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ABSTRACT 

For over fifty years, the unfolded state of proteins had been thought to be 

featureless and random.  Experiments by Tanford and Flory confirmed that unfolded 

proteins possessed the same dimensions as those predicted of a random flight chain in 

good solvent.  In the late eighties and early nineties, however, researchers began to notice 

structural trends in unfolded proteins.  Some experiments showed that the unfolded state 

was very similar to the native state, while others indicated a conformational preference 

for the polyproline II helix in unfolded proteins.  As a result, a paradox developed.  How 

can unfolded proteins be both random and nonrandom at the same time? 

Current experiments and most theoretical simulations cannot characterize the 

unfolded state in high detail, so we have used the simplified hard sphere model of 

Richards to address this question.  By modeling proteins as hard spheres, we can not only 

determine what interactions are important in the unfolded state of proteins, but we can 

address the paradox directly by investigating whether nonrandom behavior is in conflict 

with random coil statistics. 

Our simulations identify hundreds of disfavored conformations in short peptides, 

each of which proves that unfolded proteins are not at all random.  Some interactions are 

important for the folded state of proteins as well.  For example, we find that an α-helix 

cannot be followed directly by a β-strand because of steric considerations.  The 

interactions outlined here limit the conformational possibilities of an unfolded protein far 

beyond what would be expected for a random coil.  For a 100-residue protein, we find 

that approximately 9 orders of magnitude of conformational freedom are lost because of 
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local chain organization alone.  Furthermore, we show that the existence of this 

organization is compatible with random coil statistics. 

Although our simulations cannot settle the controversy surrounding the unfolded 

state, we can conclude that new methods of characterizing the unfolded state are needed.  

Since unfolded proteins are not random coils, the methods developed for describing 

random coils cannot adequately describe the complexities of this diverse structural 

ensemble. 
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CHAPTER 1 

Introduction 

 Protein folding is a field rife with intensely held opinions, vastly differing 

theories, and many unanswered questions.  It is also a field with much beauty and 

elegance, both in the molecular structures that it studies as well as in the theories and 

ideas that have withstood the tests of time and scrutiny.  But use of the term “protein 

folding” implicitly dictates that, in addition to a folded form of proteins, there must also 

exist an unfolded form.  Both the folded and unfolded states of proteins have been the 

subject of intense study for over fifty years, and yet the nature of the unfolded state 

remains mysterious.  While to date the folded structures of nearly 32,000 proteins have 

been determined, there is no database of unfolded protein structures, nor can there be.  

Instead, the size of the unfolded ensemble requires us to form models for the unfolded 

state and carefully interpret the experimental data in light of these models. 

 As early as the 1930’s, the unfolded state of proteins drew interest as the 

disordered counterpart to their regularly structured, biologically active form (Wu 1931; 

Mirsky and Pauling 1936).  Because the unfolded state is difficult to observe 

experimentally under biological conditions, changes in temperature, osmolyte 

concentration, and pH have been used to unfold—or denature—proteins.  This denatured 

state is assumed to be thermodynamically equivalent to the biologically relevant unfolded 

state (Pace and Shaw 2000), and here we will use the terms interchangeably.  Studying 

the unfolded protein yields insight on aspects of protein folding, including how proteins 

fold thermodynamically and kinetically, as well as what forces are important in protein 

folding.  When these topics are understood, it then is possible to design models for the 
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unfolded state as well as folding itself.  Studies of the unfolded state also shed light on 

the set of proteins that are normally unfolded in the cell (Dunker et al. 2001), methods for 

transporting and breaking down proteins within the cell (Matouschek 2003), and 

interactions between folded and unfolded proteins (Gunasekaran et al. 2004). 

 

1.1 Protein Folding and Thermodynamics 

Two-State Folders 

The simplest conceivable thermodynamic approach to protein folding is the two-

state unfolding reaction, given by 

 DN ↔      [ ]
[ ]N
DK =  (1.1) 

where [N] and [D] represent the native and denaturant concentrations, respectively, and 

K is the equilibrium constant.  In this case, the Gibbs free energy of unfolding for the 

reaction is given by the equation: 

 KRTGG ln0 +∆=∆  (1.2) 

Here, G∆  is the molar Gibbs free energy and 0G∆ is the standard-state molar Gibbs free 

energy.  At equilibrium, the free energy is zero and the equation can be rearranged to 

yield the familiar form for determining the standard-state free energy: 

 KRTG ln0 −=∆  (1.3) 

This approach to protein folding was largely advocated by Christian Anfinsen, who won 

a Nobel Prize for his efforts in determining the thermodynamic reversibility of 

ribonuclease folding (Anfinsen 1973).  His research proved that the folded structure is 

encoded entirely by the amino acid sequence of the protein and that the folded 
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conformation lies at the minimum of Gibbs free energy under folding conditions.  Since 

then, many proteins have been found to fold in a reversible, two-state manner. 

As Tanford pointed out (Tanford 1968), two-state folding can be identified by any 

of three methods.  The first and simplest method of identifying two-statedness is the 

concidence of unfolding curves when observed via differing techniques.  For example, if 

the normalized circular dichroism (CD) unfolding curve with respect to urea 

superimposes on the normalized fluorescence unfolding curve with respect to urea, strong 

evidence exists for a two-state reaction.  This is because CD monitors helix formation in 

the protein (a global property) while fluorescence monitors the environment of a 

fluorophore (a local property).  If both methods report an identical unfolding transition, it 

is highly likely, though not always guaranteed, that unfolding is occurring in a highly 

cooperative, concerted fashion.  Experimental error can be significant for unfolding 

curves, and greater confidence can be obtained as more techniques are used to observe 

unfolding.  On the other hand, as pointed out by Dill and Shortle (Dill and Shortle 1991), 

non-coincidence does not necessarily violate the two-state folding if the unfolded state’s 

properties change with added denaturant. 

The second method used to identify two-state folding is agreement between 

calorimetric and van’t Hoff enthalpies (Tanford 1968).  The calorimetric enthalpy 0
calH∆  

can be estimated using differential scanning calorimetry (Privalov 1979).  This enthalpy 

is model-independent and applies to the entire unfolding reaction regardless of whether it 

is two-state.  The van’t Hoff enthalpy 0
vHH∆  is determined by fitting data to a two-state 

model.  This is accomplished by a simple derivation from thermodynamic relations.  
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Since the Gibbs free energy relates to the enthalpy 0H∆  and entropy 0S∆ , one can use 

the following formula as a starting point, given that T is absolute temperature: 

 000 STHG ∆−∆=∆  (1.4) 

By combining equation (1.4) with the two-state equation (1.3), one determines the 

following relationship: 

 00 1ln S
T

HKR ∆+





∆−=  (1.5) 

This plot, called a van’t Hoff plot, can be used to determine the two-state enthalpy near 

the denaturant transition (Becktel and Schellman 1987).  If R ln K is plotted versus T-1, 

the van’t Hoff enthalpy is the negative slope of the line.  By calculating the ratio of 

0
vHH∆ / 0

calH∆  one can identify whether the thermodynamics are behaving as the two state 

model would predict.  If the ratio is near unity, the transition is two-state, whereas a ratio 

less than one indicates the existence of populated intermediates in the reaction. 

A third method of determining the presence of stable intermediates in the reaction 

involves the use of kinetics (Tanford 1968).  The equilibrium constant K in a two-state 

reaction has the following form: 

 
f

u

k
kK =  (1.6) 

where ku is the unfolding rate and kf is the rate of folding.  A comparison of the 

equilibrium constant with rhe ratio of these two experimentally determined kinetic 

parameters can also indicate that the unfolding has no populated intermediates: if the 

reaction is two-state, the ratio of folding rates should be equivalent to the apparent 

equilibrium constant. 
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While many proteins have been behave in the manner two-state folders, it is clear 

that many states must actually exist in the transition.  The protein must populate certain 

intermediate structures between the native and denatured states since no covalent bonds 

are broken during folding.  Experimental evidence for two-state folding simply indicates 

that such intermediate states are not highly populated.  Stated another way, two-state 

folding reactions are highly cooperative but not perfectly cooperative. 

With the two-state nature of folding established, it becomes relevant to consider 

the thermodynamic stability of folding.  There are several experimental techniques used 

to determine the stability of protein structures.  Two are of particular importance: thermal 

denaturation and chemical denaturation with urea or guanidinium salts.  Because proteins 

are highly stable under native conditions (with free energies of unfolding of 5-10 

kcal/mol), both methods must determine protein stability under highly denaturing 

conditions and then extrapolate back to native conditions of temperature of denaturant 

concentration.  The fact that both methods yield similar extrapolated free energies lends 

support to the thermodynamic equivalence of both thermally and chemically denatured 

states (Pace et al. 1998). 

Thermal unfolding utilizes the observation that the change in heat capacity at 

constant pressure, pC∆ , is mostly constant, large, and positive over the range of observed 

unfolding transitions (Privalov and Khechinashvili 1974).  The large and positive value 

of pC∆  means that the denatured state can absorb more energy than the native state 

before an increase in temperature.  The constancy of pC∆  allows integration of 

thermodynamic relations to arrive at the Gibbs-Helmholtz equation (Becktel and 

Schellman 1987): 
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 















−−∆+








−∆=∆

m
mp

m T
TTTTC

T
THG ln10  (1.7) 

Here, Tm is the midpoint temperature of the unfolding transition.  In thermodynamic 

unfolding experiments, the above equation is fit to the data and extrapolated to determine 

the unfolding free energy at room temperature.  While pC∆  can be fit from the unfolding 

data, a better approach is to determine it separately, either by using calorimetric methods 

or by using a technique outlined by Privalov where a plot of  H∆  vs. T  yields pC∆  as 

the slope (Privalov 1979). 

Denaturant unfolding must also address the problem that high concentrations of 

denaturants are needed to shift equilibrium to the unfolded state.  Although Tanford 

originally proposed the denaturant binding model to this end (Tanford 1970), his method 

involves assumptions and estimations of binding constants that complicate the 

extrapolation process.  A more contemporary approach makes use of the observation that 

the free energy varies linearly with denaturant concentration (Greene and Pace 1974; 

Pace and Shaw 2000): 

 ]denaturant[)OH( 2
00 mGG −∆=∆  (1.8) 

The free energy of unfolding in the limit of zero denaturant concentration, )OH( 2
0G∆ , is 

determined by a fitting the free energies of unfolding in various concentrations of 

denaturant.  Also determined in this method is the m-value, a measure both of the 

denaturant strength as well as a reflection of the amount of surface area exposed upon 

unfolding (Greene and Pace 1974).  Of the two most common denaturants, guanidinium 

hydrochloride (GmHCl) is a stronger denaturant than urea, although urea is preferred 

because it is uncharged and produces more consistent results than GmHCl (Pace and 
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Shaw 2000).  When extrapolated to infinite dilution, however, both denaturants typically 

yield equivalent values of the free energy of unfolding within error (Greene and Pace 

1974; Ahmad and Bigelow 1982; Santoro and Bolen 1988), although there are exceptions 

(Ropson et al. 1990).  Here again is evidence that the denatured states produced by both 

urea and GmHCl are thermodynamically equivalent and that the extrapolated value of 

)OH( 2
0G∆  is not denaturant-dependent.   

In 1970 Tanford introduced a transfer model for predicting the unfolding free 

energies of proteins (Tanford 1970).  Using a thermodynamic cycle, he reasoned that it 

should be possible to predict the differences in folding free energies in two different 

solvents provided the transfer free energies of the individual residues were known.  This 

line of reasoning led to the following equation: 

 ∑∆+∆=∆
acidsamino

2
00 )( iii gnOHGG δα  (1.9) 

In this equation, iα∆ is the fraction of a particular amino acid i that is exposed upon 

denaturation, ni is the number of residues of type i, and igδ  is the transfer free energy of 

the amino acid i from water to denaturant.  If all the si 'α∆  are similar, it is possible to 

factor that term out of the summation, and then a direct correspondence between 

equations (1.8) and (1.9) are observed.  This is why the m-value is said to measure the 

solvent exposure upon denaturation (Pace and Shaw 2000).  Indeed, the m-value has been 

shown to correlate with accessible surface area (Myers et al. 1995).  Although a high 

degree of uncertainty is associated with the calculation of transfer free energies and the 

application of the transfer model above, estimations of α∆  can be made to determine 

how much of the protein is exposed upon denaturation.  An average value for α∆  is 0.39 
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(Pace and Shaw 2000), which is less than average lower-bound estimates of 0.45 made by 

Creamer and Rose (Creamer et al. 1995; 1997).  This is one indication that significant 

structure may exist in the denatured state.  Another indication are m-values which nearly 

double upon mutation of staphylococcal nuclease.  Such a change in m-value can be 

accounted for when the mutant alters residual structure in the denatured state (Dill and 

Shortle 1991).   

Recently, Auton and Bolen have revisited the calculation of transfer free energies 

and dramatically reduced the experimental uncertainty associated with the calculation of 

transfer free energies (Auton and Bolen 2004).  To do this, they incorporated three 

improvements in their technique: First, they used model compounds with minimal end 

effects, such as cyclic glycylglycine.  Second, they accounting for activity coefficients.  

Finally, they developed correction factors for various concentrations units as motivated 

by Tanford (Tanford 1970).  As a result, they have been able to show a highly linear 

correlation between peptide length and transfer free energy in solutions of various 

osmolytes (including urea).  Such a correlation confirms the validity of equation (1.9).  

With these new corrected data in hand, it is hoped that investigation will continue into 

values for α∆ , as improved values will clarify the extent of collapsed structure in the 

denatured state. 

 

Non Two-State Folders 

While the majority of small, single domain proteins investigated to date fold via a 

two-state mechanism, two-statedness is not a universal rule.  Proteins have been 

identified with three or even more states.  For example, Barrick and Baldwin 
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characterized the molten globule intermediate of apomyoglobin in a three state transition 

(Barrick and Baldwin 1993), and Riddiford observed four states when denaturing 

paramyosin with GuHCl (Riddiford 1966).  The thermodynamic relations for these 

higher-state folders are increasingly more complex than for two-state folders.  Similarly, 

expressions for continuous downhill folding can be derived where the transition from 

folded to unfolded is smooth and barrierless (Muñoz and Sanchez-Ruiz 2004).  This type 

of folding has been observed in the small helical protein BBL (Garcia-Mira et al. 2002), 

and has been confirmed under close scrutiny (Ferguson et al. 2004; Naganathan et al. 

2005). 

It is clear that the two state model does not describe all proteins under in vitro 

conditions, nor does it likely describe all proteins in vivo.  However, the two state model 

provides a useful framework for addressing the protein folding question, as it is the 

simplest way to calculate thermodynamic variables.  Additionally, regardless of the 

number of states, all protein folding reactions must have an unfolded state that is of 

biochemical interest.  Anything learned from the denatured state in a two-state reaction 

will likely be relevant for non two-state reactions as well.  Therefore, the focus of this 

work will be primarily on two-state folders. 

 

Statistical Mechanics of Folding 

The elegance and simplicity of classical statistical thermodynamics has also been 

used to address the protein folding problem.  The simplest approach models the statistical 

transition between helix and coil.  These models were initially developed in the late 50’s 

and early 60’s by Schellman (Schellman 1955), Zimm and Bragg (Zimm and Bragg 
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1959), and Lifson and Roig (Lifson and Roig 1961).  Here, we will use the formalism of 

Poland and Scheraga (Poland and Scheraga 1970).  The approach is to model peptide 

chains as strings of characters, where the alphabet is either c, representing the unfolded or 

“coil” conformation, or h, representing the α-helical conformation.  Thus, the strings 

hhcch, ccccc, and hcchc are all valid conformations for a five-residue protein in the helix-

coil model.  One important consideration is that all combinations of h and c are valid: 

only the hydrogen bonds formed by the helix determines which conformations will 

dominate.  Thus, individual conformations are assumed to obey of the Flory isolated pair 

hypothesis (IPH), which states that conformational preferences of any given residue are 

largely independent of its local neighbors (Flory 1969). 

Two factors play a role in the formation of a hydrogen bond in a helix.  First, the 

six dihedral angles between the carbonyl oxygen and amino hydrogen must align 

themselves in a position to form the bond.  This conformational rearrangement comes at a 

substantial entropic cost, but once it has been made, the hydrogen bond can form, 

possibly giving an enthalpic benefit to helix formation.  For subsequent adjacent 

hydrogen bonds, the entropic cost is much less, as only two dihedral angles must be 

fixed.  In terms of the helix-coil model, s represents the microscopic equilibrium constant 

between a residue in helix and a residue in coil when a hydrogen bond can be made: 

 hc ↔      [ ]
[ ]c
hs =  (1.10) 

Furthermore, σ quantifies the initial penalty for helix formation, taking into account that 

for the first two residues in a helix no hydrogen bond is made.  Both s and σ are taken 

relative to the statistical weight for coil, which is set to a value of unity.  Thus, the 

relative statistical weight for a string of h and c is given by the product of the 
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contributions of s, σ, and 1.  For example, the string hhhccccchhhh, has a statistical 

weight of: 

 72))()()()(1)(1)(1)(1)(1)()()(( ssssssss σσσ =  

To calculate statistics on the number of helical segments or the fraction of helices, one 

must normalize terms such as the one above by summation across all possible 

conformations of helix and coil.  This sum defines the partition function Z for proteins 

with N residues: 

 ∑ ∑
=

−

=

Ω+=
2/

1

),,(1)(
N

N

NN

NN

NN
hhc

hc

hc

hch

hhc sNNNNZ σ  (1.11) 

In this equation, the number of helices is Nhc, the number of helical residues is Nh, 

and Ω is the number of ways to arrange Nh helical residues and N-Nh coil residues if there 

are Nhc helices.  Evaluation of this partition function can be complex, but it is tractable 

for short peptides, and a matrix formalism has been developed for longer peptides (Zimm 

and Bragg 1959). 

Given the model parameters described above, it is possible to determine both the 

average fraction of the protein that is helical (θ) as well as the average number of helical 

segments by taking derivatives of the partition function.  In this case, 

 
s
Z

N ln
ln1

∂
∂

=θ  (1.12) 

 
σln

ln
∂
∂

=
ZN hc  (1.13) 

These parameters are observable through experiment and simulation and can be used to 

calculate values for s and σ by nonlinear least squares fitting.  Theta, in particular, can be 

tracked by observing the CD signal at 222 nm (Richardson and Makhatadze 2004).  
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When this is done, good agreement is generally observed between the fitted curves and 

the experimental data (Zimm and Bragg 1959), with values of s and σ ranging from 0.19 

to 1.35 and 0.1 x 10-4 to 100 x 10-4 at 20o, respectively, for the 20 naturally occurring 

amino acids (Wojcik et al. 1990). 

Far from the simplified approach taken by the helix-coil model, the denatured 

state is likely to be highly complex in its structure and form, despite the good 

experimental agreement for short peptides.  The helix-coil model does, however, 

highlight a critical point in understanding the denatured state: if a statistical mechanical 

model of protein folding is desired, one requires intimate knowledge of the denatured 

state.  Since the two-state equilibrium constant K can be expressed as a ratio of the 

unfolded and folded partition functions (Hill 1960), before one can predict the folding 

equilibrium one must have enough detailed knowledge about the denatured state to 

construct its partition function.  Simply put, in order to understand the folding transition 

one needs to understand both sides of the equilibrium equation.  This idea was stated 

concisely by Becktel (Becktel and Schellman 1987): 

There is a temptation, especially with proteins of known crystal structure, to relate 
changes in stability exclusively to features of the native structure of the molecule.  
This mode of thought must be avoided because it is likely that a large component 
of the free energy of stabilization as defined above stems from the increased 
solvation of the unfolded chain relative to the folded one. 

Because the unfolded state can contribute significantly to the thermodynamic equilibrium 

between folded and unfolded, it warrants at least as much scientific investigation as the 

folded state. 

 

1.2 Protein Folding Kinetics 
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Whereas thermodynamics describes the equilibrium balance between the folded 

and unfolded state, kinetics characterizes the rate of transition between the two states 

(Tanford 1968; Nölting 1999).  Kinetics is highly pertinent to the study of unfolded 

proteins: the folding rate should reflect at a basic level the complexity of the folding 

process.  Larger rates imply a more difficult search to find the native state. 

 

Basics of Folding Kinetics 

The fundamental equation for the two-state kinetic transition from folded to 

unfolded is much the same as equation (1.1).  Here, we represent the folding rate as kf and 

the unfolding rate as ku.  When denaturant is rapidly added to a system of native protein 

and the concentration of native protein is measured (typically indirectly through an 

optical probe), the resulting decay is exponential and has the following form: 

 [ ] [ ] { }tkk
uf

fu

fuekk
kk

NN )(0 +−+
+

=  (1.14) 

Here, as was also the case with thermodynamic parameters, kf and ku are concentration 

dependent and must be extrapolated back to zero concentration of denaturant using 

simple linear extrapolation (Jackson and Fersht 1991).  Values for kf and ku in infinite 

dilution are then determined by examining the characteristic “chevron plot” of 

)ln( uf kk + versus denaturant concentration and fitting to the appropriate two state 

equation (Matthews 1987; Jackson and Fersht 1991). 

The observed folding rates for small proteins are generally very fast, and even 

some very large proteins fold quickly.  The 62-residue IgG binding domain of protein L 

folds at a rate of 61 s-1 at pH 7.0 (Scalley et al. 1997).  A tryptophan-containing mutant of 

Ubiquitin, which contains 76 residues, folds at a rate of 1.53 x 103 s-1 at pH 5.0 
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(Khorasanizadeh et al. 1993).  Even the 151-residue CheW protein folds at the 

surprisingly fast rate of 1.70 x 103 s-1 at pH 7.0 (Maxwell et al. 2005).  The recently 

established kinetic dataset of 30 proteins under standard condition reveals that, for many 

proteins, folding is a process that takes very little time.  Proteins can easily navigate 

between the unfolded and folded states. 

 

Relating Kinetics to Protein Conformations 

In 1998, Plaxco and coworkers identified a significant relationship between the 

folding rate and the structure of a protein (Plaxco et al. 1998).  They defined a numerical 

construct called relative contact order as: 

 ∑∆=
N

jiS
LN

RCO ),(1  (1.15) 

In this equation, L is the number of residues and N is the total number of residue-residue 

contacts.  For a contact involving residues i and j, ),( jiS∆  is the number of residues 

between i and j.  Simply stated, for any two residues that contact each other in the 

protein, the relative contact order measures the average number of residues that separate 

the two, divided by the total number of residues in the protein.  This is a measure of fold 

complexity, since a larger separation means that the protein must create more non-local 

contacts.  Interestingly, Plaxco et. al. found that proteins with high contact order had slow 

folding rates, with a correlation coefficient of 0.81 (Plaxco et al. 1998).  Never before had 

such a dramatic relationship between protein structure and kinetics been illustrated. 

In the years since, folding rates have been shown to correlate with other structural 

properties.  Naganathan and Muñoz have shown that folding rates scale linearly with the 

square root of protein size (Naganathan and Munoz 2005).  Folding rates also scale with 
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the secondary structure composition of proteins, both determined by simulation (Gong et 

al. 2003) and predicted by neural networks (Ivankov and Finkelstein 2004).  These 

experiments show that, although the kinetics are related to the structure of the final folded 

protein, they may be related the structure of the unfolded protein as well.  If, as some 

have suggested, the unfolded state has significant native secondary structure content, it 

would make sense for folding rates to correlate with the number of helices, strands, turns 

and loops (Gong et al. 2003).  Studies that do not rely on contact order also resolve a 

paradox, since the final folded contact order in the unfolded state is likely undetermined. 

 

Kinetics and the Levinthal Paradox 

Because protein kinetics are intimately related to the structure of both the native 

and denatured states, a question arises: if the unfolded state is a highly random ensemble 

of many featureless conformations, how can the protein fold so quickly?  To put this 

more concretely, consider a simple 100-residue protein where each residue is either 

folded or unfolded.  If the unfolded state is a random collection of these hypothetical 

conformations, there are 30100 1012 ×≈  possible conformations in the unfolded state.  

Clearly, this is a simple model, and there are likely many more conformations since real 

proteins have more than two states per residue.  If, however, we continue with this simple 

model and assume that a protein can sample one conformation every 10-13 seconds 

(Cohen and Sternberg 1980), the protein would take approximately 1017 seconds to fold, 

or more than three billion years.  Since this is an underestimate, how is it that the protein 

folds so quickly— 3101×  s-1 versus 17101 −×  s-1? 
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This line of reasoning has come to be known as the Levinthal paradox, after 

Cyrus Levinthal (Levinthal 1969).  Levinthal reasoned that proteins fold not by a random 

search through a vast number of featureless conformations, but rather by a directed search 

along pathways of folding.  The idea of a directed search simplifies the folding process 

enormously, and many of the folding theories that exist today attempt to identify the 

forces that direct proteins along their folding pathway (see below).   

 

1.3 Interactions in Protein Folding 

Interpretation of the thermodynamic and kinetic data of protein folding is difficult 

without a thorough understanding of the forces involved in the reaction.  In addition, 

modeling proteins in both the folded and unfolded states requires a functional form—

often simplified—for the dominant forces.  The authoritative article on the forces 

involved in protein folding was published by Kauzmann in 1959.  Armed with only the 

most basic experimental data on the structure and properties of proteins, and having only 

the myoglobin crystal structure from which to draw conclusions (Kendrew et al. 1958), 

Kauzmann was able to catalog the forces in protein folding with such accuracy that his 

review remains relevant over 40 years later (Kauzmann 1959).  Here, we will follow 

Kauzmann’s approach and briefly catalog the forces involved in the denatured state.   

