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Abstract 

Improving understanding of the pathogen-specific seasonality of enteric 

infections is critical to informing policy on the timing of preventive measures and to 

forecasting trends in the burden of diarrhoeal disease. Longitudinal and time-series 

analyses are needed to characterize the associations between hydrometeorological 

parameters and pathogen-specific enteric infectious disease (EID) outcomes. Data 

obtained from active surveillance of cohorts can capture the underlying infection 

status as transmission occurs in the community. However, there is a need for an 

approach that can be systematically applied to evaluate the combined impact of 

multiple meteorological exposures at a level of spatiotemporal disaggregation 

sufficient to characterize potential lag effects, interactions and non-linearity. Earth 

Observation (EO) climate data products derived from satellites and global model-

based reanalysis have the potential to be used as surrogates in situations and 

locations where weather-station based observations are inadequate or incomplete. 

However, these products often lack direct evaluation at specific sites of 

epidemiological interest.  

The first aim of the research presented here was to characterize rotavirus 

seasonality in eight different locations (the MAL-ED study sites) to demonstrate the 

feasibility of applying an adapted Serfling model approach to data on EID from a 

multi-site cohort study. The second was to select climate data products and assess 

their performance both in characterizing meteorological conditions at those specific 

eight locations and as predictors of a known climate-sensitive outcome – namely 
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rotavirus infection episodes. The third aim was to characterize the associations 

between a suite of nine EO-derived hydrometeorological variables and rotavirus 

infection status ascertained through community-based surveillance in a way that 

can be used to predict future trends in disease burden. 

In all seven of the eight study sites where seasonality in rotavirus infection 

was identified, the primary annual peak occurred outside of the rainy season. In all 

except two of these, a smaller, secondary annual peak was identified occurring 

during the rainier part of the year. The patterns predicted by this approach are 

broadly congruent with several emerging hypotheses about rotavirus transmission 

and are consistent for both symptomatic and asymptomatic rotavirus episodes. 

These findings have practical implications for programme design, but caution 

should be exercised in deriving inferences about the underlying pathways driving 

these trends, particularly when extending the approach to other pathogens. 

The availability and completeness of weather station-based meteorological 

data varied depending on the variable and study site. The performance of the two 

gridded EO climate models varied considerably within the same location and for the 

same variable across locations, according to different evaluation criteria and for the 

peak-season compared to the full dataset in ways that showed no obvious pattern. 

They also differed in the statistical significance of their association with the 

rotavirus outcome. For some variables, the station-based records showed a strong 

association while the EO-derived estimates showed none, while for others, the 

opposite was true. 
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Numerous hydrometeorological parameters – including several that are not 

commonly measured by weather stations – were found to exhibit complex, non-

linear associations with rotavirus infection that differ by infection episode type and 

may be independently, and highly statistically significant over multiple consecutive 

or non-consecutive lags, including as short a period as two days. The results show 

evidence for the hypothesis that the effect of climate on rotavirus transmission is 

mediated by four independently-operating mechanisms: waterborne dispersion via 

rainfall and surface runoff, airborne dispersion in humidity-sensitive aerosols, virus 

survival on soil and fomites, and host factors. 

Researchers wishing to utilize publicly available climate data – whether EO-

derived or station based - are advised to recognize their specific limitations both in 

the analysis and the interpretation of the results. Epidemiologists engaged in 

prospective research into environmentally driven diseases should install their own 

weather monitoring stations at their study sites whenever possible, in order to 

circumvent the constraints of choosing between distant or incomplete station data 

or unverified EO estimates. 

Since the EO datasets from which the predictors used in this analysis were 

extracted are available at global scale and sub-daily resolution and updated 

continually, as new studies using similar methods are carried out at different 

locations, they can be added to the MAL-ED data to derive more precise predictions 

for more diverse conditions. Furthermore, emerging tools for objective climate 

regionalization can be combined with the results of these models to divide extensive 
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geographic zones into smaller regions that are homogenous with respect to 

important climate characteristics and to which predictions from these models can 

be applied.  
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1. Chapter 1: Background 

Diarrheal disease is the second leading infectious cause of mortality in 

children under 5 years of age, accounting for 8.9% (526,000) of all such deaths 

globally in 2015.1 Infectious causes of diarrhea are numerous, encompassing a 

variety of viral, bacterial, protozoan and macroparasitic agents each with their own 

distinct and complex modes of transmission and interactions with ecological 

processes and host and reservoir biologies. Enteric viruses – chiefly rotavirus, but 

also calicivirus (mostly norovirus), astrovirus and adenovirus – account for the 

largest proportion of diarrheal disease mortality in under 5s and morbidity in the 

first year of life (Table 1). In the second year of life, bacterial infections take over as 

the largest contributors to diarrheal disease morbidity. Bacterial agents include the 

enterobacteriaceae - Salmonella spp., Shigella spp., Yersinia enterocolitica and the 

various pathotypes of Escherichia coli – as well as the water-dwelling Plesiomonas 

shigelloides, Vibrio cholerae and Aeronomonas spp. and the zoonotic Campylobacter 

spp.. Protozoan parasites are the etiological agents that account for the smallest 

proportion of the global burden of childhood diarrhea. Cryptosporidiosis and 

giardiasis are the most prevalent diarrheagenic protozoa infections, while amebiasis 

– infection by parasites of the Entamoeba and Iodamoeba genera, chiefly E. 

histolytica – is a relatively minor contributor and the burden of cyclosporiasis and 

balantidiasis is so low that it has yet to be quantified. The soil-transmitted 

helminthiases – principally ascariasis, trichuriasis and hookworm infection – rarely 

cause death, but they exact a large public health toll in the under-5 age-group by 
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inhibiting statural growth and cognitive development.2 Long-term sequelae of 

repeated enteric infections from viruses and other pathogens include cumulative 

damage to the structure of the mucosal lumen surface, which simultaneously blunts 

the villi tips while elongating the crypts leading to disruption of normal intestinal 

function and eventually, it is hypothesized, chronic secondary malnutrition, a 

process known as “environmental enteropathy” (EE).3–5 
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 Table 1: Estimated percentage of diarrheal deaths (global, 2011) and adjusted attributable 
fraction of diarrhea (eight MAL-ED sites 2009 - 2014) by individual pathogen  

Percent of deaths6 Attributable fraction of diarrhea7 

Age 0-59 months Age 0-11 months Age 12-24 months 

V
ir

u
se

s 

Rotavirus 27.8% 4.8% 4.9% 

Norovirus 9.9% 5.2% 5.4% 

Astrovirus 2.1% 2.7% 4.2% 

Adenovirus 3.1% 1.6% 0.9% 

Total 42.9% 14.3% 15.4% 

B
a

ct
e

ri
a

 

Aeromonas - - - 

Campylobacter spp 3.2% 3.5% 7.9% 

Enteroaggregative E. coli - - - 

Enteroinvasive E. coli - - 0.8% 

Enteropathogenic E. coli 11.1% 1.3% - 

Enterotoxigenic E. coli 6.0% 3.2% 5.1% 

Plesiomonas shigelloides - - - 

Salmonella spp 2.5% - 0.3% 

Shigella spp 3.9% 0.4% 4.0% 

Vibrio cholerae 1.3% - - 

Yersinia enterocolitica - - - 

Total 28.0% 8.4% 18.1% 

P
ro

to
zo

a
 

Balantidium coli - - - 

Cryptosporidium spp 2.0% 2.0% 3.8% 

Cyclospora spp. - - - 

Entamoeba histolytica 0.2% - 0.7% 

Entamoeba coli - - - 

Giardia lamblia 2.3% - - 

Iodamoeba butschilii - - - 

Total 4.5% 2.0% 4.5% 

Unknown etiology 24.5% 75.3% 62.0% 
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1.1. Diarrheagenic enteropathogens 

1.1.1. Enteric Viruses 

Table 2 summarizes the structure, classification and clinical features of the 

four main enteric viruses. The virus species vary slightly in their genomic structure, 

including one DNA virus (adenovirus) and one with a segmented genome, which is 

also, unusually, a double-stranded RNA virus (rotavirus). However, they are similar 

with respect to their morphology, all four having icosahedral capsids and, 

importantly, lacking envelopes, a feature which enhances their ability to survive 

outside the host. Indeed, so environmentally resilient are they that rotavirus can 

persist for days on surfaces and for weeks in fecal matter, while norovirus can 

survive on surfaces for up to 2 weeks and is resistant to heating, freezing and many 

chemical disinfectants.8,9 
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Table 2: Structure, classification and clinical features of four enteric viruses 
 Adenovirus10–12 Astrovirus13,14 Norovirus15,16 Rotavirus17–20 

S
tr

u
ct

u
re

 a
n

d
 c

la
ss

if
ic

a
ti

o
n

 
Family Adenoviridae Astroviridae Caliciviridae Reoviradae 

Human strains 57 genotypes0F

i 8 genotypes 31 genotypes >40 genotypes 
G

en
o

m
e 

Type DNA RNA RNA RNA 

Strands Double Single Single Double 

Linearity Linear Linear Linear Linear 

Segmentation Monopartite Monopartite Monopartite Multipartite 

Polarity +/- + + +/- 

Capsid morphology Icosahedral Icosahedral Icosahedral Icosahedral 

Envelope Non-enveloped Non-enveloped Non-enveloped Non-enveloped 

C
li

n
ic

a
l 

fe
a

tu
re

s 

Incubation period 3 – 10 days 4.5 days 1 – 2 days 1 – 3 days 

Diarrhea ✓ ✓ ✓ ✓ 

Vomiting ✓ ✓ ✓ ✓ 

Fever ✓ ✓ ✓ ✓ 

Abdominal pain ✓ ✓ ✓ ✓ 

Loss of appetite - ✓ - ✓ 

Dehydration ✓ ✓ ✓ ✓ 

The pathogeneses of these viruses are also broadly similar. The dominant 

route of transmission is fecal-oral with the primary source of environmental 

contamination being the copious numbers of virions that are shed in the stool of 

infected individuals in concentrations of 105 to 1013 copies per gram of feces, often 

long after clinical symptoms have resolved.9,13,15,17 These virions enter the body 

through the mouth on fecally contaminated food, water, fomites or, it is 

hypothesized, airborne respiratory droplets (rotavirus18 and adenovirus11), 

aerosolized particles of vomitus (norovirus15) or dried infective fecal and dust 

particles (rotavirus21). Only a tiny dose is required to establish a full infection (<100 

                                                            
i Only two adenovirus genotypes (40 and 41) infect the gastrointestinal tract. The others tend to infect the upper respiratory 
tract. 
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particles of rotavirus18, <20 of norovirus15), making them some of the most highly 

contagious pathogens. Once they have migrated to the gastrointestinal tract, these 

viruses adsorb onto the cells of the epithelium of the small intestine, where they 

replicate and establish an IgA-driven infection, triggering a cell-mediated 

inflammatory mucosal immune response.13,17 Immunity to any one strain of a given 

enteric virus does not necessarily confer immunity to others and repeated infections 

with the same virus type are common.17,22 

The clinical features of infection differ little among the enteric viruses and 

include non-specific symptoms characteristic of gastroenteritis of any etiology 

(including bacterial) – watery diarrhea, vomiting, fever, dehydration. For this 

reason, differential diagnosis of viral diarrheal disease is only possible by laboratory 

analysis of stool specimens to detect viral particles or antigens using techniques 

such as enzyme-linked immunosorbent assay (ELISA) or quantitative polymerase 

chain reaction (qPCR).17 The impaired absorption of water, sodium and glucose 

through the gut lumen is what causes the diarrheal symptoms, dehydration, 

metabolic acidosis and electrolyte imbalance.17  

For children raised in communities that lack adequate sanitation, enteric 

viral diseases are a near ubiquitous feature of childhood. Prior to the introduction of 

the vaccine around 95% of children globally could expect to experience at least one 

rotavirus infection before 5 years of age.23 A study in pre-vaccine era Mexico 

observed a similar cumulative probability of first rotavirus infection by just 2 years 

of age, while the equivalent probability for norovirus across the eight MAL-ED sites 
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was 89%.22,24–26 It is estimated that deaths due to diarrheal disease declined by 

51.0% between 1990 and 2013, an achievement that has been attributed in large 

part to the introduction of the rotavirus vaccine coupled with widespread 

improvements in water and sanitation access.27 Since this live-attenuated oral 

vaccine against rotavirus was endorsed by the World Health Organization (WHO) in 

2009, 86 countries have introduced it into their national routine childhood 

immunization schedules26, a policy that is credited with large reductions in disease 

burden - in Mexico, a documented 41.5% reduction in diarrhea-related child 

mortality and, in El Salvador, a 70 - 80% reduction in hospitalizations in children 

under age 5.24,25 

1.1.2. Bacterial Diarrheal Disease 

Table 3 summarizes the physiology, structure, primary reservoirs and 

pathogeneses of the main diarrheagenic bacteria. The many strains of E. coli that 

populate the gastrointestinal tract as normal microbial flora are grouped into 5 

major groups or pathotypes based on their pathogeneses and the clinical features of 

the disease they cause. Four of these are of public health importance for pediatric 

populations in low- and middle-income countries (LMICs) and are transmitted by 

consumption of contaminated food or water. The enteroaggregative pathotype 

(EAEC) adheres to the mucosa of the small intestine provoking an inflammatory 

response and leading to hemorrhage and decreased fluid absorption.28,29 

Enteroinvasive E. coli (EIEC), so called because it invades and destroys the epithelial 

cells of the large intestine, is phenotypically related to Shigella spp.28,30 

Enteropathogenic E. coli (EPEC) particularly effects neonates and infants under 6 
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months of age and is divided into typical, and atypical strains, the latter capable of 

zoonotic transmission from mammalian reservoirs.28,30 Enterotoxigenic E. coli 

(ETEC) is so called because it produces one of two enterotoxins – heat labile or heat 

stable – which induces hypersecretion of fluids and electrolytes.28,30 

Food contamination is the principal mode of transmission for 

campylobacteriosis, the major reservoir being poultry, but with other meats and 

raw milk also being important sources of infection.31,32 However, there are 

numerous other, complex routes of infection including anthropozoonotic 

transmission from livestock and domestic pets. Salmonellosis is also mainly 

transmitted by food contamination.31 No non-human animal reservoirs for Shigella 

exists and person-to-person transmission primarily occurs through contact between 

contaminated hands, and therefore thrive in communities that lack adequate clean 

water to support hygiene practices. Cholera is caused by a species of the water-

borne Vibrio bacteria that is part of the natural ecosystem in aquatic environments, 

and thrive in brackish waters.33  Aeromonas spp and P. Shigelloides are also a 

common feature of the microflora of aquatic ecosystems, but survive at lower levels 

of salinity and infection often occurs as a result of ingesting contaminated drinking 

water as well as undercooked fish or shellfish.28,30,34 Y. enterocolitica, because it can 

grow at colder temperatures than most other bacteria, is a common cause of 

entercolitis in the northern regions of Europe and North America, but of much less 

public health importance in tropical regions.28,30



Table 3: Clinical features, primary reservoirs, physiology and structure of the highest burden enteric bacteria28,30 
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Infectious dose >1010 500 1010 >106 106 108 Unknown >103 10 – 200 106 - 1011 108 

Incubation period 
(days) 

1 - 2 1 - 10 <1.5 <2 <2 <2.5 <2 <2 1 - 3 4 - 6 1 - 10 

Duration of illness 
(days) 

Unkn. 2 - 10 >141F

† 
Unk

n. 
~7 3 - 5 <14 2 - 7 1 - 7 <5 7 - 14 

Diarrhea ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
Bloody stool ✓ ✓ - ✓ - - ✓ - ✓ - - 

Vomiting - - ✓ - ✓ ✓ ✓ ✓ - ✓ - 

Fever - ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ - ✓ 

Abdominal pain ✓ ✓ - ✓ - ✓ ✓ ✓ ✓ ✓ ✓ 

Dehydration - - ✓ - ✓ - - - - ✓ - 

Myalgia, headache - - - - - - - ✓ - - - 

Primary reservoir 
Fresh/ 

brackish 
water 

Animals 
(esp. 

birds) 
Humans 

Fresh/ 
brackish 

water 
Animals Humans 

Estuarine/ 
marine 
water 

Mamm-
alian hosts 
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 &
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ct
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8
 

Gram stain Negative Negative Negative Negative Negative Negative Negative Negative 

Oxidase test Positive Positive Negative Positive Negative Negative Positive Negative 

Catalase test Positive Positive Positive Positive Positive Positive Positive Positive 

Morphology Bacillus Helical Bacillus Bacillus Bacillus Bacillus Vibrio Bacillus 

Metabolic 
requirements 

Facultative 
anaerobe 

Micro-
aerophile 

Facultative 
anaerobe 

Facultative 
anaerobe 

Facultative 
anaerobe 

Facultative 
anaerobe 

Facultative 
anaerobe 

Facultative 
anaerobe 

Fermentative Yes No Yes Yes Yes Yes Yes Yes 

  

                                                            
† Chronic cases 
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1.1.3. Enteric Parasites 

Two types of parasites may establish infections in the human gastrointestinal 

tract: unicellular protozoa, and parasitic intestinal worms known as helminths. 

Table 4 summarizes the classification, clinical features and primary reservoirs of the 

main enteric parasite species that infect humans. Protozoan parasites are excreted 

in the stool and transmitted in the form of cysts (or oocysts for some species) which 

contaminate recreational water bodies (a means by which they are dispersed 

through the environment), drinking water sources, food and fomites or are carried 

by insect. Following ingestion, these cysts hatch upon contact with gastric acid 

releasing pathogenic trophozoites (or sporozoites in the case of oocysts) in a 

process called excystation.35 The principal protozoan infections that are of public 

health concern are cryptosporidiosis (mainly caused by the C. parvum and C. hominis 

species) and giardiasis (G. lamblia), while cyclosporiasis can reach prevalence rates 

of up to 18% in endemic areas and balantidiasis (B. coli) is endemic globally, but 

mostly asymptomatic.35 All of these parasite species exhibit zoonotic transmission 

between a variety of animal hosts. In the case of B. coli, this is limited to swine kept 

as livestock (and sometimes monkeys) and pig farming is a major risk factor for 

transmission, but for G. lamblia, sylvatic transmission cycles can be maintained 

indefinitely between wild mammalian hosts in the absence of humans.28 Entamoeba 

histolytica is the most common agent behind pathogenic amebiasis, and in tropical 

and subtropical regions, prevalence of infection can reach 15% though infection is 

often asymptomatic.35 Amebiasis due to Entamoeba coli and Iodamoeba Bütschilii 

infection is believed not to be pathogenic in humans, and is only of public health 
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concern insofar as the presence of these amebae in the stool is an indicator of fecal 

contamination of food or water.35  

The helminthiases are some of the most common infections in humans, 

particularly those caused by the soil-transmitted helminths (STH) – A. lumbricoides, 

T. trichuria, S. stercoralis and the two hookworm species A. duodenale and N. 

Americanus – with which around 1.5 billion people are thought to be infected by  

one or more species.36 These worms inhabit the gastrointestinal tract where they 

survive for up to four years reproducing sexually. The two cestodes or tapeworm 

species Hymenolepis nana and diminuta as well as several species of trematode 

Schistosoma also infect the intestine, but these require intermediate hosts to 

complete their lifecycles.28,35 A female helminth may, depending on the species 

produce between a few dozen and 200,000 eggs per day, which, like protozoan 

cysts, are passed by the host in the feces and, in the absence of adequate sanitation, 

contaminate the environment.28,37 For ascariasis and trichuriasis these eggs remain 

viable for up to several years or until they are ingested directly into the 

gastrointestinal tract in drinking water or vegetables grown in contaminated soil, 

where they establish new infections. S. stercoralis and hookworm eggs hatch into 

larvae, which develop in the feces or soil and upon contact with a human host, 

penetrate the skin to the circulatory system and on via the heart and lungs or 

connective tissue to the small intestine.35 Tapeworm eggs must first infect an 

arthropod insect, which, in turn is ingested by the primary human or mammal host, 

whereas schistosome eggs hatch into miracidia when they reach open water bodies, 

penetrating first into freshwater snail hosts to convert into infective cercariea, and 
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then the skin of the human host as they swim or bathe.35 Helminthiasis rarely causes 

death, although acute A. lumbricoides infection in very young children can cause 

fatal obstruction of the gut. Instead its public health consequences are manifest in 

the chronic, insidious effects that the condition has such as malnutrition, anaemia, 

impeded growth and increased susceptibility to other infections.38  



Table 4: Classification, clinical features and primary reservoirs of included enteric parasites28,30,35
2F
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Balantidium coli Ciliate Unkn. 
3 – 4 
days 

Swine ✓ ✓ ✓ ✓ - ✓ ✓ - - ✓ - ✓ 

Cryptosporidium spp. Sporozoa 
10 - 21 

days 
7 – 10 
days 

Humans, animals ✓ - ✓ ✓ ✓ - -  ✓ - ✓ - 

Cyclospora spp. Sporozoa Weeks 
2 – 11 
days 

Surface water ✓ - - ✓ - ✓ ✓ - - - - - 

Entamoeba histolytica Amebae Unkn. 
>3 

days 
Humans ✓ ✓ - - ✓ ✓ - - - - - - 

Entamoeba coli Amebae Unkn. - Humans - - - - - - - - - - - - 

Giardia lamblia Flagellate 
10 – 14 

days 
1 – 2 

weeks 
Humans, sylvatic 

mammals 
✓ - - ✓ ✓ ✓ - - - - - - 

Iodamoeba bütschlii Amebae Unkn. - Humans - - - - - - - - - - - - 

H
e

lm
in

th
s 

Ascaris Lumbricoides 
(roundworm) 

Nematode <2 years 
6 – 8 

weeks 
Contaminated soil ✓ - - ✓ - ✓ ✓ - - - - - 

Hymenolepis diminuta 
(tapeworm) 

Cestode Unkn. 
20 

days 
Humans, 

arthropods 
- - - - - - - - - - - - 

Hymenolepis nana 
(tapeworm) 

Cestode Years - 
Humans, 

arthropods 
✓ - - - - ✓ ✓ - ✓ ✓ ✓ - 

Hookworm (A. duodenale & 
N. Americanus) 

Nematode <5 years 
3 – 5 

weeks 
Contaminated soil ✓ ✓ - ✓ - ✓ - - - ✓ ✓ - 

Strongyloides stercoralis 
(threadworm) 

Nematode Years Unkn. Contaminated soil ✓ - - - - ✓ - - - - - - 

Schistosoma spp. 
 (blood fluke) 

Trematode 
<30 

years 
4 – 6 

weeks 
Water-dwelling 

snails 
✓ ✓ - - ✓ - - - - ✓ - - 

Trichuris Trichuria 
(whipworm) 

Nematode <5 years Unkn. Contaminated soil ✓ - ✓ - - ✓ - - - ✓ - - 

                                                            
iii Clinical features listed here apply only to the intestinal infections with the parasite. “Unkn.” = unknown. 
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1.2. Seasonality of infectious diseases 

A variable is said to be “seasonal” if it exhibits repeating, periodic 

fluctuations over calendar time, usually within the course of a year.31,39 When a 

seasonally varying outcome is plotted against calendar time it may take the 

appearance of an undulating sinusoidal curve with a regular interval between the 

maximum and minimum values occurring within the same year – the peaks and 

troughs.16 The amplitude (or magnitude) of the seasonality is the difference 

between these two values (or the ratio of one to the other).31,39 There are countless 

communicable diseases that display some kind of seasonal pattern and in certain 

cases, the annual curve can explain up to 60% of the variability in the outcome.40 

