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Abstract  

DNA from cancer cells can enter surrounding fluid after apoptosis or necrosis. This DNA 

can be identified by sampling and sequencing the fluid looking for the mutations that gave rise to 

the cancer, referred to as a liquid biopsy. We have developed several liquid biopsies for the purpose 

of diagnosis and treatment selection through the use of targeted PCR and high throughput 

sequencing. We used the SafeSeqS methodology, a molecular barcoding technology previously 

developed in this lab, to further reduce sequencing errors to aid us in finding these rare mutations. 

We developed assays that identified genetic mutations from saliva, blood plasma, and pancreatic 

cysts. We investigating head and neck squamous cell carcinoma (HNSCC) from the oral cavity, 

oropharynx, hypopharynx, and larynx in 93 patients using a combination of saliva and plasma. We 

first identified either the E7 gene of HPV 16 or a primary mutation in the tumor and then tried to 

detect their presence in saliva and plasma. We collected saliva from every patient, while we only 

had plasma samples from 43 patients. We found that saliva performed best in oral cavity cancers 

detecting 100% of those patients, while plasma performed similarly across all sites detecting 87% 

of HNSCC patients. We detected mutations in 96% of patients when both saliva and plasma were 

available. Pancreatic cyst fluid was used to aid clinicians in the classification of pancreatic cysts. 

We created an 8 gene panel to look for mutations as well as additional tests for loss of 

heterozygosity and aneuploidy. We used DNA from fluid captured through endoscopic aspiration 

as well as from surgically resected cysts. When combined with the typical clinical features we were 

able to accurately predict which cysts needed surgery with a sensitivity and specificity of 89% and 

69% respectively. Each of these projects began as an attempt to aid clinicians in dealing with these 

various diseases. Our results illustrate that liquid biopsies can be developed into an effective tool 

for the fight against cancer. 
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Cancer is the result of the accumulation of somatic mutations in oncogenes and tumor 

suppressor genes. (Vogelstein and Kinzler 2004). When cancer cells die, their DNA can be released 

into the blood stream or other fluids. As early as 1977 it was discovered that cell-free DNA levels 

are raised in the serum of patients with cancer (Leon et al., 1977). These DNA fragments tend to 

be just under 200bp in size (Giacona et al., 1998) and have a half life anywhere from 16 minutes to 

two and a half hours in blood (Wang et al., 2016). Recenty studies have shown that circulating 

tumor DNA was found in plasma from all 15 different tumor types studied (Bettegowda et al., 

2014). The presence of circulating tumor DNA could be used for several purposes including cancer 

diagnosis, assessing residual disease and risk of recurrence, treatment selection, and treatment 

monitoring. This has sparked a new area of research looking to create a liquid biopsy for the early 

detection of cancer. 

The current method of performing a needle biopsy to get genetic data on a tumor has several 

drawbacks. In the case of cancer originating from internal organs, obtaining a biopsy can have 

complications in up to one in six biopsies (Overman et al., 2013). There is no such concern for 

taking a blood sample or collecting saliva. Furthermore, failure rates for these types of biopsies 

range from <10% to roughly 30% (VanderLaan et al., 2014). Other invasive clinical tests for 

finding cancer can involve inserting a fiber optic camera into a body cavity as in cystoscopy or 

colonoscopy. These procedures are painful to the patient and are therefore not often repeated, and 

in the case of colonoscopy are usually avoided despite their recommendation annual screening 

(Senore et al., 2011). A liquid biopsy, consisting of a blood draw or other sample collection, on the 

other hand is completely noninvasive and can give you the same genetic information. This makes 

taking multiple samples possible for following a patient during treatment or remission to get a 

timeline of the presence of the cancer and see if it has recurred.  

Genetic profiling from circulating tumor DNA has already been shown to help inform and 

direct treatment to cancer. Circulating tumor DNA (ctDNA) can be used to get a genetic profile of 

the tumor in order to find which driver genes have been affected (Lebofsky et al., 2015). Liquid 
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biopsy can even provide additional information that is missed from conventional biopsies due to 

tumor heterogeneity and metastasis (Murtaza et al., 2015). This is important when considering that 

certain tumor types, such as those containing the EGFRT790M mutation, confer resistance to certain 

chemotherapy drugs (Oxnard et al., 2014). An accurate representation of the tumor mutations via 

liquid biopsy can lead to a properly informed treatment course. 

Recent advances in sequencing techniques have increased the availability and reliability of 

these technologies for the use ctDNA discovery. Previous discovered blood based protein markers 

such as PSA and CEA lack in specificity and can arise for a number of reasons (Duffy, 2006), 

whereas genetic alterations are unique for neoplastic cells. With the development of digital droplet 

PCR and high throughput sequencing we are now able to detect low frequencies of ctDNA. To 

further increase our level of detection and help quantify the mutant fraction we find we used the 

SafeSeqS error reduction methodology invented in the Vogelstein lab. SafeSeqS is a type of 

molecular barcoding that attaches a unique 14 base sequence (UID) at the beginning of every 

template DNA molecule. This allows us to filter out artifacts introduced during PCR and 

sequencing as every read with the same UID should have the same sequence. This allows detection 

of mutations with frequencies as little as 0.01% (Kinde et al., 2011).  

My thesis work focused on the development of molecular biomarker based assays of cell 

free DNA from various bodily fluids. The goal was to create a test that would help solve problems 

that clinicians currently face. These studies are the first step in bringing genetic based assays into 

a hospital setting where they can guide diagnoses and treatment decisions. Chapter 2 is a study that 

looked at DNA in fluid from four neoplastic cysts.  These four neoplastic cysts (serous 

cystadenomas (SCA), solid-pseudopapillary neoplasm (SPN), mucinous cystic neoplasm (MCN), 

and intraductal papillary mucinous neoplasm(IPMN)) all have different treatment guidelines. SPNs 

and MCNs are malignant and require resection, while IPMNs tend to be stratified and only the 

high-grade should be removed (Law et al., 2014; Tanaka et al., 2012; Lennon et al., 2014). 
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Alternatively, barring symptoms SCAs can be monitored with no direct need for surgery (Lennon 

et al., 2013). A recent study has suggested that over 20% of resected cysts were benign meaning 

patients unnecessarily underwent a complicated highly invasive procedure (Valsangkar et al., 

2012). My study took fluid from the cyst to identify the genetic alterations in the effort to find 

differences between them based on their mutational profile. The goal was to try to differentiate 

between cysts recommended for surgery and those that were not. 

 There is a need for biomarker assays for cancers that do not currently have one available 

such as head and neck squamous cell carcinoma (HNSCC). Chapter 3 focuses on the proof of 

principal study to develop an assay to try to detect HNSCC from saliva and plasma. More than half 

a million patients are diagnosed with HNSCC every year, making it the 7th most common cancer 

worldwide. Alarmingly, the incidence of certain types of HNSCC is on the rise. The outcomes 

associated with HNSCC are poor with a 5-year overall survival of only ~50%. We did whole exome 

sequencing of tumors from patients with cancer in the oral cavity, oropharynx, larynx, and 

hypopharynx. We then tested to see if saliva or blood plasma were capable of detecting the same 

mutations found in the tumors and determine which was more sensitive for detecting mutations. 

We also looked at both early, stage I and II, and late, stage III and IV, cancers to examine is we 

were able to find both early and late stage cancers. 
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INTRODUCTION AND RATIONALE 

Pancreatic cysts have been reported as incidental findings in 3% to 13% of individuals 

undergoing computed tomography (CT) or magnetic resonance imaging (MRI) (Laffan et al., 2008; 

Lee et al., 2010). The four most common types of neoplastic cysts of the pancreas are serous 

cystadenomas (SCA), solid-pseudopapillary neoplasm (SPN), mucinous cystic neoplasm (MCN) 

and intraductal papillary mucinous neoplasms (IPMN). SCAs have a very small risk of malignant 

transformation, and surveillance is usually recommended for these cysts in asymptomatic patients 

(Lennon et al., 2013). SPNs are low-grade malignant neoplasms (Bosman, 2010), and should be 

surgically resected when possible (Law et al., 2014). MCNs have the potential to progress to 

malignancy (Yamao et al., 2011), and current guidelines recommend surgical resection if possible 

(Tanaka et al., 2012). IPMNs can progress from low, to intermediate, to high-grade dysplasia, and 

ultimately to invasive adenocarcinoma (Lennon et al., 2014). Ideally, it is recommended that 

IPMNs with high-grade dysplasia, or an associated invasive adenocarcinoma, should undergo 

resection, while IPMNs with low- or intermediate-grade dysplasia should undergo surveillance 

(Tanaka et al., 2012; Sohn et al., 2004; Sahora et al., 2013). 

The clinical management of patients with pancreatic cysts is currently based on clinical 

presentation, imaging and cyst fluid analysis (Tanaka et al., 2012). However, this approach is 

imperfect. For example, an evaluation of surgically resected pancreatic cysts at a high-volume 

center found that over 20% of the cysts resected due to concerns about their malignant potential, 

were entirely benign on histopathologic examination; in hind-sight, these cysts could have been 

safely observed (Valsangkar et al., 2012). Similarly, over 75% of resected IPMNs harbor only low-

, or intermediate-grade dysplasia, and these also could have been safely observed (Sahora et al., 

2013). Thus, better diagnostic tools are required to determine which patients truly benefit from 

surgical resection and which patients can be safely observed. 
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We previously performed whole exome sequencing of a well-characterized series of SCAs, 

SPNs, MCNs and IPMNs, and identified a distinct mutational profile in each cyst type (Wu et al., 

2011; Wu et al., 2011). For example, VHL alterations were characteristic of SCAs, β-catenin gene 

(CTNNB1) mutations were found in SPNs, GNAS mutations in IPMNs, and KRAS and RNF43 

alterations were observed in both IPMNs and MCNs. 

We have previously used an algorithm for analyzing multi-parametric features (MOCA, 

for Multivariate Organization of Combinatorial Alterations) to identify composite clinical markers 

of pancreatic cyst type and grade from a 1026-patient cohort (Masica et al., 2017). These composite 

markers, which included only clinical features such as age, sex, symptoms, and radiologic 

appearance, identified the common cyst types with high but imperfect accuracy (84% to 92%), and 

also correctly identified which cysts needed surgical resection with 82% accuracy. 

The aim of the current study was to determine whether the molecular genetic features of 

pancreatic cyst fluid could be used to classify cysts and identify those that require surgical resection. 

Furthermore, we wished to determine whether combining the molecular markers identified here 

with the clinical markers identified by Masica et al, would increase the accuracy of diagnosis over 

either one alone (Masica et al., 2017). 

METHODS 

PATIENTS 

The study was approved by the Institutional Review Boards for Human Research (IRB 

numbers: 00001584, 00-032, 1011003217, MOD07030072-52), and complied with Health 

Insurance Portability and Accountability Act. 

Patients with SCAs, SPNs, MCNs or IPMNs who had undergone surgical resection at the 

participating institutions between September 2004 and September 2013 were included in the study. 

General demographics, the presence of symptoms, CT, MRI, endoscopic ultrasound (EUS) 
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features, cytology and cyst fluid carcinoembryonic antigen (CEA) levels were documented. When 

available, cross sectional imaging studies were reviewed by a single, experienced abdominal 

CT/MRI radiologist (S.R.), and the EUS studies reviewed by an experienced pancreatic 

endosonographer (A.M.L.). Multiple pancreatic cysts were defined as the presence of more than 

one cyst within the pancreas, which were anatomically separate from each other. The pathology of 

the surgically resected lesions was reviewed by one of two pancreatic pathologists (Bosman, 2010). 

The decision to resect a pancreatic cyst is multifactorial, and includes not only an assessment of 

the risk of the presence of high-grade dysplasia or invasive cancer within a cyst, but also the 

presence of symptoms secondary to the cyst, the age of the patient, and patient co-morbidities. For 

this study, cysts were considered as appropriately resected if they were found on histopathologic 

examination to be SPNs, MCNs, or IPMNs that had high-grade dysplasia or were associated with 

adjacent invasive adenocarcinoma. 

CYST FLUID COLLECTION 

Pancreatic cyst fluid was collected at the time of EUS or from the resected specimen in the 

surgical pathology laboratory. In the majority of instances, the results presented are from the 

analyses of cyst fluid aspirated post-operatively from the resected specimen. In 24 cases, paired 

samples, one of which was obtained at the time of EUS and the second at the time of surgical 

resection, were available from the same patient for mutation assessment, loss of heterozygosity 

(LOH) and aneuploidy analyses. 

DNA PURIFICATION 

DNA was purified from cyst fluid (0.25 to 1.0 mL) by adding 3 ml of RLTM buffer 

(Qiagen) and then binding to an AllPrep column (Qiagen) according to the manufacturer’s 

instructions. DNA amounts were assessed by qPCR using the primers conditions described in 
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(Rago et al., 2007). A subset of the cysts reported here had been previously analyzed for KRAS and 

GNAS mutations (Wu et al., 2011). 

ASSESMENT OF MUTATIONS 

Because of their tremendous throughput, massively parallel sequencing instruments are 

highly cost effective instruments for DNA mutation analysis. However, sample preparation and 

sequencing steps introduce artifactual mutations into analyses at a low but significant frequency of 

approximately 9.1 × 10−6 (Kinde et al., 2011). In most clinical settings, this is irrelevant, as 

mutations of interest occur in a high fraction of alleles: 50% for germline mutations and greater 

than 10% for most tumors. Mutations in cysts occur much less frequently, often at 1% or less, and 

conventional sequencing cannot detect such low frequency mutations in a confident fashion. To 

better discriminate genuine mutations from artifactual sequencing variants introduced during these 

processes, we used Safe-SeqS, a technique which decreases the error rate from 9.1 × 10−6 to 4.5 × 

10−7, and allows detection of mutations present in as few as 0.01% of alleles, depending on 

sequencing depth and position of the mutation (Kinde et al., 2011; Kinde et al . 2013). 

Safe-SeqS amplification primers were designed to amplify 60-bp to 262-bp segments each 

containing a region of interest. These regions of interest were derived from the following genes; 

BRAF, CDKN2A, CTNNB1, GNAS, KRAS, NRAS, PIK3CA, RNF43, SMAD4, TP53, VHL with 

primer sequences described in Table 2.5. These primers were used to amplify DNA in 25-uL 

multiplex PCRs reactions (Kinde et al., 2011; Kinde et al., 2013). For each sample, eight multiplex 

PCRs were performed, with each multiplex PCR containing 9 to 28 primer pairs. Reactions were 

purified with AMPure XP beads (Beckman Coulter) and eluted in 100 uL of Buffer EB (Qiagen, 

cat. no. 19086). Five uL of purified PCR products were then amplified in a second round of PCR 

(Kinde et al., 2011; Kinde et al., 2013). The PCR products were purified with AMPure and used 

for sequencing on a MiSeq instrument. 
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High quality sequence reads were analyzed as previously described (Kinde et al., 2011). 

Briefly, we selected reads that contained high quality base calls in their first 14 cycles as assessed 

by the quality scores generated by the sequencing instrument, which indicate the probability that 

an individual base call was made in error (Ewing, B and Green, P 1998). Reads in which each of 

these 14 cycles had a quality score >=15 were retained for further analysis. The template-specific 

portion of the reads that contained the sequence of an expected amplification primer was matched 

to the reference sequences using Bowtie (Bowtie 0.12.8). The unique identifier sequences (UIDs) 

that were incorporated as molecular barcodes into each template were used to group reads from a 

common template (Kinde et al., 2011). Artifactual mutations introduced during the sample 

preparation or sequencing steps were reduced by requiring that >90% of reads sharing the same 

UID contained the identical mutation (a “supermutant”). Normal peripheral blood DNA was used 

as a control to identify potential false positive mutations. Only supermutant frequencies in cysts 

that far exceeded supermutant frequencies in the control DNA samples (i.e., > mean + 5 standard 

deviations) were scored as mutations. 

LOH ANALYSIS 

This was performed in a fashion similar to that described above for mutations, but different 

primer sets were used. The primer sets amplified genomic regions of ~120 bp that contained 

common single nucleotide polymorphisms (SNPs) that were within or closely surrounding (within 

1 Mb) the tumor suppressor genes CDKN2A, RNF43, SMAD4, TP53, or VHL. Analogously to the 

mutation protocol, each DNA sample was used for six multiplex PCRs, each containing 11 to 32 

primer pairs (Table 2.6). The analysis was also carried out similarly, with the goal of identifying 

independent template molecules, defined by their UIDs, that were informative for the analyzed 

SNPs. The primer pairs used in this analysis were chosen from a large number of amplicons in the 

same region after extensive experimentation. The fraction of template molecules containing either 

allele in each of the chosen SNP amplicons was found to be 50% +/− 2% (mean +/− 1 SD) in the 
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analyses of 20 samples of peripheral blood DNA. A sample was scored as having LOH if >80% of 

the informative SNPs at one of the five loci assessed (CDKN2A, RNF43, SMAD4, TP53, or VHL) 

had allelic fractions lower or higher than 45% or 55%, respectively (i.e., lower or higher than 2.5 

standard deviations from the mean). 

ASSESSMENT OF ANEUPLOIDY 

Aneuploidy across all non-acrocentric autosomal arms was assessed with a technology 

called FastSeqS (Kinde et al., 2012). With this technology, a single PCR is used to amplify ~20,000 

loci scattered throughout the genome. After massively parallel sequencing, the fractional 

representation of each chromosomal arm can be determined by summing the reads that correspond 

to the loci in each arm.  

IDENTIFICATION OF INDIVIDUAL MOLECULAR FEATURES OF INTEREST AND COMPOSITE 

MOLECULAR MARKERS 

The MOCA algorithm for analysis of multi-parametric data sets has previously been 

described (Masica and Karchin, 2011; Masica and Karchin, 2013). Briefly, MOCA first selects 

features of interest, and then selects collections of features using Boolean logic operations. The 

composite features (termed "composite markers") are compared to the phenotypes under 

consideration (i.e., cyst type or need for surgery), and the corresponding Fisher’s exact two-tailed 

P-value, sensitivity, and specificity recorded. Leave-one-out cross validations are used to identify 

the composite molecular markers that perform best. As the algorithm progresses, an optimization 

strategy is implemented, resulting in algorithmic convergence on sets of composite markers with 

optimal performance for predicting the phenotype under consideration. For each crossvalidation 

calculation, P-values are corrected for multiple testing using the Benjamini and Hochberg false 

discovery rate (FDR); composite markers were only considered if they had an FDR-corrected P-
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value of < 0.05. Furthermore, composite markers were only considered if they were selected in 

each of the cross validations for discriminating a particular type or grade of cyst. 

MOCA was applied to an independent set of patients with pancreatic cysts, but without 

molecular data, to generate composite clinical markers (Masica et al., 2017). In the current study, 

we tested these composite clinical markers on a set of 130 patients in whom molecular data was 

obtained as described above. None of the data from the patients in the current study were used to 

develop the original composite markers described in that study (Masica et al., 2017). 

Finally, we used MOCA to identify composite markers that incorporated both molecular 

and clinical features (composite molecular/clinical markers) in the same way as described above. 

Sensitivity and specificity were used to quantify the performances of the composite molecular, 

clinical, and clinical/molecular markers, with the post-operative diagnoses based on 

histopathologic criteria. 

RESULTS 

BASIC PATIENT AND CYST CHARACTERISTICS 

The cohort consisted of 130 patients (12 with SCAs, 10 with SPNs, 12 with MCNs, 96 with 

IPMNs). Of the IPMNs, 30 were main duct, 10 were mixed duct, 55 were branch duct types, and 

one was an intraductal tubulopapillary neoplasm (ITPN). The general demographics, symptoms, 

cyst features and pathological diagnoses of each of the 130 patients are presented in Table 2.1. 

Preoperative imaging was not available in 6 (5%) patients (2 IPMNs, 2 MCNs, 2 SPNs). The 

presumed pre-operative diagnosis, and the presence of high-risk or concerning features, is 

presented in Table 2.7. 
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CYST FLUID 

The minimum amount of cyst fluid analyzed was 0.25 mL. The median DNA concentration 

was 4.9 ng/µl (range 0.05–270 ng/µl). 

MOLECULAR FEATURES 

Three types of molecular genetic tests were applied to each cyst. The first involved a search 

for subtle mutations (e.g. missense mutations or small insertions or deletions) of the genes known 

to be altered in pancreatic cysts. The most frequently mutated regions of six oncogenes BRAF, 

CTNNB1, GNAS, KRAS, NRAS, PIK3CA, and the great majority of the coding regions of five tumor 

suppressor genes (CDK2NA, RNF43, SMAD4, TP53, and VHL) were analyzed. 