 

Covalent Forces 

The most important forces in protein folding are paradoxically also the least 

interesting.  Clearly, without the covalent bonding of atoms within the protein itself 

giving rise to the proteins’ primary structure, there would be no protein folding problem.  
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Yet these forces are common to all polymer chains and are not very different in the 

protein molecule.  Although covalent bonds are not broken during the transition from 

folded to unfolded in non-disfulfide containing proteins, bond character in proteins is 

nonetheless important both from an experimental and theoretical perspective. 

Since covalent bonding is an electronic phenomenon, optical methods can be used 

in some cases to determine the orientation and behavior of covalent bonds.  Infrared 

spectroscopy measures the frequencies of bond stretching and bending and shows that the 

bonds in proteins are slightly flexible (Schellman and Schellman 1964).  With the 

exception of the torsion angle of the peptide group itself (Pauling et al. 1951), most bonds 

are free to rotate and can be slightly distorted from their ideal bond geometries.  In the 

unfolded state, where structures are thought to fluctuate and forces are stochastically 

directed, distortions in geometries should be rare events due to the lack of compensating 

forces. 

The infrared studies described above allow theorists to determine the energetics of 

bond stretching, bending, and so forth.  These values can be used to parameterize 

computer simulations.  For example, the functional form of the bond-stretch energy used 

in the CHARMM simulation package is: 

 2
0 )( bbkE −=  (1.16) 

Here, k is the spring constant for the stretching interaction, and b0 is the equilibrium bond 

length.  For Cα-Cβ bond stretch in alanine, these parameters are 222.5 cal/mol/Å2 and 

1.54 Å, respectively (MacKerell et al. 1998).  Calculations of this nature are time-

consuming, and it is often far simpler to assume that bond lengths and angles are rigid.  

This approach has been used with success in simulations (Srinivasan et al. 2004), but it is 
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often difficult to rebuild native PDB structures with idealized bond lengths and angles 

(Holmes and Tsai 2004). 

 

Atomic Overlap: Sterics 

The Pauli exclusion principle establishes that no two electrons can occupy the 

same orbital with the same spin.  Accordingly, non-covalently bonded atoms are resistive 

to atomic overlap.  At the same time, the nature of the electron cloud allows induced 

dipoles to form and create an attractive force.  Because the quantum mechanics of this 

behavior are difficult to quantify, particularly in large simulations of protein molecules, 

simpler forms have been developed to determine the energy of interaction between two 

closely spaced, nonbonded atoms.   Of these, the most well-known is the Lennard-Jones 

equation, which counters the attractive nature of an atomic induced-dipole with a 

repulsive energy: 

 



















−








=

6
,

12
,

,, 2)(
r

R
r

R
rE jiji

jiji ε  (1.17) 

In this equation, the energy of interaction at a distance r between two nonbonded atoms i 

and j is calculated from a energetic parameter ε, and the contact distance R.  This “soft-

sphere” potential has been very successful in modeling nonbonded interactions 

theoretically (MacKerell et al. 1998; Pappu and Rose 2002). 

An even simpler approach is to model atoms as hard spheres, ignoring the induced 

dipole forces altogether.  This method has the advantage of identifying exactly which 

atoms are involved in an unfavorable steric clash.  Figure 1.1 depicts the hard sphere 

collisions that occur in the alanine Ramachandran plot.  Because of the simplifying nature 
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of the hard sphere model, one can immediately tell which atomic collisions are 

responsible for limitations in the backbone dihedral angles φ and ψ.  There is some 

question, however, about the validity of the hard sphere model.  Certainly it was 

appropriate when Ramachandran, Ramakrishnan, and Sasisekharan determined the 

allowed conformations of an alanine dipeptide over four decades ago (Ramachandran et 

al. 1963; Ramachandran and Sasisekharan 1968), but is it appropriate today?  As 

championed by Richards (Lee and Richards 1971; Richards 1977), the hard sphere has 

been tremendously successful in identifying critical properties of folded proteins, such as 

packing densities.   Other uses for the hard sphere model include calculating surface areas 

(Lee and Richards 1971), locating cavities in proteins (Eriksson et al. 1992), fitting side 

chain conformations (Bower et al. 1997), and identifying irregular protein structures 

(Laskowski et al. 1993b).  The verdict seems to be that, while the hard sphere model may 

be an oversimplification, it works quite well for calculating many properties of the 

protein chain.   

Because the hard sphere model simplifies the complexities of atomic shape into 

one parameter (a radius), there is disagreement about the best set of radii to use.  While 

densities and small molecule data may yield one answer (Bondi 1964), contact distances 

from actual protein crystal structures may give another (Li and Nussinov 1998).  It is 

often the case that the right set of radii will be different depending on the property being 

examined.  Fortunately, many properties are tolerant to small changes in van der Walls 

radii (Shrake and Rupley 1973), and several general-purpose sets of radii and contact 

distances exist (Hopfinger 1973). 
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The hard sphere model is well suited for describing the unfolded state of proteins, 

not only because of the statistical nature of the unfolded state, but also because of the 

lack of perturbing interactions which may induce the protein to violate hard sphere 

interactions.  Accordingly, many theoretical models of the denatured state have modeled 

atoms as hard spheres.  Some of these experiments will be described below. 

 

Water and the Hydrophobic Effect 

 Simply stated, the hydrophobic effect is the fact that nonpolar solutes are less 

soluble in water than in nonpolar solvents.  This simple fact, however, has profound 

consequences on both native and denatured protein structure, and the hydrophobic effect 

is thought to be the dominant force involved in chain collapse (Kauzmann 1959; Dill 

1990).  It is well known that the nature of the hydrophobic effect differs between low 

temperature and high temperature.  At room temperature, the effect is entropically driven, 

whereas at higher temperatures (~100 oC), the effect is driven by loss of enthalpy 

(Privalov and Gill 1988).  This is thought to reflect a structuring of water near a nonpolar 

solute: at lower temperatures, the water is conformationally restricted and hence 

entropically unfavorable, while at higher temperatures, the water remains fluid but loses 

the enthalpic benefit of hydrogen bonds near the nonpolar solute (Dill 1990).  While this 

is a satisfying description, it may not be complete, as Lee notes that the enthalpy of 

solvent reorganization during transfer is unfavorable, whereas structured water cages 

should exhibit a favorable enthalpy change (Lee 1991).  Lee suggests that at lower 

temperatures the entropic contribution may simply result in the conformational 

limitations that arise in forming a cavity in water (Lee 1991).   
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While the hydrophobic effect is a dominant force for protein folding, it is equally 

important in the denatured state alone.  For thermally or acid denatured proteins, the 

denatured state must overcome the unfavorable transfer of apolar side chains from the 

hydrophobic core to solvent.  In denaturant-induced unfolding, the nature of the 

hydrophobic effect will determine the residual structure, if any, in the denatured state 

(Tanford 1968).  Because the hydrophobic transfer free energies have been shown to 

correlate with side chain accessible surface area (Chothia 1974), understanding the nature 

of the denatured state is a prerequisite to understanding the change in accessible surface 

area.  Creamer and Rose have shown that assumptions about the denatured state can have 

a significant impact on determining the accessible surface area changes upon folding, and 

thus the ability to predict free transfer free energies are only as good as our models for 

the denatured state of proteins (Creamer et al. 1995; 1997). 

Because of the strength of the hydrophobic effect and its importance in the 

denatured state, there is much speculation as to whether collapsed structure persists in the 

denatured state of proteins.  Shortle et. al. addressed this question in staphylococcal 

nuclease by removing the large hydrophobic amino acids through mutation (Shortle et al. 

1990).  Using the linear extrapolation method, they were able to examine the changes in 

m-value with each mutation.  As discussed above, the m-value is a measure of solvent 

exposure upon denaturation.  When several mutations were made, a dramatic increase in 

m-values were observed, corresponding to an expansion of the denatured state (Shortle et 

al. 1990).  Such an expansion suggests that the wild-type denatured state retains a 

significant amount of compactness, if not native-like structure.  Thus, removing the large 
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hydrophobic groups was speculated to destabilize the native state by lowering the 

stability of the denatured state. 

From a theoretical perspective, it is highly desirable to have a model of water 

which accurately accounts for the solvability of peptides and proteins.  Unfortunately, no 

such model exists, and the models that do exist often disagree on the fundamental 

properties of water itself (Guillot 2002).  The two most popular models for protein 

simulations are SPC and TIP3P, both of which model water as a planar molecule with 

three partial charges (Berendsen et al. 1981; Jorgensen et al. 1983).  A comparison of 

simulations on the alanine dipeptide using both of these water models shows that, 

although the trends in solvation are qualitatively consistent, the quantitative values for 

energies, average  φ and ψ torsions, and other peptide properties are not (Anderson and 

Hermans 1988; Tobias and Brooks 1992; Hu et al. 2003).  Explicit models of water that 

can accurately account for all of the experimental measurements on protein solvation are 

difficult to parameterize, and to date no satisfying model has been developed. 

Because explicit models of water are at present imperfect and computationally 

expensive, simplifying models of solvation have been developed to account for the 

hydrophobic effect.  These models generally take advantage of the relation between 

hydrophobicity and accessible surface area.  The method of Honig, for example, uses 

accessible surface areas to determine the contributions of nonpolar groups while 

modeling water as a constant dielectric for the contributions of polar and charged groups 

(Sitkoff et al. 1994).  The transfer free energies calculated by this method, when 

compared to experimental data, have a correlation coefficient of 1.00.  Another 

simplifying model for water was developed by Fleming et. al. (Fleming et al. 2005).  This 
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model assumes that, upon solvation of the peptide backbone, certain sites will be 

preferentially solvated, namely, the carbonyl oxygen and amino nitrogen.  Because of the 

preferential solvation, hydrophobic accessible surface area is not uniform across the 

surface of the molecule. In this model, the calculation of accessible surface area must 

take into account the sites that will already be solvated.  This method, termed conditional 

hydrophobic accessible surface area, or CHASA, has been parameterized to agree with 

much more sophisticated simulations of backbone solvation (Mezei et al. 2004), and can 

accurately predict conformational propensities in a database of protein structures 

(Fleming et al. 2005).  The success of simple hydration models in quantifying 

hydrophobicity makes them an attractive alternative to the all-atom models of water.  

Given the inherent complexity in the unfolded protein chain, simplified water models 

gain an additional degree of attractiveness. 

 

Hydrogen Bonding 

The first suggestion that hydrogen bonding may be favorable in folded proteins 

came from Linus Pauling’s proposals for the α-helix and β-strand (Pauling and Corey 

1951; Pauling et al. 1951).  Originally, it was thought that hydrogen bonding strongly 

drove protein folding, but Kauzmann’s review suggested that the hydrophobic force, and 

not hydrogen bonding, was responsible for driving folding (Kauzmann 1959).  

Kauzmann’s reasoning followed from dimerization experiments on urea performed by 

John Schellman which showed that the free energy of hydrogen bond formation is 1.9 

kcal/mol and the enthalpy of hydrogen bond formation is –2.1 kcal/mol (Schellman 
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1955).  Such a small favorable enthalpy, Kauzmann believed, could not drive the protein 

folding reaction, given the other forces involved. 

Subsequent experiments added confusion to the issue, as the energetic stability of 

peptide hydrogen bonds could not be shown to be favorable or unfavorable with respect 

to water hydrogen bonds.  Shortly after Kauzmann’s review, Klotz and Franzen published 

results from N-methylacetamide in water which showed that the enthalpy of peptide 

hydrogen bond formation was near zero (Klotz and Franzen 1962).  Similarly, Honig 

used quantum mechanics calculation to determine that the free energy of hydrogen bond 

formation in the interior of a protein was unfavorable by 2.5 kcal/mol (Ben-Tal et al. 

1997).   On the other hand, equally compelling experimental evidence suggests that 

peptide hydrogen bonds are favorable.  Hydrogen bonds abound in the interior of proteins 

(Stickle et al. 1992), and several studies on the helix-coil transition have indicated that 

hydrogen bonding in proteins is favorable (Scholtz et al. 1991; Richardson et al. 2005).  

To date, no satisfying reconciliation has been made between the experiments that favor a 

peptide hydrogen bond and those that disfavor it. 

Fortunately, for the unfolded state, the situation is much simpler.  As pointed out 

by Fleming and Rose, the important question is not whether peptide-peptide hydrogen 

bonds are more favorable than peptide-water hydrogen bonds, but rather whether peptide-

peptide hydrogen bonds are more favorable than no hydrogen bonds at all (Fleming and 

Rose 2005).  In response to this question, the data consistently show that a non-hydrogen 

bonded donor or acceptor is highly unfavorable by 6 kcal/mol or more (Ben-Tal et al. 

1997).  It follows that, in the unfolded state, all hydrogen bonds will be satisfied, either 

by an intra-peptide hydrogen bond or a hydrogen bond with solvent water.  This idea has 
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strong experimental support (Stickle et al. 1992; McDonald and Thornton 1994; Fleming 

and Rose 2005), and it suggests a means by which the unfolded state may be organized: 

conformations not only must adhere to steric constraints, but they are required to exhibit 

proper hydrogen bonding as well. 

 

Electrostatic Interactions 

It is clear that electrostatics plays an important role in the stability of proteins, 

both on a local (Kauzmann 1959) and global (Ripoll et al. 2005) scale.  This is because of 

the pH titration behavior of most proteins: the native state is generally disfavored at both 

extremes of pH.  What is less clear is the significance of electrostatics in the denatured 

state.  The high dielectric constant of water, ε = 78.4 (Fernandez et al. 1995), will 

effectively mask all electrostatic interactions in a randomly structured denatured state 

because bulk solvent will cover large portions of the peptide chain.  On the other hand, if 

the denatured state contains residual, compact structure, electrostatic interactions may be 

significant. 

Evidence for the second view was given recently by Whitten and García-Moreno 

(Whitten and Garcia-Moreno 2000).  They measured the pH dependence of unfolding of 

staphylococcal nuclease using two methods: first, they used chemical denaturants and 

temperature to denature the protein and then extrapolated to native conditions to obtain 

stability as a function of different pH environments.  Second, they obtained the pH 

dependence of stability potentiometrically.  At pH 7.0, there was an almost 4 kcal/mol 

difference between the two stabilities.  The authors interpreted this to mean that the pKa’s 

of several groups were depressed in the unfolded state compared to their model-
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compound values.  Because pKa’s are sensitive to local environment, it was proposed that 

the denatured state retained a significant degree of compact structure (Whitten and 

Garcia-Moreno 2000).  As a result, the authors concluded that electrostatic interactions 

play a significant role in stabilizing both the native and denatured states. 

As more and more structures become available in the protein data bank (PDB) 

(Berman et al. 2000), researchers have sought to correlate protein energetics with 

conformational distributions contained therein.  If, for example, electrostatics can explain 

the distribution of a particular set of residues in the PDB, the electrostatics should be a 

dominant force for that set of structures.  One such study of this type was done by Avbelj 

and Baldwin, and it utilized the coil library of structures—a subset of non-helix, non-

strand fragments of the PDB (Avbelj and Baldwin 2003).  The coil library has been 

shown to possess similar backbone  φ, ψ’s as unfolded proteins (Serrano 1995; Swindells 

et al. 1995).  Accordingly, Avbelj and Baldwin examined whether the electrostatic dipole 

moment of the peptide bond could explain the distributions of φ for each residue.  Using a 

simple torsional energy with an electrostatic component, they were able to reproduce φ 

distributions better than other models for the denatured state which did not include an 

explicit electrostatic component (Avbelj and Baldwin 2003).  From this, it can be 

concluded that the electrostatic contribution of the peptide dipole is important in 

determining the conformation of the backbone in the denatured state.  Similar research by 

Ho et. al.  showed that one cannot reconstruct the distribution of φ, ψ’s without including 

an electrostatic energy (Ho et al. 2003).  Thus, while it has been thought that 

electrostatics plays a minimal role in the denatured state, recent experimental and 
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theoretical evidence suggests otherwise: clearly the contribution is worth further 

investigation. 

 

Summary of Interactions 

All of the interactions listed above are undoubtedly important in determining the 

conformations of the denatured state.  Is it possible, however, to order the forces by rank 

of importance?  Many scientific minds have attempted to address this question 

(Kauzmann 1959; Tanford 1970; Dill 1990), with sometimes contradictory conclusions.  

It is difficult to deny the importance steric exclusion, however.  When one considers the 

size of protein conformational space, the possible conformations that are eliminated as a 

consequence of steric overlap is truly mind-boggling.  Some calculations estimate that the 

fraction of conformational space eliminated upon chain collapse by sterics alone is 10-44 

for a 100-residue protein (Dill 1985).  While other forces will surely influence the size of 

conformational space further, it is doubtful that they will be more significant than the 

simple fact that two atoms cannot occupy the same space at the same time.   

 

1.4 Models for the Unfolded State 

The influence of models on our understanding of the unfolded state cannot be 

understated.  An accurate understanding of the forces in the denatured state is useless 

without a conceptual framework for how those forces shape the denatured ensemble.  

Today, three theories about the conformational properties of the denatured state dominate 

the field.  Unfolded proteins have been modeled as random coils, native-like chains, and 

fluctuating segments of polyproline II helix.  While these are not mutually exclusive 
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models, in the next three sections we will address each model separately, discussing the 

experiments and theory that have led to the development of each model. 

 

1.5 The Random Coil Model 

Theoretical Overview 

The random coil model is the oldest and well-established model for the denatured 

state.  Developed primarily by Flory in the 1950’s and 1960’s (Flory 1953; 1969), this 

model is also the most theoretically robust of models for the denatured state today.  This 

is primarily because of the statistical nature of a random coil: by modeling unfolded 

proteins as stochastic chains, it is possible to extract a concise mathematical formalism 

for chain properties, whereas models with nonrandom behavior are more difficult to 

describe mathematically.  Because of its statistical tractability and its simplicity in 

interpreting experimental results, the random coil model has withstood the test of time, 

and it will likely exist as a model for denatured proteins for some time to come. 

The simplest (and most unrealistic) class of random coil model is that of the freely 

jointed chain.  The freely jointed chain represents the protein as a chain of identical 

residues with no excluded volume constraints.  There are no restrictions between the 

orientation of residues—only that the distance between residues corresponds to one bond 

length, typically designated l (in its vector form l
r

).  If there are n bonds in the chain, 

then the equation for the end-to-end vector rr  of the chain is simply: 
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However, this value is not very useful: a truly random chain is simply a random walk 

through space, and thus the ensemble-averaged chain displacement is zero.  A measure 

that is useful, both from a theoretical perspective and in the fact that it can be observed 

experimentally, is the mean-squared end-to-end distance, 2r : 
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In the third expression, the double-sum term is zero because of the random orientation of 

bond vectors.  Equation (1.19) shows that the mean square end-to-end distance is 

proportional to the number of bonds in the chain, or that the root mean square end-to-end 

distance is proportional to n0.5.  Another observable property of unfolded chains is the 

radius of gyration.  The radius of gyration is akin to the statistical standard deviation on 

the geometric center of a protein (it can also be weighted by mass or scattering factors).  

For a protein with m atoms with positions xr  and a geometric center at position xr  the 

square radius of gyration, 2
GR , is defined as: 
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For a freely jointed chain of infinite length, it can be shown that (Flory 1969): 

 6/22 rRG =  (1.21) 

Real proteins, of course, have excluded volume and restrictions on their bond 

orientations.  These considerations can be approximated in the random coil model: the 

chain can be given a realistic geometry and local energy functions can approximate the 

contribution of electrostatics and van der Walls contacts.  This model, called the 

rotational isomeric state model (Flory 1969), works very well for short peptides, but 
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because of the difficulties involved in calculating accurate energy functions, it does not 

accurately estimate chain dimensions for proteins.  Flory devised a simple means to 

estimate the scaling properties for long polymer chains: by assuming that the forces of 

excluded volume and entropic disorder are at odds with one another in the chain, he 

determined that the radius of gyration of minimum energy is (Flory 1953): 

 νNRRG 0=  (1.22) 

Here, R0 is a constant that depends on the chain geometry and solvent, and N is the 

number of residues in the protein chain.  The exponent, ν, is often used as a measure of 

solvent quality: larger values of ν indicate that chain-solvent interactions are more 

favorable than chain-chain interactions, whereas smaller values of ν indicate a preference 

for chain-chain interactions.  Flory predicted that at ν = 0.6 the two forces would exactly 

match each other, and he termed solvents that exhibit this behavior θ-solvents.  More 

contemporary calculations have estimated the value of the θ-solvent exponent to be 0.588 

(Le Guillou and Zinn-Justin 1977), and a recent survey of proteins under strong 

denaturing conditions has corroborated this value (Kohn et al. 2004).  Indeed, the 

observation that denatured proteins exhibit random coil behavior for ν is one of the 

strongest arguments in favor of the random coil model, although it should be emphasized 

that random coil behavior will be displayed for any chain if the length scales are long 

enough (Tanford 1968). 

 

Experimental Studies 

The early experimental studies on the denatured state were heavily influenced by 

the theoretical work of Flory.  Many of these studies were done in Tanford’s lab.  Using 
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intrinsic viscosity, Tanford was able to determine the scaling properties of unfolded 

proteins experimentally.  The fact that ν for unfolded proteins was found to be 

approximately 0.6 was strong experimental evidence in favor of the random coil model 

(Tanford 1968), and Tanford concluded that unfolded proteins were indeed random coils 

based on this evidence.  Similar work by Brant and Flory also found that unfolded protein 

dimensions scaled as random coils.  Furthermore, they determined that, for peptides with 

non-proline and non-glycine residues, the side chain composition of the chain only 

marginally affects scaling properties (Brant and Flory 1965a).  These experiments and 

those like them helped to establish the random coil model as the dominant model for 

denatured proteins, both then and now. 

In addition to investigating scaling properties of denatured proteins, Tanford also 

studied whether the unfolded state differs under different conditions.  It was found that a 

thermally denatured protein could undergo a further optical transition when treated with 

GmHCl (Aune et al. 1967).  This was taken to be evidence that thermally denatured 

proteins are not as unfolded as those denatured with GmHCl, and Tanford advised that all 

unfolding experiments should be done with a strong denaturant like GmHCl rather than 

by temperature or pH titration (Tanford 1968).  Subsequent research, however, found this 

conclusion to be inaccurate.  Privalov points out that the interpretation of the optical data 

was flawed, and notes that intrinsic viscosity cannot be used for high temperatures 

without the appropriate correction factors (Privalov 1979).  When these factors are 

accounted for, thermally denatured proteins appear to behave identically to chemically 

denatured proteins. 
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Contemporary experimental work continues to rely heavily on the Flory scaling 

factor ν, but the experimental method of choice in now small angle X-ray scattering 

(SAXS) (Doniach 2001).  SAXS can provide two useful criteria for determining the 

dimensions of a denatured protein.  First, using the Guinier equation, it is possible to 

extract a model-free radius of gyration from the SAXS profile.  Radius of gyration data 

can be amassed from many different experimental studies to examine Flory’s scaling law 

over a large range of protein sizes.  Recently, this has been done (Millett et al. 2002; 

Kohn et al. 2004), and it is found that, even up to 549 residues, unfolded proteins exhibit 

random coil scaling, with ν = 0.589 ± 0.030.  The other useful method that SAXS 

provides for measuring chain compactness is the Kratky plot.  In this plot, the scattering 

profile is rescaled so that the intensity I is multiplied by the scattering factor, s2.  For a 

random chain, a plot of s2I(s) versus s should be monotonically increasing, whereas a 

compact chain will exhibit a maximum in this plot (Doniach 2001).  Random coil Kratky 

plots are observed for a wide array of unfolded proteins, providing additional evidence 

that denatured proteins are random coils (Semisotnov et al. 1996). 

Experimental scaling evidence for the random coil model is convincing, but it 

may be unreasonable to expect that one number, the Flory exponent, will account for all 

of the complexities of denatured proteins.  Although the random coil model remains to 

date the most popular and well-characterized model for the denatured state, other 

experiments as well as simulations have begun to shed doubt on whether unfolded 

proteins are really random coils. 

 

Random Coils in Simulation 
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Because of the thoroughness of Flory’s original theoretical development, it is not 

surprising that many computational simulations confirm his results.  A recent example is 

work by Goldenberg, who performed simulations on four proteins ranging in size from 26 

to 268 residues (Goldenberg 2003).  He finds that these proteins in simulation exhibit an 

end-to-end distance distribution that is expected for random chains with excluded 

volume.  In addition, the scaling law he derives agrees closely with the predictions by 

Flory and findings of experiment, with ν = 0.58 ± 0.02.  Goldenberg’s simulations, 

however, are limited by his handling of excluded volume.  Because of the difficulty in 

simulating long random chains with independent conformations, each trial in his 

simulation is generated without consideration of excluded volume and then minimized to 

remove hard sphere bumps.  A close examination of the distribution of Ramachandran 

angles reveals that these simulations fail to capture the observed conformations of real 

proteins, folded or unfolded (Hovmöller et al. 2002; Hu et al. 2003).  Thus, these 

simulations are not as compelling as originally hoped, and the simulation of random coils 

remains quite controversial (Dinner and Karplus 2001; van Gunsteren et al. 2001a; b). 

Other simulations have found direct violations to Flory’s original theory of 

random coils.  One of the assumptions of the random coil model is that each residue’s 

conformational distribution assorts independently, i.e. the conformation of a given 

residue is not affected by the conformation of an adjacent residue except for those 

restrictions determined in the Ramachandran plot (Flory 1969).  This assumption—the 

isolated pair hypothesis—was tested rigorously by Pappu et. al.  in a simple hard-sphere 

simulation of short peptides (Pappu et al. 2000).  In this work, the authors tiled the 

Ramachandran plot into box-shaped bins called mesostates, and examined in detail the 
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fraction of allowed conformations for a dipeptide in each mesostate.  If each residue were 

independent, then the fraction of allowed conformations for a longer peptide would equal 

the product of the fractions from its component mesostates.  For example, if the allowable 

fraction for the helix mesostate O is 0.6, then the fraction for three O residues should be 

0.63 = 0.22 if each residue assorts independently.  Instead, it was found that this property 

was not satisfied, and the allowable fraction was often much less than the fraction 

predicted by the isolated pair hypothesis, particularly for conformations that intermixed 

helix and strand conformations. 