While it may be tempting to attribute this phenomenon merely to cyclical changes in 

the weather constraining the transmission and survival of the infectious agents, this 

only gives a partial picture.41 In fact, the true mechanisms underlying infectious 

disease seasonality include multifarious environmental, behavioral and 

immunological drivers that are specific to particular pathogens, their human and 

non-human hosts and their locations.42 These can interact to produce subtle 

periodic fluctuations in either the reproductive number or the fraction of the 

population susceptible to infection at a given time of the year.16 For some diseases, 

the influence of the weather may indeed be fairly direct, like in Bangladesh, where 

variation in ambient temperature and sunshine hours over the annual cycle, interact 

to produce spikes in cholera incidence in both the winter and summer.43 However, 

correlations between environmental factors and seasonal peaks should not 
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automatically be construed as direct causation, since they may be mediated through 

changes in behavior of the human host. For example, rainfall may alter patterns of 

contact between infected and susceptible individuals as they congregate indoors44, 

while a preference for cooking outdoors during clement weather may put people at 

a greater risk of food-borne illness during summer months.41 Seasonal fluctuations 

in tuberculosis incidence have been explained by annual variations in rates of 

contact, reactivation and tuberculosis-induced mortality, that are largely 

independent of whatever effects the weather may have on Mycobacterium 

survival.45 Outbreaks of zoonotic diseases may occur as the result of seasonal animal 

husbandry practices while higher rates of international travel at certain times of the 

year may facilitate the importation of pathogens from high- to low-endemicity 

settings.32,46,47 Summertime increases in recreational water activities and water 

consumption may explain the coincident peaks in waterborne pathogens.31,48,49 

Seasonal fluctuations in immune competence are another hypothesized driver, but 

have yet to be conclusively identified in humans.42 However, immune status can 

play a role in seasonality of pediatric infections, since surges in birth rates at certain 

times of the year can introduce annual waves of susceptible individuals into the 

population at risk.50 A historical example that illustrates this point is that a major 

driver behind seasonality in measles infections that long perplexed epidemiologists 

turned out to be the sudden congregation of immune susceptible children at the 

beginning of school terms.42 

Most enteric infectious diseases (EIDs) exhibit some kind of seasonality, their 

incidence peaking at a particular point in the annual cycle and receding at others 
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year after year.51 These patterns vary with latitude and climatic zone, while diseases 

caused by the same type of pathogen and that share common routes of transmission 

and exposure sources, tend to converge in their seasonal patterns suggesting an 

overlapping environmental influence.31 At least part of this observed seasonal 

variation can be explained by annual changes in the weather conditions that in some 

seasons favor transmission and in others inhibit it, however host factors no doubt 

also play a role. The relative influence of these co-seasonal social, behavioral and 

immunological determinants of transmission risk is poorly understood due to the 

methodological challenges of adjusting for them.16,42 Furthermore, for diseases with 

multiple routes of transmission, different mechanisms may come to dominate their 

relative contribution to overall burden at different points in the annual cycle. For 

example, for rotavirus in south Asia, the large winter peak may be accounted for by 

airborne transmission on dried dust substrates, while the smaller monsoon peak 

may be due to wider dispersal of the virus in floodwater and runoff promoting 

water-borne transmission.21  

1.2.1. Seasonality of Enteric Viruses: 

That viral diseases demonstrate seasonality is reflected in the everyday 

lexicon in phrases like “flu season” and the colloquial names for rotavirus and 

norovirus – respectively “winter vomiting disease” and “wintery diarrhea”. Of the 

highest burden enteric viruses at least three – astrovirus, norovirus and rotavirus – 

show clear seasonality following a similar pattern. Broadly speaking, transmission 

peaks in winter and recedes to a sustained lower level in the offseason across all 

latitudes but most pronouncedly in temperate climes, tropical regions having more 
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sustained, year-round patterns with discernable, but less pronounced relative 

peaks.13,19–21,48,52–55 Human astrovirus disease, while circulating throughout the 

year, peaks annually in winter in temperate climates – thought to be due to lower 

temperatures conferring stability of the virus – and in the rainy season in the 

tropics.13  

For rotavirus, this broad pattern may be something of an 

oversimplification.19,21 Several studies in tropical South Asia have found biannual 

peaks in rotavirus diarrhea in children, with a large winter peak followed six-

months later by a smaller, secondary peak coinciding with the monsoon rains.20,53,56–

58 There are conflicting results in studies attempting to link particular climatic 

variables to temporal variations in rotavirus burden.53 Temperature and humidity 

are known to be inversely associated with rotavirus transmission risk, which may 

relate to the conditions conducive to the virus’s survival, or, in the case of humidity, 

to its areal transport in dried, infective fecal and dust particles.16,19–21,53,59 Drier 

environments have been shown to support transmission of the virus, and the 

association observed between wind speed and rotavirus hospitalizations also lends 

credibility to the latter putative mechanism.16,19,21 Higher atmospheric pressure and 

solar radiation, in addition to lower temperature, have been associated with 

increases in rotavirus outcomes.19 One study in Bangladesh, by contrast, found that, 

above a 29°C threshold, higher temperature was associated with an increase in 

rotavirus diarrhea hospital admissions, although it was also associated with higher 

river levels, so this could have been the result of confounding with waterborne 

transmission of the virus during the monsoon season.59 A study of three Australian 
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cities showed increased temperature and humidity to be associated with decreased 

rotavirus diarrhea hospitalizations.60 

Ambient temperature (absolute as well as relative), humidity and rainfall 

have all been associated with norovirus risk and as such are potential candidate 

drivers of the disease’s seasonality although most studies aggregated climatic 

variables to monthly averages and are thus limited in how accurately they can 

quantify the effect measure and eliminate residual confounding.48,53 A direct effect 

of temperature is suggested by the observation that norovirus has increased 

durability in cold water.16 Water-borne transmission is a secondary route of 

infection and in several studies, higher measures of rainfall predicted greater 

norovirus seasonality measures.48 The results of one laboratory study supported the 

hypothesis that lower absolute (as opposed to relative) humidity was favorable to 

the survival of norovirus in the environment and its prolonged infectivity.61 A 

similar relationship is observed with influenza, the seasonality of which is 

influenced by the virus being able to survive longer in the air when humidity is 

low.42 However, the evidence for such an inverse association is not substantial 

enough to deter some scholars from hypothesizing a direct association, mediated by 

increased humidity facilitating the airborne transport of virus-containing aerosols.55 

It is conceivable that conditions of low humidity might promote transmission via the 

fecal-oral route and contamination of surfaces and fomites, while high humidity 

enables transmission of aerosols by vomitus. In addition to seasonal climatic 

drivers, it has been speculated that an increased proportion of time spent indoors in 

crowded conditions could be a factor increasing human-to-human transmission of 
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norovirus in winter.48 Reviews have been unable to confirm or refute the claim that 

norovirus peaks in warmer months in the southern hemisphere compared to the 

northern, due to paucity of published studies from south of the equator.53 

Much less evidence has been published on the seasonality of adenovirus. 

While one study in Bangladesh reported a peak in prevalence coinciding with the 

May to July rainy season62, and in Japan a winter-spring peak has been reported63, 

several other studies have failed to discern a clear seasonal pattern.64–66 Outbreaks 

of waterborne adenovirus are associated with recreational water activities, a 

behavioral exposure that may increase in summer months.67 

1.2.2. Seasonality of Bacterial Diarrheal Disease: 

In contrast to the seasonal patterns exhibited for enteric viruses, almost all 

bacterial enteric infections tend to peak between spring and late summer. Many 

foodborne bacteria thrive at temperatures close to that of the human body so 

environmental temperatures that approach 37°C would be expected to be most 

conducive to propagation of these agents, but their survival in soil can be prolonged 

by low temperatures at which their metabolic processes slow.32 

The multiple routes of transmission for campylobacteriosis make it difficult 

to isolate the effects of individual potential seasonally varying predictors.32,49 In 

most locations, the annual peak in cases occurs in the summer months, coinciding, 

according to the findings of a time series analysis, with the peak in temperature and 

following the ambient temperature trend to a low in winter.31,32,46 Elsewhere, it has 

been suggested that campylobacteriosis incidence tends to peak in spring (or earlier 



 
 20 

in areas with milder winters), roughly three months prior to the annual maximum 

temperature in mid-latitudes, with equatorial regions experiencing sustained, year-

round transmission, a geographical pattern that is strongly suggestive of climatic 

drivers.68 It is also possible that the spring peak of campylobacteriosis is associated 

with annual changes in avian and mammalian reservoir behavior and foraging or 

animal husbandry activity following the winter, that promotes increased contact 

between human and animal hosts.49 While a direct association between temperature 

and Campylobacter spp survival has been observed, it has also been suggested that, 

in surface waters, increased UV radiation reduces survival of the bacterium.69 It has 

yet to be establish the extent to which the seasonality is determined by the 

bacteria’s biology, in particular, its sensitivity to oxygen, moisture and pH and its 

inability to survive in the open environment and to propagate at temperatures 

below 30°C.32 It has been speculated that milder winters promote the proliferation 

of Campylobacter spp in the environment, however, the precise effect of climate on 

seasonality remains unclear, and the evidence for the presumed direct effect of 

rainfall or temperature changes on transmission is weak.49 

Incidence of salmonellosis peaks in summer, around two weeks after the 

maximum temperature with a low in winter according to time series analyses.31,46 A 

similar analysis of data from ten European countries found a clear association 

between average environmental temperature and salmonellosis incidence with a 

one-week lag effect, however whether the mechanism behind this association is 

direct or indirect – for example, seasonal changes in eating and food preparation 

habits, undercooked barbecue meat etc. – is unclear.32,70,71 In Ontario, infections 
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peaked in the spring.47 Salmonella are one of the more resilient bacteria species 

surviving outside the host in a range of temperatures and environmental conditions, 

and gardening has been highlighted as a possible seasonally varying behavioral risk 

factor, since contamination of soil from stool of domestic pets may be a pathway.32,71  

Diarrheagenic E. coli infection also peaks in summer, and ambient 

temperature may be the main environmental driver. A meta-analysis of 18 studies 

found a 1°C increase in mean monthly temperature to be associated with an 8% 

increase in incidence.72 Monthly incidence of bloodstream infection due to E. coli 

was predicted to increase by 7% with every 10°F increment in mean monthly 

temperature, although the mechanism is unclear and seasonal changes in bacterial 

virulence or host susceptibility are not known to occur.73 After being shed in the 

feces of animal reservoirs, the bacterium can persist in the soil for long periods 

before migrating to groundwater or contaminating fresh produce so seasonally 

varying agricultural or food-borne exposure cannot be ruled out.32 

The seasonality of Vibrio cholerae infection is relatively well studied. One 

review paper found that cholera outbreaks exhibited more pronounced seasonality 

the higher the latitude often coinciding with the wettest months, but that this 

pattern broke down in the tropics where outbreaks are more common, occurring 

year-round with no discernible peak.74 A time series analysis of cholera data from 

Bangladesh concluded that upper tropospheric humidity, cloud cover and top-of-

atmosphere absorbed solar radiation were likely drivers of the temporal 

variability.75 Others have emphasized the role of surface water temperatures, sea 
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surface height (which transports V. cholerae into inland waters), water salinity and 

turbidity33 and the link with warm El Niño events.74,76 

Little has been published on the seasonality of Aeromonas spp, shigellosis, Y. 

enterocolitica, and P. shigelloides. Seasonality of shigellosis is not as marked as for 

other bacterial enteropathies, but a modest peak seems to occur later in summer, 

around one month after the annual peak in temperature.31,77 Gastrointestinal 

carriage of Aeromonas spp has been shown to occur in the warmer months.28 

Yersinia enterocolitica, uniquely among the bacterial enteric diseases, exhibits a 

seasonal peak in winter, which is thought to be a direct result of the psychrotrophic 

nature of the bacterium.32 As a result, it is perhaps the pathogen for which there is 

the most convincing evidence for climate as a direct factor influencing seasonality. 

1.2.3. Seasonality of Enteric Parasites: 

Among the diseases caused by protozoan parasites, the cryptosporidiosis 

season occurs shortly before autumn, around a month after the annual temperature 

high and peak incidence of giardiasis follows shortly after that.31 This varies 

considerably by location however, with the UK and New Zealand experiencing 

spring peaks and North America, summer-autumn peaks in cryptosporidiosis.46 In 

some settings, animal husbandry practices can supersede climatic drivers, such as in 

New Zealand, where the annual peak in cryptosporidiosis coincides with the spring 

lambing and calving season.46,78 Temperature, precipitation and the Normalized 

Difference Vegetation Index (NDVI), a remotely sensed proxy measure for the 

combined effect of these two variables on foliage abundance, have all been shown to 
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be predictive of cryptosporidiosis incidence, particularly in warm, wet locations like 

the humid mid-latitude climate zones.79 For amebiasis caused by Entamoeba 

histolytica, there is some published evidence for a seasonal peak occurring in 

summer and autumn though little is understood about the drivers of this trend.80 

The timing of annual peaks in helminthiasis transmission varies by location 

and species, but in many settings coincides with the rainy season.81 Survival and 

viability of helminth eggs in the environment and the development of worm larvae 

are highly dependent on ambient temperature. In temperate regions, there is a 

direct relationship between temperature and most indicators of helminthiasis 

transmission up to an upper limit of 35-45°C (depending on the worm species) 

above which, eggs are no longer able to develop.81 The role of precipitation is 

unclear. In general moist and humid conditions are conducive to helminth 

proliferation, but it is speculated that rainfall at larger volumes may rinse helminths 

from the environment in soil runoff.82   



Table 5: Transmission routes and seasonally varying drivers of transmission for EIDs of public health importance12,13,47–49,53,55,56,59,61,65,68,16,70,71,73,74,77,79–83,19,84–92,20,21,28,31,32,34
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Adenovirus - ✓ - ✓ ✓ ✓ Unknown - - - - - - - - ↗ - - - (✓) 

Astrovirus ✓ ✓ - ✓ - ✓ Winter - (↘) - - - - - - ↗ - - - (✓) 

Norovirus ✓ ✓ - ✓ ✓ ✓ Winter ↗ ↘ (↘) - - - - ↗ - - (↗) - (✓) 

Rotavirus ✓ ✓ - ✓ ✓ ✓ Winter ↘ ↘ ↘ (↘) (↗) ↗ - - - - - - (✓) 

B
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Aeromonas spp ✓ ✓ - ✓ - - Unknown - ↗ - - - - - ↗ - - - - (✓) 

Campylobacteriosis ✓ ✓ ✓ ✓ - - Spring - ↗ - - - - (↘) ↗ ↗ (✓) - (↗) (✓) 

Diarrheagenic E. coli ✓ ✓ ✓ ✓ - ✓ Summer - ↗ - - - - - ↗ ↗ (✓) - (↗) (✓) 

P. shigelloides ✓ ✓ - - - - Summer - ↗ - - - - - ↗ ↗ ✓ - - - 

Salmonellosis ✓ ✓ ✓ ✓ - - Spring/summer - ↗ - - - - - (↗) - (✓) - (↗) (✓) 

Shigellosis ✓ ✓ - ✓ - ✓ Late summer - - - - - - - ↗ ↗ - - - (✓) 

Cholera ✓ ✓ - ✓ - - Rainy season ↗ ↗ ↗ - - - ↗ - - - - - (✓) 

Y. enterocolitica ✓ ✓ ✓ ✓ - - Winter - ↘ - - - - - - - - - (↗) (✓) 

P
a

ra
si

ti
c 

Cryptosporidiosis ✓ ✓ ✓ ✓ - - Late summer ↗ ↗ - - - - - ↗ ↗ - - (↗) - 

Cyclosporiasis ✓ ✓ ✓ ✓ - - Rainy season ↗ - - - - - - - (↗) (✓) - (↗) - 

Giardiasis ✓ ✓ ✓ ✓ - - Late summer ↗ ↗ - - - - - ↗ ↗ - - (↗) - 

Amebiasis ✓ ✓ - ✓ - - Summer/autumn - - - - - - - (↗) - - - - - 

Helminthiasis - - - ✓ - ✓ Rainy season (↘) ↗ ↗ (↘) - - - - - - - - - 

                                                            
iv “↗” = directly associated, “↘” = inversely associated, “-“ = no evidence for an association. Parentheses indicate a hypothesized association for which evidence is as yet 
inconclusive. 
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1.3. Climate, Weather and Infectious Disease 

The impact of climate on infectious diseases is closely related to, but distinct 

from seasonality. As explained in the previous section, cyclical annual weather 

patterns at a given location can be a key driver of seasonality for many infections, 

and assessing the relative contribution of non-environmental, host factors is a major 

methodological challenge. In contrast, the climate of a location – the average 

behavior of the weather over a longer term, multi-year period – determines the 

range of values within which hydro-meteorological parameters can be expected to 

vary both in annual cycles and from day to day. Since the growth, survival and 

dispersal of microorganisms and the distribution of their intermediary hosts and 

vectors is determined by environmental factors, hydrometeorological parameters 

being principal among them, climate is a key constraint on the geographic and 

temporal distribution of infectious diseases.32,41  

While climatic drivers of some infections, principally vector-borne diseases 

have been relatively well-explored, currently little is understood of their role in 

enteric disease transmission and there is no unified theoretical framework through 

which to conceptualize the relative influence of individual drivers.16,20,93 What 

exploration there has been has tended to focus on non-specific, morbidity-

dependent outcomes such as hospitalizations for acute diarrheal disease and 

outbreaks of gastroenteritis and not on underlying, background endemicity of 

specific pathogens.94 On the exposure side, there has been a disproportionate 

emphasis on extreme weather events and anomalous climate phenomena such as 
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the El Niño–Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO) as 

predictors.95–97 Less has been explored about small-scale meteorological variability 

within the normal range. A variety of hydrometeorological variables have been 

either shown or hypothesized to influence the transmission of enteropathogens and 

these are explained in detail in chapter 3. Many of these parameters are highly 

correlated so there may be complex interactions between these highly collinear 

variables and the transmission mechanisms that make it challenging to tease out the 

particular effect of single factors.19 

1.4. Impact of Climate Change 

The global proliferation of greenhouse gases in the atmosphere caused by 

human activities – primarily the burning of fossil fuels but also agriculture and 

deforestation – is leading to long-term and irreversible increases in global surface 

temperatures, shifts in the distributions of other climate variables and increased 

risk of extreme weather events.98,99 Projections from the Inter-Governmental Panel 

on Climate Change (IPCC) indicate that, by the end of this century, average global 

surface temperature will have risen by more than 1.5°C compared with the period 

from 1850 – 1900, with some areas experiencing much greater warming due to 

regional variability.98 As the effects of anthropogenic climate change gain 

momentum, tropical and sub-tropical regions are expected to see the largest 

seasonal increases in mean temperatures in the short term, while most areas will 

experience more frequent and longer lasting heatwaves and less frequent low 

temperatures.32,98 Variability in precipitation and evapotranspiration is set to 
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increase due to climate change, exaggerating the pattern of high rainfall at the 

equator and polar fronts and low rainfall at the subtropical heights.98 This is due to a 

precipitation feedback mechanism, which, in the subtropics will lead to increased 

entrainment and elevated lifting condensation level. At the equator, drought 

precipitation feedbacks will cause a cycle of increases in soil moisture, 

evapotranspiration and precipitation. The direction of the change in rainfall will 

likely vary on smaller geographic scales as well, but in ways that are more difficult 

to predict.100,101 

Among the many ways in which these trends will make human life on earth 

more precarious, is in their impacts on public health generally and diarrheal and 

infectious diseases specifically. The geographical ranges of disease-transmitting 

insects have already expanded poleward and regions in which vector-borne disease 

transmission had previously been eliminated, such as southern Europe, are again 

seeing autochthonous cases.102 Enteric pathogen transmission will likely be 

impacted too, but in ways that are difficult to predict. Incidence of food- and water-

borne enteropathies may increase as larger swathes of the globes surface spends a 

greater proportion of the year within the temperature range that is optimal for 

bacteria and protozoa proliferation. A review of the literature on this topic found a 

1°C increase in temperature to be associated with a risk in diarrheal disease 

incidence of 3 – 11%.99 Specific humidity is predicted to increase with climate 

change while relative humidity – the ratio of the specific humidity to the saturation 

specific humidity - will remain constant.98,103,104 This may engender a suppression of 

enteric virus transmission, or a shift from transmission via dried airborne fecal 
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particles to droplet, food- or water-borne transmission. The effects of changes in 

rainfall patterns on diarrheal disease will likely not be linear but felt most 

pronouncedly at the extremes, with both heavy precipitation events and more 

frequent droughts making water sources more precarious.93,99,105  

Under a likely greenhouse gas emissions scenario, the year 2030 may see an 

additional 50,000 additional deaths due to diarrheal disease attributable to climate 

change, with 60,000 for malaria, 258 for dengue and 95,000 for undernutrition.106 

However, there is considerable uncertainty around these attempts to quantify the 

impacts of climate change on human health in general and infectious diseases in 

particular.106,107 One of the major sources of this uncertainty is the scarcity of 

empirical data linking climate and health data spatiotemporally.107 Due to lack of 

collaboration between the relevant disciplines climate models are only just 

beginning to be used to make inferences about health outcomes.101,108 The outputs 

from time series regression models need to be combined with projected medium-

term changes in climatological parameters, the kind of modeling exercises that are 

commonplace in the study of ecology and biodiversity but have been slow to be 

adapted for infectious diseases.100 

1.5. Study Rationale 

Despite widespread recognition of the seasonal nature of the epidemiology of 

enteric diseases, the mechanisms underlying this phenomenon are poorly 

understood.42 Improving understanding of the seasonality of these diseases is 

methodologically challenging, but essential in order to inform policy on the timing 
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of preventive measures and to forecast how climate change might influence trends 

in the burden of diarrhea.21,42,73 With some notable exceptions, most studies of 

seasonality of infectious diseases have been hindered by data being aggregated up 

to weekly, monthly or quarterly cumulative incidence, rather than daily 

estimates.31,53 There is a need for more studies in which both the outcome and 

exposure are matched by precise timing (i.e. daily estimates) and specific 

geographic areas with relatively homogenous meteorological and population 

profiles.48 They need to adjust for confounding by behavioral and socio-

demographic factors such as access to improved water and sanitation, socio-

economic status, fertility rates and contact with animals.53 There is also a paucity of 

studies on seasonality of enteric diseases coming from developing countries – 

particularly Africa and South America - and those in the tropics and the southern 

hemisphere.48  

The extent to which climatic processes and mechanisms drive the 

transmission of enteric infections is a similarly underexplored issue. This may be a 

consequence of the fact that it is a public health burden that is primarily borne by 

underserved and marginalized populations in LMICs. However, given the toll in 

terms of child mortality that these diseases exact and in the context of a rapidly 

changing climate, the unanswered questions surrounding this phenomenon are lent 

a renewed urgency. The data and methods exist to greatly improve predictions of 

how shifts in climatic variables will affect disease incidence so that the public health 

community can be better prepared for future changes, but the will to carry out these 

studies has so far been somewhat lacking. What efforts there have been have 
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disproportionately focused on vector-borne disease, for which the viable habitat for 

the insect host is the main environmental constraint on transmission.93 To address 

this knowledge gap for a wider range of communicable diseases, multiple regression 

models are needed to isolate statistical interactions between the numerous, 

collinear climatic variables and longitudinal analysis approaches are necessary to 

assess trends over annual cycles and longer-term calendar time, to incorporate lag 

effects and to adjust for cumulative population immunity.19,53  
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2. Chapter 2: Study context and outcome variable 

The three analyses presented in this document all used the same outcome 

variable from the same study population. 

2.1. Study population 

In 2009 a unique coordinated cohort study was established by the 

Interactions of Malnutrition & Enteric Infections: Consequences for Child Health and 

Development project (MAL-ED), with the aim of investigating the risk factors for 

enteric infection, diarrheal disease, undernutrition and other related adverse 

outcomes. This network of institutions has recruited and monitored birth cohorts of 

227 – 303 newborns from eight communities, each in a different low- and middle-

income country (LMIC) across three continents – Dhaka, Bangladesh (BGD), 

Fortaleza, Brazil (BRF), Vellore, India (INV), Bhaktapur, Nepal (NEB), Naushero 

Feroze, Pakistan (PKN), Loreto, Peru (PEL), Venda, South Africa (SAV); and Haydom, 

Tanzania (TZH). Subjects were monitored continuously over their first 2 years of life 

using molecular diagnostics and standardized surveillance protocols and assays to 

track data on EID incidence, nutritional and anthropometric outcomes, cognitive 

development and biological markers.109,110 Stool samples were routinely collected as 

part of active surveillance on, or within two days of the monthly anniversary of each 

child’s birth.110 Additional, off-monthly samples of diarrheal stool were collected in 

between the monthly assessments on days in which the caregiver reported that the 

child was having a diarrheal episode.109 In this way, the study was able to detect 
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mild and even asymptomatic cases, a more proximal indicator of endemic pathogen 

transmission and a less rare outcome than clinical manifestations.109 The resulting 

longitudinal dataset contains, among other things, data on infection status for more 

than 30 enteric pathogens in 50,000 stool samples collected from 2,199 infants from 

ages 0 to 24 months between November 2009 and March 2014. 

The MAL-ED project offers a unique opportunity for a long called-for 

comparative analysis that can apply the same approach to data from multiple 

locations and on different pathogens in order to elucidate the patterns and 

determinants of their seasonality.42,56,109 The fact that the project has sites in 

multiple countries situated in different climatic zones means that data on the same 

infections can be compared longitudinally at different locations to test hypotheses 

about environmental drivers of their transmission and seasonality.42 Although the 

study subjects were only followed up until 24 months of age, because of the 

staggered enrollment of participants, the MAL-ED data spans a total period of over 

four years, a sufficient span of time to detect recurring annual patterns and within-

season variation. Furthermore, because the precise dates of each assessment are 

known, the health outcome data can be linked to environmental exposures by the 

day on which they occurred, a temporal resolution that is rarely seen in published 

literature.  

