) for 10 min at room temperature.  

Cells were then washed with 2 ml of Wash Buffer (PBS + 0.5% Tween-20) and then 

blocked for 1 hour with 1 ml of blocking buffer (Wash Buffer containing 3% fatty acid-

free BSA (Thermo Fisher, 126609)).  The cells were then incubated with 200 𝜇l of 

primary antibodies diluted in blocking buffer overnight at 4℃.  The cells were then 

washed with 1 ml of Wash Buffer three times for 5 min each and incubated with 100 𝜇l 

of secondary antibodies diluted in blocking buffer for 1 hour at room temperature.  

Additionally, cells were stained with a 1:200 dilution of rhodamine phalloidin (Thermo 

Fisher, R415) during the secondary antibody incubation step.  Cells were then washed 

with 1 ml of Wash Buffer three times for 5 min each.  After the final wash, 12 𝜇l of 

Fluoro-Gel II with DAPI mounting medium (Electron Microscopy Sciences, 17985-50) 

was added to the cells on the glass surface of the MatTek dish.  A coverslip was then 

sealed over the glass surface to protect the cells from damage. 

 

Salivary gland isolation and culture 

Mouse submandibular salivary glands were isolated at embryonic day 11 through 17 

(E11-E17) as previously described (42).  Briefly, a scalpel (Fine Science Tools, 10011-
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00 and 10003-12) was used to decapitate the mouse embryo.  While the detached head 

was held on its side with one prong of forceps (Fine Science Tools, 11251-20) pierced 

through the top, a scalpel was used to slice across the mouth opening to isolate the 

mandible and tongue, between which the submandibular glands were sandwiched. 

Under a dissecting microscope, the detached mandible tissue was placed on a glass 

plate with the tongue facing down.  A pair of forceps was used to slice through the 

midline of the mandible tissue to expose the tongue and the two submandibular glands 

attached to the base of the tongue.  After surrounding tissues were removed, glands 

were detached using forceps and collected into a 35-mm dish with 3 ml DMEM/F-12 

(Thermo Fisher, 11039047) media until all embryos were dissected. Isolated salivary 

glands were cultured on 13 mm diameter 0.1 μm pore polycarbonate filters 

(MilliporeSigma, WHA110405) floating on 200 μl Organ Culture Medium in the glass 

bottom area of a 50 mm MatTek dish (MatTek, P50G-1.5-14-F) at 37°C with 5% CO2. 

Organ Culture Medium was DMEM/F-12 supplemented with 150 μg/ml vitamin C 

(MilliporeSigma, A7506), 50 μg/ml transferrin (MilliporeSigma, T8158) and 1X PenStrep 

(100 units/ml penicillin, 100 μg/ml streptomycin; Thermo Fisher, 15140163). 

 

Immunostaining of salivary glands 

Cultured salivary glands were fixed (4% PFA in PBS; Electron Microscopy Sciences, 

15710) on the filter by replacing Organ Culture Medium under the filter with 200 μl 

fixative for 1 hour at room temperature (RT) or overnight at 4°C. Fixed glands were 

detached from the filter and transferred into sample baskets (Intavis, 12.440) 
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 in PBS in a 35 mm dish using a pair of forceps (Fine Science Tools, 11251-20) under a 

dissecting microscope. Fixed samples in baskets were permeabilized in PBSTx (PBS 

with 0.2% Triton-X-100; Thermo Fisher, 28314) for 30 min at RT, blocked in 5% donkey 

serum (Jackson ImmunoResearch, 017-000-121) in PBSTx for 2 hours at RT, incubated 

in primary antibodies diluted in either PBSTx or 5% donkey serum for 2 days at 4°C, 

washed 4X 15 min in PBSTx at RT, incubated in secondary antibodies diluted in either 

PBSTx or 5% donkey serum for 2 days at 4°C, washed 4X 15 min in PBSTx at RT, 

rinsed in PBS and mounted under a dissecting microscope. To preserve fluorescence 

and to minimize compression, samples were mounted in 20 or 40 μl antifade mounting 

media (Thermo Fisher, P36930) supported by one layer of imaging spacers (Grace Bio-

labs, 654004) attached to a glass slide (Thermo Fisher, 3011-002). 

 

Cell spreading assay 

Purified fibronectin was diluted in sterile PBS to a final concentration of 100 µg/ml in a 

tissue culture hood under sterile conditions.  200 µl aliquots of fibronectin solution were 

then evenly coated onto the surface of 35 mm MatTek dishes (MatTek, P35G-1.5-20-C).  

The fibronectin-coated dishes were then incubated at either 37℃ for 1 hour or 4℃ 

overnight before washing 3X with sterile PBS at RT. 

 MDCK.2 cells grown to ~70% confluency were detached using trypsin-EDTA and 

resuspended with cell-culture medium into 15 ml conical tubes.  The cells were 

centrifuged for 2 minutes at 1,000 RPM.  The media was discarded, and the cell pellet 

was washed with 10 ml of HBSS.  The centrifugation and wash steps were repeated, 

and the cells were resuspended in complete DMEM.  Cell concentration was 
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determined using an automated cell counter (Nexcelom Cellometer Auto 2000), and an 

aliquot of cell suspension was used to produce a final concentration of 5.0 × 103cells/ml.  

2 ml of this cell suspension was added to either non-coated or fibronectin-coated 

MatTek dishes.  The cells were then incubated at 37℃ for 10-, 20-, 30-, 60-, or 120-

minute intervals followed by fixation with 4% PFA and immunostaining. 

 

Microscopy 

Immunofluorescence imaging was performed using the following microscopes and 

objectives. 

 Spinning disk confocal microscopy was performed using a system consisting of a 

Yokogawa CSU-22 scan head (CSU-21: modified by Spectral Applied Research, Inc.) 

on an automated Olympus IX-81 microscope using a 150X UApo N (NA 1.45) objective 

equipped with a custom laser launch with 442-, 488-, 568-, and 642-nm laser lines, a 

back-thinned EM-CCD camera (Photometrics), a motorized Z-piezo stage (ASI Imaging, 

Inc., Eugene, OR).  All components were controlled by MetaMorph (Molecular Devices, 

Downington, PA).  

 Laser scanning confocal microscopy was performed using either a Nikon A1R+ 

MP system consisting of 405-, 488-, 561-, and 640-nm solid state lasers, two GaAsP 

and two PMT detectors, and 20X Plan Apo (NA 0.75) or 60X Plan Apo (NA 1.4) 

objectives controlled by Nikon NIS-Elements software or a Zeiss LSM 880 Airyscan 

system consisting of 405- and 561-nm solid state; 458-, 488-, and 514-nm argon; 633 

nm HeNe lasers, one GaAsP and two PMT detectors, and 40X C-Apo (NA 1.1) or 63X 

C-Apo (NA 1.2) objectives controlled by Zeiss ZEN Black software. 
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 Super-resolution imaging was performed using either a GE DeltaVision OMX SR 

system consisting of an enclosed DeltaVision OMX microscope with 405-, 488-, 568-, 

and 640-nm solid state lasers, 60X (1.42 NA) objective, and three CMOS cameras 

controlled by OMX SR Acquisition software or a Nikon N-STORM microscope consisting 

of a Nikon Ti-2 microscope frame, a laser launch with 405-, 488-, 561-, and 642-nm 

solid state lasers, a 100X SR Apo (NA 1.49) TIRF objective, and a CMOS (Flash 4 v3, 

Hamamatsu) or a back-thinned EM-CCD camera (Photometrics).  Temperature, 

humidity and CO2 were maintained constant using a Tokai stage-top incubator.  The 

system was controlled by Nikon NIS-Elements software. 

 

Epitope mapping and peptide competition assays 

The 104-amino acid BTBD7 recombinant protein antigen was purchased from Novus 

(NBP2-14364PEP).  Four overlapping 31-amino acid subsequences were synthesized 

by LifeTein:   

Peptide 1:  LLHYLYTGEFGMEDSRFQNVDILVQLSEEFG 

Peptide 2:  LSEEFGTPNSLDVDMRGLFDYMCYYDVVLSF 

Peptide 3:  YDVVLSFSSDSELVEAFGGNQNCLDEELKAH 

Peptide 4:  DEELKAHKAVISARSPFFRNLLQRRIRTGEE 

Peptide competition assays were performed by incubating anti-BTBD7 antibody (NBP2-

14364) with 10X excess amount of peptide in either western blot or 

immunofluorescence blocking buffer for 30 minutes at RT on a rotating mixer.  The 

antibody + peptide mixture was then used in western blot and immunofluorescence 

assays as described above. 
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RNA extraction, cDNA preparation, and qRT-PCR 

Approximately 1 × 105 HeLa cells were seeded into 60 mm dishes and grown until cells 

reached ~75% confluence.  Cell medium was removed, and 0.5 ml of TRIzol Reagent 

(Thermo Fisher, 15596026) was added directly to the dishes.  After brief trituration, the 

lysates were collected into 1.5 ml tubes and incubated for 5 min at room temperature.  

