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Abstract 
 

 Archival formalin-fixed, paraffin-embedded (FFPE) tissues are an invaluable 

resource for biomarker discovery due to their vast number in pathology laboratories and 

availability of high-quality, long-term clinical information. These materials are even 

more precious for studies on diseases with rare events and long time-to-event intervals. 

However, these tissues are usually available in limited amounts and formalin treatment of 

tissue rendersrecovery of nucleic acids difficult, leading to a setting with low resource. At 

the time of writing, no robust methodologies have been developed for genomic analysis 

of FFPE material. To that end, this thesis addresses fundamental questions in genomic 

profiling in a low resource setting, identified best practice workflows for doing so, and 

demonstrated their application in three different tumor types. 

The first section of this dissertation, spanning three chapters, considers the 

technical challenges and extends the repertoire of methods in performing genomics 

analysis in low resource settings. We begin by reviewing the nucleic acid modifications 

and technological advancements for molecular profiling of FFPE tissues. We developed 

workflows for genomic analysis of FFPE materials and showed application of these 

findings in a series of microarray experiments. Extending the tools for genomics analysis 

in a low resource setting, we developed Epicopy, a method to obtain copy number 

variation (CNV) data from Illumina 450K methylation microarrays and demonstrated its 

ability to make concordant CNV calls. We also showed comparable, if not better, 

performance by Epicopy compared to two previously published methods, CHAMP-CNV 

and CopyNumber450K. We next validated the use of these methods in answering 

biological questions across three tumor types.  
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First, we analyzed a series of ductal carcinoma in situ (DCIS) samples in the 

context of disease progression into IDC. We observed the presence of global methylation 

changes in DCIS-adjacent normal tissue and identified the presence of four epitypes of 

DCIS samples, associated with grade and a CIMP-like phenotype. The CNV profiles of 

these DCIS samples reflect those of previous studies and differential CNV changes were 

identified between DCIS that progressed to invasive cancer and DCIS that did not recur.  

Second, multiomic analysis performed on a series of ER-negative breast cancers 

identified three functionally relevant clusters of androgen receptor-driven, immune 

infiltration high, and CNV rich disease. In the clinical context of recurrence in the 

absence of adjuvant chemotherapy, we discovered a 130-gene panel of markers that was 

able to predict recurrence in both the institutional ER-negative cohort and validated it in 

an independent external dataset. 

Finally, in a total RNA-seq profiling of follicular thyroid cancer (FTC) to study 

molecular landscapes associated with distant metastasis, we identified a set of biomarkers 

of distant metastasis, enriched in epithelial-mesenchymal transition genes, and predicted 

a distant metastasis event in an FTC tumor, 10-years before the fact. These genes were 

validated in the TCGA thyroid cancer dataset for their ability to predict distant metastasis 

in follicular variant papillary thyroid cancer (FVPTC), a tumor type which molecularly 

resembles FTC. 

 Taken together, this work establishes our ability to molecularly profile FFPE 

tissues using microarray and NGS platforms, unlocking the potential of using archival 

materials with high quality clinical follow-up information to address important clinical 

questions.  
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Chapter 1: Genomic analysis of archival tissues 
 

1.1: Overview 
 

1.1.1: Rationale: Clinical utility of genomic data 

 

Recent advances in molecular biology have allowed the scientific community to 

perform high-throughput profiling of tissues to study molecular alterations of disease 

states on a global level. One of the major diseases to have its genome, epigenome, 

transcriptome, and proteome studied at such a level is cancer.  

Efforts from independent groups and international consortiums, such as The 

Cancer Genome Atlas (TCGA) [1] and the International Cancer Genome Consortium 

(ICGC), have profiled the molecular phenotypes of multiple types of cancer, including 

invasive breast cancer (IBC).  

These studies have generated an unprecedented abundance of information and 

understanding of cancer, but remain limited in the clinical utility of this information. 

Clinical utility is a function of therapeutic and prognostic utility [2]. Therapeutic utility is 

exemplified by the discovery of molecular alterations that identify possible available 

interventions and can inform clinical decisions, such as a genetic alteration in an 

actionable target gene, e.g., the FLT3 tyrosine kinase in acute myelogenous leukemia 

(AML) [3] or an ESR1 mutation in refractory, hormone-resistant ER-positive breast 

cancer (BCa) [4]. An example of prognostic utility is the use of molecular data, with or 

without clinical data, to predict patient survival. While TCGA and ICGC have identified 
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many potential therapeutic targets, they fare less well in prognosticating disease.  

Developing prognostic markers will be the focus of this thesis. 

 Prognostic utility using these public datasets is limited by inadequate follow-up 

time and lack of concerted effort to collect high-quality, longitudinal clinical and 

treatment information. Furthermore, since samples acquired by these efforts were 

samples of convenience, these datasets lack the follow-up and case-control pairs 

controlled for other estimates of poor prognosis such as grade, subtype, and treatment. 

Using BCa as an example, 

at the time of writing, in the TCGA 

BRCA cohort of 1085 samples [5], 

median time to event is 2.08 years 

(Figure 1.1), and only 20% of 

patients have follow-up of more 

than 5 years. This is inadequate for 

the development of prognostic 

indicators in breast cancer; in 

which median recurrences occur at 

5- or 10-years depending on the 

subtype [6-8]. Prospective studies 

for diseases with long time to event, while optimal, have a long wait time to completion, 

and information often continues to be gathered years after the study end date. 

These problems can be addressed by using archival materials collected by medical 

institutions over many years, with the advantages of almost uniform methods of 

 

Figure 1–1: Empirical cumulative distribution 
function of time to event for TCGA BRCA dataset 

Horizontal line at 80% ECDF and vertical line at 5 
years of follow-up. 
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preserving the tissues and access to high-quality clinical information with long-term 

follow-up [9]. This enables retrospective studies to identify prognostic markers of 

disease, especially in diseases that have a long time to event such as breast cancer and its 

premalignant precursor lesions [10]. Additionally, the ability to perform macro- or 

microdissection of tissues to enrich for disease lesions allows for the study of such tissues 

with minimal signal contamination of surrounding normal tissues, or to separately 

analyze the effects in tumor and stromal tissue. 

 

1.1.2: Tissue fixation 

 

The main objective of fixation had been, and remains, to preserve the 

microarchitecture of the tissue for visualization during initial assessment as well as after 

long-term storage [11]. The fixative used should minimize the loss of cellular 

components; peptides, sugars, nucleic acids, and lipids – with the ultimate purpose of 

preserving the architecture of intra- and extracellular structures, such as the nucleus, 

mitochondria, cell-cell interactions, and basement membrane. This is achieved through 

preventing autolysis by catabolic enzymes, minimizing the diffusion of soluble materials, 

and neutralization of microbial agents.  

While the goal of fixation is to minimize the loss of as many components as 

possible, different fixatives preserve different components with various efficiencies, 

depending on the tissue processing protocol. Furthermore, any method will lead to 

artifacts, both in the appearance of the tissue and alterations on molecular components. 
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Therefore, the selection of the fixative to use has to take into account the features of 

interest, whether they are relevant cellular architecture or molecular components. 

There are two major types of fixation; physical and chemical, each with their own 

advantages and disadvantages. The most common physical method is cryopreservation, 

snap-freezing for example allows immediate morphological assessment of surgical tissue 

samples as cryosections; another is dry heat fixation of organisms for Gram staining [11]. 

Chemical fixation can be broken down into denaturation, cross-linking, or a combination 

of the two.  

Denaturing fixatives cause the coagulation of proteins, rendering them insoluble. 

Since the architecture of the tissue is maintained primarily by lipoproteins and fibrous 

proteins, this method will maintain the tissue morphology. Unfortunately, coagulant 

fixatives cause cytoplasmic flocculation and preserve mitochondria and secretory 

granules poorly [12].  

There are two types of coagulant fixatives; dehydrant and acidic. Dehydrant 

coagulant fixatives, such as ethanol/methanol and acetone, remove water molecules and 

thus destabilize hydrophobic interactions and hydrogen bonding, allowing for 

denaturation of hydrophobic regions. The rate of reversal to a soluble state is slow and 

most proteins remain insoluble after such treatment even if reintroduced to an aqueous 

environment [12]. Acidic coagulant fixatives, like picric acid, change the charge on 

ionizable side chains of proteins, which disrupts electrostatic and hydrogen bonding to 

allow for coagulation. Since many acidic fixatives may lead to loss of nucleic acids, they 

are often used in conjunction with acetic acid, which coagulates nucleic acid but not 

proteins. Of note, picric acid fixation, such as in the use of Bouin’s solution, causes 
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hydrolysis and destruction of membranes at low pH, leading to loss of intact nuclei and 

nucleic acids [11]. 

Cross-linking fixatives function by forming cross-links in proteins and nucleic 

acids. Examples of cross-linking reagents include 1) aldehydes (formaldehyde, 

glutaraldehyde, glyoxal), 2) metal salts (mercuric oxide, zinc chloride), and 3) other 

metallic compounds (osmium tetroxide). Historically, the most important characteristic of 

the fixation process is to support high quality and consistent staining with hematoxylin 

and eosin (H&E) [11]. To that end, the most popular and widely adopted fixative in 

diagnostic pathology is formalin, in the form of a 10% solution of neutral buffered 

formaldehyde. Formalin fixation is typically followed by embedding in paraffin, which 

provides external, structural support during sectioning on a microtome for light 

microscopy. I will focus the discussion on formalin-fixed, paraffin-embedded (FFPE) 

materials. 

 

1.1.3: Effect of formaldehyde fixation on macromolecules 

 

Formaldehyde reacts with many macromolecules in the tissue, and the resulting 

interactions are numerous and complex [11-14].  

In a series of simple and well-planned studies, Frankel-Conrat and his colleagues 

investigated the effects of formaldehyde on proteins, and showed that formaldehyde 

created numerous intra- and intermolecular cross-links between side chains, amino 

groups, and primary amide chains [15-19].  The main action of formaldehyde on protein 



 6 

involves the reaction of methylene hydrate with several protein side chains, forming 

methylol adducts in form of reactive hydroxymethyl side groups (—CH2—OH) [20]. 

In an equally meticulous series of studies, McGhee and von Hippel examined the 

reactions between formaldehyde and free DNA [21-24]. Their studies revealed that 

formation of hydroxymethyl groups and dihydroxymethyl adducts on adenine and 

cytosine, while endocyclic imino groups form at guanine residues. Notably, the formation 

of these methylol adducts occurs rapidly and is reversible, but methylol adducts can 

condense in a slower second reaction, creating very stable crosslinks across molecules 

that are difficult to reverse. Furthermore, cross-linking occurs at AT-rich regions and has 

a direct correlation with increasing temperature. 

With its ability to cross-link both protein and DNA, formaldehyde also reacts with 

nuclear proteins and nucleic acids. It penetrates spaces between these molecules and 

stabilizes the nucleic acid-protein shell, leading to extensive cross-linking between them 

[11]. 

 This extensive cross-linking and modification of cellular macromolecules 

suggests a need for the reversal of some of these alterations to allow for optimal  

molecular profiling and characterization  of FFPE tissues. 

 

1.1.4: Recovery of macromolecules from FFPE material 

 

In the same series of studies mentioned above, Frankel-Conrat et al. showed that 

the addition and condensation reactions in proteins were unstable and reversible by 

dilution or dialysis [15-19]. Cross-links, however, are more stable and have to be 
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hydrolyzed either in acidic or basic conditions at elevated temperatures, with unavoidable 

damage to molecules of interest.  In some cases, they are completely irreversible. 

With alteration of temperature, pH, and constituents of extraction buffers, partial 

recovery of nucleic acids is possible, and its success and extent depends of the intensity 

and duration of preceding fixation procedures. Nucleic acids in the cell associate closely 

with proteins and often form DNA-protein and RNA-protein cross-links following 

treatment with formaldehyde. Under extremely favorable formalin-treatment conditions, 

protein-DNA cross-linking can be reversed by incubating for 2 days in 0.1% SDS/50 mM 

Tris/pH 8.8 at 37°C, or 2 hours in the same solution at 60°C [25, 26]. Enzymatic 

digestion with proteinase K doubles the amount of RNA/DNA yield from FFPE 

materials, presumably due to a release of nucleic acids from cross-links with proteins 

[27]. Nucleic acid-nucleic acid cross-links can be hydrolyzed by heating at 60°C for 5 

hours or 90°C for an hour, or at 60°C under alkaline conditions for an hour [28]. RNA 

recovery from FFPE materials has been difficult, since RNA lacks the inherent stability 

of double-stranded DNA, and is attributed to fragmentation and degradation, cross-

linking with proteins, and modifications preventing reverse transcription and PCR 

reactions [14]. 

 

1.1.5: DNA/RNA extraction from FFPE material 

 

 Recovery of RNA and DNA from FFPE material include variations of 

deparaffinization using a solvent like xylene, liberation of nucleic acids through digestion 

of the tissue using proteinase K (PK) or Trizol [29], removal of methylol adducts by 
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heating or extended suspension in buffer, depletion of cross-linking metals via heating in 

the presence of chelating agents, and nucleic acid purification by precipitation or utilizing 

columns [30-46]. 

 A non-exhaustive list of the work done in this area is summarized in Table 1. 

Many of these studies compared different extraction methods; commercial kits and in-

house methods, while altering certain conditions such as temperature, digestion time, and 

deparaffinization. These studies collectively showed that increased deparaffinization, 

extended PK digestion times, and elevated temperature incubations post-extraction 

increased the yield and/or quality of the nucleic acids. Interestingly, there was no method 

that consistently performed better in terms of yield and quality. This may be attributed to 

differences in fixation of tissues, age of the FFPE block, PK formulation used, and tissue 

type [30-46].  
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Table 1: Summary of DNA/RNA extraction studies from literature 

Study Year Type Extraction 
method Metric Notes Ref 

Masuda et al. 1999 Total RNA Trizol, PK PCR 
Temperature elevation 
removed methylol 
adducts 

[41] 

Chung et al. 2006 Total RNA 3 day PK, 
RNAlater Bioanalyzer, PCR RNAlater improved 

yield, but not quality [33] 

Abramovitz 
et al. 2008 Total RNA 

ARA, RHR, 
QR, extended 

digestion 

Transcriptome 
(DASL, Illumina) 

Roche FFPE Highpure 
kit performed the best, 
extended PK digestion 
increased yield, quality 

[30] 

Doleshal et al. 2008 miRNA 
QR, SAR, 

RHR, RHM, 
ARA, IPR 

QPCR, 
comparison with 

FF tissues 

ARA had best yield, 
with good FF and 
FFPE correlation of 
miRNA CT 

[34] 

Roberts et al. 2009 Total RNA 
Various 

commercial 
kits 

QPCR, 
transcriptome 

(Affy U133Av2) 

ARA had best yield 
and QPCR results, gene 
expression correlated 
between FF and FFPE 

[44] 

Bonin et al. 2010 DNA/RNA In-house+/- 
purification PCR 

Extended digestion 
time critical for RNA 
recovery. Adsorption 
silica extraction 
method best for DNA. 

[31] 

Munoz-
Cadavid et al. 2010 DNA 

Various 
commercial 

kits 
PCR TDP followed by QD 

performed the best [42] 

Funabashi et 
al. 2012 DNA In-house+/- 

salting out PCR 
Salting out improved 
DNA quality, at the 
cost of lower yield 

[35] 

Kotorashvili 
et al. 2012 DNA/RNA/

miRNA 

Various 
commercial 

kits, in-house 
method 

(Trizol-based, 
+RNAlater) 

Transcription 
(DASL, Illumina); 

Mirnome 
(Illumina); 
methylation 
(EpiTyper) 

Co-extraction of all 
nucleic acids, home-
grown method 
performed the best, 
followed by Qiagen 
Allprep FFPE kit 

[37] 

Ludyga et al. 2012 DNA/RNA QD, QR, NDR, 
PCI Bioanalyzer, PCR 

PCI and Qiagen kits 
performed the best. PCI 
was inconsistent in 
quality and yield. 

[39] 

Ton et al. 2012 RNA Modified QR, 
RHR 

Transcriptome 
(DASL, Illumina) 

Modified QR 
performed better, 
attributed to additional 
deparaffinization steps, 
longer PK digestion, 
and high temperature  

[45] 

Turashvili et 
al. 2012 DNA/RNA 

QR, QD, ARA, 
TWR, TWD, 

in-house  
PCR, QPCR 

In-house method, with 
overnight digestion 
performed the best. 
Increase fixation time 
in NBF led to poorer 
quality nucleic acid. 

[46] 

Potluri et al. 2015 DNA QD, AFA, PCI PCR 
QD had best yields, 
AFA had better quality 
DNA 

[43] 

AFA: adaptive focused acoustics ; ARA: Ambion RecoverAll; IPR: Invitrogen PureLink RNA FFPE;  
QD: Qiagen QiaAmp FFPE DNA;  QDR: Qiagen Allprep DNA/RNA;  

QR: Qiagen RNeasy; RHR: Roche High Pure RNA;  
RHM: Roche High Pure miRNA; SAR: Strategene Absolutely RNA FFPE; TDP: TaKaRa DexPat;  

TWD: Trimgen WaxFree DNA; TWR: Trimgen WaxFree RNA 
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1.1.6: Genomic profiling of FFPE material 

 

1.1.6.1: Challenges 

 

Various studies have attempted to obtain genomic information from FFPE 

material, starting with PCR-based methods to second-generation sequencing. This 

dissertation will focus on studying the ability to use RNA and DNA from FFPE material. 

There are many challenges  in profiling RNA and DNA from FFPE tissue. 

Depending on the fixation process and the degree of over-fixation, nucleic acids could 

have been modified to varying extents, with over-fixed FFPE material being of the 

poorest quality. Regardless of the fixation time, any degree of alteration will lead to 

improper application of methods optimized for high quality nucleic acid preparations. 

Nucleic acid degradation by formalin treatment reduces the amount of nucleic 

acids available for profiling, leading to the need for increasingly efficient extraction and 

purification methods from FFPE material. This also speaks to the need for genomics 

methods that require less input material, often in the realm of pico- to nanograms. Some 

groups have applied whole transcriptome amplification (WTA) and whole genome 

amplification (WGA) methods to globally amplify whole RNA and DNA in an attempt to 

rescue signal from limited material [47]. 

Hydrolysis of nucleic acid chains by high temperature, especially around AT-rich 

regions, lead to extensive fragmentation, restricting the extent of amplification especially 

in the case of RNA. Indeed, Bioanalyzer RNA integrity (RIN) scores from many studies 

consistently showed poor RNA integrity, even in mock, freshly-prepared FFPE samples. 
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Furthermore, with regards to mRNA, fragmentation could lead to the loss of the 3’-UTR 

and polyA-tails, rendering canonical reverse transcription reactions or enrichment 

protocols using oligo-dT useless. Non-sequencing studies have circumvented this, to 

varying degrees of success, using random hexamer primers and limiting the amplicon 

size. To select for coding mRNA, sequencing studies have used a negative-enrichment 

method, through rRNA depletion, instead of a positive-enrichment for mRNA, but have 

yet to overcome the problem of over-fragmentation of RNA. 

Cross-linking reactions and methylol adduct formation introduce covalent 

modifications on nucleic acids that prevent the activity of enzymes and annealing 

reactions, critical steps in recovery and methods of analyzing nucleic acids. This is often 

rescued by the prolonged incubation in specialized buffers and heating protocols, 

methods that will often introduce additional hydrolysis, compounding the problem. 

Moreover, there are specific modifications that cannot be overcome by such extraction 

methods. One such modification is a high frequency of non-reproducible sequence 

alteration, often C-T or G-A transitions, speculated to be a result of DNA polymerase 

inability to recognize cytosine residues [48, 49]. In this instance, artifactual mutations 

were inversely correlated with the amount of input DNA, and required either increased 

input material or independent validation by sequencing. 

Despite the challenges, many groups have successfully profiled FFPE-derived 

RNA and DNA using high-throughput methods such as microarrays and second-

generation sequencing. Additional challenges are associated with DNA methylation 

profiling of FFPE material, and will be detailed in the DNA methylation profiling 

section. 
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1.1.6.2: Transcriptome profiling 

 

Bibikova and colleagues from Illumina Inc. developed the cDNA-mediated 

annealing, selection and ligation (DASL) assay, suitable for analysis of the transcriptome 

of FFPE materials [50, 51]. This method overcomes the limitations of loss of polyA tails 

by using random priming in cDNA synthesis and has probes with target sequences of 

50bp in length. Using FFPE tissues stored between 1- to 10-years of age, they showed 

technical reproducibility in FFPE with an average R2 of 0.95. Interestingly, even when 

the correlation between matched frozen and FFPE pairs were lower at an average R2 of 

0.69, there was considerable overlap (p = 1 x 10-9, Fisher’s Exact test) in differentially 

expressed genes between cancer and normal. This suggests that although FFPE treatment 

globally alters gene expression profile, either by degradation or base modification, these 

effects are not selective, allowing the detection of tumor specific changes using FFPE 

material.  

Following that, multiple studies have validated the reproducibility of the DASL 

assay [30, 52] and have used it in analyzing the transcriptome of archival FFPE tissues 

[53]. Other studies have used a combination of WTA techniques with other microarray 

technologies such as the Affymetrix HGU133v2 array [47]. Affymetrix released a 

combination of WTA sample preparation followed by microarray analysis for FFPE 

material in the form of the WT Pico kit [54] and the Human Gene ST 2.0 array [55], the 
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latter of which contain 25bp exon specific, junction, microRNA, and non-coding RNA 

(ncRNA) probes.  

 More recently, FFPE-derived RNA has been profiled using second-generation 

sequencing. Sinicropi et al. [56] successfully generated RNA-seq data on a cohort of 136 

BCa patients using a modified RNA-seq protocol with an average of 43 million reads per 

patient. They increased the input RNA into library generation, used ribosomal RNA 

depletion instead of a positive-selection for polyA tail, and extended the time of the 

cDNA synthesis step to increase library yield. They compared hazard ratios of RNA-seq 

generated reads with hazard ratios of the OncotypeDX RT-PCR panel [57], a molecular 

test developed by Genomics Health Inc. which funded the study. Using the same samples, 

they found a Pearson correlation of 0.81. Furthermore, when considering transcripts with 

high read counts, this study identified a series of recurrent markers, which significantly 

overlapped, at 27.0% of 11659 RefSeq genes ( a set of markers identified from an 

independent, microarray-based study). 

 Norton et al. [58] were able to identify expressed single nucleotide variants 

(eSNVs) and fusion transcripts from nine paired fresh frozen (FF)/FFPE BCa pairs using 

the RiboZeroGold rRNA depletion and the ScriptSeq V2 library generation kits 

(Illumina, San Diego, CA). Consistent with Sinicropi et al’s findings, they noted that 

while the correlation between FF and FFPE paired samples were moderately strong, there 

was considerably better agreement between differentially expressed genes between 

cancer and normal sample pairs. On average, only 20% of all reads of FFPE samples 

mapped to genes, compared to 50% in FF samples. Longer insert sizes resulted in high 
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eSNV detection sensitivity. Unfortunately, increased read depth did not increase fusion 

transcript detection. 

 Another approach used in FFPE samples is a target capture protocol. Cieslik et al. 

[59] developed an exome capture RNA-seq approach and applied it to FFPE samples. 

Their experience showed comparable alignment, strandedness, gene detection, and 

variant calling between exome capture and polyA selection using RNA from cell lines as 

a proof of concept. Exome capture had a better performance in identifying variants and 

junction spanning reads compared to a polyA selection method. Exome capture was able 

to better deplete for rRNA and align to protein coding regions compared to an rRNA 

depletion protocol. Extending it to FFPE samples, they found moderate correlation 

between FFPE and FF samples at an average Pearson correlation of 0.8, irrespective of 

library type. Virtually all splice junctions and fusions were detected in FFPE samples. 

 Overall, the findings in existing literature agreed that FFPE derived RNA-seq data 

when compared to FF data were 1) moderately correlated in terms of transcript 

expression values, 2) concordant in genes and relative difference between disease states, 

3) less precise with increased RNA degradation due to higher technical variability. These 

shorcomings could be rescued by increasing read depth, 4) less sensitive in detecting 

eSNVs and gene fusions regardless of read depth, and 5) poorer in terms of fragment 

diversity, with smaller insert sizes and less unique fragments.  
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1.1.6.3: Genetic profiling 

 

Using an Illumina SNP BeadArray, Lips et al. [60] profiled a series of matched 

FF and FFPE colorectal tumors and discovered identical genotype and loss of 

heterozygosity (LOH) profiles between the paired samples. In a follow-up study, Oosting 

et al. [61] showed high concordance in copy number profiles between FFPE samples 

profiled using high density SNP microarrays and arrayCGH platforms. Their 

observations were supported by studies from other groups using FF-FFPE pairs in various 

platforms, even in microsatellite regions [62-65]. Interestingly, while the copy number 

profiles remain consistent between FF and FFPE pairs, the amount of variation in log R 

ratios  were much higher, while the overall log R ratio signals were lower in FFPE 

samples compared to their FF counterparts, which may be caused by degradation and 

covalent modifications on the DNA molecules [60-65]. 

Thompson et al. [66] evaluated the use of SNP arrays in FFPE tissues for making 

genotype calls, LOH identification, and CNV profiling, and found good concordance 

between FF and FFPE tissues in all assessments, despite a higher level of noise in the 

FFPE samples.  

Whole genome sequencing (WGS) technologies had also been applied on FFPE 

samples to obtain genetic information. Schweiger et al. [67] performed a small, three-

sample experiment varying ischemia and fixation times of breast tissues prior to 

sequencing. While FFPE tissue had lower mappable reads and higher variability, the 

fragments were distributed equally across the genome and they were able to obtain 

comparable copy number information between FFPE and FF samples. Yost et al. [68] 
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performed a more thorough analysis of a two-sample experiment; comparing WGS 

results from paired FFPE TNBC tumors and FF normal genomic DNA. Consistent with 

literature of DNA modifications following formalin fixation, they identified a large 

number of C/G to T/A substitutions in the FFPE samples; an artifact observed with as 

few as a million reads. However, this artifact was rescued by implementing stringent 

filters; incorporating information on read diversity, local mismatch rates, and global 

mismatch rates. 

 The application of whole exome sequencing (WES), where exonic regions of the 

genome are selected for using a variety of target enrichment strategies similar to that of 

exome capturing for RNA-seq, has had more success in FFPE material compared to 

WGS. Whereas WGS applications had mostly been technical and comparative, WES 

experiments in FFPE tissue have been used for discovery purposes. 