Subsequent simulations have confirmed the original findings of Pappu et. al.  

Langevin dynamics simulations by Zaman et. al. showed that the conformational 

transitions between regions in the Ramachandran plot are not symmetric as they should 

be if conformations assorted independently (Zaman et al. 2003).  Other work by Brooks’ 

group has used simulation to show that the helix-coil parameters s and σ are size 

dependent for short peptides, indicating that conformational independence is not a valid 

assumption for peptides shorter than 6 residues (Ohkubo and Brooks 2003).  

Furthermore, a recent survey of protein conformational space for tripeptides, 

tetrapeptides, and pentapeptides has shown that, rather than being conformationally 

independent, the actual conformational space is quite constrained and can even be 

mapped sensibly in 3 dimensions rather than 25 = 32 (Sims et al. 2005).  While on a large 

scale unfolded proteins may behave as random coils, all of this evidence suggests that 

something more complex may be occurring on the per-residue level.  Exactly what is still 

uncertain. 
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1.6 The Residual (Native-Like) Structure Model 

The next model to develop in studying the denatured state posits that unfolded 

proteins contain a certain degree of native-like structure or topology.  The degree to 

which the unfolded chain has native structure is undetermined, but it is clear that 

inasmuch as unfolded proteins resemble their folded counterparts it will be easier to fold. 

This idea of residual structure grew in popularity during the late 1980’s as researchers 

observed aberrant m-values for protein denaturation (Dill and Shortle 1991).  Because of 

the uncertainty in the native-like bias, this model does not have the same highly 

developed theoretical framework that the random coil model has.  As a result, this model 

remains highly controversial, particularly because it is difficult to conceptualize how an 

unfolded chain could possess native-like topology and yet exhibit random-coil statistics. 

 

Experimental Evidence for Residual Structure 

Although the initial support for collapsed denatured states came from protein m-

values, the primary technique used to measure native-like structure has been nuclear 

magnetic resonance spectroscopy (NMR).  NMR is uniquely suited for observation of the 

denatured state: as a spectroscopic technique, it can observe the entire denatured 

ensemble, but it does this in a unique way.  NMR is sensitive to the magnetic 

environment of atomic nuclei, and unlike other spectroscopies individual atoms can be 

identified in a straightforward way (Levitt 2001).  Several labs have used NMR to 

identify residual, native-like structure in the denatured state. 

Since atomic nuclei exchange energy through quantum mechanical coupling, a 

natural application of NMR to unfolded proteins is to measure distances between atoms 
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or residues.  This approach has been applied to several protein systems, most notably by 

the Shortle group.  Gillespie and Shortle performed this type of experiment on ∆131∆, a 

fragment of staphylococcal nuclease with residues removed from each of the N- and C-

termini.  Previously, it had been shown that ∆131∆ was a good model system for 

unfolded staphylococcal nuclease (Alexandrescu et al. 1994).  In this study, Gillespie and 

Shortle introduced 14 spin labels individually through cysteine mutagenesis (Gillespie 

and Shortle 1997a).  The spin labels allowed them to obtain almost 700 distances 

between the labels themselves and the coupled nitrogen atoms in the protein.  Using these 

distances, they were able to reconstruct a model for denatured staphylococcal nuclease, 

and this model appeared quite similar to the native nuclease: α-helices remained 

approximately cylindrical, hydrophobic regions retained their hydrophobic cores, and β-

strands continued to be extended (Gillespie and Shortle 1997b).  The unfolded ensemble 

appeared similar to folded nuclease, except that the unfolded structures were expanded 

and less rigid.   

The work of Gillespie and Shortle has been reproduced several times with similar 

results.  Yi et. al. subsequently performed a labeling experiment with protein L and found 

a similar result: the couplings observed by paramagnetic labeling in the GmHCl-

denatured state were roughly consistent with residual native-like structure (Yi et al. 

2000).  Another experiment by Lindorff-Larsen et. al. addressed the possibility of bias in 

the solution of structures using NMR distance constraints (Lindorff-Larsen et al. 2004).  

They developed a more efficient sampling method to produce structures consistent with 

the constraints in a spin labeled sample of bovine acyl-coenzyme A.  Although their 

ensemble of structures displays much less native-like character than the ensemble of 
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Gillespie and Shortle, they nevertheless observe a nonrandom distribution of couplings 

consistent with some degree of local native structure. 

NMR residual dipolar couplings (RDCs) have also provided evidence for residual 

structure in the denatured state.  These RDCs normally average to zero in an isotopic 

solution of proteins, but they can be observed if the proteins are aligned in the magnetic 

field, using gels, bicelles, or phage particles (Prestegard et al. 2000).  Here again, 

Shortle’s group was influential in developing techniques for using RDCs to study 

denatured proteins.  Using ∆131∆, Shortle and Ackerman showed that RDCs in 8M urea 

correlate well with RDCs in water (Shortle and Ackerman 2001).  Since RDCs measure 

the shape and distance properties of the molecule, this was interpreted to mean that, even 

in high concentrations of denaturant, the native-like structure of ∆131∆ persisted.  

Further investigation by Shortle and Ackerman found that this persistence of structure 

was robust, both to mutation of the protein (Ackerman and Shortle 2002b) and to the type 

of alignment media used (Ackerman and Shortle 2002a).  As other labs investigated 

RDCs in the denatured state, two observations were made: First, the proteins studied so 

far exhibit nonuniform RDCs in the denatured state, a property that might not be 

expected of an isotopically fluctuating random coil (Mohana-Borges et al. 2004; Ohnishi 

et al. 2004).  Second, with the exception of eglin C (Ohnishi et al. 2004), it is generally 

not the case that native RDCs correlate directly to denatured RDCs.  If it is generally true 

the denatured proteins retain native-like topology, the second observation may be 

explained by the fact that RDCs depend not only on topology but also alignment and 

overall shape. 
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Other experimental data can also be interpreted within the residual structure 

model.  First, it is clear that fluorescence energy transfer studies can also be used to 

measure intraresidue distances in the denatured state.  Although it is much harder to 

obtain a large set of distances in theses studies, the data indicates a similar heterogeneity 

to what is observed in NMR experiments (Pletneva et al. 2005).  The residual structure 

model has also been used to interpret experimental data on the unfolded state.  One 

example of this was done by Calmettes et. al. (Calmettes et al. 1993).  Using molecular 

simulations, they sought to reproduce the small angle neutron scattering (SANS) profile 

of denatured phosphoglycerate kinase.  Their results showed that, while only random 

distributions could reproduce the observed SANS profiles, the smallest independent 

segment of structure could be almost 17Å in diameter.  In other words, large rigid 

globular proteins could not reproduce the profile, but a chain of smaller “spheres” of 

native structure could model the distribution quite well.  By modeling phosphoglycerate 

kinase as a chain of 17Å non-overlapping spheres, they were able to fit segments of 

native structure in to the spheres and develop structural models for the denatured state.  

The resulting structures were random on the global level but native-like locally, 

indicating that, at least for one example, denatured states could be modeled as segments 

of locally native structure. 

 

Residual Structure in Simulations 

Several researchers have addressed the issue of structural biases in the denatured 

state using simulations.  Even for short peptides, such biases may provide physical clues 

to the determinants of residual structure in the native state, as the side chains of 
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neighboring residues influence one another to form a native bias in the unfolded state.  

Such biases have been observed experimentally for a tripeptide (Eker et al. 2004), but 

have remained difficult to reproduce with simulations.  One attempt to explain nearest-

neighbor biases was recently performed by Avbelj and Baldwin (Avbelj and Baldwin 

2004).  Using calculations of electrostatic solvation free energy, they can successfully 

predict conformational trends for a residue given its nearest neighbors, supporting the 

idea that solvation is a primary factor in determining conformational bias in the denatured 

state. 

Larger simulations have also shown a bias for residual structure in the native 

state.  Although simulations of this type are exceedingly difficult to perform at present, 

simulations of small proteins using large scale distributed computing approaches can 

provide one means of simulating the denatured state.  When such an approach is used, it 

is found that the average conformation of unfolded proteins is very similar to the native 

structure as measured by a contact distance matrix (Zagrovic et al. 2002).  While it has 

been proven that averaging contact distance matrices may produce a misleading 

similarity between native and unfolded structures, Zagrovic and Pande have 

demonstrated the robustness of this mean-structure hypothesis and are convinced that the 

similarity represents a legitimate relationship between the native and denatured states 

(Zagrovic and Pande 2004).  If valid, these results further corroborate the residual 

structure observed in the denatured state by experimental methods.  Additionally, these 

simulations give one example of how chains with native-like structure can appear to be 

random coils: the individual members of a protein ensemble appear quite random, but the 
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conformational bias results in a native-like structure that would be observed by NMR or 

other distance-sensitive techniques (Zagrovic and Pande 2003).   

Another simulation that has found evidence for residual structure in the denatured 

state has been performed by Wong et. al. on the protein barnase, a small ribonuclease 

with 110 residues.  In silico thermal denaturation of barnase yields an ensemble of 

structures with persistent native contacts and a dynamic native-like topology (Wong et al. 

2000).  The persistent contacts are observed to be hydrophobic in nature, and helices 

fluctuate between helical and non-helical forms.  A comparison with the NMR distance 

constraints for unfolded barnase reveals good overall agreement about which regions are 

partially ordered, but it is cautioned that the short timescale of the molecular dynamics 

simulation may not have sampled all of the available conformations adequately.  It is 

proposed by the authors that the role of residual structure in the unfolded state is to serve 

as folding initiation sites for the folding transition, thus speeding up the kinetic search for 

the native state.  If indeed residual native-like structure in the unfolded state exists, this is 

a highly plausible explanation for its utility. 

 

Objections to the Residual Structure Model 

The suggestion that the denatured state retains a native-like bias stands in stark 

contrast to the random coil model, which states that no such bias should exist.  It is not 

surprising therefore that both theoretical and experimental work have both questioned the 

validity of this model.  Much of this work has sought to identify possible artifacts in the 

residual dipolar coupling data.  If it can be shown that random or nearly random chains 
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produce the same residual dipolar couplings as native-like unfolded chains, a primary 

argument in favor of the residual structure model would be eliminated. 

Theoretical work has in fact shown that RDCs can be expected from random coil 

chains.  Because the chains are aligned in a stretched gel or other alignment media, there 

will be a certain organization to a random chain based on the simple fact that it cannot 

penetrate the surrounding barriers.  The initial calculations using this idea showed that 

random coil RDCs should be nonzero and uniform (Louhivuori et al. 2003).  Later, the 

model was revised to explain the non-uniform nature of RDCs from real proteins, but this 

work could not rule out structure in the denatured state (Louhivuori et al. 2004).  A 

related project has been more successful in reproducing the observed RDCs from native 

proteins.  Jha et. al. have been able to back calculate the RDCs for ubiquitin, eglin C, and 

∆131∆ by constructing random-flight chains based on conformational preferences stored 

in the coil library (Jha et al. 2005).  When nearest neighbor biases are included, they 

observe a correlation of R=0.70 between the observed and predicted RDCs in 

apomyoglobin, but the correlation deteriorates to R=0.42 if no biases are included.  Such 

a result may indicate the existence of very weak native-like bias in the denatured state, 

but it is doubtful that a bias this weak will significantly affect the folding transition. 

A recent experiment also sheds doubt on the existence of native-like topology in 

the denatured state.  Alexandrescu’s group has examined the structure in the native state 

by comparing the residual dipolar couplings of native staphylococcal nuclease and a 

fragment thereof which is missing 47 C-terminal residues (Sallum et al. 2005).  No 

correlation is observed between the fragment and wild-type nuclease, but a strong 

correlation is revealed when wild-type nuclease is denatured.  Because the fragment and 



 

42 

wild-type protein are structurally different under native conditions, it is reasoned that the 

denatured RDCs should reflect this difference if the residual structure model holds.  Since 

the RDCs are nearly identical, it is argued that something else must be happening in the 

denatured state.  They propose that structural fragmentation is the cause of correlation: on 

a global scale, the protein lacks native like topology, but locally it retains some native-

like structure. 

It is unclear at this point whether the residual structure model will hold up to 

further scrutiny.  Spin labeling experiments have shown that some degree of native 

structure exists within the denatured state, but the work described above indicates that 

only a small native bias may be sufficient for explaining the residual dipolar coupling 

experiments.  Regardless of the recent scrutiny, however, the residual structure model 

remains to be a dominant model for denatured proteins, largely because of its simplifying 

nature in describing how proteins fold.   

 

1.7 The Polyproline II Helix Model 

The final model for denatured proteins has its origins in an observation made in 

1968 by Tiffany and Krimm (Tiffany and Krimm 1968a; b).  They measured CD on short 

chains of polyproline and polyglutamic acid and noted that the spectra were similar.  

Since the conformation of polyproline is fixed, it was supposed that polyglutamic acid 

had a similar conformation.  Indeed, the characteristic CD spectrum for unfolded proteins 

is identical to the spectrum observed for peptides of polyproline.  Many binding targets 

are found to be in the polyproline II (PII) helical conformation, and a large fraction of the 

coil library is found to be in PII conformation (Stapley and Creamer 1999).  These facts 
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have led to the idea that the unfolded state is a fluctuating statistical ensemble of short 

fragments of polyproline II helix (PII), a 31 helix with  φ = –750 and ψ = 1450 (Creamer 

and Campbell 2002).  Although presently it is not clear how PII may influence the 

transition between the folded and unfolded states, having a more uniform starting point in 

the folding transition may ease the kinetic search problem. 

 

Experimental Evidence for a PII Denatured State 

Many experiments have demonstrated a tendency for disordered proteins to adopt 

PII conformations in addition to those described by Tiffany and Krimm above.  Generally, 

these experiments examine the conformational propensities of short peptides.  While 

these experiments have the advantage of being tractable, they have the disadvantage of 

neglecting longer-range interactions, such as hydrophobic collapse, that could perturb a 

true fragmented PII ensemble.  Such long range interactions may be a natural 

consequence of the fact that long PII helices are highly unlikely in a denatured protein. 

Woutersen and Hamm have developed a novel spectroscopic technique for 

measuring the backbone conformation of trialanine (Woutersen and Hamm 2000).  After 

exiting the peptide amide I transition with a focused pulse of energy, they quickly (within 

two picoseconds) measure an absorption spectrum of the sample.  Quantum mechanical 

coupling between adjacent peptide groups will result in a change in the observed 

spectrum.  The spectrum can then be compared with theoretical calculations, and φ, ψ can 

be determined for the residue in question.  This technique, called two dimensional pulse 

probe infrared spectroscopy, was applied to trialanine fragments (Woutersen and Hamm 

2000), and it was observed that PII was the preferred conformation, with φ ≈  -800 and  
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ψ ≈  1500.  Moreover, this conformation was argued to be the exclusive conformation of 

trialanine for two reasons: First, the complex relationship between the spectrum and the 

fitted parameters would have likely resulted in an unrealistic φ, ψ value if the 

conformation was an ensemble average.  Second, the cross-peak anisotropy was observed 

to be near a theoretical maximum, and it was reasoned, that for this to occur contributions 

from other conformations would necessarily be small.  As a result, these authors suggest 

that the denatured state of proteins has a high propensity for PII conformation. 

If PII is the preferred conformation for a tripeptide, it is reasonable to expect that 

longer peptides should also exhibit a preference for this conformation.  This has been 

investigated on a seven residue alanine fragment by Shi et. al. using NMR (Shi et al. 

2002a; Shi et al. 2002b).  NMR provides two useful techniques for identifying backbone 

conformations in proteins, and both were employed in this study to examine the 

conformation of polyalanine in water.  First, using the Karplus relation it is possible to 

relate the JHNα coupling to the backbone φ angle.  Second, it is known that when a peptide 

forms an α-helix, nuclear Overhauser effect (NOE) couplings are observable between the 

methyl protons of one residue and the protons of the nearby residues in the helix.  When 

these two methods were employed on the polyalanine fragment, it was found that φ was 

approximately –700 and that no NOE couplings were present (Shi et al. 2002a).  Because 

of this, it was reasoned that the dominant peptide conformation had to be far from α-

helix, in the PII region of the Ramachandran plot.  It was estimated that the 

conformational contributions of α-helix and β-strand were both less than 10%, although 

the β contribution increased at higher temperatures.  Later work using the same 

methodology attempted to fit this PII  β transition to helix-coil model, and it was found 
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that the fluctuations around PII were not cooperative, with a value of σ of about 1 (Chen 

et al. 2004).  Here again, experimental results on short peptides favors the PII 

conformation for the unfolded state. 

At this point it becomes interesting to ask why the polyproline II helix is the 

favorable conformation for short stretches of polyalanine.  The experimental results to 

date support the idea that solvation is an important interaction favoring this conformation.  

In an elegant experiment by Chellgren and Creamer, it was shown that the PII 

conformation is more favorable in D2O than in H2O (Chellgren and Creamer 2004).  

Because D2O has a higher tendency toward hydrogen bonding and therefore is more 

ordered than H2O, it was suggested that PII perturbs water less than other conformations, 

such as helix or strand, does.  It also follows that PII is less disruptive to water than a 

random coil conformation.  Other experiments have shown PII to be highly sensitive to 

solvent composition, supporting the idea that water molecules are important in the 

stability of the PII helix (Liu et al. 2004).   

 

Simulations of the Polyproline II Helix 

Computational modeling is a useful tool for identifying the fundamental 

interactions that favor a conformation, and it has been applied extensively to the PII helix 

in solution (Creamer and Campbell 2002).  Of the simulations that have been done, the 

simplest calculations are also the most compelling.  These have been performed by Pappu 

and Rose and use a purely repulsive soft-sphere potential (Pappu and Rose 2002).  Monte 

Carlo simulations on short peptide chains using this simple potential indicate that the 

formation of PII may be a consequence of sterics alone: the soft sphere potential 
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minimizes protein packing density and maximizes the exposure of the backbone to the 

solvent.  Maximization of solvent exposure also rationalizes the experiments described 

above, since a peptide in PII conformation is maximized its potential interactions with 

water and thus will experience the full effect of changes in solvent composition.  Further 

work by Pappu’s lab has shown that a conformational preference for PII is not 

inconsistent with random coil statistics (Tran et al. 2005).  Although the repulsive 

potential favors an extended chain, conformational entropy prevents long segments of PII 

from forming, and thus the chain yet retain random coil statistics. 

Traditional methods of simulation have also found a favorable preference for PII 

conformation.  Two recent molecular dynamics studies have shown that short alanine 

peptides favor PII.  The first study, by Mu and Stock, examined trialanine and found that 

nearly 80% of the time the central residue was either in a PII or β conformation (Mu and 

Stock 2002).  A second study extended their findings by examining an eight residue 

polyalanine fragment.  Ramakrishnan et. al. found once again that the simulated 

fragments occupied the PII conformation approximately 70% of the time, although their 

PII had a smaller ψ torsion of about 850 (Ramakrishnan et al. 2004).  They observed that, 

in the remaining 30% of the time, the fragments sampled β-turns and short fragments of 

α-helices.  Their results indicate the existence of other conformational preferences for 

longer peptides and proteins and may provide evidence that both PII and native-like 

residual structure are present in unfolded proteins. 

A comprehensive study of polyalanine in solution was performed by Kentsis et. 

al. using alanine peptides of length 7 and 14 (Kentsis et al. 2004).  They used a 

sophisticated Monte Carlo simulation technique to capture the detailed effects of solvent-



 

47 

chain interactions, and to ensure robustness of their results two separate simulations were 

performed with different force fields.  Both simulations identify a similar trend that the 

conformational preference of the protein backbone is the PII helix.  The maximum size of 

PII helices is observed to be 5 residues, and the chain fluctuates readily between PII and 

other conformations.  The simulations further indicate solvent entropy as the dominant 

cause for PII stabilization, and they suggest that the PII conformation facilitates α-helix 

formation by reducing the entropic penalty of helix nucleation.  A related study also finds 

solvent entropy to be important in the stabilization of PII.  Mezei et. al. used a similar 

simulation technique to measure the solvation free energy of rigid PII, α-helix, and β-

strand conformations in solution (Mezei et al. 2004).  They find that the free energy of 

solvation for PII is much more favorable than α-helix or parallel β-strand, with values of  

–4.7, –2.0, and –3.9 kcal/mol, respectively.  Together, these simulations provide strong 

support for modeling the unfolded state as short segments of PII helix. 

 

Summary of Unfolded State Models 

The random coil, residual structure, and PII helix model all have support from 

experiment and theory, but at this time it is difficult to synthesize all of the data in to one 

coherent model for the unfolded state.  Not all of the experiments are contradictory, but it 

is clear that a “reconciliation problem” exists, since a random coil is not random if it 

contains native-like structure or polyproline II helix (Millett et al. 2002).  The forces, as 

modeled by experiment, are also puzzling in that some simulations favor the residual 

structure model whereas other simulations favor the PII model.  As discussed below, each 

of these considerations for the unfolded state has a significant impact on our 
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understanding of protein folding, and much of the debate in the protein folding field 

stems from a poor understanding of the unfolded state. 

 

1.8 Models for the Folding Transition 

Several models exist for the protein folding transition, and all must start with 

assumptions about the denatured state.  As stated earlier, one of the major tasks of any 

model is to propose a mechanism by which the protein resolves the Levinthal paradox 

(Levinthal 1969).  It seems reasonable that not all proteins will fold with identical 

mechanisms (Fersht 2000), and it may be that the competing models have more 

similarities than differences (Gianni et al. 2003).  Here, we will briefly describe several 

of the major models for protein folding, focusing on how the assumptions about the 

unfolded state in each model determine how folding occurs.   

 

The Diffusion-Collision Model and Hierarchic Folding 

The diffusion-collision model is one of the earliest models for protein folding, 

proposed initially by Karplus and Weaver in 1976 (Karplus and Weaver 1976; Karplus 

and Weaver 1979).  The model assumes an unfolded state of microdomains, short 

stretches of residues that flicker in and out of their native structure.  During folding, 

microdomains diffuse freely, similar to tethered spheres, and as native-like contacts are 

made, they combine to form the final native structure.  A simple-minded estimate of the 

time required for two separate microdomains to merge can be modeled using the 

following equation (Karplus and Weaver 1976): 
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 





 ∆

≈
DA

Vl
β

τ 1  (1.23) 

In this equation, l characterizes the length of the tether between the two domains, ∆V is 

the volume in which the microdomains can diffuse, D is the diffusion coefficient, and A 

is the area of the target microdomain.  The constant β reflects that not all microdomains 

will be in the folded conformation at all times, and is thus related to an equilibrium 

constant. 

The diffusion-collision model, when properly parameterized, is able to predict the 

kinetic rates of some proteins well (Karplus and Weaver 1994; Burton et al. 1998).  

Additionally, solvent viscosity has been shown to impact the folding rates for a few 

proteins (Karplus and Weaver 1994).  The model is compatible with some of the ideas of 

the residual structure model of the denatured state: the presence of semi-native 

microdomains in the unfolded ensemble would explain the existence of native-like 

structure, although it is difficult to imagine that long-range native topology would exist in 

this model. 

An extension of the diffusion-collision model is the hierarchic or framework 

model for protein folding (Baldwin and Rose 1999b; a).  It is based on the observation 

that proteins are organized hierarchically: domains in a folded protein are organized in a 

hierarchy of locally interacting subdomains (Rose 1979).  The hierarchic model extends 

the diffusion-collision model by specifying that the folded microdomains are the nascent 

secondary structures in the final folded chain.  Furthermore, these secondary structures do 

not simply diffuse freely throughout a tethered volume; rather, they interact locally with 

other units of secondary structure, assembling hierarchically to form the final folded 

chain.  The hierarchic model is supported by experimental evidence that, when helices 
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are excised from native proteins, they fluctuate in and out of their native secondary 

structure (Baldwin and Rose 1999a).  Simulations have also given evidence for this type 

of protein folding (Baldwin and Rose 1999b).  From the perspective of the unfolded state, 

the hierarchic model also fits well with the residual structure model.  If the secondary 

structures are fluctuating between native and PII conformations, it may also expain why 

PII helix is prevalent in unfolded proteins.  This model would seem to be at odds, 

however, with the random coil model for the denatured state. 

Recently, Englander’s group has proposed another model for folding that is 

similar to both the diffusion-collision and hierarchic models.  This model proposes that 

proteins fold as a stepwise process as foldon units form on top of one another (Maity et 

al. 2005).  Hydrogen exchange experiments on cytochrome c indicate that there are five 

foldon units in this protein and suggest distinct order in their assembly: the N- and C-

terminal helices form first in the pathway, followed by a coil region and the helix from 

residues 60-70, followed by several other foldon units.  In this model of folding, the 

microdomains are the foldon units, and in cytochrome c the foldons roughly correspond 

to secondary structures as predicted by the hierarchic model.  Unlike the standard 

diffusion-collision model, however, where several different combinations of 

microdomains or local secondary structure elements can combine to form the final 

structure, foldons are proposed to associate in a specific stepwise order.  This model of 

folding for cytochrome c also differs from the hierarchic model in that it proposes that the 

N- and C-terminal ends, which are non-local in character, bind early in the folding 

pathway.  As more proteins are examined in light of this new model, it will become more 

clear whether the association of the N- and C- terminal ends is a general feature of 
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folding (Krishna and Englander 2005).  If so, then native-like topology in the denatured 

state may be more compatible with this model than in other diffusion-collision models. 