Next, 0.1 ml of chloroform was added to each lysate and mixed thoroughly by inverting 

the tubes multiple times.  The lysates were incubated at room temperature for three 

minutes and then centrifuged at 13,000 rpm for 15 min at 4℃.  The aqueous phase of 

each lysate was then transferred to separate, fresh 1.5 ml tubes and 0.25 ml of 70% 

ethanol was added to each tube.  The samples were then transferred to RNeasy spin 

columns and 2 ml collection tubes from an RNeasy Mini Kit (Qiagen, 74104) and 

centrifuged at 13,000 rpm for 15 sec.  The flow-through was discarded and on-column 

DNase digestion was performed using the RNase-Free DNase Set (Qiagen, 79254) and 

the following protocol from Qiagen:  350 𝜇l of buffer RW1 was added to each column 

followed by centrifugation at 13,000 rpm for 15 sec.  The flow-through was discarded.  

80 𝜇l of DNase I incubation mix (10 𝜇l DNase I stock solution in 70 𝜇l buffer RDD) was 

added to each column membrane and incubated for 15 min at room temperature.  350 

𝜇l of buffer RW1 was added to each column followed by centrifugation at 13,000 rpm for 

15 sec.  The flow-through was discarded and 500 𝜇l of buffer RPE was added to each 

column followed by centrifugation at 13,000 rpm for 15 sec.  Again, 500 𝜇l of buffer RPE 

was added to each column followed by centrifugation at 13,000 rpm for 2 min.  The 

RNeasy columns were then placed in new 2 ml collection tubes and centrifuged for 

13,000 rpm for 1 min.  The RNeasy spin columns were then placed in new 1.5 ml 
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collection tubes and 50 𝜇l of RNase-free water was added to the column membranes 

followed by centrifugation at 13,000 rpm for 1 min.  The RNA samples were then stored 

at -80℃. 

 A Bio-Rad iScript cDNA synthesis kit (1708890) was used to produce cDNA 

according to the manufacturer’s protocol.  qRT-PCR was performed using an iTaq 

Universal SYBR Green One-Step kit (Bio-Rad, 172-5150) and the following primers:   

Btbd7 forward 5’-GAAGCCATGGAACTTTACCAC-3’  

Btbd7 reverse 5’-GAGCCATATGGATGAGAACTCC-3’ 

Gapdh forward 5’-TGTCTGGCACATTGGACATT-3’ 

Gapdh reverse 5’-GCACCGTCAAGGCTGAGAAC-3’. 

 

Mass spectrometry 

Lysate collected from SIMS wild type cells was electrophoresed on a Bio-Rad 7.5% 

Mini-PROTEAN TGX precast gel with Tris/Glycine/SDS running buffer at 115 V.  The 

gel was removed from the cassette and stained with SimplyBlue SafeStain (Thermo 

Fisher, LC6065).  A narrow region surrounding a 105 kD band was excised and placed 

in a 1.5 ml Eppendorf microfuge tube then sent to MS Bioworks, Ann Arbor, MI for mass 

spectrometry analysis.   

 Sample digestion was performed using a robot (ProGest, DigiLab) to wash with 

25 mM ammonium bicarbonate followed by acetonitrile, reduce with 10 mM dithiothreitol 

at 60℃ followed by alkylation with 50 mM iodoacetamide at RT, digest with trypsin 

(Promega) at 37℃ for 4 hours, and then quench with formic acid.  The supernatant was 

then analyzed directly without further processing by nano LC/MS/MS with a Waters 
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NanoAcquity HPLC system interfaced to a Thermo Fisher Q Exactive. Peptides were 

loaded on a trapping column and eluted over a 75μm analytical column at 350nL/min; 

both columns were packed with Luna C18 resin (Phenomenex). The mass spectrometer 

was operated in data-dependent mode, with MS and MS/MS performed in the Orbitrap 

at 70,000 FWHM and 17,500 FWHM resolution, respectively. The fifteen most abundant 

ions were selected for MS/MS.  

 Data were searched using a local copy of Mascot with the following parameters:  

Enzyme: Trypsin; Database: Swissprot Mouse (forward and reverse appended with 

common contaminants); Fixed modification: Carbamidomethyl (C); Variable 

modifications: Oxidation (M), Acetyl (Protein N-term), Deamidation (NQ), Pyro-Glu (N-

terminal Q); Mass values: Monoisotopic; Peptide Mass Tolerance: 10 ppm; Fragment 

Mass Tolerance: 0.02 Da; Max Missed Cleavages: 2.  Mascot DAT files were parsed 

into the Scaffold software for validation, filtering and to create a non-redundant list per 

sample.  Data were filtered using a minimum protein value of 90%, a minimum peptide 

value of 50% (Prophet scores) and requiring at least two unique peptides per protein.  

 

2D electrophoresis 

SIMS wild-type cell lysates were used for two-dimensional gel electrophoresis by 

Kendrick Laboratories, Madison, WI.  2D electrophoresis was performed according to 

the carrier ampholyte method of isoelectric focusing.  Isoelectric focusing was carried 

out in a glass tube of inner diameter 3.3 mm using 2.0% pH 3-10 Isodalt Servalytes 

(Serva, Heidelberg, Germany) for 20,000 volt-hrs.  The enclosed tube gel pH gradient 

plot for this set of Servalytes was determined with a surface pH electrode. 
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 After equilibration for 10 minutes in buffer “O” (10% glycerol, 50 mM dithiothreitol, 

2.3% SDS and 0.0625 M tris, pH 6.8), each tube gel was sealed to the top of a stacking 

gel that overlaid a 10% acrylamide slab gel (1.0 mm thick).  SDS slab gel 

electrophoresis was carried out for about 5 hours at 25 mA/gel.  The following proteins 

(MilliporeSigma) were used as molecular weight standards: myosin (220,000), 

phosphorylase A (94,000), catalase (60,000), actin (43,000), carbonic anhydrase 

(29,000), and lysozyme (14,000).  The gels were stained with Coomassie Brilliant Blue 

R-250 and dried between sheets of cellophane paper with the acid edge to the left. 

 After slab gel electrophoresis, the duplicate gels for blotting were placed in 

transfer buffer (10 mM CAPS, pH 11.0, 10% MeOH) and transblotted onto PVDF 

membrane overnight at 225 mA and approximately 100 volts/two gels.  The same 

proteins as above were used as molecular weight standards. 

 

Karyotyping 

Karyotyping of SIMS cells was performed by KaryoLogic, Research Triangle Park, NC. 
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Chapter 2 

 

ZCCHC8 is Required for the Degradation of 
Pervasive Transcripts Originating from Multiple 

Genomic Regulatory Features 
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Introduction 

 Historically, most transcriptional studies focused on the protein-coding portion of 

the mouse or human genome under the conventional wisdom that these 20,000 or so 

genes were interspersed throughout a largely non-transcribed, non-functional genome.  

Technical advances that brought about genome-wide analyses of transcription unveiled 

the reality that the vast majority of the genome is, in fact, transcribed as non-protein-

coding RNAs, or non-coding RNAs (ncRNAs).  Though intergenic transcription was 

described as early as 1997 (1), direct study of the phenomenon that would come to be 

known as “pervasive transcription” would alter transcriptomic dogma nearly a decade 

later (2-5). Global transcriptomic analyses, like the human ENCODE project (6), 

revealed the cumulative coverage of transcribed regions in 15 cell lines across the 

human genome is 62.1% and 74.7% for processed and primary transcripts, 

respectively.  Considering that the accepted estimate of the protein-coding portion of the 

human genome is just 1.2% (7), it is no wonder that this transcriptional discrepancy has 

generated intense interest.  So unforeseen was this transcriptional disjuncture that van 

Bakel et al. attempted to show that a majority of pervasive transcription was due to 

technical artifacts and/or background biological noise (8) thereby garnering much 

intrigue in the process (9-11).  This counterpoint was quickly refuted, however (12), and 

the scientific community has since accepted the reality of pervasive transcription though 

the significance of this phenomenon is yet to be fully understood. 

 Generally, mammalian ncRNAs are categorized as either short or long.  Short 

RNAs, widely accepted as less than 200 nucleotides in length, include the well-known 

small-nuclear and small-nucleolar RNAs (snRNAs and snoRNAs, respectively), transfer 
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RNAs (tRNAs), micro-RNAs (miRNAs), small interfering RNAs (siRNAs), and piwi-

interacting RNAs (piRNAs), among others.  As many of these short RNAs have well-

described functions they are often not considered to be pervasively transcribed.  

However, there are many short RNAs that remain functionally undefined.  In a 2007 

tiling array-based study of the mammalian transcriptome, promoter-associated small 

RNAs (PASRs) and terminator-associated small RNAs (TASRs) were found to originate 

from the promoter and terminal regions of protein-coding genes (4).  Shortly thereafter, 

Seila et al. described divergent transcription (defined as non-overlapping transcription 

initiation events that proceed in opposite directions from the transcription start site) at 

protein-encoding gene promoters that resulted in the production of so-called 

transcription start site-associated RNAs (TSSa-RNAs) (13).  Finally, transcription 

initiation RNAs (tiRNAs) mapping within -60 to +120 nucleotides of the TSS and having 

a modal length of 18 nucleotides were discovered to reside on the same strand as the 

TSS and preferentially associate with G+C-rich promoters (14).   