Furthermore, previous studies have been forced to focus on surveillance or 

hospitalization data which, by their nature, constrains them to morbidity-related 

outcomes which manifest only as severe, symptomatic cases. Often this also means 
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that the outcome is rare, necessitating aggregation to weekly, monthly or seasonal 

summary statistics.16 Moreover, underreporting of cases that are less severe, or do 

not present to the health system may introduce bias.100 By using routine, active 

surveillance of the underlying infection status as they occur in the community, the 

MAL-ED study was able to detect mild and subclinical cases, a more proximal 

indicator of endemic pathogen transmission and a less rare outcome, which lends 

greater statistical power to analyses.109 Differential detection of multiple pathogen 

species is a further asset, since environmental factors that are detrimental to one 

pathogen's proliferation may be propitious to another's (the example of water 

temperature inactivating viruses, but enabling bacterial growth is a case in point).100 

Furthermore, it allows for the exploration of distributed lag effects which may differ 

by pathogen.94 Finally, the wealth of baseline and longitudinal data on socio-

demographic variables collected by the study will allow for adjustment for common 

confounders, effect modifiers and mediation of any identified associations. 

Table 6 summarizes the Köppen-Geiger climate classifications, precipitation 

and temperature patterns and other features of each of the MAL-ED study sites and 

Figure 1 shows their locations in relation to the Equator and Tropics of Cancer and 

Capricorn. While the sites were originally selected to be characteristic of a variety of 

epidemiological contexts, they also vary in the type of climate that they experience, 

offering a representative range of the kinds of weather patterns that prevail across 

the developing regions of the world. Half of the sites lie in the Southern hemisphere 

with three of these – Brazil, Peru and Tanzania – situated close to the Equator and 

the fourth close to the southern edge of the tropics. Of the sites in the Northern 
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hemisphere, one (Vellore, India) is located in the tropics, and the remaining three 

are within the mid-latitudes. Because of their different locations they also 

experience their rainy seasons and annual peaks in temperature at different times of 

the year and at different intensities. Similarly, the type of settlement and the altitude 

and topography of their locations – factors which may either have a direct effect on 

the weather they experience, or mediate the effect on EID incidence – all vary 

between sites. Three of the sites are located in tropical savannah climate zones 

(Bangladesh, India and Tanzania), while two share a humid subtropical climate 

(South Africa and Nepal). The maximum distance over which any site extends is 12.5 

km (South Africa east to west) with most sites extending less than 5km in any 

direction and, according to accounts from site staff, none of the sites exhibit large 

topographic contrasts. It can therefore be assumed that within-site climate variation 

will be small, though localized environmental risk factors for specific households—

e.g. small depressions or local water bodies—cannot be ruled out. At the time of 

data collection (2009 – 2014), three of the countries in which the study sites are 

located – Brazil, Peru and South Africa – had introduced the rotavirus vaccine into 

their routine childhood immunization schedules. 

  



Table 6: Köppen-Geiger climate classifications, precipitation and temperature patterns and other features of the locations of each MAL-ED 
study site 111–120 

Site 
Main 

Climate 
Precipitation Temperature 

Topo-
graphy 

Geographic extent 
of site (km) Altitude 

(m) 

Distance to 
weather 
station 

(km) 

Settlement 
type 

Hemi-
sphere North-

south 
East-
west 

Dhaka, 
Bangladesh 

Tropical 
savanna 

Dry Nov - Feb, 
Monsoon Jun 

- Oct 

Mar – May 
peak 

Alluvial 
plain 

0.8 0.6 12 4.6 Urban Northern 

Fortaleza, 
Brazil 

Tropical 
monsoon 

Dry Aug - Dec, 
rainy Jan - 

July 

Hot year-
round 

Coastal 1.5 1.2 28 5.3 Urban Southern 

Vellore, 
India 

Tropical 
savanna 

Dry Jan - May, 
Monsoon Jun 

- Dec 
Mar – Jun peak Hilly 1.5 1.1 231 1.0 Urban Northern 

Bhaktapur, 
Nepal 

Humid 
subtropical 

Dry Oct- Mar, 
Monsoon May 

- Aug 

Hot during 
Monsoon, 
Apr – Jun 

Hilly 2.2 2.8 1,317 7.5 Peri-urban Northern 

Naushero 
Feroze, 
Pakistan 

Desert/ 
Arid 

Dry, short 
Monsoon Jul -

Sep 

Very hot Mar – 
Oct 

Flat 8.4 4.6 44 21.9 Rural Northern 

Loreto, Peru 
Tropical 

rainforest 

Fully humid, 
year-round 

rain 

Hot year-
round 

Flat 2.1 1.5 89 3.3 Rural Southern 

Venda, South 
Africa 

Humid 
subtropical 

Dry May - 
Sep, rainy Oct 

- Mar 

Hot  
Sep – Feb 

Hilly 3.8 12.5 657 36.9 Peri-urban Southern 

Haydom, 
Tanzania 

Tropical 
savanna 

Dry Jun - Sep, 
rainy Nov - 

May 

Temperate 
year round 

Hilly 3.0 5.5 1,650 31.8 Rural Southern 

  



 
Figure 1: Locations of the eight MAL-ED study sites in relation to the Equator and Tropics of Cancer and Capricorn
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2.2. Sample selection and enrollment 

Communities were selected at each of the eight study sites and fieldworker 

teams enumerated a sample frame of all women of reproductive age living within 

each community’s catchment area. If an enumerated woman then gave birth during 

an enrolment period that started in November 2009, they were approached by field 

staff to gain consent and determine eligibility for their newborn to participate in the 

study, with the aim of recruiting at least 200 study infants per site. Enrollment of 

each child took place within 17 days of birth. 

2.3. Data collection 

Baseline data on demographic and anthropometric characteristics were 

obtained at enrollment, while daily data on morbidity, care-seeking and infant 

feeding were ascertained by care-giver report from twice-weekly household visits, 

and anthropometric and clinical data were collected during monthly assessments.109 

Stool samples were collected routinely from the infants at roughly monthly intervals 

from birth to 24 months of age. In addition to the routine collections, some stool 

samples were collected between scheduled assessments on days in which the child’s 

care-giver reported that the child had experienced a diarrheal episode.109 The 

samples were collected by field workers who stored them for processing at a 

temperature of -70°C without fixative.121  
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2.4. Quality control  

All procedures, questionnaires, checklists and guidelines used in MAL-ED 

were produced by a technical subcommittee assembled within the project study 

with the purpose of maintaining quality standards across all eight sites of the 

study.122 Prior to digital data entry, all forms were reviewed by field supervisors, 

who also carried out monthly surveillance on 10% of sampled households to 

validate data from the field workers. In addition, data from all sites was screened by 

a central Data Coordinating Center that was established to implement rigorous 

quality control measures (which have been described elsewhere).122 

2.5. Ethical considerations 

Prior written informed consent from a parent and/or guardian was a 

prerequisite for all participants’ inclusion in the study. Study staff read the consent 

form to the caregiver and then a copy was left in their possession. Ethical approval 

was given by the Johns Hopkins Institutional Review Board (IRB) as well as from the 

local partner organization at each site. 

2.6. Outcome variable 

Stool samples were tested for the presence of shed rotavirus using two 

methods that were standardized across sites. Samples from children who remained 

in the study up to 24 months of age were retrospectively tested for rotavirus (and 

28 other enteropathogens) using probe-based qPCR assays on custom-developed 

TaqMan Array Cards (ThermoFisher, Carlsbad, CA, USA).123 Samples from subjects 
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who did not complete follow-up were assessed for rotavirus positivity prospectively 

by ELISA but only for quarterly samples in the second year of life.110  The outcome of 

interest in these analyses was therefore the time-varying, stool sample-level, binary 

infection status variable, for which a value of 1 signified that a stool sample was 

found to be positive for rotavirus and 0, negative. Rotavirus-positive stool samples 

were excluded from the dataset if they were collected within 14 days of a previous 

positive sample, without being separated by an intermediate negative sample or 

within the subsequent 14 days of the subject receiving the rotavirus vaccine (this 

being a plausible maximum duration of viral shedding in immunocompetent 

persons).17,22. This was to ensure that a single infection episode was not counted 

multiple times and that stools containing shed vaccine virus were not incorrectly 

classified as positive for wild virus.58 

Table 7 summarizes the number, percentage and incidence of rotavirus 

episodes detected by sample type as well as the number length of follow-up time, 

number of subjects and the proportion that were lost to follow-up in each of the 

eight sites and by vaccine category. At all sites, in both vaccine categories and in the 

sample overall, the percentage of diarrheal stool samples that were rotavirus 

positive was consistently higher than that observed in the monthly samples, but by 

ratios that varied from 1.8 times at the Pakistan site, to 4.5 at the Bangladesh site. 

While the rate of rotavirus positivity in both sample types was lower in sites 

situated in countries that had introduced the rotavirus vaccine, the incidence rates 

of the two types of rotavirus episode exhibited more variation by site and vaccine 

category, with incidence in the Peru site exceeding that observed in several of the 
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non-vaccine country sites. Loss to follow-up was defined as the proportion of the 

total number of participants for whom no observation was recorded after age 23.5 

months and exceeded 10% in all sites except India and Nepal. In the Brazil and Peru 

sites, these levels of attrition were considerable with more than a third of the initial 

participants lost to follow-up by 24 months of age.  Exploratory analysis of the 

missingness patterns (not reported) indicated that the probability that an 

observation was missing did not depend on the subjects’ history of observed 

rotavirus episodes, suggesting an underlying mechanism of Missingness Completely 

at Random (MCAR).  

Figure 2 shows needle plots of the observed daily distribution of rotavirus 

infections (included, positive samples) for each site along with the overall length of 

follow-up time. With the possible exception of the Peru site, infections appear to be 

sparsely distributed at the beginning and end of the follow-up period and occur with 

more density during the middle period suggesting a non-linear association with age. 

Some clustering of infections at certain times of year are discernible in most sites 

with the exception of Brazil.  



Table 7: Number of study subjects, number, percentage and incidence rate of rotavirus-positive samples in each of the MAL-ED study sites and by vaccine 
category and sample type4F

v  

Diarrheal samples Monthly samples Follow-up time  Subjects 

RV 
positive 

Total 
% RV 

positive 

RV 
incidence 

rate 

RV 
positive 

Total 
% RV 

positive 

RV 
incidence 

rate 

Person-
years 

Calendar 
time 

(months) 
Total 

% Lost to 
follow-up 

V
ac

ci
n

e 
in

tr
o

d
u

ce
d

 

  
BRF 4 91 4.4 1.1 38 3,624 1.0 10.2 371.7 42.3 227 37.0 

  
PEL 103 1,892 5.4 21.3 178 6,328 2.8 36.9 482.7 49.7 303 35.6 

  
SAV 5 108 4.6 1.0 104 5,764 1.8 20.6 505.3 51.9 290 20.0 

Total 112 2,091 5.4 8.2 320 15,716 2.0 23.5 1,359.7 51.9 820 30.9 

V
ac

ci
n

e 
n

o
t 

y
et

 in
tr

o
d

u
ce

d
 

  
BGD 339 1,519 22.3 74.1 264 5,282 5.0 57.7 457.6 47.7 265 22.6 

  
INV 65 486 13.4 14.1 374 5,570 6.7 80.8 462.6 46.8 243 9.5 

  
NEB 95 822 11.6 20.5 163 5,519 3.0 35.2 462.6 44.3 238 7.6 

  
PKN 117 2,112 5.5 22.7 172 5,676 3.0 33.3 516.3 48.1 275 10.9 

  
TZH 17 101 16.8 3.6 239 5,147 4.6 51.2 467.0 47.6 259 23.6 

Total 633 5,040 12.6 26.8 1,212 27,194 4.5 51.2 2,366.0 50.3 1,280 14.8 

Overall total 745 7,131 10.4 20.0 1,532 42,910 3.6 41.1 3,725.7 51.9 2,100 20.9 

                                                            
v BGD = Dhaka, Bangladesh; BRF = Fortaleza, Brazil; INV = Vellore, India; NEB = Bhaktapur, Nepal; PKN = Naushero Feroze Pakistan; PEL = Loreto, Peru; SAV = Venda, 

South Africa; TZH = Haydom, Tanzania. RV = rotavirus, Incidence rates are per 100 person-years. 
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Figure 2: Needle plots of the daily distribution of rotavirus-positive stool samples 
recorded at each MAL-ED site (rotavirus-negative samples not shown). BGD = Dhaka, 
Bangladesh; BRF = Fortaleza, Brazil; INV = Vellore, India; NEB = Bhaktapur, Nepal; 
PKN = Naushero Feroze Pakistan; PEL = Loreto, Peru; SAV = Venda, South Africa; TZH 
= Haydom, Tanzania.  
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3. Chapter 3: Exposure variables 

The first analysis (chapter 4) is an assessment of seasonality so the day of the 

year is the main exposure of interest. The second and third (chapters 5 and 6) used 

hydrometeorological data as the main exposures of interest. 

3.1.1. Statistical Methods to Assess Seasonality 

A commonly used method for assessing seasonality in health outcomes is to 

include the month (or season) of the year in which the outcome occurred as 

indicator variables in a regression model with one month (usually January) as a 

reference category for comparison.124 A problem with this approach is that it 

amounts to taking a continuous predictor – cyclic calendar time – and categorizing it 

into 12 bins, which are in some sense arbitrary, in order to characterize an 

underlying smooth, wave-like trajectory and thereby discard potentially 

explanatory information.125 Furthermore, the method treats the fixed effect of the 

average value of a seasonally varying outcome for a given month as independent of 

the previous month’s value, whereas in reality we would expect them to be highly 

correlated. An alternative method for characterizing continuous, non-linear 

relationships is to use restricted cubic spline models, however, these are not able to 

allow for the cyclical nature of seasonal patterns, in which there is continuity 

between December 31st and January 1st.126 

A flexible, parametric method for assessing the seasonality of health 

outcomes that overcomes these limitations is the harmonic method, (sometimes 

known as a cosinor model127 or Fourier series128) which involves including in the 
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regression model sinusoidal transformations of the time metric – both sine and 

cosine functions – to capture the oscillating pattern characteristic of a seasonally 

varying outcome when plotted over time.129 This method can be used either to test 

for the statistical significance of seasonality as a primary exposure and calculate the 

timing, peak value and amplitude of any annual peaks identified, or to control for 

seasonality as a potential confounder of a main association of interest.130 The 

sinusoidal terms can be introduced in pairs, to capture increasing complexity of a 

seasonal pattern.129 The first harmonic terms (sine and cosine pair) are annual, 

oscillating over a twelve-month period and can detect a basic rotationally 

symmetrical pattern with a single peak and trough separated by approximately six 

months. The second, biannual harmonic oscillates over six months and can 

contribute to capturing the seasonal pattern in two ways. When it is in alignment 

with the first, it can account for a steeper, more amplified peak than is possible with 

a single harmonic. In other situations, it can detect the presence of a secondary 

annual peak (as has been observed, for example, with rotavirus in certain 

contexts).56 However, in cases where there is a single annual peak of moderate or 

low amplitude, the addition of the biannual harmonic may not improve upon an 

annual-only model and can therefore by excluded on grounds of parsimony. 

3.2. Hydrometeorological data 

A list of hydrometeorogical variables was compiled that either have been 

demonstrated or are hypothesized to be associated with EID transmission in general 

and rotavirus incidence in particular. The following variables were selected based 
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on a review of the literature: ambient temperature 20,21,60,131–133, rainfall 20,21,133, 

humidity 21,59,60, atmospheric pressure 19, wind 19,133, UV radiation 19,60,134, soil 

moisture 135 and water runoff.132 Next, available data sources were reviewed for 

daily estimates of these parameters for the eight MAL-ED study site locations over 

the period of follow-up. 

3.2.1. EO-derived data 

Estimates of all the above variables are available from the Global Land Data 

Assimilation System (GLDAS – version 1). GLDAS derives meteorological fields from 

the Global Data Assimilation System (GDAS), an operational atmospheric analysis 

system that merges a global climate model – a numerical representation of the 

physical processes and energy fluxes occurring in the earth’s atmosphere, oceans 

and land surfaces — with a diverse suite of in situ and satellite-derived 

observations.98,136 The system applies bias correction to GDAS precipitation and 

radiation estimates and employs the adjusted surface meteorology fields to drive 

advanced land surface models (LSMs) that simulate surface hydrological conditions. 

The GLDAS ensemble of LSMs includes the Noah LSM137, which is implemented in 

GLDAS at a horizontal resolution of 0.25 decimal degrees (DDs) and parameterized 

with globally gridded maps of land surface parameters such as topography, land 

cover and soil texture classifications to produce near-real-time predictions available 

with global coverage and a temporal resolution of 3 hours.136,138 Its products have 

been applied in numerous studies of climate, hydrology, agriculture, and ecology, as 

well as, more recently, public health outcomes.76,108 It is internally consistent across 

locations and between variables (although GLDAS version 1 can suffer from 
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temporal discontinuities as input datasets change over time).139 GLDAS data is 

disseminated as part of the mission of NASA's Earth Science Division and archived 

and distributed by the Goddard Earth Sciences (GES) Data and Information Services 

Center (DISC). 

Although GLDAS does offer precipitation estimates, it employs a standard 

correction for bias in the GDAS precipitation field, whereas the Climate Hazards 

Group Infrared Precipitation with Stations (CHIRPS, version 2) product, which was 

developed solely to estimate rainfall, calibrates cloud-top temperature estimates 

and gauge-satellite data by interpolating observation data and weighting it 

according to proximity to the five closest weather stations.140 CHIRPS daily data has 

a resolution of 0.05 DDs (~5km2) and has the potential to offer greater information 

content in poorly monitored areas and in tropical regions than alternative, entirely 

gauge-based products.140 Precipitation estimates from both sources were evaluated 

to determine the better-performing estimate. Neither GLDAS or CHIRPS products 

come with error estimates. 

For both GLDAS and CHIRPS, a script was run to extract all variable values 

from the gridded files during the period 2009 – 2014 for the grid cells 

corresponding to the coordinates of the eight MAL-ED site locations. For the GLDAS 

variables, the 3-hourly estimates were aggregated to daily averages, totals or 

maximum and minimum as appropriate, while the daily estimated rainfall totals 

were taken from the CHIRPS product. 

The following variables were extracted from the two gridded products. 
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• Maximum and minimum daily temperatures in degrees Celsius – Air 

temperature varies as a function of latitude, elevation, and large scale 

atmospheric circulations and is sensitive to prevailing weather patterns and 

differences in local surface conditions. Pathogens are only able to propagate 

within certain temperature ranges, so associations between ambient 

temperature and infectious disease risk could be related to the agents’ ability 

to survive in the environment.31 Laboratory studies have found that various 

non-enveloped enteric viruses including rotavirus and adenovirus survive 

longer at lower temperatures.141–143 As temperatures increase within the 

range 7 - 37°C, reproduction of Salmonella and other bacteria increases, 

outcompeting Campylobacter, perhaps causing a shift in the relative burden 

of these diseases.41 A study comparing daily maximum and minimum land 

surface temperatures in GLDAS with data from weather stations across the 

globe found broad agreement both globally and separately for the regions in 

which the MAL-ED sites are located.144 

• Daily total precipitation volume in millimeters – Precipitation patterns 

vary on a very localized scale due to interactions between energy and water 

fluxes and features of land-sea geometry and topography.103 Following heavy 

precipitation events, microorganisms that are able to survive in aquatic 

environments may be dispersed over large geographical areas in water 

runoff.32 Conversely, periods of drought and decreased rainfall have also 

been shown to be associated with increases in rates of diarrheal disease, 

thought to be due to water scarcity that leaves people reliant on unprotected 
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water sources and unable to maintain hygiene-promoting behaviors.145 

Drought may also lead to an increase in surface water salinity, making 

aquatic environments less hospitable to most foodborne pathogens, but more 

favorable to Vibrio and Aeromonas species.32 CHIRPS rainfall estimates have 

been shown to correlate well with in situ precipitation records across South 

America and West Africa for annual rainfall totals146, across East Africa for 

springtime averages147,148, in Mozambique for dekadal totals149 and in Cyprus 

for monthly totals.150 

• Surface pressure (Pa) - High surface pressure is frequently associated with 

still, clear sky conditions, in which mixing of air masses is slow, while low 

pressure occurs under convective, stormy conditions when winds are high. 

Such conditions may favor rapid diffusion of airborne particles, including 

infectious agents, though they may also be associated with rainfall events 

that scavenge airborne particles from the air.19 Pressure belts and other 

mesoscale air circulation patterns may contribute to seasonal patterns in 

some diseases by restricting or promoting the dispersion of airborne 

particles including infectious agents such as rotavirus.19,21 

• Wind speed (m/s) - Wind is a possible means of dispersal of virally infective 

dried fecal particles and for spore-forming bacteria.32 Using a meteorological 

standard, GLDAS reports estimates of 10m height winds as an indicator of 

broader conditions. 
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• Humidity – Humidity is thought to be inversely associated with transmission 

risk for numerous viruses, which may relate to the conditions conducive to 

the survival of the shed virions outside the host, or to their areal transport in 

dried, infective fecal and dust particles.21 Published laboratory evidence 

about the survival of viruses in the environment under conditions of varying 

relative humidity is contradictory.142 While one study found that extremes of 

humidity were most propitious for rotavirus survival,141 another reported 

humidity in the mid-range to be more favorable,151 while a third found only 

conditions of high humidity to prolong survival142 a relationship similar to 

that confirmed for norovirus152 and poliovirus.153,154 Adenovirus has been 

shown to be able to survive for at least eight weeks at room temperature 

under conditions of low relative humidity.155 Health facility- and 

surveillance-based studies tend to be in agreement that, in settings in which 

there is a single annual peak in rotavirus incidence, transmission increases as 

the weather becomes less humid.133,156–158 In settings where there is a 

secondary annual peak, the relationship may be more complicated - the two 

peaks coinciding with the annual extremes of humidity, but in a way that is 

difficult to disentangle from the effects of other, closely-related 

meteorological factors like precipitation and temperature.56,159 A hospital-

based study of norovirus case counts found a similar relationship with 

humidity to that of rotavirus160, but one of the few such studies that looked at 

astrovirus reported a peak that occurred in the season of highest humidity.161 



 
 51 

Two measures of humidity are widely used in climate science and so were 

included in this analysis: 

o Specific humidity in kilograms of water per kilogram of air 

(kg/kg) - Near-surface specific humidity – the moisture content of the 

air – is closely related to temperature, distribution of surface water, 

soil moisture, and evapotranspiration, and so seasonal and zonal 

variations vary closely alongside these parameters. GLDAS-derived 

estimates of specific humidity have been demonstrated to have near-

perfect correlation (r = 0.98) with in situ meteorological observations 

for a particular location in Northeast China.162 

o Relative humidity (%) – Expressed as a percentage, relative 

humidity is the ratio of the specific humidity to the saturation specific 

humidity and is the measure more commonly used in research on 

determinants of pathogen survival and transmission.151,163 

• Solar radiation (W/m2) – The typical amount of radiation received at a 

particular location is influenced by the earth’s position in its elliptical orbit 

around the sun and the tilt in the rotation axis.104 Higher levels of solar 

radiation may reduce the number of pathogens in the outdoor environment 

due to the effect of UV radiation inactivating some viruses60,164, and impeding 

the survival of some bacteria.41 Published site-specific evaluation of GLDAS 

solar radiation estimates are limited, though one study did show high 

correlation between GLDAS estimates at 3-hour intervals with recordings 
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from a ground-based flux measurement instrument in South Korea (r = 

0.81).165  

• Soil moisture (%) – The moisture content of soil is hypothesized to 

influence the survival of enteric pathogens in the environment.46,135 

Evaluation of GLDAS soil moisture estimates is also limited, particularly in 

subtropical and tropical areas. A study of GLDAS estimates of soil moisture 

using the Noah LSM showed high correlation with station-averaged surface 

soil moisture data for a for 20–40 cm layer on the central Tibetan Plateau, 

and another showed excellent correlation with data from a station in South 

Korea (r = 0.94).165,166  

• Surface runoff in millimeters – The rate at which water drains following 

precipitation events may affect how microorganisms are dispersed over the 

landscape.32 Increased sewage outflows and runoff volumes – particularly 

following droughts - increase water turbidity causing pathogens from the 

sediment to re-suspend in surface water bodies, processes that may explain 

seasonal upticks in waterborne diseases.32,46 Modelled estimates of surface 

runoff are challenging to validate since field measurements of this parameter 

are sparse. However, one study used GLDAS runoff estimates and a source-

to-sink river routing scheme to model river discharge at river gauge locations 

for major basins across the globe with performance varying by region and by 

LSM.167 
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3.2.2. Weather station data 

In the next stage, sources of ground-based observational data were sought 

that contained equivalent variables to the EO-derived measured at the nearest 

weather station to each MAL-ED site and covering as much of the MAL-ED follow-up 

period (2009 – 2014) as was available. Only the one nearest weather station to each 

site was considered. The data were either retrieved from the National Oceanic and 

Atmospheric Administration’s (NOAA) Climate Data Online repository168, if there 

was a National Climatic Data Center-contributing station close to the site, or 

otherwise were acquired from local meteorological authorities in coordination with 

site staff. Six of the sites had data available from NOAA for a nearby weather station, 

and for four of these – Bangladesh, Brazil, Nepal and Peru – the station was located 

within 7km of the study site (table 6). The nearest weather station to the study site 

in Pakistan was situated 22km away, the equivalent distance for the site in South 

Africa was 37km, a scale that is likely to introduce error which will need to be taken 

into account when interpreting the results. The following variables were available 

from the NOAA database:169 

• Maximum and minimum temperature for the day (degrees Fahrenheit to 

tenths) 

• Total precipitation (rain and/or melted snow) reported during the day 

(inches to hundredths) 

• Mean station pressure for the day (millibars to tenths) 

• Mean wind speed for the day (knots to tenths) 
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While NOAA data was not available for the India site during the period of 

interest, similar data were obtained from the India Meteorological Department from 

a weather station located approximately 1km from the study site, which included 

maximum and minimum daily temperature (°C), rainfall (mm) and relative humidity 

at 8:30am and at 17:30pm Indian Standard Time, but did not include pressure or 

wind speed. In addition to the variables in the NOAA data, estimates of relative 

humidity (%) were obtained from the Pakistan Meteorological Department from a 

station at the same location as the NOAA-contributing station at 0:00am and 

12:00pm UTC (5:00am and 5:00pm Pakistan Standard Time). Similarly, site staff in 

South Africa were able to provide hourly estimates of relative humidity from local 

authorities for the same station used by NOAA. In Tanzania there were no NOAA 

weather stations within 260km of the study sites, and the only daily weather data 

that site staff were able to obtain for nearby were hand-written daily rainfall 

records from a farm located 32km from the site, which, because they were used in 

routine monitoring of crop pests, only covered the armyworm moth season running 

from November to May coinciding with the rainy season. Qualitative reports from 

site staff indicated that conditions at this farm are slightly drier than at the study 

site itself. Despite its limitations, this information was digitized and included in the 

validation exercise. 