 

Heteropolymer Collapse 

The heteropolymer collapse model for protein folding was developed primarily in 

response to the idea that hydrophobicity is the driving force for protein folding.  In this 

model, a random coil denatured state collapses under folding conditions due to the 

hydrophobic driving force (Dill 1985).  The collapsed chain then undergoes structural 

rearrangement and formation of secondary and tertiary contacts until the final native 

structure is determined.  This structure resolves the Levinthal paradox through the use of 

excluded volume: as a chain of finite thickness is forced into a small volume, an 

exceedingly large amount of conformational space is eliminated because of steric 

considerations.  Unfortunately, estimates have shown that even this large loss in 

conformational space may not be enough to overcome the Levinthal paradox (Karplus 

and Weaver 1994), and the absence of collapsed intermediates in many protein folding 

pathways seems to indicate that if a hydrophobic collapse does occur, it does so very 

early on in the folding process.  Additionally, this model’s approach the unfolded state is 

the classical random coil, and therefore it does not account for native structure or PII 

helices in the denatured state unless those conformations are somehow incorporated in to 

the collapsed protein. 

 

Funnels and Nucleation-Condensation 
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One of the more recent and popular models of protein folding is the nucleation-

condensation model.  This model has incorporated the idea that folding pathways may not 

be unique in nature: rather than comprising a set of stepwise events, protein folding is 

suggested to consist of multiple, parallel pathways—the folding funnel concept (Dill and 

Chan 1997).  This idea complicates protein folding: rather than one clear transition 

between the unfolded and folded state, many pathways must be accounted for, and 

experimentally it may be difficult to characterize one “true” transition state during 

folding.  Fortunately, simulations indicate that while many pathways contribute to 

folding, an average pathway is observed that can account for most of the transition 

(Lazaridis and Karplus 1997). 

The distinguishing idea behind the nucleation-condensation model is that the 

folded structure forms around a few key nonlocal contacts in the native structure.  

Secondary and tertiary structure then form in a concerted manner around the nucleus of 

native contacts.  This type of folding has been observed in simulations of chymotrypsin 

inhibitor 2 (CI2) and seems to be common based on kinetic Φ-value analysis (Daggett 

and Fersht 2003).  In CI2, the nucleus appears to be a small portion of the helix and β-

sheet that form the core of the protein.  Once this is formed, the remaining structure 

condenses upon the loosely formed core.  Although the unfolded state for the nucleation-

model is generally assumed to be random in nature, CI2 simulations show fluctuating 

elements of secondary structure (Lazaridis and Karplus 1997), and a small native-like 

bias in the unfolded state is compatible with this model.  Indeed, it has been suggested 

that hierarchic folding and nucleation-condensation differ only in the amount of native-

like structure in the denatured state (Gianni et al. 2003). 
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Why should the energy landscape for folding be funnel shaped?  This intriguing 

question was addressed in 1984 by Go (Go 1984).  He proposed the consistency principle 

in protein folding: in a folded protein, all energy terms are at (or near) their optimal 

values.  The consistency principle was based on the observation that structural deviations 

from equilibrium values in folded proteins are rare.  From this idea, Go hypothesized that 

nonlocal interactions may be just as important in stabilizing native structure as local 

interactions.  From a folding funnel perspective, the consistency principle dictates that, as 

local and non-local native contacts are formed, a protein’s free energy will become more 

favorable, thus driving the unfolded chain down the funnel toward the folded state.  

Onuchic and Wolynes call this idea “the principle of minimal frustration:” interactions 

within the protein are not in conflict (Onuchic and Wolynes 2004).  Proteins proceed 

down the folding funnel, generally hindered only by an entropic barrier when 

approximately 60% of the native structure is formed (Wolynes et al. 1995). 

Traditionally, Φ-value analysis has been used to show that native structure, if 

present, is minimal in the transition state (Daggett and Fersht 2003).  This observation 

has led to the assumption that a nucleation-condensation model requires a random-coil 

denatured state.  In fact, the nucleation-condensation model is rather insensitive to the 

details of unfolded proteins, mainly because the consistency principle supplies an 

organizational regime capable of overcoming the Levinthal paradox in both random and 

natively-biased denatured states.  Some recent observations are of interest.  First, it has 

been noted that a large experimental uncertainty is associated with experimentally 

determined Φ-values (Ingo Ruczinski, personal communication), and therefore transition 

states may be more structured than originally believed.  Second, Frieden has observed 
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that side chain stabilization forms very late in the folding process (Frieden 2003), so it 

seems unlikely that specific side chain interactions are participating in a nucleation event.  

Thus, the primary justification for a random denatured state in the nucleation-

condensation model (Φ-values) is not as strong as once thought, and certain types of 

interactions (long range tertiary interactions), cannot drive the formation of a folding 

nucleus.  A convenient explanation would be that nascent secondary structure elements 

form the nucleus, making this model more similar to the diffusion-collision model than 

distinct from it. 

 

  The Topomer Search Model 

The final model we address is the topomer search model.  This model was 

formulated by Plaxco’s group based on the correlation of reduced contact order (equation 

1.15) with folding rates in small proteins (Makarov and Plaxco 2003).  In it, the unfolded 

state is largely random, and the rate-limiting step in folding is the formation of the 

appropriate native-like topology in space.  A protein with a complex native topology as 

measured by reduced contact order will take proportionately more time to fold than a 

protein with a simple topology in the native state.  The topomer search model does not 

exclude the existence of rapidly fluctuating units of native-like secondary structure, nor 

does it prohibit the formation of PII in the unfolded stuate; however, in this model the 

existence of these conformations is largely irrelevant, because the rate-limiting step is the 

global formation of a native-like topomer, and the formation of this global topology is 

assumed to occur on much longer timescales than other chain fluctuations.  The critical 

assumption is that the rate of folding is proportional to the probability that a random 
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chain has a native-like topology, a decidedly polymer-theoretic approach that requires a 

random search through conformational space. 

It was at first thought that the topomer search model resolved the Levinthal 

paradox because fast folding proteins have a high probability of forming native-like 

topomers in the denatured state.  This idea was investigated by Wallin and Chan and 

found to be true: when clear definitions are given for native-like topology, faster folding 

proteins have a larger section of conformational space that is native-like than slower 

folding proteins (Wallin and Chan 2005).  However, it was found that the Levinthal 

paradox still applies because the number of native-like conformations is still dwarfed by 

the size of the random search.  Thus, the topomer search model cannot at present account 

for the Levinthal search problem. 

Another problem faced by the topomer search model is the fact that other, simpler 

metrics than contact order have also been shown to correlate with folding rate.  As 

discussed above, secondary structure content (Gong et al. 2003) and even protein size 

(Naganathan and Munoz 2005) can also predict folding rates.  While the topomer search 

model may describe why contact order and folding rate are related, it does not explain 

why other metrics perform as well.  Because of this, the topomer search model seems to 

be in transition: a new model for its unfolded state is needed that will account for the 

search problem while at the same time allowing for other factors in determining folding 

rates. 

 

1.9 Overview of Thesis 
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Chapter 2.  As mentioned above in section 1.5, the isolated pair hypothesis is a 

fundamental tenet of the random coil model for unfolded proteins.  In this chapter, we 

build on the work of Pappu and Rose by examining in detail why the Flory IPH fails.  For 

over 50 years, it has been assumed that no systematic steric clashes existed beyond the 

dipeptide.  This chapter outlines an experiment using simple hard sphere simulations that 

identifies a fundamental interaction between α-helices and β-strands that exists in both 

the folded and unfolded states of proteins.  In short, helices cannot be followed by strands 

without a turn or coil region between the two.  We confirm the validity of the hard sphere 

model by showing that helices and strands are not juxtaposed in the PDB.  Not only does 

this chapter firmly establish the hard sphere model as a valid means of investigating 

denatured proteins, it suggests that other disfavored conformations may exist that 

substantially reduce the size of conformational space in unfolded proteins. 

Chapter 3.  Another key behavior of random coils are radii of gyration that scale 

as equation (1.22).  Although Tanford himself was aware that nonrandom conformations 

can exhibit random RG’s, in this chapter we address the sensitivity of random coil scaling 

directly.  Starting with native protein structures, we construct an absurd model for the 

denatured state where only one in twelve residues are free to sample protein 

conformational space.  The model should not scale as a random coil, because 92% of the 

protein structure is perfectly rigid.  Nevertheless, a dataset of 33 proteins simulated in this 

way exhibit near-perfect random coil statistics.  As in chapter 2, we identify another 

reason to doubt the assertion that unfolded proteins are random coils.  Since the random 

coil model is not unique in its ability to predict the observed scaling of chain dimensions, 
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the residual structure and PII models cannot be discounted solely on the basis of scaling 

data. 

Chapter 4.  Here, we present an aside in preparation for an exhaustive 

enumeration of protein conformational space.  The protein coil library (PCL), as 

discussed above, has proven to be a useful tool for modeling unfolded protein 

conformations.  Unfortunately, no standard form of the coil library has been developed to 

date.  In this chapter, we develop a standardized implementation of the coil library and 

make that implementation available on the World Wide Web.  Turns are included in this 

library, but helices and strands are removed.  The resulting database can be examined for 

conformational preferences, and the functionality is provided to search the database using 

the output from several different culling servers.  This library will be used as a control for 

the simulations in chapter 5: disfavored conformations identified in simulation should not 

be present in the PCL. 

Chapter 5.  As a culmination to the previous chapters, the goal of chapter of five 

is to exhaustively identify all disfavored conformations in polyalanine peptides of length 

1-6.  Section 1.3 presented two potential organizing forces in protein folding: hard sphere 

sterics and solvation.  Both of these forces are implemented here, and we examine the 

extent to which these forces reduce the size of conformational space.  We identify many 

disfavored conformations and show that each occurs rarely, if at all, in the coil library.  

To supplement the information presented in chapter 1, all of the conformations identified 

in this chapter collected and placed onto a searchable web database.  Because local chain 

interactions should diminish beyond six residues, this database represents a complete 

description of how sterics and solvation cause the IPH to fail.  It is also a goal of this 
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chapter to identify the significance of these local interactions.  How much do local sterics 

and solvation reduce the size of conformational space compared to the random coil 

model?  To answer this question, we develop a statistical model to estimate the 

significance of local interactions in reducing the size of conformational space and find 

that approximately nine orders of magnitude are eliminated for a 100-residue unfolded 

chain.  Finally, we address the significance of the disfavored conformations: it is clear 

that these conformations are in opposition to a random coil model for unfolded proteins, 

but the significance in the other two models is less clear.  We examine all the 

conformations together and rationalize how they may be significant in both the residual 

structure and PII models for the denatured state.
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CHAPTER 2 

Steric Restrictions in Protein Folding: 

An α-helix Cannot be Followed by a Contiguous β-strand* 

2.1 Abstract 

Using only hard-sphere repulsion, we investigated short polyalanyl chains for the 

presence of sterically-imposed conformational constraints beyond the dipeptide level.  

We found that a central residue in a helical peptide cannot adopt dihedral angles from 

strand regions without encountering a steric collision.  Consequently, an α-helical 

segment followed by a β-strand segment must be connected by an intervening linker.  

This restriction was validated both by simulations and by seeking violations within 

proteins of known structure.  In fact, no violations were found within an extensive 

database of high-resolution X-ray structures.  Nature's exclusion of α-β hybrid segments, 

fashioned from an α-helix adjoined to a β-strand, is built into proteins at the covalent 

level.  This straightforward conformational constraint has far-reaching consequences in 

organizing unfolded proteins and limiting the number of possible protein domains.

                                                 

* This chapter is reprinted with permission from the authors as allowed by the copyright agreement.  

Fitzkee, N. C. and Rose, G. D.  (2004) Protein Science.  13 (3): 633-9.  Copyright © 2004 The Protein 

Society.  



 

61 

2.2 Introduction 

The hard sphere model (Richards 1977) has been an invaluable tool in 

characterizing fundamental aspects of protein molecules, including their accessible 

surface area (Lee and Richards 1971; Eriksson et al. 1992), packing (Richards 1977; 

Richards 1979), and fitting errors (Word et al. 1999).  Clearly, atoms are not simply hard 

spheres; but, quoting Richards,  

“For chemically bonded atoms the distribution is not spherically symmetric nor 

are the properties of such atoms isotropic.  In spite of all this, the use of the hard 

sphere model has a venerable history and an enviable record in explaining a 

variety of different observable properties” (Richards 1977).   

Arguably, the most important application of the hard sphere model in 

biochemistry is the now famous φ,ψ-plot for a dipeptide, developed by Sasisekharan, 

Ramakrishnan and Ramachandran (Ramachandran et al. 1963; Ramachandran and 

Sasisekharan 1968).  Recently, this simple idea has been applied to nucleic acids as well 

(Duarte and Pyle 1998; Murthy et al. 1999).  In proteins, the hard sphere model identifies 

two major populated regions for an alanine dipeptide; backbone dihedral angles in these 

regions resemble those of an α-helix or a β-strand.  Despite their remarkable structural 

diversity, protein molecules have main chain conformations that lie almost entirely within 

these two regions.  

In this paper, we explore additional steric constraints on polypeptide chains 

beyond the dipeptide level.  We find that an α-helix cannot be followed by a β-strand 

without an intervening linker.  This restriction is a consequence of unavoidable collisions 
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between backbone atoms, and it derives experimental support from the paucity of 

exceptions among high-resolution protein structures (Berman et al. 2000). 

We use several conventions for describing regions of the φ,ψ-map.  Figure 2.1 

shows a φ,ψ-distribution of α-helix (yellow), β-strand (red), and polyproline II helix 

(blue), determined from structures in the PDB (Berman et al. 2000); the more populated 

the region, the darker the color.  Throughout this chapter, β refers to the region given by 

-135.0
o
 ≤ φ ≤ -105.0

o 
and 120.0

o
 ≤ ψ ≤ 150.0

o
 and PII refers to -80.0

o
 ≤ φ ≤ -55.0

o 
and 

130.0
o
 ≤ ψ ≤ 155.0

o
.  We define both a relaxed helical region α', where  -75.0

o
 ≤ φ ≤ 

-45.0
o 
and -60.0

o
 ≤ ψ ≤ -30.0

o
, and a strict helical region α, as a circle of radius 7.0

o
 

centered about φ = -63.0
o
 and ψ = -45.0

o
.  Finally, κ represents the entirety of 

sterically-accessible φ,ψ-space for the alanine dipeptide. 

 

An experimental observation raises a question 

Hybrid segments consisting of an α-helix followed by a β-strand are rarely 

observed in the PDB.  Instead, helices and strands are interconnected by a transition 

region – a turn, a loop, or some other linker.  Only seven occurrences of three or more α' 

residues followed by a single β residue were found in a representative set of PDB 

structures (Hobohm and Sander 1994), but a pattern consisting of three or more α' 

residues followed by a non-α' residue was detected 37,563 times in this dataset.  Why is 

the  direct transition from α to β so rare? 

 

2.3 Materials and Methods 
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Ramachandran Plots.  Ramachandran plots were generated from φ,ψ-distributions 

by subdividing φ,ψ-space into a 5
o
 by 5

o
 grid; each of the 72 by 72 grid squares 

corresponds to a bin.  These bins were ranked according to the number of φ,ψ-pairs they 

contain and then grouped into three categories representing the top (i) 33%, (ii) 66% and 

(iii) 90% of the data.  The three groups are plotted in figure 2.1.  

Mining the PDB.  In all cases, the chains selected from the PDB were that subset 

of PDBSelect (Hobohm and Sander 1994) structures determined by X-ray diffraction.  In 

all, 1455 chains at the 25% aligned sequence identity level and 5378 chains at the 90% 

level were included.     

Idealized Secondary Structures.  Secondary structure was assigned using PROSS 

(Srinivasan and Rose 1999), a method based solely on φ,ψ-angles.  Unlike the more 

familiar DSSP (Kabsch and Sander 1983), PROSS does not include hydrogen bonding in 

its assignment criteria.  Distributions of φ,ψ-values were grouped into three secondary 

structure categories: α-helix, β-strand, and polyproline II (figure 2.1A).  The helical 

region was further subdivided into 1
o
 grid squares (figure 2.1B).  Idealized ranges for α, 

β, and PII were then defined, guided by those bins that represent the top 33% of the data.  

The α' region is a relaxed definition of α, similar in size to β and PII.  These definitions 

agree well with textbook classifications of secondary structure (Creighton 1984). 

Simulations.  Monte Carlo simulations of polyalanyl peptides were performed to 

determine how steric factors influence chain conformation.  Polyalanine was chosen as a 

model for the peptide backbone.  Simulated peptides had lengths ranging from 9 to 12 

residues.  Hydrogen atoms were not included.  For each simulation, the φ,ψ-distributions 
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of all sterically-allowed conformers were collected so as to accumulate up to 5000 clash-

free structures from a maximum of 5 million attempts.   

Generation of sterically allowed structures was accomplished by sampling 

backbone torsion angles at random from α, β, PII, or κ, as appropriate.  ω-torsions were 

varied at random in the range [-175.0
o
, -185.0

o
] and assigned in conjunction with 

backbone torsions.  Each attempt was checked for collisions; if none were found, the 

conformer was accepted and its torsion angles were retained.  Otherwise, the conformer 

was rejected.  Rejected structures with a single atomic collision occur at the boundaries 

between regions; these were cataloged by φ,ψ-angle and collision type for use in 

assembling a collision map.  Structures with multiple atomic collisions are not localized 

at boundary regions and were ignored. 

Hard sphere atomic radii from Word et. al. (Word et al. 1999) are among the most 

conservative in the literature and were adopted for this study (table 2.1).  These radii 

were further scaled by a factor of 0.95, ensuring that the observed collisions are not 

methodological artifacts.  The overall robustness of our results was tested extensively by 

determining the degree to which steric restrictions persist as radii diminish (described 

below).  The collisions identified in this study do not include those with hydrogen atoms.  

Inclusion of hydrogens would have enlarged the effective radii and, consequently, 

imposed further restrictions on available conformational space. 

  

2.4 Results 

Flexibility of a central wild-card residue in an α-helical peptide: α4-κ-α4   
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A series of host-guest simulations was performed; each consisted of a wild-card 

κ-residue (the guest) in the middle of an 8-residue polyalanyl peptide that was 

constrained to be helical (the host).  In every case, sterically disallowed patterns 

identified in simulations were validated against X-ray elucidated structures by searching 

for exceptions.   

The resulting distribution of the guest residue (figure 2.2) plots 5000 allowed 

structures (from 418,213 attempts).  Both raw (figure 2.2A) and binned (figure 2.2B) data 

exhibit a Y-shaped plot for the guest residue.  A comparison of the two figures (2.2A and 

2.2B) shows that the binning method captures the distribution successfully.  Notably, the 

Y shape encompasses α-helix, but both β-strand and PII are excluded.  This conclusion is 

highlighted in figure 2.2B by superimposing the 66% contour for β-strand from figure 1A 

on the binned simulation data.  In short, a single β-guest residue cannot avoid a steric 

collision in an α-helical host. 

The collision maps in figure 2.3 rationalize this restriction, which is a 

consequence of a steric clash between the carbonyl oxygens of the guest i-residue (Oi) 

and the i-3 α-residue (Oi-3).  The distribution of points for this collision (figure 2.3, 

green) fits precisely into the void region of figure 2.2. 

Additional collisions from this simulation are also shown in figure 2.3.  Of 

particular note is the collision between Oi-3 and Cβ
i+3 (in red) which is responsible for 

exclusion of the PII region.  These two atoms are brought into juxtaposition when the 

guest κ-residue, at i, samples the relevant region in φ,ψ-space. 

Two different methods were used to test the robustness of these results.  First, the 

atomic radii were reduced well beyond any plausible van der Waals limit by successively 
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decrementing the scaling factor from 0.95 to 0.92, 0.90, 0.88, and 0.85 (figures 2.4A-D).  

Reduction of the atomic radii results in expansion of the Y-shaped boundaries of the 

guest residue.  However, substantial strand exclusion survives even the most extreme 

reduction.  Similar behavior was also observed when the α region was expanded to a 

radius of 14
o
 or 21

o
 (figures 2.4E and F).  Again, the Y-shaped boundary expands, yet 

persists.  Thus, steric exclusion of a β-residue in a sequence of α-residues is a robust 

finding, not an artifact of our helix definition or hard sphere radii. 

As further validation, helices were excised from proteins of known structure and 

used as starting structures in simulations.   Specifically, 40 12-residue helices were 

selected at random from X-ray elucidated structures in the PDB (table 2.2), and all side 

chain atoms beyond Cβ were eliminated.  Simulations were then performed as before, 

except that the definition of α was varied for each helical residue, using a radius of 7.0
o
 

centered about its experimentally-determined φ,ψ-value: α6-κ-α5.  With a radial scaling 

factor of 0.95, all but three helices were found to be sterically incompatible with β values 

for the central residue.  The β region was largely, but not entirely, excluded in these three 

exceptions as well (figure 2.5); in each case, the φ,ψ-values of flanking residues were 

well outside the high-confidence α-region (figure 2.1B), sometimes extending into 310 

helix. 

In all, these results culminate in a prediction that a β-residue cannot follow three 

or more consecutive α-residues, a testable hypothesis using the PDB.  In the list of 5378 

chains with sequence identity of 90% or less, a series of three or more α-residues was 

found 19,062 times; none was followed by a β-residue.  However, as mentioned earlier, 
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seven exceptions were found when α' is used instead of α (table 2.3). For two of these 

structures, a small but real overlap is indicated between carbonyl oxygens as assessed by 

either our unscaled radii or contact dots (Word et al. 1999).  In a third case, backbone 

clash is avoided by an unusual progression of ω-torsions.  The final four cases may be 

legitimate, albeit marginal, exceptions.  One of the four cases involves a single β-residue 

that follows the α'-residues; the other three cases involve type III turns and do not 

represent an intermixing of helix and strand.  

In sum, a direct transition from canonical α-helix to β-strand is disallowed: a 

single β-residue adjoined to a helical peptide results in a steric collision (figure 2.6).  

Further, this collision only affects residues N-terminal to the β-residue.  Therefore, an N-

terminal to C-terminal transition from helix to strand must pass through at least one 

“buffer” residue from the turn region.  This finding rationalizes the familiar observation 

that many α-helices terminate in a 310 helix (Richardson 1981), a progression that both 

satisfies helix capping requirements (Aurora and Rose 1998) and facilitates the transition 

from helix to strand, turn, or loop. 

 

2.5 Discussion 

More than four decades ago, Sasisekharan, Ramakrishnan and Ramachandran 

(Ramachandran et al. 1963; Ramachandran and Sasisekharan 1968) elucidated the steric 

map for an alanyl dipeptide (more precisely, the compound Cα-CO-NH–CαHR–CO-NH-

Cα, which, has two degrees of backbone freedom like a dipeptide).  Similar ideas about 

the importance of sterics as an organizing force in proteins were also implicit in space-

filling models (Koltun 1965), developed during this same era.  Such ideas have been 



 

68 

validated repeatedly in proteins (Berman et al. 2000) and are now invoked routinely when 

assessing the quality of experimentally determined structures (Laskowski et al. 1993b).   

Today, the restrictions that sterics impose on the conformation of a dipeptide are 

widely accepted.  Yet, hard sphere models have played a comparatively small role in both 

protein structure prediction and analysis of the unfolded state.  Why? 

The perceived problem is one of scale.  If each φ,ψ-pair is independent of its 

neighbors (Flory 1969), then conformational space grows exponentially, despite 

dipeptide restrictions.  Accordingly, the conformations accessible to a peptide backbone – 

even a short one – can quickly overwhelm constraints imposed by dipeptide sterics.  This 

view is often invoked by alluding to the “Levinthal paradox” (Levinthal 1969):  how does 

a protein find its unique native conformation among the more-than-astronomical number 

of conformational possibilities?  For Levinthal, this conundrum was a demonstration, not 

a paradox, indicating that additional conformational constraints must exist.  But what 

additional constraints might have been overlooked in this well-cultivated field?   

Earlier work using explicit counting showed that the size of conformational space 

is smaller than previously believed (Pappu et al. 2000) because local steric interactions 

exert influence beyond the dipeptide, winnowing the number of accessible 

conformations.  Here, we focused specifically on steric restrictions in the α-helix. 

 

Unfolded Proteins   

It has been proposed that the coil library – defined as the set of all non-helical, 

non-strand structures in the PDB – can be used to model the unfolded state of proteins 

(Swindells et al. 1995; Avbelj and Baldwin 2003).  Therefore, our steric rules, which 
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were validated against the PDB, including the coil library, would also hold for this model 

of the unfolded state.  Plausibly so, because van der Waals repulsive forces will be 

unaffected by whether or not the protein is folded or unfolded. 

 Repulsive forces can have an organizing influence on the folding reaction, 

N(ative) ←
→  U(nfolded), and related order-disorder transitions, such as helix-coil theory 

(Zimm and Bragg 1959; Van Holde et al. 1998), where each residue is characterized by 

initiation and propagation constants.  For example, any “coil” conformation with φ,ψ-

angles in the β-region would exert a cooperative influence on the helix-coil equilibrium, 

making it harder to initiate a helix from the coil state by constricting the size of 

conformational space accessible to a residue that follows a helix nucleation site.  

Conversely, once nucleated it would also be harder to melt a helix because the helical 

conformer would inhibit introduction of a central coil residue with φ,ψ-angles in either 

the β- or PII-regions.  

 

The Number of Protein Domains  

Our analysis of short polyalanyl chains demonstrates that a β-conformer cannot 

be introduced into an α-helix without an accompanying steric clash.  This restriction 

maintains the structural homogeneity of α-helices by excluding heterogeneous 

conformers consisting of a turn of α-helix followed by one or more β-residues.  

Exclusion of folds in which there is an immediate transition from helix to strand 

eliminates many conceivable protein domains.  