 While variation in definition exists, long ncRNAs (lncRNAs) are commonly 

defined as being autonomously transcribed RNAs longer than 200 nucleotides with 

minimal coding potential (15-19) (ribosomal RNAs are generally excluded from the 

lncRNA classification).  LncRNAs display a wide variety of functions and consist of 

intergenic and intronic transcripts, sense or antisense transcripts overlapping known 

genes (15,17,20), and enhancer RNAs (eRNAs) (21,22) that reportedly make up an 

estimated 19% of lncRNAs in human ESCs (23).  The bulk of lncRNAs, however, likely 

consist of long intergenic/intervening non-coding RNAs (lincRNAs) (defined as 

autonomously transcribed non-coding RNAs longer than 200 nucleotides that do not 
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overlap annotated coding genes) (19,24). These lincRNAs share features with the other 

transcripts of the lncRNA family and may constitute more than half of lncRNA transcripts 

in humans (19).  There is some uncertainty in this estimate, however, as many 

lincRNAs can be difficult to distinguish from eRNAs and there is apparent overlap with 

other RNA classes (16). 

 Of particular interest to the work presented here are divergent transcripts located 

upstream of the transcription start site known as promoter upstream transcripts 

(PROMPTs) and upstream antisense RNAs (uaRNAs) (25-28).  While the lower bound 

of uaRNAs ranges from a few tens of nucleotides, the upper bound of greater than one 

thousand (25) more suitably places these RNAs within the lncRNA family.  Early 

estimates suggest PROMPTs are ~200-600 nucleotides in length (27).  PROMPTs and 

uaRNAs are highly unstable and short lived, are produced further upstream of active 

TSSs than TSSa- and tiRNAs, and have both sense and anti-sense orientations 

(25,27,28). 

 Most certainly some pervasive transcription is functional and future research will 

need to clarify its significance.  There is currently considerable debate regarding how 

much pervasive transcription is attributable to incidents of promiscuous RNA 

polymerase binding, initiation, and transcription. What seems certain, regardless of 

origin, is that unchecked pervasive transcription will have severe developmental and 

homeostatic consequences.  Excess pools of unnecessary RNA can perturb 

transcription and initiate inappropriate translation fracturing the finely tuned kinetics of 

proper gene expression and regulation (29).  Additionally, excess RNA can disrupt 

genome stability through the formation of hybridized RNA-DNA complexes, known as R 
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loops, that result in displaced single-stranded DNA that is highly susceptible to damage 

(29). 

 Obviously, pervasive transcription, and transcription in general, must be 

managed.  As such, cells display remarkable systems of RNA surveillance.  RNA 

surveillance mechanisms serve to monitor and manage short-lived, long-lived, and 

nonfunctional RNAs in a manner conducive to cellular and organismal well-being.  While 

many RNA surveillance pathways have been detailed for protein-coding transcripts, less 

is known about the surveillance of ncRNAs.  Yet, a few foundational concepts have 

been established.  First, exo- and endo-ribonucleases serve to degrade unnecessary 

ncRNAs (16,18,30,31).  Second, these ribonucleases usually function in concert with 

cofactors, helicases, and adapters that serve to recognize, unwind, and present the 

dispensable ncRNAs to the ribonucleases for degradation (16,18,30,31).  Finally, these 

RNA surveillance pathways often have redundant partners (16,18,30,31).  

 Of particular note are the nuclear exosome-targeting (NEXT) complex and the 

poly(A) exosome-targeting (PAXT) connection (32,33).  Both NEXT and PAXT function 

in the nucleoplasm and serve as adapter complexes that facilitate recognition and 

presentation of RNAs to the nuclear exosome (32-34).  The nuclear exosome is a multi-

subunit complex that includes the 3'-5' exoribonucleases, DIS3 and EXOSC10 (35).  

NEXT and PAXT both commonly include the RNA helicase MTR4/SKIV2L2 which 

serves to unwind the targeted RNA and directly interacts with the RNA exosome 

(36,37).  The trimeric NEXT complex further consists of the zinc-knuckle scaffold 

ZCCHC8 and the RNA binding protein RBM7 (32).  Though not fully elucidated, the 

PAXT connection is presumably comprised of the Zn-finger proteins ZFC3H1 and 
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ZC3H3, the poly(A) binding protein PABPN1, and the RNA binding proteins RBM26 and 

RBM27 (33,34,38).   

 The NEXT complex is responsible for exosomal targeting of PROMPTs, eRNAs, 

3' extended snRNAs, 3' extended histone RNA, and intronic RNAs (32,34,39).  Under 

normal conditions these RNAs are rapidly degraded and therefore difficult to detect.  

Depletion of NEXT components results in polyadenylation, and relative stabilization, of 

NEXT RNA substrates (32,34,39).  PAXT, on the other hand, is responsible for targeting 

longer poly(A) transcripts that include diverse lncRNAs and prematurely terminated 

RNAs produced by intronic poly(A) sites within protein-coding genes (33,34,40).  

Recently, NEXT and PAXT have been shown to act redundantly with PAXT serving as a 

failsafe in the case of NEXT disruption (34).  In the absence of NEXT complex subunits, 

the now polyadenylated NEXT substrates are targeted by the PAXT connection (34), 

albeit with likely altered kinetics. 

 Recently, in experiments regarding developing mouse salivary glands and 

salivary gland cells, we encountered an unexpected nuclear immunofluorescence 

staining pattern with intriguing spatiotemporal dynamics.  This immunofluorescence 

staining was the result of antibody cross-reactivity to what we ultimately determined to 

be the NEXT component ZCCHC8.  Because of its interesting nuclear localization 

pattern in developing salivary glands, we hypothesized that in vitro gene ablation 

experiments and RNA sequencing analyses could provide new insights into the function 

of ZCCHC8.  We present comprehensive and comparative analyses of its functions in 

vitro and in vivo.  In addition to its known RNA substrates, we have discovered that 

ZCCHC8 and/or the NEXT complex are responsible for the targeted degradation of 
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pervasive transcripts produced at CTCF binding sites, open chromatin regions, 

promoters, promoter flanking regions, and transcription factor binding sites.  Further, 

besides identifying roles in suppressing levels of pervasive, spatially widespread non-

coding transcripts, these in-depth analyses reveal that a surprising number of current 

RIKEN cDNAs (41) and predicted genes appear to be PROMPTs that are unlikely to be 

functional genes. 
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Results 

Zcchc8 knockout in mouse salivary gland cells 

 In order to test the hypothesis that ZCCHC8 has one or more alternative 

functions to that of its scaffolding role in the NEXT complex, we used the CRISPR/Cas9 

system to knockout Zcchc8 in the SIMS mouse salivary gland cell line (Figure 2.1A).  

We then isolated >20 clonal populations using standard single cell cloning techniques.  

After western blotting for ZCCHC8, we randomly selected three individual cell lines from 

those with depleted ZCCHC8 expression.  Genetic sequencing confirmed differing two-

base-pair deletions near the CRISPR/Cas9 target sequence that resulted in newly 

formed stop codons shortly downstream from the deletion site in each clone (Figure 

2.1A).  Follow-up western blotting and immunofluorescence analyses confirmed the 

absence of ZCCHC8 protein expression in the selected clones (Figure 2.1B-C).  Gross 

morphological examination did not reveal any noticeable differences between the 

control and deletion cell lines. 

 We then performed a series of biological assays to assess the effects of Zcchc8 

knockout in this cell line.  Somewhat remarkably, these Zcchc8 knockout clones showed 

negligible differences in MTT proliferation, Matrigel invasion, colony formation, spheroid 

formation, soft agar, and scratch assays when compared to wild-type control (Figure 

2.2A-E). 
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Figure 2.1  (A) Schematic depicting the CRISPR/Cas9 strategy for disrupting Zcchc8 in SIMS 
mouse salivary gland cells. Single cell cloning produced three separate knockout clones with two-

base-pair deletions ~12-15 bp downstream of the TSS.  The resulting frameshift produced a 
translational stop codon at amino acid position 16. (B) Western blot confirmation of ZCCHC8 
ablation in three separate clones.  Western blots were probed with a rabbit, polyclonal anti-

ZCCHC8 antibody from Proteintech and a mouse, monoclonal anti--Tubulin antibody from 
Sigma.  (C) Immunofluorescence confirmation of ZCCHC8 ablation in three separate clones.  The 
same anti-ZCCHC8 antibody as in (B) was used.  Note the presence of antibody cross-reactivity 
to primary cilia before and after Zcchc8 knockout.  Actin fibers were stained with a rhodamine-

labeled phalloidin from Thermo Fisher.  Scale bar = 20m.  Note:  Figure 2.1 and Figure 1.19 on 
page 34 are identical. 
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Figure 2.2  Biological assays.  (A)  MTT proliferation assay results.  All groups n = 6.  (B)  Colony 
forming assay results.  All groups n = 4.  (C)  Soft agar colony forming assay results.  All groups 
n = 4.  (D)  Representative images from wound healing assays.  All groups n = 3.  
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RNA sequencing of Zcchc8 knockout cells  

 In the absence of any observed in vitro biological phenotype related to 

morphology, proliferation, survival, or migration, we proceeded to perform RNA 

sequencing on wild-type and Zcchc8 knockout SIMS cells.  As an additional negative 

control, we also included SIMS cells in which we previously disrupted the gene Btbd7 

using the CRISPR/Cas9 system.  Considering the role of ZCCHC8 and the NEXT 

complex in RNA degradation pathways, we used the Illumina TruSeq Stranded Total 

RNA library preparation kit in order to ultimately detect differential expression of small 

RNAs, lncRNAs, and mRNAs.   Four replicate libraries were prepared from each cell 

line.  The samples were analyzed on an Illumina NextSeq500 configured for 40 paired-

end reads and the quality of the reads was evaluated using FastQC software.  Read 

mapping against the recent GENCODE mouse release M24 was performed using the 

STAR 2.7.3a aligner (see Materials and Methods). 