The second test involved a search for LOH of the same five tumor suppressor genes. We 

designed a massively parallel sequencing-based test to evaluate LOH events in a quantitative 

fashion, presented for the first time in this manuscript, and applied it to the DNA of cyst fluids. 

Finally, it has been observed that aneuploidy is associated with malignant progression of 

neoplastic lesions of the pancreas (Bosci et al., 1998). We suspected that an evaluation of 

aneuploidy might help to identify high-risk cysts as well as to discriminate cyst types, and 

implemented a previously described PCR-based method for this purpose (Kinde et al., 2012). 

Table 2.2 summarizes the mutational, LOH and aneuploidy analyses of the cysts; a detailed 

description of the aneuploidy data is presented in Table 2.8. One or more intragenic mutations, 

LOH events, or aneuploid chromosomes was identified in 9 (75%) SCAs, 100 (100%) SPNs, 7 

(58%) MCNs, 94 (98%) IPMNs. Overall, at least one molecular genetic alteration was detected in 

92% of the cyst fluid samples. 

There were distinct mutational profiles associated with each type of cyst. The VHL gene 

was mutated in the cyst fluid of five (42%) of the 12 SCAs; intragenic VHL mutations were not 

found in any of the other type of pancreatic cyst. In addition, 7 (64%) of the SCAs had LOH of 
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chromosome 3 at the VHL gene locus, with 1 (8%) of the SCAs revealing aneuploidy at 

chromosome 3p. This finding is consistent with the rationale for evaluating LOH and aneuploidy 

described above. Overall, 8 (67%) of the SCAs either had a mutation in VHL, LOH of chromosome 

3 or aneuploidy of chromosome 3p. There were four SCAs in which no abnormality was detected. 

Two of these four cases had matching surgical samples which were analyzed and no mutation in 

VHL, LOH or aneuploidy was identified. 

The cyst fluid from all ten (100%) SPNs harbored a mutation in CTNNB1. One of the ten 

(10%) also harbored a mutation in TP53. Six (60%) patients with SPN had aneuploidy, involving 

chromosomes 11p (n=2) or 16p (n=6). 

Of the 12 cyst fluid samples from MCNs analyzed, KRAS was the most commonly mutated 

gene, with activating mutations found in six samples (50%). RNF43 was mutated in one MCN cyst 

fluid sample (8%) and this sample also harbored a KRAS mutation. LOH of chromosome 18 at the 

SMAD4 gene locus was identified in one of the 12 MCN cyst fluid samples. Two (17%) MCNs had 

aneuploidy, involving chromosome 5p (n=1) or chromosome 16p (n=1). 

Cyst fluid samples from 94 of the 96 (98%) IPMNs contained at least one mutation, LOH 

or aneuplody. KRAS was the most prevalent altered gene in the cyst fluid samples from IPMNs 

(78%), with single base substitutions occurring at codons 12, 13 or 61. GNAS mutations were 

identified in 56 (58%) IPMNs, and GNAS mutations were not present in any other cyst type. All 

GNAS mutations were single base substitutions at codon 201, resulting in substitution of an arginine 

with histidine (R201H), cysteine (R201C), or serine (R201S). GNAS mutations occurred in 9 (82%) 

of the IPMNs with intestinal type histology. They were found at a lower prevalence in the gastric 

(n=39 (61%)) and pancreaticobiliary (n=3 (38%)) type IPMNs, while none of the 3 oncocytic type 

IPMNs harbored a GNAS mutation. Overall, 86 (91%) of the IPMNs had a mutation in KRAS or 

GNAS, and 45 (47%) had a mutation in both genes. Mutations in RNF43, TP53, SMAD4 and 

CDKN2A, also occurred in IPMNs, but less commonly. Six (6%) IPMNs had a mutation in 
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CTNNB1. In contrast to SPNs, where CTNNB1 mutations occurred in isolation, all of the six IPMNs 

with a CTNNB1 mutation also had another characteristic mutation, LOH or aneuploidy. A summary 

of the mutational, LOH and aneuploidy analyses based on IPMN type is presented in Table 2.9. 

COMPARISON BETWEEN CYST FLUIDS OBTAINED DURING EUS VERSUS THOSE OBTAINED 

AT SURGERY 

For 24 of the 130 cyst fluid specimens collected at the time of surgery, matching cyst fluid 

collected preoperatively by EUS was also available for analysis. This group of matching samples 

included cyst fluid collected from 17 IPMNs, 3 MCNs, 2 SCAs, 1 SPN and 1 ITPN. The number 

of genetic alterations detected in the cyst fluid samples collected at EUS (21 of 24, 87.5%) and at 

the time of surgery (20 of 24, 83.3%) was similar. Of the 1266 possible genetic alteration results 

(mutations, LOH, or aneuploidy) for these 24 matched cyst fluid samples, 1198 of the 1266 (94.6%) 

were concordant. 

CYST CLASSIFICATION VIA COMPOSITE MOLECULAR MARKERS 

We then used MOCA to identify composite molecular markers based on the individual 

features described above. SCAs were identified with 100% sensitivity and 91% specificity by the 

absence of a KRAS, GNAS, RNF43 mutation, or by the absence of aneuploidy in chromosome 5p 

or 8p (Table 2.3). The presence of a VHL mutation has previously been shown to be predominantly 

associated with SCAs (Wu et al., 2011; Wu et al., 2011). In addition, on examination of the new 

molecular data presented here, the presence of LOH in chromosome 3 in the absence of LOH in 

chromosomes 9, 17 or 18, was exclusively identified in patients with SCA. These two features were 

therefore added to form the SCA composite molecular marker in expectation that this would be a 

useful feature for future assessments of cyst type; these "manually" added genetic features had no 

effect on the performance of the composite marker. 
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SPNs were identified with 100% sensitivity and 100% specificity by the presence of a 

CTNNB1 mutation and the absence of KRAS, GNAS, or RNF43 mutations or chromosome 18 LOH 

(Table 2.3). 

MCNs were identified with 100% sensitivity and 75% specificity by the absence of 

CTNNB1 or GNAS mutations, chromosome 3 LOH, or aneuploidy in chromosome 1q or 22q. 

Finally, IPMNs were identified with 76% sensitivity and 97% specificity by the presence 

of a mutation in GNAS, RNF43, LOH in chromosome 9, or aneuploidy in chromosome 1q or 8p 

(Table 2.3). 

CYST CLASSIFICATION VIA COMPOSITE CLINICAL MARKERS 

In an independent set of cysts, we separately identified composite clinical markers for each 

cyst type (Masica et al., 2017). The new, 130-patient cohort gave us the opportunity to validate 

these composite clinical markers in an independent cohort. When applied to the 130-patient cohort, 

the composite clinical markers had high sensitivity for SCAs, SPNs, and MCNs (100%, 89%, and 

90%, respectively), and modest sensitivity for IPMNs (75%; Table 2.10). The specificities of the 

composite clinical markers ranged from 71% to 88% for SCAs, SPNS, MCNs and IPMNs. The 

sensitivities and specificities estimated by cross-validation in Masica et al 2017 (Table 2.10) were 

in general similar to those estimated by analysis of this new 130-patient cohort. Though there were 

some differences—such as a higher sensitivity for IPMNs in the Masica study—all the markers 

were highly significant when applied to the 130-patient study. Although some of the sensitivities 

and specificities were outside the 95% confidence intervals of the Masica et al study (Table 2.10), 

this is not unexpected given that there is almost an order-of-magnitude difference in sample sizes 

between the cohorts. 
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CYST CLASSIFICATION VIA COMPOSITE MOLECULAR AND CLINICAL MARKERS 

Intuitively, one would expect that the combination of two different sets of biomarkers could, at 

least in certain circumstances, provide higher accuracy than either alone. For this purpose, we used 

MOCA to identify a new composite marker set, called "Composite molecular/ clinical markers" 

that included the composite molecular markers noted above plus the clinical or radiologic features 

identified by Masica et al as useful for cyst classification (Masica et al., 2017). 

Because the composite molecular marker was so sensitive for identifying SCAs, sensitivity 

was not increased by adding clinical or radiologic features (Table 2.3). However, the absence of 

main pancreatic duct (MPD) dilation, communication with the MPD, or abdominal pain, increased 

the specificity for identifying SCA from 91% to 98% without compromising the 100% sensitivity. 

The sensitivity and specificity of the composite molecular marker for identifying SPNs 

were both 100%. The addition of the clinical or radiologic features to the molecular markers 

decreased the sensitivity by 11% and decreased the specificity by 8%, for identifying this cyst type. 

MCNs were similar to SCAs in that the composite molecular markers alone had perfect 

sensitivity (100%) but imperfect specificity (75%). The presence of age <75 years, and the absence 

of all three clinical or radiologic features (male gender, multiple cysts, communication with the 

MPD) increased the specificity to 97%, with a slight decrease in sensitivity to 90%. In contrast, an 

increase in sensitivity was realized when any of the following features (age ≥ 85 years, abdominal 

pain, MDP dilation or communication with the MPD) were added to the composite molecular 

marker for IPMNs. This composite molecular/clinical marker panel increased the sensitivity for 

having an IPMN from 76% (composite molecular marker alone) to 94%, while slightly decreasing 

specificity (from 97% to 84%; Table 2.3). 
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IDENTIFICATION OF CYSTS THAT REQUIRE SURGICAL RESECTION 

From a practical perspective, the most important question in the management of cyst 

patients is the decision to perform surgical resection. We wished to determine the accuracy of the 

various composite markers described here and in Masica et al 2017 for determining this need for 

resection. As noted in Materials and Methods, we considered IPMNs characterized post-operatively 

as containing high-grade dysplasia or associated with invasive carcinoma to have been the most 

appropriate IPMNs for surgical excision. We also considered cysts that were histopathologically 

(i.e., post-operatively) diagnosed as SPNs or MCNs to have required surgical excision. SCAs were 

considered to have not required surgical excision. IPMNs with low-grade or intermediate-grade 

dysplasia were also considered in retrospect to have not required surgical resection at that time. 

PREDICTING WHICH CYSTS NEED SURGERY USING THE COMPOSITE MOLECULAR MARKERS 

To further characterize the molecular characteristics of IPMNs with high-grade dysplasia 

or associated with invasive carcinoma we analyzed the results from the 96 patients with a resected 

IPMN. The features of IPMNs that best predicted high-grade dysplasia or associated with invasive 

carcinoma are presented in Table 2.11. These were the presence of a mutation in SMAD4, 

chromosome 17q LOH (the region containing RNF43), or aneuploidy in chromosome 5p, 8p, 13q 

or 18q. We manually added a mutation in TP53, or chromosome 17p LOH (the region containing 

TP53), as these features have previously been described to occur in IPMNs with high-grade 

dysplasia or associated with invasive carcinoma (Kanda et al., 2012). A composite marker for 

IPMNs with high-grade dysplasia and/or associated with an invasive carcinoma based on these 

features, together with the composite markers for SCAs, MCNs, and SPNs described in Table 2.3, 

were then used to analyze the entire set of 130 patients. These composite molecular markers 

correctly identified patients requiring surgery with a sensitivity of 75% and a specificity of 92% 

(Table 2.4). 
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PREDICTING WHICH CYSTS NEED SURGERY USUING COMPOSITE CLINICAL MARKERS, 

WITH OR WITHOUT COMPOSITE MOLECULAR MARKERS 

The composite clinical markers (Masica et al., 2017), when applied alone to the set of 130 

patients, were able to identify cysts that required surgery with a sensitivity of 77% and a specificity 

of 75%. This provides a validation of the clinical composite markers, which were predicted to have 

a sensitivity of 84% and a specificity of 81% based on the cross-validation among the separate, 

1026 patients in the original study (Masica et al., 2017). When both the clinical and molecular 

features were combined into a composite molecular/clinical marker to predict which cysts required 

surgery and applied to the 130 patients, the sensitivity increased to 89%, but at the expense of 

specificity, which fell to 69% (Table 2.4). The composite molecular markers provide information 

about the risk of high-grade dysplasia or an associated invasive cancer in IPMNs at the point in 

time the analysis is performed, and do not predict the risk of developing high-grade dysplasia or an 

associated invasive cancer in the future. 

POTENTIAL TO AVOID UNNECESSARY SURGERY 

All cysts included in this study underwent surgical resection, however those patients with 

SCA, or IPMNs with low- or intermediate-grade dysplasia in retrospect, may not have required 

surgery at this point in time. In this study, had the molecular analysis been performed prior to 

surgery, many unnecessary surgeries could have potentially been prevented. For example, the 

composite molecular/clinical marker correctly identified all 12 SCAs. If this had been realized prior 

to surgery, surgical resection would likely have been avoided in most. Similarly, many IPMNs were 

resected because of concern for the presence of high-grade dysplasia or an associated invasive 

cancer; however 62 of these IPMNs had only low- or intermediate-grade dysplasia. Fifty-six (90%) 

of these 62 patients would have been correctly identified as not needing surgery at the time of their 

evaluation using the composite molecular marker. Of the 74 patients with SCAs or IPMNs that in 

retrospect did not meet the histopathological criteria for surgical resection, the composite molecular 
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marker correctly identified 67 of these cases, thus potentially decreasing the number of unnecessary 

operations by 91%. 
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Table 2.1 Cyst and patient characteristics 
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Table 2.2 Pancreatic cysts genetic alterations 
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Table 2.3 Identification of pancreatic cyst type 

 

 

Table 2.4 Comparison of different classification methods 

 

 

 

 

 



24 
 

Table 2.5 Primer sequences used in SafeSeqS 
Gene Forward Primer Reverse Primer Chr Hg19 Start-End 
BRAF TGTTTTCCTTTACTTACTACACCTCAGA AACTGTTCAAACTGATGGGACC 7 140453097-140453220 

CDKN2A GGGGAGAGCAGGCAGC CACCTCCTCTACCCGACCC 9 21974743-21974859 
CDKN2A AGCCTTCGGCTGACTGG GGCCTCCGACCGTAACTATT 9 21974684-21974798 
CDKN2A GGGTCGGGTAGAGGAGGTG CTCCCGCTGCAGACCCT 9 21974652-21974761 
CDKN2A TGGCTCTGACCATTCTGTTCT GGGTCGGGTGAGAGTGG 9 21971115-21971237 
CDKN2A CCGAGTGGCGGAGCTG CACCAGCGTGTCCAGGAAG 9 21971073-21971187 
CDKN2A GACCCCGCCACTCTCAC GCTCCTCAGCCAGGTCCA 9 21970997-21971138 
CDKN2A CTGGACGTGCGCGATG GCATGGTTACTGCCTCTGGT 9 21970930-21971048 
CDKN2A AGGAGCTGGGCCATCG ACAAATTCTCAGATCATCAGTCCTC 9 21970874-21971002 
CDKN2A TGTGCCACACATCTTTGACC CTGTAGGACCTTCGGTGACTG 9 21968163-21968300 
CTNNB1 GCCATGGAACCAGACAGAAA CCTCAGGATTGCCTTTACCA 3 41266040-41266163 

GNAS CCAGACCTTTGCTTTAGATTGG GGTCTCAAAGATTCCAGAAGTCA 20 57484325-57484449 
KRAS TTTACCTCTATTGTTGGATCATATTCG TGACTGAATATAAACTTGTGGTAGTTGG 12 25398203-25398317 
KRAS TTCTCCCTTCTCAGGATTCCTAC TGTACTGGTCCCTCATTGCAC 12 25380244-25380360 
KRAS GGAAATAAATGTGATTTGCCTTCT TTTCAGTGTTACTTACCTGTCTTGTCTT 12 25378532-25378655 
NRAS ACACCCCCAGGATTCTTACAG CGCCTGTCCTCATGTATTGG 1 115256485-115256609 