Temperature and humidity at the South Africa weather station were 

measured using a Vaisala HUMICAP probe HMP45 D, which has an accuracy at 20°C 
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of ±0.2°C and ±2%5F

vi while precipitation was measured using a tipping bucket rain 

gauge. No information was available regarding the equipment used at the other 

weather stations or the limits of uncertainty, distance at which they are believed to 

be accurate or expected variograms of the climate parameters. All NOAA-

contributing weather stations are required to use equipment that conforms to the 

World Meteorological Association’s general meteorological standards and 

recommended practices.170 

  

                                                            
vi Field calibration against references for 0 – 90% relative humidity. For 90-100% relative humidity, ±3%, and against factory 
references, ±1%.209 
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4. Chapter 4: Seasonality of rotavirus infections in the MAL-ED 

study 

4.1. Background 

Diarrheal disease is the second leading global infectious cause of under 5 

mortality and can be caused by a variety of viral, bacterial, protozoan and 

macroparasitic agents.6,171 Most EIDs exhibit some kind of seasonality, their 

incidence peaking at a particular point in the annual cycle and receding at others 

each year.51 These patterns may vary with latitude and climatic zone and, for 

diseases with multiple routes of transmission, different mechanisms may come to 

dominate their relative contribution to overall burden at different points in the 

annual cycle.56 Improving understanding of the pathogen-specific seasonality of EID 

is methodologically challenging but critical to informing policy on the timing of 

preventive measures and to forecast the impact of climate change on future disease 

burden trends.21,42  

As described in chapter 3, seasonality of health outcomes can be assessed 

using Serfling models, regression models fitted to time series data with a harmonic 

component, wherein sinusoidal transformations of the time metric are introduced in 

pairs to capture the oscillating pattern characteristic of seasonally varying outcomes 

when plotted over time.129 This approach has the advantage of treating cyclical 

calendar time as a continuous predictor, rather than categorizing it into 12 bins 

representing each month of the year.125 Furthermore, harmonic pairs can be 

introduced in a stepwise manner, to capture increasing complexity of a seasonal 
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pattern.129 This approach was first developed for use on passive surveillance or 

health-facility based data sources, which tend to cover long time periods but are, by 

their nature, restricted to reportable morbidity- or mortality-related outcomes 

which manifest only as severe, symptomatic or fatal cases.128 Often this also means 

that the outcome is rare, necessitating aggregation to weekly, monthly or seasonal 

summary statistics.16 

For EID episodes, which may be mild, self-limiting or sub-clinical, a 

promising alternative source of data is active surveillance of community-based 

cohorts, which can capture the underlying infection status as transmission occurs in 

the community as well as potential time-varying covariates.56,109 While such 

observational studies tend to span a shorter length of follow-up time and are not 

guaranteed to detect sufficient numbers of cases, Sarkar and colleagues have 

demonstrated that it is still possible to make statistically valid inferences about 

pathogen-specific seasonality of EID – namely, rotavirus diarrhoea episodes - by 

applying the harmonic method to data from a small birth cohort with follow-up 

spanning less than 5 years.56 Such analyses must take careful account of the 

interaction between age and risk of infection, loss to follow-up and within-subject 

correlation, and, since a consensus has yet to be reached on the precise 

methodology for doing so, results should be interpreted cautiously and in light of 

prior findings.  

The objective of this chapter is to apply an adapted Serfling approach to data 

on rotavirus infections from a multi-site cohort study in order to characterize this 
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EID’s seasonality in eight different locations. Infection with this segmented, double-

stranded RNA virus is a near ubiquitous feature of infancy, with around 95% of 

children globally experiencing at least one rotavirus infection before 5 years of age 

prior to the introduction of the vaccine in, as of the time of writing, 92 countries.23,26 

Recent meta-analyses and review articles have concluded that, while the long-

recognized pattern of sharp winter peaks receding to negligible levels in the 

offseason holds in temperate, mid-latitude regions, tropical regions exhibit more 

sustained, year-round rotavirus transmission with discernable, but less pronounced 

relative peaks.19–21,48,52–54 In tropical South Asia, moreover, biannual peaks in 

rotavirus are observed, with a large spike in winter followed around six-months 

later by a smaller, secondary uptick coinciding with the monsoon rains.20,53,56,57 

Questions remain about how consistently these patterns hold across different 

climatic zones, about the relative contribution of environmental drivers and host-

related factors such as asymptomatic infections, and whether year-round 

transmission in tropical regions acts as a reservoir for the seasonal reintroduction 

of the virus to temperate zones.133,172 In this chapter we attempt to address these 

knowledge gaps using data from MAL-ED. 

4.2. Statistical methods 

This analysis applied a Serfling model to the binary rotavirus infection status 

data to test for and quantify the effects of seasonal patterns in prevalence at each 

MAL-ED site. Because this is a multi-site study, with cohorts selected from 

communities located in different parts of the globe each with their own seasons and 
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climate, the analysis was performed separately for each site to model the rotavirus 

isolation rate - the proportion of positive stools – over time.133 This was 

approximated by the probability of a stool sample being positive for rotavirus, 

which in turn was estimated from the regression coefficient values for equation 1 

(adapted from Stolwijk and colleagues):173 

1) 𝑙𝑜𝑔𝑖𝑡𝑃(𝑌𝑖𝑡 = 1) = 𝛽0 + 𝛽1 × 𝑠𝑖𝑛 (
2𝜋𝑡

365.25
) + 𝛽2 × 𝑐𝑜𝑠 (

2𝜋𝑡

365.25
) + 𝛽3 ×

𝑠𝑖𝑛 (
4𝜋𝑡

365.25
) + 𝛽4 × 𝑐𝑜𝑠 (

4𝜋𝑡

365.25
) + ∑ (𝛾𝑗 × 𝑡𝑖𝑚𝑒𝑡)𝑗 + ∑ (𝜃𝑘 × 𝑎𝑔𝑒𝑖𝑡)𝑘  

Where: 

t = the date of follow-up  

𝑃(𝑌𝑖𝑡 = 1) = The probability of a stool from individual i being positive 

for rotavirus on date t  

𝛽0 = the mean log odds of positivity over the entire follow-up period 

𝛽1 and 𝛽2 = sine and cosine coefficients for the first harmonic 

𝛽3 and 𝛽4 = sine and cosine coefficients for the second harmonic (to be 

included based on a comparison of the Akaike information criterion 

(AIC) for the model compared to a null model that includes only the 

first harmonics) 

𝛾𝑗  = a series of j cubic spline terms for calendar time in months on 

date t (centered at the mid-point of follow-up) 
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𝜃𝑘 = a series of k cubic spline terms for individual i’s age in months on 

date t (centered at 12 months of age) 

The model was fitted using generalized linear models (GLM) with robust variance 

estimation to account for within-subject clustering of the outcome. The primary 

exposures of interest in this longitudinal analysis were the four Fourier series 

functions (first and second harmonic sine and cosine transformations of the day of 

the year ranging from 0 to 365), which were added as terms to the model with 

stepwise selection of the second harmonic pair based on the AIC statistic. The time 

metric was continuous calendar time in days, a variable that was included in the 

model as a covariate centered on the mid-point between the earliest and latest 

observation in the dataset, to adjust for potential secular trends in rotavirus 

transmission over the course of follow-up. Restricted cubic spline terms for this 

variable were included with degrees of freedom and knot positions determined 

separately for each study site using a multivariable regression spline fitting 

algorithm.174 This was to account for the potential confounding effects of isolated 

outbreaks, which might give the appearance of seasonality, due to being heavily 

clustered over a short period within a single year. The infants’ age in continuous 

months at the time of the stool sample (centered on the first birthday) was also 

included using site-specific cubic splines to account for the non-linear association 

between rotavirus risk and age in this cohort.175 By including this smooth function 

for age the cumulative acquisition of immunity within the study population could 

also be adjusted for.130 Infection by a given rotavirus genotype confers only partial, 

homotypic immunity that diminishes the severity of, but does not prevent, 
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subsequent infections.176 Repeated rotavirus episodes within the same individual 

are therefore common, but may be less likely to become clinically apparent in older 

infants. Since the cumulative incidence of rotavirus infection necessarily rises 

steadily over the first two years of life, age can be used as a proxy for acquired 

immunity. 

The timing, amplitude and number (single or double) of the annual peaks in 

the rotavirus isolation rate were estimated for each study site from the output of the 

model. The primary peak was defined as the highest probability predicted by the 

model and its amplitude was calculated as the difference between this value and the 

lowest predicted probability over the year. The secondary peak was defined as the 

peak with the lower maximum value and its amplitude was also calculated relative 

to the lowest predicted probability (the global, as opposed to the local minimum).  

The overall statistical significance of the seasonal pattern was assessed based on the 

Wald test for the combined contribution to the model of all included harmonic 

terms. Finally, the seasonal pattern was visualized by plotting the predicted 

probability of rotavirus positivity for each study site against the day of the year. The 

shapes of these plots were compared to those obtained from lowess smoothed 

averages and restricted cubic spline models to assess their fit. The combined 

significance of the age terms, the calendar time terms and the harmonic terms were 

each assessed using the Wald test while the overall model fit was assessed by 

calculating AIC statistics for the final models. To compare the seasonality patterns 

between symptomatic and asymptomatic infection episodes, the analysis was 

repeated first on only the stool samples obtained according to the monthly schedule, 
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and secondly on those collected during diarrheal episodes, to approximate the rate 

of, respectively, symptomatic and asymptomatic transmission. Analyses were 

carried out using Stata 13.1.177 

4.3. Results 

Table 8 summarizes the Wald test chi squared statistics for the combined 

significance of the terms for each of the covariate predictors (i.e. the cubic spline 

terms for age and time and the harmonic terms for seasonality) as well as the 

seasonality parameters predicted by the logistic model fitted with GLM. The test 

statistic for the combined contribution of the harmonic terms to the model was 

highly statistically significant in all sites with the exception of Brazil where it was 

not significant at the α =0.05 level. In all seven of the eight study sites where the 

model terms for seasonality attained significance, the primary annual peak occurred 

outside of the rainy season. In all except two of these (Nepal and Peru), a smaller, 

secondary annual peak was identified occurring during the rainier part of the year. 

In all 8 sites, the model that included both the first and second harmonics (4 degrees 

of freedom) was a better fit for the data than an equivalent that only included the 

first harmonic according to stepwise selection based on the AIC statistic. The highest 

predicted probability of rotavirus infection in absolute terms were the single annual 

peaks in Nepal and Peru and the primary peak in Bangladesh, which all had a 

predicted maximum value of 16%. The highest amplitude – the largest difference 

between the highest and lowest annual values – was also seen in Nepal (15 

percentage points’ difference) followed by Peru (14 percentage points). 
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Figure 3 shows a graphic visualization of the annual seasonal pattern in 

rotavirus prevalence predicted by each of the eight site-specific models with the 

approximate period of the year with the highest precipitation shown in blue-grey. In 

all four of the South Asian sites, the primary peak in rotavirus prevalence occurred 

between the end of December and the very beginning of February coinciding with 

the dry season. In addition, at the Bangladesh, India and Pakistan sites, the models 

predict a smaller secondary peak during the second half of the year, whereas in 

Nepal, transmission appears to recede to a very low level during the off-season. In 

Brazil, for which only a very small number of episodes were recorded in the data set, 

biannual peaks were also predicted but with very small amplitude values, and 

without attaining any level of statistical significance. With the data from the Peru 

site, the model predicted the probability of infection rising from the start of the year 

to a prolonged peak from April through June that then recedes to its lowest level just 

prior to the start of the rainier part of the year. The two African sites – Venda, South 

Africa and Haydom, Tanzania – also have highly statistically significant seasonal 

patterns which predict mid-year, dry season primary peaks and smaller secondary 

peaks during the wetter part of the year. Of the sites that exhibited seasonality, 

Venda, South Africa showed the lowest amplitude for its primary peak. 

  



Table 8: Wald test chi squared statistics for covariate predictors (with degrees of freedom) and seasonality parameters predicted 
by logistic model fitted with GLM6F

vii  

BGD BRF§ INV NEB PKN PEL§ SAV§ TZH 

Calendar time 27.56*** (1) 0.28 (1) 16.63*** (3) 4.46 (2) 0.27 (1) 59.08*** (4) 6.84* (2) 21.42*** (1) 

Age 95.45*** (3) 0.11 (1) 21.22*** (4) 25.43*** (4) 0.07 (1) 6.92* (2) 0.02 (1) 29.93*** (3) 

Seasonality 42.09*** (4) 5.44 (4) 49.73*** (4) 178.95*** (4) 132.66*** (4) 70.92*** (4) 32.61*** (4) 53.68*** (4) 

1
st

 P
e

a
k

 

Timing Jan 4 Apr 10 Jan 22 Jan 25 Jan 5 Jun 8 Aug 3 Jul 4 

Peak value 0.16 0.02 0.14 0.16 0.11 0.16 0.06 0.10 

Amplitude 0.09 0.01 0.09 0.15 0.09 0.14 0.05 0.08 

2
n

d
 P

e
a

k
 Timing Jul 20 Oct 4 Aug 6 - Jul 9 - Feb 16 Dec 20 

Peak value 0.08 0.02 0.08 - 0.03 - 0.03 0.07 

Amplitude 0.01 0.01 0.03 - 0.02 - 0.02 0.05 

AIC statistic 3,897.04 466.35 3,070.77 1,860.22 2,336.29 2,301.73 1,054.29 1,943.40 

  

                                                            
vii *** p <0.001, ** p = 0.001 – 0.01, * p = 0.01 - 0.05. Numbers in parentheses indicate degrees of freedom – the number of model terms selected for that covariate. § Country in which the 
rotavirus vaccine had been introduced at the time of the study. BGD = Dhaka, Bangladesh; BRF = Fortaleza, Brazil; INV = Vellore, India; NEB = Bhaktapur, Nepal; PKN = Naushero Feroze 
Pakistan; PEL = Loreto, Peru; SAV = Venda, South Africa; TZH = Haydom, Tanzania. 
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Figure 3: Predicted probability of rotavirus infection by day of the year with 95% confidence 
intervals, Wald test chi squared statistics and degrees of freedom (d.f.) for harmonic terms (*** 
p <0.001, ** p = 0.001 – 0.01, * p = 0.01 - 0.05). Local rainy seasons are shaded blue-grey. BGD = 
Dhaka, Bangladesh; BRF = Fortaleza, Brazil; INV = Vellore, India; NEB = Bhaktapur, Nepal; 
PKN = Naushero Feroze Pakistan; PEL = Loreto, Peru; SAV = Venda, South Africa; TZH = 
Haydom, Tanzania (age held constant at 1 year and time at the mid-point of follow-up).  
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Table 9 presents the equivalent seasonality and model statistics resulting 

from restricting the analysis first to only the monthly samples, and then to the 

diarrheal samples. In all sites, the primary peak in rotavirus prevalence in diarrheal 

stools was more pronounced than in monthly stools. However, the overall pattern, 

timing and number of peaks was broadly similar across the three analyses, with 

some notable exceptions. In the Bangladesh site, the secondary, monsoon season 

peak that was evident in the pooled and diarrheal stools-only analysis was not 

apparent in the monthly stools. In Tanzania, the pattern in diarrheal stools only 

demonstrated one annual peak and was not statistically significant. 

  



Table 9: Wald test chi squared statistics for harmonic terms (with degrees of freedom) and seasonality parameters predicted by logistic model fitted with 
GLM by sample type7F

viii 
 BGD BRF§ INV NEB PKN PEL§ SAV§ TZH 

M
o

n
th

ly
 s

a
m

p
le

s 
o

n
ly

 

Seasonality 18.72*** (2)  4.76 (4) 34.67*** (4) 125.00*** (4) 59.38*** (4) 36.30*** (4) 28.19*** (4) 56.83*** (4) 

1
st

 P
e

a
k

 Timing Jan 4 Apr 9 Jan 21 Feb 1 Jan 8 Apr 12 Aug 3 Jul 5 

Peak value 0.07 0.02 0.10 0.10 0.08 0.04 0.04 0.10 

Amplitude 0.04 0.01 0.06 0.10 0.07 0.03 0.04 0.08 

2
n

d
 P

e
a

k
 Timing - Oct 6 Aug 3 - Jun 30 - Feb 18 Dec 17 

Peak value - 0.01 0.06 - 0.02 - 0.02 0.06 

Amplitude - 0.01 0.02 - 0.01 - 0.01 0.05 

AIC statistic 2,021.10 429.59 2,680.83 1,289.09 1,482.28 1,557.54 1,020.53 1,837.92 

D
ia

rr
h

e
a

l 
sa

m
p

le
s 

o
n

ly
 

Seasonality 36.85*** (4) 0.31 (2) 17.17** (4) 86.57*** (4) 66.50*** (4) 34.96*** (2) 19.21*** (4) 4.47 (2) 

1
st

 P
e

a
k

 Timing Jan 3 Jul 30 Jan 24 Jan 14 Dec 28 May 26 Jul 28 Apr 30 

Peak value 0.43 0.07 0.48 0.43 0.20 0.22 0.53 0.28 

Amplitude 0.26 0.04 0.35 0.40 0.19 0.20 0.53 0.23 

2
n

d
 P

e
a

k
 Timing Jul 18 - Aug 8 - Jul 15 - Jan 5 - 

Peak value 0.29 - 0.22 - 0.08 - 0.09 - 

Amplitude 0.13 - 0.10 - 0.07 - 0.09 - 

AIC statistic 1,504.57 42.30 362.23 493.72 818.07 713.21 37.14 96.14 

                                                            
viii *** p <0.001, ** p = 0.001 – 0.01, * p = 0.01 - 0.05. Numbers in parentheses indicate degrees of freedom – the number of model terms selected for that covariate. § Country in which the 
rotavirus vaccine had been introduced at the time of the study. BGD = Dhaka, Bangladesh; BRF = Fortaleza, Brazil; INV = Vellore, India; NEB = Bhaktapur, Nepal; PKN = Naushero Feroze, 
Pakistan; PEL = Loreto, Peru; SAV = Venda, South Africa; TZH = Haydom, Tanzania. 
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4.4. Discussion 

In this analysis, we applied a flexible statistical approach to characterizing 

cyclical patterns in prevalence to data on rotavirus infection status in the eight MAL-

ED birth cohorts and obtained results that are consistent with those reported in 

prior literature, while also being suggestive of novel insights that merit further 

exploration. In the four South Asian sites, our model predicted marked primary 

peaks in the December to January dry season, congruent with a hypothesized 

inverse relationship with air humidity.178 Furthermore, at the Bangladesh, India and 

Pakistan sites, secondary monsoon-season peaks were predicted, in line with 

similar findings documented in the literature.56 In two of the sites in rotavirus 

vaccine countries – the urban community in Brazil with relatively widespread 

access to improved water and sanitation116, and the remote, rural location in South 

Africa114 – the amplitude of the seasonality predicted by the model was much 

smaller than elsewhere (and, in the case of Brazil, not statistically significant) in a 

way that was proportionate to the lower background endemicity of the virus in 

those locations. This is consistent with the documented “blunting” of the annual 

rotavirus peaks following the introduction of the vaccine.24 While the peak at the 

Peru site occurred during the drier part of the year, this apparent correlation should 

be interpreted with caution, since that location is subject to year-round rainfall, 

which means that the rainy season is far less marked than at the other sites.120 In 

Tanzania, the biannual peaks predicted by the model both had a similar amplitude 
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with the slightly larger of the two coinciding with the mid-year dry winter and the 

smaller with the November to May rainy season 111. 

Seasonal patterns of rotavirus positivity were broadly similar when the 

analysis was repeated on both the monthly and the diarrheal stool subsets (with the 

exception of the diarrheal stools at the Tanzania site, which may be explained by 

their representing by far the smallest proportion of the overall data at any site). The 

amplitude of the peaks in diarrheal stools appear to have a greater magnitude, but 

this analysis did not adjust for the underlying seasonal variation in diarrheal 

episodes of any etiology. Our results suggest that symptomatic and sub-clinical 

rotavirus episodes do not differ substantially in their seasonal patterns and 

contribute roughly equally to the overall annual trend. 

Since human rotavirus has no known animal reservoir, it has been speculated 

that tropical regions with year-round endemic transmission are the main reservoir 

from which the virus spreads poleward each year at the start of the rotavirus season 

when conditions favor its reintroduction into temperate zones.172 Findings from 

Török and colleagues that the start of the annual rotavirus season in the United 

States occurs earliest in the southwest and progresses sequentially northeastward 

over the course of the winter, lend weight to this theory.179 Some of the results 

presented here are consistent with this hypothesis. In the higher latitude sites of 

Nepal, Pakistan and South Africa, off-season transmission appears to recede to 

negligible levels, while the more tropical Bangladesh, India and, to a lesser extent, 

Tanzania sites experience more sustained low season transmission. The exceptions 
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to this pattern is the Brazil site (perhaps due to the success of the vaccine in 

reducing transmission there) a tropical location that nonetheless has low 

transmission throughout the year. 

Although we have identified statistically significant seasonal patterns, 

caution should be exercised in deriving inferences about the underlying pathways 

driving these trends, particularly when extending the approach to other pathogens. 

While these results may seem highly suggestive of an overlapping environmental 

influence, such as cyclical changes in the weather constraining the transmission and 

survival of the disease agent, the influence of co-seasonal social, behavioral and 

immunological determinants of transmission risk cannot be ruled out on the basis of 

these findings alone.16,41,42 In reality, the true mechanisms underlying infectious 

disease seasonality include multifarious environmental, behavioral and 

immunological drivers that are specific to particular pathogens, their human (and 

non-human) hosts and their locations.42 These can interact to produce subtle 

periodic fluctuations in either the reproductive number or the fraction of the 

population susceptible to infection at a given time of the year.16 For some diseases, 

the influence of the weather may indeed be fairly direct, whereas, for others they 

may be mediated through changes in behavior of the human host such as rainfall 

altering patterns of contact between infected and susceptible individuals as they 

congregate indoors.44 Furthermore, even for pathogens for which weather has a 

direct influence on transmission, competing mechanisms may come to dominate 

their relative contribution to overall burden at different points in the annual cycle. 

The example of rotavirus in south Asia is illustrative of this. The large winter peak 
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noted here and elsewhere in the literature may be accounted for by airborne 

transmission on dried dust substrates, while the smaller monsoon peak may be due 

to wider dispersal of the virus in floodwater and runoff promoting water-borne 

transmission.21 Analysis of the influence of specific seasonally varying climate 

variables (beyond basic comparisons with the timing of the site-specific rainy 

seasons presented here) are beyond the scope of this paper, but have the potential 

to provide further insights into rotavirus transmission dynamics and will be 

explored in subsequent MAL-ED publications (including in chapters 5 and 6). 

The approach presented here is sufficiently flexible to be adapted to other 

pathogens or outcomes in the MAL-ED data set or to similar studies in other 

locations, to further characterize and explore seasonal patterns in their occurrence. 