 We then performed differential expression analysis of genomic features using 

three independent statistical tests to assess differential expression between groups: 

DESeq2, edgeR, and Limma-Voom.  These methods differ in normalization of feature 

expression across samples, assumptions about the distribution of the underlying data 

and statistical test used, and are widely accepted in the current literature. 

 Principal component analysis (PCA), multidimensional scaling (MDS), and 

Euclidean distance clustering (EDC) of gene expression data revealed a single wild-

type SIMS replicate that differed significantly from the other wild-type replicates (Figure 

2.3A, Figure 2.4A).  This replicate was removed from all subsequent analyses.  The 

replicates of all other clonal groups were highly similar and were included in all analyses 
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(Figure 2.3B, Figure 2.4B).  Importantly, unsupervised EDC revealed two major clusters: 

a control cluster consisting of wild-type and Btbd7 knockout cells and a Zcchc8 

knockout cluster (Figure 2.4B).  Further, the replicates of each clone clustered together 

into related subclusters (Figure 2.4B).   

 Strikingly, a plot of the top 20 genes both positively and negatively correlated 

with the variance of the first principal component revealed a large number of RIKEN 

cDNAs and predicted genes (with the Mouse Genome Informatics naming convention of 

Gm𝑥𝑥𝑥𝑥𝑥) positively correlated with this variance (Figure 2.5).  In fact, of the top 100 

genes positively correlated with the variance of the first principal component, 62 are 

RIKEN cDNAs and predicted genes (29 and 33, respectively) (Table 2.1).  Only 11 are 

snRNAs or snoRNAs—two RNA species that are known substrates for ZCCHC8 and 

the NEXT complex. 
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Figure 2.3  (A) Principal component analysis plots depicting a single outlier sample from the wild-
type group.  Asterisks mark the outlier sample.  Principal component variance: PC1 = 69.19%, 
PC2 = 10.81%, PC3 = 5.26%.  (B)  Principal component analysis plots after removal of the outlier 
sample from analysis.  Principal component variance:  PC1 = 58.41%, PC2 = 20.08%, PC3 = 
11.61%.  Ellipses represent 95% confidence regions in both (A) and (B). 
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Figure 2.4  (A) Heatmap of sample-to-sample distances after unsupervised clustering of variance-
stabilizing-transformed data.  The wild-type 1.1 sample clustered individually on a single node 
(red circles, bold-type).  (B)  Heatmap produced using the same data analysis as in (A) after the 
removal of the outlier wild-type 1.1 sample. 
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Figure 2.5  Loadings bar chart of the top 20 genes correlating positively and negatively with the 
variance of the first principal component.   
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Table 2.1  Top 100 positively correlated loadings for the first principal component 
[1] AA474408 [51] Gm43182 
[2] Snora31 [52] Gm37352 
[3] B930036N10Rik [53] Gm17767 
[4] 4632427E13Rik [54] 4930402H05Rik 
[5] 4932422M17Rik [55] Gm15706 
[6] Snord118 [56] Phtf1os 
[7] Ppp1r10 [57] 4632404H12Rik 
[8] Snora21 [58] 4930581F22Rik 
[9] Gm11688 [59] Trmt12 
[10] Gm4890 [60] Gm44064 
[11] Rnu1a1 [61] Gm10209 
[12] 2810454H06Rik [62] Bmf 
[13] Tcim [63] Lrrc26 
[14] 2900060B14Rik [64] Chdh 
[15] Snord11 [65] Gm37305 
[16] Gm39556 [66] Gm10382 
[17] Rnu11 [67] Neat1 
[18] Gm23849 [68] Mrpl17 
[19] 0610040B10Rik [69] Gm13523 
[20] Gm23444 [70] Snord13 
[21] 1700007L15Rik [71] D730045B01Rik 
[22] Msh5 [72] 1700096K18Rik 
[23] Gm25360 [73] 9330162G02Rik 
[24] Snhg4 [74] Grin1 
[25] Gm23971 [75] Gm17259 
[26] Lncppara [76] Gm27680 
[27] Mttp [77] E030037K01Rik 
[28] 1700052K11Rik [78] Gm10461 
[29] 6430511E19Rik [79] B330016D10Rik 
[30] Dleu2 [80] BC037704 
[31] AI480526 [81] Gm22422 
[32] Gm32699 [82] Gm26766 
[33] 4921531C22Rik [83] 5031415H12Rik 
[34] Gm20633 [84] 2810402E24Rik 
[35] Gm38391 [85] Nabp1 
[36] 8030456M14Rik [86] Gm26670 
[37] Gm38140 [87] 4933417C20Rik 
[38] Gm29170 [88] D730044K07Rik 
[39] Gm24830 [89] A430078I02Rik 
[40] Gm9958 [90] Gm4419 
[41] Gm22265 [91] Cd33 
[42] 2700046G09Rik [92] D430020J02Rik 
[43] Mir99ahg [93] Rnu5g 
[44] Uap1l1 [94] Gm44686 
[45] 1700001G17Rik [95] Ankle1 
[46] Snhg15 [96] 1700063J08Rik 
[47] Rdm1 [97] Klhl24 
[48] Snhg20 [98] Nupr1l 
[49] 4933406P04Rik [99] H3f3aos 
[50] Lncpint [100] Gm11335 

Top 100 genes positively correlated with the variance of the first principal component in order of variance 
contribution.  RIKEN cDNAs and predicted genes are in bold.  
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Effects of Zcchc8 knockout on genomic regulatory features 

 In order to confirm the role of ZCCHC8 in the degradation of PROMPT RNAs, we 

generated metagene plots and read-coverage heat maps of the 3 kb region upstream of 

the TSS for all expressed genes using the Python package deepTools.  As expected, 

knockout of Zcchc8 resulted in the appearance of PROMPTs upstream of the TSS for 

numerous genes (Figure 2.6A-B).  Metagene plots revealed the majority of PROMPTs 

to be less than 1.5 kb upstream of the TSS (Figure 2.6A).  Btbd7 knockout had no effect 

on transcription upstream of TSSs (Figure 2.6A-B, Figure 2.7B). 

 We next performed differential expression analysis of all PROMPT regions 3 kb 

upstream of annotated gene start sites.  Using cut-off values of >1.5-fold expression 

difference and <0.01 adjusted p-value, DESeq2, edgeR, and Limma-Voom revealed the 

presence of 5,393, 5,709, and 4,963 differentially expressed PROMPT regions, with 

2,963 in common (Figure 2.7A, Table 2.2).  Hereafter, we will only refer to those 

differentially expressed PROMPTs, genes, regulatory features, etc., that are shared 

according to all three statistical methods.  A heat map of PROMPT region expression is 

shown in Figure 2.7B.  Read coverage plots for selected differentially expressed 

PROMPTs were generated using the Gviz package in R and are shown in Figure 2.8.  

