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ABSTRACT 

Cell adhesion regulates critical cellular functions in adherent cells. Yet, the 

fundamental mechanism during the early events in cell adhesion remains 

unclear. At the most elementary level, cell processes its environment using 

single molecular clues for its decision making. Herein, we utilized our 

recently developed DNA tether called tension gauge tether (TGT) to study the 

mechanical requirements of integrin-mediated cell adhesion. Our lab showed 

that cells need to experience a threshold force of 40 pN through single 

integrin-ligand bonds to initiate adhesion and spreading. We also 

demonstrated that just a few copies of strong (~ 54 pN) TGTs per cell are 

enough for cell adhesion and spreading as long as there is a high density of 

weak tethers. Additionally, we showed that 12 pN and 23 pN tethers, which 

are unable to induce cell adhesion individually, can induce cell adhesion if 

they are presented together to the cell. Therefore, the cells appear to be able 

to perform relative force measurements instead of absolute force 

measurements. Furthermore, we show by direct single molecule imaging that 

a cell needs only two copies of 23 pN tethers for such relative force 

measurements. Moreover, we found that such an observation is due to the 

presence of relatively stronger tethers that act as membrane holders, which 
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keep the cell membrane close to the surface. Therefore, relatively stronger 

tethers allow the weaker tethers that are ruptured to re-anneal and 

subsequently cells remain adhered to the surface.  

Readers:  Dr. Taekjip Ha  

Dr. Jungsan Sohn   
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Ultrasensitivity of cell adhesion to the presence of mechanically strong 

ligands 
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INTRODUCTION 

Research into how cells sense and respond to mechanical cues in their 

environments has shown that the processes of growth, motility and 

development are strongly influenced by the mechanical properties of cellular 

surroundings. Most of these studies have measured the cell’s macroscopic, 

ensemble-averaged response to forces exerted between receptors and their 

ligands which mediate mechanical communication (Engler et al., 2006; 

Hoffman et al., 2011; Ingber, 2006; Oakes and Gardel, 2014; Watt and Huck, 

2013). Relatively few studies have quantified these actions at the molecular 

level (Gordon et al., 2015; Grashoff et al., 2010; Jurchenko et al., 2014; Liu 

et al., 2013; Morimatsu et al., 2013; Morimatsu et al., 2015; Stabley et al., 

2012; Zhang et al., 2014). Yet, at the most elementary level, the sensing of the 

mechanical environment must be performed by single molecules in 

mechanical contact with the environment, and the cell then must be able to 

process the single molecular events for its decision making. 

One of the best characterized cellular mechanical processes is adhesion to the 

extracellular matrix (ECM) – the microenvironment of animal cells 

(Dobereiner et al., 2004; Evans and Calderwood, 2007; Halder et al., 2012; 

Watt and Huck, 2013). The membrane-bound receptor proteins called 
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integrins interact with the ECM and relay information about the extracellular 

environment to the cell interior and to the underlying actin cytoskeleton 

through interaction with other proteins (del Rio et al., 2009; Fraley et al., 

2010; Friedland et al., 2009; Grashoff et al., 2010; Guan, 1997; Koo et al., 

2002; Parsons et al., 2010; Sawada et al., 2006; Wang et al., 2005). The spatial 

extent of the ECM communication with the actin cytoskeleton through 

integrins ranges from nano to micrometers with a force sensitivity which 

ranges from a few pico-Newton (pN) to a few hundreds of pN (Blakely et al., 

2014; Cavalcanti-Adam et al., 2007; Jiang et al., 2003; Kim et al., 2015; 

Lehenkari and Horton, 1999; Stabley et al., 2012; Tan et al., 2003; Wang et 

al., 1993). Precise understanding of the underlying mechanisms requires 

techniques which are sensitive in these ranges.  

To investigate the single molecular forces involved in mechanical processes 

in cells, we developed a technique called tension gauge tether (TGT) (Wang 

and Ha, 2013). This technique leverages the well-understood rupture 

dynamics of short, double-stranded (ds) DNA, which was previously used to 

determine the antibody-antigen binding forces (Albrecht et al., 2003), in order 

to determine the magnitude of forces across a single receptor-ligand bond 

required for triggering certain cellular behaviors, for example integrin-

mediated cell adhesion (Chowdhury et al., 2015; Wang and Ha, 2013), Notch 
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signaling activation (Cocco et al., 2001) and immune cell activation (Wan et 

al., 2015). In a TGT designed for integrins, one strand, termed the top strand, 

is covalently linked to the RGDfK ligand which is a short peptide mimic of 

the ECM (Takada et al., 2007), and the other strand (bottom strand) is 

covalently linked to a biotin [Fig 1.1]. The dsDNA is then tethered to a 

polymer-passivated glass surface through biotin. By keeping the location of 

the ligand fixed while shifting the location of the biotin progressively away 

from the ligand, the force required to rupture the dsDNA increases in a 

quantifiable fashion.  

During the cell adhesion process any bond formed between an integrin and a 

ligand is thought to be subject to a mechanical force or tension. Several 

different mechanisms may contribute to this tension, including an active force 

arising from intracellular processes and a generic physical force associated 

with the cell membrane.  If this force across a single integrin-ligand bond 

required to initiate stable cell adhesion is greater than the tension tolerance 

(Ttol) of the tether, the top strand engaged with an integrin is removed from 

the surface by the cell-induced rupture of dsDNA. This can be detected as a 

loss-of-fluorescence from the surface if the top strand is labeled with a 

fluorophore. On the other hand, if the required force is smaller than Ttol, the 

integrin will continue to engage with the RGDfK and mediate cell adhesion 
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and spreading. Regardless of how a single integrin is coupled to the 

membrane, the underlying cytoskeleton, and to other integrins, the force 

applied to our DNA tether is applied through a single integrin-ligand bond.  

The physics behind short (< 20 base pairs) dsDNA rupture was originally 

described by P.G. de Gennes (de Gennes, 2008) and has since then been 

experimentally verified (Hatch et al., 2008). The equation for the rupture force 

is the following: 

𝑇𝑡𝑜𝑙 = 2𝑓𝑐[𝑥−1 𝑡𝑎𝑛ℎ (
𝑥𝑙

2
) + 1]            (1) 

 

where Ttol is the rupture force, 𝑓𝑐 is the breaking force of a single base pair, x 

is related to the spring constant of DNA and l is the number of base pairs (bp) 

between the points of force application on the two complementary strands of 

DNA. In our case, l represents the number of bp separating RGDfK and biotin 

[Fig 1.1 inset]. Using magnetic tweezers, the Prentiss group determined the 

values for x-1 and fc to be 6.8 bp and 3.9 pN, respectively(Hatch et al., 2008). 

On a DNA with a total length of 18 bp, when the RGDfK and biotin are placed 

closest to each other (l = 1 bp), Ttol is ~ 12 pN whereas Ttol is ~ 54 pN when 

the biotin is placed farthest away from RGDfK (l = 18 bp). Because the 

magnetic tweezers experiments that yielded the parameters to the de Gennes 
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model were performed by increasing the force incrementally after 1 or 2 

seconds of constant force did not rupture the DNA, Ttol values we estimate 

should be considered only approximate. The absolute force values may be 

different from our estimates if the cellular time scale of force application is 

much longer or shorter than 1 to 2 seconds. 

Prior TGT studies revealed the tension threshold for integrin-mediated cell 

adhesion to be ~ 40 pN (Wang and Ha, 2013) . In these experiments, TGT 

with nine different Ttol values ranging from 12 pN to 54 pN were individually 

presented to cells. After a 30-minute incubation, cells did not adhere stably to 

the surface if TGT with Ttol < 43 pN was used. On the other hand, cells adhered 

stably if TGT with Ttol ≥ 43 pN was used. The tension threshold appeared 

universal across several different cell types, both cancerous and noncancerous 

(Chowdhury et al., 2015; Wang and Ha, 2013) and was shown to hold as early 

as the first five minutes of adding the cells to the TGT-coated surface (Wang 

and Ha, 2013). This 40 pN force across a single bond outside the cell may 

contribute to the range of single molecule forces, 5 pN - 25 pN, proposed to 

be experienced by the intracellular proteins that bridge integrins to the actin 

cytoskeleton (del Rio et al., 2009; Grashoff et al., 2010; Rognoni et al., 2012; 

Yao et al., 2014). 
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The ECM is complex, presenting a great variety of ligands with which 

integrins can interact. Our objective in this work was to better approximate 

this complexity and extend the prior work which quantified cellular response 

to only one tether strength at a time. By presenting both weak (Ttol ~ 12 pN) 

and strong (Ttol ~ 54 pN) tethers to cells simultaneously in a scheme we call 

“TGT multiplexing (MP)” [Fig 1.1], we could study cell mechanics at the 

molecular level in an environment more similar to the ECM.  