In particular, when a protein folds, backbone polar groups removed from solvent 

will participate in compensatory intramolecular hydrogen bonds.  To do so, they form 
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segments of α-helix or strands of β-sheet, the only regular, repeating hydrogen-bonded 

protein structures that are sterically available (Aurora et al. 1997).  Proteins are largely 

supramolecular complexes of helices and strands (Levitt and Chothia 1976), and their 

intramolecular recognition and self-assembly is facilitated by the sterically-imposed 

elimination of α-β hybrids.  
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 Table 2.1: Hard Sphere Radii Used in Simulations 

Atom Type Radius (Å)† 
Scaled 

Radius (Å)‡ 
Carbon 1.75 1.66 
Carbonyl Carbon 1.65 1.57 
Nitrogen 1.55 1.47 
Oxygen 1.40 1.33 

 

†  Atomic radii taken from (Word et al. 1999) 

‡  Radii shown use the scaling factor of 0.95 
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Table 2.2: Twelve-Residue Helices used in Testing Robustness 

PDB ID* Res (Å) R factor 
Residue 

Start 
Residue 

End PDB ID Res (Å) R factor 
Residue 

Start 
Residue 

End 
1AIHA 2.5 0.21 176 187 1HBKA 2.0 0.20 51 62 
1ALN 2.3 0.19 14 25 1HNNB 2.4 0.23 604 615 
1B16A 1.4 0.18 109 120 1HQ6B 2.7 0.25 123 134 
1CXQA 1.0 0.13 185 196 1IXH 1.0 0.12 298 309 
1D2HA 3.0 0.20 247 258 1J8YF 2.0 0.23 4 15 
1D6JA 2.0 0.21 110 121 1J9LA* 1.9 0.20 14 25 
1DI2B 1.9 0.23 113 124 1JD22 3.0 0.25 167 178 
1DSZA* 1.7 0.20 1153 1164 1JK7A 1.9 0.20 146 157 
1EG9B 1.6 0.19 592 603 1JMVA 1.9 0.22 64 75 
1EJ0A 1.5 0.20 34 45 1JN0A 3.0 0.21 252 263 
1EJ3A 2.3 0.22 162 173 1KPGA 2.0 0.19 185 196 
1EXJB 3.0 0.24 51 62 1MUN 1.2 0.12 30 41 
1F0JB* 1.8 0.20 191 202 1POC 2.0 0.19 61 72 
1F0JB 1.8 0.20 261 272 1POC 2.0 0.19 77 88 
1F4LA 1.9 0.18 536 547 1QTWA 1.0 0.12 268 279 
1FSGA 1.1 0.00 153 164 1XRC* 3.0 0.20 64 75 
1FUIA 2.5 0.16 65 76 1YGE 1.4 0.20 159 170 
1G9ZA 1.8 0.20 99 110 2ACY 1.8 0.17 22 33 
1GAL 2.3 0.18 29 40 4HB1 2.9 0.23 11 22 
1GRCB 3.0 0.19 12 23 8OHM 2.3 0.23 506 517 

 

*  The set of 40 12-residue helical segments simulated using experimentally determined φ,ψ-values (see 

text).  Table entries marked with a star represent those in which the β-region was not excluded 

completely; even in these three cases, the distribution maintains a distinct Y-shape (see figure 5).  The 

chain identifier is listed as the fifth character of the PDB ID. 
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 Table 2.3: Violations of Relaxed Helical Complementarity in the PDB 

PDB ID* Res (Å) R factor
Residue 

Start 
Residue 

End 
O-O Dist 

(Å)‡ Explanation 
1CERO 2.5 0.20 43 46 2.8 Collision1 
1PHK 2.2 0.21 197 200 2.9 Tight Packing2 
1QCIA 2.0 0.23 177 180 2.8 Collision1 
1RCD 2.0 0.19 128 131 3.1 Tight Packing2 
1DSSG 1.9 0.17 43 46 3.1 Omega Angles3 
1IFT 1.8 0.22 178 181 3.1 Tight Packing2 
1HFUA 1.7 0.18 474 477 3.1 Tight Packing2 

 

* The chain identifier is listed as the fifth character of the PDB ID. 

‡ Distance between the carbonyl oxygens of the first and last residues. 

1 A collision between carbonyl oxygens is observed using unscaled radii (table 2.1). 

2  No collision observed; but packing is tight and perturbation of any torsion angle would lead to a 

collision. 

3  Violation occurs because of deviations from planarity in ω-torsions; deviations were greater than 5.0
o
 

for all four residues. 
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Figure 2.1.  (A) The distribution of secondary structure from the PDB using 5
o
 by 5

o
 

bins, as described in Methods.  Color coding: β-strand: red, polyproline II: blue, and 

α-helix: green.  The regions β, PII, and α', defined in the text, are shown as black boxes 

embedded in the colored regions.  (B) Smaller 1
o
 by 1

o
 bins were used to determine the 

size and location of the α region, shown as a black circle overlaid on the PDB 

distribution, in yellow. 
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Figure 2.2.  The φ,ψ-distribution in polyalanine for a central κ residue flanked on either 

side by four consecutive α residues.  (A) Raw φ,ψ-values.  Each point represents a 

sterically allowed structure when all residues were assigned random values of φ and ψ.  

(B) Same data as A, but grouped into 5
o
 by 5

o
 bins as described in Methods.  Sterically 

disfavored regions fall outside the 90% boundaries; the most favorable regions are the 

most intensely colored.  The 66% contour line of the observed β-strand distribution (from 

fig. 2.1A) is shown in black outline. 
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Figure 2.3.  Collision map for a single κ residue in a sequence of α residues.  Atom 

collisions responsible for the Y shape in figure 2.2 are color coded: Oi-3 – Oi: green, Oi-3 – 

CBi+3: red, Oi-1 – Ci: blue, Oi-3 – Oi+1: brown, Ci-1 – Ni+1: purple, Ci-1 – Ni+1: cyan, Oi-1 – 

CBi: yellow.  The most conspicuous collision, between Oi and Oi-3, is responsible for the 

void in the strand region, in figure 2.2. 
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Figure 2.4.  (A-D) Reducing the hard sphere scaling factor.  Same experiment as figure 

2.2B, but with scaling factors of 0.92, 0.90, 0.88, and 0.85, respectively.  Even at the 

extreme of 0.85, a remnant of the original Y shape survives.  (E and F) Relaxing the 

definition of α.  A radius of 14
o
 around φ = -63.0

o
 and ψ = -45.0

o 
(E) and 21

o
 (F).  On all 

plots, the 66% contour line from the observed β-strand distribution (in figure 2.1A) is 

overlaid in black. 
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Figure 2.5.  One of three extreme examples from the set of 40 12-residue helical 

segments (Table 2, PDB entry 1J9L, chain A, residues 14–25) in which simulations used 

experimentally determined φ’s and ψ’s to define α (see text).  The resulting distribution 

still maintains a Y shape, but a slight overlap with the 66% β-strand contour is evident. 
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Figure 2.6.  A β-residue cannot be added to three or more residues of α-helix without 

encountering a steric clash.  Ball-and-stick backbone atoms for three residues of an α-

helix (αi-3 - αi-1) are shown superimposed on a longer helical ribbon, followed by a single 

β-residue (βi).  This conformation forces a substantial overlap between Oi and Oi-3, 

shown here as transparent van der Waals spheres.  Atoms are rendered using 

conventional CPK colors, i.e. carbon:black, nitrogen: blue and oxygen:red. 
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CHAPTER 3 

Reassessing Random Coil Statistics in Unfolded Proteins* 

3.1 Abstract 

The Gaussian-distributed random-coil has been the dominant model for denatured 

proteins since the 1950s, and it has long been interpreted to mean that proteins are 

featureless, statistical coils in 6M guanidinium chloride (GmHCl).  Here, we demonstrate 

that random-coil statistics are not a unique signature of featureless polymers.  The 

random-coil model does predict the experimentally determined coil dimensions of 

denatured proteins successfully.  Yet, other equally convincing experiments have shown 

that denatured proteins are biased toward specific conformations, in apparent conflict 

with the random-coil model.  We seek to resolve this paradox by introducing a contrived 

counterexample in which largely native protein ensembles nevertheless exhibit random-

coil characteristics.  Specifically, proteins of known structure were used to generate 

disordered conformers by varying backbone torsion angles at random for ~8% of the 

residues; the remaining ~92% of the residues remained fixed in their native 

conformation.  Ensembles of these disordered structures were generated for 33 proteins 

using a torsion angle Monte Carlo algorithm with hard sphere sterics; bulk statistics were 

then calculated for each ensemble.  Despite this extreme degree of imposed internal 

                                                 

* This chapter is reprinted with permission from the authors as allowed by the copyright agreement.  

Fitzkee, N. C. and Rose, G. D.  (2004) Proceedings of the National Academy of Sciences USA.  101 (34): 

12497-502.  Copyright © 2004 The National Academy of Sciences of the USA. 
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structure, these ensembles have end-to-end distances and mean radii of gyration that 

agree well with random-coil expectations in all but two cases. 

 

3.2  Introduction 

The protein folding reaction, U(nfolded) ←
→  N(ative), is a reversible 

disorder ←
→  order transition.  Typically, proteins are disordered (U) at high temperature, 

high pressure, extremes of pH, or in the presence of denaturing solvents, but they fold to 

uniquely ordered, biologically relevant conformers (N) under physiological conditions.  

With some exceptions (Dunker et al. 2001), the folded state is the biologically relevant 

form, and it can be characterized to atomic detail using X-ray crystallography and nuclear 

magnetic resonance spectroscopy (NMR).  In contrast, our understanding of the unfolded 

state is based primarily on a statistical model – the random-coil model – which was 

developed largely by Flory (Flory 1969) and corroborated by Tanford (Tanford 1968) in 

the 1950s and 1960s.   

In a random-coil, the energy differences among sterically accessible backbone 

conformers are of order ~kT.  Consequently, there are no strongly preferred 

conformations, the energy landscape is essentially featureless, and a Boltzmann-weighted 

ensemble of such polymers would populate this landscape uniformly.   

Our motivation here is to dispel the belief – widespread among protein chemists – 

that the presence of random coil statistics for denatured proteins confirms the absence of 

residual structure in these molecules.  Indeed, it is well known to polymer chemists that 

rods of any stiffness – e.g., steel I-beams – behave as Gaussian-distributed, temperature-
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dependent random coils if they are long enough.  Chains in which the persistence length 

exceeds one physical link can be treated effectively by rewriting them as polymers of 

Kuhn segments (Flory 1969, pg. 12).  Consequently, a protein chain can behave as a 

random coil even if it is comprised of non-random segments.   

A denatured protein is a heteropolymer in which different amino acid residues 

will have differing average conformations, but in which an average backbone 

conformation is attained within a window of approximately ten residues.  For such a 

heteropolymer, coil dimensions can be assessed using two related measures: the radius of 

gyration and the end-to-end distance.  Flory showed (de Gennes 1979, pg. 43) that the 

radius of gyration, RG, follows a simple scaling law: 

 RG = R0N
ν
 (3.1) 

where N is the number of residues, R0 is a constant related to persistence length, and ν is 

the scaling factor of interest that depends on solvent quality.  Values of ν range from 0.33 

for a collapsed, spherical molecule in poor solvent through 0.5 for an ideal solvent to 0.6 

in good solvent.  The mean-squared end-to-end distance, <L2>, for unfolded proteins is 

also expected to scale linearly with chain length:   

 L2 = L0N  (3.2) 

with the L0 prefactor obtained from experiment. 

Tanford and coworkers (Tanford et al. 1966) corroborated these random-coil 

expectations for unfolded proteins using intrinsic viscosity measurements, which scale 

with chain length in a conformation-dependent way.  From this relationship, they 

obtained values of ν = 0.67 and L0 = 70 ± 15 Å2.  To a good approximation, end-to-end 

distances for random coils of sufficient length are Gaussian distributed (Chan and Dill 
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1991), and, in fact, this behavior has been observed in recent simulations (Goldenberg 

2003). 

Tanford emphasized that such measurements are meaningful only after 

eliminating all residual structure, requiring denaturation in 6M GmHCl (Aune et al. 

1967).  This is a crucial issue.  Structure induced by peptide hydrogen bonds is abolished 

only under strongly denaturing conditions.  As pointed out by Millet et al., “Additional 

evidence that chemically or thermally denaturing conditions are typically good solvents 

for the unfolded state stems from the observation that RG is generally fixed over a broad 

range of temperatures or denaturant conditions” (Millett et al. 2002, pg. 255 and ensuing 

discussion).   

Today, the most reliable experimental values of R0 and ν in equation 3.1 are 

obtained from small angle X-ray scattering (SAXS) (Millett et al. 2002).  Using this 

approach for a series of 25 unfolded proteins, values of R0 = 2.08 ± 0.19 Å and 

ν = 0.581 ± 0.017 were obtained (Kohn et al. 2004).  These results are a strong indicator 

of random-coil behavior.  Additionally, SAXS data can be used to construct a Kratky 

plot, s versus s2I(s), where s is the small angle scattering vector and I(s) is the 

corresponding scattering intensity (Semisotnov et al. 1996; Doniach 2001).  For random 

coils, the plot increases monotonically and approaches linearity in s (Pilz et al. 1979).  

This is the behavior observed for unfolded proteins, whereas folded proteins plotted in 

this way exhibit a notable maximum (figure 1 in (Millett et al. 2002)).  Such plots have 

become the present-day standard for assessing random-coil behavior in unfolded proteins 

(Semisotnov et al. 1996; Doniach 2001). 
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The success of the random-coil model in fitting experimentally determined coil 

dimensions of unfolded proteins is undisputed.  Accordingly, the field has grown 

accustomed to believing that unfolded proteins are featureless random coils.  Here, we 

demonstrate that non-random coils can also exhibit random-coil statistics. 

Tanford knew that denatured proteins need not be entirely random simply because 

they satisfy random-coil statistics, and he warned: 

“A cautionary word is in order regarding the use of the measurement of the radius 

of gyration of a particular protein as the sole criterion for random coil behavior.  

Other conformations can have similar radii of gyration.  For example, an α-helical 

rod has a length of 1.50 Å per residue... There is a narrow range of N where 

essentially identical values of RG are predicted for α-helices and random coils.” 

(Tanford 1968) 

In this paper, we introduce the rigid-segment model, a highly contrived, limiting 

model in which known protein structures are partitioned alternately into rigid segments 

linked by individual flexible residues.  X-ray elucidated coordinates are retained for the 

rigid segments, but backbone torsions angles were allowed to vary freely for the flexible 

residues.  The fraction of the chain allowed to vary, ~8%, was chosen to approximate one 

residue per peptide chain turn (Rose and Wetlaufer 1977).  If this physically-unrealistic, 

extreme model still exhibits random-coil statistics, it follows that a lesser degree of pre-

organization in the unfolded state need not violate random-coil expectations.  In fact, we 

find that our limiting model still reproduces random-coil statistics when ~92% of the 

structure is held rigidly in its native conformation. 
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3.3 The Rigid-Segment Model 

Our strategy is to devise an algorithm that operates on native protein structures 

and generates ensembles of highly structured, sterically allowed conformers.  We then 

test these ensembles and determine the extent to which they exhibit random-coil 

statistics.  A largely native ensemble that nevertheless appears random serves as a 

counterexample to the random-coil model.   

The algorithm consists of several steps.  First, each residue is examined in turn, 

and those with the maximum possible flexibility are identified.  Flexibility is measured 

by evaluating the range of sterically allowed backbone torsion angles for each residue; 

the broader the range, the greater the flexibility.  Next, using a biochemically-motivated 

rationale, a subset of these flexible residues is selected as links, transforming the 

polypeptide chain into rigid segments interconnected by flexible links.  The links are then 

varied at random in concerted fashion to generate clash-free ensembles suitable for 

statistical analysis.  These steps are now described in detail. 

 

Identifying individual flexible residues 

The first step quantifies the backbone flexibility of individual residues.  For each 

residue, sterically allowed φ,ψ-space (Ramachandran et al. 1963) was explored using 

torsion angle Monte Carlo sampling with hard sphere sterics, with the acceptance ratio 

taken as the measure of flexibility.  Steric clashes were evaluated in a window of 15 

residues flanking the residue in question (but with diminishing window size nearing chain 

termini).  A half-window of 15 residues was chosen to approximate the average size of a 
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protein secondary structure element together with its adjoining turn (Rose and Wetlaufer 

1977). 

To construct a flexibility profile of acceptance ratio versus residue number, 

10,000 backbone φ,ψ-pairs were sampled for each residue, as illustrated for lysozyme in 

figure 3.1.  Generally, though not invariably, the most flexible residues correspond to 

turns; glycines also promote chain flexibility. 

 

Selecting sets of flexible residues 

Individual acceptance ratios were ranked by flexibility, and a set of suitable size 

was chosen based on the average length of a protein α-helix: 12 residues (Presta and 

Rose 1988).  Accordingly, a flexible residue set, ℜ, of size m = N/12 residues was 

chosen, having one flexible linker for every 12 residues in the protein.  The value of m 

was rounded to the nearest integer, with a minimum value of one. 

 The most flexible residues were chosen for inclusion in ℜ, with two minor 

qualifications: sites were chosen so as to be at least five residues apart, and those within 

five residues of chain termini were not included.  These qualifications promote a uniform 

distribution of flexible links along the polypeptide chain and ensure that the chosen 

backbone torsion angles are independent of one another (Ohkubo and Brooks 2003). 

An ensemble of structures was generated for each protein by concerted sampling 

of backbone torsions, chosen at random from all sterically allowed regions of φ,ψ-space.  

Random-coil statistical measures were then used to characterize this ensemble.  Details 

are described next. 
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3.4 Materials and Methods 

Thirty-three proteins of size 8 to 415 residues were selected from the protein data 

bank (Berman et al. 2000) based on structure quality, scientific interest, and size 

distribution (Table 3.2).  Where possible, proteins studied previously by SAXS were 

included.  All crystallographic waters, heteroatoms and non-biological chain terminators 

(Acetyl groups, N-Methylamide, etc.) were removed, and any disulfide bonds were 

broken.   

Hard-sphere, torsion angle Monte Carlo simulations (Metropolis et al. 1953) were 

performed using a suite of freely available programs 

(http://roselab.jhu.edu/dist/index.html).  Default van der Waals radii (Srinivasan and 

Rose 2002a) were used unless the experimentally reported distance between two atoms 

was smaller than the sum of their hard sphere radii, in which case the minimum inter-

atomic distance was taken from PDB coordinates.  At each Monte Carlo step, random 

values of backbone torsions, chosen from allowed regions on the dipeptide map, were 

assigned in concert to residues in ℜ.  In the event of a steric clash, the step was rejected.  

Statistics of interest for each ensemble include the average radius of gyration and 

end-to-end distance.  The geometric radius of gyration for a chain is given by: 

 
   

GR =
1
M

2
i

r 
r − c

r 
r ( )

i=1

M
∑  (3.3) 

where M is the number of atoms in the protein structure,  
r 
r i  is the position of atom i in 

three-dimensional space, and   
r 
r C  is the geometric center of the molecule.  Weighting by 

mass or atomic scattering factor does not change the radius of gyration significantly, and 
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therefore the ensemble-averaged radius of gyration was computed simply by averaging 

RG over all chains in the ensemble. 

 The mean squared end-to-end distance, <L2>, is given by: 

 L2 =
1
n

L j
2

j =1

n

∑  (3.4) 

where n is the number of conformers in the ensemble, and Lj is the end-to-end distance of 

conformer j, taken from the amino-terminal nitrogen to the carboxy-terminal oxygen.  

End-to-end distance histograms were generated using the R statistics package (R 

Development Core Team 2003). 

For each protein in the dataset, an ensemble of at least 1,000 clash-free 

conformers was generated as described above, with flexible residues selected from the 

corresponding flexibility profile (e.g., figure 3.1).  This process was repeated five times.  

To assure convergence, standard deviations for both RG and <L2> were calculated.  As a 

further test, ensembles of 10,000 structures and 500 structures were examined; all have 

similar statistics. 

The program CRYSOL (Svergun et al. 1995) was used to generate simulated 

SAXS scattering profiles for every conformer in each ensemble.  In CRYSOL, the 

scattering vector s is defined as: 

 s = 4π
sinθ

λ
 (3.5) 

where θ is the scattering angle and λ is the X-ray wavelength (in Ångstroms).  Default 

options were used for all values.  Scattering profiles of all conformers were averaged at 

every point, and errors were reckoned as the standard deviation of I(s) for that point over 
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the entire ensemble.  Simulated Kratky plots were produced by plotting s against s2I(s) 

for every point. 

 

3.5 Results 

Detailed results for lysozyme (1HEL) using the rigid-segment model are 

described as an illustrative example.  Almost all flexible residues are situated in turn and 

coil regions (figure 3.1), as identified from backbone torsion angles (Srinivasan and Rose 

1999).  The set of flexible linker residues, ℜ, selected by our algorithm is (see Table 3.2): 

 {16, 22, 41, 47, 55, 71, 79, 86, 102, 117, 123}   

and the resultant ensemble of segmentally-rigid chains was found to be consistent with 

random-coil expectations.  In particular, the value of RG for denatured lysozyme 

predicted by equation (3.1) is 35.0 ± 4.3 Å, and the average RG from five rigid-segment 

simulations is 37.93 ± 0.14 Å, in good agreement.  The experimentally determined RG for 

trifluoroethanol (TFE)-denatured lysozyme is 35.8 ± 0.5 Å (Hoshino et al. 1997); this 

value may be especially relevant for comparison with the rigid-segmental model because 

TFE stabilizes helical segments (Nelson and Kallenbach 1986).  Similarly, the value 

<L2> for denatured lysozyme predicted by equation (3.2) lies between 7,095 Å2 and 

10,965 Å2, and <L2> from rigid-segment ensembles is 10,690 ± 160 Å2, near the high 

end of the predicted Gaussian distribution (figure 3.2).  Thus, highly structured lysozyme 

chains (figure 3.3), generated using the rigid-segment model, exhibit random-coil 

statistics. 

The rigid-segment model was applied to 33 proteins in all, as summarized in table 

3.3.  In general, values of both RG and <L2> are consistent with random-coil 
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expectations, and histograms of the end-to-end distances fit well to a Gaussian curve with 

two exceptions: Angiotensin II (1N9V, 8 residues) and PKC δ-Cys2 Domain (1PTQ, 50 

residues).  Both outliers are small and deviate from the normal distribution expected for 

longer chains (more than ~100 residues), consistent with the systematic deviations from 

equations (3.1) and (3.2) that Tanford noted for short chains (Tanford 1968 figure 2; 

Cantor and Schimmel 1980, pg. 994).  However, two other small proteins in our dataset 

(e.g., 1VII, 36 residues; 2GB1, 56 residues) behave as expected for longer chains.  The 

rigid-segment model, which tends to localize chain flexibility at peptide chain turns, is 

expected to be sensitive to differences in the average segment length between consecutive 

turns.  This expectation is borne out: in comparison to the values predicted by equation 

(3.1), the rigid-segment model under-estimates RG for α-helical proteins (1VII, 1LMB, 

1HRC, 2HMQ, 1CM1, 1MBO and 1MUN) but over-estimates RG for β-sheet proteins 

(1SHF, 1CSP, 2PCY and 1IFB), as shown in table 3.1. 

Among the RG’s, one outlier warrants particular comment.  The value of RG for 

creatine kinase (1QK1) from rigid-segment calculations is 79.812 ± 0.078 Å, but the 

corresponding value predicted by equation (3.1) is only 66.5 ± 8.9 Å.  It is noteworthy 

that both values substantially exceed the actual, experimentally determined value of 

46.1 ± 1.5 Å observed using SAXS.  We find no explanation for this anomalous behavior. 

Data from all 33 proteins were fit to equations (3.1) and (3.2) and are displayed in 

figure 3.4.  A nonlinear least squares best fit (R Development Core Team 2003) to 

equation (3.1) gives R0 = 1.98 ± 0.37 Å and ν = 0.602 ± 0.035, which are 

indistinguishable from recent experimentally-determined values (Kohn et al. 2004).  The 

corresponding fit to equation (3.2) gives L0 = 81.8 ± 3.4 Å2, similar to Tanford’s value of 
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L0 = 70 ± 15 Å2 (Tanford et al. 1966).  The standard deviations reported here for RG and 

<L2> represent a convergence criterion, not the actual uncertainties of those values, and 

weights were not used during the fits. 

Values of RG derived from the rigid-segment and random-coil models are strongly 

correlated (r2 = 0.916, figure 3.5).  In all, characteristic statistics for the random-coil 

model resemble those for the rigid-segment model, despite the fact that in the latter, 92% 

of each chain is fixed in its native conformation.  

 

SAXS and Kratky Plots 

SAXS profiles monitor the correlation among inter-atomic distances.  In our 

simulations, inter-atomic distances do not vary within each rigid segment, so it is 

conceivable that a segmentally rigid ensemble could have random-coil values of RG and 

<L2> but yet appear structured in a Kratky plot.  To test this possibility, a Kratky plot 

was calculated for random chains from the lysozyme ensemble (figure 3.6A).  Although 

the simulated plot has a maximum at 0.275 Å-1, it lacks the pronounced hump typical of 

Kratky plots for native proteins.  A second test shows that side chain rigidity is a major 

factor contributing to this maximum.  After removal of side chain atoms beyond Cβ, the 

corresponding plot now resembles that of a denatured protein (figure 3.6B).  

 

3.6 Discussion 

 The random-coil model has a long and impressive record of successfully 

predicting the chain dimensions of denatured proteins (Tanford 1968; Millett et al. 2002; 

Kohn et al. 2004).  However, two recent lines of evidence suggest that denatured protein 
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chains may be far from random.  First, experiments have identified native-like 

organization in unfolded proteins.  Using residual dipolar couplings (RDCs) from NMR, 

Shortle and Ackerman showed that native-like topology persists under strongly 

denaturing conditions in a truncated staphylococcal nuclease (Shortle and Ackerman 

2001).  Contention about the origin of RDCs in unfolded proteins notwithstanding 

(Louhivuori et al. 2003), other NMR methods also detect structure in the unfolded state.  