PIK3CA TTATTCCAGACGCATTTCCAC ACATTCACGTAGGTTGCACAAA 3 178921436-178921555 
PIK3CA AAATAATAAGCATCAGCATTTGACTTT CATCTACAAAATCCCTTTGGGTTAT 3 178921483-178921606 
PIK3CA TTTGATGACATTGCATACATTCG GATCCAATCCATTTTTGTTGTCCAG 3 178951991-178952119 
PIK3CA CAATGAATTAAGGGAAAATGACAAA CTCCATTTTAGCACTTACCTGTGAC 3 178936018-178936140 
RNF43 GGTACCCATACCAGCCCCTA CCTGTGTGTGCCATCTGTCT 17 56438051-56438185 
RNF43 GGTACCCATACCAGCCCCTA TGTGTGCCATCTGTCTGGAG 17 56438051-56438181 
RNF43 ATGGTTGAAGTGCATTGCTG CAGTCCTGTGCGTCCAAAG 17 56492849-56492969 
RNF43 CCTGGCTGCTGATGGCTAC GTCCATTTTCAAGGGGATCA 17 56492771-56492898 
RNF43 CAGCGGTGGAGTCTGAAAGA TTTCAGCAACACCAGCAAAC 17 56492716-56492838 
RNF43 GGACCCCACAGGAAAACTG ACATATTTCAAACAGATGGAAAGTGA 17 56492639-56492774 
RNF43 GACCCCACAGGAAAACTGAA ACATATTTCAAACAGATGGAAAGTGA 17 56492639-56492773 
RNF43 GACCCCACAGGAAAACTGAA CATATTTCAAACAGATGGAAAGTGAA 17 56492640-56492773 
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RNF43 AGCTCACTCCTGCTGCCTAA CTCTCCAGCTTGACGATGCT 17 56448315-56448448 
RNF43 AATGCCAGTGATGACGACAA TGTGTAGGGCGAAGTGTGAG 17 56448247-56448373 
RNF43 CTCAGCCCAACCTCTACTGTG CCTTGAACACGCAAATGTCC 17 56440859-56440993 
RNF43 GCAGGGAGAAGTCACAGCA CACAAACTCCATCAGCTTCTCA 17 56440690-56440812 
RNF43 TGGTGTTGATCTGGGGTAATG GGCAAGGTCTGGAGGTCTAGT 17 56440607-56440736 
RNF43 CAGCTCATCCCGGAAGTATG AGCACCGAAGCCAGGATG 17 56439939-56440057 
RNF43 GTGGGCACCATCTTTGTGAT TAACCACCCACCCACACAC 17 56439845-56439976 
RNF43 ATCTGAGCCCCATTCCTCTT CTCCCTGAGTCTGGCCACT 17 56438202-56438330 
RNF43 GGCCACCAGGAGGTACCAG CTTACCTGCCCCTCAGAGAAC 17 56438139-56438264 
RNF43 GGTACCCATACCAGCCCCTA GTGTGTGCCATCTGTCTGGA 17 56438051-56438182 
RNF43 ACAGAAGCCTTTGGTTTGGA GCAAGTCCGATGCTGATGTA 17 56437535-56437650 
RNF43 CATTTCCTGCCTCCATGAGT TGCCTACACAGAGGGGAGTC 17 56437473-56437601 
RNF43 CATCTGTGCTCTTGGTTCTTTTT GAGGTGGTAGTGGGCATGG 17 56436078-56436212 
RNF43 AGGTCGAAGACTCCACCTCA ATGGCAGGAAGGGACCAG 17 56436005-56436132 
RNF43 CTCCCTGCTGCCTACCTGT ATGTGCAGCTCTGGGGAAG 17 56435952-56436080 
RNF43 GCTCCAGGAGAGCAGCAG GTAGGGGCACTGGGCAAG 17 56435831-56435945 
RNF43 ACCTCCAATCCACCTCACAG CCATCTGCCAGGTACCCACT 17 56435755-56435878 
RNF43 CTGACAGCAGTGGATCTGGA CGTGCAGTTGACCACAGAGT 17 56435688-56435815 
RNF43 CCTGTCATGGCTCTTCCAGT TGCAGTACACTAGGGGGTCAA 17 56435603-56435728 
RNF43 GCAGCTCCCTAAGCAGTGAC ACCACCGAGTCCAAGGAAC 17 56435527-56435644 
RNF43 GGACATGCAGCCTAGTGTGA CCGCTTTTTGTAGTGGTGGT 17 56435454-56435577 
RNF43 TTCCAGCCATGTCCACTACC GCTGTGTCCGAGGAATAGGA 17 56435378-56435505 
RNF43 CCAGCCATGTCCACTACCAC GAGGAATAGGAGGCCTGGAC 17 56435387-56435503 
RNF43 AACCGGAGTCCCCCAGTC GGCACTGTGGGTTAGAGAGC 17 56435291-56435421 
RNF43 AACTCAGCAGCCCCTTCG TGGATTTTTGCAAGTTGAACAG 17 56435201-56435333 
RNF43 CTGCCCCAGTACCAGCAG GCAAGCTGGGTGCACAGT 17 56435103-56435241 
RNF43 CGACACCCACAGAGGAAAAG GGACCAAGGATATGCCACAC 17 56435058-56435189 
RNF43 TGCCAGATTTTTCCCCATTA GGCCTGGGGTTTCTGGTAG 17 56434988-56435105 
RNF43 ACCCCTTGATCTGTGGACCT CAGGTGGATGTGGTTCCAG 17 56434916-56435047 
RNF43 CAGTGTGGTTGTGCCTGACT CTGGCAGTGCGGATAAGG 17 56434848-56434966 
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RNF43 CTGGAACCACATCCACCTG CACCCACTTCCCTCTGAAAA 17 56434804-56434934 
RNF43 AGGTAGGGCCCAAACACATC TTCCTCCCCGCTCTCTAAAT 17 56432247-56432371 
SMAD4 TTCCAAAGGATCAAAATTGCTT ATGCACAATGCTCAGACAGG 18 48573350-48573479 
SMAD4 TTACGAATACACCAACAAGTAATGATG TCTTTACCAAACTTTCAATTGCTCT 18 48573433-48573552 
SMAD4 ACAAGGTGGAGAGAGTGAAACATT CATTTACTAGGATGAGCTCCATTTG 18 48573497-48573628 
SMAD4 AAGTTTGGTAAAGAAGCTGAAGGA AGCCTCCCATCCAATGTTCT 18 48573539-48573661 
SMAD4 GCTATAACTACAAATGGAGCTCATCC AAATCTGCCACCATAGAGGGTA 18 48573594-48573711 
SMAD4 GTGACACATGAATAAATGGTCGTT TTTAGTTCATTTTTGTGAAGATCAGG 18 48575021-48575135 
SMAD4 CTATGCCCGTCTCTGGAGGT ACAACTCGTTCGTAGTGATATGGA 18 48575088-48575216 
SMAD4 CAGTATGCGTTTGACTTAAAATGTG TCCTTTTCCCTTTATGTTTCTTAGG 18 48575152-48575276 
SMAD4 AAAAACAGAGAGGATAGGACAAAACA CATTTGTTTTCCCCTTTAAACAATTA 18 48575637-48575751 
SMAD4 TTTTTCTGGGAATAGAAGCTTATAAAAAT TGTCCTTCAGTGGACAACGA 18 48581095-48581226 
SMAD4 GTGAAGGATGAATATGTGCATGA AGAGCTGGGGTGCTGTATGT 18 48581168-48581295 
SMAD4 CAGCATCCACCAAGTAATCGT GTGGAAGCCACAGGAATGTT 18 48581243-48581361 
SMAD4 CCCCCAAGTGACTACACATAAATAA CTACCAGCACTGCCAACTTTC 18 48581319-48581440 
SMAD4 ATCCATTCTGCTGCTGTCCT CCATGTTAATGTCTTCTTGTTCCTCT 18 48584467-48584584 
SMAD4 AGGCTGCCTACTTTTTTCTCAAC CAGATAGCATCAGGGCCTCAG 18 48584542-48584669 
SMAD4 CGGGTGGTGCTGAAGATG AATTAACCCATGTGGGCCTTA 18 48584681-48584798 
SMAD4 GGAAGTAGGACTGCACCATACAC GCCCTTACAACAAAAACAAGAGC 18 48584730-48584853 
SMAD4 CACCACTAAATCAATCTAAATACAGGAA AAAATGGAATTTTTGTTGTCTTTTCT 18 48586206-48586336 
SMAD4 CGTTTCAATCACCACTAAATCAATC AATGGAATTTTTGTTGTCTTTTCTTTAG 18 48586208-48586345 
SMAD4 GGGAGGATGTTCTTTCCCATT AACAATAGGGCAGCTTGAAGG 18 48591760-48591881 
SMAD4 TCCTTCAAGCTGCCCTATTGT CCTTGCTCTCTCAATGGCTTC 18 48591860-48591977 
SMAD4 TGTACATGGGAAAACATAACCTTG TTGGGTCAACTCTCCAATGTC 18 48591927-48592062 
SMAD4 ACATGGGAAAACATAACCTTGAAT TTGGGTCAACTCTCCAATGTC 18 48591927-48592059 
SMAD4 TTAAGCATGCTATACAATCTGAACTAAAA CTTCACCTTTACATTCCAACTGC 18 48593307-48593432 
SMAD4 GGTTGCACATAGGCAAAGGT ACGCCCAGCTTCTCTGTCT 18 48593388-48593509 
SMAD4 TTTGGGTCAGGTGCCTTAGT CCTTTATATATGCACTTGGGTAGATCTTAT 18 48593439-48593558 
SMAD4 TCCTTCCACCCAGATTTCAA TGCACCTGGAGATGCTGTTC 18 48593509-48593636 
SMAD4 TCAGGCATTGGTTTTTAATGTATG GCCTGCTGCTGCATCTGT 18 48602937-48603051 
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SMAD4 TCAGGCATTGGTTTTTAATGTATG CGCCTGCTGCTGCATCT 18 48602937-48603052 
SMAD4 GATTTGCGTCAGTGTCATCG GCTGGAGCTATTCCACCTACTG 18 48603014-48603141 
SMAD4 CAAAGAAACTAATCAACTGAGTAAATCAAG GCAGGAAACATCCCTGGC 18 48603095-48603227 
SMAD4 CACCCTGTCCCTCTGATGTC CCCAGCCTTTCACAAAACTC 18 48604586-48604706 
SMAD4 TGGAATTGGTGTTGATGACCT TTCAATCCAGCAAGGTGTTTC 18 48604642-48604756 
SMAD4 ACCGGATTACCCAAGACAGAG AAGGTTGTGGGTCTGCAATC 18 48604708-48604829 
SMAD4 AGCATCAAAGAAACACCTTGCT GGGCCCCAACGGTAAAA 18 48604727-48604858 

TP53 CCTTCCAATGGATCCACTCAC ACTGCCTTCCGGGTCACT 17 7579818-7579933 
TP53 AGCCCCCTAGCAGAGACCT CAGCCCAACCCTTGTCCTT 17 7579679-7579789 
TP53 TGACTGCTCTTTTCACCCATC TCATCTGGACCTGGGTCTTC 17 7579502-7579616 
TP53 GCAATGGATGATTTGATGCTG CGGTGTAGGAGCTGCTGG 17 7579441-7579572 
TP53 AGCTCCCAGAATGCCAGAG TGGGAAGGGACAGAAGATGA 17 7579388-7579501 
TP53 CTGCACCAGCAGCTCCTAC CAGAATGCAAGAAGCCCAGA 17 7579338-7579463 
TP53 GCATTGAAGTCTCATGGAAGC CCCTTCCCAGAAAACCTACC 17 7579270-7579396 
TP53 GCCCTGACTTTCAACTCTGTCT GGGGGTGTGGAATCAACC 17 7578475-7578593 
TP53 CTCCGTCATGTGCTGTGACT CAACAAGATGTTTTGCCAACTG 17 7578417-7578540 
TP53 GCCATGGCCATCTACAAGC ACCAGCCCTGTCGTCTCTC 17 7578335-7578455 
TP53 GTCCCCAGGCCTCTGATT CGAAAAGTGTTTCTGTCATCCA 17 7578211-7578326 
TP53 GTGGAAGGAAATTTGCGTGT CTTAACCCCTCCTCCCAGAG 17 7578137-7578260 
TP53 TGTGATGATGGTGAGGATGG TCATCTTGGGCCTGTGTTATC 17 7577513-7577635 
TP53 TGGCTCTGACTGTACCACCATC GTGGCAAGTGGCTCCTGA 17 7577480-7577606 
TP53 TGCCTCTTGCTTCTCTTTTCC GCGGAGATTCTCTTCCTCTGT 17 7577068-7577188 
TP53 CGTGTTTGTGCCTGTCCTG GCTTCTTGTCCTGCTTGCTT 17 7576997-7577121 
TP53 TTTTATCACCTTTCCTTGCCTCT CAAGACTTAGTACCTGAAGGGTGAA 17 7576840-7576956 
TP53 AAGAAGAAAACGGCATTTTGAG CCAGCCAAAGAAGAAACCAC 17 7576782-7576898 
TP53 CCCTGGCTCCTTCCCAG CTTCTCCCCCTCCTCTGTTG 17 7573947-7574059 
TP53 GTTCCGAGAGCTGAATGAGG TAGGAAGGCAGGGGAGTAGG 17 7573881-7574007 
TP53 ATGTCATCTCTCCTCCCTGCT AGTCTGAGTCAGGCCCTTCTG 17 7572929-7573043 
TP53 GCCACCTGAAGTCCAAAAAG GAGGCTGTCAGTGGGGAAC 17 7572893-7573009 
VHL CCCGGGTGGTCTGGAT CCGCCGTCTTCTTCAGG 3 10183506-10183620 
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VHL AGGCAGGCGTCGAAGAGTA CGGCCTCCATCTCCTCCT 3 10183581-10183700 
VHL CGGCCCGGAAGAGTCC GGACTGCGATTGCAGAAGAT 3 10183645-10183773 
VHL GCTGCGCTCGGTGAACT CGGCAGCGTTGGGTAG 3 10183717-10183837 
VHL CCGTATGGCTCAACTTCGAC CGTGCTATCGTCCCTGCT 3 10183788-10183917 
VHL CCGGTGTGGCTCTTTAACAA GCTGTCCGTCAACATTGAGA 3 10188159-10188293 
VHL TCTATCCTGTACTTACCACAACAACC CCAAACTGAATTATTTGTGCCATC 3 10188250-10188376 
VHL CACCGGTGTGGCTCTTTAAC CCTGACATCAGGCAAAAATTG 3 10188157-10188423 
VHL GATTTGGTTTTTGCCCTTCC GGTGGTCTTCCAGATCTTCGT 3 10191449-10191581 
VHL CAGGAGACTGGACATCGTCA TCAATCTCCCATCCGTTGAT 3 10191532-10191649 
VHL CCCAAATGTGCAGAAAGACC TCATCAGTACCATCAAAAGCTGA 3 10191580-10191703 

Chr = Chromosome; Hg19: Human genome 19 
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Table 2.6 Primer sequences used in SafeSeqS for loss of heterozygosity  

SNP Gene 
Region Forward Primer Reverse Primer Chr Hg19 Start-End 

SNP rs12602891 RNF43 TCAGAACTCCACCCAAGAGG TCTGCTCCCCTCTCACTTTG 17 56269990-56270144 

SNP rs11868650 RNF43 CCAAAGCCCTGCTAATTCTG GAACTCGGTTTTGTGTCTGGA 17 56330905-56331126 

SNP rs2632516 RNF43 CCCTGGTGTGTTCAAGACCT GTCTCCAGTCCACCCCAAC 17 56409069-56409262 

SNP rs1985749 RNF43 TTGTCCCGATAGGGAACTTG TTTGCAGGAAGAAGAGTGCAT 17 56416970-56417121 

SNP rs1859401 RNF43 CAGGGAGCTGTGAACCAAGT ACTGTGCCAAGTGGGCTCT 17 56421550-56421728 

SNP rs757485 RNF43 TCCTCAGGTCCATTAGGGAGT TGATGCAACTCCAAGAGAAGAG 17 56424684-56424840 

SNP rs2680702 RNF43 TCCCTGAAGCTTTCCCACTA TCATTCCATCCTTCCTCTGC 17 56431523-56431720 

SNP rs9904993 RNF43 ATGGGGGTAGTGGTGGAGAG TTGTGAAGCAGTGGGACAAA 17 56468536-56468696 

SNP rs7216856 RNF43 AGGAGCTTTGTTTTCCTCTCG TGCTGTTACTTTCAGGGTTGTG 17 56472252-56472402 

SNP rs2301867 RNF43 CCACAAAGGAAAACCTCAGC AAATTGTCTATTCAGGTCCCAGAG 17 56480049-56480219 

SNP rs1476596 RNF43 AACCAAATTCTCAAAACAAATTTACC TGGAGAGCAGAATTCATTTACTACAC 17 56485332-56485531 

SNP rs2526370 RNF43 TGCGCACAAACATTCTTAGG TCATTAAAAATATTCTGCAGCTTCC 17 56487602-56487753 

SNP rs3744093 RNF43 ATGGTTGAAGTGCATTGCTG GTCCATTTTCAAGGGGATCA 17 56492771-56492969 

SNP rs7215531 RNF43 TTTCCAACTTTGCTTGTGATTG TTCTTCACGCTCACCTTTGAT 17 56493228-56493398 

SNP rs7207286 RNF43 GTGACTGGGGGCCTTTTAAT TGTTCCATGCTATACCAGATGC 17 56514313-56514490 

SNP rs2302189 RNF43 TGCATGTTCTGCCTTCTGAG CATCCAGGATCAGCAGCTTT 17 56584164-56584325 

SNP rs2302190 RNF43 ACCCCGTGTGTTGTCATCTT CTCAGCACCGGGAATAATGA 17 56584376-56584532 

SNP rs3744108 RNF43 ATTTTCTTTGGGAGGCTGCT TGTGTGAGACTCTCCAGACGTT 17 56585845-56586028 

SNP rs740605 RNF43 CAGTGAACCCTGGGAATTGA GCAGGGACATGAGGGAAGTA 17 56604789-56604941 

SNP rs11078682 TP53 TTAGAAGGGTGGTTGGCTTG GCTGCATTGTCTGGTGAGAA 17 7396033-7396219 

SNP rs9890920 TP53 AACAACCTGAGGGTGACGAG CCCTTCCAAGGAGAGACAGG 17 7399895-7400084 

SNP rs7211392 TP53 CGCATTCTCCCATGGTCTAC CATCTCATCCCCGTCAAAGT 17 7402445-7402642 

SNP rs2277638 TP53 CAGCTCCTGGATCTCTGCTC GGGTGGCTCCTCAAGGTT 17 7402536-7402693 

SNP rs11078685 TP53 GATGTGCTGCATACCAGGTG CACAGGGCCAGGACTGTAAT 17 7411331-7411489 

SNP rs9889368 TP53 CAACAAGAGCGAGATTCCATC TCCATGACACAGGGAACTGA 17 7412108-7412245 

SNP rs2071502 TP53 CAGGAGTGGATCCTGGAGAC CCTGAGTGGACAGCACAGAA 17 7414800-7414986 

SNP rs4968212 TP53 TTTTCAGGGCTCAGATTTGG GAGGCCTCCAGACTCTCCTC 17 7468078-7468248 
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SNP rs4968214 TP53 AAGGGTCACCCCCTTATGTC GTCAGGAGTGGCCTGCAT 17 7477344-7477506 

SNP rs727428 TP53 AAAACCCCGACAGACAGACA GCCAGTCCAAGGACCAGAT 17 7537642-7537824 

SNP rs2955617 TP53 CCCTCTCCATTGCTGAAGAC GTCCCCTTCTGCAGAGATCA 17 7538763-7538962 

SNP rs1641544 TP53 TAGGATGGGGTGAGTGGGTA TCGCTTTGACATCGACTTTG 17 7539841-7539994 

SNP rs1641511 TP53 CCTGCATATCCCCTGAGAGTT GCGACTGTGTAGACAGGGAGA 17 7559520-7559725 

SNP rs1050541 TP53 CCGAAGGGAAGAAACACAGA AGGCATTTTAACCCTTTGTCCT 17 7560798-7560948 

SNP rs7141 TP53 CCTCAATCACCAGCCAAGAT AAAACTACTGAGGTGACGGCATA 17 7614461-7614624 

SNP rs1544724 TP53 TTGCTGGCCTAACAGAACG GCTGGGCACTCTCTTTTCATT 17 7621640-7621798 

SNP rs3744258 TP53 GAGGAGCCTGGTGGGTACTT CTGGCCAGGAGGAAGACA 17 7623209-7623412 

SNP rs839721 TP53 TGGGCATTAAGGGAATTGAG AGGACTCCGCACTAAGTGGA 17 7639621-7639783 

SNP rs9909288 TP53 AGGCTCCAGCTGTTCATCAT CGATGATGGCCCTTATCCTT 17 7673778-7673951 

SNP rs9889453 TP53 TCCATATCCCATGCTCTTAACC CCCCCAGCTCTCCTAACATT 17 7674878-7675007 

SNP rs8066124 TP53 AACCCCAGTCCTTGCAGATT CCGTCTTCCTAGATTTCCCATAG 17 7676557-7676749 

SNP rs4791329 TP53 GCCTGTGTCTGCTTTGCAT CAGAGGGCACGTGACAGATA 17 7693322-7693487 

SNP rs9916791 TP53 GGCCTCACCTCTGACCTGTA CTTCAGGCCCTAGAGAGCAA 17 7721076-7721272 

SNP rs1105813 TP53 ACCTCCTTATCGCCAATGC CCTGTCCCTCCATTCAGACA 17 7721494-7721666 

SNP rs4791840 TP53 TTTTGCTTGATGTTTTGCACAT CCATGTTACCATCCCCAATG 17 7744072-7744232 

SNP rs1565816 TP53 TTTAGTGCTTCCGGTGTGC TGGGAGAACAGCCACTTGAT 17 7767438-7767614 

SNP rs4940009 SMAD4 TTTTGCAATTCTGAAGTCATGTG GGAATCTCAGGTGTTAGTTCTGCT 18 48263843-48264034 

SNP rs2255059 SMAD4 GGTCCCCATCAACAAAACAA ATCTCACCACCCACCCTGTA 18 48327879-48328036 

SNP rs6508037 SMAD4 AGGCTCCTCATACAGATCCTCA GGCAGGTTGAGCTAAGCAGA 18 48360391-48360550 

SNP rs6508038 SMAD4 CTCCTAGCCCTGTCATCTGC TTCATTTTCCAAAACCATTGC 18 48360457-48360627 

SNP rs8099088 SMAD4 GCTTTGTTTCTATGATCTACATGGATT CAAACAAACTTGATGTGGGAAA 18 48360833-48360987 

SNP rs9958074 SMAD4 AGGCTGCTCCTGAACTCTTG TGGTTACCATTTGGAATGAGAAT 18 48472050-48472245 

SNP rs8088712 SMAD4 GCCCATTGAGATACACAGCA CCTCCAGGTTCATAAGCTTCAC 18 48514231-48514419 

SNP rs2276163 SMAD4 GGAAAAGGATCTCAATAGTGTTTCA CAATACTCGGTTTTAGCAGTCAAA 18 48575268-48575431 

SNP rs7229678 SMAD4 GATCCCCCTAGTGGTGGTTT AAATGAAGGAACTGTCCCATTTT 18 48577670-48577824 

SNP rs2298617 SMAD4 TGGAAAAGTGTCCAATTCTGAAA TGAAGGAGAAAGGGGATGATT 18 48603365-48603534 

SNP rs3819122 SMAD4 TCAATGACAAGCAGCCTTTG AGCCTACCCTTGGATGAGTACA 18 48610800-48610974 

SNP rs4939652 SMAD4 GTCCTCTGCCTGACCTGTTC TCCAGTCCTTCCTTCAGTCTTAAC 18 48648939-48649132 
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SNP rs12954819 SMAD4 GAGGAGGAGGGGTTTGTGAT TTCTTAGAAGGCAGGAAGAGAATTAG 18 48686150-48686333 