 Kerick et al. [69] performed WES on 3 FF-FFPE sample pairs and were able to 

detect concordant SNVs and InDels in pairs. They highlight, however, a larger coefficient 

of variation of about 2-fold in FFPE vs FF samples. The same study detected false 

positive and false negative results in FFPE vs FF comparisons that were rescued with 

increased coverage. Wagle et al. [70] adapted an exon capture approach to enrich for 

cancer-relevant genomic alterations and were able to identify copy number gains and 

losses, validated using quantitative PCR (QPCR), in archival breast cancer samples. 

Furthermore, they were able to detect point mutations using their approach, validated by 

hME genotyping; some of which were missed by another mass spectrometry-based 

approach, Oncomap. Oh et al. [71] performed WES on 4 FF-FFPE pairs, and showed that 

FFPE samples had shorter insert sizes, contained artificial base alterations (C/G>T/A), 
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and resulted in increased duplicate reads. They noted that about 30% of the bases in 

FFPE samples were soft clipped, which is a read filtering step where the alignment is 

performed only on clipped regions but the whole read is retained. The study attributed to 

non-specific annealing of degraded DNA fragments during library construction. 

However, with appropriate processing of the data, high-confidence mutation calls in 

FFPE samples were validated in FF samples. 

Using a solution hybrid selection exome capture approach for target enrichment, 

Van Allen et al. [72] demonstrated no difference in WES coverage metrics between 99 

FFPE samples and 768 non-FFPE samples.  This study noted that while an amount of 

input DNA as low as 1 ng was acceptable, there was an increase in the number of 

duplicate reads. In 11 paired lung adenocarcinoma samples, WES data showed extremely 

good concordance between FFPE and FF tissue in identifying mutations and copy 

number profiles (average r2 = 0.79). Using only the FFPE data, they identified clinically 

actionable targets, and in one demonstrative case enrolled a patient with a KRASA146V 

mutation in a CDK4 inhibitor trial to which the patient achieved their only clinical 

response to cancer; stable disease for 16 weeks.  

In summary, analysis of DNA in FFPE using microarray and sequencing is prone 

to 1) the introduction of C/G > T/A artifacts [68, 71], 2) shorter insert lengths [68, 69, 

71], 3) increased duplicates and lower diversity [67-72], 4) non-specific annealing of 

DNA fragments [71], 5) lower mappability [69], and 6) higher variability in read count 

compared to FF samples [66-69]. However, this can be rescued with appropriate 

workflows; 1) increasing amount of input DNA, 2) increasing read depth, 3) use of soft 
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clipping during alignment, and 4) defining appropriate filters for making high-confidence 

calls. 

1.1.6.4: DNA methylation profiling 

 

The most commonly used methylation microarray technology is the Illumina 

Infinium Methylation microarray, which profiles DNA methylation changes in bisulfite 

treated genomic DNA. Briefly, bisulfite treatment converts unmethylated C into U, while 

5’-methyl-C (5meC) remains unmodified. Upon WGA, the U is then converted into a T. 

The Illumina Infinium Methylation microarrays were designed based on Illumina’s 

BeadChip technology, which measures either a C or T at a CpG locus of interest in 

bisulfite treated DNA, and reports the presence of converted Ts as either beta-values, or 

more intuitively percent methylation of a site, or M-values, a logit transformation of beta-

values which approximates a normal distribution that better fits assumptions of certain 

models for differential methylation analysis [73]. The first of these arrays was the 27K 

microarray which probes over 27,000 CpG loci in the human genome. In 2010, Illumina 

released the 450K microarray, which measures methylation across more than 470,000 

CpG loci, and remains the most abundantly used methylation array with the most publicly 

available datasets at the time of writing. More recently, Illumina has released the 

MethylationEPIC microarray, which profiles over 850,000 CpG loci. 

The first documented use of methylation microarrays on FFPE material was 

described by Thirlwell et al. (2010) [74] with Illumina’s Infinium Human Methylation 

27K microarray. The Infinium technology contains a WGA step, which can be disrupted 

by fragmented and low molecular weight DNA. The authors introduced a ligation step 
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prior to bisulfite treatment to increase the molecular weights of DNA present, which they 

hypothesize would allow for better WGA. Indeed, when comparing FFPE samples that 

went through a ligation step with those which did not, there was improvement in WGA 

yield and better correlation between FFPE and FF beta-values in the ligated samples. 

Perhaps unsurprisingly, the beta-value histograms of the ligated sample resemble that of 

FF samples, but the beta-values of the unligated sample differed, with the mean 

regressing closer to 0.5, which is expected of samples with non-specific binding, and 

therefore signal intensity measurement, of probes. 

At the time of writing, the Illumina Human 450K Methylation Microarray, in 

conjunction with the Illumina FFPE restoration kit, was the most used DNA methylation 

profiling technology for FFPE material. The Illumina FFPE DNA Restoration kit is 

marketed as a two-enzyme protocol that restores partially degraded DNA for use in 

Illumina’s HD assays, including their HD SNP and methylation microarrays. While the 

technology is proprietary, I hypothesize that a ligation and global amplification step are 

involved, similar to the innovation performed by Thirlwell et al.  

Dumenil et al. (2014) [75] studied a series of 21 paired FF-FFPE colorectal cancer 

tissues using the 450K microarray with DNA restoration and showed that they were able 

to identify the CpG island methylator phenotype (CIMP) status of samples across tissue 

type with concordant changes in methylation status of CIMP-related genes. Interestingly, 

they showed that higher age of the FFPE block correlated with increased Euclidean 

distance between FF and FFPE material. Unfortunately, sample-wise correlations of high 

quality probes were not reported. De Ruijter et al. (2015) [76] performed pairwise 

analysis of FF and FFPE tissue, where after sample collection, tumors were separated 
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into two parts, with one undergoing formalin fixation. Their study showed improvement 

in pairwise Spearman correlation of FF and FFPE samples with restoration, from a mean 

of 0.896 in un-restored FFPE samples to 0.989 in restored FFPE samples.   

Methylome profiling of FFPE tissue by bisulfite sequencing has been limited, as 

challenges extend beyond problems affecting FFPE-derived DNA. The conditions 

required for bisulfite conversion result in a high degree of fragmentation and depurination 

of DNA, which leads to poor quality templates for downstream analyses, including 

sequencing technologies. Further complicating the analysis is the potential for false 

positive 5meC calls in regions of incomplete bisulfite conversion, which are common in 

denaturation-resistant regions. This is due to the fact that formation of ssDNA is vital for 

bisulfite conversion of C, and in dsDNA unmethylated C will remain unconverted, 

leading to a false positive call. Furthermore, presence of residual protein in the gDNA 

preparation will lead to incomplete conversion of C. The presence of cross-linked dsDNA 

fragments combined with inefficient removal of crosslinked DNA binding proteins in 

FFPE material can lead to poor denaturation and only partial conversion of Cs. 

Perhaps due to these reasons, there has only been one poorly designed study 

published on bisulfite sequencing of FFPE-derived material. Li et al (2014) performed 

bisulfite sequencing following WGA of bisulfite converted DNA from two FFPE ovarian 

tissues, which were fixed in 1999 (O1999) and 2011 (O2011). The authors observed 

bisulfite conversion efficiencies of 96.7% & 88.8% and unique mapping rates of 19.9% 

& 7.0% in O2011 and O1999 respectively. Unfortunately, no paired FF samples were 

run, and we are unable to evaluate the reproducibility of methylation of these samples. 

The authors did not ligate fragments pre-WGA, which has been shown in other 
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technologies to improve amplification efficiency, bisulfite conversion rates, and 

reproducibility in FFPE materials. While the authors conclude differently, we conclude 

that bisulfite sequencing is currently not optimized for DNA methylation profiling in 

FFPE material. 

1.2: Optimization of protocols for genomic analysis of FFPE tissue 
 

1.2.1: Effect of light H&E staining and O-phenylenediamine on DASL performance 

 

 Based on available literature, Roche Highpure FFPET RNA Kit (Roche, Cat# 

06650775001) was used as starting point for my optimization of RNA extraction from 

FFPE tissue [40], with the comparison metrics being yield by Nanodrop, quality by a 

GAPDH-based quantitative PCR (QPCR), and performance on the Illumina DASL 

microarray. I assessed the effect of light hematoxylin & eosin (H&E) staining, as well as 

the use of O-phenylenediamine (OPD) in the extraction buffer on RNA extraction.  

The presence of non-cancerous tissue in the RNA/DNA preparation leads to 

dampening of any cancer-specific signal. This results in difficulty in detecting transcripts 

present in low copies, or have small changes in gene expression levels compared to 

normal tissue. One of the advantages of starting with tissue sections, common with FFPE 

material, is the ability to stain the tissue and identify malignant cells. While serial 

sections can be used to identify areas of interest, cells may shift through the sections and 

the ability to stain the tissue section to be analyzed will allow better enrichment or direct 

microdissection of the tissue. 
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Given the instability of RNA compared to dsDNA, the usual steps to improve 

yield and quality that are applicable to dsDNA preparation, such as prolonged proteinase 

K digestion at elevated temperature are problematic for RNA extraction. O-

phenylenediamine is an aromatic compound, we hypothesized, would be an efficient 

acceptor of methylol groups, and would serve as a methylol sink in the RNA extraction 

procedure allowing for more efficient reversal of methylol adducts under milder 

conditions.  

 A pilot experiment was performed using 2 FFPE samples, AFB15 and AFB21. 

AFB21 is a smaller sample and was used to exemplify a sample with low tumor content, 

such as ductal carcinoma in situ (DCIS). A total of twenty slides were serially sectioned 

from both samples and every other serial section is randomized into different protocols 

(Table 2). I further performed limiting dilution experiments on the amount of input RNA 

into DASL to estimate the lower threshold of RNA inputs into DASL that may be 

important for samples with poor yields.  

 

Table 2: RNA yield from Highpure FFPET kit comparing OPD and staining

 
 

Sample Treatment 
Area 

(mm2) Slides 
Total RNA 
Yield (ng) 

Yield/Area 
(ng/mm2) 

AFB15 +OPD, 
Stained 21 10 3138 14.94

AFB15 -OPD, 
Stained 21 10 2664 12.69

AFB21 +OPD, 
Stained 6 5 314 10.47

AFB21 -OPD, 
Stained 6 5 302 10.07

AFB21 +OPD, 
Unstained 6 5 284 9.47
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1.2.1.1: No statistically significant difference was observed in RNA yield and QPCR CT 

between different extraction protocols 

 

Figure 1–2: GAPDH QPCR CT values 

There is no statistically significant difference 
between GAPDH QPCR CT

 values across different 
extraction protocols for both samples. 

 

There was no statistically significant difference between RNA yield and quality as 

assessed by GAPDH QPCR across the different protocols. Of note however, was the 

lower yield and quality of AFB21 compared to AFB15, which may translate to 

differences in DASL performance as neither assesses the ability to globally profile 

transcript expression.  
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1.2: Overall DASL performance 

 

Figure 1–3: Signal intensities for all probes measured in pilot DASL experiment 

Signal intensities for all the probes in each array are used as a measure of overall success of the 
DASL assay given the sample. OPD: Highpure +OPD. nOPD: Highpure –OPD. S: stained. U: 
unstained. Note that all assessments in AFB15 were on stained slides. 

 

One sample, AFB21 U+OPD had no signal intensities for majority of the probes, 

suggesting that it failed to perform on the DASL chip. There were no differences in 

signal intensities across protocols of the same dilution. However, decreased signal 

intensities were observed with increasing dilutions, especially in AFB21, which is the 

sample with poorer amplification of GAPDH.  
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1.2.1.3: Light H&E staining of section does not alter overall DASL performance or 

gene expression profile 

 

Figure 1–4: Comparison of DASL performance between stained and unstained AFB21 

a) P95 green signal intensity and number of probes detected above a threshold compared to 
negative control probes. b) Correlation between probes in stained versus unstained AFB21 
(Pearson R = 0.97). Note the vertical and horizontal trend of a subset of probes from the lower 
left hand corner, suggesting probes detected in one experiment but not the other. 

 

A direct comparison between P95 green signal intensity and number of probes 

detected between stained and unstained AFB21 sample revealed no difference between 

these two metrics (Figure 1-4a). There was also good correlation between all the probes 
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of the stained and unstained samples, with a Pearson correlation R of 0.97. Interestingly 

however, both samples contained probes that were not detected in the other, as observed 

as a series of probes with a vertical or horizontal trend from the lowest effective signal 

(Figure 1-4b). 

 

1.2.1.4: O-phenylenediamine treatment improves DASL performance in poor quality 

and low yield samples 

 

  Introduction of OPD during RNA extraction of FFPE tissue revealed no changes 

to the rank-based gene expression profile of these tissues. In samples where RNA is 

abundant (Figure 1-5a), overall signal intensities were unchanged. Interestingly, in 

samples where input RNA into DASL is lower, there is a trend in lower P95 signal and 

number of probes detected (Figure 1-5b). Furthermore, when probe-wise Pearson 

correlations were calculated between OPD and non-OPD samples, OPD-treated samples 

had higher correlation (Figure 1-5c). Taken together, this may suggest that OPD 

improves overall RNA quality, including those RNA present minimally in the sample 

which allows for more efficient WGA of all RNA species.  

Indeed, when I performed pairwise comparison of all the probes in AFB15 of a 

higher amount of input RNA (1:2 dilution, AFB15_1.2) and that of a lower input (1:4 

dilution, AFB15_1.4), I continued to observe strong Pearson correlation between 

AFB15_OPD_1.2 and AFB15_OPD_1.4. The same comparison in AFB15_OPD_1.4 and 

AFB15_nOPD_1.4 showed overall lower signal intensities, manifesting as points falling 

below the red diagonal line (Figure 1-6, upper right). Perhaps unsurprisingly, the same 
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lower signal intensity was observed between non-OPD treated AFB_1.2 and AFB_1.4 

(Figure 1-6, lower right). 

 
Figure 1–5: Comparison of DASL performance between OPD and non-OPD treated samples 

a) Pairwise correlation between all the probes in OPD and non-OPD treated AFB15. Pearson R 
= 0.99. b) P95 green signal intensity and number of probes detected across all DASL arrays 
comparing OPD treatment. c) Pairwise Pearson correlation comparing samples treated with or 
without OPD of equal RNA input into DASL. 
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Figure 1–6: OPD does not affect gene expression ranks, but improves signal intensities in 
DASL of samples with low RNA input 

Results of pairwise correlation comparing samples with varying OPD treatment groups and RNA 
input into DASL microarray. Diagonal red line describes a linear relationship between both axes. 

 

1.2.1.5: Conclusion 

 

 Taken together, I concluded that light staining of FFPE samples does not alter 

profiles or signal intensities of transcripts and is a viable method to visualize the tissue 

for dissection to enrich for tumor cells, and therefore tumor signals. OPD appears to 

improve performance of samples with low input into the DASL microarray, and will be 

useful in situations where RNA yields are limited. Both modifications should be 

considered in RNA extraction of small and challenging lesions. 

 



 29 

1.2.2: Optimization of lab protocols for Illumina Human Methylation 450K 

microarray 

 

Our lab has extensive experience performing multiplex QPCR-based DNA 

methylation analysis in FFPE tissue sections and has developed a protocol where the 

DNA purification and bisulfite treatment are combined into a single process, minimizing 

losses that arise during DNA purification. This method, called TNES, uses a DNA 

extraction buffer (10 mM Tris, 150 mM NaCl, 2 mM EDTA, 0.5% SDS) with overnight 

proteinase K (PK) digestion. 

The workflow of analyzing FFPE materials on the 450K methylation chipset 

includes a QPCR-based QC step, which assesses the amplifiability of the DNA sample. 

Unfortunately, the presence of SDS in the extraction buffer inhibits PCR reactions, and 

precludes its use for the QC analysis. Furthermore, bisulfite-treated DNA (NaBi-DNA) 

samples derived using this method have not yet been assayed using methylation 

microarrays.  There is also lack of well-defined bioinformatics practices for the analysis 

of FFPE-derived NaBi DNA, such as sample call rates and detection p-value thresholds.  

To that end, the following experiment was designed to 1) investigate the 

incorporation of the TNES protocol into the 450K microarray workflow, 2) assess the 

performance of NaBi-DNA generated with this protocol on the 450K microarray, and 3) 

develop bioinformatics protocols for microarray-based analysis of DNA methylation in 

FFPE material. We performed 450K microarray analysis on a series of 3 FF/FFPE pairs 

and 36 FFPE breast tissues, divided into three biological groups – 12 patients with non-

proliferative fibrocystic benign breast disease (BBD) who did not develop invasive ductal 
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carcinoma (IDC), and 12 paired BBD and IDC samples from patients who were 

diagnosed with BBD and eventually developed IDC. Of the 36 sample cohort, a total of 5 

samples were arrayed in duplicate and a single sample was used for limited dilution of 

input NaBi-DNA into the array workflow. Lastly, a series of Illumina control tissues, 

both FFPE and FF, were arrayed in the same microarray experiment as controls. 

 

1.2.2.1: Tween-based TNET buffer allows for QPCR-based QC  

 

As mentioned, a limitation of using SDS in the extraction buffer is the inability to 

use the lysate for QPCR reactions without additional purification of the DNA. We 

hypothesized that replacing SDS with a non-ionic detergent, such as Tween-80, will 

allow for cell lysis and activation of proteinase K without inhibiting PCR reactions. We 

modified the TNES buffer to TNET buffer (10 mM Tris, 150 mM NaCl, 2 mM EDTA, 

0.5% Tween-80) for DNA extraction of 2 sections from each tissue and dsDNA from the 

lysates were quantified using a fluorescence-based dye. TNET lysates were used as input 

DNA for the QPCR-based Illumina FFPE QC kit. 

 These TNET-based lysates were quantifiable using Picogreen, and 28/36 (77.8%) 

FFPE samples were amplified by the assay. QC results were reported as delta CT, and 

ranged between 4.5 to 17.16 in this cohort of samples. In comparison, the threshold 

Illumina suggested was at a threshold of lower than 5. We decided to proceed with 450K 

microarray analysis of these samples to evaluate the success rates of samples with such 

varied QC values. 
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1.2.2.2: Illumina FFPE QC results correlate with percent detected probes and 

threshold above manufacturer recommended level should be considered 

 

Amount of DNA measured from TNET extraction were used to estimate TNES 

yields, and were combined as necessary to achieve amounts necessary for the target 1ug 

input into bisulfite conversion reaction. The resulting ssDNA amounts were used to 

estimate total input DNA from TNES/TNET and where the values exceed 1ug, the 

bisulfite reaction was repeated with adjustments to input DNA. Following satisfactory 

bisulfite treatment, 500ng of NaBi DNA was restored using the Illumina FFPE DNA 

restoration kit and processed for 450K microarray using manufacturer recommended 

protocols.  

Illumina BeadArray technologies include a probe-wise metric called detection p-

value (detP), which estimates presence of signal using the distribution of signal 

intensities from replicate probes on beads distributed across the microarray compared to 

the signal intensities of negative control probes. Using a threshold of detP<0.05, we 

estimated the percent probes detected (call rates) for each sample and compared that to 

the delta CT from the FFPE QC kit (Figure 1-7).  
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Figure 1–7: Relationship between percent detection (call rate) and delta Ct 

Vertical dotted red line represents Illumina recommended threshold of 5. An empiric call rate of 
80% was set as the threshold for an FFPE sample with enough detected probes and sufficient 
quality for downstream analyses. 

 

We observed call rates > 90% for all fresh frozen and restored FFPE samples with 

delta CT < 5 (Figure 1-7). Call rates of samples with delta CT > 5 had more variable call 

rates, with 23/47 arrays with call rates < 90%. Of the samples with CT > 5, only 10 arrays 

had call rates below the empirical threshold of 80%, with most of the loss of acceptable 

quality samples at delta CT > 8 Interestingly, of the samples that did not pass QC, half 

had call rates > 80%. 
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1.2.2.3: Removal of low performance probes improves reproducibility across duplicates 

 

We assessed the reproducibility between replicates in this experiment and 

observed a linear relationship between reproducibility and call rate. We hypothesized that 

this is due to the random nature of signal intensities of poorly performing probes and 

filtering against these probes will improve reproducibility between replicates. As such, 

we removed samples with overall poor call rates (< 70%), and filtered against probes that 

were undetected at detP < 1e-5 in at least 2 samples. The remaining probes were defined 

as high quality probes.  

Of the 5 duplicates, 1 pair (SC30) had a sample with poor call rate (< 40%) and 

was not used in the identification of high quality probes. To quantify the differences 

across replicates, we calculated pairwise Pearson correlation and change in rank order of 

samples by Euclidean distance for duplicates. In the latter, we estimate the similarity of 

duplicate samples to other samples by measuring the simultaneous change in Euclidean 

distances. In this scenario, a closer rank order indicates greater increase in similarity 

compared to other samples in between the initial and final rank. 

We observed improved reproducibility across all samples, including SC30, for 

both Pearson correlation (3% on average) and improvement in rank order of sample 

similarity. A representative example of increased Pearson correlation is SC33 (Figure 1-

8) where we observed increased correlation comparing analysis in high quality probes to 

all probes. 
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Figure 1–8: Probe-wise comparison in SC33 across all probes or only within high quality 
probes. 

A colored density plot representative example of improved probe-wise comparison when filtering 
for high quality probes in SC33 duplicates. A darker blue indicates a higher density of probes 
compared to the surroundings. Less outlier probes on the upper left and lower right are also 
observed. 

 

1.2.2.4: Titration experiment revealed good concordance from 125ng to 1ug of input 

DNA 

 

In an effort to assess the upper and lower limits of input material for the FFPE 

restoration reaction, four different NaBi-DNA inputs of SC04 were used in the FFPE 

DNA restoration step of the 450K FFPE protocol; 125ng, 250ng, 500ng, and 1ug. SC04 

was a sample with relatively high yield and good quality DNA (QC delta CT = 5.75). 

We observed strong probe-wise correlations across all four amounts of input 

NaBi-DNA (Figure 1-9). Perhaps unsurprisingly, there waswas little improvement 
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observed when this comparison was performed for high quality probes, likely due to the 

fact that most of the probes in these arrays were detected in all samples (Figure 1-10). 

 

Figure 1–9: Probe-wise comparison across different NaBi DNA inputs of SC04 

Colored density plots comparing reproducibility across different amounts of NaBi input for SC04 
across all probes. Pearson correlation shows no statistically significant differences across 
different inputs. See Figure 1-10 for high quality probe comparison. 
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Figure 1–10: Probe-wise comparison in high quality probes across different NaBi DNA inputs 
of SC04 

Colored density plots comparing reproducibility across different amounts of NaBi input for SC04 
across high quality probes. Pearson correlation shows no statistically significant differences 
across different inputs. There was also no qualitative or quantitative difference compared to the 
same analysis across all probes (Figure 1-9). 
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1.2.2.5: Conclusion 

 

From this pilot experiment, we have established the use of Tween-80 in place of 

SDS for extraction of a subset of the sections to estimate the amount of DNA extracted 

and performed QPCR-based Illumina QC reactions. The TNET lysates were successfully 

combined with TNES lysates to maximize DNA yield for subsequent bisulfite treatment. 

We also observed call rates > 80% in 37/47 samples with > 5 delta CT. Restriction of 

delta CT to < 9 increased the samples with > 80% call rates to 93.5% (15/16) of the 

samples with 500ng of input NaBi-DNA. This suggests that with increased input NaBi-

DNA, a relaxed threshold can be used for delta CT in selecting samples for the 

microarray. Samples with increased delta CT have rapidly decreased success rates, to as 

low as 50%. 

Furthermore, we explored the use of stringent detP thresholds in defining high 

quality probes and showed increased concordance between replicates, suggesting 

improvement in measuring true signal intensities.  

Finally, we have determined that in a sample of sufficient quality for good 

microarray results using 125ng NaBi-DNA, increasing the amount to 1ug did not change 

the methylation profile of the sample. This suggests that for consistency in experimental 

design, increasing input NaBi-DNA across all samples to accommodate samples of 

questionable quality will likely improve overall call rates with no detrimental effect to 

data quality in samples of high quality. 
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1.2.3: Efficient co-extraction of RNA and DNA 

 

The focus of this thesis is the multiomic analysis of archival FFPE material across 

various neoplasms, including early stage disease such as ductal carcinoma in situ (DCIS). 

Using DCIS as an example, such lesions tend to be smaller compared to their invasive 

counterparts and efficient retrieval of DNA and RNA is crucial for maximizing the 

analyses, both on high throughput platforms or otherwise, that could be performed in 

these samples. Furthermore, in retrospective studies, FFPE blocks of the disease of 

interest may be limited, and only a small number of sections may be available which may 

impede the ability to extract enough RNA and DNA from the same sample, forcing the 

investigator to analyze only one nucleic acid species. 

Co-extraction of RNA and DNA from the sample can serve to overcome section 

limitations, and have the potential of increasing overall RNA and DNA yields. Beyond 

that, in studies of disease with heterogeneous cell populations, co-extraction will provide 

matched nucleic acid fractions and allow for better integration of data generated across 

different molecular platforms. Therefore, we designed a pilot study to compare yield and 

quality of co-extraction methods to previously optimized RNA or DNA extraction 

methods, and incorporate it into our laboratory workflow for microarray profiling of 

FFPE material.  

In this study, we compared the optimized individual extraction methods to two 

co-extraction protocols; 1) Qiagen Allprep FFPE DNA/RNA kit, and 2) a Trizol-based 

co-extraction method developed by Kotorashvili et al. We assessed this in 7 FFPE breast 

cancer samples with 18 sections each; where 3 sections were used for Allprep, 3 sections 
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for the Kotorashvili protocol, 3 sections for TNES, and 3 sections for Roche Highpure 

FFPET RNA kit, with every other slide distributed into the different assessments.  

1.2.3.1: RNA yields were comparable across methods but TNES had higher DNA yields 

compared to co-extraction methods 

 

Figure 1–11: DNA and RNA yields from different extraction methods 

a) DNA yield comparison across three separate methods; TNES for only DNA extraction, and 
Allprep and Kotorashvili for RNA/DNA co-extraction. b) RNA yield comparing Highpure 
RNA-only extraction and the Kotorashvili method. 

 

 There was an average of a 3-fold statistically significant increase in the DNA 

yield per section obtained from the TNES method compared to either co-extraction 

methods (Figure 1-11a). This is expected, as the TNES protocol does not contain a DNA 

purification step compared to the other two methods, which contain column-based DNA 

purification steps. In a previous experiment, we’ve shown that Allprep RNA and 

Kotorashvili extraction methods had comparable RNA yields (data not shown), and in 

this experiment we observed comparable yields between Highpure and the Kotorashvili 

method (Figure 1-11b). 
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1.2.3.2: Conclusion and method selection 

 

 Taken together, this suggests that while the co-extraction methods are less 

efficient compared to recovering DNA in lysates for bisulfite conversion reactions, the 

RNA yields are comparable to RNA-only extraction methods. Note that with the co-

extraction method, we will be able to perform DNA/RNA extraction on double the 

number of slides compared to individual methods, effectively doubling the RNA yield 

and decreasing the difference between DNA yields of the competing methods. 