The Serfling approach may be applied to other ways of modeling these outcomes, 

such as log incidence56, case counts (modeled as a Poisson distribution)31 or a 

hazard function in a survival analysis. Furthermore, the method can be used not just 

to test for the statistical significance of seasonality but also to control for it as a 

potential confounder of a main association of interest.130 Investigations into the 

association between climate and seasonally varying health outcomes may 

incorporate harmonic terms to assess whether they retain their statistical 

significance in the presence of specific hydro-meteorological parameters, a sign that 

host factors and other non-environmental drivers may be playing a causal role. 

Future research into the relative contribution of these causal pathways may also 

adjust for confounding by behavioral and socio-demographic factors such as access 

to improved water and sanitation, socio-economic status, dietary intake, fertility 
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rates and contact with animals as well as highly temporally disaggregated climate 

data.53  

The findings presented here have practical implications for the evaluation of 

programmes and interventions that aim to reduce EID incidence. Attempts to 

quantify the impact of such measures should take into account the point in the 

seasonal cycle at which the outcome is ascertained in order to avoid misattributing 

to the intervention trends that are in fact consistent with the normal annual 

patterns. As this study demonstrates, these patterns can vary considerably between 

neighboring countries – as is evident from comparing the results for the Peru and 

Brazil MAL-ED sites - or show similarities across large geographic areas – as seen in 

the four South Asian sites – so knowledge of the local context is critical.  
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5. Chapter 5: Evaluating meteorological data from weather 

stations, and from satellites and global models for a multi-site 

epidemiological study 

5.1. Background 

Climate and weather influence population health through a number of 

interrelated pathways. Extreme weather events such as heatwaves, coastal floods 

and storm surges can both cause mortality directly and can compromise water 

sources and the crop production, leading to widespread food and water insecurity, 

illness, undernutrition and other morbidities.106 Moreover, climate is one of the 

primary constraints on the geographic and seasonal distribution of pollutants180 and 

infectious agents.41 The growth, survival and dispersal of microorganisms and the 

viable range of their intermediary hosts and vectors is determined by 

environmental and hydrometeorological conditions.32 An increased awareness of 

the knowledge gaps surrounding these relationships, as well as the urgency of the 

climate change threat and greater understanding of its likely impact on public health 

has spurred calls for a research agenda to elucidate the interactions and biological 

mechanisms through which weather influences health.101,181 A major barrier to this 

is the scarcity of empirical data linking climate and health at a sufficient level of 

spatiotemporal disaggregation for use in longitudinal and time series regression 

analyses.107 To isolate interactions between the numerous, collinear climatic 

variables, quantify annual cycles and long-term trends, and incorporate lag effects, 

the health outcome and environmental exposure must be matched by their precise 

timing.19,48,53,107 Until recently, such analyses were hindered by the difficulty of 
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accessing accurate and complete data on hydrometeorological predictors at high 

temporal resolution. The increased accessibility of Earth Observation (EO) climate 

data products – those derived from satellites and model-based reanalysis - is 

beginning to change this, but uptake has been slow due to a lack of interdisciplinary 

collaboration between the planetary sciences and public health fields.76,101,108,182 

Researchers wishing to include climate variables as predictors in analyses of 

health outcomes generally have two options: to use either EO-derived or station-

based data. The former have the advantage of completeness, both temporal and 

spatial. Estimates may be available at a daily or even sub-hourly resolution183 

without gaps and can be extracted for any location for which the geographical 

coordinates are known or a relevant geographic area can be mapped. Many also 

offer a larger suite of mutually consistent variables than are typically available from 

weather stations, and the data are often freely available to access online. 

Disadvantages include the wide variation in the uncertainty of the estimates.184 

Weather conditions recorded at ground-based stations may be considered 

the gold standard for meteorological data, insofar as one exists, but are also subject 

to limitations. Lack of capacity to maintain routine record keeping may lead to 

significant data gaps, forcing researchers either to exclude outcome data for which 

no coincident exposure measures are available thus reducing statistical power, or to 

rely on summary measures such as moving mean values or binned aggregates, 

reducing variability and temporal resolution. Furthermore, weather stations are 

often situated in locations key to their primary uses in aviation or in monitoring 
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weather for large population centers (i.e. cities and airports) and may be more 

geographically representative of some areas than others. Epidemiological 

surveillance sites may lie many kilometers from their nearest weather stations, 

distances greater than those over which localized meteorological conditions vary, 

introducing further error. Accessing data may be a challenge and, while NOAA offers 

a substantial online repository of historical data for some 9,000 stations around the 

globe, for less well-served locations coordination with local meteorological agencies 

and organizations on the ground may be required.168 Finally, weather stations vary 

in the accuracy and generally only record a small subset of variables – often only 

temperature, rainfall, pressure and wind speed - and more technically demanding 

measures, such as humidity and solar radiation, may be lacking. 

The aim of this chapter is to report on an exercise in selecting climate data 

products and assessing their performance both in characterizing meteorological 

conditions at the specific locations of epidemiological study sites and as predictors 

of a known climate-sensitive outcome – namely rotavirus infection episodes. The 

hypothesis that we aim to test is that gridded, EO-derived climate data products can 

be used as valid surrogates in longitudinal analyses where ground-based 

measurements are unavailable or incomplete to predict health outcomes at 

particular locations. As an illustrative case study, we use the eight study sites of the 

MAL-ED project and focus on variables that we hypothesize to be associated with 

EID transmission.109 The hydrometeorological variables used in this analysis were 

described in chapter 3. 
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5.2. Statistical methods 

Numerous statistical metrics are commonly used to assess the performance 

of EO-derived estimates of hydrometeorological parameters relative to ground- or 

station-based measurements. The four metrics chosen for this study were: 

• Pearson’s correlation coefficient (R) – This measure of linear dependence 

between two variables is widely used and easily interpreted, taking a value 

between -1 and 1 with 1 indicating perfect positive linear correlation.185 

• Nash-Sutcliffe efficiency coefficient (NSE) – This normalized indicator of 

model efficiency corresponds to the statistical agreement or skill of the 

estimates relative to the observed measurements and takes a value ranging 

from minus infinity to one, with one being a perfect fit and negative values 

meaning that the station mean offers a better estimate.144,149,186–188 

• Mean bias error (MBE) – This measures the extent to which the estimated 

value deviates from the observed value 189. It can take any value, with 

negative values indicating systematic under-estimation and positive values, 

over-estimation, and zero indicating a lack of overall bias.187,189 

• Root mean square error (RMSE) – This is an absolute measure of the overall 

error in the estimates relative to the observed values, expressed in the same 

units and scale as the data itself.189,190 It can take any positive value with zero 

indicating a perfect lack of error187 

In addition, to assess the ability of the EO data to characterize to extremes of 

each parameter, the following metrics were calculated with respect to days in which 
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the parameter value measured by the weather stations exceeded the 80th percentile 

of the distribution of that parameter over the 6-year period: 

• True positive rate (TPR) – The proportion of days classified as extreme 

(>80th percentile) for a particular parameter by the weather station that 

were also classified as such by the EO data (equivalent to the sensitivity of a 

diagnostic test in epidemiology). 

• False positive rate (FPR) – The proportion of days not classified as extreme 

by the weather station that were nevertheless classified as such by the EO 

data (equivalent to 1 – sensitivity). 

All variables that were not in metric units were converted to their metric 

equivalents. The median daily temperatures were calculated from the maximum and 

minimum daily temperatures for both the station-based and gridded datasets. For 

Pakistan and India, the observed average daily relative humidity was approximated 

by taking the average of the station-based estimates for the two times that were 

available, whereas for South Africa, the daily averages of the hourly estimates were 

used. Surface pressure was expressed in millibars. The EO-derived data were found 

to be stable throughout the 2009-2014 period considered in this study at all sites 

and for all variables, with the exception of a slight discontinuity in the GLDAS 

surface pressure at the Tanzania site. This discontinuity in the original data was 

adjusted for in the data presented here by adding a simple offset to the second half 
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of the record to align it with the previous period. A small number of implausible 

outlying values were dropped from the full dataset. 8F

ix 

As an initial exploration of the data, each of the hydrometeorological 

variables was plotted in time series alongside the station-based equivalents where 

available for each site. Next, the EO-derived values were each plotted against their 

station-based equivalents in scatterplots to visualize the fit between the two. Then, 

the evaluation metrics were calculated separately for each variable and site, first for 

the raw daily values and then for the mean of the values over seven days to 

determine whether averaging over this period improved the performance of the 

variables. The analysis compared EO-derived data extracted from the exact site 

location with stations within varying proximity in order to reflect the scenario 

realistically faced by epidemiologists in which a study site may be located some 

distance from its nearest weather station. As a basic method for evaluating the 

products in the absence of a seasonal cycle, these values were then recalculated 

after restricting the data to only the site-specific season of peak rotavirus 

transmission (for sites that experienced multiple peaks in transmission during the 

annual cycle, the primary peak of highest amplitude was used). This was to control 

for the sensitivity of the evaluation metrics to seasonal variation.  

Finally, to test the relative ability of each data source and variable to predict 

a climate-sensitive health outcome, logistic regression models were fitted to 

rotavirus infections status across all sites combined using GLM with each of the 

                                                            
ix 11 observations, <0.0001% of the overall data 
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meteorological variables in turn as the main exposure, lagged by 3 days 

(representing the estimated 2-day incubation period191, plus 24 hours to report 

symptoms). In all models, the main association was adjusted for age in continuous 

months, seasonality - using annual and biannual Fourier series functions to account 

for multiple peaks within the year58 – and calendar time, each with site-specific 

interactions. For each hydrometeorological variable, the model was fitted first using 

the EO-derived data then, where available, the weather station data and third, a 

combination of the two in which missing station data was substituted with its EO-

derived equivalent and compared results between daily and 7-day mean values. The 

purpose of this was to assess the sensitivity of the prediction models to differences 

in the data sources and period of aggregation. Odds ratios for these associations are 

reported alongside their 95% confidence intervals. Potential non-linearity, 

distributed lag effects, mediation and interaction among variables will be explored 

in subsequent MAL-ED publications but are beyond the scope of this paper. Analyses 

were carried out using Stata 13.1.177 

5.3. Results 

Figures 4 – 13 are time-series plots of each variable by source while table 16 

in Appendix 1 summarizes the nine hydrometeorological variables for the eight 

MAL-ED sites. The weather station data for Bangladesh had the most missing data of 

the NOAA datasets, with just under 60% of the daily estimates for the period 

available for each of the four variables - temperature, precipitation, pressure and 

wind speed. The remaining NOAA datasets had fairly complete (>90%) data on 
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temperature and wind speed, while precipitation data were only below 90% 

completeness in Nepal and South Africa. Daily data on surface pressure were 

extremely sparse (~1%) for Nepal and Pakistan (estimates only available for 25 and 

21 days respectively) and somewhat incomplete for Bangladesh and Brazil (59.1% 

and 70.0% respectively). The data on relative humidity from the local 

meteorological authorities were fully complete for Pakistan, and fairly complete for 

India, but only somewhat complete for South Africa. As previously described, the 

only station-based variable available for Tanzania was precipitation. These data 

were only available for 36.4% of the days in the period of interest, representing only 

the four November to May rainy seasons from 2010 to 2014. No in situ data on 

specific humidity, solar radiation, soil moisture or surface runoff were available for 

any of the 8 sites. These findings serve to underscore the fact that weather station 

data varies widely in scope, completeness, accessibility and spatial resolution. 
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Figure 4: Daily median temperature (C) estimates by MAL-ED site, 2009 - 2014 
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Figure 5: Daily precipitation (GLDAS - mm) estimates by MAL-ED site, 2009 - 2014 
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Figure 6: Daily precipitation (CHIRPS - mm) estimates by MAL-ED site, 2009 - 2014
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Figure 7: Daily surface pressure (mbar) estimates by MAL-ED site, 2009 – 2014 (with 
an offset applied to correct for a temporal discontinuity in Tanzania)
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Figure 8: Daily wind speed (m/s) estimates by MAL-ED site, 2009 - 2014  
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Figure 9: Daily relative humidity (%) estimates by MAL-ED site, 2009 - 2014 
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Figure 10: Daily specific humidity (kg/kg) estimates by MAL-ED site, 2009 - 2014 
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Figure 11: Daily solar radiation (W/m2) estimates by MAL-ED site, 2009 - 2014 
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Figure 12: Daily soil moisture (%) estimates by MAL-ED site, 2009 - 2014 



 

 
 90 

 
Figure 13: Daily surface runoff (mm) estimates by MAL-ED site, 2009 – 2014 
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Table 11 summarizes the evaluation metrics for both the daily estimates and 

the 7-day averages of all variables and sites for which both weather station and EO-

derived data were available, and Figures 14a and b shows scatter plots of the daily 

variable values from the two sources plotted against each other, while figures 15a 

and b shows the same for the values aggregated to 7-day means. Table 12 reports 

the results of the same evaluation metric calculations when the analysis was 

restricted only to the months of the year during which rotavirus has been found to 

be highest.58 Table 13 presents the odds ratios for the associations with rotavirus of 

each hydrometeorological variable calculated from logistic models fitted with GLM 

to the pooled (all-site) MAL-ED data over a 3-day lag adjusting for covariates. The 

columns indicate the source (weather station, EO or combined) and period of 

aggregation (daily or 7-day mean) of the meteorological predictor.



 

 
 

Table 10: Evaluation statistics for hydrometeorological variables in the eight MAL-ED sites 9F
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MBE 0.27 0.28 0.13 0.13 0.86 0.86 2.89 2.89 -3.02 -3.02 1.11 1.11 2.63 2.63 - - 
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NSE 0.01 0.20 0.18 0.58 -0.30 0.22 -0.10 0.35 -0.72 -0.61 -0.24 -0.22 0.06 0.44 -0.84 -0.10 

MBE -1.31 -1.44 -0.13 -0.10 -0.58 -0.57 0.12 0.03 -0.40 -0.42 -2.17 -2.10 0.28 0.27 -0.68 -0.67 
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x n = number of observations; R = correlation coefficient; NSE = Nash-Sutcliffe efficiency coefficient; MBE = mean bias error; RMSE = Root mean square error; TPR/FPR = 

True/false positive rate (for days exceeding the 80th percentile); BGD = Dhaka, Bangladesh; BRF = Fortaleza, Brazil; INV = Vellore, India; PKN = Naushero Feroze, 
Pakistan; PEL = Loreto, Peru; SAV = Venda, South Africa; TZH = Haydom, Tanzania. 
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5.3.1. Temperature 

With the exception of the Brazil and Peru sites, there was high correlation (R 

> 0.85) between the daily temperatures measured at stations and those predicted by 

the GLDAS model at all sites. While the equivalent correlation estimates were low 

for Brazil and, especially, Peru, these metrics did improve when temperature was 

aggregated to 7-day averages (as is the case for all sites). Correspondingly, the 

Brazil and Peru sites had the lowest level of statistical agreement for temperature 

according to the NSE statistics, with the negative values for this metric in Loreto, 

Peru suggesting that the station-based average offers a better estimate. Pakistan 

was the site with the largest absolute MBE value for temperature and the only one 

in which the direction of the bias was negative indicating systematic 

underestimation of the station-based temperature measure by the gridded 

estimates. The South Africa site, which like the Pakistan site is situated some 

distance from the weather-station (respectively 36.9km and 21.9km), also had high 

values for MBE and RMSE, but the highest RMSE value for temperature (3.5°C) was 

at the Nepal site. At all sites, 7-day temperature averages performed more favorably 

than daily estimates according to the R, NSE and RMSE, and made only negligible 

differences to the MBE, with the notable exception of NSE in Peru which 

deteriorated substantially upon aggregation. Temperature estimates tended to 

exhibit higher correlation and agreement than other variables but could be biased in 

either direction by up to 3 degrees. The fact that the lowest correlation coefficients 

tended to be in Brazil and Peru illustrates the limitation of relying solely on that 

metric, since these are the two sites that, being closest to the equator, have the least 
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dominant seasonal temperature signal. The TPR for days in the upper quintile was 

very low and did not improve substantially following averaging over 7-days in all 

sites, but particularly in Dhaka, Bangladesh and with the exception of Naushero 

Feroze, Pakistan where around 80% of such extreme-temperature days according to 

the weather station data where characterized as such by GLDAS. The FPR was 

highest at the Peru site and lowest at the India site. 

Correlation in temperature attenuated only slightly or not at all when data 

from the off-peak times of the year were excluded at all sites except for in Brazil, 

where the decrease in this metric was more pronounced, and for 7-day averages in 

Peru, for which it increased. Similarly, the effect on the NSE for temperature of 

restricting to rotavirus peak season was mostly slight except in Brazil and for 7-day 

averages in South Africa, where it changed qualitatively from a positive to a negative 

value. The MBE and RMSE for temperature increased only slightly in most cases, but 

in Brazil the direction of the bias changed, while the effect on the TPR and FPR was 

inconsistent across sites, improving most in Pakistan, deteriorating in Brazil and 

changing very little in Bangladesh. 

A 1 degree increase in daily temperature was highly statistically significantly 

associated with a 7% increase in the odds of rotavirus detection when measured at 

the weather stations, an equally statistically significant 4% increase predicted by 

the EO estimates, and a 5% increase when the combined data were used. The results 

were similar when the same models were fitted using the 7-day average 
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temperatures, though with magnitude of the increase predicted by the station-based 

estimates increasing to 8%  
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Figure 14a: Scatter plot matrix of EO-derived daily variable estimates against station-

based equivalents  
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Figure 14b: Scatter plot matrix of EO-derived daily variable estimates against station-

based equivalents 
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Figure 15a: Scatter plot matrix of EO-derived 7-day average variable estimates 

against station-based equivalents  
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Figure 15b: Scatter plot matrix of EO-derived 7-day average variable estimates 
against station-based equivalents 
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5.3.2. Precipitation 

The distribution of the precipitation parameter is highly skewed to the right 

with a high proportion of days with zero rainfall at all sites and for all data sources, 

but particularly in Pakistan and at the two African sites. Both the GLDAS and the 

CHIRPS precipitation estimates were poorly correlated (R < 0.55) with the station-

based daily volumes at all sites. When the precipitation variables were aggregated 

into 7-day averages, the correlation improved at all sites with CHIRPS tending to 

outperform GLDAS, exceeding R = 0.6 in all but Peru and Pakistan. In several sites, 

the two products were biased in opposite directions, and in no site did one 

outperform the other across all evaluation statistics. Notably, there also seemed to 

be no clear relation between a site’s distance from its weather-station and the 

performance of its precipitation estimate. Both GLDAS and CHIRPS had very low 

sensitivity (TPR) for classifying extreme precipitation days, although for both 

products, this metric improved greatly in Brazil and Pakistan for 7-day average 

precipitation. By far the highest FPRs were seen for the Tanzania site for both 

products. 

For the precipitation variables, there was considerable variation in how the 

evaluation metrics changed when the analysis focused on the peak rotavirus season 

depending on site, period of aggregation and, to some extent, source (i.e. GLDAS 

compared to CHIRPS). At the Nepal, Peru and South Africa sites the differences were 

slight across all metrics for both sources, while in the other sites, but most 

markedly, in Tanzania, there was an apparent tendency for correlation and NSE to 

decrease substantially, while MBE and RMSE reduced slightly. The TPR tended to 
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decline for the peak rotavirus period compared with the full dataset, while the high 

FPR for the Tanzania site decreased for the daily averages (most markedly with 

CHIRPS), but increased slightly for the 7-day averages. 

No statistically significant association was found between rotavirus positivity 

and precipitation measured by weather stations either at a daily scale or averaged 

over 7 days. By contrast, the GLDAS estimates predicted a highly statistically 

significant 1% increase in the odds of a rotavirus positive stool for every millimeter 

increase in daily precipitation, and a much larger and similarly significant effect size 

when averaged over 7 days. Daily CHIRPS estimates showed no association with the 

outcome, but 7-day average CHIRPS values were highly statistically significantly 

associated with a 2% increase in the odds of rotavirus per millimeter. Substituting 

missing precipitations data from stations with EO-estimates did not improve the 

ability of the model to detect a statistically significant effect compared to the 

station-only model when a daily resolution was considered, however, this combined 

variable showed respectively a highly and a moderately statistically significant 

association when averaged over seven days using GLDAS and CHIRPS.  



 

 
 

Table 11: Evaluation statistics for hydrometeorological variables during peak rotavirus season in the eight MAL-ED sites10F
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Peak season Nov - Feb Sep - Nov Dec - Mar Dec - Feb Nov - Feb Mar - Jun Feb - Jun May - Jul 

M
e

d
ia

n
 t

e
m

p
e

ra
tu

re
 (

C
) n 364 545 622 1,756 704 732 877 - 

R 0.89 0.93 0.40 0.56 0.90 0.95 0.95 0.97 0.95 0.98 0.42 0.64 0.88 0.95 - - 

NSE 0.77 0.82 -0.41 -0.22 0.56 0.58 0.55 0.58 0.51 0.57 -2.20 -5.83 0.01 -0.11 - - 

MBE 0.18 0.28 -0.15 -0.15 1.21 1.20 3.30 3.30 -2.32 -2.31 1.48 1.48 3.05 3.05 - - 

RMSE 1.41 1.12 0.71 0.50 1.63 1.37 3.77 3.60 2.63 2.41 1.97 1.62 3.47 3.19 - - 

TPR 0.27 0.28 0.35 0.50 0.59 0.63 0.53 0.56 0.86 0.89 0.39 0.56 0.62 0.69 - - 

FPR 0.09 0.07 0.14 0.12 0.03 0.01 0.10 0.09 0.04 0.02 0.15 0.11 0.08 0.06 - - 

P
re

ci
p

it
a

ti
o

n
 -

 G
L

D
A

S
 n 364 544 626 1,487 704 665 817 111 

R 0.50 0.52 0.10 0.16 0.15 0.65 0.27 0.60 -0.01 0.34 0.30 0.34 0.35 0.67 -0.04 -0.06 

NSE 0.24 0.23 -1.12 -1.29 -0.21 0.37 -0.10 0.35 -2.63 -2.74 -0.37 -0.40 -0.07 0.43 -18.12 -9.86 

MBE 0.06 0.06 -0.01 -0.04 0.21 0.16 0.24 0.16 -0.06 -0.06 -3.13 -2.92 0.07 0.09 -0.42 -0.43 

RMSE 2.47 1.55 1.20 0.57 5.91 1.99 10.04 4.49 1.00 0.36 16.27 6.61 5.53 2.18 3.43 1.48 

TPR 0.14 0.27 0.24 0.41 0.31 0.39 0.41 0.44 0.07 0.61 0.30 0.31 0.41 0.47 0.16 0.18 

FPR 0.11 0.10 0.12 0.14 0.15 0.12 0.09 0.07 0.06 0.14 0.16 0.16 0.12 0.09 0.16 0.27 

P
re

ci
p

it
a

ti
o

n
 -

 C
H

IR
P

S
 n 364 544 626 1,487 704 665 817 111 

R 0.79 0.74 0.06 0.04 0.16 0.57 0.27 0.68 -0.01 0.12 0.29 0.45 0.39 0.72 0.03 -0.03 

NSE 0.55 0.37 -0.12 -0.25 -0.12 0.29 -0.71 0.26 -1.21 -1.33 -0.35 0.04 -0.38 0.44 -15.56 -7.90 

MBE 0.07 0.09 0.17 0.16 0.43 0.38 -1.00 -1.19 -0.01 -0.01 -1.29 -1.05 -0.16 -0.22 -0.42 -0.42 

RMSE 1.90 1.40 0.87 0.42 5.70 2.11 12.49 4.78 0.78 0.29 16.16 5.49 6.28 2.15 3.19 1.34 

TPR 0.05 0.23 0.06 0.21 0.10 0.32 0.38 0.46 0.07 0.39 0.31 0.28 0.25 0.48 0.04 0.18 

FPR 0.03 0.16 0.01 0.05 0.05 0.15 0.11 0.06 0.02 0.07 0.15 0.17 0.05 0.10 0.04 0.29 

                                                            
xi n = number of observations; R = correlation coefficient; NSE = Nash-Sutcliffe efficiency coefficient; MBE = mean bias error; RMSE = Root mean square error; TPR/FPR = True/false positive 
rate (for days exceeding the 80th percentile); BGD = Dhaka, Bangladesh; BRF = Fortaleza, Brazil; INV = Vellore, India; PKN = Naushero Feroze, Pakistan; PEL = Loreto, Peru; SAV = Venda, 
South Africa; TZH = Haydom, Tanzania. 