SNP rs2282543 SMAD4 CACCTCCTACCTGGGTTTCA TGACACATCTTCACAGCTTCG 18 48693561-48693780 

SNP rs11663428 SMAD4 TGGGGTGACAAGAATGACAA GCCGGCATTAAAAGTCCATA 18 48741247-48741369 

SNP rs4940069 SMAD4 GGGCCTTCTGAACCTAGGAA CCTCTGTTCAGGGGGAGTTC 18 48771489-48771657 

SNP rs9807456 SMAD4 ACCCCCACAGCATAGTGAAC AGGGAACTAGAGTGCGTTTCC 18 48813762-48813932 

SNP rs2445468 SMAD4 AGAAAATGGGGCTAGGTGCT TTAACCTTGGGCTGCCTTTA 18 48857105-48857323 

SNP rs6807326 VHL AACGCATCTGAATGGAACTTTT GTCTTAGATGCCATTCTCCCTTT 3 10036684-10036843 

SNP rs13066757 VHL CAGGAAGCCAGTGTCATTCA TGGGGTCATCTTATTCCTCCT 3 10044907-10045069 

SNP rs7637888 VHL TTAAGCACTTACTGCGTTGATGTT TGCTAAATATGAACAGTGACTACATCC 3 10080578-10080756 

SNP rs1642742 VHL CCGCTACGGATGTAGAATGG GGACAGCTTGTATGTAAGGAGGTT 3 10191918-10192047 

SNP rs11465853 VHL CCCCCAAGAAGTGACAGCA TGCGCTCTGAGTCCAGAGAA 3 10206959-10207115 

SNP rs708030 VHL TGCCAGAATGAATGATGAGC GACTGGGCGAGGAGCAGT 3 10212386-10212541 

SNP rs2619508 VHL TGTGTGGATGACCAATGCTT AAAGCCTCCAGGAGAAGTGC 3 10215775-10215972 

SNP rs6442159 VHL AGGCGGTGAGAATGGAGATT CCAAATCCTTTTGGACCACTT 3 10243267-10243416 

SNP rs3844283 VHL CGTGGGAAGGACAAATCAAG CGTATCTGCCAGAGGATTTCA 3 10264445-10264571 

SNP rs394558 VHL CCAAGAACTCTAGGGGTGGAG TGCTGCTCAGAAGGAGAAAGA 3 10302138-10302322 

SNP rs451952 VHL CCCTCAAGAGAAACCCAGTG TGGAACACATTTCATCAACAGAA 3 10302240-10302413 

SNP rs35684 VHL CACCTCGTTCTTTGCCTTTC CCAGTTCACAGCAGACACGA 3 10326535-10326719 

SNP rs1629816 VHL CTTGACCTTGCCTCTCATCC ATCCAACACAACCCAACACA 3 10336154-10336333 

SNP rs696220 VHL AAGAACTCTTGCTTTAGGGACAAA TGTGCATTTAGGCTTCTTGCT 3 10344007-10344156 

SNP rs629067 VHL GCCCTGAATGAAGCAGAGTC CCCAGTCAAACCACCAAGAC 3 10359103-10359279 

SNP rs4327369 VHL GGAAACGTTGGTTTTCTCTCC GACGTCGCTTTAGCTGAGGA 3 10370351-10370510 

SNP rs26310 VHL CCTCTGTCCTTTCACCTTGC GAGCTCAGAGCAGCCACAGT 3 10372722-10372882 

SNP rs775018 VHL GACCCTGGAATCCATGTTTG AAGGACACAGAACCCACAGG 3 10399978-10400176 

SNP rs28113 VHL CATGGGCTCAATCACCTTCT GGTGGGGAGGTGGTCTCTA 3 10400519-10400684 

SNP rs3774166 VHL GTGGGGGTGGAGAGCTATG GGGAGAGGAGTGAGGACTTTG 3 10418797-10418956 

SNP rs279543 VHL GTTTCCTGACCCGTGACCTA GGTTGGCTAGAACTGGGTGA 3 9935241-9935448 

SNP rs279588 VHL AGGAAATGCGACTCACCAGT CAAGGTCCTTTGTGCTGAGG 3 9944893-9945112 

SNP rs279578 VHL CTTGTCACCGGGAAGAACAG GGATCCTCTCATTGGGGGTA 3 9949140-9949247 

SNP rs172155 VHL AGACCTAGAGCCACGAGCAA GAACTATCCCCAGAAAGAAGGAA 3 9950497-9950671 
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SNP rs279572 VHL TCACTGACTACAGCCAGCACA CCTCACCCCATCTGACTCTC 3 9952579-9952730 

SNP rs455863 VHL CAGCTCCATGCTTCACTCAG CCCAGCCTCCCTCTTACCT 3 9956156-9956322 

SNP rs708567 CDKN2A GACTTGGGCCTGGAGAGAG CTGGGAAGAGCCTGAAGATG 3 9960023-9960203 

SNP rs2197008 CDKN2A AACCAGCCACTCCCAGAAC CCACAACCTTTCCTCATTGC 9 21685360-21685570 

SNP rs7023954 CDKN2A ATTCCATGAGTCCTGTTGTGG TCCAAAAAGCTTAAAATACCATACCT 9 21816622-21816795 

SNP rs4478653 CDKN2A TGGTTCAGGTGGCTGACATA TCCCGCTGGTTCAATAATGT 9 21853072-21853267 

SNP rs7039105 CDKN2A AAAGTGCCTTTCTACAAGGTTTTG CCTGAAAATAAGGCCCAAGTC 9 21854962-21855142 

SNP rs7047648 CDKN2A GGGTTTATTTTGGGAAGGTCA ATGCAGACATGAAGCATCCA 9 21857124-21857290 

SNP rs2811708 CDKN2A TGTAGGATGCTTAAACCCATTTG TGGATAGTTTTGACAATTTTTAATGG 9 21973259-21973451 

SNP rs3731211 CDKN2A GCTCCTCCTAATTGTTTTTGAAGA AACAATGACTCCCCCAGTTG 9 21986689-21986890 

SNP rs7036656 CDKN2A TGGACATAGCGTGCATTTCA GCCTTTGACACACGGTAACA 9 21990289-21990477 

SNP rs2811710 CDKN2A GGGCTATGGTTCACTTGGAA TGTTTATAGCTACTTCAGAAGGCTCA 9 21991800-21991950 

SNP rs2106119 CDKN2A ACCCAACTGAATTCGGACTCT TGGGGTGTCTGCTGTAACTG 9 22017415-22017598 

SNP rs10965215 CDKN2A CAATAGGTGTGGGCCTCAGT TTTTTGGATGTTTTGCAGGACT 9 22029414-22029591 

SNP rs10757270 CDKN2A TCCCCAAAGACACAAAGTTAAGA AAGCAAAATGCTAGGAGCACA 9 22072698-22072849 

SNP rs1333040 CDKN2A GCCATGGGAATCTTCATTCA TCAAGAGAGACAGGAGGGTCA 9 22083371-22083541 

SNP rs2383206 CDKN2A TTCAAATTTATGCTGCATTACTGAC TTCAGGATTCAGGCCATCTT 9 22114870-22115051 

SNP rs1537375 CDKN2A ACTTAGCCCTTGGGACCATT CCAATGTCATTTGATCCAATTTT 9 22115915-22116104 

SNP rs10811658 CDKN2A ACAGGGAGGGGCATTAGTTT TCCTTTCCATGGCATCTCTC 9 22128455-22128638 

SNP rs10757284 CDKN2A GGAGGGGAAAAGCCACTTAG CCTTCACAATGCATGGAGTACTTA 9 22138335-22138484 

SNP rs1333054 CDKN2A TGTCTTCTGCTCACGATTCCT TTTTTAGCTTTTGAGCACTCTGC 9 22165442-22165613 

SNP rs954399 CDKN2A CACAAATGACTTTCTCCTGCTG TCTAGGAAAAGGACAATTCATTCAG 9 22170948-22171107 

Chr = Chromosome. Hg19 = Human genome 19 
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Table 2.7 Comparison of preoperative assessment with final pathological diagnosis in the 130 surgically 
resected pancreatic cystic neoplasms 

Patient ID 

Presence of 
concerning 

features prior to 
surgery* 

Preoperative 
diagnosis# 

Final 
pathology 

Grade of 
Dysplasia/Invasive 

Cancer in IPMNs, and 
MCNs  

Cyst-1 No Branch duct IPMN IPMN Low 
Cyst-2 Yes Branch duct IPMN IPMN Intermediate 
Cyst-3 No^ Cyst type unclear MCN Low 
Cyst-4 Yes MCN MCN Low 
Cyst-5 Yes Mixed duct IPMN IPMN Invasive cancer 
Cyst-6 Yes MCN MCN Low 
Cyst-7 Yes MCN SCA Not applicable 
Cyst-8 Yes Branch duct IPMN SCA Not applicable 
Cyst-9 Yes MCN MCN Low 

Cyst-10 Yes MCN SCA Not applicable 
Cyst-11 Yes Branch duct IPMN IPMN Intermediate 
Cyst-12 Yes Branch duct IPMN IPMN Low 
Cyst-13 Yes Branch duct IPMN IPMN Intermediate 
Cyst-14 No Branch duct IPMN IPMN Low 
Cyst-15 Yes Branch duct IPMN IPMN High 
Cyst-16 Yes Branch duct IPMN IPMN Intermediate 
Cyst-17 Yes Mixed IPMN IPMN High 
Cyst-18 Yes Mixed IPMN IPMN High 
Cyst-19 Yes Mixed IPMN IPMN Invasive cancer 
Cyst-20 Yes Mixed IPMN IPMN Invasive cancer 
Cyst-21 Yes Mixed IPMN IPMN Invasive cancer 
Cyst-22 No SCA SCA Not applicable 
Cyst-23 Yes MCN SCA Not applicable 
Cyst-24 Yes Branch duct IPMN SCA Not applicable 
Cyst-25 Yes SCA SCA Not applicable 
Cyst-26 Yes Branch duct IPMN SCA Not applicable 
Cyst-27 Yes SCA SCA Not applicable 
Cyst-28 No Branch duct IPMN SCA Not applicable 
Cyst-29 Yes Branch duct IPMN IPMN Intermediate 
Cyst-30 No^ Cyst type unclear MCN Intermediate 
Cyst-31 No Branch duct IPMN IPMN Intermediate 
Cyst-32 No MCN MCN Low 
Cyst-33 No Branch duct IPMN MCN Low 
Cyst-34 No Branch duct IPMN IPMN Intermediate 
Cyst-35 Yes Branch duct IPMN IPMN Intermediate 
Cyst-36 Yes Branch duct IPMN IPMN Low 
Cyst-37 Yes Mixed IPMN IPMN Intermediate 
Cyst-38 Yes Mixed IPMN IPMN High 
Cyst-39 No Mixed IPMN IPMN Intermediate 
Cyst-40 Yes Branch duct IPMN IPMN Intermediate 
Cyst-41 Yes Mixed IPMN IPMN Intermediate 
Cyst-42 Yes MCN MCN Low 
Cyst-43 Yes MCN MCN Low 
Cyst-44 Yes Branch duct IPMN IPMN Intermediate 
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Cyst-45 No Mixed IPMN IPMN High 
Cyst-46 Yes^ Main duct IPMN IPMN Invasive cancer 
Cyst-47 Yes Branch duct IPMN IPMN High 
Cyst-48 No SCA IPMN Low 
Cyst-49 Yes Mixed IPMN IPMN High 
Cyst-50 No^ Mixed IPMN IPMN Intermediate 
Cyst-51 No Branch duct IPMN IPMN Intermediate 
Cyst-52 No Branch duct IPMN IPMN Low 
Cyst-53 Yes SCA SCA Not applicable 
Cyst-54 Yes Cyst type unclear SCA Not applicable 
Cyst-55 Yes Branch duct IPMN IPMN High 
Cyst-56 No Branch duct IPMN IPMN Intermediate 
Cyst-57 Yes Branch duct IPMN IPMN Intermediate 
Cyst-58 Yes Branch duct IPMN IPMN Intermediate 
Cyst-59 Yes Branch duct IPMN IPMN Intermediate 
Cyst-60 Yes SPN SPN Not applicable 
Cyst-61 Yes Branch duct IPMN IPMN Low 
Cyst-62 No Branch duct IPMN IPMN Low 
Cyst-63 Yes Branch duct IPMN ITPN High 
Cyst-64 No Branch duct IPMN IPMN Low 
Cyst-65 Yes Mixed IPMN IPMN Invasive cancer 
Cyst-66 Yes SCA MCN Low 
Cyst-67 Yes SPN SPN Not applicable 
Cyst-68 Yes SPN SPN Not applicable 
Cyst-69 Yes SPN SPN Not applicable 
Cyst-70 Yes SPN SPN Not applicable 
Cyst-71 Yes SPN SPN Not applicable 
Cyst-72 No^ SPN SPN Not applicable 
Cyst-73 No^ SPN SPN Not applicable 
Cyst-74 Yes SPN SPN Not applicable 
Cyst-75 Yes SPN SPN Not applicable 
Cyst-76 Yes Branch duct IPMN IPMN Intermediate 
Cyst-77 Yes Branch duct IPMN IPMN Intermediate 
Cyst-78 No Branch duct IPMN IPMN Intermediate 
Cyst-79 Yes Branch duct IPMN IPMN Intermediate 
Cyst-80 Yes MCN MCN Intermediate 
Cyst-81 Yes Branch duct IPMN IPMN Intermediate 
Cyst-82 Yes MCN MCN Low 
Cyst-83 Yes Branch duct IPMN IPMN Intermediate 
Cyst-84 Yes SCA IPMN Intermediate 
Cyst-85 No Main duct IPMN IPMN Low 
Cyst-86 Yes Branch duct IPMN IPMN Low 
Cyst-87 Yes Branch duct IPMN IPMN Low 
Cyst-88 Yes Mixed IPMN IPMN High 
Cyst-89 Yes Branch duct IPMN IPMN Intermediate 
Cyst-90 Yes Branch duct IPMN IPMN Intermediate 
Cyst-91 Yes Mixed IPMN IPMN Invasive cancer 
Cyst-92 Yes Branch duct IPMN IPMN Invasive cancer 
Cyst-93 No Branch duct IPMN IPMN High 
Cyst-94 Yes Branch duct IPMN IPMN Invasive cancer 
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Cyst-95 Yes MCN IPMN Intermediate 
Cyst-96 Yes Branch duct IPMN IPMN High 
Cyst-97 Yes Branch duct IPMN IPMN Intermediate 
Cyst-98 Yes Branch duct IPMN IPMN Intermediate 
Cyst-99 Yes Branch duct IPMN IPMN High 

Cyst-100 Yes Mixed IPMN IPMN High 
Cyst-101 No Branch duct IPMN IPMN Intermediate 
Cyst-102 Yes Branch duct IPMN IPMN Intermediate 
Cyst-103 No SCA IPMN Intermediate 
Cyst-104 Yes MCN IPMN Low 
Cyst-105 Yes Branch duct IPMN IPMN Intermediate 
Cyst-106 Yes Branch duct IPMN IPMN Intermediate 
Cyst-107 Yes Branch duct IPMN IPMN Intermediate 
Cyst-108 Yes Mixed IPMN IPMN Intermediate 
Cyst-109 Yes Mixed IPMN IPMN High 
Cyst-110 Yes Mixed IPMN IPMN High 
Cyst-111 Yes Branch duct IPMN IPMN High 
Cyst-112 Yes Mixed IPMN IPMN High 
Cyst-113 Yes Branch duct IPMN IPMN Intermediate 
Cyst-114 Yes Branch duct IPMN IPMN High 
Cyst-115 No^ Cyst type unclear IPMN Intermediate 
Cyst-116 Yes Mixed IPMN IPMN Low 
Cyst-117 Yes Branch duct IPMN IPMN High 
Cyst-118 Yes Mixed IPMN IPMN High 
Cyst-119 Yes Branch duct IPMN IPMN Intermediate 
Cyst-120 Yes Branch duct IPMN IPMN Intermediate 
Cyst-121 Yes Mixed duct-IPMN IPMN Low 
Cyst-122 No Branch duct IPMN IPMN Intermediate 
Cyst-123 Yes Mixed IPMN IPMN Invasive cancer 
Cyst-124 Yes Branch duct IPMN IPMN High 
Cyst-125 Yes Branch duct IPMN IPMN Intermediate 
Cyst-126 Yes Branch duct IPMN IPMN Intermediate 
Cyst-127 Yes Branch duct IPMN IPMN Intermediate 
Cyst-128 Yes Mixed IPMN IPMN Invasive cancer 
Cyst-129 Yes Mixed IPMN IPMN Intermediate 
Cyst-130 Yes Mixed IPMN IPMN Invasive cancer 

*Concerning features were the presence of any of the following: jaundice, mural nodule or solid 
component, dilation of the main pancreatic duct ≥5 mm in size, cyst size ≥3 cm, or cytology with marked 
atypia or diagnosic of malignancy. ̂ No preoperative imaging available for review. #Preoperative diagnosis 
was based on physician's assessment based upon clinical data, imaging, and cyst fluid analysis when 
available.  
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Table 2.8 Frequencies of aneuploid chromosomes by cyst type  

Chromosome arm 

IPMN                                                                    MCN SCA                                                                SPN                                                                    
 N=96*  N=12  N=12  N=10 

gain, N (%) loss, N (%) gain, N (%) loss, N (%) gain, N (%) loss, N (%) gain, N (%) loss, N (%) 

 1p  1 (1) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
 1q  13 (14)  0 (0)  0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
 2p  0 (0) 0 (0)  0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
 2q  0 (0)  0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
 3p  2 (2) 0 (0) 0 (0) 0 (0) 0 (0) 1 (8) 0 (0) 0 (0) 
 3q  3 (3) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
 4p  0 (0) 2 (2) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
 4q  0 (0) 2 (2) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
 5p  3 (3) 1 (1) 0 (0) 1 (8) 0 (0) 0 (0) 0 (0) 0 (0) 
 5q  0 (0) 4 (4) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
 6p  2 (2) 1 (1) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
 6q  1 (1) 5 (5) 0 (0) 0 (0) 0 (0) 1 (8) 0 (0) 0 (0) 
 7p  6 (6) 0 (0) 0 (0) 0 (0) 0 (0) 0(0) 0 (0) 0 (0) 
 7q  6 (6) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
 8p  2 (2) 7 (7) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
 8q  5 (5) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
 9p  0 (0) 4 (4) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
 9q  1 (1) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

 10p  0 (0) 3 (3) 0 (0) 0 (0) 0 (0) 1  (8) 0 (0) 0 (0) 
 10q  1 (1) 1 (1) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
 11p  3 (3) 4 (4) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 2 (20) 
 11q  0 (0) 4 (4) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
 12p  2 (2) 2 (2) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
 12q  0 (0) 1 (1) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
 13q  2 (2) 2 (2) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
 14q  0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
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 15q  0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
 16p  3 (3) 4 (4) 1 (8) 0 (0) 3 (25) 0 (0) 5 (5) 0 (0) 
 16q  0 (0) 4 (4) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
 17p  1 (1) 7 (7) 0 (0) 0 (0) 1 (8) 1 (8) 0 (0) 0 (0) 
 17q  1 (1) 4 (4) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
 18p  6 (6) 4 (4) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
 18q  2 (2) 7 (7) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
 19p  0 (0) 4 (4) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
 19q  1 (1) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
 20p  4 (4) 2 (2) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)  0 (0) 
 20q  3 (3) 3 (3) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
 21q  0 (0) 4 (4) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
 22q  1 (1) 17 (18) 0 (0) 0 (0) 0 (0) 2 (17) 0 (0) 0 (0) 

Values are presented as absolute number of chromosome arms altered and percentages in brackets                                                                                                                                              
* Includes one ITPN 
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Table 2.9 Frequency of distribution of molecular markers and aneuploidy in branch 
duct, mixed or main duct IPMNs 
IPMN Branch Duct Mixed or Main Duct 

  N = 56 N = 40 

KRAS  - no. (%) 48 (86) 27 (68) 
GNAS  - no. (%) 30 (54) 26 (65) 
RNF43  - no. (%) 23 (41) 13 (33) 
CDKN2A  - no. (%) 1 (2) 2 (5) 
CTNNB1  - no. (%) 2 (4) 4 (10) 
SMAD4  - no. (%) 2 (4) 3 (8) 
TP53  - no. (%) 4 (7) 5 (13) 
VHL  - no. (%) 0 (0) 0 (0) 
BRAF  - no. (%) 1 (2) 0 (0) 
NRAS  - no. (%) 0 (0) 0 (0) 
PIK3CA  - no. (%) 0 (0) 0 (0) 
LOH chr3 (VHL)  - no. (%) 2 (3.6) 2 (5) 
LOH Chr9 (CDKN2A)  - no. (%) 3 (5) 5 (13) 
LOH chr17 (RNF43)  - no. (%) 3 (5) 8 (20) 
LOH chr17 (TP53)  - no. (%) 1 (2) 4 (10) 
LOH chr18 (SMAD4)  - no. (%) 3 (5) 7 (18) 
Aneuploidy  - no. (%) 26 (46) 22 (55) 
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Table 2.10 Composite clinical markers: Comparison of results from original cross-validation study (Masica 
et al) to those  in the current study 

Cyst 
type 

Any of 
these 

Present 

All of these 
Absent 

Masica et al[14] 
(N=1,026) Current study (N=130) 

Sensitivity 
(95% CI) 

Specificity 
(95% CI) Sensitivity Specificity p-value 

SCA Age ≥25 

Abdominal pain 

95% (92-97%) 83% (79-86%) 100% 71% 1.3 x 10-5 Communication 
with MPD 

MPD dilation 

SPN Age <55 

Jaundice 

89% (75-96%) 86% (83-88%) 89% 85% 6.8 x 10-6 Multifocal 

Weight loss 

MCN Age <75 

Male 

91% (82-96%) 83% (80-85%) 90% 78% 3.0 x 10-5 Communication 
with MPD 

Multifocal 

IPMN* 

Age ≥85 

None 94% (92-96%) 90% (87-93%) 75% 88% 2.2 x 10-8 
Communication 

with MPD 

MPD dilation 

Abdominal pain 

* Analysis was performed in the ninety-five IPMN and one ITPN patients. 