RESULTS AND DISCUSSION 

Multiplexing weak and strong TGTs 

In the multiplex scheme, weak and strong TGTs are made distinguishable 

from each other through labeling with fluorophores of different colors, Cy3 

and Cy5, respectively. A typical experiment arrays three circular spots of TGT 

on the same imaging surface, each with an area of ~ 13 mm2 and a surface 

density of ~ 400 tethers/µm2, which mirrors the density of integrins in the 

membrane of animal cells (40 – 3000 /µm2) (Wiseman et al., 2004). To 

achieve these conditions, 3 µL of 1 µM TGT solution is spotted onto a 

neutravidin functionalized glass surface. After a 10-minute incubation period, 

unbound TGTs are thoroughly rinsed away.  
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The first spot presents only the weak TGT and the second presents only the 

strong TGT. The third spot presents multiplexed weak and strong TGT which 

are mixed at equi-molar concentrations. Chinese Hamster Ovary (CHO-K1, 

American Type Cell Culture) cells are cultured on the surface for 30 minutes 

in a 37 oC incubator. Afterwards, unbound cells are gently rinsed away and 

the sample is fixed. Imaging the cells using differential interference contrast 

(DIC) and epi-fluorescence microscopy (Zeiss 200M Axiovert) allowed us to 

obtain two main observables from the images: 1) the degree of TGT rupture 

is reported through loss-of-fluorescence from the imaging surface and 2) the 

number of cells that remain attached. Very few cells remained attached after 

gentle washing when only the weak TGT was used whereas a high density of 

adherent cells was observed with the strong TGT alone or with TGT 

multiplexing. To ensure that fixation does not bias the results, experiments 

have been performed using both live and fixed cells. In the context of these 

two observables, there were no noticeable differences between fixed and live 

cell images (not shown). 

Multiplexing transforms how the cells treat the weak tethers 

Fluorescence images from a typical experiment are shown in Figure 2. Similar 

to what was previously reported (Wang and Ha, 2013), fluorescence images 
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of the weak TGT-coated surface showed uniformly dark patches about the 

size of single cells, likely due to the rupture of weak TGTs induced by cellular 

forces transmitted through integrins when the cell tries to gain foothold by 

pulling on ligands [Fig 1.2(a)]. Imaging the cells without rinsing confirmed 

this interpretation because fluorescence loss was observed only under the cells 

(not shown). Cellular forces that ruptured the weak TGTs are likely provided 

by actin cytoskeleton instead of passive sources such as membrane repulsion 

because actin filament inhibitor (1 µM latrunculin A) eliminated fluorescence 

loss (Fig 1.2A). On the other hand, the strong TGT-coated surface showed 

lower degrees of rupture, with scattered dark regions localized to the periphery 

of the contact area between the cell and the surface [Fig 1.2(b)]. The 

peripheral (or edge) rupture of the strong TGT appears to be caused by an 

ATP-powered molecular motor, myosin II (Wang et al., 2015). When weak 

and strong TGTs are multiplexed and presented to cells simultaneously, the 

cells adhered well to the surface after rinsing as was the case for the strong 

TGT-coated surface. Unexpectedly, the rupture patterns for the weak TGT 

changed to become identical to those observed for the strong TGT. That is, 

instead of the uniformly dark rupture footprint for the weak TGT-coated 

surface, cells ruptured both tethers on the periphery of the contact area as if 

they are both strong TGTs [Fig 1.2(c)]. These observations suggest that the 
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presence of strong tethers can significantly influence how cells sense and act 

on the weak tethers. 

Multi-variable single cell analysis 

We further quantified rupture footprint patterns by analyzing more than a 

hundred cells from each surface in terms of two variables [Fig 1.3(a)]. The 

first variable is the degree of TGT rupture. This is measured by comparing the 

fluorescence intensity underneath a cell to a nearby surface without any 

attached cells. The background, which is measured from an area off of the 

TGT spot, is subtracted from both values before the comparison. To calculate 

this, the following formula is used,  

𝑅𝑢𝑝𝑡𝑢𝑟𝑒 (%) =
𝑀𝐹𝑠𝑢𝑟𝑓𝑎𝑐𝑒−𝑀𝐹𝑐𝑒𝑙𝑙

𝑀𝐹𝑠𝑢𝑟𝑓𝑎𝑐𝑒−𝑀𝐹𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑
            (2) 

where MF is the mean fluorescence intensity. Values are measured in ImageJ 

(open-source software developed by the National Institutes of Health) by 

selecting the corresponding region. For the weak TGT spot, regions were 

selected directly from the fluorescence images since this surface does not 

retain cells after rinsing. For the rest of the spots, DIC microscopy was used 

to image the cells directly. The regions for analysis were selected from these 

DIC images and the corresponding fluorescence images were analyzed.  
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Because the analysis of the images from the weak TGT spot is different from 

the analysis for the other two spots, we performed a control comparison to 

rule out the possibility of any analytical bias. For the strong TGT, we selected 

regions in two different ways. First, regions were selected directly from the 

fluorescence images and the percent rupture was calculated. Second, regions 

were selected from DIC images and the percent rupture was calculated based 

on the corresponding fluorescence images. The values for the percent rupture 

from the two analyses were within standard error of each other: 8.50%± 1.01 

and 8.27%±0.99, respectively.  

The second variable describes the spatial distribution of the rupture. That is, 

underneath the cell, does the rupture occur everywhere or is it concentrated to 

a specific area? As a quantitative measure, we define a rupture moment, I, 

analogous to the moment of inertia from mechanics. A bigger value of I 

represents rupture at the periphery of the contact area underneath each cell, 

or, “edge rupture”. A smaller value suggests that the rupture is more uniformly 

localized, or, “uniform rupture”. 

We used the following formula,  

𝐼 =
∑ 𝑀𝑖𝑅𝑖

2𝑁
𝑖=1

𝐴 ∑ 𝑀𝑖
𝑁
𝑖=1

                (3) 
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where A is the area of the cell measured in ImageJ, Ri is the distance from the 

approximate center of the fluorescence footprint underneath a single cell to 

the ith pixel, Mi is the percent rupture of the ith pixel as defined in equation 

(2), and N is the total number of pixels.  

A scatter plot of the percent rupture versus I for many single cells [Fig 1.3(a)] 

shows that weak TGT and strong TGT rupture patterns form two distinct 

clusters. Cells showed higher rupture percentage and smaller I on the weak 

TGT-coated surface compared to the strong TGT-coated surface. On the 

multiplex (MP) surface, the rupture patterns of both weak and strong TGTs 

cluster together with each other and with that of the strong TGT-coated 

surface, showing indeed that the presence of strong TGTs transform the way 

cells treat the weak TGTs. The ensemble average values of rupture percentage 

and I [Fig 1.3(b)] further support the qualitative observations shown in Figure 

2. Taken altogether, cells act on both tethers similarly in MP, showing small 

percent rupture values and large I values which are characteristics of edge 

rupture, as if both tethers are strong.  

Multiplexing leads to ultra-sensitivity for strong TGT  

Up to this point, TGT spots have been prepared with high surface densities so 

that each cell would have ˃ 200,000 TGT molecules underneath, on average. 
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This number is estimated from the known surface density given 1 µM 

incubation concentrations (~ 400 TGT /µm2) (Chowdhury et al., 2015) and 

the measured average area of cells attached to the strong TGT and MP spots 

(~ 600 µm2). For a point of reference, the aerial footprint of CHO-K1 cells 

used in our experiments ranges from 80 µm2 (for the cells that do not adhere 

to the surface with weak tethers and just leave a fluorescent footprint) to 800 

µm2 (for the cells adhered on the surface with strong tethers). 

Here, we define the term, “weak tether transformation” to refer to the shift 

from the uniform rupture of weak tethers, when presented alone, to edge 

rupture when the weak is multiplexed with the strong. A question then arises: 

how many strong tethers are needed for the cell to undergo a weak tether 

transformation? To answer this question, we progressively lowered the 

incubation concentration of strong TGT from 1 µM to 0 pM while maintaining 

the weak TGT concentration during incubation at 1 µM. Cells were cultured 

on these MP titration spots for 30 minutes, rinsed, fixed and imaged. The 

images were analyzed, as before, in terms of: 1) the number of cells stably 

adhered per unit area and 2) rupture pattern (the rupture percentage and I). As 

a control, strong TGT is presented alone to cells over the same range of 

concentrations.  
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Figure 4(a) shows representative DIC and fluorescence images of the MP 

surface obtained with 1 µM weak TGT and 40 nM, 2 pM and 0 pM strong 

TGT. Very few cells adhered to the surface in the absence of any strong TGT 

but even at 2 pM strong TGT, 500,000 fold dilution compared to weak TGT, 

we observed many cells adhering albeit with lower cell counts than in the case 

of 40 nM strong TGT [Fig 1.4(a) and 4(b)]. In addition, the fluorescence 

rupture pattern for the weak TGT underneath adhered cells for both 2 pM and 

40 nM TGT showed edge rupture, indicating weak tether transformation.  