 

 
 

Table 11: Evaluation statistics for hydrometeorological variables during peak rotavirus season in the eight MAL-ED sites10F

xi 

Variable 

BGD BRF INV NEB PKN PEL SAV TZH 

D
a

il
y

 

7
-d

a
y

 

a
v

e
ra

g
e

 

D
a

il
y

 

7
-d

a
y

 

a
v

e
ra

g
e

 

D
a

il
y

 

7
-d

a
y

 

a
v

e
ra

g
e

 

D
a

il
y

 

7
-d

a
y

 

a
v

e
ra

g
e

 

D
a

il
y

 

7
-d

a
y

 

a
v

e
ra

g
e

 

D
a

il
y

 

7
-d

a
y

 

a
v

e
ra

g
e

 

D
a

il
y

 

7
-d

a
y

 

a
v

e
ra

g
e

 

D
a

il
y

 

7
-d

a
y

 

a
v

e
ra

g
e

 

Peak season Nov - Feb Sep - Nov Dec - Mar Dec - Feb Nov - Feb Mar - Jun Feb - Jun May - Jul 

S
u
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a

ce
 p

re
ss

u
re

 (
P

a
) 

n 362 405 - 24 4 669 869 - 

R 0.98 0.95 0.95 0.96 - - 0.95 0.85 0.97 0.93 0.92 0.95 0.99 0.99 - - 

NSE 0.82 0.67 -56.01 -69.72 - - -65.65 -74.68 0.83 0.00 -1.12 -2.48 -67.35 -121.09 - - 

MBE -0.90 -0.99 12.47 12.44 - - 26.74 26.85 -1.03 -2.90 2.35 2.35 35.89 35.88 - - 

RMSE 1.02 1.19 12.48 12.45 - - 26.76 26.90 1.31 3.15 2.45 2.39 35.90 35.88 - - 

TPR 0.32 0.30 0.45 0.43 - - 0.20 0.20 0.20 0.20 0.59 0.61 0.81 0.82 - - 

FPR 0.03 0.05 0.03 0.04 - - 0.00 0.00 0.25 0.25 0.06 0.05 0.03 0.02 - - 

W
in

d
 s

p
e

e
d

 (
m

/
s)

 

n 363 545 - 1,756 704 715 877 - 

R 0.50 0.64 0.80 0.81 - - 0.14 0.16 0.57 0.67 0.35 0.40 0.44 0.32 - - 

NSE -13.41 -31.06 0.53 0.50 - - -1.53 -2.26 -9.08 -21.94 -0.35 -1.03 -0.55 -1.37 - - 

MBE -1.68 -1.70 0.37 0.36 - - -0.43 -0.42 -1.28 -1.27 0.34 0.34 0.35 0.33 - - 

RMSE 1.79 1.74 0.84 0.72 - - 0.89 0.72 1.42 1.31 0.58 0.45 0.86 0.55 - - 

TPR 0.25 0.28 0.61 0.79 - - 0.25 0.32 0.56 0.66 0.39 0.33 0.43 0.40 - - 

FPR 0.08 0.08 0.09 0.05 - - 0.16 0.17 0.10 0.08 0.14 0.15 0.11 0.14 - - 

R
e

la
ti

v
e

 h
u

m
id

it
y

 (
%

) n - - 625 - 709 - 625 - 

R - - - - 0.79 0.83 - - 0.54 0.66 - - 0.79 0.72 - - 

NSE - - - - 0.49 0.55 - - -25.69 -45.55 - - 0.18 -0.24 - - 

MBE - - - - 2.38 2.42 - - 37.64 37.72 - - -8.49 -8.60 - - 

RMSE - - - - 7.60 6.16 - - 38.66 38.17 - - 11.77 11.05 - - 

TPR - - - - 0.41 0.44 - - 0.46 0.58 - - 0.33 0.34 - - 

FPR - - - - 0.11 0.10 - - 0.14 0.11 - - 0.09 0.09 - - 
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5.3.3. Surface pressure 

GLDAS surface pressure estimates were highly correlated with station-based 

estimates (R > 0.85), even at those sites with very few such observations, namely 

Nepal (n = 25) and Pakistan (n = 21). Performance according to the other metrics 

was much more varied, with the Brazil, South Africa and Nepal sites showing a very 

clear systematic bias towards over-estimation of the station-based measures by the 

gridded estimates and poor statistical agreement between the two sources 

according to the NSE. The high RMSE at these sites were in part due to the fact that 

this statistic is expressed in the same units as the variable itself, in this case 

millibars with values at a higher order of magnitude than the other variables. The 

TPR tended to be low for both daily and 7-day surface pressure estimates, 

particularly at the sites with very few observations, but with the exception of Peru 

and, especially, South Africa. The FPR for surface pressure was low at all sites 

compared with other parameters. In general, the evaluation statistics for surface 

pressure deteriorated when only the peak season was considered, but not 

substantially. Only a very small number of pressure observations from the Pakistan 

site occurred in the peak rotavirus season. For both daily and 7-day average 

estimates, a one millibar increase in surface pressure above 1,000 mbar was 

associated with a highly statistically significant 1% increase in the odds of rotavirus 

detection when weather station records were used, and a moderately statistically 

significant <0.5% increase when either GLDAS or combined estimates were used. 
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5.3.4. Wind speed 

The wind speed estimated by GLDAS tended to show poor correlation with 

those recorded by the weather stations and exhibit considerable biases and poor 

statistical agreement. An exception to this was the Brazil site, where the EO-derived 

wind speed estimate was notable for showing exceptionally high correlation and 

agreement and minimal bias. The TPR for wind speed estimated by GLDAS was low 

and the FPR high relative to other parameters, again with the exception of the Brazil 

site. A highly statistically significant inverse association between weather station 

measurements of wind speed and the outcome was observed with a 1 m/s increase 

in daily wind speed predicting a 22% decline and 7-day average wind speed a 27% 

decline in the odds of rotavirus infection. When GLDAS daily estimates were used 

instead, the direction of the association changed but was no longer statistically 

significant and when combined values were used, no statistically significant effect 

was discernible. 



Table 12: Odds ratios (with 95% confidence intervals) for associations between hydrometeorological variables and rotavirus infection adjusting for 

age, seasonality and calendar time predicted by logistic model fitted with GLM11F

xii 

 
Daily 7-day average 

Station EO-derived Combined12F

xiii Station EO-derived Combinedxiv 

Temperature (C) 
1.06*** 

(1.03, 1.09) 

1.02* 

(1.00, 1.04) 

1.02 

(1.00, 1.04) 

1.05*** 

(1.02, 1.09) 

1.02 

(1.00, 1.03) 

1.01 

(0.99, 1.03) 

Precipitation (mm) 

GLDAS 
1.00 

(0.99, 1.01) 

1.02*** 

(1.01, 1.03) 

1.00 

(1.00, 1.01) 1.02* 

(1.01, 1.04) 

1.04*** 

(1.03, 1.06) 

1.03*** 

(1.01, 1.04) 

CHIRPS 
1.01*** 

(1.01, 1.02) 

1.00 

(1.00, 1.01) 

1.04*** 

(1.02, 1.05) 

1.02** 

(1.01, 1.04) 

Surface pressure (mbar) 
1.01*** 

(1.01, 1.02) 

1.00** 

(1.00, 1.00) 

1.00 

(1.00, 1.00) 

1.01*** 

(1.01, 1.02) 

1.00** 

(1.00, 1.00) 

1.00 

(1.00, 1.00) 

Wind speed (m/s) 
0.76*** 

(0.69, 0.83) 

0.92* 

(0.86, 0.99) 

0.95 

(0.89, 1.01) 

0.70*** 

(0.62, 0.78) 

0.87*** 

(0.81, 0.95) 

0.91** 

(0.85, 0.97) 

Relative humidity (%) 
0.99 

(0.98, 1.00) 

1.01** 

(1.00, 1.01) 

1.01* 

(1.00, 1.01) 

0.98* 

(0.96, 1.00) 

1.01** 

(1.00, 1.01) 

1.01** 

(1.00, 1.02) 

Specific humidity (g/kg) 13F

xiv - 
1.06*** 

(1.04, 1.09) 
- - 

1.07*** 

(1.04, 1.09) 
- 

Solar radiation (W/m2) - 
1.00** 

(1.00, 1.00) 
- - 

1.00*** 

(0.99, 1.00) 
- 

Soil moisture (%) - 
1.04*** 

(1.03, 1.05) 
- - 

1.04*** 

(1.03, 1.05) 
- 

Surface runoff (mm) - 
1.08*** 

(1.05, 1.12) 
- - 

1.30*** 

(1.18, 1.43) 
- 

                                                            
xii *** p <0.001, ** p = 0.001 – 0.01, * p = 0.01 - 0.05. Temperature variables were centered at 25C; surface pressure at 1,000 mbar; wind speed at 2 m/s; relative humidity at 40%; specific 
humidity at 15 g/kg; solar radiation at 200 W/m2; and soil moisture at 25%. 
xiii In the “combined” data, values that were missing in the station data were replaced by their equivalent EO-derived estimates. 
xiv Specific humidity was converted to grams per kilogram (multiplied by 1,000) so that the coefficient the change for a plausible one-unit increment. 
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5.3.5. Relative humidity 

Relative humidity showed moderate correlation between the GLDAS and 

station-based data in South Africa and, at least considering the 7-day average, in 

India, showing moderate statistical agreement by the NSE, but with notable error 

and bias in opposite directions in the two sites. In Pakistan, the equivalent estimates 

were only moderately correlated and showed low agreement and high bias and 

error. It should be noted in interpreting these statistics, that the station-based 

estimates for Pakistan and India were calculated as the average of two daily 

measurements taken at time points representing extremes of the daily cycle of 

humidity, while the GLDAS indicator was an average of 3-hourly estimates within a 

day, a fact which may explain some of the bias and error seen at these sites. 

Correlation between the EO-derived and weather station estimates of relative 

humidity from all three sites either decreased slightly or did not change when only 

the peak rotavirus season was considered. At the India site NSE increased slightly 

while MBE and RMSE decreased while in the other two sites with relative humidity 

data, the opposite was the case. Weather station records of relative humidity were 

moderately significantly associated with rotavirus at a daily resolution and only 

slightly so when aggregated to 7-day means, however the EO-derived estimates 

were not statistically significant at either levels and the combined data was only 

slightly statically significantly associated with the outcome when 7-day averages 

were considered. 
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5.3.6. Other parameters 

Of the four GLDAS variables for which no station-based equivalents were 

available (specific humidity, solar radiation, soil moisture and surface runoff), all 

showed a highly statistically significantly direct association with rotavirus infection 

for both daily and 7-day average estimates with the exception of solar radiation, for 

which no association was seen using daily estimates, and surface runoff, for which 

the association with daily estimates was only slightly statistically significant. 

5.4. Discussion 

The increased availability of historic meteorological data offers great 

potential to environmental epidemiologists that has yet to be fully explored. While 

weather stations may record a small number of parameters at particular strategic 

locations to varying degrees of accuracy, EO-derived products aim to provide 

meteorological estimates where direct measurements do not exist and therefore 

merit assessment as potential surrogates. Although such data are starting to be used 

in studies of human health, livelihood and vulnerability20,76,108,192, as yet there have 

been no systematic attempts to evaluate the relative validity and utility of 

hydrometeorological data from different sources for modeling health outcomes. 

This study represents an initial attempt to do this and the results indicate there may 

be certain pitfalls to straightforwardly substituting ground-based observations for 

their EO-derived equivalents and that researchers should be cautious about the 

unreflective reliance on these without proper consideration of their limitations. 
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According to the evaluation statistics the performance of the two gridded EO 

data products assessed here was highly dependent on the location, the variable, the 

evaluation metric and the distance from the study site (the location at which the 

data were extracted from the grid) to the weather station at which the in situ data 

were recorded. Furthermore, several variables differed considerably in their ability 

to statistically significantly predict rotavirus infection depending on whether the 

station-based or EO-derived data were used and, when the latter was used to fill 

gaps in the former, it often led to a considerable attenuation of the significance level. 

Temperature estimates from GLDAS were one of the best performing variables 

according to the evaluation statistics, and showed a highly statistically significant 

association with the rotavirus outcome, both when GLDAS estimates and, despite 

their incompleteness, station measurements were used. Estimates of precipitation 

performed most favorably according to the evaluation statistics when they were 

extracted from CHIRPS rather than GLDAS and were aggregated to 7-day averages. 

In absolute terms, however, precipitation was one of the variables for which EO-

derived data performed the worst. This is perhaps unsurprising, given that it is a 

challenging variable both to measure remotely and to model, since variation in 

rainfall can be so localized as to confound simple grid-to-station comparisons, 

especially at the comparatively low resolution of CHIRPS and GLDAS. In spite of this, 

GLDAS-derived precipitation estimates showed strongly statistically significant 

associations with rotavirus where gauge-based estimates showed none, though for 

CHIRPS, an association was only found using the 7-day averages. This may be 

because the model-derived estimates are not in fact reflective of rainfall per se, but 
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are some aggregate of closely related factors like humidity, cloud and wind which 

correlate with precipitation at large scale, but differ from true precipitation in subtle 

ways that collectively make them a stronger driver of rotavirus transmission. It is 

also conceivable that EO actually provide more meaningful rainfall estimates than 

station data in some cases, due to station equipment malfunction or siting bias. This 

is difficult to evaluate with available data. 

Daily surface pressure from GLDAS was the variable that showed the highest 

level of correlation with the station-based measures both for the full annual cycle 

and for the peak-season, including in Brazil and Peru which, as with temperature, 

had the smallest seasonal variation. The biases observed for this variable are 

consistent with differences in altitude between the sites and their respective 

weather stations. Confirming the findings of Hervas and colleagues19, pressure was 

statistically significantly associated with rotavirus. This was the case whether EO 

data, station data, or the two in combination were used. That wind speed mostly 

performed poorly is largely to be expected since most weather stations only report 

winds at a 2m height on a very localized scale, while GLDAS produces broader scale 

estimates of 10m height winds. This may also explain why station-based wind 

measurement were strongly associated with rotavirus, while GLDAS-derived 

estimates showed no association. Wind speeds at 2m are more likely to facilitate the 

transmission of the virus than at 10m. That the station-based measurements of 

surface pressure and wind speed are so highly statistically significant in spite of 

their incompleteness is suggestive of a strong and hitherto underexplored 

association 19,21. In an analysis that had used only EO-derived estimates of wind 
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speed, this association would have gone unidentified, illustrating that a poorly 

informed choice of meteorological data can be a potential source of type II error.  

In line with previously documented evidence 21,59,60, an association was 

found between relative humidity and rotavirus over the 3-day lag used here, 

however, it was one of the weaker associations identified and only apparent when 

station measurements, not GLDAS or combined, estimates were used. It should be 

noted that the choice to examine the association over a 3-day lag, though guided by 

biology, was to some extent arbitrary. Further exploration of the exposure-lag-

response structure may reveal a stronger association operating over longer time 

windows but is beyond the scope of this paper.193 It is notable that the two 

measures of humidity differed substantially in their association with rotavirus, 

indicating a highly statistically significant association with specific humidity but 

none for relative humidity. This demonstrates the importance of considering the 

physical meaning of related but distinct variables: specific humidity is highly 

sensitive to air temperature, and thus reflects a combination of temperature and 

humidity conditions, where relative humidity is standardized to temperature and 

represents degree of saturation.  

With a few notable site-specific exceptions, the EO data performed very 

poorly in detecting extremes in the weather station data, which here we defined as 

sensitivity in classifying days in which a given parameter exceeded the 80th 

percentile of its overall distribution. Researchers wishing to assess the impact of 

extreme weather events on health outcomes, are encouraged to explore multiple 
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cutoffs and definitions, as well as lower extremes, which were beyond the scope of 

this paper, but may be particularly relevant for parameters such as wind speed 

given its inverse association with rotavirus identified here. In this preliminary 

analysis we assumed linearity in all associations between hydrometeorological 

parameters and rotavirus. Future analyses should include methods capable of taking 

into account non-linear relationships such as polynomial transformations or natural 

cubic splines. 

That the global models and EO data used to generate the variables included 

here do not perform perfectly should not be surprising. Neither GLDAS nor CHIRPS 

purport to be entirely representative at local scale or daily resolution, however they 

do offer the advantage that findings can be generalized to other locations and 

results mapped continuously across the landscape. While there is no a priori reason 

to suppose that one EO product is better than another, GLDAS and CHIRPS were 

chosen for this analysis because they are two products for which promising 

validation work has been published. There are numerous initiatives underway to 

evaluate these and similar datasets in a more robust way across multiple locations, 

however, to date, most validation efforts have been piecemeal and the reality 

remains that in most locations, like those of the MAL-ED study sites, the data remain 

unevaluated. Spot-check comparisons like the one reported in this study often yield 

conflicting or inconclusive conclusions, since the station-based data do not always 

represent a gold standard of comparison for estimates extracted from gridded 

products at precise coordinates, especially for parameters like precipitation that 

vary on such local scales. Different weather stations may use different equipment to 
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measure the same parameter and, because of this and other factors, may vary 

widely in their accuracy in characterizing conditions at their own locations and in 

the extent to which such characterizations can be extrapolated to nearby population 

settlements. When, as is the case with this study, there is disagreement between the 

two data sources, it is near impossible to attribute this to specific sources of error 

such as deficiencies with the model used to derive the EO estimate, distance 

between the study site and its nearest weather station or incompleteness or 

inaccuracies in the station records. Poor performance of data from one source 

relative to the other is problematic insofar as it impedes the ability of a study to 

detect an association and may be tolerated to the extent that it is still possible to 

detect and quantify their effect on outcomes that there is a priori reason to believe 

are climate-sensitive. 

As weather stations become more affordable, accurate, easy to install and 

offer a wider suite of measurements, environmental epidemiologists working in 

remote and underserved field sites should consider installing these instruments 

themselves. Otherwise, secondary station-based observation data should be given 

preference when they are complete and measured at a location that is close to the 

study site, and exhaustive attempts should be made to coordinate with local 

agencies that might be able to provide such data when they are not publicly 

accessible. When, as is often the case, high quality observational data are not 

available, EO-derived products may be introduced in a number of ways: to fill gaps, 

either by direct substitution, or as covariates for multiple imputation of missing 

data; as surrogates for variables that are not commonly measured at weather 
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stations (e.g. soil moisture, surface runoff etc.); to generate data ensembles by 

averaging over multiple EO-derived data sets (the “wisdom of crowds” approach); to 

set uncertainty bounds when applying data to health risk assessment.  

Researchers may feel justified in using gridded products as surrogates to the 

extent that they are the best hydrometeorological monitoring tools available at 

global scale and daily resolution. Alternatively, they may use observed data to 

calibrate and adjust the gridded estimates if they have a level of confidence that the 

station-based records truly represent the historical conditions at their sites, or 

attempt custom corrections based on characteristics of the study area, where these 

are known to high degree of certainty. Where observational data is available but 

incomplete, studies should report associations with the observed as well as EO-

derived data as a sensitivity analysis. The nature of the research question will, in 

some respects, determine the relative importance of the different evaluation 

metrics. If the absolute values of the hydrometeorological variable are of interest, 

minimizing bias will be a priority, whereas if climate anomalies relative to the 

normal range are the predictor of interest, then more bias may be tolerated. Several 

of the commonly used evaluation metrics may be sensitive to the averaging period 

and, as demonstrated here, to the seasonal cycle. The performance of peak-season 

data would be most important when developing predictive models intended to 

predict more than just the seasonality of a disease process. However, what is 

significant from the point of view of the data’s epidemiological application is how 

sensitive the analysis is to moderate inaccuracies in the weather data. 
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6. Chapter 6: Using hydrometeorological variables to model and 

predict rotavirus infection episodes 

6.1. Background 

Diarrheal disease is the fourth leading cause of under-5 mortality, accounting 

for 8.8% (526,000) of all such deaths globally in 2015 with rotavirus thought to be 

the pathogen responsible for the largest share of the vaccine-preventable EID 

burden.6,171 Climate is a major determinant in the epidemiology of infectious 

diseases including EIDs since environmental and meteorological factors determine 

the survival and dispersal of transmissible microorganisms and the distribution of 

their hosts and reservoirs.32,41 Indeed, changes in the distribution and burden of 

EIDs are one of the principal manifestations by which climate change is predicted to 

impact human health.106 Under a likely greenhouse gas emissions scenario, it has 

been estimated that the year 2030 will see an additional 50,000 diarrheal disease 

deaths attributable to climate change, threatening to undermine recent progress in 

the reduction of child deaths by this cause.106 However, predictions like these have 

wide ranges of uncertainty due to a lack of evidence of how individual 

environmental factors impact transmission of specific enteric pathogens.106,107  

Recognizing the complexity of the ecological systems within which weather 

influences EIDs, there have been calls for a research agenda to characterize the 

differential associations between multiple meteorological exposures and individual 

EID agents.19,105 Numerous time-series analyses and systematic reviews have 

explored associations between meteorological exposures and either general 

diarrheal disease or rotavirus-specific outcomes at particular locations, with several 
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reporting statistically significant relationships with temperature,20,21,60,131–133,194 

relative humidity,21,59,60,194 and precipitation.20,21,133 Associations with river levels,59 

NDVI,20 atmospheric pressure, wind speed and solar radiation19 have also been 

documented. Hypothesized explanations for these findings emphasize several 

possible pathways:  

• Survivability of the virus outside the host: Laboratory findings indicate that 

temperature, humidity and soil moisture content impact the duration of survival 

of rotavirus when suspended in airborne aerosols or attached to surfaces and 

fomites.135,141,163 Conversely, UV radiation may have an inactivating effect on 

rotavirus similar to that demonstrated for feline calicivirus.60,164 

• Dispersion of the virus through the environment: Rainfall runoff and 

flooding are means by which agents like rotavirus may disseminate, collect and 

suspend in surface or ground water or be rinsed from the soil32,105 while wind 

may promote, and high pressure inhibit, their areal transport in aerosols and 

dust particles.19,21 

• Host factors and behaviors: Human behavior in response to certain weather 

conditions may mediate or interact with climatic exposures. For example rainfall 

may alter contact rates between infected and susceptible individuals as they 

congregate indoors, migratory patterns may be influenced by harvest seasons, 

and seasonal changes in diet or water sources may alter exposure to waterborne 

and foodborne pathogens.44 
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Significant questions remain about the relative importance of these 

pathways.  Most previous studies have had to rely on a small subset of the most 

easily measured meteorological variables with their values aggregated to weekly or 

monthly averages. The integrity of the outcomes in these analyses are often limited 

by short surveillance periods (often of a year or less) or unstandardized diagnostic 

testing of a few thousand samples of a few hundred subjects at individual sites. 

There is a need to evaluate the combined impact of multiple meteorological 

exposures to pathogen-specific EID outcomes at a level of spatiotemporal 

disaggregation sufficient to characterize potential lag effects, interactions and non-

linearity.19,105 EO climate data products like GLDAS, which are derived from 

satellites and model-based reanalysis offer an opportunity to address this gap.195 

The aim of this analysis was to characterize the associations between a suite of nine 

GLDAS hydrometeorological variables and rotavirus infection status ascertained 

through community-based surveillance and use the resulting estimates to predict 

future trends in disease burden. 

6.2. Statistical methods 

This analysis aimed to model the rotavirus isolation rate over time by 

approximating the probability of a stool sample being positive for the virus on a 

given day calculated from odds ratios from fitting logistic models to the binary 

infection status outcome.58,133 Three separate effects of the hydrometeorological 

exposures on the rotavirus outcome were approximated: 
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1. The absolute effect: This analysis made no adjustment for seasonality and 

therefore incorporated the effect of medium-term, intra-annual variability due to 

shifts in both climate and rotavirus incidence over the yearly cycle. As such, it 

does not account for the potential confounding effects of latent co-seasonal 

behavioral or host factors, which may be associated with both the main 

exposures and the outcome. Relative humidity was centered at 40%, soil 

moisture at 25%, solar radiation at 200 W/m2, specific humidity at 0.015 kg/kg, 

temperature at 25°C, and wind speed at 2 m/s so that when combined in a multi-

variable model, the intercept for these variables could be interpreted as a value 

close to its pooled (as opposed to its site-specific) median. 

2. The standardized effect: In this analysis, the hydrometeorological variables 

were standardized to their local distributions by recalculating each one as the 

deviation from its site-specific median value. The purpose of this was to adjust 

for between-site variation in the distribution of the parameters by scaling each 

one to its variability at a particular site and thereby remove the potential 

confounding effect of sites that may be outliers with respect to both the 

exposures and the outcome. Furthermore, it was reasoned that shifts in climate 

parameters relative to their typical values at a given location, rather than their 

absolute values, may be more important for transmission. The median was used 

instead of the mean since several variables were highly right-skewed and the 

deviations were expressed in the original units of each variable rather than as Z-

scores to retain interpretability. 
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3. The seasonality-adjusted standardized effect: This analysis also used the site-

specific deviations but, in addition, adjusted for co-seasonality of rotavirus 

incidence (which has been demonstrated to have two annual peaks at most of 

the MAL-ED sites58) and meteorological conditions by including annual and 

biannual Fourier-series sine and cosine functions as terms in the model. This 

reduced the influence of intra-annual variation and confounding, while retaining 

the effect of short-term, interdiurnal variability. Since the timing of seasonal 

rotavirus patterns vary between the different site locations, only the terms for 

the interaction between indicator variables for the eight sites and the annual and 

biannual harmonics were included, with the terms for the main effect omitted.196  

Several potential confounders were included as covariates in all models. A 

binary variable was included that grouped the sites according to whether they are 

located in a country that had introduced the rotavirus vaccine at the time of data 

collection (Brazil, Peru and South Africa) or not (Bangladesh, India, Nepal, Pakistan 

and Tanzania – the reference category). This was to adjust for the reduction in 

background transmission levels brought about by the introduction of the vaccine. 