 

Table 2.11 Composite Molecular Marker for High-Grade 
Dysplasia or Associated Invasive Adenocarcinoma 

Composite Molecular Markers Sensitivity 
(95% CI) 

Specificity 
(95% CI) Any of these 

Present 
Any of these 

Absent 
SMAD4 

None 59% (41-
75%) 

90% (80-
96%) 

chr17 LOH (RNF43) 

chr5p aneu 

chr8p aneu 

chr13q aneu 

chr18q aneu 

TP53^ 

chr17 LOH (TP53)^ 

^ These features were not identified by MOCA but were manually added.  
chr = chromosome. CI=confidence intervals. aneu = aneuploidy.  
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INTRODUCTION AND RATIONALE 

Head and neck squamous cell carcinomas (HNSCCs) are the seventh most common cancer 

worldwide, occurring in more than half a million new patients each year and in >50,000 patients in 

the United States alone (Ferlay et al., 2010; Siegel et al., 2015). The incidence of certain types of 

HNSCC appears to be increasing, especially among young people, in part due to the increasing 

prevalence of human papilloma virus (HPV) (Simard et al., 2012; Patel et al., 2011; Li et al., 2014; 

Chaturvedi et al., 2011; Chaturvedi et al., 2008). HNSCCs are associated with a poor 5-year overall 

survival of only ~50% that has remained relatively unchanged, especially for patients with HPV-

negative tumors (Leemans et al., 2011). Only a few targeted therapies for this disease are available, 

in part because of the paucity of activating mutations in oncogenes that contribute to tumor 

development; most genetic alterations in HNSCCs inactivate tumor suppressor genes (Agrawal et 

al., 2011; Vogelstein et al., 2013; Stransky et al., 2011; Cancer Genome Atlas, 2015). There are 

also no available biomarkers for HNSCC to measure disease burden or response to therapy, further 

limiting progress in mitigating the impact of this often morbid and potentially lethal disease on 

human health. 

Although HNSCC tumors are usually classified on the basis of histology, their biomedical 

properties, including demographics, risks factors, and clinical behavior, differ by anatomic site 

(Figure 3.1) (Howlader et al., 2014; Chaturvedi et al., 2013). Anatomically, the tumors are 

categorized as squamous cell carcinomas (SCCs) of the oral cavity (including the oral tongue), 

oropharynx (including the base of the tongue), larynx, and hypopharynx. Oral cavity SCC, with the 

exception of those of the oral tongue, is declining in incidence in the United States because of the 

reduction in cigarette smoking (Patel et al., 2011). In contrast, there is an increasing incidence of 

oropharyngeal SCC involving the palatine and lingual (base of the tongue) tonsils, particularly in 

younger men. These tumors are often associated with HPV. The survival of these patients is better 

than for those whose tumors are un-associated with HPV (Chaturvedi et al., 2011; D’Sou za et al., 
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2007). Laryngeal SCC is declining in incidence and, unlike HNSCC at other sites, is generally 

associated with limited regional metastasis due to anatomic barriers (Pfister et al., 2014). The 

hypopharynx is the least common site for HNSCC and has decreasing incidence but relatively poor 

prognosis (Gourin et al., 2004; Kuo et al., 2014). 

The idea that the genetic alterations present in tumors can be used as biomarkers for cancer 

was proposed more than two decades ago (Sidransky, 1997; Sidransky et al., 1991; Sidransky et 

al., 1992; Boyel et al., 1994). The advantage of genetic alterations over conventional bio-markers 

such as carcinoembryonic antigen or prostate-specific antigen is that genetic changes are 

exquisitely specific for neoplastic cells. One challenge in exploiting genetic alterations for this 

purpose is that the concentration of mutant templates is often low in bodily fluids. Over the last 

several years, however, technological advances have made it possible to detect such mutations even 

when they are rare. These advances have facilitated the detection of altered DNA sequences in 

plasma, stool, Pap smear fluids, sputum, and urine (Sidransky et al., 1991; Sidransky et al., 1992; 

Bettegowda et al., 2014; Diehl et al., 2008; Kinde et al., 2013; Dawson et al., 2013; Newman et al., 

2014; Martignetti et al., 2014; Ralla et al., 2014; Hubers et al., 2013). 

In this proof-of-principle study, we determined whether genetically altered DNA could be 

detected in the saliva or plasma of HNSCC patients with tumors of various stages and anatomical 

sites. We chose these two bodily fluids for obvious reasons: plasma has been shown to harbor tumor 

DNA from many cancers, including HNSCC, though only a few HNSCCs, all of late stage, have 

been previously examined (Bettegowda et al., 2014; Kang et al., 2015; Ahn et al., 2014). Tumor 

DNA that is released from the basal side of HNSCC epithelial cells into the lymphatics or venous 

system should be detectable in this compartment. On the other hand, DNA that is released primarily 

on the apical side of HNSCC should be detectable in the saliva (Bettegowda et al., 2014; Kang et 

al., 2015; Ahn et al., 2014). The studies described below were performed to test these hypotheses. 
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MATERIALS AND METHODS 

STUDY DESIGN 

This was a retrospective study with sample collection performed prospectively from 93 

HNSCC patients donating saliva, 47 of whom are also donating plasma. Data analysis was 

performed in a blinded fashion, and all patient samples were de-identified. 

SAMPLES 

All samples from the 93 patients in this study were collected using Institutional Review 

Board–approved protocols at Johns Hopkins University (JHU) and MD Anderson Medical Center. 

None of the patients in the current study were included in the previously published study from our 

groups, in which the genomic landscapes of HNSCC were described (Agrawal et al., 2011).  

Saliva samples were collected before definitive treatment for primary HNSCC (n = 71, 

76% of 93 patients) and before salvage treatment for recurrent HNSCC (n = 22, 24% of 93 patients). 

In a subset of these patients (n = 9), post treatment saliva was also collected for surveillance. Most 

patients (95% of the 93) underwent a biopsy of the primary tumor and/or metastatic lymph node, 

on average 44 days before the first sample collection (Table 3.4). For the 22 patients with recurrent 

disease, previous treatment including an iteration of surgery, radiation, and/or chemotherapy was 

completed an average of 2.9 years before sample collection (Table 3.4).  

Whole blood was collected from 47 of the 93 patients before treatment. Four to 10 ml of 

plasma was used for DNA purification, with the average amount of plasma being 6 ml. 

Saliva was collected using two different protocols. Under the JHU protocol, patients were 

asked to swish 15 to 20 ml of 0.9% sodium chloride in their mouths for 10 to 15 s before spitting 

into the collection tube. Under the MD Anderson protocol, patients were asked to allow saliva to 

collect in the floor of the mouth for 5 min without swallowing before spitting into the collection 
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vial. There was no significant difference in the amounts of DNA purified, the fraction of mutant 

DNA, or the amount of HPV sequences found with the two protocols. Saliva was frozen at −80°C 

until DNA purification, and the entire volume of saliva, without centrifugation of cells, was used 

for DNA purification. The amount of saliva used averaged 15 ml (range, 10 to 20 ml). 

When fresh tumor tissue from a surgical specimen of invasive SCC was available, it was 

immediately frozen at −80°C. When frozen tissue was not available, formalin-fixed, paraffin-

embedded (FFPE) tissues were used for DNA purification. In either case (freshfrozen or FFPE), 

tumors were macrodissected to ensure neoplastic cellularity exceeding 30%. DNA was purified 

from the white blood cell pellet (normal DNA), saliva, and tumor using an AllPrep Kit (Qiagen, 

catalog #80204), and from plasma using an QIAamp Circulating Nucleic Acid Kit (Qiagen, catalog 

#55114). 

TUMOR MUTATION PROFILING 

A tiered approach was used to identify a somatic mutation within each tumor. Initially, the 

presence of HPV16 and HPV18 was assessed using the primers specific for the E7 oncogene of 

these variants (HPV16: TGTGACTCTACGCTTCGGTTG and GCCCATTAACAGGTCTTCCA; 

HPV18: GCATGGACCTAAGGCAACAT and GAAGGTCAACCGGAATTTCAT). When no 

HPV was present, multiplex PCRs containing primers amplifying regions of interest in TP53, 

PIK3CA, CDKN2A, FBXW7, HRAS, and NRAS were used to identify driver mutations in the tumors 

(Table 3.2). If a mutation was not identified in the queried regions, paired-end libraries of DNA 

from the tumors and white blood cell pellets of each patient were prepared and used for low-

coverage whole-genome sequencing or exomic sequencing as previously described (Agrawal et al., 

2012). Massively parallel sequencing was carried out on an Illumina HiSeq instrument, either in 

the Goldman Sequencing Facility at Johns Hopkins Medical Institutions or at PGDx Inc. Point 

mutations were identified as previously described (Agrawal et al., 2011; Agrawal et al., 2012; 
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Bettegowda et al., 2011), using the following criteria: allele fraction >20%, >5 reads for point 

mutations, and >1 read for translocations. Genomic rearrangements were identified through an 

analysis of discordantly mapping paired-end reads. The discordantly mapping paired-end reads 

were grouped into 1-kb bins when at least five distinct tag pairs (with distinct start sites) spanned 

the same two 1-kb bins, and further annotated on the basis of the approximate breakpoint (Sausen 

et al., 2013). One selected mutation was confirmed through an independent PCR and sequencing 

reaction, and then used to query the saliva or plasma. All oligonucleotides used in this study were 

synthesized by TriLink Biotechnologies. 

MUTATION DETECTION IN SALIVA AND PLASMA 

The same primers used to detect HPV16 in tumor DNA via PCR were used to detect 

HPV16 sequences in the DNA from saliva or plasma. Each saliva DNA or plasma DNA sample 

was assessed in at least three independent PCR assays, and all three assays had to be positive for 

the sample to be counted as positive. As an additional control for specificity, the PCR products 

were sequenced to ensure that they represented HPV16 sequences. To quantify the amount of 

HPV16 sequences present in saliva or plasma, we used digital PCR with the same primers 

(Vogelstein and Kinzler, 1999). Digital PCR was also used to quantify the amount of sequences 

with translocation using primers spanning the breakpoints, as previously described (Leary et al., 

2010). For evaluation of point mutations in saliva or plasma, we used Safe-SeqS, a PCR-based 

error reduction technology for detection of low-frequency mutations in reactions each containing 

up to 3 ng of input DNA (Bettegowda et al., 2014; Kinde et al., 2013). High-quality sequence reads 

were selected on the basis of quality scores, which were generated by the sequencing instrument to 

indicate the probability a base was called in error (Ewing et al., 1998). The template-specific portion 

of the reads was matched to reference sequences. Reads from a common template molecule were 

then grouped on the basis of the unique identifier sequences (UIDs) that were incorporated as 

molecular barcodes. Artifactual mutations introduced during the sample preparation or sequencing 
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steps were reduced by requiring a mutation to be present in >90% of reads in each UID family 

(“supermutant”). Each PCR assay for each plasma or saliva sample was independently repeated at 

least three times, with the mutant allele fractions defined as the total number of supermutants 

divided by the total number of UIDs in all experiments. DNA from normal individuals was used as 

control, using at least five independent assays per queried mutation. Only saliva or plasma samples 

in which the mutant allele fractions significantly exceeded their frequencies in control DNA (P < 

0.05) were scored as positive (Table 3.6 and Table 3.7). 

STATISTICAL ANALYSIS 

Sensitivity for the detection of tumor-specific mutations in the blood and saliva was 

calculated by tumor site, stage, and among HPV-associated tumors. Ability to detect tumor DNA 

in saliva and/or plasma was tested using Fisher’s exact tests, and Wilcoxon rank sum tests were 

used to compare amounts of tumor DNA in saliva versus plasma (Agresti, 2002). For the 

comparison of mutant fractions in patients versus control in Safe-SeqS assays, P values were 

calculated using a two-sided χ2 test of equal proportions or Fisher’s exact test when conditions of 

the χ2 test are not met. The concordance between mutant fractions in saliva and plasma was 

calculated using Pearson’s product-moment correlation coefficient, a standard measure of linear 

dependence between two variables. All statistical analyses were performed using the R statistical 

package version 3.1.2. 

RESULTS 

MUTATIONS IN PRIMARY TUMORS 

 Ninety-three patients with HNSCC were enrolled in this study. Their average age was 60 

and the majority (83%) were male, as is typical of HNSCC patients (Table 3.3). Forty-six, 34, 10, 

and 3 samples were from the oral cavity, oropharynx, larynx, and hypopharynx, respectively. 
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Twenty patients (22%) had early (stage I or II) disease, and the remaining 73 patients (78%) had 

advanced (stage III or IV) disease. 

To begin this study, we attempted to identify at least one genetic alteration in each tumor. 

We first searched for the presence of either HPV type 16 (HPV16) or HPV18 sequences in tumor 

DNA. HPV is a well-established etiologic agent for a growing subset of HNSCCs, specifically 

oropharyngeal SCC (Chaturvedi et al., 2011; D’Sou za et al., 2007). With polymerase chain 

reaction (PCR) primer pairs specific for the E7 gene of the high-risk HPV types responsible for the 

overwhelming majority of HPV-associated HNSCCs, we identified 30 patients (32%) whose 

tumors contained HPV16 DNA and no patients with HPV18. The preponderance of HPV16 is not 

surprising given prior epidemiologic studies of this tumor type (Kreimer et al., 2005). In the other 

63 patients (all of those without HPV), we searched for somatic mutations in genes or gene regions 

commonly altered in HNSCC, including TP53, PIK3CA, CDKN2A, FBXW7, HRAS, and NRAS, 

using multiplex PCR and massively parallel sequencing (Table 3.2) (Agrawal et al., 2011; Stransky 

et al., 2011; Cancer Genome Atlas, 2015). This allowed us to identify a driver mutation in 58 of 

the 63 samples. In the remaining five samples, genome-wide sequencing was performed at low 

coverage with the goal of identifying one driver mutation or translocation as previously described 

(Sausen et al., 2013). Ultimately, we identified and validated one genetic alteration in each of these 

63 samples (Table 3.5). The most commonly mutated gene was TP53 (86% of 63 patients). We 

also searched for mutations in the tumors of 25 of the patients with HPV and found mutations in 

12 of those samples (Table 3.5). 

MUTATIONS IN SALIVA AND PLASMA 

    Important characteristics of screening tests are that samples can be easily collected without 

discomfort and that the collection process is standardized. To achieve these goals, we used oral 

rinses, plasma, and commercially available kits to prepare DNA for conventional genotyping 

purposes. For saliva, we used the entire contents of the collection tube (including cells and cell 
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debris) to prepare DNA. Of the 93 patients who donated saliva for this study before their surgery, 

47 patients (51%) volunteered to donate plasma at the same time. DNA from plasma was purified 

as previously described (Bettegowda et al., 2014). Digital PCR was used to query HPV sequences 

and translocations (Kinde et al., 2012), whereas point mutations were assessed by Safe-SeqS (Safe-

Sequencing System), a PCR-based technology for the detection of low-frequency mutations, as 

previously described (Bettegowda et al., 2014; Kinde et al., 2013; Sausen et al., 2013; Kinde et al., 

2012; Vogelstein and Kinzler 1999). 

Tumor DNA was identified in 76% (n = 93) and 87% (n = 47) of the saliva and plasma 

samples from these patients, respectively (Table 3.1, Table 3.6 and Table 3.7). In the subset of 

patients with both plasma and saliva samples, 96% (n = 47) of patients had a tumor-specific 

alteration identified in at least one bodily fluid. Twenty-one of the 47 patients had HPV-positive 

tumors. Eighteen of the 21 patients (86%) had detectable HPV DNA in their plasma and/or saliva 

(Table 3.1, Table 3.6 and Table 3.7). Because HPV16 is rarely found in oral specimens of healthy 

individuals, we analyzed 10 saliva or plasma samples from patients whose tumors were not HPV-

positive as controls (Kreimer et al., 2010; Gillson et al., 2009-2010). As expected, no HPV was 

detected in any of these samples, confirming the specificity of the test. In all 26 patients without 

HPV-positive tumors, endogenous DNA mutations, mostly in the TP53 gene (92%), were identified 

in plasma or saliva (Table 3.5, Table 3.6 and Table 3.7). Thus, somatic mutations and HPV 

sequences were both useful as biomarkers for malignancy. The sensitivity of these biomarkers for 

detecting cancer was greatly improved when both plasma and saliva were examined, compared to 

testing saliva or plasma alone. There was no significant correlation between the amounts of tumor 

DNA in saliva versus plasma in the patients in whom both sample types were available (correlation 

coefficient of 0.074, P = 0.74), However, the use of versus plasma, and HPV versus somatic 

mutations, differed considerably with respect to the site of disease, as noted below. 
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SITE 

All (100%) of the 46 patients with oral cavity cancers harbored detectable tumor DNA in 

their saliva (Table 3.1). The sensitivities of detection in saliva of malignancy at sites not directly 

sampled by an oral rinse were lower: 47% (n = 34), 70% (n = 10), and 67% (n = 3) of patients with 

oropharyngeal cancers, laryngeal cancers, and hypopharyngeal cancers had detectable tumor DNA, 

respectively. The detection rate of tumor DNA in plasma varied less with site, as expected: 80% (n 

= 15), 91% (n = 22), 86% (n = 7), and 100% (n = 3) of tumors of the oral cavity, oropharynx, 

larynx, and hypopharynx, respectively, had detectable tumor DNA in plasma. 

It is well known that HPV-associated tumors are most often found at specific sites, 

particularly the oropharynx. Twenty-nine of the 34 (85%) oropharyngeal cancers were HPV-

positive. The remaining five oropharyngeal cancers were negative for HPV by PCR, were 

associated with tobacco use, and harbored TP53 mutations. In contrast, all but 1 of 59 samples from 

the oral cavity, larynx, and hypopharynx were HPV-negative. The finding that only 1 of the 46 oral 

cavity cancers tested was HPV-positive is consistent with recent evidence about the low prevalence 

of HPV-related cancers in the oral cavity (Isayeva et al., 2012; Lingen et al., 2013). For the HPV-

associated cancers, which represent 30 (32%) of the total HNSCCs in our study, the presence of 

HPV DNA in bodily fluids represents a very convenient marker: HPV was detected in 40% (n = 

30) of saliva samples and 86% (n = 21) of available plasma samples with a single primer pair 

specific for the E7 gene of HPV16 (Table 3.1). 

Collectively, these data indicate that plasma rather than saliva is the optimal fluid for 

detecting tumor DNA in tumors of the oropharynx, larynx, and hypopharynx. Of the 32 patients 

with tumors from these sites in which both plasma and saliva were available, mutant DNA was 

detected in more plasma samples than saliva samples (29 versus 18, respectively). The amount of 

detectable mutant DNA alleles, expressed as a fraction of the total alleles assessed, was ~10-fold 

higher in the plasma compared with the saliva of these patients (median, 0.146% versus 0.015%; P 
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= 0.005, Wilcoxon rank sum test; Table 4.6 and Table 4.7). The higher fraction of alleles 

considerably simplifies the task of identifying such mutations. This pattern was not observed in the 

oral cavity: the fraction of patients harboring mutant DNA, as well as the mutant allele fraction, 

was similar in the saliva and plasma (median, 0.65% versus 0.54%; P = 0.14, Wilcoxon rank sum 

test; Table 3.6 and Table 3.7). 

STAGE 

Most HNSCC patients have advanced disease (stage III or IV) at diagnosis (2). 