Furthermore, we have yet to compare the efficiency of DNA recovery against protocols 

with DNA purification, a process which will incur losses in recovery. As such, a co-

extraction method will maximize the yield of nucleic acids, should the investigator 

choose to analyze both RNA and DNA. If only one species is of interest, I would 

recommend using methods specific to it to minimize cost and processing time. 

Between the two co-extraction methods tested, I opted to use the Qiagen Allprep 

FFPE RNA/DNA kit due to increased reproducibility, more efficient time use, and lower 

cost. Firstly, the Kotorashvili method includes phase separation steps that may introduce 

variability across samples and, even more so, across operators. I aim to establish a 

workflow for FFPE materials that maximizes reproducibility for all FFPE-related high 

throughput genomic work. Secondly, while both protocols require multi-day processing 

of FFPE samples, the Allprep kit requires less active processing time, which allows for 

more efficient staggering in the processing of large batches of samples. Lastly, due to the 

use of RNaseOut in the Kotorashvili method, the price per sample reaches a little over 
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$20, while the price per sample of the Qiagen kit is $12.82, at the commercial rate 

without factoring in institutional discounts. 

 In conclusion, the general workflow for processing of FFPE materials for high 

throughput nucleic acid analyses will be a modified Allprep co-extraction protocol (see 

Methods), supplemented with TNES extraction where necessary (for example where 

increased DNA yields for methylation analysis are needed).  

 

1.3: Final workflow for high throughput analysis of FFPE-derived nucleic 
acids 
 

We have developed a comprehensive series workflow for analysis of FFPE tissue 

(Table 3). The tissue will first be assessed for cellularity and the need for enrichment, 

either by macro- or microdissection. Light H&E staining can be performed as necessary. 

Following that, extraction, QC, and processing of the molecular platform should be 

performed based on Table 3.   
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Table 3: Workflow for various high throughput –omics analyses of FFPE material 

 

1.4: Materials and Methods 
 

Patient selection and tissue collection 

 

We used patient registries here at Johns Hopkins Hospital and at collaborating institutions 

to identify cases and controls that matched study criteria and had documented long term 

follow up. Tissues were obtained with approval of the respective institutional IRBs. 

Study pathologists reviewed archival H&E sections to select FFPE tissue blocks. 

Unstained tissue sections were obtained and macro dissected using pathologist annotated 

H&E sections for orientation and macrodissection for enrichment. 
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RNA/DNA extraction and quantification 

 

RNA/DNA extractions during comparative studies were performed according to 

manufacturer recommended protocols (Roche Highpure FFPET RNA kit, Qiagen Allprep 

FFPE RNA/DNA kit) or published protocol in the case of the Kotorashvili method. 

Protocols for TNES/TNET extraction are appended. Following that, protocols were 

optimized for extraction from sections or cores, all of which are also appended. 

 

Quantification of RNA and DNA were performed using Nanodrop2000 and the Qubit 

fluorometer (Qiagen) using appropriate kits (RNA HS, RNA BR, DNA HS, and DNA 

BR). The 260/230 and 260/280 ratios were used to assess sample purity and solvent 

contamination. Qubit derived measurements were ultimately used to calculate nucleic 

acid input into microarray platforms. 

 

Quality control 

 

RNA: SYBR Green-based QPCR for GAPDH using custom primers designed for short 

amplicons was used to measure the capacity for amplification of RNA samples. Personal 

correspondence with the Lowe’s Family Genomics Core at Johns Hopkins Bayview 

Medical Center showed correlation between this assay and performance on the DASL 

microarray as measured by P95 signal and number of probes detected. At the request of 

the core facility, the primer sequences will not be reported, but is available in the lab 

database. In our experiments, we used the iTaq™ Universal SYBR® Green Supermix 
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(Bio-Rad, Hercules CA). Reverse transcription was performed on 50ng of input RNA 

using MMLV and random hexamers without second strand synthesis into a final volume 

of 50uL. 10uL was used in each QPCR reaction performed in triplicate. In this analysis, 

samples with CT value ≤ 33 should be considered for microarray using standard 

protocols, and increased input should be consider for samples with values > 33. 

 

DNA: Illumina FFPE QC kit was performed using the iTaq™ Universal SYBR® Green 

Supermix and was regarded as the main quality control step for 450K and other DNA-

based microarrays. Illumina reported that a delta CT of > 5 compared to control should 

not be used for restoration and subsequent microarray, but our experience show us that a 

delta CT of up to 9 allowed for > 90% of the samples having call rates above 80%. As 

such, the recommended threshold for delta CT is 9, prioritizing samples with lower delta 

CT.  

 

Bisulfite conversion 

 

Bisulfite conversion was performed using the EZ DNA Methylation-Gold™ Kit (Zymo 

Research, Irvine CA), with modifications introduced per Appendix I of the 

manufacturer’s recommended protocol. The detailed protocol is appended at the end of 

the thesis. 
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DNA restoration and microarray 

 

The DASL microarray was processed at the Lowe’s Family Genomics Core Facility at 

Johns Hopkins Bayview Medical Center. The FFPE DNA restoration and 450K 

microarray was performed by the Sidney Kimmel Comprehensive Cancer Center 

(SKCCC) Microarray Core Facility. 

 

Data processing and analysis 

 

Quality control metrics for Illumina-based arrays were estimated using Illumina’s 

GenomeStudio software, and validated in the R Statistical Environment using 

Bioconductor packages or custom functions to extract control probe signal intensities. 

Illumina preprocessing was performed on the DASL microarray using GenomeStudio and 

exported as a data matrix for analysis in R. 450K microarray was read and preprocessed 

with Illumina algorithm using the minfi package in R and analyzed using Bioconductor 

packages and custom functions. 
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Chapter 2: Identification of copy number variation from high density 
methylation microarrays 
 

2.1: Introduction 
 

2.1.1: Rationale 

 

Both genetic and epigenetic alterations are implicated in the development of 

cancer [77]. Genetic lesions, such as translocations, amplifications, insertions, deletions, 

and point mutations, have been implicated in promoting the development of cancer 

through alteration of expression or activating and in-activating mutations of tumor 

suppressors and oncogenes [78]. Epigenetic modifications, through DNA methylation or 

histone modifications, lead to the silencing or reactivation of genes, which can translate 

into phenotypic changes that also lead to carcinogenesis [79, 80]. DNA methylation of 

CpG islands in the promoter region and first exon of genes result in changes in gene 

transcription. CpG island hypermethylation is a phenomenon common across multiple 

cancer types, and has been shown to lead to silencing of tumor suppressor genes [81].  

Integration of genetic and epigenetic data can provide a more complete view of 

disease processes, including underlying pathogenic mechanisms [82]. However, there are 

limitations on performing concurrent genetic and epigenetic characterization of tumor 

samples, including cost and availability of sufficient material. The ability to read out 

multiple data types from a single platform both minimizes cost and ensures a single 

source of test material.  
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2.1.2: Methylation and SNP microarray technologies 

 

At the time of the study, the Illumina Infinium Human Methylation HM450K 

microarray (HM450K) is the leading methylation microarray containing 485,577 CpG 

probes that are widely distributed across both intra- and intergenic regions of the genome. 

The SNP6 microarray platform from Affymetrix has been extensively used to obtain 

high-resolution genome-wide DNA copy number estimates. The SNP6 microarray 

contains 1,852,600 probes, with 906,600 SNP probes for variant detection and 946,000 

non-polymorphic probes for copy number estimation. 

 

2.1.3: Platform similarities and study setup 

 

Both SNP and methylation microarrays use probes tagged with different 

fluorophores to identify genetic and epigenetic variants of a given genome locus, and the 

technical aspects of both array platforms are very similar. Furthermore, the bisulfite 

treatment of DNA that precedes hybridization on methylation arrays chemically creates 

the equivalent of induced SNPs at unmethylated CpG dinucleotide sites, allowing a 

similar analytical approach on the two array platforms.  
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Figure 2–1: Graphical representation of SNP and methylation array similarities. 

The two left panels show the graphical representation of the process of obtaining CNV 
information from a normal sample (left) and tumor sample (right). The rightmost panel shows the 
same process using a methylation microarray, which can be viewed as an induced SNP array 
with bisulfite treatment converting the unmethylated C of a CpG dinucleotide to a T. Each 
alternative colored column represents a locus in the genome interrogated by the array. The filled 
circles of different colors represent the probes and the height represent the signal intensities. The 
purple filled circles represent the summed signal intensities and finally the red horizontal bars 
represent segmented genomes. 

 

These similarities have driven previous efforts to obtain copy number variation 

(CNV) information from HM450K microarrays [83-85]. The cumulative intensity values 

from the unmethylated probe, U, and the methylated probe, M, is theoretically a proxy of 

total DNA copy number at that locus. This is the approach used by Sturm et al. [83] to 

characterize the CNV in a series of glioblastomas. The “getCN” function from the minfi 

package on Bioconductor sums the raw intensities of U and M to obtain total intensities 

[84]. Feber et al. most recently proposed a statistical pipeline that provides copy number 
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information from HM450K arrays [85]. However, there has been no study to date 

investigating in detail the circumstances in which it is possible to reliably obtain CNV 

information from methylation arrays. 

Herein, I study the experimental parameters allowing the reliable assessment of 

CNV using HM450K arrays, suggest an optimized method that provides detailed CNV 

estimation, and summarize its performance on various Cancer Genome Atlas (TCGA) 

datasets where both methylation and CNV data are available for several tumor types. A 

better understanding of when one can efficiently use and how to interpret CNV 

information from HM450K arrays will help in deciding when reliable CNV calls can be 

made using just one platform. This in turn would significantly reduce costs and tissue 

requirements, and ensure that both measures are derived from an identical DNA sample. 

 

2.2: Methods 
 

2.2.1: Data download and analysis 

 

The Illumina Human Methylation HM450K .idat files (TCGA level 1 data) for 

THCA, BRCA, and LUSC were downloaded from the Broad Institute’s Firehose Genome 

Data Analysis Center (GDAC) server (data freeze 12/2013). Processed Affymetrix SNP6 

array data (TCGA Level 3 data) and the accompanying GISTIC results for the same 

tumors were downloaded from the same server, for comparison. Data was analyzed using 

the R statistical environment (Version 3.1.1), packages from Bioconductor, and custom 

functions. 
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2.2.2: Estimating copy number using Epicopy 

 

Raw methylation data were processed using the functional normalization 

algorithm adapted from the developer’s version of the minfi package [84] to return red-

green channel data. 

Log2 signal intensities for both the methylated, Mi, and unmethylated, Ui, 

channels, as calculated in minfi, were summed together to obtain total signal intensity, ti, 

of genomic position i.  Normal samples (n=55) from the THCA dataset were used to 

represent the diploid genome, and signal intensities for position i in normal samples are 

represented using TiJ, where J = [68]. Specifically, at each genomic position i represented 

on the array, we calculated 𝑇i = mode(Tik), as estimated using the naive estimator from 

the modeest package [86]. These values were then used to calculate the log R ratio (LRR) 

of the intensities, Δtij, for genomic position i in sample j. 

𝐿𝑅𝑅,𝛥𝑡!" = log (𝑡!")− log (𝑇!) 

Finally, the mean Δtij was centered at zero and subjected to circular binary segmentation 

(CBS), as implemented by the DNAcopy package [87], using default options, to obtain 

copy number estimates λij, which represents log R ratio of a given genomic position i for 

sample j. GISTIC 2.0 was then used to identify gene-level copy number events as λgj 

using parameters defined in the following section. 
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2.2.3: Selecting model parameters 

 

The CN value from SNP6 Affymetrix array, θgj, was used as the true copy number 

of gene g for sample j. Copy number values at gene g for SNP arrays are categorized as 

deleted, amplified, or copy-neutral, where θj ≥0.3 is considered an amplification and θj ≤ 

-0.3 a deletion, based on empiric decisions from previous studies. 

Using the THCA dataset, the optimal mean segment CN values for making 

amplification and deletion calls were selected from a range of values between 0.03 and 

0.3 to maximize the accuracy of λgj, 
! !!" !!|!!"|

!
!!! /!!

!!!
!

, where B is a binarizing 

term. This threshold value is varied for Δtjg to find the optimal cutoffs for making 

amplification/deletion calls using the Epicopy method by maximizing accuracy in gene-

level CNV.  

The mean gene level threshold, identified from the step above, was then used to 

determine the minimum number of probes required for a confident segment call. We 

hypothesized that normal thyroid tissue samples have copy number neutral (2n) genomes 

and that any segment that had an absolute CN value (|λjg|) above 0.15 was defined as 

false positive. We aimed to minimize the false positive rate while controlling for probe 

number threshold, which translates to genomic coverage. With increased probe number 

threshold requirement, the less amount of the genome is covered. 

 



 52 

 

2.2.4: Calling copy number events 

 

GISTIC2.0 [88] was performed to identify focal and arm level events that are  1) 

recurrently amplified or deleted in each tumor type and 2) generate gene-level copy 

number estimates, λgj, for gene g in sample j.  Default parameters were used when 

applying GISTIC to SNP arrays, including the requirements that segments include at least 

5 tags and that log R ratios, |θgj| ≥ 0.3, when calling amplifications and deletions.   

Parameters were derived for use with CHAMP-CNV, and Epicopy.  Specifically, I 

required that segments contain at least 200 tags and log R ratios, |θgj| ≥ 0.15 for Epicopy 

and 200 tags and LRR of 0.11 for CHAMP-CNV.  

 

2.2.5: Performance metrics 

 

Several measures were used to compare results obtained from methylation arrays 

using Epicopy to those derived using other algorithms or platforms. Concordance, 

sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), 

and area under the ROC curve were calculated using the pROC package [89]. These were 

used to benchmark performance from methylation arrays against standard SNP arrays, as 

each metric assesses different aspects of the technology. Concordance allows us to 

measure the degree of accuracy across measures. Sensitivity reports the percent of CNVs 

detected by SNP6 that is detected by Epicopy, while specificity identifies the proportion 

of copy number neutral genes identified by Epicopy. The PPV allows us to estimate the 
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percent of positive calls made by Epicopy that is identified by the SNP6 array. In other 

words, of all the CNVs detected by Epicopy, how many are true. The same for NPV, 

except for genes detected as copy number neutral. The AUC estimates overall Epicopy 

performance, regardless of threshold. 

The reproducibility index is a Jaccard similarity coefficient calculated at the gene-

level [90], which calculates the ratio of the intersection of CNVs across both sets over the 

union of both sets. This measure is similar to sensitivity but treats methods symmetrically 

rather than assuming that one method represents a benchmark. The reproducibility index 

for sample j was calculated as: 

𝑅𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑏𝑖𝑙𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥! =  
𝐴 ∩ 𝐵
𝐴 ∪ 𝐵 =   

|𝐶𝑁𝑉𝑠 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑏𝑦 𝑏𝑜𝑡ℎ 𝑚𝑒𝑡ℎ𝑜𝑑𝑠|
|𝐶𝑁𝑉𝑠 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑏𝑦 𝑒𝑖𝑡ℎ𝑒𝑟 𝑚𝑒𝑡ℎ𝑜𝑑| 

 

Local regression to highlight trend in figures was performed using the locfit function 

from the locfit R package [91]. 

 

2.3: Results and discussion 
 

2.3.1: Sample selection 

 

Three TCGA datasets, thyroid carcinoma (THCA) [92], breast carcinoma 

(BRCA) [5], and lung squamous cell carcinoma (LUSC) [93], were chosen for model 

development and validation because a large number of samples with paired SNP and 

methylation arrays were available for these datasets. THCA, which has few, but 

frequently recurrent CNVs [92], was used for model development, while BRCA and 
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LUSC, representing cancers with many CNVs per sample, were used for testing. 

Combined, these three datasets are representative of the CNV spectrum in human cancer 

[94].  

 

2.3.2: Feasibility and probe coverage 

 

The feasibility of obtaining CNV calls from the HM450K array depends on 

having sufficient probe coverage and the ability to optimally normalize probe signal 

intensities. Illumina HM450K microarrays have a smaller genomic coverage than the 

current generation of SNP arrays, having 485,577 probes compared to 1.8 million probes 

(906,600 SNP probes and 946,000 non-polymorphic copy number probes) in the SNP6 

platform from Affymetrix. The latter was chosen by the TCGA consortium to obtain 

DNA copy number estimates, and the distribution of probes across the genome differs as 

well. Although the probes in the HM450K array are distributed across both inter- and 

intragenic regions (Figure 2.2), they are concentrated in intragenic regions and 

particularly in gene promoters. This may result in different regions across the genome 

having varying sensitivities for making CNV calls. 

Another factor likely to affect performance is that the Illumina Methylation array 

is designed with two different probe chemistries, with unique distributions of the probe 

intensities [95].  The probe type is closely correlated to the CG content of the probe 

sequence, so that different regions of the genome are enriched for each probe type.  This 

issue was addressed in two ways in the Epicopy algorithm. First, the functional 

normalization algorithm (funnorm) [84] used for preprocessing includes steps to 
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minimize differences between the two probe types.  Second, normal samples suffering 

from the same technical concerns but having little or no copy number variation are used 

to standardize probe level estimates of abundance.  
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Figure 2–2: HM450K probe coverage 

Chromosomes are not to scale compared to each other. Despite having only 485,577 probes, 
there was good coverage of all but 1 autosome (Chr 21) and Chromosome X. Colors indicate 
probe chemistry type: blue: Infinium I; yellow: Infinium II 
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2.3.3: Obtaining copy number calls with Epicopy 

 

The Epicopy pipeline is 

shown in Figure 2-2. Briefly, after 

normalization, the log ratios of probe 

intensities of tumor samples to the 

mode of normal reference samples 

were calculated and mean centered 

before segmentation using the 

circular binary segmentation (CBS) 

algorithm [96]. This pipeline was 

used to obtain segment information 

in the THCA, BRCA, and LUSC 

datasets. Following segmentation, 

GISTIC2.0 [88] was used both to 

estimate gene-level copy number calls for each sample and identify significant copy 

number altered regions (SCNA).  The resulting data can be compared directly to TCGA 

SNP6 results, which were processed using Broad Institute’s Copy Number Pipeline-

analyzed SNP6 data analysis [97]; this includes both CBS and GISTIC 2.0 results.  

As the methylation microarray is not optimized for obtaining CN information, I 

observe some differences in the segments derived using SNP6 and Epicopy. The log R 

ratios (LRR), or magnitude changes in copy number compared to reference, are lower in 

Epicopy segments than in their SNP6 counterparts, which are approximately twice as 

Figure 2–3: Epicopy pipeline 
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large. The direction of copy number change, however, remains the same. Furthermore, 

Epicopy-derived segments are more fragmented than SNP6 segments. For example, a 

single CNV event, identified as a single segment in SNP6, may be represented by 

multiple adjacent segments in Epicopy. In spite of these differences, Epicopy results 

closely approximated results obtained by SNP6 CNV analysis. This is illustrated in a 

representative comparison of SNP and Epicopy CN profiles from a breast tumor sample 

showing that Epicopy is able to detect chromosomal, arm, and focal copy number 

changes (Figure 2-4). 

 

Figure 2–4: Representative example of Epicopy- and SNP-derived copy number 
profile 

Copy number profiles of the same breast cancer sample from SNP array (top) and 
Epicopy (bottom). Note the lower copy number values on the Epicopy derived CNV 
information. The y-axis represents copy number (LRR). The x-axis represents genomic 
location. Dotted red lines signals a transition across chromosomes. The horizontal 
blue and black bars represent the segments with alternating color signifying 
chromosome transition. The dotted horizontal line is the threshold of making a CNV 
call. 
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2.3.4: Model parameters  

 

On the most basic level, CNV calls can be made as a function of two parameters. 

The first was the magnitude of change, or log R ratio (LRR), which describes the 

minimum amount change in signal compared to a reference control needed to call 

amplifications and deletions with confidence. The second was the minimum probe count 

needed to define a segment.  Inspection of the mean segment LRRs derived by Epicopy 

revealed that the dynamic range of LRRs was narrower in methylome arrays than in SNP 

arrays. Thus, values used frequently for SNP arrays are too liberal to be used with 

methylation arrays.  

I derived optimal values for both parameters using the TCGA thyroid data. As detailed in 

methods, GISTIC 2.0 [88], with the default minimum number of probes per segment 

filter of n = 5,  was applied to segmented data from both SNP and Epicopy-derived CNV 

profiles to infer gene specific levels for each sample, and make a call for each gene 

(amplified, deleted, or neutral) to be used as a standard of comparison.   The concordance 

of calls between Epicopy and the SNP array was used as the metric to identify the 

optimal threshold to detect a CNV. 

Increasing the CNV threshold sequentially from 0.03 to 0.3, I identified 0.15 as 

the value which maximizes the median accuracy across samples in THCA at 0.996 

(Figure 2.5).  
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Figure 2–5: Gene-level performance of Epicopy 

Performance of gene-level Epicopy calls against SNP analysis in three TCGA datasets; THCA, 
BRCA, and LUSC using a CN threshold of 0.15 and 200 probes per segment. In the top panels, 
the tan line represents specificity while the black line represents sensitivity. The bottom panel 
shows the concordance, or accuracy, of gene-level data. 

 

Next, I used Epicopy segmented data for normal tissue to identify the minimum 

number of probes per segment needed for confident CNV calls. Here, I expected the 

optimal probe number threshold to minimize the false positive rate (FPR, the rate of 

segments with CNV that passes the probe number filter) while retaining the highest 

coverage of the genome. I observed that both metrics are inversely correlated with probe 

number and identified that a minimum probe number of 50 reduces the FPR to 0.1%, 

with a genomic coverage of 95.8% (Figure 2.6). This decrease of FPR continued to 200 

probes per segment before the specificity decreased significantly. This suggests that the 
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optimal threshold for the number of probes per segment lies between 50 – 200 (Figure 

2.6). Similar results were obtained for CHAMP-CNV. As a conservative measure, the 

analysis presented in the rest of this manuscript was performed using the 200-probe 

cutoff for both CHAMP-CNV and Epicopy. 

 

Figure 2–6: Coverage, FPR, and number of segments.  

Average of 55 normal thyroid samples. a) Change in mean coverage (y-axis) and 1 – Mean FPR 
(x-axis) with increasing probe number threshold (top-axis). B) Change in mean number of 
segments with increasing probe number threshold. Mean coverage is shown on the top-axis. 

 

We further investigated these thresholds using tumors from the same dataset by 

calculating sensitivity and specificity on a gene level, averaged across all samples as a 

function of mean segment CN threshold (Figure 2-6, left-most), and found a sensitivity of 

84% and specificity of 99%.  

To further understand the effect of the segmental LRRs identified by the SNP 

analysis on the ability of Epicopy to identify a lesion, we analyzed the percent gene-level 

amplifications detected by Epicopy in the THCA dataset while increasing the LRR of 
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these amplifications on the SNP microarrays (Figure 2-7). As expected, Epicopy was 

more likely to detect amplifications that were estimated by the SNP array to have a high 

copy number. 

 

Figure 2–7: Percent alterations detected by LRR. 

Each point represents the average of all segment identified by SNP array in the THCA dataset, 
disregarding the length or probe number within the segment. The x-axis represents the LRR of the 
segment in the SNP array and the y-axis represents the percent of those segments identified by 
Epicopy. The blue line is the local regression line fitted using the locfit function in R. 
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2.3.5: Epicopy performance on gene-wise correlations 

 

We tested Epicopy’s performance at the gene level, on the BRCA and LUSC 

datasets, using the CNV results from the SNP arrays as the standard of comparison. 

Measures of performance included overall accuracy, sensitivity, and specificity, 

evaluated at the gene level. Of note, we used thyroid normal tissue from TCGA as the 

reference diploid samples for both BRCA and LUSC, reflecting the commonly occurring 

situation where well-matched reference samples are not available.  

With the thresholds of log R ratio (LRR), or magnitude of change, set at 0.15 and 

number of probes per segment set at 200, the accuracy of the method in the THCA, 

BRCA and LUSC datasets was 99%, 86%, and 83%, respectively. The sensitivity of 

Epicopy was 84%, 72% and 69%, respectively (Table 1, Figure 2-5), while the specificity 

was 99%, 92%, and 90%, respectively. 

 

Table 4: Epicopy and CHAMP-CNV AUCs across 3 TCGA datasets 

Dataset Method AUC 

THCA Epicopy 0.97 

THCA CHAMP-CNV 0.97 

BRCA Epicopy 0.90 

BRCA CHAMP-CNV 0.85 

LUSC Epicopy 0.88 

LUSC CHAMP-CNV 0.76 

 

We further calculated a reproducibility index between SNP and Epicopy gene 

CNVs (Figure 2=8). This measure, which is based on the Jaccard distance [90], describes 
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the probability that a copy number alteration identified on either platform is found on 

both and has the advantage of treating the SNP and Epicopy results symmetrically. We 

observed an average reproducibility between CN calls from the SNP6 platform and from 

Epicopy of 27%, 57%, and 51% for THCA, BRCA, and LUSC, respectively.  

 

Figure 2–8: Reproducibility index 

Each point represents a sample. Reproducibility index was calculated as the number of 
intersecting CN genes detected by both methods divided by the union of CN genes detected by 
both methods. The blue lines indicate a fitted average across all the points, calculated using the 
package locfit. 

 

To put these reproducibility results in perspective, studies evaluating the CN 

detection reproducibility across SNP array platforms and even across different CNV-

calling algorithms on the same platform have shown that reproducibility in replicate 

experiments ranges between 39% and 79%, even for within platform comparisons, while 

reproducibility across platforms ranges between 25% to 50% [98-100]. Specifically, the 
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maximum number of reproducible copy number alterations detected by the SNP6 

platform as assessed by Pinto et al. using an identical algorithm was 79% [98].  

Thyroid cancer is distinctive among these 3 tumor types because of its very rare 

copy number changes overall, and the low level of agreement seen in this analysis may be 

attributable to this [92, 94]. The reproducibility index weighs CNV events being called 

by either Epicopy or SNP analysis. In samples with no events identified by SNP analysis, 

as often occurred in the case of the THCA dataset, even a single spurious CNV event 

identified by Epicopy caused the reproducibility index to be zero.  

Based on this, we believe that there is an upper limit to the reproducible CNV 

detection rate, given the present array technologies, and that Epicopy’s performance, as 

assessed by the agreement between Epicopy and SNP6 measurements of CNV from high 

density methylation microarrays, is comparable to that seen between different SNP array 

platforms. 