Figure 4(b) shows the plot of adhered cell count. When cells are cultured on 

the strong TGT-coated surface, only background levels of adhered cells are 

observed for concentrations lower than 40 nM. However, when weak tethers 

are present, cells adhered for strong TGT concentration down to 2 pM but not 

at 0.2 pN. The attached cell count, although well above background levels, 

decreased on MP titration spots with pM concentrations of the strong TGT. 

Overall, our data suggest that even at 2 pM incubation concentration, strong 

TGT can induce weak tether transformation for a subset of cells.   

We further analyzed the weak TGT rupture patterns under adhered cells and 

calculated the rupture percentage and I from single cells [Fig 1.5]. At 2 pM 

and 2 nM incubating concentrations of strong TGTs, although some of the 
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loss-of-fluorescence footprints show uniform rupture, these footprints do not 

correspond to adhered cells in the DIC images. Instead, the footprints for 

adhered cells show edge rupture pattern as quantified through rupture 

percentage and I [Fig 1.5(b)] at strong TGT concentrations of 2 pM or above.  

At incubation concentrations ≤ 200 pM, the average surface density of strong 

TGT in the presence of unlabeled 1 µM of weak TGT can be directly 

determined using single molecule total internal reflection fluorescence 

microscopy. From these measurements, we estimated the number of strong 

TGT per cell as a function of the pM incubation concentrations using 600 µm2 

as the average area of an adhered cell [Fig 1.6(a)]. Note that the surface 

density of strong tethers is three times lower when they are presented together 

with weak tethers, probably because weak and strong tethers can compete with 

each other for a finite number of binding sites on the surface.  

According to our calibration, the number of strong tethers at 2 pM incubation 

is about two molecules per cell, suggesting that, even with the uncertainty in 

the measurement, the number of strong tethers required for weak tether 

transformation is in the range of low single digit per cell, possibly down to 

one strong tether. This ultra-sensitivity for strong tethers is a surprising result. 

Cells do not adhere to a surface displaying either weak tethers alone or strong 
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tethers at the pM incubation concentrations. Yet, the presence of just a few 

strong tethers per cell will induce adhesion if, and only if, the surface is also 

displaying many weak tethers. We can rule out the possibility that the strong 

tether distribution is highly uneven, leading to localized “hot spots” that 

display many tethers, because direct single molecule microscopy 

measurements revealed no such unevenness (Fig 1.6(b)).  

Because the adhered cell count on the MP surfaces with picomolar strong 

tether concentrations is lower than on those with ≥ 20 nM concentrations of 

strong tethers [Fig 1.4(b)], we hypothesize that there exists a sub-population 

of ultra-sensitive cells that can be fully activated by just a few strong tethers, 

leading to adhesion and spreading. As the amount of strong tethers is 

increased from 2 pM to 2 nM, the adhered cell count is unchanged because 

only ultra-sensitive cells adhere. At ≥ 20 nM, cell attachment count increases 

because the less sensitive cell population is then activated.  

In summary, we report synergistic mechanical forces in cellular adhesion 

using TGT multiplexing. Multiplexing a strong tether with a weak tether 

resulted in two surprising observations. First, the way cells sense and treat the 

weak tether is transformed in the multiplex scenario: cells treat both TGTs the 

same, as if the weak tether were strong. And second, cells adhere to a MP spot 
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when merely a few single molecules of the strong tether are present per cell, 

as long as there are also many weak tethers.  

Although there is a precedent for ultra-sensitivity in immune cells where even 

a single cognate ligand is able to activate the immune cell in the presence of 

large amount of noncognate ligands (Yuri Sykulev, 1996), our work is distinct 

in that cells can change their behavior based on purely mechanical differences. 

Both strong and weak TGTs present the chemically identical ligands to the 

cells with the only difference being the mechanical stability of the tethers. 

What might be the underlying mechanisms for the remarkable sensitivity to 

the presence of a minute number of mechanically strong ligands? We 

previously presented evidence that the tension threshold for cell adhesion can 

be reduced by lowering the membrane tension (Wang and Ha, 2013). 

Therefore, processes that modulate the dynamics of the cell membrane and 

the actin cytoskeleton linked to the membrane may be important in the 

observed ultra-sensitivity to strong forces. There is evidence that cell adhesion 

is aided by transient contacts and force generation induced by membrane 

undulations (Pierres et al., 2009). In addition, sugar-protein coating called 

glycocalyx on cell membranes may exert steric repulsion force between the 

cell and the ECM and may thus influence cell adhesion (Bruinsma et al., 2000; 
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Paszek et al., 2014; Sackmann and Smith, 2014). Therefore, we offer one 

possible explanation for our observation as follows. Once a cell establishes a 

link to a ligand on strong TGT, this stable link would lower the membrane in 

the surrounding area, dampening membrane fluctuations and expelling 

glycocalyx which normally separates the membrane from the ECM. 

Glycocalyx expulsion would then lead to the recruitment of more integrins to 

form integrin clusters (Paszek et al., 2014), making nearby ligands on weak 

TGTs more accessible to integrins. The dampening of membrane fluctuations 

and associated forces would prevent the rupture of weak tethers and the area 

of close contact initiated by a single strong TGT may then expand.  In other 

words, a very small number of strong TGTs may form individual nuclei, 

ultimately leading to cell adhesion. In addition, the integrins recruited around 

the strong TGTs may become activated to obtain much higher affinity to the 

ligands (Wegener et al., 2007). If there are only weak tethers, membrane 

fluctuations would rupture weak TGTs so that stable adhesion cannot be 

nucleated. If there are only a few strong tethers, the initial stable contact 

cannot expand and cells cannot adhere.  

We have also observed ultra-sensitivity from melanoma cells (B16-F1) in 

addition to CHO cells, but several other cell types we tested did not show this 

property. Future studies employing other cell types and biological 
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perturbation tools may be able to reveal the underlying mechanisms that set 

certain cells apart in terms of their ultra-sensitivity to single molecular forces. 

Regardless of the detailed mechanisms, our present data are consistent with 

the following time courses of single integrin-ligand bonds that form during 

initial cell adhesion. When a single integrin-ligand bond forms, the cell 

gradually increases the force across the bond to about 40 pN so that weak 

TGTs rupture. When the force reaches ~ 40 pN for just a few integrins bound 

through strong TGTs, the cell apparently makes a decision that the surface is 

rigid enough for adhesion and the force across the strong TGTs drop to a low 

value. Subsequent bonds only experience this low steady state force so that 

the weak TGTs do not rupture anymore (Fig 1.7). In this model, rigidity 

sensing of the underlying surface (Chan and Odde, 2008; Du et al., 2011; 

Elosegui-Artola et al., 2014a; Engler et al., 2006; Ghassemi et al., 2012; 

McBeath et al., 2004; Plotnikov et al., 2012; Schwartz, 2010; Trappmann et 

al., 2012; Wen et al., 2014; Yu et al., 2011b; Yu et al., 2013b) can be 

completed by just a few integrin-ligand bonds, raising an interesting question 

how the cell achieves such mechanical ultrasensitivity without amplifying 

noise. Future studies utilizing live cell imaging with high space and time 

resolution and high sensitivity may be able to test various aspects of this 

model. 
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Figure 1. 1 
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Figure 1. 1: Schematic of multiplex TGT experiment. Cells cultured are 

presented with two types of tension gauge tethers (TGT) simultaneously. 

TGTs are conjugated with the tri-peptide RGDfK which binds to integrin 

receptors expressed on the cell surface. Each type of TGT is also labelled with 

a distinct fluorophore, on the top strand, and anchored to the surface through 

a biotin – neutravidin linkage. Inset shows the DNA tether under tension of 

magnitude F applied across l base pairs in shear force configuration.  
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Figure 1. 2 
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Figure 1. 2: Fluorescence images of TGT rupture with and without 

multiplexing. (a) Fluorescent images on the weak TGT-coated surface in 20X 

and 100X magnifications show uniformly dark patches beneath the cell 

(uniform rupture). However, when we inhibited actin polymerization by 

adding 1µM latrunculin A to the cell culture medium, cells did not show 

rupture footprint.  (b) Fluorescent images on the strong TGT-coated surface 

show fluorescence loss mostly at the periphery of the cell (edge rupture). 