Using triple-resonance NMR, native-like topology has been observed in protein L (Yi et 

al. 2000).  A second line of evidence suggests that unfolded proteins are conformationally 

biased toward polyproline II (PII) helical conformations.  Both theory (Mu and Stock 

2002; Pappu and Rose 2002; Avbelj and Baldwin 2004; Drozdov et al. 2004; Garcia 

2004; Kentsis et al. 2004; Mezei et al. 2004; Vila et al. 2004) and experiment (Tiffany 

and Krimm 1968a; Woutersen and Hamm 2000; Rucker and Creamer 2002; Shi et al. 

2002a; Ferreon and Hilser 2003) have investigated the preference for PII in unfolded 

peptide ensembles.  If the experimental results are correct and the ensemble is not 

random, why is the random-coil model so successful?  This paradox has been dubbed the 

reconciliation problem by Plaxco and co-workers (Millett et al. 2002). 

Our contrived counterexample was designed to address the reconciliation problem 

directly.  Indeed, we find that the random-coil model is insensitive to a preponderance of 

stiff segments in an otherwise flexible chain.   

In our simulations, chains of interest are comprised of rigid segments of native 

protein structure interconnected by flexible hinge residues.  This approach is deliberately 

extreme in its neglect of physical reality, and we emphasize that it is not intended as a 

model of the unfolded state.  With the exception of steric repulsion, all interatomic forces 



 

93 

and temperature-dependent effects are ignored, together with resultant structural 

fluctuations.  Yet, this physically absurd model – in which 92% of the native structure is 

retained – successfully reproduces random-coil statistics for RG and <L2> in good solvent 

(e.g., 6M GmHCl).  Therefore, it is none too surprising that transient organization in 

denatured proteins could also give rise to the random-coil statistics observed in 

experiment (Kohn et al. 2004). 

The presence of pre-organization in denatured proteins changes our perspective 

about the disorder ←
→  order transition that occurs during protein folding.  In the prevailing 

view, denatured proteins are random coils, lacking in correlations beyond nearest chain 

neighbors.  If so, there is a puzzling, time-dependent search problem as unfolded 

polypeptide chains negotiate self-avoiding Brownian excursions through this featureless 

landscape en route to their native conformation (Levinthal 1969).  Concepts like folding 

funnels, kinetic traps, and frustration all arose as attempts to rationalize this process (Dill 

1999).  However, such conundrums are eliminated by the presence of sufficient 

conformational bias in the unfolded state (Zwanzig et al. 1992; Srinivasan and Rose 

2002b).  In fact, significant conformational bias is inescapable, and it originates from 

sterically imposed chain organization that extends beyond nearest sequential neighbors, 

such as those discussed in chapter 2 (Pappu et al. 2000; Fitzkee and Rose 2004b). 

The random coil model has been construed to imply that denatured proteins lack 

organization, an interpretation that has become a mainstay in protein folding studies.  

Against this backdrop, there was no motivation to seek out organizing steric interactions 

beyond the linked alanyl dipeptide (Ramachandran et al. 1963).  Nonetheless, such 

interactions do exist (Fitzkee and Rose 2004b) and are easy to detect.  Our rigid-segment 
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counterexample was developed to challenge this conventional interpretation of the 

random-coil model and to remove a conceptual obstacle that has impeded alternative 

explanations. 

 

3.7 Acknowledgments 

We thank Kevin Plaxco for insights and unpublished data and Patrick Fleming, 

Rajgopal Srinivasan, Ross Shiman, Gary Pielak, Nicholas Panasik, Timothy Street and 

Haipeng Gong for many helpful discussions.  Funding from the Mathers Foundation is 

gratefully acknowledged. 



 

95 

 Table 3.1: Proteins Used in Rigid Segment Simulations 

   Resolution Refinement Chain 
Protein PDB ID Chain (Å) Factor Length 

Angiotensin II 1N9V A (NMR) (NMR) 8 
Chicken Villin Headpice 1VII  (NMR) (NMR) 36 
PKC delta Cys2 Domain 1PTQ  1.95 0.196 50 
Protein G 2GB1  (NMR) (NMR) 56 
Fyn SH3 1SHF A 1.90 0.180 59 
CspB 1CSP  2.50 0.195 67 
Ubiquitin 1UBQ  1.80 0.176 76 
Lambda Repressor 1LMB 3 1.80 0.189 87 
Barstar 1A19 A 2.76 0.203 89 
CT Acylphosphatase (ctAcP) 2ACY  1.80 0.170 98 
Plastocyanin 2PCY  1.80 0.160 99 
Horse Cytochrome c 1HRC  1.90 0.179 104 
pI3K SH2 (rat) 1FU6 A (NMR) (NMR) 111 
Myohemerythrin 2HMQ A 1.66 0.189 113 
Bovine α-Lactalbumin 1F6S A 2.20 0.216 122 
Bovine Ribonuclease A 1XPT A 1.90 0.162 124 
CheY 1EHC  2.26 0.143 128 
Lysozyme 1HEL  1.70 0.152 129 
Intestinal FA Binding Protein 1IFB  1.96 0.188 131 
Staphylococcal Nuclease 2SNS  1.50 N/A 141 
Calmodulin 1CM1 A 2.00 0.234 143 
Myoglobin 1MBO  1.50 0.159 153 
Ribonuclease H 2RN2  1.48 0.196 155 
ASV Integrase Core 1ASU  1.70 0.152 162 
T4 Phage Lysozyme 2LZM  1.70 0.193 164 
DHFR 1AI9 A 2.76 0.203 192 
MutY Catalyic Domain 1MUN  1.20 N/A 225 
Triosephosphate Isomerase 5TIM A 1.83 0.183 249 
Human Glyoxase II 1QH3 A 1.90 0.185 260 
EcoRI Endonuclease 1ERI A 2.70 0.170 261 
UDP-Galactose 4-Epimerase 1NAH  1.80 0.165 338 
Creatine Kinase 1QK1 A 2.70 0.195 379 
Yeast PGK 3PGK  2.50 N/A 415 
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 Table 3.2: Flexibility Set Selection in Lysozyme 

Residue SS Residue  Included 
Number Type1 Type Flexibility2 in Set? 

102 C GLY 0.694 Yes 
16 C GLY 0.645 Yes 

126 T GLY 0.640 No† 
86 C SER 0.635 Yes 
71 T GLY 0.630 Yes 

129 C LEU 0.592 No† 
4 P GLY 0.570 No† 

22 T GLY 0.546 Yes 
117 T GLY 0.542 Yes 
128 P ARG 0.375 No‡ 
47 T THR 0.368 Yes 
41 T GLN 0.366 Yes 
1 C LYS 0.349 No† 

127 P CYS 0.327 No† 
84 T LEU 0.321 No‡ 

123 T TRP 0.285 Yes 
26 H GLY 0.282 No‡ 

101 H ASP 0.277 No‡ 
21 T ARG 0.264 No‡ 

103 C ASN 0.250 No‡ 
100 H SER 0.207 No‡ 
79 P PRO 0.196 Yes 
55 T ILE 0.191 Yes 

 

1  Secondary structure types were determined as in (Srinivasan and Rose 1999).  C=coil, T=turn, 

P=polyproline II helix, and H=α-helix. 

2  Flexibility values, in rank order, correspond to those plotted in fig. 2.   

†  Not included owing to its proximity to the N- or C-terminus. 

‡  Not included owing to its proximity to a previously selected residue. 
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Table 3.3: Summary of Simulations and Comparison to the Random Coil Model  

and SAXS (Proteins 1-20) 

   Radius of Gyration (Å) Mean-Squared End-to-End 
Distance (Å2) 

PDB 
ID 

Chain 
Length 

Flexible 
Residues 

SAXS1 Random 
Coil 

Model2 

Segment 
Simulations3 

Random Coil 
Model4 

Segment 
Simulations 

1N9V 8 1 9.1±0.3 6.96±0.68 6.8790±0.0086 560±120 346.3±3.5 
1VII 36 3  16.7±1.8 16.044±0.019 2,520±540 2,015±13 

1PTQ 50 4  20.2±2.3 16.988±0.012 3,500±750 2,313±13 
2GB1 56 5 23±1 21.6±2.5 25.396±0.039 3,920±840 5,407±57 
1SHF 59 5  22.2±2.5 23.269±0.037 4,130±890 3,580±71 
1CSP 67 6  23.9±2.8 29.047±0.066 4,700±1,000 4,261±77 
1UBQ 76 6 25.2±0.2 25.8±3.0 25.176±0.048 5,300±1,100 4,290±120 
1LMB 87 7  27.9±3.3 24.244±0.048 6,100±1,300 4,420±140 
1A19 89 7  28.2±3.4 28.628±0.060 6,200±1,300 6,372±74 
2ACY 98 8 30.5±0.4 29.9±3.6 34.945±0.095 6,900±1,500 7,430±270 
2PCY 99 8  30.0±3.6 40.439±0.075 6,900±1,500 11,690±110 
1HRC 104 9  30.9±3.7 28.06±0.10 7,300±1,600 5,200±180 
1FU6 111 9 30.3±0.3 32.1±3.9 29.87±0.10 7,800±1,700 5,990±180 

2HMQ 113 9  32.4±3.9 30.07±0.10 7,900±1,700 6,200±120 
1F6S 122 10  33.9±4.2 36.04±0.17 8,500±1,800 8,650±240 
1XPT 124 10 33.2±1.0 34.2±4.2 36.777±0.077 8,700±1,900 8,420±130 
1EHC 128 11 38.0±1.0 34.9±4.3 36.613±0.049 9,000±1,900 8,270±200 
1HEL 129 11 35.8±0.5 35.0±4.3 37.93±0.14 9,000±1,900 10,690±160 
1IFB 131 11  35.3±4.4 47.61±0.15 9,200±2,000 15,260±370 
2SNS 141 12 37.2±1.2 36.9±4.6 41.10±0.14 9,900±2,100 10,660±240 

 

1 SAXS data from Millett et al. (Millett et al. 2002) and Kohn et al. (Kohn et al. 2004). 
2  Random-coil radii of gyration calculated from equation 1 using constants from (Millett et al. 2002; Kohn 

et al. 2004). Error is calculated using standard propagation of error formulae. 

3 Segment simulation error was calculated as the error on the mean from five simulations. 

4 Random-coil mean-squared end-to-end distance values calculated from equation (3.2) (Tanford et al. 

1966).  Error is propagated from the initial constant. 
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Table 3.3: Summary of Simulations and Comparison to the Random Coil Model  

and SAXS (Proteins 21-33) 

   Radius of Gyration (Å) Mean-Squared End-to-End 
Distance (Å2) 

PDB 
ID 

Chain 
Length 

Flexible 
Residues 

SAXS1 Random 
Coil 

Model2 

PDB ID Chain Length Flexible 
Residues 

1CM1 143 12  37.2±4.6 33.76±0.25 10,000±2,100 7,920±320 
1MBO 153 13 40±2 38.7±4.8 40.084±0.083 10,700±2,300 13,140±270 
2RN2 155 13  39.0±4.9 39.50±0.21 10,900±2,300 11,850±200 
1ASU 162 14  40.0±5.0 42.94±0.19 11,300±2,400 11,160±320 
2LZM 164 14  40.3±5.1 36.83±0.19 11,500±2,500 9,730±300 
1AI9 192 16 44±2 44.1±5.6 51.71±0.13 13,400±2,900 21,370±330 

1MUN 225 19  48.4±6.3 47.12±0.21 15,800±3,400 16,200±710 
5TIM 249 21  51.3±6.7 49.88±0.24 17,400±3,700 15,910±340 
1QH3 260 22  52.6±6.9 61.34±0.54 18,200±3,900 21,240±810 
1ERI 261 22  52.7±6.9 62.78±0.10 18,300±3,900 24,900±1,100 

1NAH 338 28  61.3±8.3 62.67±0.61 23,700±5,100 23,700±680 
1QK1 379 32 46.1±1.5 65.5±8.9 79.812±0.078 26,500±5,700 43,500±2,400 
3PGK 415 35 71±1 69.0±9.5 67.58±0.41 29,100±6,200 32,200±1,100 

 

1 SAXS data from Millett et al. (Millett et al. 2002) and Kohn et al. (Kohn et al. 2004). 
2  Random coil radii of gyration calculated from equation (3.1) using constants from (Millett et al. 2002; 

Kohn et al. 2004). Error is calculated using standard propagation of error formulae. 

3 Segment simulation error was calculated as the error on the mean from five simulations. 

4 Random-coil mean-squared end-to-end distance values calculated from equation (3.2) (Tanford et al. 

1966).  Error is propagated from the initial constant. 
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Figure 3.1.  Flexibility profile for lysozyme (PDB 1HEL).  Secondary structure is 

indicated by colored bars beneath the plot: red = α-helices, blue = β-strands and green = 

turns.  Secondary structure determinations are based on backbone torsions, as described 

in (Srinivasan and Rose 1999). 
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Figure 3.2.  End-to-end distance histogram for lysozyme using 5000 chains generated 

from the rigid segment model.  Chains were grouped into 10 Å-bins based on the distance 

from the N-terminal nitrogen to the C-terminal oxygen.  For comparison, a Gaussian 

curve having the same mean and standard deviation as the actual distribution is also 

shown (dotted line). 
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Figure 3.3.  Representative lysozyme structures from rigid segment simulations.  The 

entire chain was held fixed in its X-ray-determined conformation except for 11 flexible 

hinge residues (shown as yellow space-filling spheres).  Ribbon diagram depict elements 

of secondary structure, defined here from the PDB header records and generated using 

MOLSCRIPT (Kraulis 1991) and Raster3D (Merritt and Bacon 1997).  Termini are 

color-coded: blue=N-termini; red=C-termini. 
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Figure 3.4.  (A) Radius of gyration (<RG>) versus chain length, in residues, for 33 

ensembles from rigid segment simulations.  The curve is well fit by equation (3.1), with 

R0 = 1.98 ± 0.37 Å and ν = 0.602 ± 0.035.  (B) Mean squared end-to-end distance (<L2>) 

versus chain length, in residues, for the same 33 ensembles.  The best-fit value of L0, the 

slope of the line, is 81.8 ± 3.4 Å2.  These fitted parameters are in close agreement with 

accepted random-coil values. 
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Figure 3.5.  Comparison between our values of RG from the rigid segment model and 

corresponding values of RG from random-coil expectations using equation (3.1).  All data 

points fall near the diagonal line.  To aid in visualization, a shaded region marks the 

±15% boundary, ranging between y = 1.15x and y = 0.85x.  
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Figure 3.6.  Kratky plots of rigid segment simulations.  (A) calculated Kratky plot for 

1,296 structures chosen at random from the lysozyme ensemble.  (B) calculated  Kratky 

plot for the same structures after removal of side chain atoms beyond Cβ.  The maximum 

in (A) is suggestive of a native protein while (B) resembles a denatured protein, 

suggestive of the fact that the hump in (A) is caused by side chain rigidity, not by lack of 

backbone flexibility. 
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CHAPTER 4 

The Protein Coil Library: 

A Structural Database of Non-helix, Non-strand Fragments Derived from 

the PDB* 

4.1 Abstract 

 Approximately half the structure of folded proteins is either α-helix or β-strand.  

We have developed a convenient repository of all remaining structure after these two 

regular secondary structure elements are removed.  The Protein Coil Library 

(http://roselab.jhu.edu/coil/) allows rapid and comprehensive access to non-α-helix and 

non-β-strand fragments contained in the Protein Data Bank (PDB).  The library contains 

both sequence and structure information together with calculated torsion angles for both 

the backbone and side chains.   Several search options are implemented, including a 

query function that uses output from popular PDB-culling servers directly.  Additionally, 

several popular searches are stored and updated for immediate access.  The library is a 

useful tool for exploring conformational propensities, turn motifs, and a recent model of 

the unfolded state.

                                                 

* This chapter is reprinted with permission from the authors as allowed by the copyright agreement.  

Fitzkee, N. C., Fleming, P. J., and Rose, G. D.  (2005) Proteins: Structure, Function and Bioinformatics.  

58 (4): 852-4.  Copyright © 2005 Wiley-Liss, Inc. 
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4.2 Introduction 

The structures of folded proteins are inherently complex, and many cognitive 

schemes have been developed to simplify and organize protein substructure.  Cartoon 

illustrations that reduce α-helices and β-strands to visual icons (Kraulis 1991) have been 

especially useful tools because approximately half of any given folded protein adopts 

either or both of these two regular secondary structure motifs.  Here, we focus on the 

other half of the protein, i.e. the “coil” regions. 

The intriguing hypothesis that coil regions are apt models for the unfolded state of 

proteins has motivated several important studies.  Swindells et. al. distinguished between 

α-helices, β-strands, polyproline-II helices and coil (everything else) when calculating 

conformational propensities for amino acids (Swindells et al. 1995).  Serrano compared 

the φ torsion angle propensities found in the coil conformation to NMR measurements of 

the unfolded state (Serrano 1995), an approach that has been pursued in very recent work 

(Avbelj and Baldwin 2004; Fleming et al. 2005).  On the whole, however, comparatively 

few investigators have capitalized on the wealth of structural information stored in coil 

fragments. 

The Protein Coil Library (PCL) is designed to address this issue.  It classifies 

protein structure using a torsion-angle based standard and stores non-helix, non-strand 

fragments in an online database.  The library includes molecular coordinates, dihedral 

angles, and sequence information for each fragment, and users can browse this 

information using a convenient web interface.  Data can also be accessed via FTP.  

Versatile search tools are provided via a queued system, and the output from several 

online PDB-culling servers can be used to select the list of proteins to be included in a 
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search.  Additionally, the library provides basic utility programs to assist users in 

analyzing their search results.   

  

4.3 Implementation 

Secondary Structure Classification 

The method used to classify secondary structure in the PCL, similar to that 

described by Srinivasan and Rose (Srinivasan and Rose 1999),  tiles Ramachandran 

dihedral space (Ramachandran and Sasisekharan 1968) into a course-grained 30o x 30o φ, 

ψ-grid.  We refer to these grid squares as mesostates; each is assigned a unique identifier.  

Any protein backbone conformation can be approximated by its linear sequence of 

mesostate identifiers, and regular expressions of mesostate sequences can be used to 

define α-helices, β-strands, and turns.  Hydrogen bonds are not included in our method, 

but, nevertheless, the results are in close agreement with those of other secondary 

structure classification programs (e.g. DSSP (Kabsch and Sander 1983)) that do utilize 

hydrogen bonds.  Mesostate bins are illustrated in figure 4.1, overlaid on to a contour plot 

of Ramachandran dihedral angles calculated by Hovmöller et. al (Hovmöller et al. 2002).  

The regular expressions used to define secondary structures (α-helix, β-strand, 

polyproline-II helix, turns, and coil) are given on the PCL web page and in table 4.1. 

 

Coil Fragment Excision 

Using the secondary structure classification algorithm described above, non-helix 

and non-strand fragments were extracted from the Protein Data Bank (Berman et al. 

2000).  Each fragment was inspected for chain breaks.  Residues lacking any backbone 
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atom (N, CA, C, or O) and single-residue fragments were excluded from the library.  As a 

result, all fragments in the PCL are continuous and include at least two residues.  Where 

possible, up to two flanking residues at both the N- and C-termi were also extracted to 

provide the context of the fragment.  The resulting coordinates were stored in standard 

PDB format. 

 

Torsion angle calculations 

Accompanying every fragment is a data file that includes the sequence of the 

fragment along with the φ, ψ, ω, τ, and χn torsion angle values for each residue, 

according to the IUPAC-IUB standard (IUPAC-IUB 1970).  The file also includes the 

per-residue mesostate identifiers and secondary structure classifications.  The file format 

is designed to ease high-capacity analysis and is described in detail on the PCL website. 

 

File naming and organization 

Data from the coil library are stored in a collection of compressed text files that 

can be accessed via the web or anonymous FTP.  Filenames reflect the origin and details 

of each fragment: the PDB identifier, chain, fragment length and start residue are all 

reported within each file name.  All files are organized hierarchically by PDB ID and 

fragment length to minimize strain on the server file system.  File naming conventions 

are described in detail on the website. 

 

4.4 Interface and Usage 
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The Protein Coil Library can be accessed at http://roselab.jhu.edu/coil/.  For 

simple searches, single chains from a PDB identifier may be browsed interactively.  For 

each chain, coil fragments are listed and ranked according to size.  The browsing 

functionality allows the user to download molecular coordinates directly or to view 

dihedral angle and secondary structure data in an HTML document.  A cross-reference 

link to the Protein Data Bank site is associated with each coil fragment. 

For more complex queries, a batch search form is provided that allows users to 

specify fragment sizes in addition to PDB and chain identifiers.  In addition to a simple 

text file containing PDB ID’s, PDBSelect (Hobohm and Sander 1994) and PISCES 

(Wang and Dunbrack 2003) formatted lists may be uploaded that specify which chains to 

include in the search.  Using a PDBSelect or PISCES list allows the user to filter 

fragments based on sequence identity, resolution, and refinement quality (R-value).  Once 

submitted, batch searches are queued, and when the results have been calculated, the user 

is notified that the search results are available on the server.  Results are returned as a list 

of fragments stored on the server as well as a compressed archive of the dihedral angle 

data for all matched fragments.  Coordinates for search results must be downloaded 

separately or extracted from a local copy of the PDB using one of the included utilities.  

Search results are removed from the server after two weeks. 

Given the popularity of PISCES, two lists are generated automatically to ease 

resource consumption.  The first list contains fragments extracted from PDB entries with 

a 90% sequence identity cutoff, a resolution of 2.0 Å or better, and an R-value of 25% or 

better.  The second list contains fragments with a 20% sequence identity cutoff, a 

resolution of 1.5 Å or better, and an R-value of 25% or better.  The results from these 
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searches are always available as precompiled lists, and as demand arises other searches 

can be scheduled automatically as well.  While the coil library itself is updated nightly 

from the PDB, these lists are only updated weekly, in coordination with the distribution 

of new PISCES lists. 

Finally, a repository of analysis tools is provided on the website.  In addition to a 

utility that will extract structural coordinates given a dihedral angle file, a tool is provided 

that can catalog the number of times different structural motifs appear in a dataset.  As 

additional tools are implemented or contributed, they will be posted at this location. 

 

4.5 Statistics 

There are presently 784,257 coil fragments contained in the PCL, representing 

55,111 chains in 25,392 unique PDB identifiers.  The culled list containing fragments 

having less than 90% sequence identity cutoff, resolution of 2.0 Å or better, and an R-

value better than 25% currently has 57,402 fragments representing 3,959 chains in 3,652 

unique PDB identifiers.  The distributions of fragment sizes for both lists are markedly 

skewed toward short fragments (figure 4.2).  This is not surprising in light of hydrogen 

bonding considerations:  α-helix and β-strand are the only regular structures that can 

satisfy hydrogen bonds for long chain segments, and the PCL lacks these structures.  

However, hydrogen-bonded structures are also abundant in short chain fragments.  

Indeed, using the least stringent hydrogen bond definitions outlined by Kortemme et. al. 

(Kortemme et al. 2003), approximately 40% of the residues in the PCL are involved in an 

i to i+3 hydrogen-bonded turn. 
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Table 4.1: Secondary Structure Mesostate Definitions 

Secondary SS   
Structure Code Mesostates Description 

α-helix H De, Df, Ed, Ee, Ef, Fe A region is identified as α-
helix if there are five or 
more contiguous residues 
in this mesostate set. 

β-strand E Bj, Bk, Bl, Cj, Ck, Cl, Dj, Dk, Dl A region is identified as β-
strand if there are three or 
more contiguous residues 
in this mesostate set. 

Turn† T EfDf, EeEf, EfEf, EfDg, EeDg, EeEe, EfCg, 
EeDf, EkJf, EkIg, EfEe, EkJg, EeCg, DfDf, 
EfCf, DgDf, DfDg, IhIg, EfDe, EkIh, DgCg, 
DfCg, IbDg, DfEe, FeEf, IbEf, DfEf, IhJf, IhJg, 
IgIg, EfCh, DgEe, DgEf, EeEg, IhIh, EeDe, 
IgJg, EkKf, EeCh, IbDf, DgDg, EgDf, FeDg, 
ElIg, IgIh, DfDe, EjIg, EeCf, DfCh, DgCf, 
DfCf, DeEe, DkIh, FeDf, EkIf, EeDh, DgCh, 
IgJf, EjJg, FeEe, DlIh, EgCg, ElIh, EjJf, FeCg, 
DlIg, IbCg, EfEg, EkJe, FkJf, ElJg, DgDe, 
DlJg, EgCf, IaEf, FkIg, JaEf, EjIh, EgEf, DkJg, 
DeEf, EeCi, JgIh, IcEf, EkKe, DkIg, IbEe, 
EgDg, EeFe, EjKf, IaDf, HhIg, HbDg, ElJf, 
EfDh, IcDf, EfBh, IcDg, IcCg, FkJg, FeCh, 
IgKf, FdDg, EkHh, DfDh, DgBh, DfBh, DeDf, 
DfFe, EfFe, EgEe, EgDe, DkJf, JgJg, IbEg, 
IbCh, EfBg, DgCe, JlEf, CgCg, HhJf, EeBi, 
DfBi, IhIf, FeEg, FdEf, EdEf, DlJf, DhCg, JgIg, 
IeBg, FjIg, FdCh, EdEe, JfIh, JaEe, HhJg, 
HbEf, HbCh, FkIh, FjJf, ElJe, DhDf, CgDf  

All dipeptide pairs which 
match a combination in 
this mesostate set are 
identified as turn.‡ 

PII
† P Dk, Dl, Ek, El Residues in this mesostate 

set that are left over after 
β-strand has been 
classified are identified as 
polyproline-II. 