 

2.3.6: Epicopy performance on recurrent amplifications and deletions 

 

All comparisons described so far were performed at the gene level, but it is 

common to report more highly summarized versions of these results, focusing on the 

most frequently recurring events that are likely to be driving the development and 

progression of disease. To assess Epicopy’s ability to recapitulate such analyses, we used 

GISTIC2.0 [88], which employs a probabilistic method to identify peaks within the 

genome where recurrent CNV events occur within a set of samples.  
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 TCGA SNP6 datasets were processed using the Broad Institute’s Copy Number 

Pipeline-analyzed SNP6 data [97], which uses CBS to obtain CN segments. TCGA 

released these data with the GISTIC 2.0 output, which contains both the gene-level CNVs 

and recurrent CNVs. Since characterization of recurrent CNVs can be used to identify 

driver events, we compared Epicopy-based calls and SNP6 arm level events identified by 

GISTIC to assess Epicopy’s ability to detect recurrent CNVs. 

 In BRCA and LUSC, two tumor types that are characterized by a high number of 

CNVs, Epicopy was able to identify 70% (Figure 2.9, 2.10) of peaks identified in the 

SNP6 platform.  

 

Figure 2–9: GISTIC comparison for BRCA validation dataset. 

Comparison of the GISTIC results obtained by SNP analysis and Epicopy-derived values. A) 
Frequent (recurrent) amplifications identified by SNP- (left) and Epicopy- (right) –derived 
results. B) Frequent deletions identified by SNP- (left) and Epicopy- (right) –derived CNV results. 
There was 72% overlap between the recurrently altered peaks identified across both platforms.  
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Figure 2–10: GISTIC results for LUSC validation dataset 

 

Interestingly, there were peaks identified in the Epicopy data that were not seen 

by SNP6 in the THCA dataset (Figure 2-11). These may be false positives, which would 

reflect limitations in using HM450K for CNV profiling, or true positive calls that are 

detected by Epicopy and missed by SNP6-based analysis.  

 

Figure 2–11: GISTIC results for the THCA dataset. 
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As discussed, there are regions of the genome where HM450K probe coverage is 

denser than in the SNP6 array and these peaks may fall into such regions. Indeed, when 

we investigate the probe density in these peaks for SNP6 and HM450K arrays, HM450K 

had more probes in 9 out of 12 peaks, suggesting that these are regions where HM450K 

is more sensitive at detecting CNV than SNP6. Furthermore, when we investigated the 

probe density of Illumina HM450K methylation array compared to the Affymetrix SNP6 

array, we were able to show that Illumina CpG probes were enriched around 

transcriptional start sites (TSS) and exons (Figure 2-12). The enrichment of CpG probes 

in and around gene bodies suggests that in regions of the genome where the functional 

consequences of CNV is well understood, Epicopy-derived CNV profiles may be as 

sensitive or more sensitive than SNP arrays, especially for focal CNVs. In support of that, 

Feber et al. have shown that the HM450K CpG array was able to identify a PTCH1 focal 

deletion undetected by the Illumina CytoSNP array [85]. Of note, some biologically 

relevant thyroid driver genes are present in these peaks; e.g., TERT and AKT1 are 

amplified while BRCA2 was deleted. TERT amplification has been shown to be 

significant in familial papillary thyroid cancer (FPTC) patients [101] and genetic 

alterations in all three genes have been described by TCGA [92]. 
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Figure 2–12: Probe density around TSS and exons for HM450K and SNP6.0 arrays 

The distribution of probes in 450K and SNP6 microarrays around (a) transcriptional start sites 
(TSS) and (b) center of exons. Perhaps unexpectedly, 450K probes are concentrated around TSS 
and exons of coding genes, suggesting that in regions where we understand the direct 
implications of copy number change, 450K microarray can capture the changes as well as, if not 
better, compared to SNP6 microarray. 

 

 Additionally, there was a distinct peak at chromosome 6p22 detected by Epicopy 

but not the SNP array in the THCA dataset. The Illumina probes in this peak are situated 

in HLA genes, a known hypervariable region (Figure 2-13, red boxes). Furthermore, 

nearby probes outside of this hypervariable region show no CNV, suggesting that the 

deletion in this peak is indeed unique to probes within HLA genes. This implies a lack of 
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probe binding from probe mismatch due to genetic variation of this HLA region rather 

than the actual loss of copy number in this region. Therefore, it is recommended that 

these probes be removed from analysis when using the HM450K platform to profile 

CNV, and this is implemented by Epicopy.   

 

 

Figure 2–13: Probes for HLA genes are enriched in chr6q22  

Region of the DNA with copy number loss in chr6q22. Each tan colored rectangle represents a 
gene. The red bars and ticks on the middle panel represents probes that contributed to chr6 loss 
calls in THCA data. The grey bars in the bottom panel represent other probes in the region that 
did not contribute to the call. Notice that the red ticks align with HLA genes. 

 

2.3.7: Comparison of Epicopy to an existing method 

 

Feber et al. [85] recently published a method to identify CNV from HM450K 

array data using the ChAMP pipeline [102], which uses a quantile normalization step as 

opposed to the functional normalization adopted by Epicopy. We compared the 
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performance of Epicopy with ChAMP-CNV to assess both methods’ ability to make 

accurate individual gene-level calls, as well as recurrent CNV calls using GISTIC2.0. 

ChAMP-CNV was performed on Level-1 TCGA data using recommended parameters. 

The same post-segmentation processing of identifying optimal thresholds was performed 

to obtain comparable datasets between Epicopy and ChAMP-CNV. 

 We plotted the receiver-operating characteristic (ROC) curves for correct 

classification of gene level CNV and calculated the area under the curve (AUC) for gene 

level amplification and deletions in each of the TCGA tumor types (Figure 2-14) to 

assess the overall performance of both methods against CN value thresholds.  

 

 

Figure 2–14: ROC analysis comparing Epicopy and CHAMP-CNV performance 

Threshold selection was performed for both methods and the results gene-level CNV. ROC 
analysis was performed with LRR as the predictor and gene-level CNV results (|gene_LRR|>0.3 
as an event) from SNP analysis downloaded from the Firehose server as the response. The curves 
are detailed in the inset legend.  
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While the performance of these two methods was equal in the THCA training set, 

Epicopy showed improved performance compared to ChAMP-CNV in the BRCA and 

LUSC validation datasets. This can be attributed to slight differences in data 

normalization and in the reference samples used. Epicopy uses functional normalization 

followed by probe type-specific normalization, while ChAMP-CNV uses quantile 

normalization. Where Epicopy uses a series of normal samples as reference intensities, 

ChAMP-CNV uses the median intensities across all tumor samples. This leads to a 

difference in reference intensities, which manifests itself when the log R ratios are 

calculated.  

 

2.4: Conclusion 
 

This study assessed the efficiency of using HM450K CpG microarrays to profile 

CNV in a series of different tumor types. With ample probe coverage across the genome, 

especially within promoter and exonic regions of genes, HM450K can be used to obtain 

CNV information in the human genome. We presented a series of tools in the Epicopy 

pipeline to identify CNV using the Illumina HM450K methylation array with high probe 

density across the genome. Using publicly available paired SNP and methylation array 

data from TCGA, we showed that Epicopy has a sensitivity of 70% and PPV of 75% 

across THCA, BRCA, and LUSC datasets. Epicopy is available at 

https://github.com/sean-cho/Epicopy. 

 With the increased interest by the scientific community in understanding the 

interactions between genetic and epigenetic changes in disease, Epicopy represents a 

valuable tool, allowing users to obtain CNV information from a DNA methylation 
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microarray chip. Some of the pressing questions in cancer biology that address patient 

outcomes and treatment can be answered using multiplatform analyses of clinical 

samples with long-term follow-up information. Such studies are often limited to archival 

samples where available tissues are frequently scarce. Being able to analyze both 

genomic and epigenomic data from a single DNA input will allow for more samples to be 

analyzed and also allow for better correlation of genomic and epigenomic data, since both 

analyses are performed on the same sample. As such, we believe that methods such as 

Epicopy and CHAMP-CNV are crucial in allowing the scientific community to more 

completely characterize molecular changes across multiple platforms. 
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Chapter 3: Using Epicopy 
 

Summary: Epicopy is a computational pipeline that allows users to obtain copy number 

variation (CNV) information from Illumina Human Methylation 450K microarray data. It 

comes with a companion package, EpicopyData, which contains raw data for normal 

samples that can be used as substitute normal reference intensities in the instances where 

normal samples are unavailable. Epicopy can be run as a complete pipeline using a single 

function with a comprehensive list of arguments, or can alternatively be run as individual 

sub-routines. 

 

Availability: Epicopy and its supplementary package, EpicopyData, are freely available 

as R (>=3.0.0) packages hosted on Github and Bioconductor under the Artistic 2.0 

license. 

 

Contact: sean.cho@jhmi.edu; lcope1@jhmi.edu 

 

Supplementary Information: https://github.com/sean-cho/Epicopy 
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3.1. Introduction 
 

Both genetic and epigenetic alterations contribute to oncogenesis. Therefore, a more 

comprehensive picture of these events in cancer can be obtained by performing 

multiomic analyses, as evidenced most prominently by studies performed in recent years 

by The Cancer Genome Atlas (TCGA) consortium. Multiomic studies, while informative, 

can be challenging to obtain in low resource settings, where funding or sample 

availability and quality are limited. To that end, we propose Epicopy, a method to derive 

copy number variation (CNV) data from existing data obtained from high density 

Illumina Human Methylation 450K microarrays.  

 

Epicopy has a companion package, EpicopyData, which contains raw data from a series 

of normal tissues (thyroid, breast, and lung) derived from TCGA data that can be used as 

normal reference for signal intensities, in the event that users have few or no available 

normal samples. 

 

A standard Epicopy analysis pipeline (Figure 2-3), that can be run with optional 

parallelization (1), reads raw Illumina idat files from a target directory, (2) filters SNP-

adjacent probes, (3) performs functional normalization, (4) compares it to reference 

normal, (5) segments the data using circular binary segmentation (CBS), and (6) returns 

the segmentation results and a marker file suitable for GISTIC 2.0 analysis. 
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Epicopy includes many arguments for finer control of the process within the main 

function at each step of the process (Figure 2-3). For better control of the program, users 

can run separate aspects of the program independently.  

 

3.2. Implementation and usage 
 

3.2.1. Implementation and standard parameters 

 

Epicopy is implemented as an R (>=3.0.0) package and is available on the Bioconductor 

website (http://www.bioconductor.org/packages/release/bioc/html/Epicopy.html). It has 

dependencies on the R packages minfi, DNAcopy, and ParDNAcopy.  

 

A standard Epicopy run uses functional normalization, followed by dye-specific quantile 

normalization, to normalize raw data between tumor and normal samples. The default 

reference intensity calculation is performed using a naïve mode estimation implemented 

by the modeest package. Finally, segmentation is performed using CBS with the sdundo 

argument. 

 

To allow for customizing, many arguments and even sub-routines are built into the 

Epicopy package. Some of the key arguments include: 

 

target_dir: Directory containing raw idat files and a sample sheet. 

output_dir: Output directory into which segment and marker files are deposited. 
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project_name: Suffix for output files. 

Normals: Indicate either column name within sample sheet to look for normal samples 

(indicated by the case-insensitive character string “normal”) or one of the included 

normal tissue cohorts with one of “all”, “thyroid”, “breast”, or “lung”. 

Ref: The method of calculating reference intensities from normal samples, which 

defaults to mode, and can alternatively be set to median. 

ncore: Number of cores to be allocated for parallel segmentation. 

filterbycount, minprobes: Whether to filter final segmentation file for segments with 

more than the specified minimum number of probes. 

 

3.2.2. Setup & usage 

 

There are two key components necessary for running Epicopy; (1) raw Illumina idat files 

in a single directory and, in the same directory, (2) an Illumina sample sheet detailing 

which chips/samples to analyze, with optional columns delineating normal status and 

sample names. An example dataset is included at https://github.com/sean-

cho/EpicopyData. 

 

Running the Epicopy pipeline requires a single line of code. The following argument runs 

Epicopy on a series of samples with normal status indicated in the column 

“sample_status” with 4 cores. 
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epicopy(target_dir = ‘target/’, output_dir = ‘output/’, 

Normals = ‘sample_status’, Ref = ‘mode’, ncore = 4) 

 

Additional arguments are available, as well as individual sub-routines. Finally, both 

Epicopy segment and marker file outputs are compatible with GISTIC 2.0, to facilitate 

optional further analyses. 

 

3.2.3. Additional tools 

 

The ability to make confident CNV assessments depends on the probe density of a region 

and by evaluating a region of interest (of say, a gene). Epicopy includes a function to 

evaluate regions of interest in the human genome for probe coverage in the 450K 

microarray, enabling users to decide if Epicopy will provide confident CNV calls for 

their needs..  

 

Epicopy also includes a function that generates Manhattan plots from segmented data 

output for quick visualization of CNV calls. 

 

3. Considerations  
 

Segmented CNV data obtained from Epicopy have different log R ratio and minimum 

probe per segment thresholds and distributions compared to SNP microarray derived 
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CNV data. Based on an analysis comparing SNP and Epicopy derived CNV lesions, we 

recommend a minimum number of 50 probes to identify segments with high confidence. 

  



 80 

Chapter 4: Multiomic analysis of ductal carcinoma in situ 
 

4.1: Introduction 
 

4.1.1: Breast cancer statistics 

 

 Breast cancer is the most diagnosed form of carcinoma and second leading cause 

of cancer-related deaths in women in United States. According to the age-adjusted SEER 

data for the year 2009 [103], 155.7 in 100,000 women have received a diagnosis of breast 

carcinoma and about 20.1% of those diagnoses were reported as carcinoma in situ. In 

addition, 23 in 100,000 women have succumbed to breast carcinoma in 2009.  

 Recent advances in detection, prognostication and therapy has improved outcome 

in breast cancer survival, but there exists a subpopulation of patients who do not benefit 

from current form of disease management and another population of patients who are 

over-treated, especially patients with in situ disease [104-107]. 

 

4.1.2: Mammography: Risk versus benefit 

 

Studies over the years have been conducted to study the benefits and risks 

associated with mammography. The benefits of mammography include 1) early detection 

of a lesion that will eventually evolve into life-threatening disease and 2) the ability to 

effectively treat the lesion at the time of screen detection, both which directly translate 

into reduced mortality [107, 108]. However, there exists the risk of over-diagnosis of 
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benign lesions that will not progress into invasive disease or present with clinical 

symptoms during the lifetime of the patient [109]. 

Two comprehensive meta-analyses published in 2012 using SEER data (US) 

[105] and data from UK [110] studies highlight this risk-benefit relationship and review 

many observations and trials conducted to study the risk-benefit ratio of mammography 

screening. The reduction in mortality is calculated as the risk of mortality of screened 

women subtracted from the mortality of unscreened women. Both studies, in agreement 

with numbers obtained by previous investigations [104, 106-109], estimate a mortality 

risk reduction of 20 – 30% in all women screened.  

Observational studies have noted that the increased incidence of early stage breast 

cancer (DCIS/local) do not have an equivalent effect in reducing the incidence of late 

stage breast cancer (regional/metastatic), indicating potential over-diagnosis. In 

particular, SEER data obtained over the last three decades [105] indicate an increase in 

the number of diagnosed early stage breast cancer, with a only a slight reduction of late 

stage breast cancer incidences in the group of women over the age of 40, where 

mammography is recommended, and no reduction in women under the age of 40 where 

mammography is uncommon (Figure 4-1). 

The risk of over-diagnosis can be estimated using various methods [105, 109, 

110], but can be loosely defined as the number of screen-detected cases in the screening 

arm exceeding the number of clinically detected cases within the control arm after the 

lead time, or the time required for a pre-cancerous lesion to develop into invasive 

carcinoma. The lead time for early breast cancers is ill-defined and studies have generally 

accepted a follow-up time equal to that of the period of screening as a reasonable 
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estimate of lead time. Various studies, including the UK panel and Bleyer et al., have 

found varying rates of over-diagnosis, ranging from 11% to 60%, with a median of 28%. 

Even if the numbers do not agree, there is a significant possibility that routine screening 

mammography may lead to over-diagnosis of early stage breast cancer and may 

contribute to over-treatment of the disease.  

 

4.1.3: Ductal Carcinoma In Situ (DCIS) incidences from mammography screens 

 

Breast cancer can be histopathologically classified into a few general subtypes 

depending on the site of origin and presentation, but the most prevalent forms of breast 

disease remain the ductal subtypes, invasive ductal carcinoma (IDC) and ductal 

carcinoma in situ (DCIS), which originate from the epithelium of mammary ducts.  

DCIS represents the non-invasive local breast disease, where malignant cells 

proliferate within the confines of the duct and no invasion through the basement layer or 

myoepithelial cells are observed. Historically, DCIS was diagnosed after the excision of 

an IDC or a clinical event, such as nipple discharge or palpable mass. However, with the 

advent of mammographic screening, an increased number of DCIS cases are observed 

before symptoms occur, as highlighted in Figure 4-2 (SEER data). 

Putting the SEER data into perspective, there has been an increase in the 

incidence of DCIS of 50 per 100,000 women in US, now reaching 56.5 cases of DCIS per 

100,000 women, a 10-fold increase. DCIS now represents 17% of all newly diagnosed 

breast cancers over a 20-year period. [103, 105] The UK panel found screen-detected 

DCIS rates among newly diagnosed breast cancers at 20% versus clinically detected 
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DCIS rates at 5% [110]. Other studies have put the rate of DCIS among newly diagnosed 

breast carcinomas at 15 – 20% [106, 111, 112]. 

  

 

Figure 4–1: Age and HRT-adjusted SEER data for breast cancer incidences 

There was an increase in early stage breast cancer in the a) screened group (women >40 yrs 
of age) vs b) unscreened at the advent of mammography. 
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Figure 4–2: In situ versus malignant of female breast cancer by age 

From 1980s to the 2009, since the introduction of routine screening mammography, an 

increase of malignant breast cancer was observed. During the same time period, an 

increase of in situ disease by 7 to 8 fold was observed in both younger and older age 

groups since the 1980s. 

 

4.1.4: Natural history of DCIS and its clinical implications 

 

 Although DCIS does not present as a life-threatening disease, it is widely believed 

that DCIS lesions are non-obligate precursors that can progress into invasive ductal 
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carcinomas (IDC). Therefore, the treatment goal for DCIS is the prevention of 

progression in the form of IDC. The extent of progression usually cannot be directly 

observed because the standard treatment involves surgical removal of the DCIS. 

Retrospective studies aimed at estimating the number of progressive DCIS have studied 

the rate of IDC formation from DCIS misdiagnosed as benign breast disease (BBD). 

These cases of DCIS were treated with a simple biopsy, which allowed the lesion to 

progress at a natural rate. [113-116] These studies have estimated between 14% to 53% 

progression at a median follow-up of 10 years. These estimates are likely to be negatively 

biased, as DCIS that are misdiagnosed as BBD are generally small and lower in grade. 

 Another method of estimating the natural rate of DCIS progression is to 

investigate the incidence of IDC recurrence from DCIS lesions treated only with breast 

conserving surgery. Numerous studies have recorded ipsilateral recurrence rates ranging 

from 10% to 25% [112]. Among these studies, about a half of the cases, ranging from 

46% - 76%, recurred as IDCs, reinforcing the hypothesis that not all DCIS will progress 

to IDC. 

 

4.1.5: Current therapy, clinical risk stratification, and the problem of over-

treatment 

 

4.1.5.1: Mastectomy versus breast conserving surgery 

 

 Traditionally, DCIS has been treated with radical mastectomy. [117] However, 

trials in localized IDC showing comparable survival between mastectomy and 
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lumpectomy/breast conserving surgery (BCS) have prompted a shift in treatment towards 

BCS for patients diagnosed with DCIS [118]. Briefly, the NSABP B-06 trial randomized 

2163 patients with IDCs <4cm in diameter into 3 arms; total mastectomy, BCS followed 

by radiotherapy (BCS+RT) and BCS only. At 20 years of follow-up, there was a 

significant difference between local recurrences in the mastectomy vs BCS+RT trial 

arms, but no difference in overall survival or deaths caused by breast disease. [118] The 

Milan trial compared 701 women with IDCs measuring <2cm that were randomized into 

radical mastectomy or BCS + RT [119]. Similarly, after 20 years of follow-up, while 

there was a higher risk of local recurrence (2%, mastectomy vs 9%, BCS+RT), the 

overall survival and deaths caused by breast disease remained similar between both arms. 

While there have been no trials comparing mastectomy to BCS+RT in DCIS, it is 

reasonable to extrapolate these findings to DCIS given that it is a premalignant lesion 

deemed less aggressive.  

 

4.1.5.2: Radiotherapy and adjuvant therapy 

 

 Two pivotal DCIS trials performed by NSABP evaluated the effect of 

radiotherapy and adjuvant hormonal therapy (tamoxifen) on DCIS patients treated with 

BCS. NSABP B-17 enrolled 817 DCIS patients into two randomized arms; 1) BCS and 

2) BCS+RT. At 12-year follow-up, the local disease free recurrence for the group 

receiving radiotherapy was significantly reduced (8%) compared to the BCS only group 

(15%) [120]. NSABP-24 [121], on top of corroborating the effectiveness of radiotherapy, 

established the role of tamoxifen in treating DCIS. 1804 patients were randomized into 
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two arms; 1) BCS+RT+placebo and 2) BSC+RT+tamoxifen. The 7-year cumulative 

incidence for invasive local recurrence in the group receiving placebo was 11% versus 

7.7% in the tamoxifen treated group (p=0.07). Furthermore, the ER-status for 628 

patients were available and the effectiveness of tamoxifen was clear in these patients 

(relative risk, RR =0.41, p=0.0002) [121]. Figure 4-3 summarizes these findings.  

Based on these trials, patients presenting with DCIS, be it by clinical detection or 

mammography-screened, are generally treated with BCS+RT and given adjuvant 

tamoxifen therapy depending on their ER status. 
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Figure 4–3: IDC recurrence rate of clinically relevant subgroups estimated from the results of 
NSABP B-17 and B-24. 

Estimation of IDC recurrence rates from NSABP-17 and -24[122] in five clinically relevant 
subgroups with different clinical management strategies. An estimated 5% of patients with DCIS 
will experience recurrence as IDC even with BCS, radiation, and tamoxifen, and represents a 
subset of the patients who will need more aggressive therapy. On the other end of the spectrum, 
85% of the patients will need at most BCS for a recurrence free survival of 7 years. A proportion 
of these patients will not need therapy, as the lesion will not present as a clinically relevant 
disease in the lifetime of the woman. 
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 Even with a 90% cure rate for DCIS using current therapy, I hypothesize from 

these meta-analyses and trials that there exist 6 groups of clinically relevant patients 

subgroups:  

1) Patients who have screening-detected DCIS who will not present breast disease 

clinically in their lifetime, representing a group of patients who are at the extreme 

end of over-treatment 

2) Patients who have DCIS that will eventually present clinically and benefit from 

BCS, but not radiotherapy, representing another group of patients who are 

commonly over-treated 

3) Patients who will benefit from BCS+RT, but not Tam 

4) Patients who will benefit from BCS+Tam, but not RT 

5) Patients who will benefit from BCS+RT+Tam 

6) Patients with progressive disease in spite of BCS+RT+Tam, representing a group 

of patients who are under-treated 

 

Given these subgroups of patients, there exists a need to stratify them into clinically 

relevant groups for optimal disease management. 
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4.1.6: Current DCIS classifications, treatment modalities, and prognostic potential 

 

 DCIS is a heterogeneous disease, both in its etiology and clinical presentation. 

There are many clinicopathological characteristics that have been used to classify DCIS 

lesions, albeit with limited prognostic success. 

 

4.1.6.1: Clinicopathological features 

 

 Clinically, the patient’s age, race, family history, tumor size, and surgical margins 

have been evaluated as risk factors of breast carcinoma and DCIS recurrence, with 

conflicting reports regarding the association of these factors with IDC recurrence. 

However, most studies have found that family history of breast cancer, surgical margins, 

and mode of detection are associated with higher risk of recurrence.  

 Histologically, the architectural appearance of DCIS lesions allow them to be 

classified into micropapillary, papillary, solid, or cribiform subtypes. Most often, DCIS 

lesions exhibit more than one architectural subtype. On top of that, tumor size, nuclear 

grade, degree of differentiation, extent of comedo-necrosis, and presence of calcifications 

are also used to describe DCIS lesions. Furthermore, the surgical margins after BCS of < 

1mm have been shown to increase the risk of developing locoregional IDC recurrence. 

 In addition to these features, expression of certain proteins, such as the expression 

of hormonal receptors (estrogen and progesterone receptors) and Her2/neu have been 

used in the clinic to classify IDCs and may have value in predicting DCIS risk. 
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Clinically, steroid receptor status in particular has been used to prescribe adjuvant 

hormonal therapy [121]. 

 Kerlikowske et al. [123] systematically evaluated the clinicopathological factors 

associated with DCIS and IDC recurrence and showed that mode of detection, margins, 

and nuclear grade are associated with increased risk of IDC in a multivariate model. 

More recently, Zhang et al. [124] performed a meta-analysis to identify predictors of 

locoregional IDC progression and identified that, in observational studies, the presence 

comedo-necrosis and positive margins results in higher likelihood of IDC progression.  

Interestingly, and relevant to the discussion of over-treatment, is that the same meta-

analysis of randomized clinical trials (RCTs) identified that mode of detection was 

related to risk of IDC progression, specifically that non-screen detected cancers were 

more likely to progress to IDC. 

 

4.1.6.2: Proposed scoring systems 

 

 Following these studies, various routinely available clinicopathological features 

discussed earlier were used in the effort to develop standardized scoring systems 

proposed for clinical use for risk stratification in DCIS. Many histological classification 

systems were designed based on the Bloom-Richardson classification derived from 

invasive breast cancer (IBC), which depends on tubule formation, nuclear polymorphism, 

and mitotic rate. One such index is the updated Van Nuys Prognostic Index (VNPI), 

which incorporates 1) Bloom-Richardson grading of the tumor, 2) tumor size, 3) presence 

of comedo-necrosis, and, most recently, 4) age, to prognosticate patients into three risk 
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groups; low risk (VNPI 4-6), intermediate risk (VNPI 7-9), and high risk (VNPI 10-12). 

In the retrospective study where the updated VNPI was developed and first reported, 706 

patients underwent BCS, and Silverstein [125] showed that in the VNPI risk groups of 

patients with up to 12 years of follow-up, low risk patients had a 1% recurrence rate, 

intermediate risk patients had a 20% recurrence rate, of which 44% were IDC, and the 

high risk patients had a 50% recurrence rate, of which 39% were IDC. Other studies 

attempting to validate the performance of VNPI found either less significant log-odds 

ratios between risk groups [126] or no difference in risk [127] for disease free survival. 

Of note is that none of these studies, including the original, found a statistically 

significant difference in the probability of breast cancer related deaths across risk groups. 