Bright spots are probably the vesicles containing upper strand of ruptured 

TGT that have undergone endocytosis. (c) Fluorescence loss patterns of weak 

and strong TGTs are similar and show ‘edge rupture’ on the multiplex TGT 

surface. Scale bars are 50 µm for 20X and 10 µm for 100X.  
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Figure 1. 3 
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Figure 1. 3: Single cell analysis of TGT rupture pattern. (a) More than 400 

cells are selected and analyzed based on two variables: percent rupture and 

rupture moment (I). Each symbol represents one single cell. Percent rupture 

and rupture moment for the Weak TGT-coated surface  (Weak TGT) are 

characteristic of  “uniform rupture” and are clearly different from “edge 

rupture” characteristics seen for the Strong TGT surface (Strong TGT), and 

for the weak and strong TGTs on the MP surface (MP – weak and MP – strong, 

respectively). (b) Average values from (a). Error bars denote standard errors 

of mean.  
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Figure 1. 4 
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Figure 1. 4: Titration of strong TGT in multiplexing experiment. (a) 

Representative images of cells on different MP TGT surfaces. Differential 

interference contrast (DIC, top) and fluorescence loss of the weak TGT 

(bottom).  Scale bars are 50 µm. (b) Average density of adherent cells versus 

strong TGT incubation concentration. Only background levels of adhered 

cells are observed for concentrations lower than 40 nM of strong TGTs alone. 

However, when weak tethers are present, cells adhered for strong TGT 

concentration down to 2 pM but not at 0.2 pN. The cell density, although well 

above background levels, decreased for pM concentrations of the strong TGT. 

Error bars denote standard errors of mean.  
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Figure 1. 5 
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Figure 1. 5: Weak tether transformation vs. strong TGT concentration. 

(a) Representative images of MP TGT surfaces. DIC (top) and fluorescence 

loss of the weak TGT (bottom). The white outlined regions in the bottom 

images correspond to adhered cells in the top images. Scale bars are 50 µm. 

(b) Percent rupture and normalized rupture moment (I) are measured and 

averaged for cells vs strong TGT concentration. Error bars denote standard 

errors of mean.  
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Figure 1. 6 
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Figure 1. 6: Single molecule measurements of strong TGT density. (a) At 

picomolar incubation concentrations, the average surface densities of strong 

TGT in the presence of unlabeled 1 µM of weak TGT were directly 

determined using single molecule total internal reflection fluorescence 

microscopy. From these measurements, the number of strong TGT per cell as 

a function of the pM incubation concentrations was estimated. Note that the 

surface density of strong tethers is three times lower when they are presented 

together with weak tethers, probably because weak and strong tethers can 

compete with each other for a finite number of binding sites on the surface. 

(b) 20 single molecule images of DNA tethers (50 pM Cy5-labeled strong 

TGTs & 1 µM unlabeled weak TGTs during incubation) show that there is no 

nonrandom clustering of tethers. Scale bar in the lower right image is 5 µm.  
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Figure 1. 7 
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Figure 1. 7: Proposed time courses of mechanical engagements through 

single integrin-ligand bonds. A cell grabs a ligand attached to the surface 

through a weak tether and applies gradually increasing force until the weak 

tether ruptures. If a strong tether is pulled, the 40 pN threshold force for 

adhesion is reached, telling the cell that the substrate is rigid enough for 

adhesion. Then, the force through the bond drops to a low, steady state value, 

and subsequent bonds experience only this lower force. The cell no longer 

needs to apply strong forces because it has already determined that the 

substrate is rigid enough.  
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Chapter 2 

 

Ultra-sensitivity of Cell Adhesion to the Differential Mechanical Cues 

and Requirement of Reversibility 
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INTRODUCTION 

The extracellular matrix (ECM) presents physical cues that cells 

continually probe. These physical messages have crucial roles in regulating 

diverse cellular physiologic or pathologic processes(Bonnans et al., 2014; 

Discher et al., 2005; Elosegui-Artola et al., 2014b; Kumar and Weaver, 2009; 

Liu et al., 2015; Wozniak and Chen, 2009). The transmembrane receptor 

protein called integrin interacts with the ECM to transmit information about 

the surrounding to inside the cell via the interaction with membrane-

associated macromolecular protein assemblies called focal adhesions (FAs) 

and the regulation of the 3D actin cytoskeleton lattices (del Rio et al., 2009; 

Engler et al., 2006; Friedland et al., 2009; Gordon et al., 2015; Grashoff et al., 

2010; Hoffman et al., 2011; Ingber, 2006; Koo et al., 2002; Morimatsu et al., 

2013; Oakes and Gardel, 2014; Sawada et al., 2006; Stabley et al., 2012; Wang 

et al., 2005; Watt and Huck, 2013). The ECM itself is a diverse interaction 

platform and is heavily investigated for fundamental cellular processes and 

functions (Chiquet et al., 2009; Dobereiner et al., 2004; Evans and 

Calderwood, 2007; Geiger et al., 2009; Geiger and Yamada, 2011; Grashoff 

et al., 2010; Halder et al., 2012; Jurchenko et al., 2014; Liu et al., 2013; 

Morimatsu et al., 2015; Zhang et al., 2014). Cell interaction with such a 

mechanically heterogeneous ECM activates downstream intracellular 
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signaling to dictate critical cellular functions including cell adhesion, 

migration, proliferation, or apoptosis. Therefore, it is important to understand 

force dependent fundamental cellular processes like cell adhesion and 

spreading in heterogeneous environments.  

Previously, many studies attempted to understand cell adhesion and 

spreading behavior modulated by average molecular forces across 

integrins(Yu et al., 2011a; Yu et al., 2013a). Earlier studies using fibronectin 

as a substrate investigated early cell adhesion and spreading and modeled 

distinct phases of cell adhesion(Dubin-Thaler et al., 2004; Dubin-Thaler et al., 

2008; Giannone et al., 2004). These findings, although useful observations, 

are short of underlying understanding for molecular mechanism of early cell 

adhesion events primarily due to lack of precise control of mechanical cues. 

Many other studies investigated Rho-GTPases(Hall, 1998; Nobes and Hall, 

1995), tyrosine kinases(Mitra and Schlaepfer, 2006), structural cytoskeletal 

units and associated contractile elements(Chan and Odde, 2008; Schwartz, 

2010) during cell adhesion and subsequent modulation of cellular behavior. 

The mentioned studies however involve further downstream activities and do 

not capture early events in cell adhesion. They also depended on the bulk 

properties of the underlying substrate stiffness, which inherently lacks precise 

control at the molecular level.  
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In order to study involvement of single molecular forces in cellular 

processes, we developed tension gauge tether (TGT) technique (Wang and 

Ha, 2013) and by utilizing this technique we demonstrated that single 

molecular forces at the cell-substrate interface determines whether cells can 

adhere to the surface (Wang and Ha, 2013) and control the degree of cell 

spreading (Chowdhury et al., 2015). In the current work, we utilized short (18 

base pairs) double-stranded DNA with a defined range of rupture forces to 

limit molecular forces across single integrins. One strand of the DNA is 

conjugated to a ligand for specific integrin binding and the other strand is 

immobilized to the surface via neutravidin-biotin interactions. An array of 

tethers with defined tension tolerances is constructed by changing the biotin 

position on the DNA strand. When the ligand and biotin are placed on the 

same end of the DNA, TGTs sense an unzipping loading configuration upon 

applying force thereby providing a weak tension tolerance of 12 pN. When 

the ligand and biotin are placed on the opposite ends, TGTs experience a 

shear-loading configuration thus providing a stronger tension tolerance of 54 

pN. TGTs with intermediate rupture forces were also constructed by 

positioning the biotin at locations intermediate between the two extremes.  

Using the TGT technique we previously showed that cells exert about 

40 pN of peak forces during initial cell adhesion. Therefore, weaker TGTs 
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with tension tolerance less than 43 pN, namely 12 pN, 23 pN and 33 pN did 

not support cell adhesion. In more physiological settings, we can anticipate 

that the mechanical cues would be heterogeneous.  In a recent study where we 

mixed strong and weak TGTs to better mimic native cellular environments, 

we demonstrated that just a few copies of strong (~ 54 pN) TGTs per cell are 

enough for cell adhesion and spreading as long as there is a high density of 

weak tethers which implies ultrasensitivity of cells to strong ligands (Roein-

Peikar et al., 2016). In the present study, we further investigated the effect of 

mechanically heterogeneous environment during early stages of cell adhesion.  

RESULTS AND DISCUSSION 

Cell adhesion is supported on a multiplexed weak TGT surface 

To create a mechanically heterogeneous surface, we multiplexed two 

weak tethers, namely 12 pN and 23 pN TGTs, neither of which supports cell 

adhesion if presented individually on a mechanically homogenous surface. 