These detailed plots reveal the remarkable similarity of PROMPT transcription read 

coverage in three separate knockout clones as compared to wild-type and Btbd7 

knockout controls (Figure 2.8). 
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Figure 2.6  (A)  Metagene plots showing the median read coverage for CPM-normalized read 
counts in 3-kb regions upstream of the TSS for all expressed genes.  Genes were considered to 
be expressed if there were >5 reads in at least one sample.  (B)  Read coverage heatmaps of the 
3-kb upstream regions in (A).  In order to create a single plot of all clonal replicates in (A) and (B), 
read counts from replicate bam files were merged and indexed using the SAMtools software 
package followed by CPM-normalization. 
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Figure 2.7  (A) Venn diagram showing the number of differentially expressed PROMPTs 
determined via DESeq2, edgeR, and Limma-Voom analysis in SIMS Zcchc8 knockout cells.  (B)  
Heatmap using k-means clustering (k = 2) of the 2,963 PROMPTs shared among the statistical 
analysis groups in (A). 
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Figure 2.8  Read coverage plots indicating the differential expression of PROMPTs within the 3 
kb upstream region of the TSS for the genes Edf1, Cd2ap, Slc7a6, and Far1.  In order to create 
a single plot of all clonal replicates, read counts from replicate bam files were merged and indexed 
using the SAMtools software package followed by CPM-normalization prior to plotting using the 
Gviz R package.  Black arrows indicate the TSS for each gene followed by the first 250 bp of 
transcription coverage.  Open arrows indicate the -3 kb position relative to the TSS. 
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Table 2.2  Differentially expressed genomic regulatory features 

    DESeq2   edgeR   LimmaVoom   Shared 

    Up Down   Up Down   Up Down   Up Down 
             

PROMPTs             

Zcchc8 KO   4618 775   4353 1356   2533 2430   2486 477 

Btbd7 KO   42 26   40 36   10 12   5 8 

Enhancers             

Zcchc8 KO   439 50   400 78   258 68   243 28 

Btbd7 KO   9 4   10 6   11 5   3 3 

Promoters             

Zcchc8 KO   338 42   327 63   112 38   105 22 

Btbd7 KO   6 3   8 7   4 2   1 2 

PFR             

Zcchc8 KO   839 75   771 126   487 157   471 51 

Btbd7 KO   17 11   14 6   13 8   2 3 

CTCF sites             

Zcchc8 KO   469 38   425 67   269 71   247 19 

Btbd7 KO   9 4   4 2   9 9   2 2 

TFBS             

Zcchc8 KO   86 10   72 13   48 15   45 6 

Btbd7 KO   3 2   3 0   1 0   1 0 

OCR             

Zcchc8 KO   239 27   224 35   151 48   142 9 

Btbd7 KO   3 4   1 4   3 1   0 0 

Genes             

Zcchc8 KO   86 10   72 13   48 15   45 6 

Btbd7 KO   3 2   3 0   1 0   1 0 

             

Differentially expressed genomic regulatory features as determined by three different analyses using cut-
off values of >1.5-fold expression difference and adjusted p-value <0.01.  The number of features that were 
commonly found within all three statistical analyses are indicated in the Shared column.  PFR = Promoter 
Flanking Regions, TFBS = Transcription Factor Binding Sites, OCR = Open Chromatin Regions.   
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 Considering that divergent transcription at TSSs is presumed to occur at most 

active protein coding genes (13,23,26,28,42,43), we expected to find a larger number of 

PROMPTs in our Zcchc8 knockout cells.  We wondered if NEXT complex redundancy 

through the PAXT connection would be evident through increased transcription or if the 

remaining NEXT complex components or RNA exosome were up-regulated as a 

compensatory mechanism for loss of ZCCHC8 function.  Upon further examination, we 

found no evidence of such regulation at the transcriptional level (Table 2.3).  We also 

mapped the chromosomal distribution of PROMPTs and found they were widespread 

and well-distributed across all chromosomes (Figure 2.9). 

 Differential expression analysis also detected ~15% PROMPT regions that were 

down-regulated in Zcchc8 knockout cells (Figure 2.7B).  As the function of the NEXT 

complex is to degrade PROMPTs, we examined how ZCCHC8 disruption could result in 

decreased transcription in these regions.  Deeper examination revealed portions of full-

length expressed genes overlapping these PROMPT regions in either head-to-head or 

head-to-tail orientation.  Thus, these regional transcriptional differences are due to 

differential gene expression rather than to authentic PROMPT expression.  Hereafter, 

we will refer to PROMPTs as those 3 kb upstream regions that are up-regulated in 

Zcchc8 knockout cells.  Accordingly, we found 2,486 PROMPTs in our SIMS Zcchc8 

knockout cells. 

 Similar to our PROMPT analysis, we performed differential expression analyses 

on regulatory features (as annotated in the Ensembl Regulation database) and found 

ZCCHC8 ablation resulted in transcriptional up-regulation of 247 CTCF binding sites, 

243 enhancers, 142 open chromatin regions, 104 promoters, 471 promoter flanking 
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regions, and 45 transcription factor binding sites (>1.5-fold expression difference and 

<0.01 adjusted p-value) (Figure 2.10A).  In Btbd7 knockout cells, there were fewer than 

5 differentially expressed regulatory features of each category.  The results of this 

differential expression analysis are summarized in Table 2.2.  Further, we evaluated 

whether any of these regulatory features overlapped with PROMPTs and found only a 

small number shared intersecting genomic coordinates (Figure 2.10B).   

Lastly, we mapped the chromosomal locations of these regulatory regions and 

found them to be well-distributed along each chromosome with the exception of 

chromosome X (Figure 2.11).    
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Table 2.3   Gene expression of RNA degradation complex subunits in Zcchc8 KO cells 

    DESeq2   edgeR   Limma-Voom 

    log2(FC) 
Adj.  

p-value 
  log2(FC) 

Adj.  
p-value 

  log2(FC) 
Adj.  

p-value 
          

NEXT          

Mtr4   -0.26 0.013  -0.28 0.015  -0.20 0.075 

Rbm7   -0.12 0.371  -0.13 0.354  -0.08 0.503 

          

PAXT          

Pabpn1   0.25 0.347  0.23 0.442  0.16 0.532 

Rbm26   -0.17 0.029  -0.18 0.063  -0.12 0.146 

Rbm27  0.12 0.231  0.10 0.419  0.17 0.031 

Zc3h3  0.18 0.703  0.16 0.789  -0.04 0.923 

Zfc3h1  0.14 0.231  0.12 0.352  0.20 0.045 

          

RNA Exosome        

Dis3   -0.31 0.0006  -0.33 0.001  -0.26 0.011 

Dis3l   -0.24 0.195  -0.26 0.163  -0.26 0.119 

Exosc1  -0.37 0.0004  -0.39 0.001  -0.34 0.004 

Exosc2  0.04 0.903  0.02 0.968  -0.02 0.937 

Exosc3  0.21 0.430  0.19 0.512  0.04 0.894 

Exosc4  -0.27 0.048  -0.28 0.062  -0.30 0.019 

Exosc5  0.20 0.312  0.19 0.432  0.14 0.468 

Exosc7  -0.18 0.567  -0.20 0.513  -0.19 0.424 

Exosc8  -0.35 0.0009  -0.37 0.002  -0.32 0.006 

Exosc9  -0.40 0.014  -0.41 0.015  -0.41 0.011 

Exosc10  -0.06 0.651  -0.07 0.598  -0.02 0.886 
          

Gene expression data for RNA degradation complex subunits as computed using three different statistical 
analyses:  DESeq2, edgeR, and Limma-Voom.  Adj. p-value = adjusted p-value; FC = fold-change.  
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Figure 2.9  Probability density function and rug plots indicating the distribution of PROMPTs 
closely matches the distribution of expressed genes along each chromosome.  Rug plots mark 
individual genes (black) and PROMPTs (red) as vertical tick marks above and below, respectively.  
Probability density function curves for genes (black) and PROMPTs (red) were generated using 
the Gaussian kernel density estimate with Silverman’s rule of thumb bandwidth method (Nrd0).  
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Figure 2.10  (A) Bar chart showing the number of differentially expressed genomic regulatory 
features in SIMS Zcchc8 knockout cells.  (B)  Scatter plot of PROMPTs and genomic regulatory 
features with overlapping genomic coordinates.  Data were generated using the Limma-Voom 
statistical analysis.  Horizontal and vertical dashed lines demarcate adjusted p-value of 0.01 and 

fold-change of 1.5 (log2(1.5) ≈ 0.584), respectively.  Open circles indicate those PROMPTs that 
are specific to the Limma-Voom analysis.  Closed circles indicate PROMPTs that are shared 
within DESeq2, edgeR, and Limma-Voom analyses and meet the significance thresholds of >1.5 
fold-change and <0.01 adjusted p-value.  Colored circles indicate genomic regulatory features 
with overlapping genomic coordinates to PROMPTs. 
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Figure 2.11  Chromosomal distribution of differentially expressed PROMPTs and genomic 
regulatory features from SIMS Zcchc8 knockout cells.   
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Differential gene expression in Zcchc8 knockout cells 

 We next turned our attention to differential gene expression using the same 

analyses we used for PROMPTs.  Using the same thresholds of >1.5-fold expression 

change and adjusted p-value of <0.01, we found a total of 852 differentially expressed 

genes in our SIMS cells (Figure 2.12A).  Of these genes, 712 were up-regulated in 

Zcchc8 knockout cells while only 140 were down-regulated (Figure 2.12B).  Intriguingly, 

of the 712 up-regulated genes in the Zcchc8 knockout cells, 486 were RIKEN cDNAs or 

predicted genes (Figure 2.13A) affirming our exploratory PCA findings.  Only 9 down-

regulated RIKEN cDNAs and predicted genes were discovered (Figure 2.13A).  

Conversely, the Btbd7 knockout cells showed only 62 up-regulated and 80 down-

regulated genes with only 2 and 8 of these consisting of RIKEN cDNAs or predicted 

genes, respectively (Figure 2.13B). 