Accordingly, only 22% of the 93 patients in our cohort presented with early-stage disease (Table 

3.3). Overall, tumor-specific DNA could be detected in the plasma or saliva of 100% (n = 20) and 

86% (n = 73) of patients with early and advanced disease, respectively (P = 0.116, Fisher’s exact 

test). Saliva provided a more sensitive predictor of early-stage disease than plasma: 100% (15 of 

15 oral cavity cancers, 3 of 3 oropharyngeal cancers, and 2 of 2 laryngeal cancers) versus 70% (5 

of 7 oral cavity cancers, 2 of 2 oropharyngeal cancers, and 0 of 1 laryngeal cancers), respectively 

(P = 0.03, Fisher’s exact test; Table 3.1). Contributing to the high sensitivity in saliva was the fact 

that 75% (15 of 20) of the earlystage cancers in the study were from the oral cavity, which are most 

readily detectable in saliva and are preferentially treated with surgery, explaining their enrichment 

in our study. As expected, plasma provided a more sensitive predictor than saliva in patients with 

advanced-stage disease: 92% (n = 37) versus 70% (n = 73), respectively (P = 0.008, Fisher’s exact 

test; Table 4.1). When segregated by nodal status, tumor-specific DNA could be detected in the 

plasma or saliva of 83% (n = 59) and 100% (n = 34) of patients with or without nodal metastasis, 

respectively. When both saliva and plasma were available, there was little difference between the 

detectability of cancers with respect to stage of disease (Table 3.1). An important caveat is that 

only five patients with early-stage disease of non-oral cavity sites were available; although tumor 

DNA was detectable in all of these patients (all had detectable tumor DNA in saliva; two of the 

three patients with available plasma also had detectable tumor DNA in their plasma), the amount 
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of tumor DNA was considerably lower than that of late-stage patients (median, 0.007% versus 

0.06%; P = 0.03, Wilcoxon rank sum test). 

HUMAN PAPILOMA VIRUS 

Thirty patients harbored HPV16 DNA in their tumors when assessed by PCR, and none 

had HPV18. Of these 30 tumors, 29 (97%) were thought to be HPV-associated upon clinical 

presentation on the basis of in situ hybridization with high-risk HPV sequences or 

immunohistochemistry with antibodies to p16; in one case, the HPV status had not been determined 

in the clinic. Additionally, there were no patients who were considered to have HPV-associated 

tumors in the clinic and did not have HPV16 DNA identified in their tumors by PCR. This supports 

the specificity and sensitivity of our assays. As expected from the literature, all except 1 of the 30 

tumors containing HPV DNA were found in the oropharynx (D’Sou za et al., 2007; Isayeva et al., 

2012). As expected, plasma from HPV-associated tumors was more informative than saliva; HPV 

DNA was detectable in the plasma of 86% (n = 21) of the patients but in only 40% (n = 30) of the 

saliva from these patients (Table 3.1). 

SURVEILLANCE 

Although not the primary purpose of this study, it was of interest to determine whether 

tumor DNA could be found in the saliva or plasma of patients after surgical removal of their tumors. 

“Follow-up” samples were available in nine patients in whom tumor DNA could be identified 

before therapy. Three of these patients were found to have tumor DNA in their saliva or plasma 

after surgery, but before clinical evidence of disease recurrence (Figure 3.2). For example, patient 

HN 399, with cancer of the oral cavity, was found to have tumor DNA in his saliva and plasma 4 

months after surgery, whereas the recurrence only became evident clinically 19 months later (23.6 

months after surgery). Similarly, tumor DNA was found in the saliva and plasma of patient HN 

402, with cancer of the oral cavity, at 8 months after surgery, 9 months before the recurrence was 
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clinically evident. Patient HN 380 with cancer of the larynx was found to have tumor DNA in his 

saliva 7 months after surgery, before any clinical or radiologic evidence of disease recurrence; the 

patient died of recurrent disease soon thereafter. Tumor DNA was detectable in the saliva of patient 

HN 367 with cancer of the oropharynx 25 months after surgery; at the time of writing (36 months 

after surgery), no biopsy-proven disease is yet evident, but the clinical course has been complicated 

with suspicious imaging for locoregional and metastatic disease. No tumor DNA was detectable in 

the saliva and/or plasma of the other five patients in whom samples were available, all of whom 

have shown no clinical evidence of recurrence for a median follow-up of 12 months (Figure 3.3). 
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Figure. 3.1. Schematic showing the shedding of tumor DNA from head and neck cancers into the 
saliva or plasma 

 

Tumors from various anatomic locations shed DNA fragments containing tumor-specific 
mutations and HPV DNA into the saliva or the circulation. The detectability of tumor DNA in the 
saliva varied with anatomic location of the tumor, with the highest sensitivity for oral cavity 
cancers. The detectability in plasma varied much less in regard to the tumor’s anatomic location. 
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Figure 3.2 Timeline of patients following first positive tumor DNA sample. 

 

Tumor DNA is Detectable in the saliva of patients before recurrence becomes clinically evident. 
Nine patients were followed-up for a median of 12 months after surgery. Dashed lines transition 
to solid lines wen tumor DNA was detected after surgery. *Twenty-five months prior to surgery, 
patient 367 also underwent chemoradiation therapy. 
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Figure 3.3 Kaplan-Meier plot of patients with detectable and undetectable tumor DNA. 

 

Patients with undetectable tumor DNA after surgery have better disease-free survival.  
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Table 3.1 Detection of tumor-derived DNA in saliva and plasma 
The percentages of patients whose tumors were detectable through the examination of saliva, 
plasma, or both are shown, grouped by tumor site, stage, and HPV status. 

 
Saliva, % with mutations (95%  Plasma, % with mutations (95%  Saliva or plasma, % with mutations 

confidence intervals) (total number  confidence intervals) (total number  (95% confidence 
intervals) (total studied) studied) number studied)* 

 
Site 

Oral cavity 100 (92–100%) (46) 80 (52–96%) (15) 100 (78–100%) (15) 
Oropharynx 47 (30–65%) (34) 91 (71–99%) (22) 91 (71–99%) (22) 
Larynx 70 (35–93%) (10) 86 (42–99%) (7) 100 (59–100%) (7) 
Hypopharynx 67 (9.4–99%) (3) 100 (29–100%) (3) 100 (29–100%) (3) 

Stage 
Early (I and II) 100 (83–100%) (20) 70 (35–93%) (10) 100 (69–100%) (10) 
Late (III and IV) 70 (58–80%) (73) 92 (78–98%) (37) 95 (82–99%) (37) 

HPV 
Positive 40 (23–59%) (30) 86 (64–97%) (21) 86 (64–97%) (21) 
Total 76 (66–85%) (93) 87 (74–95%) (47) 96 (85–99%) (47) 

 
* 

Includes only patients from whom both saliva and plasma were available. 
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Table 3.2:  Primer sequences used in multiplex assay for identification of driver mutations in tumors.   

Gene 
Genomic coordinates of 
amplified region* Forward primer sequence Reverse primer sequence 

Amplicon 
length (bp) 

FBXW7 chr4:153249328-153249457 GAAGTCCCAACCATGACAAGA CGGACACTCAAAGTGTGGAA 130 
FBXW7 chr4:153247295-153247409 TTGTTTTTCTGTTTCTCCCTCTG CTGCAACATGACCCATCAAA 115 
FBXW7 chr4:153247211-153247339 TTGAGACAGGCCAGTGTTTACAT CAGTCTCTGGATCCCACACC 129 
NRAS chr1:115258719-115258840 GATGTGGCTCGCCAATTAAC GATTGTCAGTGCGCTTTTCC 122 
NRAS chr1:115256485-115256609 ACACCCCCAGGATTCTTACAG CGCCTGTCCTCATGTATTGG 125 
PIK3CA chr3:178916781-178916899 CCCCCTCCATCAACTTCTTC GAAAAAGCCGAAGGTCACAA 119 
PIK3CA chr3:178921442-178921555 CAGACGCATTTCCACAGCTA ACATTCACGTAGGTTGCACAAA 114 
PIK3CA chr3:178927879-178928007  AGAGATGATTGTTGAATTTTCCTTTT AGTTTATATTTCCCCATGCCAAT 129 
PIK3CA chr3:178951924-178952055 GCATGCCAATCTCTTCATAAATC TCCAAAGCCTCTTGCTCAGT 132 
PIK3CA chr3:178951991-178952119 TTTGATGACATTGCATACATTCG GATCCAATCCATTTTTGTTGTCCAG 129 
PIK3CA chr3:178936018-178936140 CAATGAATTAAGGGAAAATGACAAA CTCCATTTTAGCACTTACCTGTGAC 123 
HRAS chr11:534245-534371 GGCAGGAGACCCTGTAGGAG GTTCTGGATCAGCTGGATGG 127 
HRAS chr11:533804-533926 GATGGCAAACACACACAGGA GTGGTCATTGATGGGGAGAC 123 
CDKN2A chr9:21971073-21971187 CCGAGTGGCGGAGCTG CACCAGCGTGTCCAGGAAG 115 
CDKN2A chr9:21970874-21971002 ACAAATTCTCAGATCATCAGTCCTC AGGAGCTGGGCCATCG 129 
CDKN2A chr9:21970967-21971091 GCAGGTACCGTGCGACAT CTTCCTGGACACGCTGGT 125 
CDKN2A chr9:21971115-21971237 GGGTCGGGTGAGAGTGG TGGCTCTGACCATTCTGTTCT 123 
CDKN2A chr9:21970997-21971138 GCTCCTCAGCCAGGTCCA GACCCCGCCACTCTCAC 142 
CDKN2A chr9:21974743-21974859 CACCTCCTCTACCCGACCC GGGGAGAGCAGGCAGC 117 
CDKN2A chr9:21974684-21974798 GGCCTCCGACCGTAACTATT AGCCTTCGGCTGACTGG 115 
CDKN2A chr9:21974652-21974761 CTCCCGCTGCAGACCCT GGGTCGGGTAGAGGAGGTG 110 
CDKN2A chr9:21968163-21968300 CTGTAGGACCTTCGGTGACTG TGTGCCACACATCTTTGACC 138 
TP53 chr17:7579818-7579933 CCTTCCAATGGATCCACTCAC ACTGCCTTCCGGGTCACT 116 
TP53 chr17:7579679-7579789 AGCCCCCTAGCAGAGACCT CAGCCCAACCCTTGTCCTT 111 
TP53 chr17:7579502-7579616 TGACTGCTCTTTTCACCCATC TCATCTGGACCTGGGTCTTC 115 
TP53 chr17:7579441-7579572 GCAATGGATGATTTGATGCTG CGGTGTAGGAGCTGCTGG 132 
TP53 chr17:7579388-7579501 AGCTCCCAGAATGCCAGAG TGGGAAGGGACAGAAGATGA 114 
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TP53 chr17:7579338-7579463 CTGCACCAGCAGCTCCTAC CAGAATGCAAGAAGCCCAGA 126 
TP53 chr17:7579270-7579396 GCATTGAAGTCTCATGGAAGC CCCTTCCCAGAAAACCTACC 127 
TP53 chr17:7578475-7578593 GCCCTGACTTTCAACTCTGTCT GGGGGTGTGGAATCAACC 119 
TP53 chr17:7578417-7578540 CTCCGTCATGTGCTGTGACT CAACAAGATGTTTTGCCAACTG 124 
TP53 chr17:7578335-7578455 GCCATGGCCATCTACAAGC ACCAGCCCTGTCGTCTCTC 121 
TP53 chr17:7578211-7578326 GTCCCCAGGCCTCTGATT CGAAAAGTGTTTCTGTCATCCA 116 
TP53 chr17:7578137-7578260 GTGGAAGGAAATTTGCGTGT CTTAACCCCTCCTCCCAGAG 124 
TP53 chr17:7577513-7577635 TGTGATGATGGTGAGGATGG TCATCTTGGGCCTGTGTTATC 123 
TP53 chr17:7577480-7577606 TGGCTCTGACTGTACCACCATC GTGGCAAGTGGCTCCTGA 127 
TP53 chr17:7577068-7577188 TGCCTCTTGCTTCTCTTTTCC GCGGAGATTCTCTTCCTCTGT 121 
TP53 chr17:7576997-7577121 CGTGTTTGTGCCTGTCCTG GCTTCTTGTCCTGCTTGCTT 125 
TP53 chr17:7576840-7576956 TTTTATCACCTTTCCTTGCCTCT CAAGACTTAGTACCTGAAGGGTGAA 117 
TP53 chr17:7576782-7576898 AAGAAGAAAACGGCATTTTGAG CCAGCCAAAGAAGAAACCAC 117 
TP53 chr17:7573947-7574059 CCCTGGCTCCTTCCCAG CTTCTCCCCCTCCTCTGTTG 113 
TP53 chr17:7573881-7574007 GTTCCGAGAGCTGAATGAGG TAGGAAGGCAGGGGAGTAGG 127 
TP53 chr17:7572929-7573043 AGTCTGAGTCAGGCCCTTCTG ATGTCATCTCTCCTCCCTGCT 115 
TP53 chr17:7572929-7573043 ATGTCATCTCTCCTCCCTGCT AGTCTGAGTCAGGCCCTTCTG 115 
TP53 chr17:7572893-7573009 GCCACCTGAAGTCCAAAAAG GAGGCTGTCAGTGGGGAAC 117 

  
*Coordinates refer to the human reference genome hg19 release (Genome Reference Consortium GRCh37, Feb 2009). 
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Table 3.3: Patient demographics     

Patient ID Age at 
diagnosis Gender Site Subsite Stage T classification N classification 

HN 358 34 M OC Tongue III T2 N1 

HN 359 67 M L Glottic III T3 N0 

HN 361 68 M OC Tongue I T1 N0 

HN 362 56 M OP Base of tongue IV T1 N2 

HN 363 61 F OC Buccal mucosa II T2 N0 

HN 364 61 M OC Tongue IV T4 N2 

HN 365 57 M OP Soft palate II T2 N0 

HN 366 70 M OC Alveolar ridge IV T4a N0 

HN 367 58 M OP Base of tongue IV T2 N2 

HN 368 50 M OC Tongue I T1 N0 

HN 369 74 M L Supraglottic II T2 N0 

HN 370 54 M OC Buccal mucosa IV T2 N2 

HN 371 77 F OC Tongue I T1 N0 

HN 372 61 M OP Base of tongue II T2 N0 

HN 373 69 M L Supraglottic III T3 N0 

HN 375 54 M OC Alveolar ridge I T1 N0 

HN 377 55 M OP Base of tongue IV T2 N2 

HN 380 65 M L Transglottic IV T4a N0 

HN 381 45 M OC Tongue II T2 N0 

HN 382 48 F OC Buccal mucosa IV T4a N0 

HN 383 61 M OC Tongue I T1 N0 

HN 384 68 M OP Base of tongue IV T1 N2 

HN 385 54 F L Supraglottic IV T4a N1 

HN 386 75 M OC Lip IV T4 N2 

HN 389 59 M OC Hard palate IV T4b N0 

HN 390 61 M OP Tonsil IV T2 N3 

HN 391 54 M OP Unknown IV Tx N2 

HN 392 65 M OP Base of tongue IV T2 N2 

HN 393 83 M OP Base of tongue IV T1 N2 

HN 394 51 M L Glottic IV T4a N2 

HN 395 55 M OP Tonsil IV T4a N2 

HN 396 58 M OP Base of tongue IV T1 N2 

HN 397 55 M OP Tonsil IV T2 N3 

HN 398 59 M OC Floor of mouth III T1 N1 

HN 399 77 F OC Floor of mouth I T1 N0 

HN 400 50 M OP Tonsil IV T1 N2 

HN 401 52 M OP Base of tongue IV T2 N2 

HN 402 38 M OC Tongue III T1 N1 

HN 404 65 F OP Tonsil IV T2 N2 

HN 405 65 M H Post cricoid IV T4b N2 

HN 406 65 M OP Base of tongue III T3 N0 

HN 407 61 M L Transglottic IV T4a N0 

HN 408 61 M OP Tonsil I T1 N0 

HN 409 68 M OC Tongue IV T4 N2 

HN 410 58 M OP Tonsil IV T1 N2 

HN 411 59 M OP Base of tongue III T1 N1 

HN 412 58 M OC Tongue III T3 N0 
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HN 413 51 M L Supraglottic IV T4a N2 

HN 414 59 M OP Base of tongue III T2 N1 

HN 415 56 M OC Tongue II T2 N0 

HN 416 65 M OC Tongue IV T4 N2 

HN 417 44 M OC Tongue IV T2 N2 

HN 418 73 F OC Alveolar ridge IV T2 N2 

HN 419 55 M OC Tongue III T3 N0 

HN 420 40 M OC Tongue IV T2 N2 

HN 421 62 M OC Floor of mouth IV T4 N2 

HN 423 35 F OC Tongue IV T3 N2 

HN 424 50 M OC Tongue IV T4a N0 

HN 425 68 M OC Floor of mouth IV T3 N2 

HN 426 71 M OC Alveolar ridge IV T4 N2 
HN 427 53 M OC Floor of mouth IV T4 N1 
HN 428 58 F OC Tongue II T2 N0 
HN 429 61 F OC Tongue IV T2 N2 
HN 430 55 M OC Floor of mouth II T2 N0 
HN 431 63 F OC Tongue II T2 N0 
HN 432 71 F OC Tongue II T2 N0 
HN 433 61 M OC Alveolar ridge IV T4 N2 

HN 435 67 M OC Retromolar trigone IV T4a N2 
HN 436 62 M OC Tongue IV T2 N2 
HN 438 56 F OC Tongue I T1 N0 

HN 439 65 M H Piriform sinus IV T4a N1 

HN 440 53 M OP Base of tongue III T1 N1 

HN 441 80 F OP Tonsil III T1 N1 

HN 443 52 M OC Floor of mouth IV T4a N2 

HN 444 83 M OP Base of tongue III T3 N0 

HN 445 74 F OC Tongue I T1 N0 

HN 447 45 M OP Tonsil IV T2 N2 

HN 449 52 M OP Tonsil IV T3 N2 

HN 450 45 M OP Unknown III Tx N1 

HN 451 82 M OC Tongue IV T2 N2 

HN 452 60 M OP Base of tongue IV T1 N2 

HN 454 86 M OC Tongue IV T1 N3 

HN 456 60 M H Piriform sinus IV T4a N0 

HN 457 67 M OP Base of tongue III T3 N1 

HN 458 58 M L Glottic IV T4a N0 

HN 459 54 M OC Tongue IV T3 N2 

HN 460 54 M OP Base of tongue IV T2 N2 

HN 462 54 F OC Tongue IV T2 N2 

HN 463 68 M L Glottic I T1a N0 

HN 464 47 M OP Base of tongue IV T1 N2 

HN 469 58 M OP Tonsil IV T2 N2 

HN 473 45 M OP Base of tongue III T1 N1 

HN 474 39 M OP Base of tongue IV T2 N2 

OC = oral cavity, OP = oropharynx,  H = hypopharynx,  L = larynx, and NA = not available  
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Table 3.4 Patient treatment information 

Patient 
ID 

Interval between 
Biopsy and 

Sample 
Collection (days) 

Treatment Prior to 
Sample Collection for 

Patients with Recurrence 
(days prior) 

HN 358 78 No prior treatment 

HN 359 335 RT (449) 

HN 361 29 No prior treatment 

HN 362 66 No prior treatment 

HN 363 24 Surgery (151) 

HN 364 21 Surgery, RT (324) 

HN 365 28 CRT (244) 

HN 366 35 No prior treatment 

HN 367 24 CRT (774) 

HN 368 15 No prior treatment 

HN 369 20 RT (190) 

HN 370 34 No prior treatment 

HN 371 40 No prior treatment 

HN 372 75 Surgery, RT (3503) 

HN 373 No prior biopsy CRT (161) 

HN 375 42 No prior treatment 

HN 377 No prior biopsy Surgery (709) 

HN 380 27 CRT (432) 

HN 381 32 CRT (194) 

HN 382 14 No prior treatment 

HN 383 26 No prior treatment 

HN 384 49 No prior treatment 

HN 385 93 No prior treatment 

HN 386 84 Surgery (1249) 

HN 389 35 No prior treatment 

HN 390 33 No prior treatment 

HN 391 48 No prior treatment 

HN 392 9 No prior treatment 

HN 393 28 No prior treatment 

HN 394 27 RT (337) 

HN 395 23 No prior treatment 

HN 396 9 No prior treatment 

HN 397 42 No prior treatment 

HN 398 23 No prior treatment 

HN 399 No prior biopsy No prior treatment 

HN 400 18 No prior treatment 

HN 401 23 CRT (226) 

HN 402 35 No prior treatment 
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HN 404 36 No prior treatment 

HN 405 53 No prior treatment 

HN 406 21 No prior treatment 

HN 407 20 No prior treatment 

HN 408 42 Surgery, RT (1783) 