Cy3 and Cy5 fluorophores were conjugated to the 5’ end of upper strand of 

12 pN and 23 pN TGT, respectively, to independently monitor the rupture 

pattern of these weak TGTs. A ligand called cyclic-RGDfK, specific for αv3 

integrins (Aumailley et al., 1991; Gurrath et al., 1992; Pfaff et al., 1994), was 

also conjugated on the 3’ end of the upper strand.  
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We prepared three different TGT-surfaces by incubating PEG-

passivated and neutravidin-coated glass coverslip with 1 µM 12 pN TGT (12 

pN-only surface), 1 µM 23 pN TGT (23 pN-only) or a mixture of 0.5 µM 12 

pN TGT and 0.5 µM 23 pN TGT (12 pN & 23 pN) (Fig. 1). Equal number of 

Chinese hamster ovary (CHO) cells were plated on the three surfaces for half 

an hour in 37° C and were washed gently before imaging. As reported 

before(Wang and Ha, 2013), very few cells adhered to the12 pN-only and 23 

pN-only surfaces (Fig. 2a) with dark patches in fluorescence images due to 

>60 % rupture of TGTs caused by cells that were rinsed off (Fig. 2c). 

Surprisingly, a high number of cells adhered on the 12 pN & 23 pN surface 

with about 10% TGT rupture underneath (Figs. 2b, c). Therefore, mixing the 

two weak TGTs allow cell adhesion even though individually neither of the 

two is strong enough to support cell adhesion. Moreover, cells left behind two 

distinct types of footprints. In the case of 12 pN-only or 23 pN-only surfaces, 

cells uniformly ruptured the weak TGTs underneath the cells (Fig. 2a). In 

contrast, we observed an edge rupture pattern (mostly at the cell periphery) 

for both TGTs on the 12 pN & 23 pN surface (Fig. 2a). Therefore, the presence 

of both weak tethers of different tension tolerance somehow induces the cell 

to make a decision to adhere and to no longer apply strong forces that can 

rupture these weak TGTs (Roein-Peikar et al.). The edge rupture pattern is 
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caused by myosin-dependent forces at focal adhesions that develop after cell 

adhesion and spreading (Wang et al., 2015). 

We next performed similar experiments by pairwise mixing the 

following TGTs: 12 pN, 23 pN, 33 pN, 43 pN and 54 pN (0.5 µM of one TGT 

mixed with 0.5 µM of another). All pairwise combinations allowed cells to 

adhere even in the cases of both TGTs weaker than 40 pN (12 pN & 33 pN, 

23 pN & 33 pN, and 12 pN & 23 pN) (Fig. 3). Therefore, cells seem to be 

performing differential force measurements during cell adhesion decision 

making. 

Ultrasensitivity of cells to single molecules  

We next tested how much 23 pN TGT is needed to enable cell adhesion 

through differential force sensing when they are presented together with a 

high density of 12 pN TGT by progressively lowering the concentrations of 

relatively stronger tethers and found that 1 pM of 23 pN TGT mixed with 1 

µM of 12 pN TGT during TGT incubation. Single molecule fluorescence 

imaging of Cy3-labeled 23 pN TGT mixed with unlabeled 12 pN TGT 

allowed us to calibrate the average surface density of 23 pN TGT, and we 

could estimate that on average about two 23 pN TGTs are under adherent cells 

at 1 pM incubation concentration, assuming the average area of 600 µm2 for 

adherent cells (Chowdhury et al., 2015). Thus, cell adhesion is ultrasensitive 
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to a very small number of mechanically strong ligands. This is reminiscent of 

our previous observation that on average about two RGDfK ligands presented 

through 54 pN TGTs are enough to support cell adhesion if there is a high 

density of 12 pN TGTs present as well. This corresponds to ultrasensitivity of 

cells to single molecules of relatively stronger TGTs per cell which we call 

The Princess and the Pea effect (PnP) and refers to the popular fairy tale (Fig. 

4a). This implies that cells are ultra-sensitive to the presence of very few 

relatively stronger –but still weak to secure the cells by themselves- tethers. 

This observation is similar to our earlier study where 1 pico molar (1 pM) of 

a strong TGT such as 54 TGT multiplexed with 1 micro molar (1 µM) of 12 

pN TGT is sufficient to support cell adhesion (Roein-Peikar et al., 2016). 

We expanded our investigation to study the PnP with other 

combinations of weak and relatively strong tethers. Based on these studies, 

we constructed a two dimensional table with horizontal axis representing 1 

µM of different tethers and vertical axis with 1 pM of various tethers (Fig. 4c 

and 4d). The highlighted diagonal blocks in the table at Fig. 4d represent a 

mechanically homogeneous surface where cells adhere to the surfaces covered 

with TGTs with rupture force of higher than 40pN, namely 43 pN and 54 pN,  

which is in agreement with our previous report(Wang and Ha, 2013). The 

outlined red box in the lower left corner shows the top three off-diagonal 
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blocks exhibit PnP while the bottom three off-diagonal blocks do not. It is 

clear that the lower concentration tethers need to be stronger than high 

concentration tethers to exhibit UCE.  

Other than CHO-K1 cells, we observed adhesion of mouse skin 

melanoma cell called B16-F1 (supplementary Fig. 1) and also a glycosylation 

defective CHO-K1 cell type called Lec-8 (data not shown) to 12 pN & 23 pN 

and PnP surface but not to 12 pN-Only or 23 pN-Only surfaces. 

Similarity between 54 pN, 12 pN & 23 pN and PnP surfaces 

Comparing the edge rupture pattern between the surfaces covered with 

strong TGT -with a rupture force of 54 pN, 12 pN & 23 pN surface and PnP 

surface showed the degree of rupture to be similar (Supplementary Fig. 2).  

Inhibiting the Focal Adhesion Kinase (FAK) by adding 100 µM FAK 

inhibitor PF573-228 to the cell culture medium during incubation in 37℃ did 

not interrupt the cell adhesion and did not change the rupture pattern on the 

12 pN & 23 pN and PnP surface. Similarly, cells on the 54 pN-Only surface 

did not show any change in cell adhesion or fluorescent footprint pattern with 

the inhibition of FAK. Inhibition of FAK was confirmed by utilizing a 

fluorescence resonance energy transfer (FRET) based FAK biosensor (Seong 

et al., 2011) (Fig. 2b, c and Supplementary Fig. 3). This implies that early 

adhesion of the cells to the multiplexed surface is not dependent on FAK 
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activation or anything downstream of FAK. The only entity that is upstream 

of FAK is integrin, which makes it the candidate for having the major role in 

our observed phenomenon. Additionally, the cells on 54-Only surface showed 

the same FAK activity as 12 pN & 23 pN and PnP surface in the control 

experiment without adding FAK inhibitor (Supplementary Fig. 3b).   

Furthermore, inhibiting myosin II by adding 10 µM or 50 µM 

blebbistatin to the cell culture medium did not prevent adhesion of the cells to 

the 12 pN & 23 pN and PnP surface either. With blebbistatin treatment, 

however, we observed even lower rupture characteristics. The lack of rupture 

of TGTs at the periphery of the cells suggests that myosin II is the determinant 

of the rupture of TGTs at the periphery of the cells (edge rupture fluorescent 

footprint pattern), while cell adhesion itself is not necessarily dependent on 

myosin II (Fig. 2b, c, Supplementary Fig. 4).   

Moreover, we compared focal adhesion (FA) forming capabilities of 

cells on multiplexed 54 pN, 12 pN & 23 pN and PnP surfaces. We did not 

observe any significant difference in FA formation on these surfaces 

(Supplementary Fig. 8). This is consistent with the result we got from the FAK 

activity test using the fluorescence resonance energy transfer (FRET) based 

FAK biosensor, in which we observed the FAK activity is similar in cells 
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adhered to 54 pN surface, 12 pN & 23 pN surface and PnP surface 

(Supplementary Fig. 3). 

23 pN TGTs form supporting membrane holders to endorse cell 

adhesion 

We reported in our earlier work that tension threshold for cell adhesion 

can be reduced by lowering the membrane tension thereby suggesting 

membrane dynamics play a critical role in the process(Wang and Ha, 2013). 

This is in agreement with other reports suggesting force fluctuations mediated 

by membrane undulations affect cell adhesion(Pierres et al., 2009; Sackmann 

and Smith, 2014). Since our present data also pointed at integrins to be 

responsible for this distinct characteristic of cell adhesion, we focused on 

integrins and associated membrane dynamics.  

We designed two different sequences of 12 pN (Seq1) and 23 pN (Seq2) 

TGTs as indicated in Fig. 5a (please see Methods section for making TGT). 