 This unexpected finding stimulated us to examine the relationship between these 

RIKEN cDNAs and predicted genes and the genomic regulatory features governed by 

ZCCHC8 and the NEXT complex.  Surprisingly, 334 of these predicted genes had 

intersecting genomic coordinates with the differentially expressed PROMPTs in our data 

set.  Read coverage plots for selected RIKEN cDNAs and predicted genes revealed 

expression patterns that display the trademarks of PROMPTs (Figure 2.14). 

 Lastly, we asked if ZCCHC8 and/or the NEXT complex might directly regulate 

specific genes or pathways.  We subjected the remaining differentially expressed genes 

to Signaling Pathway Impact Analysis (SPIA), PathNet, and Ingenuity Pathway Analysis 

in order to generate candidate genes and pathways.  Our efforts at comparing these 
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candidates did not reveal any selective effects on the pathways we singled out for 

validation. 

 

Figure 2.12  (A) Venn diagram showing the number of differentially expressed genes determined 
via DESeq2, edgeR, and Limma-Voom analysis in SIMS Zcchc8 knockout cells.  (B)  Heatmap 
using k-means clustering (k = 2) of the 852 genes shared among the statistical analysis groups 
in (A). 
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Figure 2.13  (A)  Scatter plot of gene expression data in SIMS Zcchc8 knockout cells.  Data were 
generated using the Limma-Voom statistical analysis.  Horizontal and vertical dashed lines 

demarcate adjusted p-value of 0.01 and fold-change of 1.5 (log2(1.5) ≈ 0.584), respectively.  
Open circles indicate those genes that are specific to the Limma-Voom analysis.  Closed circles 
indicate genes that are shared within DESeq2, edgeR, and Limma-Voom analyses and meet the 
significance thresholds of >1.5 fold-change and <0.01 adjusted p-value.  Colored circles indicate 
RIKEN cDNAs (green) and predicted genes (magenta).  (B)  Scatter plot of gene expression data 
in SIMS Btbd7 knockout cells as in (A).   
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Figure 2.14  Read coverage plots indicating the differential expression of RIKEN cDNAs and 
predicted genes upstream of protein coding genes.  In order to create a single plot of all clonal 
replicates, read counts from replicate bam files were merged and indexed using the SAMtools 
software package followed by CPM-normalization prior to plotting using the Gviz R package.  
Black arrows indicate the TSS for each protein coding gene.  Open arrows indicate the +/-3 kb 
position relative to the TSS.  Note that the full length of the RIKEN cDNAs and predicted genes 
are shown while only the first 3 kb of the protein coding genes are shown.  Read coverage y-axes 
were truncated at 100 reads in order to maintain scale. 
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Effects of Zcchc8 knockout in mice 

 Two other research groups recently developed Zcchc8 knockout mice (44,45).  

Gable et al., performed RNA seq on E12.5 brains while Wu et al., performed RNA seq 

on ES cells derived from knockout mice.  Using the publicly available raw data (NCBI 

GEO: GSE126108 and GSE127790) from these experiments, we performed our same 

differential expression analyses to assess the global effects of Zcchc8 disruption.   

 Interestingly, we found 4,740 PROMPTs in E12.5 brains and only 422 PROMPTs 

in ES cells.  We found our SIMS cells had 1,772 PROMPTs in common with E12.5 

brains and only 138 PROMPTs in common with ES cells.  There were 132 PROMPTs 

common to all three groups.   

 Considering our establishment of the role of ZCCHC8 and/or the NEXT complex 

in regulating pervasive transcription of genomic regulatory features in SIMS Zcchc8 

knockout cells, we asked if our findings would be recapitulated in the knockout mouse 

datasets.  Indeed, in E12.5 brains (GSE12618) we found ZCCHC8 ablation resulted in 

the transcriptional up-regulation of 1,159 CTCF binding sites, 775 enhancers, 638 open 

chromatin regions, 438 promoters, 1,342 promoter flanking regions, and 198 

transcription factor binding sites (>1.5-fold expression difference and <0.01 adjusted p-

value) (Figure 2.15A).  Likewise, in ES cells (GSE127790) we found 101 CTCF binding 

sites, 152 enhancers, 61 open chromatin regions, 143 promoters, 235 promoter flanking 

regions, and 21 transcription factor binding sites (>1.5-fold expression difference and 

<0.01 adjusted p-value) (Figure 2.15B).   
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Figure 2.15  (A) Bar chart showing the number of differentially expressed genomic regulatory 
features in E12.5 brains taken from Zcchc8 knockout mice (GSE126108).  (B)  Bar chart showing 
the number of differentially expressed genomic regulatory features in ES cells taken from Zcchc8 
knockout mice (GSE127790). 
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We further explored if our discovery of the relationship between PROMPTs, 

RIKEN cDNAs and predicted genes would also be recapitulated in the knockout mouse 

datasets.  First, we found 1,541 differentially expressed genes in E12.5 brains with 

1,410 up-regulated and only 131 down-regulated in knockouts (Figure 2.16A).  We 

found 3,101 differentially expressed genes in ES cells with 1,804 up-regulated and 

1,297 down-regulated (Figure 2.16B).  In comparison, our SIMS cells had 450 up-

regulated genes and only one down-regulated gene in common with E12.5 brains; 89 

up-regulated genes and only seven down-regulated genes in common with ES cells.  

Among the three knockout groups, there were 69 common up-regulated genes and zero 

down-regulated genes in common. 

 Once again closer inspection revealed a large proportion of the up-regulated 

genes in the Zcchc8 knockout groups were RIKEN cDNAs and predicted genes.  

Remarkably, of the 1,410 up-regulated genes in E12.5 brains, 1,123 are RIKEN cDNAs 

or predicted genes (Figure 2.16A) with 645 having overlapping genomic coordinates 

with PROMPTs.  Further, of the 450 common up-regulated genes between our SIMS 

cells and the E12.5 brains, 372 were RIKEN cDNAs or predicted genes.  In an intriguing 

contrast, only 102 of the 1,804 up-regulated genes in ES cells were RIKEN cDNAs or 

predicted genes (Figure 2.16B).   
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Figure 2.16  (A)  Scatter plot of gene expression data in E12.5 brains taken from Zcchc8 knockout 
mice (GSE126108).  Data were generated using the Limma-Voom statistical analysis.  Horizontal 
and vertical dashed lines demarcate adjusted p-value of 0.01 and fold-change of 1.5 

(log2(1.5) ≈ 0.584), respectively.  Open circles indicate those genes that are specific to the 
Limma-Voom analysis.  Closed circles indicate genes that are shared within DESeq2, edgeR, and 
Limma-Voom analyses and meet the significance thresholds of >1.5 fold-change and <0.01 
adjusted p-value.  Colored circles indicate RIKEN cDNAs (green) and predicted genes (magenta).  
(B)  Scatter plot of gene expression data in ES cells taken from Zcchc8 knockout mice 
(GSE127790) as in (A).    
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Discussion 

 This study provides a comprehensive examination of the effects of ZCCHC8 

ablation on the mouse transcriptome.  Our results show that ZCCHC8 and/or the NEXT 

complex regulates a larger family of ncRNA species than previously reported.  We show 

that disruption of Zcchc8 results in the up-regulation of transcriptional products in 

multiple genomic regulatory regions including CTCF binding sites, enhancers, open 

chromatin regions, promoters, promoter flanking regions, and transcription factor 

binding sites.  Further, we have shown >95% of these genomic regions have non-

overlapping genomic coordinates with PROMPTs in our SIMS Zcchc8 knockout cells.  

Thus, we conclude that, in addition to established substrates, ZCCHC8 and/or the 

NEXT complex serve to regulate pervasive transcription of CTCF binding sites, open 

chromatin regions, promoters, promoter flanking regions, and transcription factor 

binding sites.  To our knowledge, this is the first such comprehensive report.   

 Surprisingly, we found ZCCHC8 ablation resulted in a large increase in the 

expression of RIKEN cDNAs and predicted genes.  Given the transcriptional coverage, 

profile, and orientation of these transcripts, our results suggest that a significant number 

of RIKEN cDNAs and predicted genes are, in fact, PROMPTs (though ultimately 

experimental confirmation will be required).  Using rather stringent criteria, we found 

334 RIKEN cDNAs and predicted genes in our SIMS cells, and 645 in E12.5 brains, that 

display the hallmarks of PROMPTs.  Considering that ZCCHC8 and the NEXT complex 

primarily serve to regulate pervasive transcription of a large number of ncRNA families, 

it stands to reason that many of the remaining up-regulated RIKEN cDNAs and 

predicted genes that are non-overlapping with PROMPTs may also be pervasive 
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transcripts from other ncRNA families.  Less likely, the possibility remains that many of 

these RIKEN cDNAs and predicted genes constitute a specific set of functional genes 

that are negatively regulated in large part by ZCCHC8 and/or the NEXT complex.   