Coil† C All After all other 
classifications have been 
made, unclassified residues 
are identified as coil. 

 

†  Residues identified as turns, polyproline II helix, and coil are included in the library. 

‡  Definitions adapted from Rose, et. al.(Rose et al. 1985)  
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Figure 4.1.  Contour plot of Ramachandran dihedral space(Hovmöller et al. 2002) 

overlaid with mesostate tile definitions.  Mesostate identifiers are two character strings 

(e.g. Ae): the first character indicates a region along the φ axis and the second character 

indicates a region along the ψ axis.  Mesostates used to identify β-strands are shaded 

blue, those used for identifying α-helices are shaded pink, and those used for identifying 

polyproline-II are yellow.  Mesostates Dl and Dk, while normally used to identify 

polyproline-II, will be classified as β-strand if adjoining residues are also β-strand.  See 

table 4.1 for further detail. 
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Figure 4.2.  Comparing the coil fragment length in the PCL to the number of times that 

length occurs.  The solid line (left axis) shows the distribution for the entire coil library, 

and the dashed line (right axis) shows the distribution for a culled list of chains (90% 

sequence identity cutoff, 2.0 Å resolution or better, and 25% or better R-value).  Both 

graphs indicate a decline in frequency as fragment size increases. 
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CHAPTER 5 

Sterics and Solvation Winnow Accessible Conformational Space for  

Unfolded Proteins* 

5.1 Abstract 

The magnitude of protein conformational space is over-estimated by the 

traditional random-coil model, in which local steric restrictions arise exclusively from 

interactions between adjacent chain neighbors.  Using a five-state model, we assessed the 

extent to which steric hindrance and hydrogen bond satisfaction – energetically 

significant factors – impose additional conformational restrictions on polypeptide chains, 

beyond adjacent residues.  Steric hindrance is repulsive: the distance of closest approach 

between any two atoms cannot be less than the sum of their van der Waals radii.  

Hydrogen bond satisfaction is attractive: polar backbone atoms must form hydrogen 

bonds, either intramolecularly or to solvent water.  To gauge the impact of these two 

factors on the magnitude of conformational space, we systematically enumerated and 

classified the disfavored conformations that restrict short polyalanyl backbone chains.  

Applying such restrictions to longer chains, we derived a scaling law to estimate 

conformational restriction as a function of chain length.  Disfavored conformations 

predicted by the model were tested against experimentally determined structures in the 

coil library, a non-helix, non-strand subset of the PDB.  These disfavored conformations 

are usually absent from the coil library, and exceptions can be uniformly rationalized.  

                                                 

* This chapter has been submitted for publication in The Journal of Molecular Biology. 
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5.2 Introduction 

Protein folding, the transition from unfolded to folded ensembles, is an inherently 

complex process (Dill 1990; MacKerell et al. 1998), and the field is divided as to whether 

the essential features of this process can be captured using simplified models.  The 

hard-sphere model for noncovalent atomic contacts (Lee and Richards 1971; Richards 

1977) is a case in point.  Despite its oversimplification of the underlying quantum 

mechanics, the model has provided fundamental insights into conformational preferences 

in proteins (Ramachandran et al. 1963; Ramachandran and Sasisekharan 1968; Fitzkee 

and Rose 2004b) and polymer statistics (Flory 1969; Fitzkee and Rose 2004a).  Indeed, 

the model is now used routinely to assess the validity of X-ray elucidated protein 

structures (Laskowski et al. 1993a). 

Solvation also plays a significant role in protein structure (Chellgren and Creamer 

2004; Kentsis et al. 2004; Mezei et al. 2004; Fleming et al. 2005) and is another complex 

topic that invites simplification.  Essentially all polar groups in proteins are hydrogen 

bonded, either to other protein groups or to solvent water (Panasik et al.; Fleming and 

Rose 2005).  Each unsatisfied hydrogen bond in a folded protein comes at a cost of 

~5kcal/mol, an energetic penalty that rivals the free energy difference between the folded 

and unfolded forms of the molecule (Fleming et al. 2005).  This stiff energy cost can be 

exploited in the form of a simple screening algorithm in which polar atoms that fail to 

participate in an intramolecular hydrogen bond (Stickle et al. 1992) are assessed for 

solvent-accessibility (Lee and Richards 1971).  Further, the solvation energy can be 

quantified by the detailed extent to which such atoms can be hydrated (Petukhov et al. 

2004; Fleming et al. 2005).  This simple strategy avoids the incompletely-understood 
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complexity of explicit water but still identifies solvent-inaccessible, disfavored 

conformations successfully. 

 Steric exclusion and solvation are thought to be the dominant forces in the 

unfolded state of proteins (Dill and Shortle 1991; Pappu and Rose 2002; Chellgren and 

Creamer 2004), and we investigate their effects using the two simplifying approximations 

described above.  It is noteworthy that much earlier work, stemming from Flory, was 

grounded in the assumption that hard-sphere sterics will have little effect on the energy 

landscape of the unfolded state.  This assumption was based on the isolated pair 

hypothesis (IPH) (Flory 1969), which posits that the only systematic local steric 

constraints on a residue are exerted by its adjacent chain neighbors and are described by 

the well-known Ramachandran diagram for the alanyl dipeptide (Ramachandran and 

Sasisekharan 1968).  However, on re-examination, Pappu et al. found that local steric 

constraints do extend beyond the alanyl dipeptide (Pappu et al. 2000) and do influence 

the unfolded population.  Although other workers confirmed this result (Ohkubo and 

Brooks 2003), they concluded that it is limited to peptides of six residues or less, with 

only a small effect on the total conformational entropy of the unfolded population 

(Zaman et al. 2003). 

Today, the extent to which steric restrictions sculpt the conformational landscape 

remains unclear.  Protein secondary structure can be predicted largely on the basis of 

sterics and hydrogen bonding considerations (Srinivasan and Rose 1999) and may be 

sufficient to determine tertiary structure as well (Przytycka et al. 1999; Gong and Rose 

2005).  An undifferentiated tube of finite thickness with a hydrogen bonding potential can 

reproduce the entire repertoire of small, single-domain protein folds (Hoang et al. 2004), 
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indicating that finite chain thickness is the principal organizing factor for polypeptide 

chains (Banavar et al. 2004). 

Levinthal deduced that undisclosed organizing interactions must bias a protein as 

it negotiates the folding process because a random search for the native state could not be 

accomplished on a biologically realistic timescale (Levinthal 1969).  But what are these 

organizing interactions?  Are steric restrictions sufficient to justify Levinthal's conclusion 

by reducing the accessible energy landscape of an otherwise vast unfolded state? 

Steric repulsion is an appealing explanation, and especially so when hydrogen 

bonds to solvent are also included in the analysis.  But other models exist as well.  For 

example, in the foldon model, proteins organize via step-wise assembly of small, quasi-

independent subunits (Maity et al. 2005).  In the contrasting nucleation-collapse model, 

the search is reduced by an overall cooperative collapse around an expanded native-like 

nucleus (Daggett and Fersht 2003).  Alternatively, the chain might collapse around a 

hydrophobic core and then subsequently self-organize in a highly confined space (Dill 

and Stigter 1995).  Another model proposes that evolution has selected sequences that 

can fold with minimal frustration, avoiding non-productive conformational excursions 

(Go 1984; Onuchic and Wolynes 2004).  Some of these models are not mutually 

exclusive, of course. 

Here, we explore the hypothesis that steric restriction and protein:solvent 

hydrogen bonding reduce conformational complexity in the unfolded state.  Work done in 

chapter two identified a single sterically disfavored conformation: three consecutive 

residues in α-helical conformation followed by a residue in β-strand will encounter an 

unavoidable steric clash (Fitzkee and Rose 2004b).  This steric restriction organizes 
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protein structure by constraining the interaction between the two fundamental secondary 

structures, α-helix and β-strand, which must be separated by intervening residues in turn 

or coil.  Hybrid segments will be suppressed. 

The goal of this chapter is to enumerate such restrictions systematically and to 

quantify their significance in organizing the unfolded state.  Our methodology combines 

simulation with analysis of known structure.  In simulations, protein conformation was 

represented using five discrete states, drawn from assiduously chosen regions of 

conformational space for a dipeptide.  The five-state model was validated by showing 

that it is sufficient to represent proteins of known structure satisfactorily.  Using this 

model, conformations of short peptides were generated exhaustively and tested for 

restrictions imposed by either sterics or solvation requirements.  The probability of 

occurrence for a given conformation was measured by its acceptance ratio, the fraction 

of sterically-acceptable, solvation-available conformations encountered in a statistically 

significant number of randomly-generated attempts.  A restriction is then defined as a 

conformation with an acceptance ratio of less than e-1, corresponding to an ambient-

temperature fluctuation in our statistical energy function, as described in Methods.   

The five-state model was then applied to proteins of known structure to determine 

whether model-based restrictions are correspondingly disfavored in experimental 

structures.  In general, such conformations are usually absent altogether, and exceptions 

to this trend can be explained readily.  This conclusion was examined in detail for 

tetramer fragments, including an atomic-level description of ten illustrative, highly 

disfavored examples.  Finally, restrictions derived from short peptides were extrapolated 

to longer chains to derive a scaling law.  These results are now presented in detail.  
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5.3 Results 

Rebuilding Proteins from Five States 

To simplify the inherent complexity of protein structure, we developed a five-

state model that is intended to capture the fundamental backbone conformations (figure 

5.1 and table 5.1).  The model was validated by rebuilding the backbones of six 

arbitrarily chosen proteins using backbone torsion angles from these five conformational 

states (see Methods).  Rebuilding proteins using ideal bond lengths and angles remains a 

difficult challenge, even when exact backbone torsions are used (Holmes and Tsai 2004).  

Using the five-state model, good results were obtained for five of the six proteins (table 

5.2 and figure 5.2), with an RMSD < 3.0 Å from the native structure in all five cases.  

The sixth protein, hen egg lysozyme (1HEL), is also well represented in large part, but 

with a hinge-like opening of the structural core around residues 38-45.  Still, the RMSD 

for this case, 4.47 Å, is well below the value expected for a random conformation (Cohen 

and Sternberg 1980).  From a structural standpoint, artificially limiting the conformations 

of proteins to five discrete states is surely an oversimplification.  However, the five-state 

model is based on more than mere convenience; previous analysis indicates that a limited 

number of energy basins is sufficient to account for the majority of the equilibrium 

thermodynamic population, both for short peptides (Pappu and Rose 2002) and for 

proteins (Srinivasan et al. 2004). 

 

Summary of Five-State Simulations 
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Hard sphere simulations were performed on blocked polyalanyl peptides, 

N-acetyl-(Ala)n-N-methylamide, n = 1-6 as described in Methods.  Every combination of 

the five conformational states at each chain length was simulated.  Resultant clash-free 

structures were assessed for hydrogen bond satisfaction to ensure that all backbone polar 

groups could participate in a hydrogen bond.  The probability of occurrence for a given 

conformation was measured by its acceptance ratio, the fraction of successful attempts.  

Conformations with a low acceptance ratio (≤ e-1 ~ 38%, see Methods) were further 

investigated for steric clash and/or lack of solvent access.  A complete list of these 

disfavored conformations and their interactions can be found as at 

http://roselab.jhu.edu/fivestate/. 

Systematic conformational strain was not observed for polyalanine chains of 

length n = 1-2, but unfavorable conformations were observed for n = 3-6 (table 5.3).  

Given five states, there are 5n possible conformational strings for each polymer of length 

n.  The fraction of conformational space that is disallowed can be estimated as the 

number of conformations that are disfavored normalized by the total number of 

conformations.  Beyond three residues, observed trends indicate that many of the 

disfavored conformations for an n+1-residue peptide can be predicted from the 

corresponding conformations in an n-residue peptide.  For example, if HHE is disfavored 

in trialanine, then HHHE will be disfavored in tetraalanine.  Exceptions to this 

extrapolation pertain to conformations that are only marginally disfavored in the n-

residue case and probably result from statistical fluctuations in the data, not systematic 

problems with the analysis.  As anticipated by Ohkubo and Brooks (Ohkubo and Brooks 

2003), the number of unique disfavored conformations dies away beyond n = 6.  
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However, at this peptide length, approximately 50% of conformational space has already 

been eliminated owing to steric clash and/or lack of solvent access. 

Within the range of interest (n = 3-6), the number of highly improbable 

conformations increases with peptide length, reinforcing the proposition that residues do 

not behave as independent φ,ψ-pairs (Pappu et al. 2000).  Referring to the histograms in 

figure 5.3, the trimer distribution of low acceptance ratios (≤ e-1) is sparse, with the 

lowest ratio at 8.0%.  The number of conformations with acceptance ratios near 0% 

increases dramatically with increasing chain length, suggesting that disfavored 

interactions are cooperative.  As atoms are added to a peptide, the number of 

opportunities for disfavored interactions increases, a continuing trend over the range of 

interest.  The persisting peak in acceptance ratio at 8% is noteworthy and may be a result 

of decorating a constant trimer core with new, structurally allowed conformations.  

However, this explanation fails to account for the disappearance of the non-persisting 

peak at 24%.  

Of the 17 disfavored conformations for trialanine (table 5.3), 15 are a 

consequence of solvation effects.  In these 15 cases, the NH group is unsolvated, and in 

some conformations the C=O is buried as well.  In particular, a backbone N-H at position 

i+2  following an i+1 residue with backbone dihedrals in the bridge region (B) is 

shielded from hydrogen-bonding and inaccessible to solvent whenever the ith residue 

adopts an extended conformation, either polyproline II (P) or β-strand (E).  This same 

effect also prevails, though to a lesser extent, when the ith residue is in left-handed (L) 

conformation.  In other words, in a polyalanyl peptide, a conformation like Pi-1PiBi+1Xi+2 

has a low acceptance ratio (8%) because, for all X, the N-H of residue X cannot 
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participate in a hydrogen bond.  Specifically, it cannot hydrogen bond to the backbone 

because the two PP residues at i and i-1 direct possible backbone acceptors away from 

the N-H(i+2) group.  Neither can it hydrogen bond readily to water because the Cβ atoms 

of polyalanine inhibit solvent-access.  There are only two ways to satisfy the hydrogen 

bond in this example: the backbone might be adjusted so as to compensate an unfavorable 

geometry by the energetically favorable hydrogen bond.  Alternatively, a side chain to 

main chain hydrogen bond could satisfy this N-H group without encountering a steric 

clash because the covalent radius of the side chain acceptor would be smaller than the 

corresponding hard sphere radius of either a non-local acceptor or a water oxygen.  

Authentic proteins with segments in PPB conformation have most often utilized this latter 

strategy (see below). 

 

Analysis of Real Structures 

 Our entire dataset, cross-referenced with interactions, is available online at 

http://roselab.jhu.edu/fivestate/.  The tetraalanine trends described below also apply to 

trialanine and, where statistics are significant, to penta- and hexaalanine.  Tetramers 

represent a good compromise between a population that is large enough to be statistically 

significant but small enough to be individually analyzed. 

In simulations using the five-state model, there are 54 = 625 tetramers; 174 have  

e-1-level restrictions.  We validated these simulations by comparing them to the 

conformational trends seen in the protein coil library, a database of non-helix, non-strand 

segments from the PDB (see Methods for justification and chapter four for a detailed 

description).  The polyalanine model, which uses fixed bond lengths and scalar angles, 
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has disfavored conformers that can be compensated in authentic proteins.  For example, a 

backbone to side chain hydrogen bond could rescue a peptide with PPB conformation, as 

described above, whereas that conformation would be highly disfavored in an all-alanine 

model.  Table 5.4 lists common reasons for discrepancies between simulations and 

experimental structures.  The listed rationalization classes may expose limitations of the 

polyalanine model or the accuracy of the experimental structure.  For example, steric 

clashes (type I) or buried backbone hydrophilic atoms (type IIIb) are thought to be 

disfavored in proteins (Laskowski et al. 1993a) and may signal a problem structure when 

found in the coil library.  On the other hand, a cis-proline residue (type IIa) is simply 

beyond the scope of our all-trans-polyalanine model.  Given that fragments in the 

structural dataset were selected to conform to the five-state model and do not contain 

glycine, rationalization classes are not relevant for those cases. 

Tetramer conformations.  In the coil-library dataset of 3,864 tetrameric fragments, 

497 were identified as disfavored based on the 174 e-1-level model-based restrictions.  

Classifying these fragments according to the four rationalization classes yields the 

distribution shown in fig. 5.4.  The most frequent class is type IIIa, cases in which a 

backbone-side chain hydrogen bond satisfies an otherwise inaccessible backbone N-H.  

The other predominant class is type IIa, cis-peptide bonds, where conformations are not 

well described by our model.  Remaining classes include 19 instances of tetramers where 

backbone hydrophilic atoms appeared to be genuinely desolvated according to our model.  

However, it should be noted that the model fails to take into account hydrogen bonds to 

electron-rich aromatic rings, a conformation that was observed at least once.  Finally, 36 

of these 497 fragments could not be rationalized; all occurred among conformations with 
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higher acceptance ratios.  A similar situation was observed for the 12,731 fragments in 

the trialanine dataset: 845 were disfavored and 116 could not be rationalized. 

Tetramer statistics.  It is informative to compare the number of times a given 

conformation is observed to the number of times it is expected, under the assumption that 

the individual conformational states assort independently.  This comparison is explored in 

figure 5.5, where all 174 model-based tetramer restrictions are ranked and the log ratio of 

expected to actual occurrences is plotted after rationalizations are taken into account.  

Only one conformation, BLBE, is observed more frequently than would be expected by 

chance.  The plot indicates that model-based predictions of disfavored conformations are 

pertinent to experimental structures from the PDB: structures predicted to be disfavored 

by the model are less prevalent in the coil library, and they can be rationalized easily 

when they do occur (table 5.4), most often by a backbone to side chain hydrogen bond or 

by a cis-peptide bond. 

 

Examples of Disfavored Conformations 

In this section, we describe ten examples of disfavored tetramers and pentamers.  

An exhaustive description of all such conformations would be prohibitive, but full 

simulation data are available in at http://www.roselab.jhu.edu/fivestate/.  The 

conformations presented here were selected based on acceptance ratio, disparity between 

expected and observed occurrences in the coil library, and biophysical interest.   

Table 5.5 and figure 5.6 summarize the conformations described below.  Only 

sterically allowed conformations were tested for hydrogen bond satisfaction.  For each 

interaction in table 5.5 (column 5), the listed frequency is the number of times that 



 

126 

interaction occurs divided by the total number of disallowed conformations, i.e. the 

fraction disallowed.  This fraction may be misleading for compound conformations 

involving both steric clash and unsolvated polar groups: if a steric clash occurs in 80% of 

the conformations, hydrogen bond satisfaction would only be tested for the remaining 

20%, and the calculated frequencies will be bounded accordingly.  Similarly, if a given 

backbone nitrogen is unsolvated 90% of the time but a steric clash is present as well, the 

clash will be the dominant effect, and the calculated frequency will reflect this.  For non-

compound cases – conformations with unsolvated atoms but no steric clash, or 

conformations with steric clash but no unsolvated atoms – the indicated frequencies are a 

valid measure of that particular interaction.  In fact, this is the case for most disallowed 

conformations in our simulations, which involve either steric clashes or unsolvated 

atoms, but not both. 

Helix-Strand Transitions: HHEB and HHHE. Trialanine simulations indicate that 

the HHE conformation is disfavored for steric reasons, with the eleventh lowest 

acceptance ratio (0.20 ± 0.01) of the 125 possible conformations.  Thus, it follows that 

the two tetrameric conformations HHEB and HHHE also have correspondingly low 

acceptance ratios: 2.66 ± 0.29 x 10-2 for HHEB and 1.20 ± 0.04 x 10-2 for HHHE.  The 

primary interaction in both cases is an Oi-1 to Oi+2 steric clash, described previously in 

chapter two (Fitzkee and Rose 2004b).  The two conformations are distinguished by an 

additional interaction that arises when a bridge residue immediately follows an extended 

P or E residue: both EBX and PBX bias peptides toward conformations that shield the 

next residue from hydrogen bond access, regardless of X, resulting in an overall 

acceptance ratio of ~3% (table 5.5). 
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Occurrences of HHEB and HHHE in the coil library resemble their expected 

frequencies.  Given independent assortment, HHEB is expected three times and HHHE 

twice.  In fact, HHEB occurs twice and HHHE once.  All three observed occurrences are 

rationalized easily: both occurrences of HHEB have a cis-peptide bond which relaxes 

conformational strain and exposes the otherwise shielded backbone nitrogen to solvent.  

The sole occurrence of HHHE has several atypical bond lengths and angles, as identified 

by PROCHECK (Laskowski et al. 1993a), which relieve steric clash.  Exceptions like this 

one are expected to be minor or non-existent in the denatured state, which lacks 

persisting contacts that can compensate for distortion of equilibrium bond lengths and 

angles.  But even in the native state, the fact that peptide geometry is strained in these 

conformations lends support to the polyalanine model. 

Extended Residues and the Bridge Region: HBEB. As described above, a residue 

in an extended conformation followed by one in the bridge region (i.e. EB) tends to 

shield the following residue from either water or peptide hydrogen bonds.  Many of the 

restrictions described here are a consequence of this tendency, as illustrated by HBEB.  

Similar to HHEB, in that a steric clash between two carbonyl oxygens restricts 

conformational space, the trimeric HBE conformation is more permissive than HHE, with 

an acceptance ratio of 31% (vs. 19% for HHE).  The acceptance ratio for an HBEB 

tetramer, 3.54 ± 0.14 x 10-2, is substantially reduced relative to the trimer, largely because 

of the additional solvation requirement for the amino nitrogen at position i+4 (shown 

with its associated virtual water in figure 5.6B).  As seen in the illustration, the β-carbon 

of the adjacent extended residue inhibits access to the amino nitrogen.  This situation 

would be obviated for a glycine residue.  Similarly, an adjacent serine or threonine, with 



 

128 

its side chain hydrogen bond acceptor, could satisfy the otherwise occluded amino 

nitrogen.  In fact, both HBEB structures in the coil library are rationalized by a side 

chain-backbone hydrogen bond from a serine hydroxyl oxygen.  Significantly, a structure 

like the one in figure 5.6B, but with an occluding side chain that is hydrophobic, is never 

observed in our dataset. 

Mixing PII helix with bridge residues: EPBH, HPBB, PBPB, PPPB. 

Conformations with mixtures of P and B are often disfavored owing to a solvent-

inaccessible N-H group, as illustrated in figures 5.6C-F.  In each of these cases – EPBH, 

HPBB, PBPB, PPPB – a similar interaction blocks access to the amino nitrogen of the 

residue immediately following the PB combination.  Given the relatively large fraction of 

P and B residues in our dataset (table 5.1), PB-mixtures would be frequent in the coil 

library if these two conformations assorted independently.  However, as shown in figure 

5.5, all such structures occur less frequently than predicted, and almost every occurrence 

can be rationalized, typically by a backbone-side chain hydrogen bond.   

Compact conformations: HBLB. The conformation HBLB was chosen for 

discussion because of the large disparity between its expected and observed frequencies: 

three times vs. 38 times, respectively.  Superficially, this disparity seems to expose a 

model deficiency, but, in fact, each of the 38 occurrences can be rationalized by a local 

backbone-side chain hydrogen bond that satisfies an otherwise inaccessible amino 

nitrogen (figure 5.6H).  In this conformation, the side chain of residue i-1 is poised to 

serve as a hydrogen bond acceptor for residue i+4.  Indeed, this is the arrangement most 

often observed in the coil library, where, typically, aspartic acid or threonine are 

preferred at the i-1 position. 
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Five-residue conformations: EHELL and HPLLP. Finally, we include two 

disfavored pentamer conformations: EHELL and HPLLP (figures 5.6I-J).  Both are 

similar in causing the peptide chain to wrap back upon itself.  Neither conformation is 

observed in the coil library, but the statistical distribution of pentamer fragments is too 

sparse to draw reliable conclusions from this fact.  Nevertheless, these conformations are 

expected to be rare because the steric clash is severe. 

Summary of Examples. For the tetrameric conformations described above, as well 

as those structures not described here, it is almost always true that a low acceptance ratio 

corresponds to a population in the coil library that is less than expected based on 

independent assortment.  When these conformations do appear, they can usually be 

rationalized by the limitations of our simple model.  It is problematic to draw such 

conclusions for pentamers and hexamers where data are more sparse, but the success for 

tetramers and trimers bolsters confidence that our procedures can be reliably extended to 

longer peptides.   

 

A Scaling Law: String Simulations 

Local restrictions from sterics and solvation winnow conformational space, as 

described previously.  To estimate the magnitude of these effects on longer peptides, a 

series of simulations was performed in which strings were generated at random from the 

five-state model, using the weights observed in the coil library.  Each string was then 

accepted or rejected based on the acceptance ratios for six-residue restrictions (see 

Methods).  For example, acceptance of the seven-residue string, HHEBEEE, would be 

based on the subsumed six-residue substring, HHEBEE, and its acceptance ratio of 
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2.99%.  Substrings that were accepted based on the acceptance ratio of one six-residue 

restriction could not result in rejection when later compared with another six-residue 

restriction.  String simulations were performed for strings of length 4 to 60, and their 

acceptance ratios were regarded as a statistical energy (equation 5.2 in Methods) and 

plotted on a log scale (figure 5.7).  The log of the acceptance ratios falls on a straight line, 

and these data were fit to the equation: 

 log(r) = mN + b (5.1) 

where r is the acceptance ratio and N is the string length (i.e. number of residues).  Using 

nonlinear least squares fitting with R (R Development Core Team 2003), the parameters 

m and b are -0.19801 ± 0.00039 and 0.504 ± 0.014, respectively (R > 0.99).  There is no 

indication that this trend will deviate from linearity when extrapolated to longer peptides, 

although care must be taken to calculate the uncertainties for extrapolated values 

(Bevington and Robinson 1992). 