Both of these sequences had the same ratio of different nucleotides and were 

both checked for the minimum possibility of making hairpins, hetero-dimers 

or self-dimers. Adding 1 µM sequence 1 ssDNA (upper-Seq1, green) into the 

cell culture medium while the cells were incubated in 37°C inhibited cells 

from adhering to the multiplexed surface (Fig. 5a, 2nd row). The presence of 

upper-Seq1 (green) ssDNA causes very few cells to adhere to the surface and 
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fluorescent footprint of detached cells is uniform rupture (Fig. 5b, c). Adding 

the lower-Seq1 ssDNA (blue) had similar effect of cells not adhering to the 

multiplexed surface (Supplementary Fig. 6). However, adding 1 µM sequence 

2 ssDNA (upper-Seq2, black) did not prevent the cells from adhering to the 

multiplexed surface and high cell density with edge rupture fluorescent 

footprint of TGTs was observed in this case (Fig. 5a, 3rd row and Fig. 5b, c). 

Similarly, adding lower-Seq2 ssDNA (red) to the medium also allowed cells 

to adhere to the multiplexed surface (Supplementary Fig. 6). Adding unrelated 

ssDNA to the medium did not affect cell adhesion to the multiplexed surface 

negatively.  

Likewise, adding free ssDNA associated to the upper or lower strand of 

weaker tether in all three upper off-diagonal PnP surfaces in Fig. 5 prevented 

them from cell adhesion while adding free ssDNA associated to the upper or 

lower strand of relatively stronger tether did not affect the cell adhesion in 

those three upper off-diagonal conditions.  

Single molecule total internal reflection fluorescence microscope 

(TIRF) experiment was performed with ssDNA added to the medium during 

incubation in order to check the possibility that the upper strand of TGT could 

be substituted by the free competitor ssDNA in the medium. Substitution 

within the half hour of incubation was not observed (Supplementary Fig. 7).  
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These results suggest that the relatively stronger TGT of the two weak 

TGTs, i.e., 23 pN TGT acts as a supporting tether allowing the membrane to 

stay close to the surface, which results in damping the membrane undulations 

and thereby preventing or decreasing force application to the weak tethers. 

This eventually leads to the prevention of rupture in the weaker TGT, i.e. 12 

pN TGT. Even if the 12 pN TGTs are opened, 23 pN TGT acting as a 

supporting membrane holder aids 12 pN TGTs to undergo re-annealing by 

keeping the cell membrane close to the surface.  Hence, the mechanically 

heterogeneous surface supports cell adhesion although both type of TGTs do 

not support cell adhesion by themselves (See the schematic in Fig. 6). 

DISCUSSION 

One surprising result we got was that cells adhere to the multiplexed 12 

pN & 23 pN surface while they do not adhere to a surface with 12 pN-Only 

or 23 pN-Only surface. On the 12 pN & 23 pN surface the probability that 

weaker TGTs (12 pN TGT) get ruptured due to the undulations of cell 

membrane is higher than that of 23 pN TGTs. In this situation, relatively 

stronger TGTs (23 pN TGT) make membrane holders for the weak tethers (12 

pN TGTs) that exist around them. The rupture of 12 pN TGT is reversed and 

ruptured 12 pN TGT is re-annealed due to the membrane holder, i.e. 23 pN 

TGT, which holds the membrane closer to the surface like a tent peg. This 
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happens by keeping the upper ssDNA of 12 pN TGT that are attached to the 

integrin, close to the ruptured lower ssDNA that is anchored to the surface. 

Similar to the 12 pN & 23 pN surface, on the PnP surface the reversibility and 

re-annealing of weaker tethers due to the support from relatively stronger 

supporting membrane holders, i.e. 23 pN TGT, results in keeping the cells 

adhered to the surface. Therefore, the cells appear to be able to perform 

relative force measurements instead of absolute force measurements.  

The surprising difference between 12 pN & 23 pN and PnP is that just 

few relatively stronger tethers can keep the cells adhered which implies the 

ultra-sensitivity of cells. All the upper off-diagonal conditions in Fig. 5b or 5c 

that show cell adhesion consist of the surfaces with high concentration of 

weaker TGT multiplexed with lower concentration of relatively stronger 

TGT. The lower off-diagonal conditions in which a few relatively weaker 

TGTs are multiplexed with many stronger TGTs, cannot withstand cell 

adhesion. The reason for the detachment of the cells is that those conditions 

lack a few membrane holders that are stronger TGTs compared to the majority 

of TGTs on the surface. In other words, absolute value of rupture force for 

TGTs is not the determinant of cell adhesion for weak tethers. The critical 

factor for cell adhesion is to have the relatively stronger supporting membrane 

holder next to them even if the relatively stronger TGTs do not support cell 
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adhesion on their own or even if their number would be at a low level of 2 

single molecules per cell.  

A single molecule of relatively stronger TGT, as the tent peg, keeps an 

area of the cell membrane around it close to the surface which causes the 

reversibility of rupture for the relatively weak tethers around it. Based on our 

data even one single molecule of stronger tether can make the entire cell 

committed to adhesion to the surface (Fig. 6b). In case of two molecules, there 

will be a strip of area between the stronger TGTs or tent pegs in which the cell 

membrane stays closer to the surface and causes the reversibility of weaker 

tethers. If there are three molecules with the role of tent pegs, either three 

strips of area on the cell membrane will be formed that connect those three 

tent pegs and stay close to the surface or a triangle will be formed. Based on 

our last study the cells decide on adhesion to the surface over the first 5 

minutes of landing and they will not pull a high force at the level of 40 pN on 

the TGTs after deciding on commitment to adhere (Roein-Peikar et al., 2016; 

Wang and Ha, 2013). In the current study the presence of single molecules of 

relatively stronger TGT makes the cells committed to adhere and they do not 

apply high force afterwards which leads to staying attached to the surface. 

Adding the ssDNA complementary to either strand of the weaker TGT 

results in detachment of the cells and is a confirmation for the hypothesis of 
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reversibility of weak tethers in adhesion to 12 pN & 23 pN surface or PnP 

surface. Rupture of weaker TGT in 12 pN & 23 pN or PnP surface while there 

is no ssDNA is reversible due to the supporting membrane holder that keeps 

the membrane closer to the surface like a tent peg. However, adding a high 

concentration of ssDNA complementary to the weak tether disrupts the 

reversibility of rupture of weak tethers because they interact with the ruptured 

weaker tether. Additionally, lack of cell detachment by adding the ssDNA 

associated to the stronger tether is due to absence of temporary rupture in the 

relatively stronger tether which is another hint that confirms the reversibility 

or re-annealing of weak tether hypothesis.  

METHODS 

Cell Culture 

CHO-K1 cell line (Catalog No. CCL-61), B16-F1 cell line (Catalog No. 

CRL-6323) and Lec-8 cell line (Catalog No. CRL-1737) were obtained from 

ATCC. CHO-K1 and Lec-8 cells were cultured in Alpha-MEM medium and 

B16-F1 cells were cultured in DMEM medium. Both Alpha-MEM and 

DMEM were containing 100 units/ mL penicillin, 100 μg/mL streptomycin, 

and 10% fetal bovine serum (HyClone, Logan, UT, USA). Cells were kept in 

a humidified atmosphere of 5% CO2 at 37°C.  
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Fabrication of tension gauge tether (TGT) 

Complementary 18 base pair single strand DNAs (ssDNA) were used 

to make the TGTs (/5Cy3/GGC CCG CAG CGA CCA CCC/3ThioMC3-D/ 

for upper strand, /5AmMC6/ GGG TGG TCG CTG CGG GCC/3’ for 12 pN 

lower strand and 5’/GGG /iAmMC6T/GG TCG CTG CGG GCC/3’ for 23 pN 

lower strand). RGDfK (Peptides International) was conjugated to the thiol 

group on the upper strand of DNA. Upper and lower strands were annealed. 

We followed the protocols in our previous papers for conjugation and 

annealing(Chowdhury et al., 2015; Roein-Peikar et al., 2016; Wang and Ha, 

2013; Wang et al., 2015a).  

Preparing the surfaces  

PEGilated slides were made while ratio of biotin-PEG (Bio, Inc.) to m-PEG-

SVA (Bio, Inc.) was 1:22. After treating the surface with 200 µg/mL 

neutravidin (Thermo Scientific) for 5 minutes in room temperature, the 

surface was rinsed several times with T50 solution. 3µL of solution containing 

TGT was incubated on the surface for 10 minutes in the room temperature. 

The surface was rinsed with DPBS several times.  

Preparation of cell solution 

Cells were detached from culture flasks using a mild detaching solution, 

Ethylenedediaminetetraacetic acid (EDTA) solution, to preserve the integrity 
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of cell membrane protein. Before incubating the cells with EDTA at 37°C, 

they were rinsed twice with PBS buffer. The cells were incubated at 37°C for 

10 minutes and dispensed by pipetting. Cells were spun down and re-

suspended in Alpha-MEM medium (9144, Irvine Scientific) with a 

concentration of 106 /mL. Here are the ingredients of EDTA solution: 100mL 

10X HBSS, 10mL1M HEPES (PH7.6), 10mL 7.5% sodium bicarbonate, 2.4 

mL 500mM EDTA, 1L H2O.  