 Other scoring systems have been proposed, but none have been adopted in 

universal guidelines, as experts disagree on which system is most reproducible [128]. 

Furthermore, many classifications systems do not distinguish between the prognostication 

of DCIS recurrence vs. IDC progression, and show little to no association with breast 

cancer related mortality. Therefore, there is a clinical need and opportunity for the design 

of a molecular test that may complement the currently established classification systems 

that allows clinicians to distinguish progressive versus non-progressive DCIS with a high 

negative predictive value (NPV). 

 

4.1.7: Molecular properties of DCIS and markers of progression 

 

Gene candidate approach work in our lab and others has shown that DNA 

methylation changes occur in early stages of cancer development. For example, 
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hypermethylation and transcriptional silencing of the gene 14-3-3σ (stratifin, SFN), a 

tumor suppressor involved in breast oncogenesis, was observed in stages of breast 

hyperplasia as early as atypical hyperplasia [129, 130]. In support of that, transcriptomic, 

genomic, and epigenomic profiling of DCIS, either by itself or in comparison with IDC, 

paired or otherwise, have revealed that many of the hallmarks of IDC are present in DCIS 

[131], including chromosome 1q and 8q gains, chromosome 16p loss, TP53 mutation, 

and HOX-family gene promoter methylation [132] .  

In studies of limited sample size (between 26 to 74 samples), investigators have 

shown successful and high confidence PAM50 classification of DCIS samples [132-134]. 

Interestingly, the distributions of PAM50 subtypes across DCIS do not reflect 

distributions observed in IDC, with the DCIS cohorts presenting with more HER2-

enriched (29% - 38% in DCIS compared to 15% – 20% in IDC) but less luminal 

subtypes, with consistent IHC/FISH histological classification. While small sample size 

and low power, as well as selection bias for high grade DCIS, may explain this disparity, 

it is also important to note that previous studies have shown highly variable HER2 

expression in DCIS, ranging from 28% to 65% [135-137]. Furthermore, a recent NSABP 

prospective study evaluating the use of Trastuzumab in DCIS identified that 34.9% of a 

cohort of 5861 patients were HER2+ [138]. 

Analyses of DCIS with concurrent IDC identified similar oncogenic genomic and 

transcriptomic changes in both DCIS and IDC lesions of the same patient [139]. More 

surprising is the discovery that in studies comparing mixed DCIS and IDC samples 

across different grades, hierarchical clustering of genes differentially expressed across 

lesion groups (normal vs. DCIS vs. IDC, with ER-status being equal) showed clustering 
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first by individuals, followed by grade, with little support for clustering of DCIS vs. IDC 

[134, 139]. 

At the time of writing, none of the published high-throughput molecular studies 

were performed in DCIS samples with long-term follow-up information, and evaluating 

molecular changes of aggressiveness (high versus low grade, IDC versus DCIS in 

synchronous lesions, etc.) was analyzed as a proxy for progression.  

In studies comparing genetic alterations in synchronous DCIS with IDC, 

amplifications of MYC, HER2, FGFR1, and CCND1 have been identified to be distinct 

between DCIS and synchronous IDC events [140]. Beyond that, a higher degree of 

genomic instability reported as the percent of the genome altered (via amplification or 

deletion) is associated with increased DCIS grade [133]. Gene expression classifiers have 

been identified that distinguish between DCIS and IDC [141] and high and low-grade 

DCIS [133, 134, 142]. Unfortunately, given the limited data available on DCIS samples, 

none of these were validated with an independent external dataset. 

To my knowledge, at the time of writing, there is one study that evaluated the use 

of several IHC markers beyond the canonical ER, PR, HER2, and Ki67, and 

systematically assessed their relationship with IDC recurrence. In a gene candidate 

approach using IHC, Kerlikowske et al. evaluated the relationship between a series of 

protein markers and IDC recurrence in a case-control study with a cohort of 329 DCIS 

patients with long-term follow-up. The authors showed that in a multivariable model 

correcting for clinicopathological factors, DCIS lesions expressing all three p16, CPX-2 

and Ki67 markers were at increase risk of IDC recurrence [143]. 
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4.2: Study design and methods 
 

4.2.1: Motivation 

 

We hypothesize that molecular markers of progression are present in early stages 

of the disease and identification of these markers will allow us to stratify patients into 

different risk groups with appropriate clinical management protocols. 

As reported, high-throughput molecular studies of DCIS have been limited to 

DCIS lesions comparing pure DCIS with samples harboring synchronous DCIS and IDC 

in the same section. In the published literature, all lesions were collected at the same 

time, with short-term follow up, which are study designs with limited capacity to address 

the question of progression because of the lack of true non-progressive controls, which 

are DCIS samples that do not develop IDC over a long period of observation [144], e.g., 

> 10 years. 

The available literature suggests extensive concordance between the molecular 

alterations in DCIS and IDC, especially as assessed by genetic and transcriptomic 

platforms, which suggests the need to study and profile the epigenomic changes in DCIS 

as well. Furthermore, these molecular similarities were observed in pure DCIS across all 

grades, and may indicate small effect sizes between progressive and non-progressive 

DCIS, speaking to the need of a large study cohort and high resolution methodologies to 

identify such differences. 
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4.2.2: Study design 

 

This study was designed as multicenter, nested case-control study of DCIS. We 

identified a cohort of 100 patients with DCIS and no evidence of invasive disease at 

presentation that progressed to invasive breast cancer within 10 years, after a minimal 

interval of 12 months, recruited from four leading breast cancer treatment centers. Given 

the difficulty in identifying cases matching these criteria, the racial composition was 

limited to Caucasians, the largest cohort available, in order to minimize confounding 

factors at this early stage, where our priority was in confirming our hypothesis that a 

clinically relevant prognostic molecular signature can be identified in DCIS. 100 DCIS 

control cases were matched to the same selection criteria, and were selected to reflect the 

clinical subsets of the cases, including histological nuclear grade, margin status, and 

adjuvant treatments, as well as approximate age and year of diagnosis (both within a 5 

year window). All controls had a disease-free follow up of a minimum of 10 years. Cases 

and matched controls were treated and followed at the same institutions, and had similar 

rates of mastectomies (35%), radiation treatments (30%) and hormone therapy (10%). All 

relevant clinical information has been captured in an anonymized research database, and 

20 unstained sections with matching H&E stained control slides were obtained from the 

relevant tissue blocks with coded identifiers.  

The three study pathologists, Dr. Gabrielson (JHU), Dr. van Diest (Utrecht), and 

Dr. Hawes (USC) reviewed all cases and controls in order to ensure diagnostic 

consistency through the Aperio digital imaging system (Aperio Inc., Vista, CA), which 
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allows very efficient remote visualization and interactive annotation of the entire 

histological slide at high (20x and 40x) resolution. 

In the initial study design, transcriptomic analysis was analyzed using the 

Illumina DASL microarray. Unfortunately, during sample accrual and nucleic acid 

extraction, the DASL assay was discontinued and the platform was switched to the 

Affymetrix pipeline of WGA by WT Pico followed by HTA2 microarray profiling. DNA 

methylation analysis was performed using Illumina FFPE restoration followed by 450K 

methylation microarray. Lastly, due to DNA yield limitations, genetic analysis was 

performed using copy number data derived from 450K microarray data by Epicopy 

instead of the initial plan of using Illumina 1M SNP Beadchip microarray. 

 

4.2.3: Patient identification and sample collection 

 

We used patient registries here at Johns Hopkins Hospital and at collaborating institutions 

to identify cases and controls that matched study criteria and had documented long term 

follow up. Tissues were obtained with approval of the respective institutional IRBs. 

Study pathologists reviewed archival H&E sections to select FFPE tissue blocks. A total 

of 98 progressive DCIS cases, 98 non-progressive DCIS controls, 12 DCIS adjacent 

normal tissue, and 5 reduction mammoplasty samples were profiled using gene 

expression (Affymetrix HTA2) and methylation platforms (Illumina 450K). 
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4.2.4: DNA/RNA extraction and quality control 

 

Pathologist annotated adjacent H&E sections were used as guide for tissue 

orientation and macrodissection of unstained tissue sections to enrich for >70% DCIS 

epithelial cells. Following that, DNA and RNA were extracted using Allprep FFPE 

RNA/DNA kits (Qiagen) with modifications to deparaffinization, digestion, and wash 

steps. The modified protocol is appended. 

Quantification of RNA and DNA was performed using a Nanodrop2000 and a 

Qubit fluorometer (Qiagen) using appropriate kits (RNA HS, RNA BR, DNA HS, and 

DNA BR). The 260/230 and 260/280 ratios were used to assess sample purity and solvent 

contamination. Qubit derived measurements were ultimately used to calculate nucleic 

acid input for the microarray platforms.  

 

4.2.5: Quality control and microarray 

 

Quality control was performed using the Illumina FFPE QC kit with the iTaq™ 

Universal SYBR® Green Supermix and was regarded as the main quality control step for 

450K and other DNA-based microarrays. Samples with delta CT <9 were used in the 

study and case-control pairs with lower delta CT
 were prioritized. Bisulfite conversion 

was performed using the EZ DNA Methylation-Gold™ Kit (Zymo Research, Irvine CA), 

with modifications introduced per Appendix I of the manufacturer’s recommended 

protocol. The detailed protocol is appended at the end of the thesis. NaBi-converted DNA 
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was submitted to the SKCCC Microarray Core Facility for FFPE DNA restoration and 

profiling using the Illumina 450K microarray. 

 

4.2.6: Data pre-processing and QC 

 

Unless otherwise stated, data analysis was performed in R Statistical Environment using 

base, Bioconductor, and custom packages. P-values were corrected using Benjamini-

Hochberg’s method for false discovery rate estimation. 

 

Illumina 450K Methylation Quality control metrics for Illumina-based arrays were 

estimated using Illumina’s GenomeStudio software, and validated through control probe 

signal intensities extracted through the minfi software in R. GenomeStudio-derived 

detection p-values (detP) with a threshold of p < 0.01 were used to calculate sample-wise 

call rates, and samples with call rates of less than 80% were removed from the analysis. 

Raw beta-value density plots were plotted and samples with aberrant beta-value density 

plots (without a bimodal distribution with means around 0.1 for unmethylated regions 

and 0.9 for methylated regions) were removed from the analysis. Probe-wise detP were 

estimated and probes with > 95% coverage across remaining samples were retained for 

analyses. Probes with interrogated CpGs 2bp from a known SNP with a population minor 

allele frequency (MAF) >5% were removed. Functional normalization was performed on 

the final set of high quality samples and probes to obtain final methylation dataset. 
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Epicopy-derived CNV High quality samples and probes from the methylation pre-

processing were used as input into Epicopy to generate CNV information for DCIS 

samples. Default Epicopy parameters were used with reduction mammoplasty normal 

samples serving as reference samples. CNV profiles were assessed for typical 

segmentation parameters, and samples with aberrant parameters were discarded from 

downstream analyses. 

 

TCGA Data Processed TCGA data were downloaded from Broad Institute’s Firehose 

server. 

 

4.2.7: Methylome data analysis 

 

Exploratory data analysis was performed using principal component analysis 

(PCA) and unsupervised clustering using Euclidean distance was performed on variable 

probes across all the samples (standard deviation, SD, above 3 interquartile ranges (IQR) 

of the standard deviation, n = 2963). Probe-wise differential methylation analyses across 

various groups were performed using limma on probes with SD above 1.5 IQR (n = 

132,174). DMRcate was used to identify differentially methylated regions with a 

Gaussian kernel bandwidth of 1000 and a scaling factor of 2, resulting in a sigma of 500. 

Methylation scores for various molecular classes were calculated as transformed mean 

beta-value. Briefly, the beta-values for each probe was multiplied using the sign of the 

moderated t-statistic from limma, and a mean transformed beta-value for each sample 
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was calculated. A larger value represents a molecular phenotype closer to the positive 

contrast from the limma analysis. For N differentially methylated probes, 

𝑀𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒! =  
𝛽!"  × 𝑠𝑔𝑛 𝑡!!

!

𝑁  

Consensus clustering was performed to identify stable epigenetic clusters and 

probe clusters. To assign functional groups to these series of probes, we used the 

“Compute Genesets Overlap” tool hosted on the Molecular Signatures Database 

(MSigDB) against C2:CGP (chemical and genetic perturbations gene sets). 

 

4.2.8: Copy number data analysis 

 

GISTIC 2.0 was used to identify regions of recurrent amplifications across tumor 

adjacent normal, case, and control samples. Default input parameters were used. 

Recurrent copy number results were extracted for custom plots and analyses. Gene-wise 

copy number information was used to identify recurrent gene-wise copy number changes. 

Cytogenetic band copy number changes were estimated using gene-wise copy number 

information and were used in clustering analyses.  
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4.3: Results and Discussion 
 

4.3.1: Methylome analysis reveals distinct methylation patterns in normal tissue 

consistent with oncogenic development that is validated in the TCGA breast cancer 

dataset 

 

Genomic data are often represented by sparse matrices and the same is true for 

450K data with 485,512 probes. To reduce dimensionality, data was first subsetted into 

phenotype-naïve probes with SD above 1.5 IQR of standard deviation across all samples. 

Exploratory analysis was performed on another subset of probes with SD > 3 IQR. PCA 

revealed clustering of normal and tumor-adjacent normal tissues on the first and second 

component of the PCA, which collectively explained 39% of all the variation observed in 

the dataset (Figure 4-4a). Unsupervised hierarchical clustering was performed on the 

same set of probes to validate and visualize PCA results, and identify clinicopathological 

features that may contribute to further clusters. The majority of the most variable probes 

are located within CpG islands, and a general signature of hypermethylation was 

observed in a subset of the DCIS samples (Figure 4-4b). DCIS samples did not cluster by 

progression status, which may suggest that progression status was not the largest 

contributor to molecular differences, and that biologically, these two classes are very 

similar. Of note, a few non-progressive DCIS samples clustered near the normal samples. 

Differential methylation analysis using limma was performed comparing all DCIS 

and reduction mammoplasty derived normal tissues (D-N comparison, Figure 4-4c and 

Table 5) to identify DCIS-specific probes. Hypermethylation of CpG islands in promoter 

regions of genes was observed in DCIS, consistent with observations from reported 
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studies in cancer, including breast cancer. This effect was observed predominantly in 

CpG islands (Figure 4-4d, 9-fold), and to a smaller extent, shores (2.2-fold). 

Comparatively, there does not seem to be a difference between the proportion of 

hypermethylated and hypomethylated probes in shelves and open sea regions.  

 

Figure 4–4: Distinct methylation profiles between normal and DCIS tissues. 

a) PCA analysis on probes with SD > 3 IQR showed clustering of normal samples on both PC1 
and PC2. b) Unsupervised hierarchical clustering using complete linkage revealed that normal 
tissues are unmethylated in most of these CpG island probes compared to DCIS. c) Differentially 
methylated probes (DMPs) identified using limma (FDR < 0.05, delta beta > 0.3) revealed 
general hypermethylation in DCIS. d) DMPs (FDR < 0.05) located in CpG islands tend to be 
hypermethylated (9-fold) compared to DMPs in other regions (between 0.7- to 2.2-fold). 
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Table 5: Top 50 DMPs between DCIS and reduction mammoplasty normal samples 

(D-N) 

 

  

probeID delta_beta ave_beta t pval fdr b gene_symbol Relation_to_Island
cg23908638 0.34 0.78 9.25 2.76E-17 3.65E-12 28.15 GABBR1 OpenSea
cg10017626 0.39 0.75 8.45 5.03E-15 3.33E-10 23.25 Shore
cg17387577 0.48 0.65 8.34 1.02E-14 4.49E-10 22.59 NCOR2 OpenSea
cg16924776 0.34 0.76 8.24 1.85E-14 6.10E-10 22.03 OpenSea
cg23922724 0.42 0.70 8.11 4.14E-14 1.09E-09 21.27 OpenSea
cg19321887 0.34 0.71 8.06 5.83E-14 1.28E-09 20.95 OpenSea
cg25656762 0.38 0.71 8.01 8.08E-14 1.52E-09 20.64 OpenSea
cg22954906 0.35 0.73 7.92 1.37E-13 2.26E-09 20.15 LOC121952 OpenSea
cg10531355 0.38 0.68 7.86 2.01E-13 2.95E-09 19.78 SERINC5 OpenSea
cg20589096 0.31 0.76 7.79 3.14E-13 4.15E-09 19.36 MOBKL1A OpenSea
cg20547777 0.39 0.69 7.69 5.66E-13 6.80E-09 18.81 EXT1 OpenSea
cg18082788 -0.33 0.18 -7.68 6.20E-13 6.83E-09 18.72 ZC3H12D OpenSea
cg08092318 0.36 0.64 7.62 8.90E-13 8.91E-09 18.38 OpenSea
cg13799919 0.36 0.69 7.61 9.44E-13 8.91E-09 18.33 POLR1D OpenSea
cg07694621 0.36 0.70 7.57 1.18E-12 9.88E-09 18.12 OpenSea
cg08325813 -0.34 0.32 -7.57 1.20E-12 9.88E-09 18.10 LFNG OpenSea
cg21949305 0.29 0.75 7.56 1.27E-12 9.88E-09 18.05 C22orf45;ADORA2A OpenSea
cg06527213 0.33 0.73 7.54 1.44E-12 1.06E-08 17.93 KLHL25;MIR1276 Shelf
cg01629007 0.33 0.77 7.47 2.22E-12 1.54E-08 17.52 PXDN OpenSea
cg10717189 0.35 0.68 7.40 3.32E-12 2.19E-08 17.14 Shore
cg01298514 0.29 0.77 7.38 3.77E-12 2.34E-08 17.02 VEGFA Shore
cg18188653 0.38 0.61 7.37 3.90E-12 2.34E-08 16.99 LPP OpenSea
cg03048488 0.37 0.70 7.30 5.89E-12 3.14E-08 16.61 Shelf
cg07211212 -0.30 0.17 -7.30 6.02E-12 3.14E-08 16.58 Shore
cg12198841 0.41 0.68 7.29 6.25E-12 3.14E-08 16.55 OpenSea
cg06012347 0.30 0.72 7.28 6.55E-12 3.14E-08 16.51 OpenSea
cg18356785 0.50 0.77 7.28 6.60E-12 3.14E-08 16.50 C1QTNF4 Island
cg21527078 0.42 0.76 7.28 6.64E-12 3.14E-08 16.49 VGLL4 Island
cg04315771 0.38 0.68 7.25 8.01E-12 3.65E-08 16.32 NUP62;IL4I1;ATF5 Shore
cg16324121 -0.31 0.36 -7.24 8.31E-12 3.66E-08 16.28 IL17RE Shelf
cg22109795 0.32 0.66 7.23 8.85E-12 3.77E-08 16.22 Shelf
cg02573551 0.30 0.74 7.22 9.37E-12 3.87E-08 16.17 EPHB3 Shore
cg15384589 0.35 0.67 7.21 1.03E-11 4.14E-08 16.08 OpenSea
cg09627520 0.33 0.63 7.16 1.33E-11 5.18E-08 15.84 PXK OpenSea
cg01393234 -0.33 0.26 -7.15 1.47E-11 5.55E-08 15.75 OpenSea
cg22740835 0.37 0.74 7.13 1.64E-11 6.03E-08 15.64 DDR2 OpenSea
cg21880888 0.38 0.70 7.12 1.73E-11 6.18E-08 15.59 DDR2 OpenSea
cg10960266 0.30 0.78 7.11 1.81E-11 6.31E-08 15.55 VGLL4 Island
cg18084609 0.37 0.73 7.10 1.93E-11 6.53E-08 15.49 COCH Shore
cg06721601 0.31 0.86 7.09 2.09E-11 6.78E-08 15.42 CUX1 OpenSea
cg01446571 0.28 0.74 7.08 2.10E-11 6.78E-08 15.41 OpenSea
cg20946037 0.34 0.68 7.06 2.39E-11 7.36E-08 15.29 OpenSea
cg07642822 0.32 0.75 7.06 2.40E-11 7.36E-08 15.29 ZNF787 Island
cg10824259 0.29 0.77 7.06 2.48E-11 7.44E-08 15.26 NEDD9 OpenSea
cg08845721 0.32 0.69 7.02 3.02E-11 8.86E-08 15.07 NR3C1 Shore
cg06556244 0.35 0.61 6.98 3.84E-11 1.10E-07 14.84 EPHA1 OpenSea
cg08414108 0.35 0.74 6.97 4.10E-11 1.15E-07 14.78 SYNJ2 OpenSea
cg20899625 0.35 0.73 6.96 4.32E-11 1.17E-07 14.73 PLXNA1 OpenSea
cg25827524 0.29 0.74 6.96 4.34E-11 1.17E-07 14.73 WWP1 OpenSea
cg16217794 0.35 0.64 6.94 4.81E-11 1.27E-07 14.63 OpenSea
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DMPs identified from this analysis (Table 5) include probes located in promoter 

regions or gene bodies of genes implicated in breast cancer development [80], including 

RASSF1A, TP73, CDKN2A (p16), GSTP1, MGMT, APC, and HOX family genes. I also 

observed DMPs in genes related to estrogen receptor (ER) signaling; ESR1, RUNX3, and 

NCOR2. 

I next tested the hypothesis that cancer-related methylation events occur in DCIS 

by analyzing the methylation profiles of the identified DMPs in the TCGA breast cancer 

(BRCA) dataset. In support of that hypothesis, these differential methylation events were 

also observed comparing IDC and tumor adjacent normal tissue (Figure 4-5). Taken 

together, this suggests that global oncogenic methylation changes occur in DCIS, before 

the development of IDC.  

 

 

Figure 4–5: DMPs in D-N show consistent change in invasive breast cancer. 

a). 14,652 DMPs between DCIS and normal tissue in the TCGA BRCA dataset. Note that the 
methylation profiles in the tumors are concordant with the methylation profiles in DCIS when 
compared to normal breast tissue. b) D-N methylation scores calculated for tumor adjacent 
normal, tumor, and metastasis samples.  
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 Studies have shown that DNA methylation changes  occur in blocks across the 

human genome and clusters of neighboring CpGs known as differentially methylated 

regions (DMRs) [80, 145, 146]. DMRs act as functional units that affect change in gene 

expression, where hypermethylation in promoter region or first exons leads to gene 

silencing, and concerted hypermethylation in the gene body was often correlated to 

increased gene expression. While DMRs are a natural consequence of statistical 

smoothing of DNA methylation sequencing data, microarray data are represented as 

probes that span specific genetic loci and are not as readily quantifiable into methylation 

blocks. To address the need to identify functionally relevant changes in DNA 

methylation, computational algorithms have been developed to perform smoothing of 

microarray data [147, 148]. Consistent with this theory, I observed concerted 

differentially methylated neighboring probes in many genes and performed DMR 

analysis using DMRcate [147]. Differential methylation in the promoter region of 

RASSF1A is shown as a representative example (Figure 4-6).  

A total of 678 DMRs were identified comparing DCIS and normal tissues, 

including in regions where aberrant methylation have been observed in breast cancer 

(Table 6) [80, 149]. Promoter hypermethylation of the HOX family genes of master 

regulators were commonly observed. HOX genes have been implicated in the 

oncogenesis and aggressive phenotypes in breast cancer [150-153]. Recently, work in our 

lab has shown that HOX genes regulate cell fate transition [154], invasiveness [155], and 

endocrine therapy resistance [156]. Furthermore, tumor suppressor genes involved in 

DNA repair, such as TP73, APC, CCND2, and MGMT, were also differentially 
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methylated. I also identified DMRs in the estrogen responsive genes, ESR1, RUNX3, and 

FOXA2, suggesting that at least a subset of the DCIS have dysregulated ER signaling. 

 

 

Figure 4–6: Differentially methylated region identified in a CpG island in the promoter region 
of RASSF1A in D-N analysis.  