HN 409 28 No prior treatment 

HN 410 25 No prior treatment 

HN 411 78 No prior treatment 

HN 412 20 No prior treatment 

HN 413 109 No prior treatment 

HN 414 22 Surgery, RT (3757) 

HN 415 69 No prior treatment 

HN 416 25 No prior treatment 

HN 417 58 No prior treatment 

HN 418 74 No prior treatment 

HN 419 22 No prior treatment 

HN 420 31 No prior treatment 

HN 421 68 No prior treatment 

HN 423 35 No prior treatment 

HN 424 107 No prior treatment 

HN 425 36 No prior treatment 

HN 426 31 No prior treatment 

HN 427 45 No prior treatment 

HN 428 55 No prior treatment 

HN 429 58 No prior treatment 

HN 430 49 No prior treatment 

HN 431 39 No prior treatment 

HN 432 58 No prior treatment 

HN 433 49 Surgery, CRT (1095) 

HN 435 77 No prior treatment 

HN 436 52 No prior treatment 

HN 438 22 No prior treatment 

HN 439 49 No prior treatment 

HN 440 52 No prior treatment 

HN 441 62 No prior treatment 

HN 443 87 No prior treatment 

HN 444 56 Surgery, RT (2279) 

HN 445 25 No prior treatment 

HN 447 8 No prior treatment 

HN 449 29 No prior treatment 

HN 450 48 No prior treatment 

HN 451 No prior biopsy CRT (157) 

HN 452 90 No prior treatment 
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HN 454 23 No prior treatment 

HN 456 26 RT (121) 

HN 457 18 Surgery, RT (4729) 

HN 458 40 No prior treatment 

HN 459 22 Surgery, RT (69) 

HN 460 37 No prior treatment 

HN 462 41 No prior treatment 

HN 463 No prior biopsy No prior treatment 

HN 464 28 No prior treatment 

HN 469 58 No prior treatment 

HN 473 11 No prior treatment 

HN 474 44 No prior treatment 
RT = Radiation therapy, CRT = Chemoradiation therapy 
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Table 3.5 Tumor mutation information 

Patient ID HPV status of 
Tumor 

Gene mutated 
in Tumor 

Type of 
Mutation Genomic Position cDNA Change Amino Acid 

Change 

HN 358 HPV negative TP53 SBS 7578524 406C>T Q136* 

HN 359 HPV negative TP53 SBS 7577082 856G>A E286K 

HN 361 HPV negative TP53 SBS 7578268 581T>G L194R 

HN 362 HPV16 positive PIK3CA SBS 178936091 1633G>A E545K 

HN 363 HPV negative TP53 SBS 7576851 c.993+2T>C NA 

HN 364 HPV negative TP53 SBS 7576928 c.920-2A>G NA 

HN 365 HPV16 positive HPV16 NA NA NA NA 

HN 366 HPV negative TP53 SBS 7578553 377A>G Y126C 

HN 367 HPV16 positive PIK3CA SBS 178936082 1624G>A E542K 

HN 368 HPV negative TP53 SBS 7578550 380C>A S127Y 

HN 369 HPV negative TP53 INDEL 7577094 c.844_845insCTGTGCGCC R282fs 

HN 370 HPV negative TP53 SBS 7577094 844C>T R282W 

HN 371 HPV negative NOTCH1 SBS 139411837 1442G>T G481V 

HN 372 HPV negative TP53 SBS 7577120 818G>T R273L 

HN 373 HPV negative TP53 SBS 7574021 1006G>T E336* 

HN 375 HPV negative TP53 SBS 7577574 707A>G Y236C 

HN 377 HPV16 positive HPV16 NA NA NA NA 

HN 380 HPV negative TP53 SBS 7577082 856G>A E286K 

HN 381 HPV negative TP53 SBS 7577097 841G>A D281N 

HN 382 HPV negative TP53 SBS 7577570 711G>A M237I 

HN 383 HPV negative TP53 SBS 7577094 844C>T R282W 

HN 384 HPV16 positive PIK3CA SBS 178936091 1633G>A E545K 

HN 385 HPV negative TP53 SBS 7579358 329G>T R110L 

HN 386 HPV negative TP53 SBS 7578500 430C>T Q144* 

HN 389 HPV negative PIK3CA SBS 178952085 3140A>G H1047R 
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HN 390 HPV16 positive HPV16 NA NA NA NA 

HN 391 HPV16 positive HPV16 NA NA NA NA 

HN 392 HPV16 positive FBXW7 SBS 153249384 1394C>T R465H 

HN 393 HPV16 positive HPV16 NA NA NA NA 

HN 394 HPV negative TP53 SBS 7578179 670G>T E224* 

HN 395 HPV16 positive HPV16 NA NA NA NA 

HN 396 HPV16 positive PIK3CA SBS 178916876 263G>A R88Q 

HN 397 HPV negative TP53 SBS 7578478 452C>A P151H 

HN 398 HPV negative NA Translocation  chr11:69467879-chr11:69469070 NA NA 

HN 399 HPV negative TP53 SBS 7577121 817C>T R273C 

HN 400 HPV16 positive PIK3CA SBS 178936091 1633G>A E545K 

HN 401 HPV16 positive HPV16 NA NA NA NA 

HN 402 HPV negative TP53 SBS 7577120 818G>A R273H 

HN 404 HPV16 positive NRAS SBS 115256530 181C>A Q61K 

HN 405 HPV negative TP53 SBS 7577538 743G>A R248Q 

HN 406 HPV negative TP53 SBS 7574000 1027G>T E343* 

HN 407 HPV negative TP53 SBS 7578406 524G>A R175H 

HN 408 HPV negative TP53 SBS 7577568 713G>T C238F 

HN 409 HPV negative CDKN2A INDEL 21971125-21971127 231delTC T77fs 

HN 410 HPV16 positive HPV16 NA NA NA NA 

HN 411 HPV16 positive HPV16 NA NA NA NA 

HN 412 HPV negative NA Translocation chr18:45662870-chr11:69291050 NA NA 

HN 413 HPV negative TP53 SBS 7577538 743G>T R248L 

HN 414 HPV16 positive PIK3CA SBS 178936082 1624G>A E542K 

HN 415 HPV16 positive HPV16 NA NA NA NA 

HN 416 HPV negative NOTCH1 INDEL 139396749 5359delC L1787fs 

HN 417 HPV negative TP53 SBS 7578406 524G>A R175H 

HN 418 HPV negative TP53 SBS 7577538 743G>A R248Q 
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HN 419 HPV negative TP53 SBS 7578271 578A>T H193L 

HN 420 HPV negative TP53 SBS 7574003 1024C>T R342* 

HN 421 HPV negative NOTCH1 INDEL 139418317 255_256insA Y85fs 

HN 423 HPV negative TP53 SBS 7577081 857A>C E286A 

HN 424 HPV negative TP53 SBS 7577046 892G>T E298* 

HN 425 HPV negative TP53 INDEL 7577498 c.782+1_782+2insC NA 

HN 426 HPV negative CDKN2A SBS 21968242 c.458-1G>A NA 

HN 427 HPV negative TP53 SBS 7578392 538G>T E180* 

HN 428 HPV negative TP53 SBS 7577121 817C>T R273C 

HN 429 HPV negative TP53 SBS 7577574 707A>G Y236C 

HN 430 HPV negative TP53 SBS 7578212 637C>T R213* 

HN 431 HPV negative TP53 SBS 7574017 1010G>T R337L 

HN 432 HPV negative TP53 SBS 7577118 820G>T V274F 

HN 433 HPV negative TP53 SBS 7578458 472C>G R158G 

HN 435 HPV negative TP53 SBS 7578550 380C>A S127Y 

HN 436 HPV negative TP53 SBS 7579366 321C>G Y107* 

HN 438 HPV negative TP53 SBS 7577590 691A>G T231A 

HN 439 HPV negative TP53 SBS 7578188 661G>T E221* 

HN 440 HPV16 positive HPV16 NA NA NA NA 

HN 441 HPV16 positive HPV16 NA NA NA NA 

HN 443 HPV negative TP53 INDEL 7579590 97-2_97delAGT S33fs 

HN 444 HPV16 positive PIK3CA SBS 178936082 1624G>A E542K 

HN 445 HPV negative PIK3CA SBS 178952085 3140A>G H1047R 

HN 447 HPV16 positive HPV16 NA NA NA NA 

HN 449 HPV16 positive FBXW7 SBS 153249384 1394C>T R465H 

HN 450 HPV16 positive HPV16 NA NA NA NA 

HN 451 HPV negative TP53 SBS 7577094 844C>T R282W 

HN 452 HPV16 positive FBXW7 SBS 153247289 1513C>G R505G 
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HN 454 HPV negative TP53 SBS 7578492 438G>A W146* 

HN 456 HPV negative TP53 SBS 7574018 1009C>T R337C 

HN 457 HPV negative TP53 SBS 7579358 329G>T R110L 

HN 458 HPV negative TP53 SBS 7577121 817C>T R273C 

HN 459 HPV negative TP53 SBS 7578271 578A>G H193R 

HN 460 HPV16 positive PIK3CA SBS 178936091 1633G>A E545K 

HN 462 HPV negative TP53 SBS 7578492 438G>A W146* 

HN 463 HPV negative TP53 SBS 7578208 641A>G H214R 

HN 464 HPV16 positive HPV16 NA NA NA NA 

HN 469 HPV16 positive HPV16 NA NA NA NA 

HN 473 HPV16 positive HPV16 NA NA NA NA 

HN 474 HPV16 positive HPV16 NA NA NA NA 
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Table 3.6 Saliva mutation information 

Patient 
ID 

Somatic 
Mutation: 

Patient 
FRACTION 
of MUTANT 

reads 

Somatic 
Mutation: 

Patient 
NUMBER of 

MUTANT 
reads 

Somatic 
Mutation: 

Patient 
NUMBER of 
WILD-TYPE 

reads 

Somatic 
Mutation: 

CONTROL 
FRACTION of 

MUTANT 
reads 

Somatic 
Mutation: 

CONTROL 
NUMBER of 

MUTANT 
reads 

Somatic 
Mutation: 

CONTROL 
NUMBER of 
WILD-TYPE 

reads 

Somatic 
Mutation: P-
value (Patient 
vs. Control) 

HPV: 
templates/ng DNA 

HN 358 0.541% 657 120798 0.000% 0 78462 3.00E-94 Not quantified 

HN 359 0.009% 19 205715 0.000% 0 190784 7.25E-05 Not quantified 

HN 361 0.245% 845 343819 0.004% 6 137370 5.81E-72 Not quantified 

HN 362 0.000% 0 32958 0.000% 0 99828 NA No HPV found 

HN 363 5.443% 8843 153613 0.001% 3 244530 0.00E+00 Not quantified 

HN 364 0.106% 189 177609 0.001% 2 285252 7.88E-66 Not quantified 

HN 365 Not assessed Not assessed Not assessed Not assessed Not assessed Not assessed NA 59.8 

HN 366 3.296% 4905 143907 0.000% 0 78462 0.00E+00 Not quantified 

HN 367 0.003% 28 862561 0.000% 0 165648 1.66E-02 No HPV found 

HN 368 11.467% 22073 170413 0.002% 4 229130 0.00E+00 Not quantified 

HN 369 0.001% 10 1190330 0.000% 0 3671899 7.73E-07 Not quantified 

HN 370 2.390% 9233 377059 0.006% 6 94302 0.00E+00 Not quantified 

HN 371 1.628% 9504 574434 0.000% 0 74781 2.77E-270 Not quantified 

HN 372 0.007% 29 426931 0.000% 2 523939 1.40E-07 Not quantified 

HN 373 0.000% 0 79917 0.000% 0 75699 NA Not quantified 

HN 375 0.040% 123 310509 0.000% 0 222409 1.49E-20 Not quantified 

HN 377 Not assessed Not assessed Not assessed Not assessed Not assessed Not assessed NA No HPV found 

HN 380 0.026% 107 414013 0.000% 0 304190 1.81E-18 Not quantified 

HN 381 0.282% 911 322360 0.000% 0 94302 1.37E-59 Not quantified 

HN 382 6.120% 20130 308811 0.000% 0 73755 0.00E+00 Not quantified 

HN 383 0.190% 394 207299 0.006% 6 94302 2.01E-37 Not quantified 
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HN 384 0.000% 0 33081 0.000% 0 99828 NA No HPV found 

HN 385 0.004% 29 717919 0.000% 0 297066 1.11E-03 Not quantified 

HN 386 0.168% 166 98840 0.011% 4 36747 7.42E-13 Not quantified 

HN 389 3.497% 5130 141558 0.000% 0 132561 0.00E+00 Not quantified 

HN 390 Not assessed Not assessed Not assessed Not assessed Not assessed Not assessed NA 0.6 

HN 391 Not assessed Not assessed Not assessed Not assessed Not assessed Not assessed NA No HPV found 

HN 392 0.005% 8 165676 0.000% 0 113715 2.48E-02 0.3 

HN 393 Not assessed Not assessed Not assessed Not assessed Not assessed Not assessed NA No HPV found 

HN 394 0.000% 0 111372 0.000% 0 8730 NA Not quantified 

HN 395 Not assessed Not assessed Not assessed Not assessed Not assessed Not assessed NA 54.1 

HN 396 0.000% 0 248376 0.000% 0 75132 NA No HPV found 

HN 397 0.000% 0 174729 0.000% 0 36747 NA Not quantified 

HN 398 43.000% 4301 5701 0.000% 0 9998 NA Not quantified 

HN 399 1.850% 5696 302191 0.014% 14 101826 0.00E+00 Not quantified 

HN 400 0.000% 0 44937 0.000% 0 99828 NA No HPV found 

HN 401 Not assessed Not assessed Not assessed Not assessed Not assessed Not assessed NA 243.5 

HN 402 0.027% 90 336318 0.000% 0 101826 3.49E-07 No HPV found 

HN 404 0.000% 0 435825 0.000% 0 96993 NA No HPV found 

HN 405 0.033% 57 175443 0.001% 1 73755 6.60E-06 Not quantified 

HN 406 0.005% 22 446306 0.000% 0 151305 1.29E-02 Not quantified 

HN 407 0.024% 94 398354 0.004% 8 189739 2.35E-07 Not quantified 

HN 408 0.006% 18 294486 0.001% 2 222409 5.83E-03 Not quantified 

HN 409 0.028% 102 370428 0.000% 0 62736 5.93E-05 Not quantified 

HN 410 Not assessed Not assessed Not assessed Not assessed Not assessed Not assessed NA 2.7 

HN 411 Not assessed Not assessed Not assessed Not assessed Not assessed Not assessed NA No HPV found 

HN 412 41.000% 4099 5899 0.000% 0 11051 NA Not quantified 

HN 413 0.000% 0 139509 0.000% 0 73755 NA Not quantified 

HN 414 0.000% 0 118473 0.000% 0 99828 NA 0.3 
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HN 415 Not assessed Not assessed Not assessed Not assessed Not assessed Not assessed NA 399.9 

HN 416 0.060% 98 164341 0.000% 0 12387 1.17E-02 Not quantified 

HN 417 0.560% 698 123940 0.011% 16 140283 2.58E-162 Not quantified 

HN 418 6.097% 19333 297749 0.006% 12 215316 0.00E+00 Not quantified 

HN 419 0.217% 302 139354 0.000% 0 243910 3.26E-116 Not quantified 

HN 420 7.347% 32586 410934 0.004% 14 323181 0.00E+00 Not quantified 

HN 421 3.469% 9920 276064 0.000% 0 52392 0.00E+00 No HPV found 

HN 423 2.104% 3222 149904 0.000% 0 94302 0.00E+00 Not quantified 

HN 424 0.653% 2935 446813 0.000% 0 94302 2.58E-136 Not quantified 

HN 425 0.068% 253 374009 0.000% 0 213470 6.50E-33 Not quantified 

HN 426 1.744% 842 47438 0.002% 2 103908 0.00E+00 Not quantified 

HN 427 0.559% 390 69396 0.003% 4 140283 9.79E-169 Not quantified 

HN 428 1.086% 2141 195085 0.009% 25 274420 0.00E+00 Not quantified 

HN 429 2.072% 188 8878 0.000% 0 177032 0.00E+00 Not quantified 

HN 430 0.759% 968 126514 0.012% 21 182440 2.16E-288 Not quantified 

HN 431 1.263% 4979 389245 0.001% 3 323181 0.00E+00 Not quantified 

HN 432 1.430% 1870 128915 0.000% 0 101826 0.00E+00 Not quantified 

HN 433 0.204% 119 58051 0.000% 0 36747 9.36E-18 Not quantified 

HN 435 2.200% 3592 159698 0.000% 0 78462 0.00E+00 Not quantified 

HN 436 0.880% 2415 272049 0.000% 0 250810 0.00E+00 Not quantified 

HN 438 0.062% 210 340200 0.001% 3 215316 1.04E-28 Not quantified 

HN 439 0.000% 0 525321 0.000% 0 8730 NA Not quantified 

HN 440 Not assessed Not assessed Not assessed Not assessed Not assessed Not assessed NA No HPV found 

HN 441 Not assessed Not assessed Not assessed Not assessed Not assessed Not assessed NA 0.3 

HN 443 0.570% 3610 629240 0.000% 0 84825 1.60E-107 Not quantified 

HN 444 0.020% 97 481403 0.000% 0 156321 3.93E-08 7.2 

HN 445 0.151% 359 237184 0.000% 0 132561 3.49E-45 Not quantified 

HN 447 Not assessed Not assessed Not assessed Not assessed Not assessed Not assessed NA No HPV found 
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HN 449 0.019% 68 364936 0.002% 4 217514 4.92E-08 15.6 

HN 450 Not assessed Not assessed Not assessed Not assessed Not assessed Not assessed NA No HPV found 

HN 451 0.419% 1506 358329 0.024% 24 101826 2.91E-83 Not quantified 

HN 452 0.000% 0 466506 0.000% 0 247275 NA No HPV found 

HN 454 0.121% 113 92902 0.000% 0 36747 4.71E-11 Not quantified 

HN 456 0.020% 69 351123 0.003% 2 75699 1.72E-03 Not quantified 

HN 457 0.113% 2360 2086288 0.000% 0 297066 8.44E-75 Not quantified 

HN 458 0.106% 32 30565 0.014% 14 101826 2.82E-13 Not quantified 

HN 459 0.076% 248 327670 0.000% 0 137370 4.25E-24 Not quantified 

HN 460 0.000% 0 94842 0.000% 0 99828 NA No HPV found 

HN 462 0.073% 44 60139 0.000% 0 36747 4.93E-07 Not quantified 

HN 463 0.015% 61 404291 0.000% 0 354892 6.53E-13 No HPV found 

HN 464 Not assessed Not assessed Not assessed Not assessed Not assessed Not assessed NA No HPV found 

HN 469 Not assessed Not assessed Not assessed Not assessed Not assessed Not assessed NA 1.9 

HN 473 Not assessed Not assessed Not assessed Not assessed Not assessed Not assessed NA No HPV found 

HN 474 Not assessed Not assessed Not assessed Not assessed Not assessed Not assessed NA No HPV found 

Patients in BOLD had both saliva and plasma available      
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Table 3.7 Plasma mutation information 

Patient 
ID 

Somatic 
Mutation: 

Patient 
FRACTION 

of 
MUTANT 

reads 

Somatic 
Mutation: 

Patient 
NUMBER of 

MUTANT 
reads 

Somatic 
Mutation: 

Patient 
NUMBER of 
WILD-TYPE 

reads 

Somatic 
Mutation: 

CONTROL 
FRACTION of 

MUTANT 
reads 

Somatic 
Mutation: 

CONTROL 
NUMBER of 

MUTANT 
reads 

Somatic 
Mutation: 

CONTROL 
NUMBER of 
WILD-TYPE 

reads 

Somatic 
Mutation: P-
value (Patient 
vs. Control) 

HPV: 
templates/ng DNA 

HN 358 0.000% 0 69216 0.000% 0 81680 NA Not quantified 

HN 359 0.019% 54 282174 0.002% 3 128972 4.05E-05 Not quantified 

HN 361 0.017% 21 120144 0.001% 3 292883 1.24E-09 Not quantified 

HN 362 No plasma No plasma No plasma No plasma No plasma No plasma NA No plasma 

HN 363 0.796% 1999 251160 0.000% 0 143400 3.89E-249 No HPV found 

HN 364 0.901% 1831 203268 0.000% 0 162245 0.00E+00 No HPV found 

HN 365 Not assessed Not assessed Not assessed Not assessed Not assessed Not assessed NA 63 