Incubation of the cells on the surface, fixation and imaging 

After detachment of the cells they were centrifuged and re-suspended in the 

medium without FBS. The cells were added to the surface and incubated in 

37°C for 30 minutes. Cells were gently washed and were fixed using 4% 

Paraformaldehyde (PFA) on ice for 10 minutes. PFA was rinsed with cold 

DPBS. Images were taken using Epifluorescence microscopy (Zeiss Axiovert 

200M).  

Image Analysis 

Rupture percent was measured using this formula:  

𝑅𝑢𝑝𝑡𝑢𝑟𝑒 (%) =
𝑀𝐼𝑏𝑟𝑖𝑔ℎ𝑡−𝑀𝐼𝑐𝑒𝑙𝑙

𝑀𝐼𝑏𝑟𝑖𝑔ℎ𝑡−𝑀𝐼𝑑𝑎𝑟𝑘
                           

(2) 

where MI is the mean fluorescence intensity. Value of MI was measured in 

ImageJ (open-source software developed by the National Institutes of Health). 
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‘cell’ means the area underneath the cell; ‘bright’ means the nearby bright 

area without any attached cell and ‘dark’ means the background dark area off 

of the TGT spot.  

For 12 pN-Only and 23 pN-Only fluorescent images, regions for 

analysis were selected from fluorescent images as no cells were attached on 

the surface. For 12 pN-Multi and 23 pN-Multi images DIC microscopy 

images were used to select the area and corresponding area on the fluorescent 

image was analyzed.  

Because the image analysis of the weak TGT-Only experiments (with 

no adhered cells) is different from multiplexing experiments (in which the 

cells are adhered), a control experiment was performed to rule out any sort of 

impartiality. Regions were selected in two ways for the mechanical 

heterogeneous environment image (with adhered cells). In one, the regions 

were selected on the fluorescent image and in another method regions were 

selected from DIC images and the percent rupture was calculated on the 

corresponding region on the fluorescent image.  Percent ruptures from the two 

analyses were within standard deviation of each other: 9.12%±0.89 and 

9.01%±0.82 for first and second methods, respectively.  



 
 

55 

FAK activation assay 

The cytosolic FAK biosensor was developed based on FRET. The 

biosensor was made by fusing the SH2 domain from c-Src, a flexible 

(GSTSGSGKPGSGEGS, and a FAK substrate peptide (ETDDYAEIIDE) 

between the N-terminus ECFP and the C-terminus YPet. The cells were 

transfected with this construct and detached after one day and kept in 1% 

agarose gel in culture medium for 1 h. After seeding the cells on different 

surfaces for half an hour, they were imaged with Zeiss Axiovert microscope 

and the MetaFluor 6.2 software (Universal Imaging). The fluorescent intensity 

of non-transfected cells was considered as the base signal and subtracted from 

the ECFP and YPet signals of transfected cells. The pixel-by-pixel ratio 

images of ECFP/YPet were calculated based on the background-subtracted 

fluorescence intensity images of ECFO and YPet by using the MetaFluor 

software.  

Single Molecule Experiment 

Imaging Cy5 labeled TGTs in the single molecule level was conducted 

by our custom built microscope setup. Olympus IX-71 inverted microscope 

with 100X NA 1.4 SaPo oil objective was combined with a red laser (647nm) 

excitation path (DL640-100-AL-O, Crystalaser and LS6T2, Unibliz). The 

laser was expanded by 7.5X, reflected by a dichroic mirror (Semrock 
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FF408/504/581/667/762-Di01-25X36) and sent to the sample with a total 

internal reflection angle. The emission was collected by the objective and 

filtered by an emission filter (Semrock FF01-594/730-25) and notch filters 

(Semrock NF01-568/647-25X5.0 and NF01-568U-25), and was imaged on an 

EMCCD camera (DV887ECS-BV, Andor Tech). A DIC image of a single cell 

area was taken firstly, then Cy5 labeled TGTs were imaged for the same area. 
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Figure 2. 1 
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Figure 2. 1: Schematic of the interface between the cell and a 

mechanically heterogeneous surface. Cells are adhered on a surface covered 

with tension gauge tethers (TGTs) with two different rupture forces (12 pN 

and 23 pN) that makes the surface mechanically heterogeneous. However, 

cells do not adhere to a surface with only 12 pN TGT or to a surface with only 

23 pN TGT.   12 pN TGT has Cy3 and 23 pN TGT has Cy5 dye on the top 

strand of DNA. On the upper strand of TGT there is RGDfK which is the 

ligand for the transmembrane protein (integrin αv3). Note that TGTs are 

anchored to the surface through a biotin – neutravidin linkage and position of 

biotin attached to the lower strand of DNA determines the rupture force of the 

tether. 

  



 
 

59 

 

Figure 2. 2 
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Figure 2. 2: Reaction of cells to mechanically homogeneous surface with 

only one type of TGT (12 pN-Only or 23 pN-Only) and mechanically 

heterogeneous surface with multiplexing two different types of TGTs (12 

pN or 23 pN). (a) Differential image contrast (DIC) images with 100X 

magnification show that cells are not adhering to the ‘12 pN-Only’ and ‘23 

pN-Only’ surfaces. However, cells adhere to the surface covered with 

multiplexing of 12 pN and 23 pN TGTs (“12 pN & 23 pN”).  Fluorescent 

footprint of cells in mechanically homogeneous environment (either 12 pN-

Only or 23 pN-Only) shows a uniform rupture of TGT beneath the cells that 

are already rinsed away. However, fluorescent footprint for 12 pN & 23 pN, 

shows the rupture is mostly at the periphery of spreading cells in both 

fluorescent channels of 12 pN or 23 pN TGT. Scale bars are 10 µM. (b) 

Number of cells adhered per area is significantly higher when the environment 

is mechanically heterogeneous compared to homogeneous. Adding focal 

adhesion kinase (FAK) inhibitor or adding myosin II inhibitor (blebbistatin) 

to the medium while incubating the cells on the mechanically heterogeneous 

surface does not inhibit cells from adhering. (c) Analysis of images show 

rupture percentage is significantly higher if the environment of the cell is 

mechanically homogeneous as opposed to the mechanically heterogeneous 

environment. Adding FAK inhibitor does not affect the rupture percentage of 
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cells adhered to multiplexing surface but adding blebbistatin lowers the TGT 

rupture.  
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Figure 2. 3 
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Figure 2. 3: Multiplexing TGTs with different rupture forces. The 

combinations out of the red box ensures cell adhesion which is trivial since at 

least one type of TGT is strong enough to secure the cell adhesion on its own. 

The diagonal combinations in the box represent a mechanically homogenous 

environment for cells that are too weak to allow cell adhesion. Surprisingly 

off diagonal combinations in the red box guarantees adhesion of cells although 

each TGT on its own is weak to permit cell adhesion. Note that tick mark 

represents cell adhesion and a fluorescent footprint with rupture at the 

periphery. Cross mark means lack of cell adhesion and a uniform rupture of 

TGT beneath the area where cell landed before detachment.  
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Figure 2. 4  
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Figure 2. 4: Ultra-sensitivity of cells to single molecules (The Princess and 

The Pea or UCE). (a) The DIC image shows a cell adhered to a PnP surface 

(A surface covered with many weak tethers and a few tethers with relatively 

higher rupture force). The Cy3 image shows two single molecules of Cy3 

labeled-23 pN TGT beneath the same cell in the DIC image. The incubation 

concentration of unlabeled-12 pN TGT and Cy3 labeled-23 pN TGT are 1 µM 

and 1 pM, respectively. Scale bars are 5 µm. (b) Number of the cells with one, 

two, three and four 23 pN TGT under them is shown in the same experiment 

as in part a. (c) 2-dimensional table showing the cell adhesion (left table) and 

fluorescent footprint of the cells (right table) for different multiplexing 

conditions. Concentration of TGTs are 1 pM in the vertical axis and 1 µM in 

the horizontal axis. Cells adhere to the surface and show edge rupture while 1 

µM TGT is multiplexed with 1 pM relatively stronger TGT (upper off-

diagonal conditions). If 1 µM TGT is multiplexed with 1 pM relatively weaker 

TGT cells do not adhere and they show entire rupture fluorescent footprint 

(lower off-diagonal conditions). Cells do not adhere to the diagonal conditions 

which imply the mechanically homogenous environment with weak tethers. 