RASSF1A promoter hypermethylation have been implicated in breast cancer development and 
this was observed in a D-N comparison. The chromosomal ideogram shows the chromosome the 
gene is located in and the red vertical bar highlights the locus displayed in the panels below. The 
genomic axis for hg19 is displayed. The blue block arrows identify genes and the transcription 
direction. Green bars represent CpG sites and the purple box highlights identified DMRs. The 
line charts on the bottom show beta-value change in DCIS (orange) and normal tissue (blue). 
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Table 6: Differentially methylated regions in DCIS (D-N) 

 

 

4.3.2: Tumor-adjacent normal tissues display intermediate hallmarks of DCIS 

 

Results from exploratory analysis using PCA, unsupervised hierarchical 

clustering, and D-N differential methylation analysis show that DCIS-adjacent normal 

tissue cluster closer to normal breast tissue than to DCIS (Figure 4-4).  Interestingly, 

within a subset of D-N DMPs, I observed methylation profiles intermediate to that 

between DCIS and normal tissue in the series of tumor-adjacent normal tissue. Indeed, 

when I calculated a methylation score for the JHU DCIS cohort, the DCIS adjacent 

Chromosome Start End Width CpG	N Min	FDR Stouffer Max	delta Mean	beta Overlapping	promoter(s)
chr1 3566950 3568245 1296 21 6.21E-12 1.24E-07 0.25 0.15 WRAP73,	TP73
chr1 3605979 3607425 1447 11 6.52E-09 3.10E-05 0.19 0.09 TP73
chr1 25255838 25258679 2842 24 1.21E-15 1.66E-13 0.26 0.14 RUNX3
chr10 131264786 131265073 288 4 6.45E-05 7.77E-03 0.27 0.11 MGMT
chr11 32421514 32421845 332 4 1.11E-07 1.82E-04 0.39 0.22 WT1
chr11 32454718 32456340 1623 12 1.06E-06 3.29E-05 0.23 0.14 WT1,	WT1-AS
chr11 32459760 32459954 195 2 7.25E-04 2.60E-02 0.13 0.12 WT1-AS
chr11 67351271 67352041 771 6 1.03E-04 8.88E-04 0.20 0.13 GSTP1
chr12 4380586 4382188 1603 16 1.26E-09 5.25E-08 0.24 0.13 CCND2
chr12 4383281 4384751 1471 7 5.83E-07 7.39E-05 0.19 0.12 CCND2,	CCND2-AS2,	CCND2-AS1
chr12 54345056 54346784 1729 8 1.66E-08 2.96E-06 0.42 0.16 HOXC12
chr12 54349169 54349349 181 2 2.35E-05 1.64E-03 0.21 0.20 HOXC12,	AC012531.23
chr12 54412565 54413384 820 6 3.43E-08 9.63E-05 0.31 0.19 HOXC4,	RP11C11.14,	AC012531.25
chr12 54446944 54448913 1970 14 8.20E-06 4.09E-05 0.20 0.14 HOXC4
chr16 82660206 82660873 668 8 1.07E-07 3.76E-05 0.21 0.11 CDH13
chr17 46655164 46656093 930 17 2.60E-07 9.23E-04 0.21 0.11 HOXB4,	MIR10A,	HOXB3
chr17 46667683 46667812 130 2 1.79E-04 3.52E-03 -0.15 -0.13 HOXB-AS3,	HOXB3
chr17 46690336 46692248 1913 7 9.90E-05 5.29E-03 0.19 0.10 HOXB8,	HOXB7
chr17 46703646 46704004 359 6 3.55E-04 4.17E-03 0.13 0.10 HOXB9
chr17 46711017 46711446 430 5 2.30E-04 1.21E-03 0.22 0.18 MIR196A1,	HOXB7
chr17 46806445 46806935 491 5 9.54E-05 2.74E-03 0.20 0.12 HOXB13
chr18 49866065 49868552 2488 14 1.69E-07 2.14E-07 0.23 0.12 DCC,	RP11-25O3.1
chr18 60984485 60984656 172 2 8.58E-06 7.10E-04 -0.27 -0.20 BCL2
chr19 42408316 42408464 149 3 1.01E-04 1.71E-03 -0.19 -0.19 ARHGEF1
chr2 176957304 176958174 871 5 7.20E-06 4.05E-04 0.27 0.15 HOXD13
chr2 176963583 176964720 1138 11 5.99E-13 3.22E-08 0.30 0.18 HOXD12
chr2 176971304 176973275 1972 14 3.42E-14 1.68E-07 0.30 0.15 HOXD11,	AC009336.1,	HOXD10
chr2 176980837 176982230 1394 9 2.32E-16 1.81E-06 0.42 0.19 HOXD10
chr2 176986460 176988505 2046 16 4.30E-16 1.24E-07 0.33 0.16 HOXD9
chr2 176993017 176995556 2540 17 3.99E-10 5.46E-08 0.25 0.15 HOXD8
chr2 177001256 177001909 654 5 3.45E-06 1.82E-04 0.29 0.18 HOXD-AS2,	HOXD3
chr2 177052903 177054306 1404 11 7.40E-06 2.01E-04 0.17 0.09 HOXD1,	HOXD-AS1
chr20 22565881 22567920 2040 12 3.03E-11 1.19E-08 0.27 0.17 FOXA2
chr3 25469914 25469925 12 3 2.03E-07 2.59E-05 0.16 0.14 RARB
chr3 79815639 79817278 1640 10 1.52E-07 2.17E-08 0.25 0.15 ROBO1
chr5 112073348 112074043 696 14 1.57E-13 6.22E-08 0.30 0.17 APC
chr6 152127812 152128426 615 7 9.03E-06 2.95E-03 -0.25 -0.12 ESR1
chr7 19157263 19158134 872 13 1.37E-05 6.73E-03 0.16 0.09 TWIST1,	AC003986.7
chr7 27135147 27136424 1278 10 2.06E-15 2.07E-08 0.24 0.16 HOXA1,	HOTAIRM1
chr7 27145972 27146445 474 4 2.48E-05 2.83E-04 0.27 0.21 HOXA-AS2
chr7 27168688 27171401 2714 26 2.07E-31 9.40E-19 0.32 0.18 HOXA4,	HOXA-AS3
chr7 27182493 27184375 1883 31 1.29E-23 2.73E-07 0.28 0.14 HOXA5
chr7 27190431 27191564 1134 7 4.09E-05 2.67E-03 0.14 0.11 RP1O19.22,	RP1O19.23,	HOXA3,	HOXA6,	HOXA-AS3
chr7 27195036 27198189 3154 18 4.01E-08 2.01E-07 0.23 -0.01 HOXA7,	RP1O19.21
chr7 27204349 27205658 1310 15 3.18E-09 1.47E-05 0.24 0.13 HOXA9
chr7 27213610 27214201 592 10 9.80E-07 7.13E-04 0.27 0.15 HOXA10,	RP1O19.20
chr7 27238910 27239763 854 4 2.92E-04 1.79E-03 0.21 0.15 HOXA13,	HOTTIP
chr7 116166408 116166824 417 4 1.32E-05 7.30E-04 0.14 0.10 CAV1
chr8 41165699 41167278 1580 8 4.97E-05 5.03E-05 0.24 0.14 SFRP1
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normal tissues had methylation scores intermediate to that of normal breast tissue and 

DCIS (Figure 4-7a), and this result was statistically significant (Bonferroni adjusted 

pairwise Wilcox test, p < 0.05 across all comparisons). A subset of DCIS-specific probes 

was differentially methylated between adjacent normal and normal tissue, with the 

adjacent normal tissue showing intermediate methylation profiles (Figure 4-7b). To 

identify if there are oncogenic differences between probes differentially methylated 

between DCIS-adjacent normal and normal breast tissue (A-N), I identified a series of 

1214 DMPs with p-values < 0.01, and used this series to calculated a methylation score in 

the TCGA dataset. This analysis showed a statistically significant difference between 

methylation scores of tumor and tumor adjacent normal samples (Figure 4-7c). This 

signature also distinguishes normal tissue from DCIS (Figure 4-7d). 

This observation was not due to contamination of DCIS cells during 

macrodissection because a contamination derived profile will show intermediate 

methylation across most probes, and this was not evident in the clustering of all DCIS- 

specific probes (Figure 4-6c). In addition, this effect has been reported in both DCIS and 

IDC in the literature. Concordant oncogenic gene expression changes have been observed 

in DCIS- and IDC- adjacent stroma [157]. Furthermore, other studies have shown field 

cancerization [158] in breast cancer, where cancer-associated genetic [159], epigenetic 

[130, 160], transcriptomic [161, 162], and telomeric [163] changes were observed in 

neighboring normal breast epithelium. To our knowledge, this is the first study which 

identified global methylation changes in DCIS-adjacent normal tissue.  

Our limited sample size suggests that this effect happens on a subset of DCIS 

specific methylation changes, and further studies evaluating the change in prognostic 
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markers in these DCIS adjacent tissues are important. From a clinical testing point of 

view, the presence of such field effects would eliminate the need for extensive micro- or 

macrodissection, increasing ease-of-use and technical reproducibility. 

 

Figure 4–7: Hallmarks of DCIS and oncogenic methylation observed in DCIS adjacent normal 

a).  D-N methylation scores across normal, DCIS-adjacent normal, and DCIS show that DCIS-
adjacent normal has intermediate methylation scores, suggesting that a subset of D-N probes are 
altered in these samples. b) DMPs comparing DCIS-adjacent normal and normal (A-N) profiles 
in normal, DCIS adjacent normal, and paired DCIS reveal that these methylation profiles are 
intermediate in the DCIS-adjacent normal. c) Higher methylation scores observed in tumors 
compared to normal in A-N probes suggests that A-N probes are associated with tumorigenicity. 
d) PCA of A-N probes show clustering of DCIS samples with DCIS-adjacent normal away from 
reduction mammoplasty normal. 
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4.3.3: Unsupervised clustering identified four methylation clusters 

 

Consensus clustering was performed using the ConsensusClusterPlus package in 

R in an effort to identify methylation subtypes in DCIS-specific probes (D-N probes, 

FDR < 0.05) in these DCIS samples. Probes were restricted to 14,652 DCIS-specific set 

to enrich for probes with functional relevance in disease. Consensus clustering is a 

resampling based method, which allows us to assess the stability of discovered clusters 

and address the question of over-fitting, prominent in these high dimensional datasets. 

Using the partitioning around medoid (PAM) algorithm, using Pearson correlation with 

average linkage and 80% resampling, we found that 4 clusters of samples, that we have 

named epitypes, are most stable in this set of probes (Figure 4-8 and 4-9). Hierarchical 

clustering with complete linkage was used to identify clusters of probes, and this revealed 

3 major clusters, which were functionally classified using a hypergeometric test against 

the C2:CGP (chemical and genetic perturbations) gene sets.  

 Progressor status was not associated with any of the epitypes, but epitype 1 was 

enriched for high nuclear grade DCIS (Table 7, Figure 4-9). Interestingly, epitype 4 

showed highly methylated CpG islands. To assess if this was a global event, we 

calculated average beta-values for all CpG island probes, and observed that epitype 4 had 

higher mean hypermethylation in promoter-specific probes compared to the other 

epitypes (p < 0.0001, pairwise Wilcoxon test with Bonferroni adjustment). 

All of the probes were enriched for Polycomb protein (PRC2, SUZ12, and EED) 

targets, suggesting dysregulation of DNA methylation machinery, a phenomenon 

observed across multiple cancer types [164]. Clusters 1 and 4 were enriched for probes 
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located within or near genes involved in epithelial-mesenchymal transition (EMT), while 

probes in clusters 2 and 3 were enriched for estrogen responsive genes. Interestingly, 

cluster 4 is the only cluster where probes were predominantly located within CpG islands 

and there probes were hypermethylated in a subset of DCIS sample, a phenotype known 

as CIMP, which is common in cancer [79]. 

  

 

Figure 4–8: Consensus cluster metrics for selection of optimal K 

a) Change in area under the CDF curve identifies k = 4 as the inflection point. b) Consensus 
matrix for k = 4 shows good consensus  and stability across four clusters. 

 

Table 7: Association of high grade DCIS with DCIS methylation epitype 1 
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Figure 4–9: Clustering of DCIS samples  

Clustering of DCIS samples of 14,529 probes differentially expressed between DCIS and normal 
samples. Samples were clustered using consensus clustering and four stable clusters were 
identified. Probes were clustered using hierarchical clustering with the Ward clustering 
algorithm. Methylation profiles of 5 pure normal samples and 8 DCIS-adjacent normal are 
displayed on the right. While progressor status did not correlate with any cluster, epitype 1 
showed enrichment for high grade DCIS. Barplots on the bottom show the island methylation 
score, average beta-value (methylation levels) of all variable probes (SD > 1.5 IQR). Red colored 
barplots highlight samples with IMS above the median of all DCIS samples. Note that most 
samples in epitype 4 had IMS above the median. 
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4.3.4: Differential methylation analysis on DCIS-specific genes between progressive 

and non-progressive DCIS shows no DMPs 

 

We performed differential methylation analysis using limma to identify 

methylation associated with progression within DCIS-specific probes identified in the D-

N analysis. This analysis revealed no statistically significant probes differentially 

methylated between cases and controls (Table 8). The same analysis was repeated with 

most variable probes > 1.5 IQR, but the results remained similar (data not shown).  

Furthermore, a Cox regression analysis controlling for age and radiotherapy did 

not show improvement in individual probes predicting risk of progression (data not 

shown). A supervised principal component analysis was performed using the superpc 

package in the R Statistical Environment to explore and assess the possibility of more 

complex interactions between probes that may contribute to progression status. Probes 

that were significantly differentially methylated between progressive and non-progressive 

DCIS were more closely associated with epitype than progression status (Table 9, Figure 

4-10). 

These results suggest that there no clear-cut methylation differences between 

progressive and non-progressive DCIS in this cohort, at least without further 

subclassification using additional molecular and/or clinical features. It has been shown 

that DCIS, like IDC, can be separated into different molecular subtypes, and complex 

molecular interactions between subtypes and progression may impede our ability to 

identify robust progression markers with the currently available data. 
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Table 8: DMPs comparing case and control in DCIS-specific probes 

 

 

Table 9: Probes associated with progression status as identified by supervised PCA 

 

ProbeID Delta_Beta Ave_Beta t pval FDR B Gene_Symbol Relation_to_Island
cg02532672 0.07 0.70 4.60 7.55E-06 1.11E-01 3.45 HEATR2 Island
cg17439800 -0.07 0.44 -3.93 1.17E-04 8.61E-01 0.92 OpenSea
cg15206981 0.06 0.53 3.82 1.81E-04 8.82E-01 0.53 SPRY1 Shelf
cg03128029 -0.05 0.36 -3.43 7.45E-04 1.00E+00 -0.76 NOP58 OpenSea
cg11214507 -0.07 0.41 -3.40 8.27E-04 1.00E+00 -0.85 OpenSea
cg21923959 -0.05 0.43 -3.34 1.02E-03 1.00E+00 -1.04 POU2AF1 OpenSea
cg15093997 0.06 0.44 3.33 1.02E-03 1.00E+00 -1.05 CHST3 Shore
cg12081643 -0.06 0.55 -3.32 1.07E-03 1.00E+00 -1.09 COL4A1 OpenSea
cg19304088 -0.06 0.32 -3.21 1.56E-03 1.00E+00 -1.43 PITX2 Shelf
cg08858272 -0.05 0.38 -3.20 1.60E-03 1.00E+00 -1.45 NALCN OpenSea
cg09025324 -0.10 0.39 -3.20 1.60E-03 1.00E+00 -1.45 DSE Shore
cg24201034 0.05 0.25 3.20 1.63E-03 1.00E+00 -1.46 SHROOM3 Island
cg06099431 0.05 0.13 3.16 1.85E-03 1.00E+00 -1.58 Island
cg18475969 -0.06 0.31 -3.15 1.90E-03 1.00E+00 -1.60 OpenSea
cg17425818 -0.05 0.43 -3.13 2.02E-03 1.00E+00 -1.65 NRP1 OpenSea
cg02928365 -0.05 0.36 -3.13 2.04E-03 1.00E+00 -1.66 HLX Shore
cg20140333 -0.06 0.52 -3.12 2.12E-03 1.00E+00 -1.70 OpenSea
cg23014549 -0.06 0.53 -3.10 2.26E-03 1.00E+00 -1.76 KIF26B OpenSea
cg12789884 -0.06 0.56 -3.07 2.42E-03 1.00E+00 -1.82 OpenSea
cg13787850 -0.05 0.31 -3.07 2.43E-03 1.00E+00 -1.82 OpenSea
cg13027727 -0.06 0.62 -3.07 2.44E-03 1.00E+00 -1.82 SYT7 OpenSea
cg05095252 -0.06 0.45 -3.05 2.58E-03 1.00E+00 -1.87 LYPD6 OpenSea
cg26926765 -0.05 0.49 -3.05 2.59E-03 1.00E+00 -1.88 C6orf142 OpenSea
cg08750510 -0.06 0.47 -3.03 2.77E-03 1.00E+00 -1.94 OpenSea
cg07960083 -0.05 0.60 -3.03 2.79E-03 1.00E+00 -1.94 Shelf

ProbeID Gene_Symbol Relation_to_Island
cg19044229 MAP3K11 Island
cg13787850 OpenSea
cg02928365 HLX Shore
cg08858272 NALCN OpenSea
cg06099431 Island
cg15093997 CHST3 Shore
cg02532672 HEATR2 Island
cg12081643 COL4A1 OpenSea
cg15206981 SPRY1 Shelf
cg21923959 POU2AF1 OpenSea
cg04129308 TCF21 Shore
cg17439800 OpenSea
cg07960083 Shelf
cg03128029 NOP58 OpenSea
cg24201034 SHROOM3 Island
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Figure 4–10: Supervised principal component analysis  

Super PCA identified 15 probes associated with progression status across 3 principal coponents. 
Interestingly, these probes had greater association with epitype than with progression status.  
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4.3.5: CNV data recapitulate previously identified recurrent CNVs in DCIS 

 

The CNV profiles of all DCIS samples were tabulated by genetic location into 

proportions with a given alteration and compared it to proportions estimated by a meta-

analysis performed by Rane et al. on previously published DCIS CNV studies. We 

observed good concordance between previously published DCIS profiles and profiles 

from the JHU cohort. Interestingly, we observed increase incidences of CNV in parts of 

the genome, which may be due to the enrichment for progression cases in our cohort 

compared to the average DCIS population (Figure 4-11). 

 

4.3.6: Differences in proportions of CNVs in progressive and non-progressive DCIS 

suggest molecular lesions of interest 

 

Furthermore, we compared the CNV proportion between progressive and non-

progressive DCIS and identified regions which tend to be altered according to 

progression status (Figure 4-12). The most prominent of these include CNV in 

chromosome 8, where we observed increased copy number loss in progressors and high 

copy number gain in non-progressors. This may speak to the presence of a tumor, or 

“progression”, suppressor gene in this region. 
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Figure 4–11: CNV events by incidence in previously published studies and JHU cohort  

a) Proportion of previously published DCIS samples from the meta-analysis of Rane et al. which 
showed  CNV  alterations  at  specific  regions  of  the  genome.  b)  The  same  information  for  the 
proportion of DCIS samples in our study. Many of the events identified in the meta-analysis were 
observed in our dataset. Furthermore, there are some regions in the JHU cohort that were not 
observed in the meta-analysis, e.g., the copy number loss in chromosome 3, which may be a result 
of enrichment for progressive DCIS compared to previous studies. 
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Figure 4–12: Comparison of CNV incidences across case and controls in JHU DCIS cohort 

 

 

4.4: Conclusion 
 

We detected methylation changes between breast reduction mammoplasty normal 

and DCIS that confirm previously published findings, suggesting that biologically 

relevant data were obtained in this low resource setting limited by tumor size and FFPE-

derived DNA & RNA. Furthermore, we observed global methylation field effects 

associated with malignancy in DCIS adjacent normal tissue, extending the candidate gene 

observations from previous studies. We also identified four stable methylation epitypes of 

DCIS that showed associations to tumor grade. Furthermore, one epitype exhibited 
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patterns similar to breast tumors with the CpG island hypermethylation phenotype 

(CIMP), where we observed overall hypermethylation of CpG islands. Differential 

methylation analysis and supervised PCA to identify progression-related features 

revealed no statistically significant probes or differentially methylated regions, and could 

be a result of the molecularly complex phenotypes in breast cancers and DCIS.  

A CNV analysis revealed CNV incidences largely similar to previously published 

studies, suggesting that there are biologically relevant CNV data obtained using Epicopy. 

A comparison of amplified and deleted regions in progressors and non-progressors 

revealed several regions where incidences differ significantly. Interestingly, chromosome 

8 exhibited a relationship where copy number loss was prevalent in progressors while 

copy number gain was enriched in the non-progressors. 
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Chapter 5: Multiomic analysis and prognostic biomarker discovery in 
ER-negative breast cancer of patients who did not receive 
chemotherapy 
 

5.1: Introduction 
 

In 2015, there were a total of 231,840 newly diagnosed cases of breast cancer and 

40,290 breast cancer-related deaths in women in United States. Of these, an estimated 15 

– 20% were of the triple negative breast cancer (TNBC) subtype, which test negatively 

for three clinical markers used in treatment decisions; estrogen receptor (ER), 

progesterone receptor (PR), and Her2-amplification (HER2). Unlike their ER/PR and 

HER2 counterparts which are treated with hormonal therapy and HER2-targetted 

therapies respectively, TNBCs currently have no targetable driver alterations. Beyond the 

context of treatment, TNBCs are also naturally associated with early onset of disease and 

more rapidly progressive disease. 

Due to the lack of targetable therapies, a number of seminal clinical trials were 

performed in the early 1990s by multicenter study groups to assess the impact of adjuvant 

chemotherapy on disease free survival in ER-negative breast cancer patients. One such 

group was the International Breast Cancer Surgical Group (IBCSG) which performed two 

key trials, Trial VIII and Trial IX [165], that randomized early stage, operable, node 

negative breast cancer patients into two arms, one where patients were treated only with 

surgery and local radiation, and the other where patients received surgery, radiation, and 

a CMF (cyclophosphamide, methotrexate, and 5-fluorouracil) chemotherapy regiment 

(Figure 5-1). At 12-years of follow-up, there was a statistically significant survival 

benefit of 15% in the CMF-treated arm (70% disease free) compared to those who did not 
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receive  chemotherapy  (55%  disease  free).  Other  studies  reflect  disease  free  survival 

benefits similar to this study [166]. We can identify three subgroups of patients in terms 

of  benefit  to  chemotherapy  from  these  studies;  1)  15%  of  TNBC  patients  benefit  from 

chemotherapy, 2) 30% of patients need better therapy than CMF, and 3) 55% of patients 

with operable, node-negative TNBC disease do not need chemotherapy of at least up to 

12 years after initial diagnosis. 

 

 

Figure 5–1: International Breast Cancer Surgical Group – Trial VIII and IX TNBC 12 year 
follow up 

12-year follow-up results from IBCSG trials VIII and IX of the TNBC patients in the study [165]. 
At 12-years, there was a statistically significant survival advantage of 15% in patients receiving 
CMF chemotherapy compared to patients who did not. Looking at this Kaplan-Meier curve, we 
also observe that 30% of the patients had a recurrent event within 12-years, suggesting the need 
for better therapy. More importantly, 55% of the patients in the no CMF arm were disease free 
12-years after the initial therapy, suggesting that there exist a group of TNBC patients who do 
not  need  chemotherapy  and  the  current  modality  of  treating  all  TNBC  patients  with  adjuvant 
chemotherapy represents a problem of over-treatment for a substantial subset of patients. 
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 Given the relatively aggressive nature of the disease and the lack of 

clinicopathological or molecular features that allow clinicians to stratify patients into 

different risk groups, it is understandable, and even logical, that clinical management of 

the disease to use the maximal therapeutic options at our disposal to minimize the risk of 

metastatic disease, even at the risk of over-treating half of TNBC patients. Based on the 

most conservative estimates, approximately 35,000 women are diagnosed with TNBC, 

with half, or 17,500, of them receiving unnecessary chemotherapy, which exposes the 

patients to harmful side effects and potential comorbidities. Therefore, there exists an 

unmet clinical need to identify markers of stratifying patients into different risk groups 

that will allow the field to apply more targeted therapies to this patient population. 

 To that end, molecular markers serve as attractive targets. Recent technological 

advances led to the identification of several gene expression molecular subtypes of breast 

cancer, which are associated with known clinical markers used in therapeutic decisions; 

ER, PR, HER2, and Ki67, the last of which is a marker of proliferation [167]. In fact, 

these intrinsic molecular subtype terminologies have been widely adopted in clinical 

practice, suggesting a change in the mindset of thinking about breast cancer in molecular 

terms [168]. 

Such observations have led to the idea that further molecular profiling of TNBCs 

will reveal additional functional subgroups with new therapeutic targets or identify 

markers of aggressiveness and risk. In a study analyzing 587 TNBC samples from 

publically available datasets, Lehmann et al. [169] identified subtypes within TNBCs, 

including luminal androgen receptor (LAR), immunomodulatory, basal-like, 

mesenchymal, and mesenchymal stem-like subtypes. Since then, multiple studies have 
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validated the existence of at least two of these subtypes, namely the LAR [170] and 

immunomodulatory subtypes. Such studies have shown the possibility of stratifying 

TNBCs into functional subtypes with different risks of progression, but the fundamental 

clinical question about chemotherapy benefit remains to be addressed. 

Current clinical molecular marker test panels designed to address this question 

fall short for TNBCs. The most commonly used molecular panel is the 21-gene Oncotype 

DX panel [57], which stratifies patients into three risk groups of low, intermediate, and 

high risk, for the purpose of determining the need for chemotherapy in ER-positive 

disease, and offers no stratification in ER-negative disease. The 70-gene assay 

Mammaprint assigns 95% of all ER-negative disease to its high-risk category, offering 

little additional information for the treatment decisions in TNBC [171]. Taken together, 

this speaks to the need of a robust molecular marker panel, which will allow us to 

identify patients with low risk of recurrence in the absence of chemotherapy and spare 

patients from unnecessary side effects and comorbidities of treatment.  

 

5.2: Study design and methods 
 

5.2.1: Motivation 

 

The motivation of this study was thus to identify a set of molecular biomarkers of 

early disease with high negative predictive value (NPV) to prognosticate patients treated 

with only surgery and radiotherapy. We estimate an NPV of 0.95 would be required to 

significantly impact clinical practice. To achieve this, we aim to use high-density array 



 125 

technologies for gene expression and methylation to perform molecular profiling to 

identify probes associated with recurrence in TNBC patients who did not receive 

adjuvant chemotherapy. 

 

5.2.2: Study design 

 

This study was designed as multicenter, nested case-control study of early stage, 

node negative, ER-negative invasive ductal carcinomas (IDC) of patients who never 

received adjuvant or neo-adjuvant chemotherapy of their primary tumors. We identified a 

series of 75 cases, which are patients with a recurrence event with at least a 6-month lead 

time after the initial treatment, with the lead time implemented to filter against patients 

whose recurrence were due to incomplete local therapy. An equal number of controls 

were identified with at least 5 years of follow-up with no indication of recurrence. In 

assembling this cohort, we controlled for clinicopathological features that may influence 

recurrence, including histological grade, margin status, and adjuvant treatments, as well 

as approximate age and year of diagnosis (both within a 5 year window). All relevant 

clinical information has been captured in an anonymized research database, and 20 

unstained sections with matching H&E stained control slides are being obtained from the 

relevant tissue blocks with coded identifiers.  

In order to ensure diagnostic consistency, our study pathologist, Dr. Gabrielson 

(JHU), reviewed all cases and controls using the Aperio digital imaging system (Aperio 

Inc., Vista, CA), which allows very efficient remote visualization and interactive 

annotation of the entire histological slide at high (20x and 40x) resolution. For this study, 
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we were able to obtain three sets of molecular information. Gene expression profiling 

was performed using the Illumina DASL microarray, while methylation profiling was 

obtained using the Illumina 450K Human Methylation microarray (IL450K). CNV data 

were estimated using Epicopy on data from IL450K. 

 

5.2.3: Patient identification and sample collection 

 

We used patient registries here at Johns Hopkins Hospital and at collaborating institutions 

to identify cases and controls that matched study criteria and had documented long term 

follow up. Tissues were obtained with approval of the respective institutional IRBs. 

Unstained tissue sections were obtained and macro dissected using pathologist annotated 

H&E sections for orientation and macrodissection for enrichment. A total of 75 recurrent 

TNBC cases, 77 non-recurrent TNBC controls, and 5 reduction mammoplasty samples 

were profiled using gene expression (Illumina DASL) and DNA methylation platforms 

(Illumina 450K). 

 

5.2.4: DNA/RNA extraction and quality control 

 

H&E sections were macrodissected to enrich for >70% DCIS epithelial cells. 

Following that, DNA and RNA were extracted using Allprep FFPE RNA/DNA kit 

(Qiagen) with modifications to the deparaffinization, digestion, and wash steps. The 

modified protocol is appended. 
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Quantification of RNA and DNA was performed using Nanodrop2000 and the 

Qubit fluorometer (Qiagen) using appropriate kits (RNA HS, RNA BR, DNA HS, and 

DNA BR). The 260/230 and 260/280 ratios were used to assess sample purity and solvent 

contamination. Qubit-derived measurements were used to calculate nucleic acid input 

into microarray platforms.  