As expected, the overall genomic expression profile significantly differed between 

SIMS cells, E12.5 brains, and ES cells.  Interestingly, despite the obvious difference 

between mouse salivary glands cells and E12.5 brains, these groups shared 1,772 

PROMPTs and 372 predicted genes and RIKEN cDNAs while relatively little overlap 

exists with these groups and ES cells.  Additionally, our SIMS cells and the E12.5 brains 

had ~5.9 and 11.2 times more PROMPTs, respectively, and ~4.8 and 11.0 times more 

up-regulated RIKEN cDNAs and predicted genes, respectively, than ES cells.   

Obviously, these results are indicative of the larger transcriptomic differences 

among cells of varying differentiation potential and suggest that epigenomic and 

heterochromatic organization of the genome during these states may play a role in 

PROMPT expression and/or degradation.  Considering that it is generally accepted that 

ES cells have more open, plastic chromatin with reduced nucleosome density than 

differentiated cells, it is seemingly counterintuitive that the more differentiated state of 

SIMS cells and E12.5 brains may better lend itself to conditions suitable for increased 

transcription of PROMPTs.  Nevertheless, recent research using a highly sensitive 

chemical mapping of nucleosome organization in mouse ES cells has shown that, 

contrary to the prevailing model, nearly all genes have a class of “fragile” nucleosomes 

occupying previously designated nucleosome-depleted regions upstream of 

transcription start sites (46).  Further, this nucleosome mapping showed a high degree 

of nucleosome occupancy at CTCF sites (46).  Though this finding is currently 
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considered controversial it has clear implications for potentially suppressing PROMPT 

and genomic regulatory feature transcription in ES cells. 

Alternatively, it is speculated that as RNA polymerases elongate the sense 

transcript, negative supercoiling of the DNA upstream of the TSS can prime antisense 

transcription initiation (13).  Perhaps, the epigenomic and heterochromatic landscape of 

more differentiated cells is more conducive to negative supercoiling that would prime 

such antisense transcription in a narrow window upstream of the TSS. 

Regardless of the mechanism, it is clear that ES cells have fewer PROMPTs 

than our SIMS cells and the E12.5 brains.  Perhaps this should not come as a surprise 

considering the potential detrimental effects pervasive transcripts, like PROMPTs, may 

have on the tight regulation required to maintain stemness.  It should also not be 

surprising if future research were to uncover a more generalized, global regulatory 

system for preventing these unwanted transcripts in ES cells.  To potentially shed light 

on the mechanism, it would be interesting to profile the DNA methylation state, 

nucleosome density, and nucleosome modification status of the PROMPT regions 

shared in SIMS cells and E12.5 brains versus the ES cells.   
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MATERIALS AND METHODS 

 

Cell Culture and Maintenance 

Wild-type, Btbd7- and Zcchc8-knockout SIMS cells were maintained in Phenol 

red-free DMEM (GE Healthcare/Cytiva, SH30284.01) supplemented with 10% fetal 

bovine serum (FBS; GE Healthcare/Cytiva, SH30070.03) and incubated at 37℃ with 

10% CO2.  Cells were passaged every three to four days using trypsin-EDTA (Thermo 

Fisher, 25300120) after rinsing with HBSS (Thermo Fisher, 14170161).  Cell density 

was determined using an automated cell counter (Nexcelom Cellometer Auto 2000). 

 

Biological Assays 

MTT proliferation 

 Cell proliferation assays were performed using the Cell Proliferation Kit I 

(MilliporeSigma, 11465007001).  Approximately 1 × 103 wild-type, Btbd7- and Zcchc8-

knockout SIMS cells were plated in six wells each of five, 96-well plates.  At 24 hours 

intervals post-plating, 10 𝜇l of MTT reagent was added to each well of a single 96-well 

plate followed by incubation at 37℃ for 4 hours.  100 𝜇l of Solubilization solution was 

added to each and the plates were incubated overnight at 37℃.  Absorbances were 

measured on a Cytation 5 (BioTek) imaging reader at 570 nm wavelength.   
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Colony formation assays  

 Approximately 500 wild-type, Btbd7- and Zcchc8-knockout SIMS cells were 

seeded into four wells of a 24-well plate.  The cell media was replaced every other day.  

After 10 days, colonies were fixed with 0.5 ml of 4% PFA for 20 min, washed once with 

PBS, and stained with 0.5 ml of 0.5% crystal violet for 10 min.  Colonies were washed 5 

times with 2 ml of distilled H2O.  Colonies with more than ~50 cells were counted under 

a microscope.   

 

Soft agar colonization assays 

0.5 ml of solubilized 0.7% sterile noble agar (VWR, 90000-772) in complete 

DMEM was added to each well of 24-well plate and allowed to solidify at room 

temperature in the tissue culture hood.  wild-type, Btbd7- and Zcchc8-knockout SIMS 

cells were suspended in 0.3% sterile noble agar in complete DMEM at concentrations of 

~1 × 104 cells per 0.5 ml.  Quickly, 0.5 ml of cell suspension was added to four wells of 

24-well plate containing the solidified agar.  The top layer was allowed to solidify at 

room temperature in the tissue culture hood followed by addition of 250 𝜇l of DMEM 

supplemented with 30% FBS.  Colonies were counted under a dissecting microscope 

after three weeks growth in a humidified incubator at 37℃ with 10% CO2. 

 

Scratch assays 

 Approximately  1 × 105 cells from SIMS wild-type, Btbd7-, and Zcchc8-knockout 

clones were seeded in triplicate into 35 mm MatTek dishes (MatTek, P35G-1.5-20-C) 

and grown until confluent.  A p20 pipette tip was used to make a scratch in a straight 
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line through the center of the glass surface of the MatTek dish.  The cells were washed 

once with HBSS and fresh media was added to the dishes.  An orientation mark 

perpendicular to the scratch was placed on the bottom surface of the dishes and images 

were taken at the 0-hour timepoint.  The cells were placed in a humidified incubator at 

37℃ with 10% CO2 and grown overnight.  At the 16-hour timepoint the dishes were 

oriented under a microscope and wound healing progress was imaged. 

 

CRISPR/Cas9 Knockout of Zcchc8 in SIMS Cells 

 The Zcchc8 KN2.0, non-homology mediated mouse gene knockout kit 

(KN519669) was purchased from OriGene.  Either the pCas-Guide CRISPR vector 

(OriGene, KN519669G1) containing a single guide RNA target sequence 5'-

TAGGTCGCCAAAATCCACAC-3' or the pCas-Guide CRISPR vector (OriGene, 

KN519669G2) containing a single guide RNA target sequence 5'-

CGAGGCGTTTGACCCACCAG-3' or a combination of the two was transfected into the 

mouse submandibular salivary gland cell line SIMS using Thermo Fisher's 

Lipofectamine 3000 Reagent kit in the following manner.  Approximately 1 × 105 SIMS 

cells were plated in each well of a 6-well plate the day prior to transfection.  On the day 

of transfection, either 3.75 or 7.5 𝜇l of Lipofectamine 3000 reagent was diluted into 125 

𝜇l of serum-free Opti-MEM in separate 1.5 ml microfuge tubes for each guide RNA or 

the combination.  In separate 1.5 ml microfuge tubes, 1.0 𝜇g of either pCas-Guide 

CRISPR vector or the combination, 1.0 𝜇g of linear donor cassette with EF1a promoter 

followed by eGFP-P2A-Puromycin resistance (OriGene, KN519669D) and 2.0 𝜇l of 

P3000 reagent per 𝜇l DNA was diluted into 125 𝜇l of serum-free Opti-MEM.  The diluted 
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DNA mixtures were then added to the respective Lipofectamine microfuge tubes and 

the reactions were incubated for 15 minutes at room temperature.  After incubation, the 

DNA-lipid mixtures were added drop-wise to the SIMS cells in the respective individual 

wells.  After 48 hours post-transfection, the cells were split 1:10 into DMEM (Thermo 

Fisher, 11965118) + 10% FBS every three days for a total of 4 passages.  The cells 

were then grown in the selective medium DMEM + 10% FBS + 2 𝜇g/ml puromycin 

(MilliporeSigma, P8833) for approximately one month.  A subset of cells was harvested 

to check for Zcchc8 knockout efficiency via western blot, immunofluorescence, and 

PCR.  At this time, it was determined that the greatest knockout efficiency had been 

achieved using the pCas-Guide CRISPR vector with guide RNA sequence of 5'-

TAGGTCGCCAAAATCCACAC-3' (OriGene, KN519669G1).  These cells were chosen 

to produce individual clones using standard single cell cloning techniques in 96-well 

plates. 