Using this fit, the acceptance ratio for a random string was compared to the 

acceptance ratio for authentic proteins (table 5.2).  In every case, the authentic protein’s 

acceptance ratio is greater than that expected for a random sequence of the same length, 

typically by several orders of magnitude.  Protein acceptance ratios were obtained by 

converting the structure to the five-state model and using the resultant conformation 

string in lieu of a random string (see Methods). This procedure underestimates the 

intrinsic protein acceptance ratios because the five-state representations lack side chains 

and would be additionally filtered using the rationalizations described previously.  

Although authentic proteins are not constrained to five discrete states, the data in table 

5.2 demonstrate that estimates derived from our all-polyalanine model can provide a 
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useful lower bound on the fraction of conformational space that is eliminated by local 

conformational restrictions.  From the random-string acceptance ratio for a 100-residue 

protein (e.g., urease from B. pasteurii (1UBP), table 5.2), that fraction is 4.2 ± 3.7 x 10-9, 

approximately nine orders of magnitude. 

 

5.4 Discussion 

The goal of this work is to study the local conformational constraints on the 

peptide backbone that are imposed by sterics and hydrogen bonding.  Similar to our 

previous study in chapter two (Fitzkee and Rose 2004b), we used a computational 

approach involving both simulation and analysis of known structure.  The earlier study 

identified a single constraint in proteins that limits conjunctions between an α-helix and a 

β-strand.  Here, we seek to detect the full range of such constraints, to estimate their 

impact on the size of allowed conformational space, and to catalog some of the more 

important examples in atomic detail.  Our results document specific interactions that lead 

to the failure of the Flory isolated pair hypothesis (Pappu et al. 2000), and they provide 

an estimate of the degree to which local backbone interactions contribute to resolution of 

the Levinthal paradox (Levinthal 1969). 

The simulations presented here assume idealized bond lengths and scalar angles, 

presumably a modest assumption for the unfolded state, where there is a deficit of 

interactions that could compensate for locally strained conformations.  Yet, even the 

folded state appears to be largely free of significant conformational strain, as indicated by 

methyl-rotors and side chains, which are found preferentially in staggered configurations 

(Kossiakoff et al. 1990; Butterfoss and Hermans 2003).  Accordingly, many restrictions 
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identified here are likely to be relevant to folded proteins, despite the use of idealized 

geometries in their identification.  Still, it is important to bear in mind that our approach 

is based on equilibrium thermodynamics, where highly disfavored conformations can 

nevertheless occur. 

 

Sterics and Solvation in Protein Folding 

Hydrogen bond satisfaction plays a central role in organizing the denatured state 

and limiting conformations in the folded state.  In our tetramer simulations, 148 of the 

174 highly disfavored conformations (85%) involve solvation alone.  In hexamers, this 

fraction decreases to 72%, with solvation still the dominant effect.  Equivalently, it is 

clear that sterics alone play a lesser role in organizing these short peptides, although 

excluded volume effects become highly significant at longer length scales (Dill 1985), to 

be sure. 

 To further investigate the impact of peptide-water hydrogen bonding, we 

simulated a blocked alanine dipeptide with inclusion of the solvation criteria described in 

Methods, akin to a classical φ,ψ-plot (Ramachandran and Sasisekharan 1968) but with 

conformations rejected either for steric clash or for solvent-shielding.  The resultant 

diagram (figure 5.8) departs from the iconic Ramachandran plot (dashed lines), differing 

significantly in the bridge region, and with the emergence of a distinct peninsula below 

the polyproline II region (below φ,ψ = -90°,60°).  This peninsula is observed in proteins 

of known structure (Hovmöller et al. 2002; Ho et al. 2003), and our simple solvation 

model can account for its existence. 
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On the other hand, depletion of the bridge region, as seen in figure 5.8, is not 

observed in experimental structures (Hovmöller et al. 2002).  Rather, many residues in 

the B region are involved in type I turns (Rose et al. 1985).  We note, however, that the 

conformation of a four-residue β-turn (i to i+3) is established by the backbone dihedral 

angles of its two inner residues (i+1, i+2), which reside in the H and B regions, 

respectively, in a type I turn.  When isolated residues from the bridge region are adjacent 

to extended residues (e.g., PPPB) or to left-handed helical residues (e.g., HBLB), instead 

of a turn-forming residue (e.g., HHHB), the C-terminal N-H is sequestered from solvent 

access.  This is not an issue in a β-turn, of course, which has an intrapeptide hydrogen 

bond (Rose et al. 1985).  Depletion of isolated residues in the bridge region would serve 

to rarify the remaining population of turn residues, and consistent with this inference, 

removing turns from the coil library depletes the B region significantly (Panasik et al.).  

We conclude that hydrogen bond satisfaction both organizes accessible conformational 

space in unfolded proteins and shapes the observed φ,ψ-distribution in folded proteins.   

 

The Levinthal Paradox 

As reported in Results, local sterics and solvation reduce conformational space by 

at least nine orders of magnitude.  This number is a likely underestimate for several 

reasons.  First, the addition of side chains would result in further reduction (Bromberg 

and Dill 1994).  Observed correlations between side chain rotamers and backbone 

conformations provide evidence that side chains restrict more conformational space than 

they allow (Dunbrack and Karplus 1994).  Secondly, our parameters were designed to be 

conservative.  All hard sphere radii, including the water radius, were scaled to 90% of 
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their accepted values, a highly permissive strategy (Fitzkee and Rose 2004b).  

Additionally, our hydrogen bond criteria were chosen to be the maximally permissive 

values reported in Kortemme et. al. (Kortemme et al. 2003).  Increasing hard sphere radii 

and using less permissive hydrogen bond criteria would have increased the number of 

disfavored conformations identified in these simulations.  Finally, the 38% threshold for 

disfavored conformations is a permissive choice.  Of course, higher acceptance ratios are 

even more permissive, but incorporating more relaxed acceptance ratios into string 

simulations increases the likelihood that longer strings will be rejected.  For these three 

reasons, the actual reduction of conformational space may be several orders of magnitude 

greater than our conservative estimate. 

It might be thought that a more realistic model, with a larger number of states, 

would increase the apparent size of conformational space.  However, size does not scale 

with the number of conformational states in a straightforward manner because the 

number of disfavored conformations also increases with the number of states.  Our five-

state model can be likened to the discrete states in lattice models, and possibly such 

models could provide a convenient strategy for computing scaling laws of interest (Dill 

and Stigter 1995).  

We hasten to add that nine orders of magnitude loses significance in a background 

of 5100~1070 conformations for a 100-residue protein.  Clearly, other forces are at work as 

well.  Excluded volume constraints are thought to eliminate ~44 further orders of 

magnitude (Dill 1985).  In contrast to this long-range excluded volume reduction, the 

restrictions described here are essentially short-range, with little overlap between the two 
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types of contributions.  Therefore, estimated conservatively, the two values account for a 

reduction of at least 53 orders of magnitude.  

 

The Denatured State and Protein Folding 

Today, three views dominate thinking about the unfolded state of proteins.  The 

traditional view regards unfolded proteins as statistical coils, with little or no persisting 

structure (Brant and Flory 1965b; a; Tanford 1968).  A more recent proposal, based on 

NMR experiments (Yi et al. 2000; Shortle and Ackerman 2001; Shortle 2002), holds that 

the denatured state retains native-like topology, although this view is not without 

controversy (Louhivuori et al. 2003; Jha et al. 2005).  The third view regards unfolded 

proteins as fluctuating ensembles of polyproline II helix (Tiffany and Krimm 1968a; 

Pappu and Rose 2002; Shi et al. 2002a; Shi et al. 2002b; Mezei et al. 2004; Tran et al. 

2005). 

The work presented here is pertinent to all three views.  Clearly, the statistical coil 

model cannot be rigorously correct in light of our evidence for structural correlations 

arising from local sterics and solvation.  These local interactions may represent only a 

minor perturbation from the statistical coil denatured state.  Alternatively, inclusion of 

side chains, together with the restraints documented here, may bias the backbone toward 

native-like secondary structure (Baldwin and Rose 1999b; a).  Regarding the second 

view, sterics and solvation could explain a bias toward native-like structure by extensive 

depletion of other alternatives (Baldwin and Zimm 2000).  Finally, the restrictions are 

consistent with a prevalence of polyproline II helix in the denatured state.  No disfavored 

conformation involves E or P exclusively; consequently, disfavored interactions in other 
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states would serve to shift the equilibrium population toward the northwest region of the 

φ,ψ-map, where further preference for the P region is exerted via favorable solvation 

(Mezei et al. 2004). 

 

Summary 

Two simple principles – hard sphere sterics and hydrogen bond satisfaction – 

were shown to restrict the local conformational space of proteins substantially.  Using a 

five-state model, the effects of sterics and hydrogen bonding on the conformation of short 

peptides were investigated by simulation and analysis of known structures.  Disfavored 

conformations in simulations were found to be depleted in the coil library.  When present 

at all, those conformations were usually rationalized by the presence of a cis-peptide 

bond or a side chain-backbone hydrogen bond, neither of which are included in our 

simplified model.  Highly disfavored conformations identified in this study reduce 

conformational space for a 100-residue chain by approximately nine orders of magnitude, 

and at least 53 orders of magnitude when long-range excluded volume effects are 

included as well.  Finally, contracted conformations provide increased opportunities for 

steric clash and unfavorable solvent shielding of polar groups, a realization that sheds 

light on current models of the unfolded state.  

 

5.5 Materials and Methods 

Peptide Structures 

Alanine was chosen as a model for the peptide backbone (Hummer et al. 2001; 

Margulis et al. 2002).  All simulations were performed using blocked alanine polymers, 
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N-acetyl-(Ala)n-N-methylamide, for n = 1-6; local systematic interactions are known to 

die out beyond n = 6 (Ohkubo and Brooks 2003).  Bond lengths and scalar angles were 

taken from the LINUS simulation package (available at http://roselab.jhu.edu/dist/) 

(Srinivasan and Rose 1995; Srinivasan et al. 2004) and held fixed throughout all 

simulations.  Backbone torsion angles φ, ψ, and ω were allowed to vary as described 

below.  Backbone amino hydrogens were included and used in reproducing the 

Ramachandran plot, shown as a dashed line in figure 5.1; other hydrogens were omitted. 

 

Five-State Conformational Model 

Protein conformation was represented using five discrete states: α-helix (H), β-

strand (E), left-handed α-helix (L), polyproline II helix (P), and the bridge region (B).  

Each state included all φ,ψ values within a 30o by 30o box (figure 5.1) around its central 

position (table 5.1), which was chosen to represent typical examples of each respective 

secondary structure type.  The B state corresponds to the i+1 position of a type I β-turn 

(Rose et al. 1985). 

The adequacy of the model was validated by testing how well these five states can 

represent the fold of arbitrarily chosen proteins (figure 5.2 and table 5.2), using a 

straightforward protocol.  For six test proteins of known structure, side chain atoms 

beyond Cβ  were stripped away and each non-glycine residue was assigned to the state 

that best approximates its experimental backbone dihedral angles.  Starting from the first 

residue, the all-atom root-mean-square positional difference (RMSD) from the 

experimental structure was minimized in 1,000 Monte Carlo trials, with φ,ψ sampling 

constrained to be within the box surrounding each residue's respective conformational 
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state.  Glycines falling within one of the five states were treated like non-glycine 

residues; otherwise they were sampled within ±15o of their original φ,ψ values.  All ω 

torsions were sampled within ±5o of their original values.  The approximate structure 

determined in this way was then subjected to successive rounds of steepest descent and 

conjugate gradient minimization (Press et al. 1992) to further minimize the RMSD and 

eliminate hard sphere bumps.  Remaining bumps in the five-state structure were small 

(generally ≤ 0.2 Å) and comparable in number to those in the experimentally determined 

starting structure. 

Weights for the five states were taken from the observed distributions in proteins 

of known structure (Berman et al. 2000).  In detail, a dataset was extracted from the coil 

library as described in chapter four (Fitzkee et al. 2005), a subset of non-helix, non-strand 

fragments in the PDB.  The coil library – postulated to model unfolded and disordered 

protein systems (Serrano 1995; Swindells et al. 1995; Avbelj and Baldwin 2004; Jha et al. 

2005) – was culled from the PISCES list (Wang and Dunbrack 2003) dated February 13, 

2005.  All are X-ray elucidated structures, with aligned sequence identity of 90% or less 

and resolution and refinement values better than 2.0 Å and 0.25, respectively.  From a 

total of 63,798 fragments, only glycine-free fragments consistent with the five-state 

model were used: 12,731 fragments for n = 3; 3,864 for n = 4; 1,127 for n = 5; and 348 

for n = 6.  The distribution and relative fraction of residues falling within the five states 

are shown in table 5.1.  With five states, there are 5N possible conformational strings for a 

fragment of length N.  The weights in table 5.1, together with the number of fragments, 

were used to calculate an expectation value for strings of varying length, under the 

assumption that string elements assort independently. 
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Simulations 

Disfavored conformers were identified by low acceptance ratios in hard sphere 

simulations, performed as follows.  Atomic radii were described previously (Fitzkee and 

Rose 2004b); water was modeled as a sphere of radius 1.4 Å.  All radii were further 

scaled by a factor of 0.90, chosen to minimize the possibility of hard sphere artifacts 

(Fitzkee and Rose 2004b).  Clash-free structures were further tested for hydrogen bond 

satisfaction using the least stringent criteria described in Kortemme et. al.(Kortemme et 

al. 2003), which maximize the number of potential hydrogen bonds.  Unsatisfied 

backbone polar groups were probed for access to solvent using five virtual waters as 

described in Fleming et. al. (Fleming et al. 2005).  Structures inaccessible to solvent were 

rejected.  Surviving structures were guaranteed to be clash-free, with hydrogen bond 

partners for all backbone polar groups. 

A conformational string is a sequence of letters from the five-state alphabet.  For 

any given conformational string, a round of simulation consisted of 5,000 concerted 

attempts to sample φ, ψ and ω at random, subject to relevant five-state constraints 

(described above).  Each sterically allowed attempt was further tested for hydrogen bond 

satisfaction by appending one residue to either end of the original conformation and 

sampling an additional 1,000 randomly-chosen φ,ψ angles for the two appended residues.  

The two single-residue extensions increased the opportunities for polar groups to be 

satisfied by a non-local backbone hydrogen bond.  Structures were rejected if they had a 

steric clash in the first tier of the simulations or unsatisfied hydrogen bonds in the second 

tier.  Each round of 5,000 attempts was repeated five times to assure convergence. 
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The probability of occurrence for a given conformation was measured by its 

acceptance ratio, the fraction of successful attempts.  A restriction was defined as a 

conformational string for which the specific sequence was found to have an acceptance 

ratio of less than e-1 (~ 38%).  At this threshold, the statistical energy function 

 E = RT ln(acceptance ratio) (5.2) 

has a value of RT, approximately one ambient-temperature energy fluctuation.  This 

choice of threshold established an upper bound for the number of restrictions, but the 

same trends would have been observed were the restrictions defined by a smaller 

acceptance ratio. 

 

Analysis of Structures 

To validate these simulations, the coil library was screened to determine whether 

disfavored conformers are also suppressed in experimental structures.  It is possible that a 

restriction is salvaged by compensating interactions of a kind that exceed the limited 

scope of our polyalanyl model.  Accordingly, we sought to rationalize disfavored 

conformations observed in the coil library, placing them, when possible, into one of four 

classes (table 5.4).   

Class I: Structures that exhibit a hard sphere steric clash (with radii scaled to 

90%). 

Class II: Structures with geometric anomalies.  A broad range of nonstandard 

bond lengths and angles were permitted, but structures that systematically 

violated standard geometric constraints were excluded.  For all subclasses except 

IIe, histograms were generated from structures contained in the coil library to 
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establish reasonable cutoffs.  For class IIe, the program PROCHECK (Laskowski 

et al. 1993a) was used to identify anomalous geometry.   

Class III: Structures lacking hydrogen bond satisfaction.  The program HBPLUS 

(McDonald and Thornton 1994) with Kortemme criteria (Kortemme et al. 2003) 

was used to identify hydrogen bonds in both simulations and in experimental 

structures.  Structures with a local side chain to backbone hydrogen bond were 

classified as type IIIa.  Such conformations are possible in peptides with side 

chains that can participate in hydrogen bonds, but not in polyalanine.  Solvent-

inaccessible structures lacking a backbone hydrogen bond are unlikely (Fleming 

and Rose 2005) and were classified as type IIIb.  Finally, proline imino nitrogens, 

which cannot be hydrogen bond donors, were classified as type IIIc. 

Class IV: Structures lacking electron density.  For structures that could not 

otherwise be rationalized, electron density maps were downloaded from the 

electron density server (Kleywegt et al. 2004), normalized using MAPMAN 

(Kleywegt and Jones 1996), and visualized with O (Jones et al. 1991) or PyMOL 

(DeLano 2002).  Structures lacking density at the 1.0 sigma level were classified 

as type IV.  When structure factors were unavailable, the PDB headers were 

interrogated for a crystallographer's note about poor density.  

 

String Simulations 

To estimate the way string acceptance ratios scale with chain length, random 

strings were generated over the five-state alphabet, with relative weights for each state 

that reflect its frequency of occurrence in the coil library.  Strings of length six and 
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greater were assessed using the list of 8,654 disfavored conformations for polyalanine 

hexamers at the 38% acceptance ratio threshold.  Four- and five-residue strings used the 

corresponding tetramer and pentamer lists of 174 and 1,322 disfavored conformations, 

respectively.  When a disfavored substring was identified, it was accepted or rejected 

according to its acceptance ratio.  If accepted, the substring was flagged and then 

exempted from application of other conformational restrictions.  For each round of 

simulation, 106 strings of length n were generated, with five repetitions to assess 

convergence of the acceptance ratio.  A similar method was applied to authentic proteins 

that were rebuilt from the five-state model, as described above.  In this case, however, the 

protein's conformational string was used in lieu of a randomly generated string.  
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Table 5.1: The Five-State Model 

   Observed  Relative 
State φ (ο) ψ (ο) Residues1 Fraction Fraction2 

H -60 -45 28,732 0.071 0.188 
E -120 135 14,410 0.036 0.094 
P -70 140 62,296 0.154 0.407 
B -90 0 35,894 0.089 0.234 
L 60 35 11,750 0.029 0.077 

Others N/A N/A 250,331 0.621 N/A 
 

1 Observed residues in the coil library, filtered by PISCES, as described in Methods. 

2 Relative fraction for each state with respect to the other states.  Other residues are excluded. 

 



 

144 

Table 5.2: Modeling Real Proteins to the Five-State Model 

   Observed Expected 
PDB Residues RMSD (Å)1 Frequency2 Frequency3 

1VII 36 2.99 7.637 x 10-3 (1.3 ± 1.2) x 10-3 

2GB1 56 2.43 8.769 x 10-4 (2.5 ± 2.3) x 10-5 

1UBQ 76 2.15 1.019 x 10-1 (4.8 ± 4.3) x 10-7 

1LMB 87 1.89 1.079 x 10-4 (5.5 ± 4.9) x 10-8 

2UBP 100 2.70 1.255 x 10-3 (4.2 ± 3.7) x 10-9 

1HEL 129 4.47 6.384 x 10-8 (1.3 ± 1.2) x 10-11 

 

1  Backbone atom (N, Cα, C, O, Cβ) RMSD of the final protein structure when constrained to the five-state 

model.  RMSD to the native structure was minimized with soft-sphere steric and φ, ψ torsion angle 

restraints as described in Methods. 

2  The calculated acceptance ratio for the protein given its five-state string. 

3  Expected acceptance ratio for a randomly sampled five-state string of comparable size.  Errors are 

calculated using standard propagation of error formulas on equation (5.1). 
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Table 5.3: Simulation Statistics and Peptide Length 

Size (N) 3 4 5 6 
Possible Conformations 125 625 3,125 15,625 
Unfavorable Conformations     
 Total† 17 (13.6%) 174 (27.8%) 1,322 (42.3%) 8,654 (55.4%) 

 Predicted from N-1‡ 0 (0.0%) 168 (96.6%) 1,253 (94.8%) 8,472 (97.9%) 

 Predicted but not observed‡ 0 (0.0%) 5 (2.9%) 49 (3.7%) 243 (2.8%) 

 Observed but not predicted‡ 17 (100.0%) 11 (6.3%) 118 (8.9%) 425 (4.9%) 
 

† Percentages calculated with respect to the total number of conformations. 

‡ Percentages calculated with respect to the number of unfavorable conformations. 
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Table 5.4: Rationalization Classes 

Type Description 
I Fragment contains a backbone steric clash at the 90% hard sphere 

scaling level. 
  

IIa One or more omega (ω) torsions deviate more than 10 degrees from 
planarity.  Typically a cis-peptide bond.  

  
IIb Two or more omega (ω) torsions deviate more than 5 degrees from 

planarity. 
  

IIc One or more tau (τ) scalar angles lie outside of 111 ± 10 degrees (4 
standard deviations). 

  
IId Two or more tau (τ) scalar angles lie outside of 111 ± 5 degrees (2 

standard deviations). 
  

IIe PROCHECK program reports three or more geometric parameters that 
differ by two or more standard deviations from the ideal values. 

  
IIIa Local side chain satisfies an otherwise inaccessible backbone hydrogen 

bond donor or acceptor. 
  

IIIb Backbone hydrophilic atom is totally masked from solvent and protein 
hydrogen bond partners. 

  
IIIc Proline residue at an otherwise unsatisfiable N-H bond donor. 

  
IV No electron density is observed for the backbone at the 1.0 sigma level.
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Figure 5.1.  Labeled  φ,ψ bins used in the five-state model, overlaid on contour plots of 

the extended, helix, and left-handed helical regions, using data from the coil library.  

Each bin is 30o x 30o, centered on the coordinate position listed in table 5.1.  The dashed 

outline represents the conventional Ramachandran plot for an alanine dipeptide 

(Ramachandran and Sasisekharan 1968).  In our simulations, hard sphere radii were 

smaller than those used in the original Ramachandran plot, resulting in an expansion of 

the sterically allowed region.  All five bins are fully allowed. 
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Figure 5.2.  X-ray (left) vs. five-state (right) structures of (A) ubiquitin (1UBQ) and (B) 

lysozyme (1HEL).  Five-state structures were obtained as described in Methods.  RMS 

differences between the experimental structure and its five-state model were small (table 

5.2).  Even for lysozyme – a worst case – the experimental structure is largely captured 

by its five-state model, except for a two-residue segment that is responsible for the hinge-

like opening of the structural core. 
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Figure 5.3.  Histograms of acceptance ratios for disfavored conformations, ranging from 

trimers to hexamers: (A) N = 3 (B) N = 4 (C) N = 5 (D) N = 6.  As peptide length 

increases, the number of highly disfavored conformations (acceptance ratio approaching 

zero) also increases. 
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Figure 5.4.  Bar graph showing the distribution of the 497 disfavored tetrameric 

fragments across the 10 rationalization classes (table 5.4) and an 11th, unexplained 

category.  The two predominant reasons why a conformation is disfavored in simulations 

but found in the coil library are the presence of a cis-peptide bond (IIa) or a backbone-

side chain hydrogen bond (IIIa), neither of which are included in our simplified model. 
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Figure 5.5.  Log Odds ratios – log(expected/observed) – of the 174 restricted tetramer 

conformations, ordered by acceptance ratio.  The expected number of structures was 

calculated from its frequency of occurrence in the coil library, assuming that each residue 

assorts independently.  The log odds ratio is positive when the number of expected 

structures exceeds the number actually observed.  Observed conformations were counted 

after removing structures with cis-peptide bonds, backbone-side chain hydrogen bonds, 

and other rationalizations from table 5.4.  Conformations used as examples in figure 5.6 

are shown as annotated, dark bars.  To avoid log(0), conformations with a frequency of 

zero were assigned a value of unity. Only one conformation, BLBE, occurs more 

frequently than expected by chance (i.e. negative log odds ratio). 
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Figure 5.6.  Examples of disfavored conformations identified in simulations (key given 

in table 5.5).  For each structure, hard sphere collisions are displayed as overlapping, 

semitransparent CPK spheres.  Virtual waters hydrogen-bonded to backbone N-H atoms 

are displayed in cyan; the ith Cα carbon is shown in yellow.  Images were generated with 

MOLSCRIPT (Kraulis 1991) and Raster3D (Merritt and Bacon 1997).   
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Figure 5.7.  Acceptance ratios from string simulations for strings ranging from N = 4,60.  

Acceptance ratios for strings are based on local steric and hydrogen bond interactions 

derived from five-state, hard sphere simulations.  Black dots plot the average acceptance 

ratio from five separate simulations; red dots represent the standard deviation of this 

average.  Convergence for all the points is at least an order of magnitude smaller than the 

values themselves, and often several orders of magnitude smaller. 
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Figure 5.8.  φ,ψ-plot of the blocked alanyl dipeptide, N-acetyl-Ala-N-methylamide.  

Allowed conformations (in blue) were derived from simulations (see Methods) and are 

based on hard sphere sterics and hydrogen bond satisfaction, with radii scaled to 95%.  

The conventional Ramachandran plot (Ramachandran and Sasisekharan 1968), shown as 

a dashed line, is based solely on hard sphere sterics.  In comparison, this plot, which 

rejects conformations with solvent-inaccessible polar groups, has a large missing section 

in the bridge region and a distinct peninsula below the β-strand/PII region.   
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