 

5.2.5: Quality control and microarray 

 

Illumina FFPE QC kit was performed using the iTaq™ Universal SYBR® Green 

Supermix and was regarded as the main quality control step for 450K and other DNA-

based microarrays. Samples with delta CT <9 were used in the study and case-control 

pairs with lower delta CT
 were prioritized. Bisulfite conversion was performed using the 

EZ DNA Methylation-Gold™ Kit (Zymo Research, Irvine CA), with modifications 

introduced per Appendix I of the manufacturer’s recommended protocol. The detailed 

protocol is appended at the end of the thesis. NaBi-converted DNA was submitted to the 

SKCCC Microarray Core Facility for FFPE DNA restoration and profiling using the 

Illumina 450K microarray. RNA QC was performed using QPCR with primers targeting 

the GAPDH gene and samples with delta CT larger than 32 were not profiled using the 

DASL microarray. 
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5.2.6: Data pre-processing and QC 

 

Unless otherwise stated, data analysis was performed in R Statistical Environment using 

base, Bioconductor, and custom packages. P-values were corrected using Benjamini-

Hochberg’s method for false discovery rate estimation. 

 

Illumina DASL Microarray P95 green signal intensities were used as a measure to 

assess overall gene expression for a given sample. Outliers with low P95s were excluded. 

Normalization was performed using median absolute deviation (MAD). This decision 

was performed based on the idea that WGA in DASL randomly amplifies RNA present in 

lower amounts, leading to the artifactual generation of bimodal distributions of genes 

present in marginal copies and quantile normalization-based methods are not appropriate 

in such a setting. 

  

Illumina 450K Methylation Quality control metrics for Illumina-based arrays were 

estimated using Illumina’s GenomeStudio software, and validated through control probe 

signal intensities extracted through the minfi software in R. GenomeStudio-derived 

detection p-values (detP) with a threshold of p < 0.01 were used to calculate sample-wise 

call rates and samples with call rates of less than 80% were removed from downstream 

analyses. Raw beta-value density plots were plotted and samples with aberrant beta-value 

density plots (without a bimodal distribution with means around 0.1 for unmethylated 

regions and 0.9 for methylated regions) were removed from analysis. Probe-wise detP 

were estimated and probes with > 95% coverage across remaining samples were retained 
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for analyses. Probes with interrogated CpGs 2bp from a known SNP with a population 

minor allele frequency (MAF) of > 5% were removed. Functional normalization was 

performed on the final set of high quality samples and probes to obtain the final 

methylation dataset. 

 

Epicopy-derived CNV High quality samples and probes from the methylation pre-

processing were used as input into Epicopy to generate CNV information for ER-negative 

tumor samples. Default Epicopy parameters were used with reduction mammoplasty 

normal samples serving as reference samples. Samples with aberrant profiles were 

discarded from downstream analyses. For clustering purposes, the CNV data from 

GISTIC 2.0 were summarized into cytobands by taking the mean of all genes in a given 

cytoband. 

 

TCGA Data Processed TCGA data were downloaded from the Broad Institute’s Firehose 

server. 

 

5.2.7: Integrative data analysis 

 

Exploratory analysis was performed using principal component analysis (PCA) 

and unsupervised hierarchical clustering, using Euclidean distances and Ward’s 

algorithm, to identify outliers that can be removed from downstream analysis and identify 

high level clustering of the data. Final clustering analysis was performed using 

hierarchical clustering with Ward’s algorithm on the 500 most variable genes from 



 130 

transcriptomic data, and the same sample-wise dendrogram was used to cluster molecular 

data from the other platforms. 

Gene-wise clusters in the transcriptome data were identified and a hypergeometric 

test-based analysis was performed on clusters of genes in Molecular Signatures Database 

(MSigDB) to assign functional information to these gene clusters. This was done using 

the “Compute Genesets Overlap” tool hosted on the Molecular Signatures Database. 

Analysis was performed against Hallmark and C2 gene sets, and gene sets in the top 10 

were empirically summarized by both test significance and relevance to breast cancer 

(e.g. breast cancer related chemical and genetic perturbations were ranked higher than 

pancreatic cancer gene sets). 

Differential expression analysis was performed between the three stable clusters 

to identify functional processes enriched within each cluster. Limma analysis was 

performed comparing each group to its counterparts with Benjamini-Hochberg’s false 

discovery rate (FDR) method for p-value adjustment, and results were used in a GSEA-

like, rank-based gene set analysis. Briefly, mean moderated t-statistics were used to rank 

genes. Unlike GSEA, the gene universe is first restricted to the 4,386 genes annotated in 

the Hallmark gene sets, which protects against over-enrichment bias for well-studied 

genes. The wilcoxGST function from the limma package was used to estimate enrichment 

significance, with the direction of alternative hypothesis specified to calculate enrichment 

for a specific phenotype. Finally, results were visualized using the Java implementation 

of GSEA using the pre-ranked method on moderated t-statistics. 
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5.2.8: PAM50 classification and leukocyte infiltration estimation 

 

PAM50 classification was performed using the intrinsic.cluster.predict function 

from the genefu package against the pam50.scale model. Briefly, genes from 

transcriptomic data were mapped to EntrezID identifiers, which are matched to EntrezID 

identifiers in the PAM50 model. This prediction first calculates gene-wise Z-scores and 

estimates the Spearman rank-based correlation score to each of 5 molecular subtypes and 

assigns a sample with the PAM50 class with the strongest Spearman correlation. 

Leukocyte infiltration was estimated using methylation data. Promoter 

methylation of lineage specific genes remain as one of the most stable molecular marks in 

cells of different lineages, and was the concept used in this estimation method. Leukocyte 

and breast specific markers, with 1000 markers for each tissue type, were identified using 

leukocyte data from GSE35069 [172] and normal reduction mammoplasty samples from 

our study. Final leukocyte proportions were estimated by identifying the mode of 2000 

leukocyte to tumor ratios for each probe. 

 

5.2.9: Gene expression and probe methylation scores by gene voting 

 

Gene expression scores for different molecular phenotypes were estimated using a 

“gene voting” method, calculated as the mean of transformed, normalized log2 signal 

intensities. Briefly, the gene-wise Z-scores were estimated across all samples and 

multiplied using the sign of the moderated t-statistic from limma, or other statistical tests 

that indicate direction of change. The mean of this value was then calculated as the gene 
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expression score for a given sample, where a larger value represents a molecular profile 

closer to the positive contrast from the statistical test. For N differentially methylated 

probes in n samples; 

𝐺𝑒𝑛𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒! =  

𝛽!" − 𝛽!
𝑛 × 𝑠𝑔𝑛 𝑡!!

!

𝑁  

 

Methylation scores for various molecular classes were calculated as transformed 

mean beta-value. Briefly, the beta-values for each probe was multiplied using the sign of 

the moderated t-statistic from limma and mean transformed beta-value for each sample 

was calculated. A larger value represents a molecular phenotype closer to the positive 

contrast from the limma analysis. For N differentially methylated probes, 

𝑀𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒! =  
𝛽!"  × 𝑠𝑔𝑛 𝑡!!

!

𝑁  

 

5.2.10: Estimating proportion of altered genome from Epicopy-derived CNV data 

 

Segmented data derived using Epicopy was used to estimate the proportion of 

altered genome (deleted or amplified). An absolute log R ratio (LRR) threshold of 0.15 

was used to identify CNV regions across all samples and the fraction of that compared to 

regions of the genome with probe coverage in Epicopy was calculated as the proportion 

of genome altered. 
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5.2.11: Genes associated with recurrence status 

 

Differentially expressed genes associated with recurrence status were identified 

using a two-step algorithm. First, a Wilcoxon test was performed to pre-rank and identify 

the top 10% of genes that were differentially expressed between cases and controls. Next, 

a Cox regression was performed on these genes to identify the genes with best association 

with recurrence status, controlling for age and radiotherapy described in the following 

model: 

𝑅𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 = 𝛽 + 𝐴𝑔𝑒 + 𝑇ℎ𝑒𝑟𝑎𝑝𝑦 

To identify the best p-value cut off for picking genes, a 10-fold bootstrap analysis 

was performed for p-value cut offs of 0.001, 0.01, 0.05, and 0.1. In this bootstrap 

analysis, prediction accuracy for recurrence was assessed using an ROC analysis, with 

the AUC metric adjusted by dividing it with the number of genes identified with each cut 

off. 

From this analysis, genes with p-value ≤ 0.01 were defined as recurrence-

associated, and a recurrence score (RS) was calculated for every sample using the gene 

voting method. An ROC analysis for predicting recurrence was performed using the RS 

as predictors to assess overall performance of these probes and a Kaplan-Meier analysis 

was performed separating tumors by median RS into two groups. 

Independent external validation was performed using data from GSE31519, where 

a series of 264 adjuvant chemotherapy-free TNBC samples were curated and normalized 

from various public datasets. Genes from both DASL and GSE31519 were mapped to 

EntrezIDs and overlapping genes were used to calculate RS for each sample. Kaplan-
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Meier analysis was performed on these samples with two groups identified from the 

median RS.  

 

5.3: Results and Discussion 
 

5.3.1: Unsupervised clustering identified three stable clusters associated with 

PAM50 subtypes 

 

Unsupervised clustering on the transcriptomic data identified three stable clusters, 

with clusters associated with PAM50 subtypes and clinical parameters (Figure 5-2). 

Interestingly, we observed classification of some of these ER-negative tumors as luminal 

A (LumA) and luminal B (LumB) subtypes. Recall that this cohort of patients were ER-

negative by immunohistochemistry (IHC), and should have few, if any, ER-positive 

samples. We also observed 6 Her2-enriched (HER2) samples, which was not unexpected 

since the selection of these patients occurred without Her2-amplification information, as 

it was not available in most cases. Moreover, differences in methylation and CNV 

profiles were observed across these clusters (Figure 5-3).  

Cluster 1 was enriched for samples with the LumA and HER2 PAM50 subtypes, 

and has high expression of ER-responsive and HER2-related genes as observed in the 

expression data (Figure 5-3). It is also the cluster where the patients present with the 

highest age of diagnosis (Figure 5-2), which is in line with previous observations that 

ER-positive breast cancer tend to occur in older women [173], suggesting that this subset 

of tumors recapitulates the presentation of ER-positive IDC. Furthermore, all of the ER-



 135 

negative samples classified as LumA were controls, which showed no recurrence, 

agreeing with previously published findings that the LumA subtype is the least aggressive 

subtype of breast cancer. 

Basal-like and normal-like PAM50 subtypes were distributed across clusters 2 

and 3. In Cluster 2, we observed up-regulation of immune-related genes, and relatively 

unperturbed CNV profiles (Figure 5-3). This is also the cluster with unmethylated CpG 

islands compared to the other clusters. This collective observation could be explained by 

the presence of immune infiltrates, which results in over-expression of immune-related 

genes and dilute out cancer-specific CNV alterations and promoter hypermethylation 

signals.  

Finally, cluster 3 appears heterogeneous for both the expression and methylation 

datasets. A subset of cluster 3 showed upregulation of differentiation- and basal breast 

cancer-related genes, but more importantly, most samples in this cluster display genomic 

instability in the form of high degrees of CNV. Previous studies have shown the 

existence of a group of breast cancer tumors with complex genomic alterations, which are 

also enriched in ER-negative disease. 

To identify molecular processes that were altered in each of these clusters, we 

performed sequential limma analysis comparing one of the clusters against the remaining 

two. The moderated t-statistics were then used for a custom GSEA-like approach against 

Hallmark gene sets to identify functional differences (see methods). A GSEA-like 

approach was used as it does not require empirically determined cut-offs for differential 

expression and allow us to use information from all analyzed genes in a setting that 

recapitulates biological systems where gene expression changes are often concordant but 
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not always increased in the same magnitude [174]. The results were visualized using the 

Java implementation of GSEA [175]. 

 

 

Figure 5–2: Unsupervised clustering analysis on JHU ER-negative cohort identifies 3 stable 
clusters associated with PAM50 status and clinical features 

Cluster 1 (blue) is enriched for LumA and Her2 subtypes and is the cluster with the patients 
diagnosed at the highest age. Interestingly, all of the LumA subtype samples were controls. Basal 
and normal-like samples were distributed across clusters 2 and 3. There are no significant 
differences in grade or case-control status across all 3 clusters. 
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Figure 5–3: Molecular profiles of unsupervised clustering of JHU ER-negative cohort 
identifies distinct molecular differences across expression, methylation, and copy number 
platforms 

Heatmaps of all 3 molecular genomic datasets reveal distinct alterations across the 3 clusters. 
Cluster 1 shows high expression of ER-responsive and HER2-related genes, in line with 
observations in LumA subtypes. Cluster 2 shows increased expression of immune-related genes, 
and hypomethylated CpG islands compared to the other two clusters. Interestingly, cluster 2 was 
also the most CN quiet cluster. This can be explained by infiltration of immune cells, which leads 
to higher immune gene expression and dilution of tumor-specific CNV and methylation changes. 
Cluster 3 shows heterogeneity in both gene expression and methylation data, with a slightly 
higher increase in expression of basal and differentiation related genes. The most evident 
molecular alteration in these samples is the high degree of CNV changes in these samples, 
suggesting a high degree of genomic instability and recapitulates tumors with complex CNV-
profiles identified by previous studies. 
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5.3.2: Enrichment for hormonal receptor gene sets are observed in cluster 1 and is 

driven by androgen receptor expression 

 

Gene set enrichment analysis identified three Hallmark gene sets enriched in 

cluster 1, which are the androgen response, estrogen early response, and estrogen late 

response gene sets, suggesting that there are hormonal pathways active in these samples 

(Figure 5-4). When we analyzed the expression of the different hormone receptors in 

these samples, we observed equivalent, low estrogen (ESR1) and progesterone (PGR) 

expression across all three clusters. On the other hand, androgen receptor (AR) 

expression was increased in samples in cluster 1 (Figure 5-4, p < 0.001), suggesting that 

the enrichment of hormonal response pathways was due to the activation of AR. ER-

negative breast cancers overexpressing AR have been reported as luminal AR disease, 

and patients with luminal AR breast cancer have been shown to have good prognosis 

[169]. 
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Figure 5–4: Cluster 1 is enriched for hormonal receptor pathways and is driven by androgen 
receptor (AR) expression 

Gene set enrichment analysis shows positive enrichment for 3 Hallmark hormone receptor 
response gene sets. AR is upregulated in cluster 1, while ER expression was comparably low 
across all three subtypes. The same was observed for PR (data not shown). 
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5.3.3: Cluster 2 exhibits immune-related signatures, leukocyte infiltration, and 

upregulation of immune checkpoint genes 

 

Gene set enrichment analysis revealed strong positive enrichment for immune 

related gene sets, including interferon alpha and gamma, IL2-STAT5 signaling, and 

inflammatory response gene sets (Figure 5-5). We characterized the expression for three 

markers of cytotoxic T-cells and cytolytic activity; CD8A, granzyme (GZMA), and 

perforin (PRF1). CD8A encodes for the alpha chain of the CD8 receptor, which is 

expressed on CD8 T-cells, which are key players in the antitumor immune response. 

GZMA and PRF1 are cytolytic effectors upregulated upon CD8 T-cell activation. All 

three markers were upregulated in cluster 2 (Figure 5-6a). Furthermore, this observation 

was validated when we predicted the proportion of leukocyte infiltrates in the tumor 

using methylation data, and showed that there was a higher degree of leukocyte 

infiltration within cluster 2 (Figure 5-6b), supporting the data observed in the gene 

expression dataset. 

The presence of these cytotoxic T-cell markers in these tumors suggests that the 

tumors have developed methods for immune evasion preventing immune-mediated tumor 

elimination. To assess the possibility of immune evasion, we investigated the expression 

of LAG3, a T-cell exhaustion marker and saw upregulation of LAG3 within this group of 

samples. Furthermore, we assessed the expression of two immune evasion genes, PD1 

and CTLA4, and observed upregulation of CTLA4, but not PD1, suggesting that the 

immune evasion pathway used by this subset of tumors was CTLA4-mediated. 
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Figure 5–5: Positive enrichment for Hallmark immune gene sets in Cluster 2 

Strong positive enrichment for 4/4 Hallmark immune gene sets was observed in cluster 2, 
suggesting an immune component in these tumors. Of note is the tight up-regulation of genes in 
the IFN-alpha response, where most genes were enriched for in the top 75th percentile. 
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Figure 5–6: Immune markers up-regulated in cluster 2 

.a) Up-regulation of cytotoxic T-cell and cytolytic markers in cluster 2. b) Increased leukocyte 
infiltration predicted from methylation data observed in cluster 2. c) The presence of immune 
evasion phenotypes in cluster 2 is driven by CTLA4 expression. 
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5.3.4: Copy number variation high cluster 3 show negative enrichment for DNA 

repair 

 

Samples in cluster 3 show the largest proportion of genome alteration among all 

the samples (p < 0.001, Figure 5-7a), suggesting that there was a high degree of genomic 

instability in these tumors. Gene set analysis revealed negative enrichment for DNA 

repair (Figure 5-7b), suggesting that there may be defects in the DNA repair pathway that 

manifest in complex CNV profiles. 

 

 

Figure 5–7: High degree of CNV observed in cluster 3 with negative enrichment of DNA repair 
gene set 

a) Percent genome altered, calculated as total base changed divided by total base in the genome 
measurable by Epicopy, is highest in cluster 3. b) Negative enrichment for Hallmark DNA Repair 
gene set was observed. 
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5.3.5: Differences in survival observed across 3 clusters 

 

We next assessed the survival of patients in each of the three clusters by Kaplan-

Meier analysis (Figure 5-8). Patients in the AR-driven cluster have the best disease free 

survival, while patients in the CNV-high cluster had the worst prognosis (p = 0.11). This 

is in line with previous observations that patients with luminal A disease had good 

outcomes, and holds true as well for a subset of luminal ER-negative tumors driven by 

AR. 

 

 

Figure 5–8: Kaplan-Meier analysis for survival across three ER-negative clusters 

KM analysis identified that AR-driven disease had the best prognosis while patients with high, 
complex CNV alterations had the poorest survival. 

 

0 50 100 150 200 250

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Kaplan-Meier plot for
disease free status across 3 clusters

Time (months)

P
r(

D
is

ea
se

 F
re

e)

|
|
|

Cluster
AR-driven
Immune-high
CNV-high



 145 

 

5.3.6: Identification of transcriptome markers associated with recurrence and 

independent external validation 

 

We identified 130 genes that are associated with recurrence in the JHU ER-

negative cohort and calculated a recurrence score (RS) using a gene voting algorithm (see 

Methods), where a high RS represents a higher risk of recurrence. These genes 

collectively predicted recurrence status with an AUC of 0.914 (Figure 5-9a). A Kaplan-

Meier analysis separating patients into two groups by median RS revealed that patients 

with higher RS have poorer disease free survival (DFS) with a hazard ratio of 10.2 

(Figure 5-9b). Following this, we calculated RS for TNBCs patients who did not receive 

adjuvant chemotherapy from an independent external dataset, GSE31519. Bifurcating the 

patients into two groups by median RS, we observed poorer DFS in the patients with 

higher RS as well (5-9c), suggesting that some of the genes identified by this analysis are 

indeed associated with recurrence. 
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Figure 5–9: Gene expression markers associated with recurrence 

a) A 130-gene predictor identified from a Cox regression analysis adjusting for age and 
radiotherapy was used to calculate recurrence scores (RS). ROC analysis on the ability of RS to 
predict recurrence status. An AUC of 0.914 was observed. b) KM analysis for DFS in samples in 
the JHU ER-negative cohort divided by median RS identified better DFS in samples with low RS 
with a hazard ratio of 10.3 (p < 0.001). c) KM plot showing DFS differences between samples 
with high and low RS in an independent external dataset, GSE31519. Patients used in this 
analysis were the subset of patients who did not receive adjuvant chemotherapy. 
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patient age at diagnosis. Clinically, we can explore the possibility of treating these 

patients with androgen-targeted therapies such as the use of anti-androgens and androgen 

synthesis inhibitors. 

A series of samples with high levels of immune infiltrates were observed, with 

molecular profiles suggestive of an immune evasion phenotype driven by upregulation of 

the immune checkpoint gene CTLA4. CTLA4 inhibitors have been developed and are 

well tolerated [176] in patients. The use of these inhibitors may be considered in the 

treatment of this cohort of patients. 

Finally, we identified a cluster of samples with heterogeneous gene expression 

and DNA methylation profiles, which were characterized by a large degree of genetic 

change manifesting as CNV events. Gene set enrichment analysis suggests DNA repair 

defects in these tumors, and may be optimally targeted by chemotherapy or PARP1 

inhibitors. 

Looking forward, we have defined three groups of ER-negative breast cancer 

tumors, with functionally relevant pathways and potential therapeutic targets, some which 

are better tolerated than chemotherapy. Further refinement of the gene set associated with 

recurrence across these three groups may allow us to identify features to not only 

optimally decide on therapeutic options, but also to decide on patients who will not 

require additional therapy. 
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Chapter 6: FFPE RNA-seq analysis of follicular thyroid cancer reveals 
transcriptomic landscape and identifies markers of metastasis 
 

6.1: Introduction 
 

Thyroid cancer statistics show an alarming increase in incidence, almost quadrupling 

from 3.6 per 100,000 in 1973 to 15 per 100,000 in 2012, as illustrated by the National 

Cancer Institute’s Surveillance, Epidemiology, and End Results (SEER) Program [54]. 

Mortality from thyroid cancer, however, remains unchanged, with over 95% of patients 

experiencing excellent outcomes. This phenomenon is likely to reflect a trend of “cancer 

over diagnosis”, where a silent disease reservoir that would have remained undetected 

and asymptomatic is detected during routine clinical assessment driven by increased 

access to healthcare screening, as exemplified by screening for prostate cancer in the 

elderly [177, 178]. Indeed, thyroid cancer is one of the cancers where routine clinical 

screening has increased substantially due to improvements in detection methods, 

including ultrasonography and fine-needle aspiration biopsy (FNAB) [179]. There are, 

however, issues complicating the optimal management of thyroid cancer [180, 181], 

including diagnostic ambiguity in FNAB diagnoses and inadequate prognostic markers, 

the latter being the focus of this study. 

Follicular carcinomas (FC) represent 10% - 15% of all newly diagnosed thyroid 

cancers, and over 90% of FCs are indolent and have a probability of metastasis under 5%. 

The subset of FCs that does metastasize, however, tends to have a more aggressive course 

of disease than their papillary counterparts, given their tendency to metastasize through 

the hematogenous route leading directly to distant organ metastasis [182]. Despite having 
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a low metastatic rate, the lack of robust risk stratification has resulted in thyroidectomy 

followed by radioiodine remaining the mainstay of treatment for most screening-detected 

FCs [180, 181]. The lack of appropriate prognostication leads to overtreatment of FCs, 

which exposes patients to complications from total thyroidectomy and requires lifelong 

thyroid hormone supplementation [177]. While a significant body of work has been done 

on trying to identify markers that stratify risk in follicular thyroid tumors, most of the 

work so far has been focused on distinguishing follicular adenomas (FAs) from FCs. The 

former is believed to be a benign, encapsulated thyroid nodule which does not pose any 

risk of metastasis, although it is generally thought of as precursor to thyroid cancer, since, 

in contrast to hyperplastic nodules, these are clonal lesions.  

FAs are indistinguishable from FCs based on cytologic, sonographic, or clinical 

features alone, and the pathognomonic feature of FCs is that they show capsular and/or 

vascular invasion. FAs and minimally invasive FCs with only microscopic penetration of 

the tumor capsule without vascular invasion can be treated through simple resection of 

the tumor or hemithyroidectomy, which usually allows the remnant thyroid to maintain a 

euthyroid state without the need for lifelong hormone substitution. 

Markers distinguishing FCs from FAs include genetic alterations and mRNA 

expression changes. RAS mutations are prevalent in FCs, at a rate of 40-50%, and have 

been explored as a potential molecular marker for prognosis. Unfortunately, RAS 

mutations are also present in 20-40% of FAs, leading to poor positive predictive value 

(PPV) for this molecular marker [182]. Similarly, PAX8-PPARG fusion occurs in 30-

40% of FCs and about 10% in FAs [182, 183]. Studies have explored using mRNA 
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expression as detection markers for FC compared to FAs, using transcripts such as 

PCSK, CCND2, and LGALS3, and others [184]. 

In contrast, no study has investigated molecular risk factors for metastasis in FCs 

to date. Due to the low rate of metastasis in FCs, merely distinguishing FCs from FAs 

will continue to result in the overtreatment of large numbers of indolent FCs [185]. There 

is a pressing need for a diagnostic test with high negative predictive value for 

metastatic disease, available preoperatively, which will have a large impact in controlling 

the current rates of total thyroidectomy and adjuvant radiation for a usually indolent 

disease.  

Due to the rarity of metastatic FC, the most realistic manner of identifying 

metastatic markers in FCs is to retrospectively identify cohorts of FCs with available 

long-term follow-up information. Most archival samples are stored as formalin-fixed, 

paraffin-embedded (FFPE) tissue blocks, a process that significantly degrades nucleic 

acids. While there have been some success [186, 187] in performing RNA-seq on FFPE 

materials, to our knowledge this has not be done in FCs, or thyroid samples, to date. 

Herein, we performed a proof-of-principle study examining the feasibility of 

performing RNA-seq on 4 metastatic and 4 non-metastatic primary FC FFPE samples, 

and assessed the ability to detect differential expression and perform splice variant 

analysis on such material, and further determined the molecular profiles of these 8 FC 

samples as compared to PTCs studied by The Cancer Genome Atlas (TCGA)-thyroid 

consortium. 
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6.2: Methods 
 

6.2.1: Patient sample collection 

 

A retrospective pilot study was conducted under Institutional Review Board 

approval using archival FFPE samples of patients diagnosed with FC and treated at Johns 

Hopkins Hospital. This study was designed to identify and compare transcriptomic 

profiles of primary FC lesions of four patients presenting with stage IV metastatic FC and 

four patients presenting with FC confined to the thyroid and who had no metastatic 

disease at 5 years of follow-up with comparable clinical variables, including age and 

treatment regimen (Table 10). 

 

6.2.2: RNA Extraction and Quality Assessment 

 

Unstained histological slides were macro-dissected to enrich for tumor cells 

(>75%) using a consecutive H&E section annotated by the study pathologist as reference. 

RNA was extracted from the samples and DNase treated using the Maxwell(r) 16 LEV 

RNA FFPE Purification Kit (Promega, Madison WI) following the manufacturers 

protocol. The resulting RNA was analyzed for UV absorbance wavelength ratios 

(Nanodrop; 260/230, 260/280) to determine purity and concentration. The amount of 

RNA was normalized to the DV200 value obtained from the Agilent RNA Tapestation, 

representing the fraction of RNA >200bp in that sample. Where necessary, samples were 
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concentrated using sodium acetate/ethanol precipitation to have a DV200-normalized 

input of 1ug RNA in 10uL. 

RNA fragment distribution was analyzed by the Tapestation and found to be 

highly degraded, as was expected for FFPE samples, eliminating the need for 

fragmentation before library preparation.  