The infant’s age in continuous months at the time of the stool sample was centered 

at 12 months of age and represented in the model using both linear and quadratic 

terms with vaccine category-specific interaction terms to account for differences in 

the relationship between age and rotavirus transmission in the two groups of sites 

(which were identified through exploratory analysis). Finally, a second binary 

variable was included representing whether the stool sample was collected during a 

monthly assessment or a diarrheal episode. This was to adjust for the differential 
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probability that a sample obtained by active surveillance (monthly) would be 

positive compared to one obtained by passive surveillance (diarrheal) and allowed 

for the separate approximation of the effect on symptomatic relative to 

asymptomatic rotavirus episodes. Hydrometeorological variables that showed non-

linear associations with rotavirus were represented in the models by restricted 

cubic spline terms with degrees of freedom determined by comparing AIC statistic 

from models using 3 – 5 knots positioned at the corresponding percentiles of the 

variable distribution.  

In the initial stage of the analysis, it was necessary to determine the optimal 

lag length at which the association of these highly mutually correlated and 

autocorrelated exposure variables with rotavirus was strongest for each of the three 

effects. Very little literature has been published on this issue, however one study 

into the associations between weather exposures and weekly rotavirus 

gastroenteritis hospital admissions defined the lower limit of the lag periods 

considered in terms of the incubation period plus a 48 hour interval from the onset 

of symptoms to admission and found the strongest association using a one-week 

lag.19 Because rotavirus has a very short incubation period (estimated at 1.4 – 2.4 

days by one study191) and serial interval (the longest documented being 9 days131) 

and because the MAL-ED project used active, community-based surveillance, thus 

reducing the interval between symptom onset and outcome ascertainment, this 

analysis considered lag lengths ranging from 2 – 10 days. For each variable, models 

were fitted separately for each of these lag lengths in turn (“individual lag models”) 

and the results were compared with those of distributed lag models (DLMs), which 
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incorporated all terms for all lag lengths of 2 to 10 days. For each variable and effect, 

lag lengths were selected for inclusion in further analyses if the Wald test statistic 

for the association with rotavirus was statistically significant at the α =0.05 level in 

both the individual lag models and the DLM. If no lag length met this criterion, then 

the single length was selected for which the average of the two p-values was lowest. 

The terms for the selected lag lengths for each variable in turn were included 

in separate, single-variable models (along with the non-hydrometeorological 

covariates) for each effect to determine their independent associations with 

rotavirus before adjusting for the others. Terms for the interactions between these 

main exposures and the stool specimen type (diarrheal/monthly) were included if 

statistically significant at the α =0.05 level. This was to account for the possibility 

that, depending on the route of transmission through which they operate, different 

variables may differentially affect the probability of inducing symptomatic 

compared to asymptomatic infections due to the infectious dose they are capable of 

transmitting. To visualize the single-variable associations, the probabilities 

predicted by these models were plotted across the range of values of each variable 

for each effect and for monthly and diarrheal samples separately. Then backward 

stepwise selection was used to find the subset of selected variables that retained a 

likelihood-ratio test statistic that was significant at the α =0.05 level in the presence 

of the others for each effect. Specific humidity was excluded from these and 

subsequent multi-variable models due to it being almost entirely a function of two 

other included variables (temperature and relative humidity), and only the results 

of its independent association are reported here. To arrive at a final model for each 
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effect, terms for the interactions of hydrometeorological variables in the subset with 

each other and with vaccine category and specimen type were tested for inclusion 

and retained if significant at the α <=0.01 level when added by forward hierarchical 

selection in order of their separate statistical significance. Interactions between 

variables that were represented by multiple spline terms were assessed by 

including multiplicative terms for all pairwise combinations of the spline terms. The 

purpose of including model terms for interactions for which there was no a priori 

reason to suppose effect measure modification, was both to inform hypothesis 

generation regarding which variables might lie on common pathways and to 

improve the predictive ability of and the proportion of variance explained by the 

final models. Variables that lost significance in the presence of retained interaction 

terms for combinations of other variables were excluded from the final models. 

The final model for the absolute effect was used to predict the average 

expected probability (with 95% confidence intervals) of symptomatic and 

asymptomatic rotavirus infection during the period of follow-up. This was 

calculated for each site and specimen type using a bootstrapping method that, on 

each of 2,000 iterations, drew a random sample with replacement of subjects in that 

cohort and, within each sampled subject, randomly sampled one single day of 

follow-up. The average of the mean and 2.5th and 97.5th percentile values of the 

probability of rotavirus infection episodes (both symptomatic and asymptomatic) 

predicted by the final model for the sampled days and subjects are reported as the 

estimate and confidence limits. To illustrate how this approach can be combined 

with projected long-term changes in the distribution of the hydrometeorological 
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variables due to climate change to arrive at projections of future disease burden, 

these predictions were repeated for a basic simulated scenario in which the values 

for each of the variables in the final model were all increased by 2%. Applying more 

rigorous climate projections for the specific locations of the MAL-ED sites was 

beyond the scope of this analysis but will be explored in subsequent publications. 

All models were fitted using GLM with robust variance estimation to account 

for within-subject clustering of the outcome. The combined significance of the terms 

for each covariate – the spline and interaction terms for each meteorological 

variable, the linear and quadratic terms for age and their interaction with vaccine 

category and the site-specific interaction terms for the four Fourier series functions 

- were each assessed using the Wald test. To quantify the proportion of the variance 

explained by the final models and by the meteorological variables and their 

interactions, full and partial coefficients of discrimination (COD - a measure of the 

explanatory power of a logistic regression model that has a similar interpretation to 

R2) were calculated from the final model compared with a null model that excluded 

all these terms, and included only the main effects of the non-hydrometeorological 

covariates.197 

As sensitivity analyses, the results of the single variable models were 

compared to those obtained using measurements from the nearest weather station 

to each site (data which have been described elsewhere195) in place of the GLDAS 

estimates for those variables and dates for which such data were available using 

moving 7-day averages of the GLDAS values. Sensitivity of the results to excluding 
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the data from the Bangladesh and Peru sites was also assessed. Analyses were 

carried out using Stata 13.1177 and R 3.4 (http://www.r-project.org/). 

6.3. Results 

The box plots in figure 16 show the distribution of each exposure variable for the 

days on which stool samples were collected. Precipitation and surface runoff have 

highly skewed distributions and a large number of days on which the value was 

zero. The values for surface pressure are normally, but narrowly distributed within 

each site with several sites showing little or no overlap in their distribution with 

other sites. The highest levels of precipitation and surface runoff and the highest 

mean values for soil moisture and specific humidity are seen at the Bangladesh and 

Peru sites, reflecting the conditions at their locations in, respectively, an alluvial, 

deltaic plain subject to annual monsoon and a flood-prone confluence of several 

Amazon tributaries.113,120 

  

http://www.r-project.org/


 
Figure 16: Box-plots of the distributions of the nine hydro-meteorological variables demonstrating significant variability between different 

hydrometeorological variables at the eight MAL-ED sites. BGD = Dhaka, Bangladesh; BRF = Fortaleza, Brazil; INV = Vellore, India; PKN = 

Naushero Feroze, Pakistan; PEL = Loreto, Peru; SAV = Venda, South Africa; TZH = Haydom, Tanzania.  
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Figure 17 shows the p-values by significance level from the individual and 

distributed-lag models and selected lag lengths for the three effects of the nine 

hydrometeorological variables on rotavirus infection status. Figures 18a-c are 

visualizations of the probabilities of rotavirus infection predicted by, respectively, 

the models of the medium-term, absolute, medium-term, within-site and short-term, 

within-site effects of each of the nine hydrometeorological variables. For variables 

for which multiple lags met the criteria for inclusion in subsequent models, only the 

one that showed the highest level of statistical significance is shown in the figures, 

but the magnitude and shape of the association was not found to change substantial 

for the other lag lengths (not shown). Tables 13, 14 and 15 summarize the Wald test 

chi squared statistics for the combined significance of the terms for the main effect 

of each of the hydrometeorological variables (i.e. the linear or cubic spline terms) 

from the individual variable models and, for those included in it, the final model, 

along with those for included interactions with vaccine category, specimen type and 

between the main exposures themselves
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6.3.1. Precipitation 

The absolute effect of precipitation on rotavirus only showed a slightly 

statistically significant association over an 8-day lag, but when site-specific 

deviations were used instead of absolute values, the effect was slightly statistically 

significant over several lag lengths, moderately so over a 6- and 8-day lag, but with 

no lag retaining significance in the DLM.  After adjusting the standardized effect for 

seasonality, the association became statistically significant at almost every lag 

length and highly so for several, with 8- and 9-day lags retaining significance in the 

DLM. 

The absolute effect of precipitation on rotavirus probability was small in 

magnitude, linear and direct while the standardized effect was similar, but showed a 

slightly elevated probability below the site-specific median and neither of these first 

two effects showed a statistically significant interaction with specimen type. After 

adjusting for seasonality, the standardized effect predicted a U-shaped association 

for both episode types in the low extreme of the distribution, with a minimum 

predicted probability occurring at approximately the site-specific median and a 

statistically significant interaction with specimen type. 

Although only slightly significant in the single-variable model, precipitation 

over an 8-day lag was retained in the final model for the absolute effect, remaining 

slight statistically significant in the presence of the other hydrometeorological 

variables and their interactions. Similarly, for the standardized effect, precipitation 

over an 8-day lag retained statistical significance that was high in the main effect 
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and moderate in the final model. In the seasonality adjusted multi-variable models, 

precipitation over both an 8- and 9-day lag remained statistically significantly 

associated with the rotavirus outcome in both the main effect and the interaction 

models. No terms for the interactions between precipitation and any other 

hydrometeorological variable were retained in any of the three final models, 

although in the final seasonality-adjusted model, an interaction between 

precipitation over a 9-day lag and specimen type was included.  
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Lag lengths 

2 3 4 5 6 7 8 9 10 

Precipitation (mm) 

Absolute effect       ▲   

Standardized effect       ▲   

Seasonality-adjusted effect       ▲ ▲  

Relative humidity 
(%) 

Absolute effect     ▲     

Standardized effect     ▲    ▲ 

Seasonality-adjusted effect         ▲ 

Soil moisture (%) 

Absolute effect        △ ▲ 

Standardized effect     ▲ △  △ ▲ 

Seasonality-adjusted effect     △ ▲    

Solar radiation 
(W/m2) 

Absolute effect △         

Standardized effect ▲         

Seasonality-adjusted effect ▲         

Specific humidity 
(kg/kg)14F

xv 

Absolute effect          

Standardized effect          

Seasonality-adjusted effect          

Surface pressure 
(mbar) 

Absolute effect ▲         

Standardized effect  ▲ ▲       

Seasonality-adjusted effect  ▲        

Surface runoff 
(mm) 

Absolute effect       △   

Standardized effect       △   

Seasonality-adjusted effect △ △     △ △  

Temperature (C) 

Absolute effect △  ▲       

Standardized effect ▲         

Seasonality-adjusted effect △       ▲  

Wind speed (m/s) 

Absolute effect  △     ▲ ▲ ▲ 

Standardized effect       △   

Seasonality-adjusted effect       △   

  

         

  p <0.001   p = 0.001 – 0.01 
  

         

  p = 0.01 - 0.05   p <0.05 in DLM 
  

         

 △ Included in stepwise selection  ▲ Selected by stepwise selection 

Figure 17: Significance levels of associations found by individual and distributed lag models 

(DLM) and selected lag lengths for three effects of nine hydrometeorological variables on 

rotavirus infection status. 

                                                            
xv Specific humidity was excluded from the multi-variable models due to it being almost entirely a 
function of temperature and relative humidity 
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6.3.2. Relative humidity 

Relative humidity was highly statistically significantly associated with 

rotavirus infection in all three effect models over all considered lag lengths. For the 

two effects that did not adjust for seasonality, the association retained significance 

in the DLM at a 6-day lag and for the two standardized effects at a 10-day lag, all of 

which remained significant in the stepwise selection models. In all three effect 

models, there was strong statistical evidence for an interaction of relative humidity 

with specimen type, such that the shape of the effect, as well as the magnitude, is 

different for symptomatic and asymptomatic episodes. In the model that used 

absolute values of relative humidity, the effect was small in magnitude - particularly 

for asymptomatic episodes – direct and fairly linear up to a maximum predicted 

probability occurring at around 70% relative humidity, at which point the 

association reached a plateau. When relative humidity was expressed as deviations 

from its site-specific median value, the overall direction of the association with 

diarrheal rotavirus reversed, so that the highest probability was seen at the low 

extreme of the distribution, with a second peak occurring just above the median and 

the lowest probability above 50 percentage points’ deviation. Adjusting for 

seasonality preserved the shape but reduced the magnitude of this association for 

symptomatic episodes, while showing a very low-magnitude inverse U-shaped 

association for asymptomatic infections. Terms for the interaction of relative 

humidity with temperature and with soil moisture were statistically significant in 

the final model for all three effects, while its interaction with solar radiation and 

vaccine category was significant in the standardized effect model.  



 

 
 

 
Figure 18a: Probabilities of rotavirus infection predicted by single-variable absolute effect models of for nine hydrometeorological variables in 

the MAL-ED sites, for both diarrheal (orange) and monthly (green) stool samples 15F

xvi 

                                                            
xvi “d.f.” = degrees of freedom. Variables with “x 2 d.f.” are those for which terms for an interaction with specimen type were included. *** p<0.001, ** p=0.001 – 0.01, * p=0.01 – 0.05 



 

 
 

 
Figure 18b: Probabilities of rotavirus infection predicted by single-variable standardized effect models of for nine hydrometeorological 

variables in the MAL-ED sites, for both diarrheal (orange) and monthly (green) stool samples 16F

xvii 

                                                            
xvii“d.f.” = degrees of freedom. Variables with “x 2 d.f.” are those for which terms for an interaction with specimen type were included. *** p<0.001, ** p=0.001 – 0.01, * p=0.01 – 0.05 



 

 
 

 
Figure 18c: Probabilities of rotavirus infection predicted by single-variable seasonality-adjusted, standardized effect models of for nine 

hydrometeorological variables in the MAL-ED sites, for both diarrheal (orange) and monthly (green) stool samples 17F

xviii

                                                            
xviii“d.f.” = degrees of freedom. Variables with “x 2 d.f.” are those for which terms for an interaction with specimen type were included. *** p<0.001, ** p=0.001 – 0.01, * p=0.01 – 0.05 
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6.3.3. Soil moisture 

Soil moisture was also highly statistically significantly associated with the 

outcome at all lag lengths for all three effects, with lags of 9 and 10 days retaining 

significance in the DLM for the two unadjusted effects and 6- and 7-day lags retained 

in the DLMs for the two standardized effects. The shape and magnitude of the 

association between soil moisture and rotavirus closely resembled that of relative 

humidity in the absolute effect model, but attained a much higher level of statistical 

significance. When site-specific deviations were used instead of absolute values, the 

association with diarrheal rotavirus episodes took on a complex, M shape with 

peaks immediately above and below the site-specific median and the lowest values 

seen at the extremes of the distribution. After adjusting the site-specific effect for 

seasonality, the effect at the lower end of the distribution attenuated to a plateau for 

diarrheal rotavirus, while an indirect association became evident for asymptomatic 

disease. Terms for the interaction of soil moisture with specimen type, with relative 

humidity and with temperature were retained in the final models for all three 

effects, and with vaccine category and in the absolute and standardized 

(seasonality-unadjusted) effect models. 

6.3.4. Solar radiation 

The absolute and standardized effects of solar radiation on rotavirus 

infection status were highly statistically significant across all lag lengths from 2 to 

10 days in the individual lag models, while the seasonality-adjusted effect was 

slightly significant at 8-, 9- and10-day lags, moderately so at 4 and 7 days and only 
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highly significant at a 2-day lag, the length at which the association retained 

statistical significance in the DLM for all three effects. The absolute effect of solar 

radiation on rotavirus showed an inverse association above the value of around 170 

W/m2 though the magnitude of this effect was far greater for diarrheal rotavirus 

than for asymptomatic episodes. When expressed as local deviations, solar 

radiation’s association took on an inverse U-shaped with a peak predicted 

probability occurring at around 50 W/m2 below the site-specific median, but when 

Fourier terms for seasonality were introduced in the seasonality-adjusted effect 

model, the peak shifted to a value above the median, with the most marked effect 

being an inverse association in the upper quartile of the distribution. Solar radiation 

was excluded from the final model for the absolute effect by stepwise selection, but 

was retained in the final models for the two standardized effects, showing evidence 

for interaction of this variable with relative humidity before adjusting for 

seasonality. 

6.3.5. Specific humidity 

As with soil moisture, specific humidity showed a highly statistically 

significantly association with rotavirus infection status across all lag lengths for all 

three effects (with the exception of a 6-day lag for the absolute effect), with a 5-day 

lag retaining significance in the all three DLMs, and an 8-day lag in the DLMs for the 

two standardized effects. The predicted probability of rotavirus infection decreased 

with increasing absolute values of specific humidity for both specimen types, but, 

for diarrheal episodes, the direction of the association reversed above a value of 

around 0.016 kg/kg and increased markedly to a peak value at the upper end of the 
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range. The standardized effect of specific humidity had a similar shape and 

magnitude as relative humidity, but attained a far higher level of statistical 

significance. Upon adjusting for seasonality, the site-specific effect increased in 

magnitude considerably but decreased in statistical significance. 

6.3.6. Surface pressure 

Surface pressure too was statistically significant at all lag lengths for all three 

modelled effects but, while no lag length retained significance in the DLM for the 

absolute or seasonality-adjusted effects, 3- and 4-day lags did for the standardized 

(seasonality-unadjusted) effect. The association between absolute values of surface 

pressure and predicted rotavirus probability took on a “hockey stick curve” shape, 

with the most marked effect occurring above a value of around 1,000 mbar. This 

shape changed considerably when surface pressure deviations were substituted for 

absolute values such that, in the standardized effect model, the most marked effect 

was seen within the approximately 10 millibars surrounding the site-specific 

median. After adjusting for seasonality, the association took on an inverse U shape 

with a peak predicted probability just below the site-specific median. Surface 

pressure was retained by stepwise selection in the final models for all three effects, 

and the terms for its interaction with temperature and soil moisture were retained 

in the two final interaction models for the standardized effects. The final interaction 

model for the absolute effect also included terms for surface pressure’s interaction 

with specimen type and vaccine category. 
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6.3.7. Surface runoff  

Because surface runoff has such a highly right-skewed distribution, it had a 

median value of zero at all sites, meaning that there was no difference between the 

absolute values and the site-specific deviations. In the two models that did not 

adjust for seasonality, surface runoff was moderately statistically significant at an 8-

day lag and slightly so at 3- and 9-day lags, but in the seasonality-adjusted effect 

model, it was moderately to highly statistically significant at 2-, 3-, 8- and 9-day lags 

all of which retained significance in the DLM. In all three effect models, surface 

runoff had a direct, linear association with rotavirus for both specimen types. 

Surface runoff was not retained by stepwise selection in any of the final effect 

models. 

6.3.8. Temperature 

For all three effects, temperature was highly statistically significantly 

associated with rotavirus across all lag lengths. In the absolute effect model 

temperature lagged by 2 and 4 days was included in the stepwise selection model 

and the 4-day lag was selected by this method, while for the standardized effect, a 2-

day lag and for the seasonality-adjusted effect, a 9-day lag were retained in the final 

models. The absolute effect model predicted a strong and highly statistically 

significant inverse association with temperature, with the predicted probability of 

rotavirus declining from a peak at the cold extreme and with a secondary peak at 

around 25C. The medium term, standardized effect results showed a much lower 

magnitude but similarly statistically significant inverse association, while after 

adjusting for seasonality, the seasonality-adjusted effect took on an inverse U-
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shaped association with the peak predicted probability occurring at around the site-

specific median temperature. In addition to the interactions previously noted, the 

terms for the interaction of temperature with vaccine category were highly 

statistically significant in the final seasonality-adjusted effect model. 

6.3.9. Wind speed 

In the absolute and standardized effect models, wind speed was highly 

statistically significantly associated with rotavirus at nearly all lag lengths, with lags 

of 3 and 8 – 10 days all significant in the absolute effect DLM and 8 days in the 

standardized effect DLM. Furthermore, in the absolute effect model three separate, 

consecutive lag lengths were retained by stepwise selection, though only one of 

these (10-days) was kept in the final interaction model since the other two lost all 

significance in the presence of interactions between other variables.  In the 

individual lag models for the seasonality-adjusted effect, only a 3- and 4-day lag 

were slightly statistically significant and none were significant in the DLM. Wind 

speed was not retained in the final models for either of the standardized effects. The 

absolute effect of wind speed predicted very different patterns for symptomatic – 

gently increasing probability up to 2 m/s, steadily declining thereafter – compared 

to asymptomatic – decreasing probability from a peak at 0 to a low at 1.5 m/s with a 

smaller second peak at around 2.5 m/s.  The standardized effect predicted a more 

linear, inverse association for diarrheal samples, while no association with wind 

speed was evident from the results of the seasonality-adjusted effect model. Terms 

for the interaction of wind speed with specimen type in the final absolute effect 

model were highly statistically significant.



 

 
 

Table 13: Absolute effect - Wald test chi squared statistics (with degrees of freedom) for associations between hydrometeorological variables, covariates and their 
interactions from logistic models fitted with a GLM using absolute values for the exposures before adjusting for seasonality 18F
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Precipitation (mm) 8 7.63**(1) 4.20* (1)       

Relative humidity (%) 6 26.78*** (2) 12.61**(2) -      

Soil moisture (%) 10 17.75*** (2) 3.64 (2) - 15.62** (4)     

Surface pressure (mbar) 2 162.03*** (4) 38.63*** (4) - - 55.76*** (8)    

Temperature (C) 4 304.46*** (4) 19.01*** (4) - 43.11*** (8) 42.78*** (8) 82.11*** (16)   

Wind speed (m/s) 

8 7.38* (2) - - - - - -  

9 14.18**(4) - - - - - -  

10 11.18* (4) 24.71*** (4) - - - - -  

Specimen 0 421.87*** (1) 5.97* (1) - - 31.75*** (2) 22.02*** (4) - 20.87*** (2) 

Vaccine category 0 55.28*** (1) 0.61 (1) - - 7.10* (2) 23.70*** (4) - - 

Age 0 59.34*** (2) 62.91*** (2) - - - - - - 

Age/vaccine interaction 0 6.20* (2) 8.00* (2) - - - - - - 

COD for model  4.2% 5.5% 

Partial COD for EO variables  2.0% 3.4% 

  

                                                            
xix *** p <0.001, ** p = 0.001 – 0.01, * p = 0.01 - 0.05. Numbers in parentheses indicate degrees of freedom – the number of model terms. COD = coefficient of 
discrimination, EO = earth observation. 



 

 
 

Table 14: Standardized effect - Wald test chi squared statistics (with degrees of freedom) for associations between hydrometeorological variables, covariates and their 
interactions from logistic models fitted with a GLM using deviations of the exposures from the site-specific medians before adjusting for seasonality 19F
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Precipitation (mm) 8 46.02*** (3) 12.06**(3)          

Relative humidity (%) 
6 25.46*** (4) 0.75 (4) -         

10 26.50*** (4) 12.67* (4) -         

Soil moisture (%) 
6 13.00* (4) 7.92 (4) - 26.28**(12) 28.17* (16)       

10 13.32**(4) 18.83*** (4) - - -       

Solar radiation (W/m2) 2 33.25*** (4) 15.81**(4) - 36.34*** (12) - - -     

Surface pressure (mbar) 
3 9.98* (3) 25.04*** (3) - - - - 53.28*** (12) -    

4 16.00**(3) 16.87*** (3) - - - - - - -   

Temperature (C) 2 76.88*** (3) 9.82* (3) - 32.12** (12) 29.83** (12) 30.67** (12) 39.30*** (12) - 45.13*** (9) -  

Specimen 0 391.10*** (1) 33.54*** (1) - - - - 14.41** (4) - - - - 

Vaccine category 0 112.61*** (1) 21.47*** (1) - 25.95*** (4) - - 39.05*** (4) - - - - 

Age 0 66.60*** (2) 66.67*** (2) - - - - - - - - - 

Age/vaccine interaction 0 6.62* (2) 5.68 (2) - - - - - - - - - 

COD for model  3.8% 5.4% 

Partial COD for EO variables  1.6% 3.2% 

  

                                                            
xx *** p <0.001, ** p = 0.001 – 0.01, * p = 0.01 - 0.05. Numbers in parentheses indicate degrees of freedom – the number of model terms. COD = coefficient of 
discrimination, EO = earth observation. 