HN 366 0.582% 674 115812 0.000% 0 108590 1.19E-138 Not quantified 

HN 367 0.423% 379 89622 0.000% 0 155200 8.88E-144 45.5 

HN 368 0.867% 338 39024 0.000% 0 108590 1.95E-204 No HPV found 

HN 369 No plasma No plasma No plasma No plasma No plasma No plasma NA No plasma 

HN 370 0.498% 251 50454 0.010% 10 96060 6.68E-97 Not quantified 

HN 371 No plasma No plasma No plasma No plasma No plasma No plasma NA No plasma 

HN 372 0.082% 63 76758 0.000% 0 118580 2.16E-22 Not quantified 

HN 373 0.092% 173 187566 0.000% 0 148060 3.80E-31 Not quantified 

HN 375 No plasma No plasma No plasma No plasma No plasma No plasma NA No plasma 

HN 377 Not assessed Not assessed Not assessed Not assessed Not assessed Not assessed NA 6386.6 

HN 380 1.379% 415 30132 0.002% 3 128972 0.00E+00 No HPV found 

HN 381 1.852% 854 46104 0.000% 0 96070 0.00E+00 No HPV found 

HN 382 No plasma No plasma No plasma No plasma No plasma No plasma NA No plasma 
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HN 383 0.031% 5 16158 0.004% 5 140730 1.87E-03 Not quantified 

HN 384 0.022% 19 87564 0.000% 0 155200 2.64E-08 8.9 

HN 385 0.089% 116 130764 0.000% 0 148650 4.82E-30 Not quantified 

HN 386 No plasma No plasma No plasma No plasma No plasma No plasma NA No plasma 

HN 389 0.022% 97 440478 0.000% 0 166610 2.79E-09 Not quantified 

HN 390 Not assessed Not assessed Not assessed Not assessed Not assessed Not assessed NA 4 

HN 391 No plasma No plasma No plasma No plasma No plasma No plasma NA No plasma 

HN 392 0.638% 770 120570 0.004% 5 126570 1.64E-173 33.1 

HN 393 No plasma No plasma No plasma No plasma No plasma No plasma NA No plasma 

HN 394 No plasma No plasma No plasma No plasma No plasma No plasma NA No plasma 

HN 395 Not assessed Not assessed Not assessed Not assessed Not assessed Not assessed NA 57.8 

HN 396 0.344% 331 96294 0.011% 26 235469 7.38E-154 369.2 

HN 397 No plasma No plasma No plasma No plasma No plasma No plasma NA No plasma 

HN 398 No plasma No plasma No plasma No plasma No plasma No plasma NA No plasma 

HN 399 0.000% 0 83514 0.000% 0 556028 NA Not quantified 

HN 400 0.279% 82 29580 0.000% 0 155200 5.36E-94 No HPV found 

HN 401 Not assessed Not assessed Not assessed Not assessed Not assessed Not assessed NA 126.2 

HN 402 0.028% 13 44574 0.003% 3 118577 1.10E-05 Not quantified 

HN 404 0.000% 0 20010 0.000% 0 136300 NA No HPV found 

HN 405 0.057% 40 70278 0.002% 3 162792 1.19E-18 Not quantified 

HN 406 No plasma No plasma No plasma No plasma No plasma No plasma NA No plasma 

HN 407 0.016% 5 30366 0.002% 2 105793 7.69E-03 Not quantified 

HN 408 No plasma No plasma No plasma No plasma No plasma No plasma NA No plasma 

HN 409 No plasma No plasma No plasma No plasma No plasma No plasma NA No plasma 

HN 410 Not assessed Not assessed Not assessed Not assessed Not assessed Not assessed NA 12.3 

HN 411 Not assessed Not assessed Not assessed Not assessed Not assessed Not assessed NA 1.1 

HN 412 No plasma No plasma No plasma No plasma No plasma No plasma NA No plasma 

HN 413 0.330% 455 137820 0.002% 4 162791 1.74E-115 Not quantified 
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HN 414 0.200% 247 123774 0.000% 0 155200 9.26E-69 20.7 

HN 415 No plasma No plasma No plasma No plasma No plasma No plasma NA No plasma 

HN 416 No plasma No plasma No plasma No plasma No plasma No plasma NA No plasma 

HN 417 No plasma No plasma No plasma No plasma No plasma No plasma NA No plasma 

HN 418 No plasma No plasma No plasma No plasma No plasma No plasma NA No plasma 

HN 419 No plasma No plasma No plasma No plasma No plasma No plasma NA No plasma 

HN 420 No plasma No plasma No plasma No plasma No plasma No plasma NA No plasma 

HN 421 No plasma No plasma No plasma No plasma No plasma No plasma NA No plasma 

HN 423 No plasma No plasma No plasma No plasma No plasma No plasma NA No plasma 

HN 424 No plasma No plasma No plasma No plasma No plasma No plasma NA No plasma 

HN 425 No plasma No plasma No plasma No plasma No plasma No plasma NA No plasma 

HN 426 No plasma No plasma No plasma No plasma No plasma No plasma NA No plasma 

HN 427 No plasma No plasma No plasma No plasma No plasma No plasma NA No plasma 

HN 428 No plasma No plasma No plasma No plasma No plasma No plasma NA No plasma 

HN 429 No plasma No plasma No plasma No plasma No plasma No plasma NA No plasma 

HN 430 No plasma No plasma No plasma No plasma No plasma No plasma NA No plasma 

HN 431 No plasma No plasma No plasma No plasma No plasma No plasma NA No plasma 

HN 432 No plasma No plasma No plasma No plasma No plasma No plasma NA No plasma 

HN 433 No plasma No plasma No plasma No plasma No plasma No plasma NA No plasma 

HN 435 No plasma No plasma No plasma No plasma No plasma No plasma NA No plasma 

HN 436 No plasma No plasma No plasma No plasma No plasma No plasma NA No plasma 

HN 438 No plasma No plasma No plasma No plasma No plasma No plasma NA No plasma 

HN 439 2.490% 2300 92358 0.000% 0 153345 0.00E+00 Not quantified 

HN 440 Not assessed Not assessed Not assessed Not assessed Not assessed Not assessed NA 3.4 

HN 441 No plasma No plasma No plasma No plasma No plasma No plasma NA No plasma 

HN 443 0.066% 27 41466 0.000% 0 123775 2.07E-18 Not quantified 

HN 444 No plasma No plasma No plasma No plasma No plasma No plasma NA No plasma 

HN 445 0.000% 0 119568 0.000% 0 166610 NA Not quantified 
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HN 447 Not assessed Not assessed Not assessed Not assessed Not assessed Not assessed NA 11.8 

HN 449 0.084% 48 57852 0.004% 5 126570 6.40E-20 67.4 

HN 450 Not assessed Not assessed Not assessed Not assessed Not assessed Not assessed NA 7.9 

HN 451 0.869% 1513 174054 0.010% 10 96060 3.07E-177 No HPV found 

HN 452 0.069% 128 187146 0.001% 2 227918 6.51E-34 13.7 

HN 454 No plasma No plasma No plasma No plasma No plasma No plasma NA No plasma 

HN 456 2.858% 2224 77814 0.007% 10 148050 0.00E+00 No HPV found 

HN 457 No plasma No plasma No plasma No plasma No plasma No plasma NA No plasma 

HN 458 No plasma No plasma No plasma No plasma No plasma No plasma NA No plasma 

HN 459 No plasma No plasma No plasma No plasma No plasma No plasma NA No plasma 

HN 460 No plasma No plasma No plasma No plasma No plasma No plasma NA No plasma 

HN 462 No plasma No plasma No plasma No plasma No plasma No plasma NA No plasma 

HN 463 0.000% 0 44520 0.000% 0 153345 NA Not quantified 

HN 464 Not assessed Not assessed Not assessed Not assessed Not assessed Not assessed NA No HPV found 

HN 469 Not assessed Not assessed Not assessed Not assessed Not assessed Not assessed NA 4.5 

HN 473 No plasma No plasma No plasma No plasma No plasma No plasma NA No plasma 

HN 474 No plasma No plasma No plasma No plasma No plasma No plasma NA No plasma 

Patients in BOLD had both saliva and plasma available      
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DEVELOPMENT OF BIOMARKER ASSAYS 

 Liquid biopsies represent an exciting new field in cancer research. However, as with any 

biomarker type assay it is important to make sure that any new discoveries are not beset by any 

potential drawbacks. Over-diagnosis is always a potential issue with screening tests. Over-

diagnosis can lead to direct harm to the patient. As with the case of PSA, poor specificity and many 

false positives can lead to mental anguish for the patient as well as expensive and invasive follow 

up tests. The easiest way to help minimize this problem is to focus on increasing the specificity of 

the test.  A poor specificity will lead to a large number of people testing positive that do not even 

have cancer. Focusing on high specificity while retaining good sensitivity should be the aim of any 

biomarker assay that hopes to make a significant impact on cancer diagnosis and treatment.  

IDENTIFYING MOLECULAR MARKERS TO IMPROVE THE CLASSIFICATION OF 

PANCREATIC CYSTS 

The results from this study lead to several important conclusions. First, over half of the 

patients who underwent surgical resection were subsequently found to have a benign SCA, or an 

IPMN with low-, or intermediate-grade dysplasia, and could potentially have continued 

surveillance of their cyst rather than undergoing surgical resection. This highlights the difficulties 

of identifying those cysts that require surgery, versus those in whom surveillance is safe, using the 

modalities currently available to clinicians. These results are in accord with the numerous 

publications showing that current diagnostic criteria for managing cyst patients are inadequate 

(Sahora et al., 2013; Valsangkar et al., 2012). 

Second, we show that the use of composite clinical or molecular markers could 

substantially increase diagnostic accuracy. When either the composite clinical marker or the 

composite molecular marker was used alone, the sensitivity for identifying cysts that required 

resection reached ~75%; in contrast, when used together, sensitivity increased to 92%. It is difficult 



78 
 

to estimate the number of cyst patients who would have surgery, and therefore would not develop 

PDAC, if these markers were widely applied in patient management. Similarly, we hesitate to 

calculate how many needless surgeries might be avoided if these new markers were broadly 

applied. However, the data strongly suggest that the combination of clinical and molecular features 

will be more accurate for assessing cyst type and need for surgical resection than either alone. 

The clinical and radiologic findings incorporated into our composite clinical marker are 

the result of decades of careful study by clinicians (Lennon et al., 2013; Lennon et al., 2014). What 

was added in Masica et al 2017 was a rigorous and quantitative assessment of the most predictive 

features and combinations of features. Similarly, the molecular analysis we employed did not 

require the discovery of new genetic alterations present in pancreatic cysts. Guided by prior studies, 

we have developed assays employing massively parallel sequencing to robustly detect these genetic 

alterations, even when present in relatively low fractions of template molecules. We then used these 

data to identify the most predictive molecular features and combinations of molecular features in a 

rigorous fashion. 

A balance between sensitivity and specificity nearly always must be made during the 

development of biomarkers for any disease. The current study was no exception. The most obvious 

example was in the determination of the need for surgery (Table 2.4). The composite 

molecular/clinical marker provided an excellent sensitivity (89%), considerably higher than either 

the composite molecular or composite clinical marker alone (75% or 77%, respectively). However, 

this increase in sensitivity with the composite molecular/clinical marker compromised specificity, 

reducing it from 92% with the composite molecular marker to 69%. Note that we purposefully 

designed these algorithms to reach maximum sensitivity, sacrificing specificity if necessary, as we 

considered it worse to "miss" a cyst that should be surgically excised than to unnecessarily perform 

surgery on a cyst that should have not been excised. However, this example illustrates that it is not 
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always possible to increase sensitivity without decreasing specificity, even with the aid of 

combinatorial approaches such as MOCA. 

The summary data in Table 2.4, once validated independently, can be used in various ways, 

depending on the clinical situation. In a young and otherwise healthy patient, it would make sense 

to use the most sensitive method available to determine the need for surgery. The composite 

molecular/clinical marker might therefore be used to evaluate such a patient, as it is the most 

sensitive. In an elderly patient with significant comorbidities, however, it might make more sense 

to use the less sensitive, but more specific composite molecular marker to determine the need for 

surgery. Use of the composite molecular marker would largely avoid unnecessary surgery 

(specificity of 92%), while preserving a reasonable sensitivity for highrisk cysts (75%). 

Our study has several limitations. The number of cyst fluid samples from some cyst types 

was relatively limited, thereby limiting confidence in our estimates of sensitivity and specificity (as 

indicated by the confidence intervals provided in all Tables). Another limitation is that our 

composite molecular marker was validated through cross-validation rather than through 

experimental validation of an independent cohort. Though crossvalidation is statistically sound, it 

is not as reliable as the evaluation of a distinct cohort. It is important to note that this limitation 

does not apply to the composite clinical marker; the 130 patients evaluated here were distinct from 

the patients used to define the composite clinical markers (Masica et al., 2017). It was therefore 

gratifying that the sensitivities and specificities estimated from the cross-validation in Masica et al 

2017 were similar to those found in the current study (Table 2.8). 

The possibility of false negative results is always a concern with any sequencing technique. 

This study was designed to detect all known mutations in oncogenes and most mutations in tumor 

suppressor genes that occur in cysts, based on genome wide sequencing (Wu et al., 2011). All 

missense mutations and small insertions or deletions present at allele frequencies of greater than 

1% are easily detectable at the sequencing depth employed in this study (Kinde et al., 2011). 
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Moreover, the approach used in this study yields not just the presence or absence of a mutation; it 

reveals the precise fractional representation of the mutation in the DNA sample. Another source of 

false negative results could occur in tumor suppressor genes. Large deletions or insertions, as well 

as translocations, will not be detected upon sequencing. However, such changes are often 

associated with LOH or copy number changes, and these would be identified by the other assays 

employed in this study. 

Obtaining large volumes of cyst fluid for analysis can be problematic and could potentially 

affect the ability to detect alterations in the molecular markers described in this study. However 

unlike analysis of cyst fluid CEA, which requires 0.5ml to 1ml of cyst fluid in most centers, we 

specifically chose to use methods that can be used on very small amounts of DNA and do not 

require library preparation. Each of the three methods is based on direct polymerase chain reaction, 

and 10 ng of DNA is adequate for all of the tests combined. Using 0.25 mL of either EUS or 

surgically obtained fluids has nearly always yielded sufficient DNA. 

This was a retrospective study. While this has the advantage that all patients underwent 

surgical resection and therefore had defined pathology, it is possible that these markers will not 

perform as well in the general population of cyst patients. It was comforting in this respect that our 

analysis of paired fluids obtained from EUS-guided cyst aspiration and subsequent surgery revealed 

very similar molecular genetic alterations. In the future, the optimum study design will incorporate 

examination of cyst fluids taken at routine EUS sessions over time, then comparing the results to 

those obtained at surgery. In addition, the optimum role of the composite molecular markers, and 

which patients will be benefit from their use, should be addressed in these studies. It will be enticing 

in such research studies to use the composite molecular and clinical markers described in this work 

to help guide the decision about surgery. But because of the limitations of our study described 

above, any such guidance should be performed only in a research study. Use of our composite 

molecular or clinical markers in common practice, outside of a research study, is not yet warranted. 



81 
 

DETECTION OF SOMATIC MUTATIONS AND HPV IN THE SALIVA AND PLASMA OF 

PATIENTS WITH HEAD AND NECK SQUAMOUS CELL CARCINOMAS 

Current diagnostic methods for HNSCC make the detection of early disease, assessment of 

response to treatment, and differentiation between the adverse effects of treatment versus persistent 

or recurrent disease challenging. These issues collectively compromise clinical decision-making 

and impair patient management. Although it is now abundantly clear that all cancers, including 

HNSCC, are the result of genetic alterations, this knowledge is just beginning to be applied to meet 

diagnostic challenges such as those described above (Vogelstein et al., 2013). In this proof-of-

principle study, we show that tumor-derived DNA can be detected in the saliva of patients with 

HNSCC. We also show that the evaluation of plasma can complement that of saliva, together 

allowing detection of tumor-derived DNA in readily obtainable bodily fluids in >90% of the studied 

patients. Our findings lay the conceptual and practical foundation for clinical tests designed for the 

earlier detection of HNSCC, either for patients at high risk for the disease or for patients previously 

treated for HNSCC who are at risk for disease recurrence. Moreover, these results establish a 

paradigm for monitoring the response to treatment. 

There were several notable findings in this study. The sensitivity for detection of 

tumorderived DNA in the saliva was site-dependent and most efficient for tumors in the oral cavity. 

Not only was tumor DNA detectable in every one of the 46 patients with cancers of the oral cavity, 

but also the fraction of mutant DNA in the saliva was particularly high (median, 0.65%; 

interquartile range, 0.17 to 2.2%; mean, 3.46%). Moreover, early-stage oral cavity cancers were 

highly detectable; 75% of the patients with oral cavity cancer were at an early stage (stage I or II), 

and all were detectable. The high fraction of tumor DNA in the saliva of patients with oral cancers 

makes anatomical sense and demonstrates the advantage of examining local bodily fluids for 

optimal sensitivity in this type of assay. 
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HNSCCs distal to the oral cavity (oropharynx, larynx, and hypopharynx) were still often 

detectable through the examination of saliva, but the frequency of their detection (47, 70, and 67%, 

respectively) and the fraction of mutant alleles (median, 0.015%) were considerably lower than 

found in the oral cavity (0.65%). Anatomical locations likely explain this difference. Gargling 

might increase the detectability of tumor DNA in these distal compartments, but to test this idea, a 

reproducible procedure for gargling would have to be devised. 

One striking aspect of this study is the increased sensitivity demonstrated when assays of 

two compartments are combined. This increased sensitivity is possible only because of the exquisite 

specificity of mutant DNA as biomarker; because no false-positives are expected, any number of 

assays can be combined, increasing sensitivity without compromising specificity. The combination 

of saliva and plasma allowed detection of 96% of the cancers when both fluids were available, 

higher than obtained with either saliva or plasma alone. 

We emphasize that our study establishes the proof of principle for the use of saliva and 

plasma to reveal the presence of HNSCCs, but does not comprise a clinical test. In each patient, we 

first evaluated the tumor, then used an alteration (either the presence of HPV or a somatic mutation) 

to query the saliva or plasma. In an actual diagnostic test, a panel of genes would have to be used 

to assess each case. Fortunately, technologies are available for finding mutations, even those 

present at low frequencies (Kinde et al., 2013; Kinde et al., 2012). On the basis of the results 

presented herein, as well as large studies of HNSCC genetics (Agrawal et al., 2011; Stransky et al., 

2011; Cancer Genome Atlas, 2015), a panel including HPV16 DNA sequences, TP53, PIK3CA, 

NOTCH1, and CDKN2A would be able to detect >95% of invasive HNSCCs. Another limitation 

of our study is that the number of early-stage cancers beyond the oral cavity was small, in part 

reflecting the unfortunate fact that most of these cancers are detected only when they are late-stage. 

Future larger studies should be able to determine how often early-stage cancers of the oropharynx, 

larynx, and hypopharynx can be detected using the approach described here. The fact that at least 
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70% of the oropharyngeal cancers in the United States are associated with HPV simplifies this task 

(Chaturvedi et al., 2011; Cancer Genome Atlas, 2015). 

One important application of the results described in this paper is in the diagnosis of 

clinically suspicious lesions. The often complex and highly specialized nature of current HNSCC 

diagnostic procedures can lead to delays in diagnosis and treatment, negatively impacting prognosis 

and survival (Kowalski and Carvalho, 2001; Guggenheimer et al., 1989; Wildt et al., 1995; Allison 

et al., 1998; Carvalho et al., 2002; Koivunen et al., 2001). These delays could be prevented in many 

patients through the examination of saliva and plasma for tumor DNA. Such a test could potentially 

be incorporated into routine examinations to complement current diagnostic modalities and inform 

clinical decision-making. Another obvious application is in disease monitoring and surveillance. In 

nine patients with positive pre-treatment saliva and/or plasma, samples were collected at various 

times after surgery. The fact that no mutations were identified after surgery in the five patients 

whose tumors did not recur highlights the specificity of the mutation-based assay. It was also 

encouraging that we identified tumor DNA in the saliva of patients whose tumors were found to 

recur at the clinical level only months later, suggesting that these tests could provide a clinically 

meaningful lead time. The results presented here provide the setting for a larger study to explore 

whether the presence of tumor DNA in either saliva or plasma can be used to help manage patients 

who appear free of disease after definitive treatment by clinical criteria. 
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