(d) Similar table to part c with a bigger range of TGT rupture from 12 pN to 

54 pN is shown. Tick mark means cells are adhered and fluorescent footprint 
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of the cells is rupture of tethers at the edge while cross mark means cells are 

not adhered and they show uniform rupture fluorescent footprint.  
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Figure 2. 5  
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Figure 2. 5: Multiplexing TGT experiments with different culture 

medium conditions. In all the experiments 0.5 µM 12 pN TGT with sequence 

1 (12 pN-Seq1-Cy3) was multiplexed with 0.5 µM 23 pN TGT with sequence 

2 (23 pN-Seq2-Cy5). (a) i) In the normal medium without any free competitor 

ssDNA, cells adhered to the surface and the fluorescent footprints showed 

edge rupture. ii) Incubation of cells in a medium containing 1 µM of ssDNA 

with sequence 1 (upper-Seq1-ssDNA) which is the sequence for upper strand 

of 12 pN TGT, resulted in loss of cell adhesion to the surface. Fluorescent 

footprints show entire rupture. iii) Adding 1 µM ssDNA with the sequence 2 

(upper-Seq2-ssDNA) which is the sequence for 23 pN TGT did not negatively 

affect cell adhesion and the fluorescent footprints are showing edge rupture. 

(b) Comparison between the numbers of adhered cells per area in the three 

experiments mentioned in part a shows adding ssDNA associated with the 

weaker tether (12 pN-Seq1-Cy3) prevents the cells from adhesion but ssDNA 

associated with the stronger tether (23 pN-Seq2-Cy5) does not have such an 

effect. (c) Analysis of images indicating significantly higher rupture 

percentage for the cell culture medium with 1 µM upper-Seq1-ssDNA 

compared to normal medium without any ssDNA or the medium with 1 µM 

upper-Seq2-ssDNA. Scale bars are 10 µM. All added ssDNAs are the upper 

strands of Sequence 1 and sequence 2. Adding 1 µM of lower ssDNA for 
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sequence 1 and sequence 2 had similar results to its respective upper ssDNA 

(supplementary Fig. 4).  
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Figure 2. 6 

  



 
 

71 

Figure 2. 6: Schematic of membrane-holder mechanism for cell adhesion 

to mechanically heterogeneous surface. (a) The surface is mechanically 

homogeneous by covering with 12 pN TGTs. Due to undulation of the 

membrane, weak TGTs get ruptured and cells do not adhere to the surface. (b) 

The surface is covered with both 12 pN and 23 pN TGTs. The relatively 

stronger TGTs (23 pN TGTs) act as membrane holders and keep the 

membrane close to the surface. Partial or full rupture of the 12 pN TGTs, will 

be reversed since the membrane is held close to the surface due to the 

membrane holders (23 pN) and cells remain adhered on this surface.  We 

found that presence of only two molecules of 23 pN TGTs per cell as 

membrane holders could keep the cells adhered to the surface. 

  



 
 

72 

 

Supplementary Figure 2. 1 
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Supplementary Figure 2. 1: Another cell type other than CHO-K1 cells 

(B16-F1) with the ability of adhering to mechanically heterogeneous 

surface. Differential image contrast (DIC) images of B16-F1 cells show they 

are not adhering to the surfaces covered with either 12 pN TGT or 23 pN TGT 

depicted as ‘12 pN-only’ and ‘23 pN-only’, respectively. However, cells 

adhere to the surface covered with multiplexing of 12 pN and 23 pN TGTs, 

depicted as “12 pN & 23 pN” or the PnP surface. Fluorescent footprints of 

cells show the difference between mechanically homogeneous and 

heterogeneous environments. Scale bars are 50 µm.  
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Supplementary Figure 2. 2 
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Supplementary Figure 2. 2: Rupture percentage of TGT and fluorescent 

footprint are similar for 54 surface, 12 pN & 23 pN surface and PnP 

surface. (a) DIC and fluorescent footprint images of cells on 54 surface, 12 

pN & 23 pN surface and PnP surface are depicted. (b) Comparing rupture 

percentages in the fluorescent footprint of cells on the surface with 54 TGT 

shows similar rupture for all three surfaces. The concentration of 54 TGT 

incubation is 1 µM and the concentration in the multiplexing experiment is 

0.5 µM for each of 12 pN and 23 pN TGT.  On the PnP surface the 

concentration of TGT incubation is 1 µM 12 pN and 1 pM 23 pN. Scale bars 

are 10 µm. 
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Supplementary Figure 2. 3 
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Supplementary Figure 2. 3: Effect of focal adhesion kinase (FAK) 

inhibitor (a) Applying 100 µM of FAK inhibitor PF573-228 while incubating 

CHO-K1 cells in 37°C did not prevent them from adhesion to 54 surface, 12 

pN&23 pN surface or PnP surface. FAK inhibitor did not change footprints 

of the cells either. (b) Cytosolic FAK biosensor based on FRET was used to 

confirm the inhibition of FAK. Surprisingly the activity of FAK is similar in 

all 54, 12 pN&23 pN and PnP surface. Scale bars are 50 µm. 
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Supplementary Figure 2. 4 
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Supplementary Figure 2. 4: Inhibiting myosin II by adding 50 µM of 

blebbistatin to the medium during Incubation of CHO-K1 cells at 37°C 

on a surface with multiplexing of 0.5 µM of 12 pN and 0.5 µM of 23 pN 

TGT. The DIC images show the cells are still adhered to the 54 surface, 12 

pN&23 pN surface or PnP surface. Cell adhesion during myosin II inhibition 

shows mysin II is not involved in the mechanism of adherence of cells to a 

mechanically heterogeneous surface. Note that in the fluorescent footprints of 

the cells there is no edge rupture, which implies the origin of the force at the 

periphery of CHO-K1 cells, is myosin II. Scale bars are 10 µm. 
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Supplementary Figure 2. 5 
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Supplementary Figure 2. 5: Inhibiting actin polymerization by adding 

latrunculin to the medium during Incubation of CHO-K1 cells at 37°C on 

a surface with multiplexing of 0.5 µM of 12 pN and 0.5 µM of 23 pN TGT. 

Cells adhere to PnP and 12 pN & 23 pN surface similar to 54 surface with a 

concentration of 1 µM actin inhibitor (latrunculin). The cells adhere to all 

three surfaces by increasing the latrunculin concentration up to 5 µM. The 

fluorescent footprint of the cells doesn’t show the edge rupture due to the 

inhibition of actin polymerization. Scale bars are 10 µm. 
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Supplementary Figure 2. 6 
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Supplementary Figure 2. 6: Multiplexing TGT experiments with 

different culture medium conditions. In all the experiments 0.5 µM 12 pN 

TGT with sequence 1 (12 pN-Seq1-Cy3) was multiplexed with 0.5 µM 23 pN 

TGT with sequence 2 (23 pN-Seq2-Cy5). This is a similar experiment to Fig. 

3; however, lower ssDNA has to be added to the medium while incubation 

instead of upper ssDNA. (a) i) In the normal medium without any free 

competitor ssDNA, cells adhered to the surface and the fluorescent footprints 

showed edge rupture. ii) Incubation of cells in a medium containing 1 µM of 

lower ssDNA with sequence 1 (lower-Seq1-ssDNA) which is the sequence 

for upper strand of 12 pN TGT, resulted in loss of cell adhesion to the surface. 

Fluorescent footprints show entire rupture. iii) Adding 1 µM lower ssDNA 

with the sequence 2 (lower-Seq2-ssDNA) which is the sequence for 23 pN 

TGT did not negatively affect cell adhesion and the fluorescent footprints are 

showing edge rupture. Adding upper or lower ssDNAs for Sequence 1 and 

sequence 2 have similar effects in terms of number of cells adhered and the 

quantity of tether rupture and fluorescent footprints. Scale bars are 10 µm. 
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Supplementary Figure 2. 7 
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Supplementary Figure 2. 7: Control experiment to test whether upper 

ssDNA on the TGT bound to the surface could be substituted by free 

competitor ssDNA. Single molecules of TGT attached to the surface (with 

Cy3 dye) are imaged before and after 30-minute incubation in the medium 

with 1 µM free competitor upper ssDNA (with Cy5 dye) complementary to 

the TGT. Since the number of Cy5 molecules after incubation is not 

increased, the possibility of substitution of upper ssDNA in TGT by the free 

competitor ssDNA is ruled out. The surface was amply rinsed after the 

incubation to assure all free competitor ssDNAs in the media with Cy5 dye 

is washed away.   
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Supplementary Figure 2. 8 
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Supplementary Figure 2. 8: Comparing the number of focal adhesions 

for the cells on the surface with 54 TGT and surface with multiplexing of 

12 pN and 23 pN. The images are taken by 40x confocal microscope. DIC 

images, fluorescent footprint of corresponding cell and focal adhesion (FA) 

staining of the cells are shown on 54-Only surface, 12 pN & 23 pN surface 

and PnP surface. Scale bar is 5 µm.  
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