 

 
 

Table 15: Seasonality-adjusted standardized effect - Wald test chi squared statistics (with degrees of freedom) for associations between hydrometeorological variables, 
covariates and their interactions from logistic models fitted with a GLM using deviations of the exposures from the site-specific medians after adjusting for seasonality 20F
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Precipitation (mm) 
8 29.59*** (3) 9.00* (3)        

9 15.42** (3) 18.60*** (3) -       

Relative humidity (%) 10 22.86*** (4) 12.13** (3) - -      

Soil moisture (%) 10 49.91*** (4) 19.46*** (4) - - 26.01* (12)     

Solar radiation (W/m2) 2 15.49** (4) 16.24** (4) - - - -    

Surface pressure (mbar) 2 10.63* (3) - - - - - -   

Temperature (C) 4 11.56** (3) 4.35 (3) - - 46.06*** (9) 28.24**(12) - -  

Specimen 0 434.30*** (1) 51.64*** (1) - 13.02** (3) - 17.75** (4) - - - 

Vaccine category 0 122.91*** (1) 8.70**(1) - - - - - - 13.39** (3) 

Age 0 71.03*** (2) 68.01*** (2) - - - - - - - 

Age/vaccine interaction 0 8.72*(2) 8.53* (2) - - - - - - - 

Seasonality 0 326.32*** (32) 296.88*** (32) - - - - - - - 

COD for model  4.8% 5.4% 

Partial COD for EO variables  2.6% 3.2% 

                                                            
xxi *** p <0.001, ** p = 0.001 – 0.01, * p = 0.01 - 0.05. Numbers in parentheses indicate degrees of freedom – the number of model terms. COD = coefficient of 

discrimination, EO = earth observation. 
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6.3.10. Model Predictions 

For all three effects, the interaction model explained a larger proportion of 

the variability on the rotavirus outcome than the main effects model. The final 

model for the seasonality-adjusted, standardized effect was the model that had the 

highest explanatory power according to the coefficients of discrimination. In 

absolute terms, however, this proportion was small, with the hydrometeorological 

variables and their interactions and seasonality explaining just 3.2% of the 

variability in rotavirus positivity. Figure 19 shows the bootstrapped probabilities of 

rotavirus infection in diarrheal (symptomatic) and monthly (asymptomatic) stools 

predicted by the final absolute effect model for each MAL-ED site for the period of 

follow-up and for the simulated future scenario. At all the sites and for both types of 

episode, the model predicted a decrease in probability following an increase in the 

value of the EO variables, with the exception of Dhaka, Bangladesh, Naushero Feroze 

Pakistan and, far less markedly, symptomatic episodes in Vellore, India, all of which 

were predicted to see these probabilities increase. The ranges of uncertainty for 

these predictions were wide, however, particularly for the Pakistan and Bangladesh 

sites and only in the Brazil and Peru sites, where a reduction in probability to almost 

zero was predicted under the future scenario, did the confidence intervals for the 

two predictions not overlap. 
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Figure 19: Bootstrapped probabilities (with 95% confidence intervals) of symptomatic and 

asymptomatic rotavirus episodes predicted by the final absolute effect model for 2009 – 2014 

(using the true GLDAS estimates as predictors) and for a simulated future scenario in which 

the GLDAS values were all increased by 2% 21F

xxii 

  

                                                            
xxii BGD = Dhaka, Bangladesh; BRF = Fortaleza, Brazil; INV = Vellore, India; NEB = Bhaktapur, Nepal; PKN = 

Naushero Feroze Pakistan; PEL = Loreto, Peru; SAV = Venda, South Africa; TZH = Haydom, Tanzania 
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6.4. Discussion 

Among the EIDs, rotavirus is perhaps the pathogen for which associations 

with climate factors have been most thoroughly explored. While recent studies have 

incorporated multiple climate variables131, single-day exposure estimates59,195, 

differential lag relationships59,131, interactions19, non-linearity59,96, multiple climate 

zones20 and adjustment for seasonality60,198 this analysis is the first to address all of 

these factors while also assessing differences in effect between symptomatic and 

asymptomatic infections. An important general finding is that numerous 

hydrometeorological parameters – including several that are not commonly 

measured by weather stations – exhibit complex, non-linear associations with 

rotavirus infection that differ by episode type and may be independently, and highly 

statistically significant over multiple consecutive or non-consecutive lags, including 

as short a period as two days. More specifically, the results presented here show 

evidence for the hypothesis that the effect of climate on rotavirus transmission is 

mediated by four independently operating mechanisms: 

6.4.1. Waterborne dispersion 

It is thought that precipitation drives enteric pathogen transmission via 

different mechanisms at the two extremes, with heavy rainfall and runoff 

flushing microorganism from soils and surfaces into surface water (and possibly 

groundwater199) sources and drought conditions concentrating them in these 

environments.105 The U-shaped association between precipitation and rotavirus 

infection predicted by the seasonality-adjusted effect model, with low 
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probability occurring at the site-specific median, conforms to this theory. That 

this effect is only seen in the standardized models is revealing. Small-scale water 

and drainage systems are generally set up to cope with precipitation and runoff 

levels within the range that is typical for a particular location and may be 

overwhelmed levels of precipitation that would be within the normal range at 

another location. Furthermore, the finding that precipitation was much less 

statistically significant in the absolute and standardized effect models may be 

due to these two competing pathways (the “runoff effect” versus the 

“concentration effect”105) influencing rotavirus transmission in opposite 

directions in the rainy season compared to drier times of the year, which may 

cancel each other out unless seasonality is adjusted for. The lack of an 

interaction identified between precipitation and any other hydrometeorological 

variable is consistent with this variable operating via a separate pathway. That 

precipitation and the closely related variable of surface runoff both tended to be 

statistically significant within two lag ranges – 2-4 days and 7-9 days – is also 

suggestive of a common, independent pathway. It is possible that the shorter lag 

lengths constitute evidence of primary and the longer, secondary transmission of 

the pathogen. The seasonality-adjusted, negative effect of solar radiation on 

rotavirus was also only significant within these two lag ranges, which may 

represent evidence of confounding by precipitation, since levels of solar 

radiation reaching the earth will be lower on rainy, overcast days when cloud 

cover obscures sunlight.  
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6.4.2. Airborne dispersion 

An airborne route of transmission for rotavirus has long been suspected 

but not conclusively proven.200 Hypothesized vehicles for this type of 

transmission include either dried dust21 or liquid particles19 which may either be 

ingested directly132 or inhaled first, before migrating to the gastrointestinal tract 

through the swallowing of respiratory secretions.201 Aerosol transmission of this 

kind is to be distinguished from droplet transmission by the smaller size of the 

contaminated particles involved (<5μm diameter according to the WHO’s 

definition), which permits them to suspend in the air for days at a time, settling 

at a rate that is a function both of their size and the movement of the air and 

capable of infecting susceptible individuals at a greater distance from their 

source.202–204 While aerosol transmission is usually associated with particles 

secreted from the respiratory tract, formation of aerosols can also occur from 

disposal of excreta in diapers and through toilet flushing.19 Once suspended, 

environmental conditions affect the pathogens’ ability to survive and remain 

infectious in aerosols by determining the size of the particles and the rate at 

which they desiccate.202,203,205 

Factors on this pathway that are assessed in this analysis include 

temperature, humidity pressure and wind speed, a cluster of closely related 

variables that were all retained in all three final effect models (with the 

exception of wind speed) and showed considerable mutual interaction. We do 

not consider it biologically plausible, nor do we find evidence in the literature 

for, a direct effect of surface pressure on rotavirus infectivity. Instead, we 
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speculate that the apparent association between surface pressure and rotavirus 

infection, which is consistently statistically significant across the three effects at 

all lag lengths is due to GLDAS estimates of pressure being a better predictor of 

true advective air movement at ground level than GLDAS estimates of wind 

speed at 10m height. In the seasonality-adjusted model, predicted probability of 

rotavirus was highest at the site-specific median, at which stiller conditions 

would be expected. This is consistent with the negative relationship with wind 

speed seen in the absolute and standardized effect models and suggests that 

transmission is promoted when aerosols are able to linger in slow moving air, 

and that stronger wind may inhibit transmission by transporting these particles 

away from susceptible individuals. 

The direct association between absolute values of relative humidity and 

rotavirus appeared to reverse to a broadly negative relationship when these 

were substituted for site-specific deviations. This may be due to rotavirus 

transmission being higher in MAL-ED sites where conditions tend to be more 

humid. The standardized effect of relative humidity is consistent with dry dust 

particles being a vehicle for aerosol transmission, since a peak in the probability 

of infection is seen at lowest humidity. However, the secondary peak (roughly 

equal in magnitude in the seasonality-adjusted model) at just above the site-

specific median relative humidity, may indicate that liquid aerosols also play a 

role. The low probability of infection at high relative humidity, may occur 

because liquid aerosols are unable to suspend for long periods in moisture-
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dense air. Comparable changes in the shape of the standardized compared to the 

absolute effect were seen for specific humidity and soil moisture. 

6.4.3. Survival on soil and surfaces 

Soil moisture was consistently highly statistically significant across 

effects and lag-lengths and the fact that it remained so in the presence of relative 

humidity in the final models suggests that it was not merely acting as an 

indicator of the general moistness of conditions, but in fact had its own 

independent effect. Non-linear effects on the ability of enteric viruses to remain 

viable in soil at varying moisture levels have been documented135, as has 

increased persistence of rotavirus on porous surfaces at higher humidity.142 It 

has been suggested that, once rotavirus-contaminated aerosols settle, the virus 

may remain viable for longer if it is then able to adhere to a surface that permits 

retention of its surrounding moisture19, an interaction with the airborne 

dispersion route for which there is evidence in the final models. 

While the absolute effect indicated a linear, direct association with higher 

soil moisture causing higher risk, the within-site effect suggests a more complex, 

M-shaped relationship (at least for diarrheal rotavirus), where soil moisture 

values of around 5 percentage points above and 5 below the site-specific median 

are associated with the highest risk. A possible interpretation of this is that 

rotavirus survival is optimized on soil that is dry enough to form dust particles 

but not so dry as to desiccate entirely, or moist enough for adhered viruses to 

remain viable, but not so moist that they are flushed from the soil. 
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6.4.4. Host factors 

The two effect models for temperature that did not adjust for seasonality 

predicted a peak in predicted rotavirus probability occurring at the coldest 

extreme of the distribution yet, in the seasonality-adjusted model, the effect 

takes on an inverse U-shape. A possible explanation for this is that, at colder 

times of the year, increased contact rates between susceptible and infected 

individuals as they congregate indoors promotes transmission, a confounding 

effect that is removed by adjusting for seasonality. A role for UV radiation has 

been suggested in the downregulation of the human immune system, a host-

mediated factor which could exacerbate the course and severity of viral 

infections.19,134 Although some superficial evidence for this is suggested by the 

fact that solar radiation remains significantly negatively associated with 

rotavirus infection after adjustment for seasonality, we consider it more likely 

that this represents confounding due to rainclouds obscuring the sun on rainy 

days. 

Although many of the associations identified in this analysis were highly 

statistically significant, a large proportion of the variability in the outcome went 

unexplained by the final models, a fact reflected in the small values for the CODs and 

the wide confidence intervals for the predictions. This may mean that 

hydrometeorological predictors are of limited explanatory power and clinical 

significance relative to household and behavioral factors, which determine exposure 

and genetic and immunological factors that influence the course of an infection once 

established. Future analyses may attempt to refine the models presented here to 
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adjust for easily measured, non-environmental exposures (such as breastfeeding 

status and sanitation) in order to improve their explanatory power. However, 

individual-level factors that may be the most determinative of disease risk (such as 

fucosyltransferase-2 secretor status206), may be unfeasible to ascertain at this scale. 

Modest increases in explanatory power can be gained by specifying terms for 

interactions between hydrometeorological variables for which effect measure 

modification has not yet been hypothesized, as demonstrated by the increase in COD 

for the interaction models relative to the main effects. 

The observed proportions of rotavirus positive stool samples were all close 

to and within the confidence limits of those predicted by the model for the period of 

follow up for all sites and both episode types. Although the simulated values used 

for the future predictions were an illustrative example and not intended to be 

realistic, it is noteworthy that applying the same adjustment to all the EO variable 

values produced changes in the predicted probabilities in different directions for 

different sites. The two sites in which the predicted probability under the future 

scenario increased the most relative to the follow up period were Dhaka, 

Bangladesh and Naushero Feroze Pakistan, were also those in which the confidence 

intervals for the predictions were by far the widest. 
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7. Chapter 7: Implications for modeling and predicting pathogen-

specific enteric disease burden 

Despite widespread recognition of the seasonal nature of the epidemiology of 

EID, the mechanisms underlying this phenomenon are poorly understood compared 

with other disease groups.42,207 With some notable exceptions, most studies of the 

seasonality of these diseases have been hindered by data being aggregated up to 

weekly, monthly or quarterly cumulative incidence, rather than daily estimates.31,53 

There is also a paucity of studies on seasonality of EID coming from developing 

countries – particularly Africa and South America - and those in the tropics and the 

southern hemisphere.48  

Similarly, while climatic drivers of some infections, principally vector-borne 

diseases, have been relatively well-explored, currently little is understood of their 

role in EID transmission and there is no unified theoretical framework through 

which to conceptualize the relative influence of individual drivers.16,20,93 What 

exploration there has been has tended to focus on non-specific, morbidity-

dependent outcomes such as hospitalizations for acute diarrheal disease and 

outbreaks of gastroenteritis and not on underlying, background endemicity of 

specific pathogens.94 On the exposure side, there has been a disproportionate 

emphasis on extreme weather events and anomalous climate phenomena such as 

ENSO and the NAO as predictors.76,95–97 Less has been explored about small-scale 

meteorological variability within the normal range. 
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Because of its unique design, the MAL-ED study has the potential to address 

many of these knowledge gaps and elucidate the drivers of seasonality by 

comparing pathogen-specific patterns across sites, and multiple pathogens within 

the same location. The research presented in this thesis represents an initial 

attempt to do this with a test-case pathogen of known seasonality and climate 

sensitivity. Having demonstrated that it is possible to characterize these 

associations for rotavirus, we may proceed with greater confidence that any similar 

relationships that are observed for other, less well-characterized EIDs using the 

same methods, represent valid and generalizable inferences. Furthermore, having 

demonstrated that the effect estimates from the final models presented here can be 

used to make predictions under illustrative future climate scenarios, researchers 

may proceed by combining ever more sophisticated and rigorous climate 

projections to obtain realistic estimates of future disease burden. 

Many previously published analyses of the influence of weather on rotavirus 

or other health outcomes have tended to aggregate the meteorological exposures 

over large areas or longer time windows (e.g. weeks or months). This study 

demonstrates for the first time that associations can still be detected using daily 

estimates, which in many cases were more highly statistically significantly 

associated with the outcome than 7-day averages. Where outcome data is available 

with the precise date of ascertainment, an equally high resolution for the exposure 

data may be preferred in order to retain the variability in the data and for the most 

precise characterization of lag effects and the temporal order over which 

multivariate associations operate.  
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A major limitation of this study is the lack of representativeness of the site 

locations. Although there were a large number of observations within each site, the 

fact that they represent only 8 locations restricts the extent to which the results can 

be extrapolated to other climate zones.  This is an inevitable limitation for 

community-based studies that implement labor- and resource-intensive active 

surveillance. However, since the EO datasets from which the predictors were 

extracted are available at global scale and sub-daily resolution and updated 

continually, as new studies using similar methods are carried out at different 

locations, they can be added to the MAL-ED data to derive more precise predictions 

for more diverse conditions. Furthermore, emerging tools for objective climate 

regionalization can be combined with the results of these models to divide extensive 

geographic zones into smaller regions that are homogenous with respect to 

important climate characteristics.208
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Appendix 1: Descriptive tables 
Table 16: Summary of GLDAS, CHIRPS and weather-station-based hydrometeorological variables for the eight MAL-ED 
study sites, 2009-201422F
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Median 27.9 28.8 0.0 0.0 0.0 1,007.3 1,005.7 2.6 0.6 

IQR 6.3 5.5 4.3 6.1 1.8 8.9 8.6 1.4 0.8 

Maximum 35.0 33.9 107.1 103.5 150.1 1,019.6 1,018.3 8.3 7.3 

Minimum 14.1 13.8 0.0 0.0 0.0 993.5 992.8 0.6 0.0 

Completeness 100.0% 59.7% 100.0% 100.0% 59.6% 100.0% 59.1% 100.0% 59.3% 
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Median 27.1 27.2 0.0 0.0 0.0 996.9 1,008.7 5.0 4.9 

IQR 1.4 1.3 1.7 0.0 1.0 2.7 2.3 1.7 2.3 

Maximum 29.4 29.8 55.0 118.0 147.1 1,002.2 1,014.0 7.8 9.7 

Minimum 23.3 22.5 0.0 0.0 0.0 991.5 1,003.8 0.9 1.1 

Completeness 100.0% 99.8% 100.0% 100.0% 99.0% 100.0% 70.0% 100.0% 99.8% 
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Median 28.0 28.9 0.0 0.0 0.0 978.0 - 2.4 - 

IQR 5.8 5.1 2.9 4.0 0.2 5.6 - 1.0 - 

Maximum 37.0 36.5 70.7 72.5 88.4 986.8 - 6.2 - 

Minimum 19.6 20.9 0.0 0.0 0.0 968.4 - 0.8 - 
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Median 17.8 20.5 0.0 0.0 0.0 837.6 862.1 1.8 1.4 

IQR 8.5 9.5 2.1 0.0 0.0 4.7 2.5 1.0 0.8 

Maximum 25.2 29.0 76.5 142.0 134.6 847.8 868.7 4.5 5.1 

Minimum 1.3 5.5 0.0 0.0 0.0 828.7 856.1 0.7 0.0 

Completeness 100.0% 97.6% 100.0% 100.0% 83.5% 100.0% 1.1% 100.0% 97.6% 

P
K

N
 

Median 31.8 29.2 0.0 0.0 0.0 1,003.1 994.8 2.5 0.9 

IQR 14.4 12.8 0.0 0.0 0.0 14.2 12.7 1.8 0.8 

Maximum 42.8 40.5 76.9 24.0 119.9 1,019.0 1,015.6 9.7 6.3 

Minimum 12.1 7.5 0.0 0.0 0.0 986.2 985.2 0.5 0.0 

Completeness 100.0% 99.0% 100.0% 100.0% 98.9% 100.0% 1.0% 100.0% 99.0% 

P
E

L
 

Median 26.2 27.4 4.4 0.0 0.8 997.2 999.8 1.0 1.2 

IQR 1.9 1.4 11.5 11.2 7.4 3.1 3.0 0.3 0.7 

Maximum 30.7 30.6 88.9 84.1 199.9 1,005.4 1,009.4 2.1 3.5 

Minimum 20.4 18.1 0.0 0.0 0.0 991.1 993.1 0.3 0.0 

Completeness 100.0% 100.0% 100.0% 100.0% 90.9% 100.0% 94.0% 100.0% 94.6% 

S
A

V
 

Median 19.3 21.9 0.0 0.0 0.0 910.6 946.5 2.1 2.4 

IQR 5.4 5.8 0.0 0.0 0.3 5.9 6.8 1.2 0.8 

Maximum 29.3 29.9 88.7 150.2 136.9 927.5 965.0 6.4 7.5 

Minimum 8.1 9.9 0.0 0.0 0.0 898.0 932.7 0.5 1.0 

Completeness 100.0% 96.1% 100.0% 100.0% 88.2% 100.0% 94.9% 100.0% 96.1% 

T
Z

H
 

Median 18.0 - 0.0 0.0 0.0 827.3 - 2.9 - 

IQR 2.0 - 0.4 0.0 0.0 2.0 - 1.3 - 

Maximum 22.6 - 46.5 47.7 38.5 831.4 - 5.8 - 

Minimum 13.4 - 0.0 0.0 0.0 823.4 - 0.6 - 

Completeness 100.0% - 100.0% 100.0% 36.4% 100.0% - 100.0% - 

                                                            
23 BGD = Dhaka, Bangladesh; BRF = Fortaleza, Brazil; INV = Vellore, India; NEB = Bhaktapur, Nepal; PKN = Naushero Feroze 
Pakistan; PEL = Loreto, Peru; SAV = Venda, South Africa; TZH = Haydom, Tanzania; IQR = Inter-quartile range 
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Table 16 (cont’d): Summary of GLDAS, CHIRPS and weather-station-based hydrometeorological variables for the 
eight MAL-ED study sites, 2009-2014 

Variable 

Relative humidity 

(%) 

Specific 

humidity 

(kg/kg) 

Solar 

radiation 

(W/m2) 

Soil moisture 

(%) 

Surface runoff 

(mm) 

G
L

D
A

S
 

S
ta

ti
o

n
 

G
L

D
A

S
 

S
ta

ti
o

n
 

G
L

D
A

S
 

S
ta

ti
o

n
 

G
L

D
A

S
 

S
ta

ti
o

n
 

G
L

D
A

S
 

S
ta

ti
o

n
 

B
G

D
 

Median 71.7 - 0.016 - 202.8 - 30.2 - 0.0 - 

IQR 23.2 - 0.010 - 64.9 - 8.9 - 0.0 - 

Maximum 97.2 - 0.024 - 298.4 - 39.8 - 36.1 - 

Minimum 23.1 - 0.003 - 15.3 - 19.1 - 0.0 - 

Completeness 100.0% - 100.0% - 100.0% - 100.0% - 100.0% - 

B
R

F
 

Median 72.7 - 0.016 - 259.6 - 17.0 - 0.0 - 

IQR 8.0 - 0.002 - 61.9 - 8.5 - 0.0 - 

Maximum 92.1 - 0.019 - 338.9 - 38.4 - 7.7 - 

Minimum 58.6 - 0.012 - 45.8 - 13.2 - 0.0 - 

Completeness 100.0% - 100.0% - 100.0% - 100.0% - 100.0% - 

IN
V

 

Median 64.3 69.0 0.014 - 238.7 - 23.8 - 0.0 - 

IQR 21.8 19.5 0.003 - 70.4 - 13.1 - 0.0 - 

Maximum 95.8 99.0 0.020 - 311.1 - 41.6 - 31.2 - 

Minimum 29.1 36.5 0.006 - 15.0 - 12.1 - 0.0 - 

Completeness 100.0% 84.6% 100.0% - 100.0% - 100.0% - 100.0% - 

N
E

B
 

Median 62.6 - 0.007 - 222.9 - 18.7 - 0.0 - 

IQR 42.5 - 0.009 - 96.1 - 12.9 - 0.0 - 

Maximum 97.5 - 0.017 - 350.7 - 37.1 - 17.4 - 

Minimum 4.6 - 0.001 - 12.8 - 9.9 - 0.0 - 

Completeness 100.0% - 100.0% - 100.0% - 100.0% - 100.0% - 

P
K

N
 

Median 27.3 63.5 0.006 - 235.5 - 7.8 - 0.0 - 

IQR 16.6 13.5 0.009 - 98.5 - 3.3 - 0.0 - 

Maximum 84.5 98.0 0.021 - 322.5 - 33.6 - 15.8 - 

Minimum 4.0 27.0 0.001 - 6.9 - 6.6 - 0.0 - 

Completeness 100.0% 100.0% 100.0% - 100.0% - 100.0% - 100.0% - 

P
E

L
 

Median 87.3 - 0.018 - 191.6 - 34.1 - 0.0 - 

IQR 9.8 - 0.002 - 86.3 - 2.1 - 0.2 - 

Maximum 98.1 - 0.021 - 313.4 - 38.2 - 27.5 - 

Minimum 54.5 - 0.011 - 14.8 - 28.0 - 0.0 - 

Completeness 100.0% - 100.0% - 100.0% - 100.0% - 100.0% - 

S
A

V
 

Median 75.2 67.0 0.010 - 222.0 - 14.6 - 0.0 - 

IQR 21.0 19.0 0.005 - 98.7 - 4.8 - 0.0 - 

Maximum 98.0 97.0 0.018 - 362.2 - 31.6 - 3.4 - 

Minimum 16.2 15.0 0.002 - 9.2 - 9.2 - 0.0 - 

Completeness 100.0% 74.4% 100.0% - 100.0% - 100.0% - 100.0% - 

T
Z

H
 

Median 77.0 - 0.011 - 275.8 - 15.5 - 0.0 - 

IQR 17.1 - 0.003 - 57.6 - 6.7 - 0.0 - 

Maximum 97.7 - 0.015 - 348.2 - 29.8 - 5.9 - 

Minimum 38.6 - 0.006 - 35.1 - 11.7 - 0.0 - 

Completeness 100.0% - 100.0% - 100.0% - 100.0% - 100.0% - 
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