 

Western Blots 

 Approximately 1 × 106 cells from SIMS wild-type, Btbd7-, and Zcchc8-knockout 

clones were seeded into 10 cm dishes.  At ~75% confluence, cells were washed with 

pre-chilled PBS followed by the addition of 500 𝜇l of pre-chilled RIPA buffer (25 mM 

Tris, pH 7.4, 150 mM NaCl, 1.0% NP-40, 0.5% sodium deoxycholate, 0.1% SDS) 

supplemented with 1× Halt Protease and Phosphatase Inhibitor Cocktail (Thermo 

Fisher, 78444).  Cells were scraped on ice and collected in pre-chilled 1.5 ml tubes 

(Eppendorf, 022363212).  The cell suspensions were incubated on ice for 30 minutes 

followed by centrifugation at 13,000 rpm for 15 min at 4℃.  Supernatants were 
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transferred to pre-chilled 1.5 ml tubes and stored at -20℃.  Lysates were quantified 

using the Pierce BCA Protein Assay Kit (Thermo Fisher, 23227).  Aliquots of 25 𝜇g 

lysate were denatured in 1X Laemmli sample buffer (Bio-Rad, 1610747) at 99℃ for 5 

min.  Using a Bio-Rad Mini-PROTEAN Tetra Vertical Electrophoresis Cell, lysates and 5 

𝜇l of Precision Plus Protein Kaleidoscope Standards (Bio-Rad, 1610375) were run on 

Bio-Rad 7.5% Mini-PROTEAN TGX precast gels with Tris/Glycine/SDS (Bio-Rad, 

1610732) running buffer at 115 V followed by transfer to Bio-Rad Trans-Blot Turbo 0.2 

𝜇m nitrocellulose via a Bio-Rad Trans-Blot Turbo Transfer system.  Membranes were 

then incubated in blocking solution consisting of 5% nonfat dry milk in TBST (Tris 

Buffered Saline with 0.5% Tween-20; Quality Biological, 351-086-101; MilliporeSigma, 

P2287) for 1 hour at room temperature followed by incubation with primary antibodies 

diluted in blocking solution overnight at 4℃.  Membranes were washed 3 times for 15 

min each in TBST and incubated with LI-COR secondary antibodies diluted in Blocking 

Solution for 1 hour at room temperature protected from light.  The membranes were 

then washed 3 times for 15 min each in TBST at room temperature and imaged on a LI-

COR Odyssey CLx imaging system controlled by the LI-COR Image Studio software.  

The primary antibody dilutions were 1:10,000 anti-Zcchc8 (Proteintech, 23374-1-AP), 

1:10,000 anti-𝛼-tubulin (Millipore Sigma, T6199).  The secondary antibody dilutions 

were 1:10,000 680RD goat anti-mouse (LI-COR, 926-68070) and 1:10,000 800CW goat 

anti-rabbit (LI-COR, 926-32211). 

 

 

 



 126 

Immunofluorescence and Confocal Microscopy 

 Approximately 1 × 105 cells from SIMS wild-type, Btbd7-, and Zcchc8-knockout 

clones were seeded into 35 mm MatTek dishes (MatTek, P35G-1.5-20-C) and grown for 

48 hours.  Cell media was removed and cells were fixed with 2 ml of 4% PFA in PBS 

(Electron Microscopy Sciences, 15710) for 20 min at room temperature.  Cells were 

then quickly washed with 2 ml of PBS followed by permeabilization with 1 ml of PBS 

with 0.1% Triton X-100 (Thermo Fisher, 28314) for 10 min at room temperature.  Cells 

were then washed with 2 ml of wash buffer (PBS + 0.5% Tween-20) and then blocked 

for 1 hour with 1 ml of blocking buffer (wash buffer containing 3% fatty acid free BSA 

(Thermo Fisher, 126609)).  The cells were then incubated with 200 𝜇l of primary 

antibodies diluted in blocking buffer overnight at 4℃.  The cells were then washed with 1 

ml of wash buffer three times for 5 min each and incubated with 100 𝜇l of secondary 

antibodies diluted in blocking buffer for 1 hour at room temperature.  Cells were then 

washed with 1 ml of wash buffer three times for 5 min each.  After the final wash, 12 𝜇l 

of Fluoro-Gel II with DAPI mounting medium (Electron Microscopy Sciences, 17985-50) 

was added to the cells on the glass surface of the MatTek dish.  A coverslip was then 

sealed over the glass surface to protect the cells from damage.  The cells were then 

imaged using either a 40× 1.1 NA or 60×, 1.2 NA objective on a Zeiss LSM 880 system 

controlled by Zeiss ZEN software.  The primary antibody dilution was 1:500 anti-Zcchc8 

(Proteintech, 23374-1-AP).  The secondary antibody dilution was 1:200 Alexa Fluor 647 

donkey anti-rabbit (Jackson ImmunoResearch, 711-606-152).  Additionally, cells were 

stained with a 1:200 dilution of Rhodamine Phalloidin (Thermo Fisher, R415) during the 

secondary antibody incubation step. 
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RNA Extraction and Sequencing Library Preparation 

Approximately 1 × 105 cells from SIMS wild-type, Btbd7-, and Zcchc8-knockout 

clones were seeded into 60 mm dishes and grown until cells reached ~75% confluence.  

Cell media was removed and 0.5 ml of TRIzol Reagent (Thermo Fisher, 15596026) was 

added directly to the dishes.  After brief trituration, the lysates were collected into 1.5 ml 

tubes and incubated for 5 min at room temperature.  Next, 0.1 ml of chloroform was 

added to each lysate and mixed thoroughly by inverted the tubes multiple times.  The 

lysates were incubated at room temperature for three minutes and then centrifuged at 

13,000 rpm for 15 min at 4℃.  The aqueous phase of each lysate was then transferred 

to separate, fresh 1.5 ml tubes and 0.25 ml of 70% ethanol was added to each tube.  

The samples were then transferred to RNeasy spin columns and 2 ml collection tubes 

from an RNeasy Mini Kit (Qiagen, 74104) and centrifuged at 13,000 rpm for 15 sec.  

The flow-through was discarded and on-column DNase digestion was performed using 

the RNase-Free DNase Set (Qiagen, 79254) and the following protocol from Qiagen:  

350 𝜇l of buffer RW1 was added to each column followed by centrifugation at 13,000 

rpm for 15 sec.  The flow-through was discarded.  80 𝜇l of DNase I incubation mix (10 𝜇l 

DNase I stock solution in 70 𝜇l buffer RDD) was added to each column membrane and 

incubated for 15 min at room temperature.  350 𝜇l of buffer RW1 was added to each 

column followed by centrifugation at 13,000 rpm for 15 sec.  The flow-through was 

discarded and 500 𝜇l of buffer RPE was added to each column followed by 

centrifugation at 13,000 rpm for 15 sec.  Again, 500 𝜇l of buffer RPE was added to each 

column followed by centrifugation at 13,000 rpm for 2 min.  The RNeasy columns were 

then placed in new 2 ml collection tubes and centrifuged for 13,000 rpm for 1 min.  The 
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RNeasy spin columns were then placed in new 1.5 ml collection tubes and 50 𝜇l of 

RNase-free water was added to the column membranes followed by centrifugation at 

13,000 rpm for 1 min.  The RNA samples were then stored at -80℃. 

 RNA integrity was assessed using a Fragment Analyzer (Advanced Analytical) 

and sequencing libraries were prepared using the Illumina TruSeq Stranded Total RNA 

library preparation kit according to the manufacturer’s protocols.  Library preparation 

was performed on four replicates of each cell line.  The samples were analyzed on an 

Illumina NextSeq500 configured for 40 paired-end reads and the quality of the reads 

was evaluated using FastQC software.   

 

Read Mapping and Differential Expression Analysis 

 In order to perform read mapping of PROMPTs and genomic regulatory features, 

the respective gtf/gff files were altered in order to generate the genome files for STAR 

read alignment.  The Ensembl regulatory build gff file was filtered for each genomic 

regulatory feature and a new gff file was created for each.  Each genomic feature was 

given a specific identifier in the feature identifier column of the respective new 

regulatory build gff files (ctcf, enhancer, ocr, promoter, pfr, tfbs).  STAR genome 

generation was then conducted with the additional parameters --sjdbGTFfeatureExon 

feature and --sjdbGTFtagExonParentGene ID. 

 For PROMPTs, the primary assembly gtf file was filtered to remove all feature 

types except for the “gene” identifier.  This identifier was changed to “prompt” and the 

genomic coordinates were altered to 3 kb upstream of the start site.  STAR genome 
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generation was then conducted with the additional parameters --sjdbGTFfeatureExon 

prompt and --sjdbGTFtagExonParentGene ID. 

 Read mapping against the recent GENCODE mouse release M24 was 

performed using the STAR 2.7.3a aligner using the standard mode with mapping 

parameters derived from the GENCODE project.  Additionally, read counting was 

performed using the quantMode utility of STAR. 

 Read counts were filtered to remove low expressing features (genes, PROMPTs, 

genomic regulatory features, etc., with <5 counts in at least one sample).  Differential 

expression was evaluated by three independent statistical methods (DESeq2, edgeR 

and Limma-Voom). 

 

Bioinformatics and Data Analysis 

 Data analysis was performed using the SAMtools (47), deepTools (48), 

PhenoGram (49), and R software packages.  Scripts used for data analysis can be 

found at https://github.com/collinsjw/Zcchc8-KO-pervasive-transcripts. 

 

Data Availability 

 RNA sequencing data is deposited in NCBI GEO (accession number 

GSE165689). 

 

 

 

https://github.com/collinsjw/Zcchc8-KO-pervasive-transcripts
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