 

6.2.3: Library preparation 

 

Ribosomal RNA (rRNA) depletion was performed using the Ribozero Gold rRNA 

Depletion Kit (Illumina, San Diego). TruSeq Stranded Total RNA Library Prep Kit 

(Illumina, San Diego) was used for library preparation following manufacturer’s 

protocols, and performed using an Agilent Bravo A automated workstation (Agilent, 

Wilmington DE). Final libraries were analyzed by Tapestation to determine average 

fragment size. A normalized pool of all 8 samples was sequenced on Illumina MiSeq 

sequencer as a final QC measure. 

 

6.2.4: RNA-sequencing and data processing 

 

Sequencing was performed using Illumina HiSeq 2500 at 2 samples per lane using 

an 8-lane flowcell to produce approximately 150 million paired-ended sequencing reads 

of 48 base pairs per sample. Reads were aligned to the Human Genome Reference 

Consortium build 38 (GRCh38) using Tophat2 [188] and assembled into transcripts using 

CLASS2 [189]. CLASS2 implements a rigorous statistical model to recognize and filter 
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intronic ‘noise’ due to reads from unspliced RNA, which is abundant in ribosomal RNA 

depleted libraries, and therefore is particularly well suited to the analysis of FFPE 

samples. The collection of transcripts merged across the samples was used to identify 

differentially expressed genes between metastatic and non-metastatic primary tumors 

with Cuffdiff2 [190], and to determine differential alternative splicing events (exon 

skipping, mutually exclusive exons, alternative exon ends) with rMATS [191]. Results 

were inspected and visually validated using the Integrative Genomics Viewer (IGV) 

[192].  

 

6.2.5: Data analysis 

 

Gene set analyses were performed using the wilcoxGST function from the limma 

Bioconductor package [193] using gene set collections obtained from Molecular 

Signatures Database (MSigDB) [194, 195]. The gene universe was restricted to 

intersecting mapped genes and genes present in gene set collections. Additional analyses 

were performed using custom functions as indicated. 

Metastasis scores for TCGA primary thyroid tumors were derived using 140 

genes that were differentially expressed between metastatic and non-metastatic primary 

FCs in our study. First, we performed gene-wise scaling of log2 RSEM values into Z-

scores within each cohort. This transforms weights of relative differences in expression 

between genes into unweighted terms.  

𝛽′!" =
!!"!!!
!!

 , where 𝛽!" is the log2 RSEM of gene g of sample i 
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Next, we multiplied the Z-scores of a given gene with the sign (+1/-1) of the 

CuffDiff2 test-statistic of the same gene to obtain positive relationships between 

metastasis and expression in each of the genes.  

Let N be the number of genes in the marker set and n be the number of samples, 

and B’’ be the matrix after test-statistic correction, 

𝐵′′ =
𝛽′!" … 𝛽′!"
… … …
𝛽′!" … 𝛽′!"

 × 𝛼! … 𝛼! , where α is the Cuffdiff2 test statistic of gene g 

Finally, the mean of all the genes for each sample were calculated as the 

metastasis scores M. 

𝑀 =  
𝛽!"!

!! !

𝑁  

Receiver operating characteristic (ROC) analyses were performed using the 

pROC package [89] in R Statistical Environment with confidence intervals calculated 

using the Delong method [196]. In both the FVPTC and PTC TCGA cohorts, the 

responses for the ROC analysis were distant metastasis and the predictors were the 

metastatic scores. 

 

6.3.6: Comparison with TCGA data 

 

The Picard tools [197] workflow was used to obtain RSEM data from RNA-seq 

data of our FC cohort mapped against RefSeq release 74 for comparison with the TCGA 

THCA dataset. Processed TCGA RNA-seq data was downloaded from the Firehose 

GDAC hosted by the Broad Institute [70]. 
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Follicular variant papillary thyroid cancer (FVPTC) specific genes were identified 

using Boruta [198] with a p-value cutoff of 0.05 and maxRuns of 1,000 to minimize 

tentative genes, and assessing 10,000 trees against FVPTC and non-FVPTC sample 

classifications. Spearman distances were calculated using 1 – Spearman correlation of 

FVPTC-specific genes between this study’s FC cohort and individual samples from 

TCGA. 

 

6.2.7: Mutational analysis 

 

Samtools/bcftools [199] and GATK [200] were used to make variant calls in a 

subset of commonly genetically altered genes in thyroid cancer including BRAF, HRAS, 

NRAS, KRAS, and EIF1AX. Mutational calls were inspected and manually validated 

using IGV. 

 

6.2.8: Pyrosequencing 

 

 Pyrosequencing for the RAS genes was performed as described previously [201, 

202]. The limit of detection for pyrosequencing is approximately 5% mutant alleles (or 

10% tumor cells in a tissue sample). A signal of 4% to 5% mutant alleles is considered 

indeterminate and a signal of 3% mutant alleles or less is reported as a negative result if 

corrected for the histologically estimated tumor cell percentage in the sample. An 

indeterminate result (4%–5%) or a positive result with low mutant allele level (6%– 10%) 

triggered a review of the H&E slide and reevaluation of the estimated tumor cell 
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percentage. Specimens with no mutation detected and with less than 70% tumor 

cellularity were also reevaluated and reported as tumor cellularity below the limit of 

detection of the assay. The interpretation of complex pyrogram patterns due to the 

mutation of 2 or more nucleotides on the same allele was resolved by the software 

program Pyromaker (http://pyromaker.pathology.jhmi.edu; accessed March 21, 2014) 

[203]. 

 

6.3: Results 
 

6.3.1: RNA-sequencing of FFPE tissue samples is a viable method for whole 

transcriptome analysis of FCs. 

 

In this pilot experiment on 8 FC FFPE tumors, 7 samples yielded satisfactory 

RNA-seq results, with a median of 136 million reads of which 87.5% (range 31.2% to 

91.35%) uniquely-mapped to the genome (Figure 6-1a). The single failed sample, M02, 

yielded only 104 million reads, of which 4% mapped to the genome, and was removed 

from further analysis. For the remaining samples, 13% to 20% of the genomic alignments 

mapped to exonic regions in the genome (Figure 6-1b). Finally, our use of an rRNA 

depletion method, which was made necessary by the inability to use poly-A selection of 

transcripts due to FFPE-induced fragmentation of nucleic acids (Ribo-Zero Gold rRNA 

Removal Kit, Illumina, San Diego) did not result in any transcript position biases (Figure 

6-1c). We determined that the sample with the lowest number of mapped reads, M01, 

was suitable for further analysis based on a principal component analysis (PCA) of a 
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subset of the 500 most variable genes expressed across all samples, which showed that it 

did not behave as an outlier (Figure 6-1d). 

 

6.3.2: Initial CuffDiff2 analysis reveals differentially expressed genes and identified 

a sample with late metastasis 

 

Analysis of the 3 metastatic FC samples and 4 non-metastatic FC samples, 

revealed 93 differentially expressed loci, mapping to 86 genes (Supplementary Table 1). 

Two clusters were detected in a hierarchical clustering analysis of these 7 samples using 

the 85 differentially expressed genes, separating the metastatic samples from their non-

metastatic counterparts (Figure 6-2). Interestingly, one of the non-metastatic samples, 

I04, showed a gene expression profile intermediate between the metastatic tumors and 

non-metastatic tumors, residing within the metastatic cluster. After updating available 

clinical follow-up information 2 years after the initial case selection, this sample was 

revealed to be from a patient who eventually developed a distant metastatic event at 10.5 

years, much later compared to the other 3 metastatic cases that had presented with stage 

IV disease, suggesting that some of molecular changes associated with metastasis can 

occur early in the evolution of FC’s. 
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6.3.3: Differential gene expression analysis on reclassified sample phenotype 

identifies 140 differentially expressed genes 

 

Sample I04, the sample from a patient with late metastasis, was then reclassified 

as a late metastatic primary tumor. Differential expression analysis using this new 

classification revealed 161 statistically significant (FDR < 0.05), differentially expressed 

loci, mapping to 140 genes (Figure 6-3, Table 11), including 114 genes that overlapped 

with the original analysis. 

 

6.3.4: Gene set enrichment analysis reveals enrichment for epithelial-mesenchymal 

transition (EMT) and oncogenic pathways 

 

Gene set enrichment analysis performed using a competitive, mean-rank gene set 

enrichment test and the “hallmark” gene set curated by Molecular Signatures Database 

(MSigDB), revealed enrichment with an FDR < 0.05 for gene sets related to epithelial 

mesenchymal transition (EMT), steroid hormones, p53 signaling, KRAS signaling, and 

hypoxia (Table 12, Figure 6-4). 

 

6.3.5: Genes significantly differentially expressed between metastatic and non-

metastatic primary tumors show similar trends in TCGA thyroid cancer dataset 

 

Significantly differentially-expressed thyroid-relevant genes identified from our 

dataset as either previously described to play a functional role in thyroid cells or having 
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been used as candidate prognostic markers in previous studies, were compared across 

tumor classes in the TCGA THCA dataset. PCSK2 and MFGE8 had increased expression 

in metastatic vs non-metastatic FC in our cohort, and showed increased expression in 

thyroid cancer compared to normal thyroid tissue in the TCGA data. Conversely, we 

observed down-regulation of DIO1 and CHI3L1 in our dataset, which was also seen in 

TCGA comparing thyroid cancer to normal tissue (Figure 6-5a). Furthermore, of the 140 

differentially expressed genes identified by this study, 100 had concordant trends in 

TCGA data (Figure 6-5b). 

 

6.3.6: FCs are molecularly more similar to FVPTCs than classical PTCs 

 

We identified a set of genes that best separate FVPTCs from non-FVPTCs in the 

TCGA dataset using Boruta, a random-forest based machine-learning model (Figure 6-6). 

Using the selected genes, Spearman distances were calculated between JHU FC samples 

and TCGA FVPTC and PTC samples. The distances were summarized as the median 

distance between each FC and TCGA FVPTC or PTC samples grouped by follicular 

fraction. All 7 FC cases were significantly more likely to be closer in distance to FVPTCs 

than PTCs, with a stepwise increase in distance between PTCs of high follicular content 

to classical PTCs (p < 0.0001, Figure 6-7a). 
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6.3.7: FC Metastasis markers identify metastatic FVPTCs but not metastatic PTCs 

 

 Metastasis scores for TCGA thyroid cancer samples were calculated as a mean Z-

score-normalized expression of 140 DE genes distinguishing metastatic from non-

metastatic primary FCs (see Methods). ROC analyses were performed for FVPTC and 

PTC subsets of the TCGA data using distant metastasis as the response and metastasis 

scores as predictors (Figure 6-7b to 6-7e). In the FVPTCs, we observed a statistically 

significant AUC of 0.946 [95% confidence interval: 0.893, 1.00] in the metastasis scores 

predicting distant metastasis (Figure 6-7b) while the scores did not predict distant 

metastasis in classic PTCs 0.562 [0.303, 0.82]. Furthermore, these metastasis scores did 

not predict lymph node (LN) metastasis in FVPTCs (Figure 6-7d), consistent with a 

signature specific to hematogenous spread, and, while significant, do not prove to be a 

clinically useful set of markers within the PTC LN cohort (Figure 6-7e). This could be 

due to the functional differences required for lymphatic metastasis and differences in 

molecular progression between PTCs and FTCs. 

 

6.3.8: Splice variant analysis using rMATs identifies differentially skipped exon 

events in genes relevant to thyroid cancer 

 

Splice variant analysis was performed using rMATs for skipped exon (SE) and 

mutually exclusive exon (MXE) events, starting from the combined gene and transcript 

sets assembled from the RNA-seq samples. While there were no differential MXE events, 
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the analysis identified 7 differentially expressed SE events (Table 13), in the following 

genes: NPC2, TG, MACF1, ACSL3, ARID1B, UTRN (Figure 6-8a), and RMST. 

 

6.3.9: Identification of RAS and EIF1AX mutations 

 

Hotspot mutations in the BRAF and RAS genes, as well as genes that were 

identified as mutated in FVPTCs from TCGA’s thyroid cancer analysis, were assessed 

using MutSig and Integrated Genomics Viewer (IGV) with the queried locations 

summarized in Supplementary Table 1. Of the 7 samples, 3 of the 4 metastatic cases were 

found to have RAS mutations, with 2 in KRAS and 1 in NRAS. M03 had an NRAS-

Q61R mutation, M04 had a KRAS-Q61R mutation, and LM01, the case originally 

classified as non-metastatic, had a KRAS-G12S mutation (Figure 6-8b, Table 14). 

Furthermore, two indolent samples showed splice junction mutations in EIF1AX at 

A113, a mutation previously found in FVPTCs by TCGA (Figure 6-8b, Table 14). 

 

6.3.10: Validation of RAS mutations by pyrosequencing 

 

We performed pyrosequencing to validate the mutations identified from our 

RNA-seq analysis (Table 5). One sample with NRAS Q61R mutations were validated in 

our pyrosequencing analysis. Consistent with our RNA-seq data, none of the samples 

showed HRAS mutations.  
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6.4: Discussion 
 

We performed RNA-seq on FFPE material derived from 8 primary FCs, 4 of which were 

non-metastatic and 4 were metastatic at the time of diagnosis. To our knowledge, this is 

the first study assessing the use of RNA-seq to study the transcriptome of thyroid FFPE 

samples. Our results, with a success rate of 7/8 samples, indicate that RNA-seq is a 

feasible platform to analyze thyroid FFPE samples. Furthermore, we observed no 

transcript position bias for library preparation from the rRNA depletion protocol used.  

 A principal component analysis (PCA) revealed separation based on metastasis 

status on the first component and further suggested an intermediate sample between non-

metastatic and metastatic FCs. Hierarchical cluster analysis and PCA using genes 

identified from an initial CuffDiff2 analysis showed that one of the tumors classified as 

non-metastatic clustered with the metastatic tumors. After updating all available clinical 

follow-up information 2 years after initial case selection, that sample was found to be 

from a patient who developed distant metastatic disease at 10.5 years post-treatment. We 

reclassified that sample as a metastatic sample, and reanalyzed the data. While we cannot 

exclude the possibility that additional cases classified as indolent could show similar late 

disease progression (current follow periods range from 66-204 months), this is unlikely 

given the very low rate of such late events in initially indolent FC. Following this second 

analysis, we identified 140 differentially expressed genes with 114 overlapping the first 

analysis. 

Genes over-expressed in metastatic samples include SLC34A2, LRP4, PBX3, 

STK32A, PCSK2, and MFGE8. SLC34A2 is a sodium/phosphate co-transporter, which 

has been shown to be up-regulated in PTCs compared to normal thyroid tissue [204-206] 
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and is also the target of a preclinical antibody-drug conjugate (ADC) for ovarian, lung, 

and thyroid tumors [207]. LRP4 up-regulation in thyroid cancer has been shown in 

multiple studies, the both classic PTCs [208-213] as well as FVPTCs compared to FAs 

[214]. Likewise, STK32A up-regulation has been observed in PTCs [213]. The 

homeobox transcription factor, PBX3, is a proto-oncogene [215] that has been shown to 

be a target of metastasis-suppressor microRNA let-7c and plays a role in promoting cell 

proliferation and metastasis in colon cancer [216, 217].  PCSK2 was used in a three-gene 

model to distinguish FCs from FAs [218], and found to be over-expressed in FCs by 

microarray and qRT-PCR methods [219]. MFGE8 is a pro-angiogenic factor in several 

tumors [220-222], and has been shown to be up-regulated in thyroid cancer [208, 210, 

223, 224]. 

Genes down-regulated in metastatic samples include DIO1, TFCP2L1, SLC5A8, 

PPARG, and RHOB. DIO1 is a Type I Thyroxin Deiodinase that activates thyroid 

hormone by converting the prohormone thyroxin (T4) to the bioactive 3,3',5-

triiodothyronine (T3) [225]. This is consistent with previous studies that showed DIO1 to 

be under-expressed across all subtypes of thyroid carcinomas compared to normal tissue 

[226-229]. Kim et al. observed [205] TFCP2L1 down-regulation in PTCs compared to 

normal tissue by microarray and QPCR. Furthermore, TFCP2L1 is down-regulated in 

highly malignant anaplastic thyroid cancers (ATCs) compared to benign goiters and 

contributes to silencing of CRYAB, a potential tumor suppressor [230]. Finally, 

TFCP2L1 was found to be down-regulated in FVPTCs compared to FAs in a microarray 

analysis [214]. SLC5A8 is a tumor suppressor that is commonly hypermethylated and 

down-regulated in cancer [231-234], including PTCs [235]. PPARG is also down-
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regulated in metastatic FCs compared to indolent FCs. The PAX8/PPARG fusion may be 

present in about a third of FCs, although not detected in this small series, and acts as a 

dominant negative inhibitor of wild-type PPARG [236, 237]. Beyond PPARG/PAX8 

fusions, PPARG down-regulation has been observed in various cancers and is associated 

with poorly differentiated tumors [238], including FCs [239, 240]. RHOB is a small 

GTPase with a tumor suppressor role [241], and re-expression of RHOB have been 

shown to be a requirement in cell-cycle arrest through its activity in up-regulating p21 

[242, 243]. Furthermore, RHOB had been shown to play an anti-metastatic role in cancer 

and is inactivated by the RAS pathway [243, 244], a key pathway activated in FCs. 

Our gene set analysis revealed that, remarkably, EMT (epithelial-to-mesenchymal 

transition) was found to be the most significantly enriched gene set using a mean-rank 

gene set test on differential expression statistics comparing metastatic and non-metastatic 

primary FCs on the MSigDB hallmark gene set (Table 3, Figure 6-4). EMT is a 

developmental process during which epithelial cells acquire mesenchymal traits that 

allow them to migrate, invade, and disseminate. EMT is co-opted by cancer cells to 

initiate invasion and metastasis [245]. Among the top 5% of genes differentially 

expressed between metastatic and non-metastatic primary tumors, six of those were a 

subset of the EMT gene set; FMOD, GJA1, RHOB, SGCD, DPYSL3, and IGFBP3 

(Figure 6-4). Among the down-regulated genes, GJA1 [246], FMOD [247], and RHOB 

[244] have been implicated to play a role in preventing metastasis or to be down-

regulated in metastatic solid tumors, while SGCD is a component of the sarcoglycan 

complex, which acts as a mechanosignalling connection from the cytoskeleton to the 

extracellular matrix and has been observed to be downregulated in breast and prostate 
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cancer [248, 249]. DPYSL3 and IGFBP3 appear to have a context-dependent dual 

inhibitory and stimulatory role in cancer. DPYSL3, or CRMP4, is a cell adhesion 

molecule that has been shown to promote metastasis in pancreatic and gastric cancers, but 

is a metastasis suppressor in breast. We observed a stepwise increase in DPYSL3 in more 

malignant phenotypes in TCGA data (Figure 6-5), including metastasis, suggesting that 

DPYSL3 contributes to a metastatic phenotype in thyroid cancer [250-252]. Interestingly, 

VEGF promotes the upregulation of DPYSL3 in gastric cancer [253], and FCs have been 

known to metastasize through the hematologic route [182], a process tied to 

neoangiogenesis [254]. While IGFBP3 is correlated with good prognosis in gastric 

cancer, it promotes transendothelial migration in oral squamous cell carcinoma [255] and 

TGF-beta-mediated EMT in esophageal cancer [256]. However, similar to DPYSL3, it 

showed a stepwise increase in expression in more malignant thyroid cancer phenotype in 

TCGA data (Figure 6-5b), which may suggest its role in promoting an aggressive 

phenotype in thyroid cancer.   

We also identified concurrent enrichment for the hallmark hypoxia gene set, a 

pathway shown in an FC cell line model to induce EMT [257]. The KRAS signaling 

pathway was also implicated. RAS is the most commonly mutated oncogene family in 

FCs, with the most commonly mutated member being NRAS, followed by HRAS and 

KRAS. Unfortunately, KRAS is the only gene in the RAS family that was featured in the 

KRAS signaling gene set collection, making it difficult to identify the specific RAS gene 

driving this observation. Enrichment for the p53 signaling pathway was also observed, 

and p53 mutation plays a key role in anaplastic thyroid cancers, a more aggressive, 

poorly-differentiated subtype of epithelial thyroid cancer [258, 259]. 
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While estrogen- and androgen-related factors have been implicated in thyroid 

cancer [260], and such pathways were enriched in this analysis, this might be contributed 

by the increased in proportion of male-to-female patients in our dataset. We are unable to 

distinguish this confounding factor given the small number of samples in this pilot 

experiment. 

As an external validation of our metastasis markers, we investigated the 

expression of the DE genes in the TCGA thyroid cancer RNA-seq dataset and were able 

to detect changes between tumor versus normal and, in some cases, metastatic versus 

non-metastatic primary tumors that are consistent with our findings (Figure 6-5, 

Supplementary Table 1). To be exact, 100/140 mapped and validated genes from our 

analysis show concordant, statistically significant differences between aggressive and 

non-aggressive tumors. Interestingly, we observe a stepwise change in gene expression 

from normal thyroid tissue to FVPTC to PTC for many of the genes (see Figure 6-5, 

Supplementary Table 1). This may suggest that there exists a parallel biological process 

in metastatic disease that mimics differences between FVPTCs and PTCs.  

By definition, FVPTCs consist to 99% of tumor tissue showing follicular-like 

morphology, similar to that of FCs, and we hypothesize that subsets of FVPTCs, such as 

the majority that lacks BRAF mutations, are molecularly more similar to FCs than their 

classical PTC counterparts. To our knowledge, there are currently no genome-wide 

molecular data exploring the relationship between FVPTCs in relation to PTCs and FCs. 

To minimize confounding by batch effect, we employed a non-parametric method of 

calculating Spearman distances between our 7 FC samples and all the TCGA thyroid 

FVPTC and PTC tumors using 92 FVPTC-specific genes identified using Boruta (Table 
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16). FCs are molecularly more similar to FVPTCs than PTCs in the context of FVPTC-

specific genes (Figure 6-7). Furthermore, FCs are also molecularly closer to PTCs with 

high morphologically follicular fractions (but below the 99% threshold for FVPTC 

diagnosis), compared to PTCs with low follicular fraction. Metastasis scores, calculated 

as a mean Z-score-normalized expression value, were used as predictors in an ROC 

analysis comparing primary tumors with or without distant metastasis in the TCGA 

FVPTC and PTC cohorts respectively. The metastasis scores were prognosticative for 

FVPTCs but not PTCs (Figure 6-7, b to e) by ROC analysis. 

Splice variant analysis using rMATS identified 7 genes with differential SE 

events, including the thyroid relevant gene thyroglobulin (TG). Other genes of interest 

include UTRN and MACF1. In this pilot study, exon 66 (ENSE00001084869.1) of the 

canonical isoform of UTRN is skipped with higher frequency in metastatic FCs (FDR = 

0.02). UTRN deletion, truncation, and frameshift mutations have been observed in breast 

carcinoma, neuroblastoma, and melanomas [261, 262]. Interestingly, UTRN is a target of 

mir-206, which had been shown to inhibit metastasis-relevant traits in ATCs [263]. Given 

that a putative binding site of mir-206 is in the skipped exon, this splice variant may offer 

advantages in evading mir-206 regulation. MACF1 (or ACF7) regulates cytoskeletal-

focal adhesion dynamics and plays an important role in epidermal migration [264]. 

Furthermore, MACF1 was recently found to be differentially spliced in breast cancer 

compared to patient-matched normal tissue [265]. 

Finally, we investigated the presence of the highly recurrent mutations in RAS, 

BRAF, and EIF1AX identified by TCGA’s thyroid cancer analysis in our FC cohort. We 

identified 3 canonical RAS mutations in metastatic primary samples and 2 splice-site 
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mutations in the EIF1AX gene in non-metastatic primary samples (Table 13). 

Pyrosequencing of the HRAS and NRAS canonical mutations validated the mutational 

profiles observed in these samples using RNA-seq. 

 

6.5: Conclusion 
 

This proof-of-concept study showed that RNA-seq is a viable platform to assess 

transcriptomic and, to a certain extent, genetic changes in FFPE thyroid tissues. We have 

described a high success rate in identifying metastatic samples and identified both novel 

and previously recognized gene expression changes related to tumor metastasis, albeit in 

a small sample set. Our identification of a transcriptional pattern characteristic of 

metastatic FC in a tumor originally classified as non-metastatic that eventually developed 

metastasis at 10.5 years suggest that some of these molecular changes occur early in the 

developmental timeline of the tumor, and may speak to the ability to better identify 

patients whose tumors will require clinical intervention. 

Using the TCGA thyroid dataset, we further discovered concordant gene 

expression changes in aggressive versus indolent tissue (tumor versus normal tissue, and 

metastatic versus non-metastatic primary tumor) and identified enrichment for gene sets 

of cellular processes related to increased aggressiveness and invasiveness such as EMT, 

hypoxia, and oncogenic signaling pathways. 

A distance-based analysis using genes distinguishing FVPTCs and PTCs revealed 

that FCs are molecularly closer to FVPTCs than classical PTCs, and might suggest a 

reconsideration of the relationship between FCs, FVPTCs, and PTCs. Finally, we showed 
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the ability to detect mutations in FFPE material from RNA-seq, and documented 

mutations previously identified in FVPTCs in this small cohort of FCs. 

 

Figure 6–1: QC metrics for RNA-seq of FFPE FTC 

a) Total read counts separated into mapped (orange) and unmapped (light blue) reads for each of 
eight samples. Two samples had poor mapping, M01 and M02. b) Genomic mapping of all eight 
FTC samples reveal mapping comparable to total RNA-seq in FF tissues, except for M02. c) 
RNAseq coverage vs. transcript position plot assesses a 3’ bias effect that correlates with RNA 
quality. Other than M02, other samples reveal good coverage. Following this, M02 was dropped 
from further analyses. d) Principal component analysis (PCA) to identify outliers in datasets and 
provide unsupervised exploratory analysis of the data. No outliers were observed, including M01 
that had poorer than expected mapping, suggesting that the sample can be used for downstream 
analyses. Interestingly, separation in metastatic status of these primary FTCs was observed on 
PC1. More importantly, LM01, which developed metastasis 10 years after the initial diagnosis, 
had a PC1 position intermediate of metastatic and non-metastatic FTCs, suggesting that 
transcriptomic changes associated with metastatic potential was present early in disease. 
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Figure 6–2: DE genes between non-metastatic and metastatic samples, without reclassification 
of late metastatic sample 

Hierarchical clustering results for 137 DE probes identified via Cuffdiff analysis comparing non-
metastatic (indolent) and metastatic samples (I, grey bars, vs M, black bars). Interestingly, one of 
the samples, I04, had gene expression profiles of these genes intermediate between non-
metastatic and metastatic samples. Upon updating clinical follow up information for these series 
of FTCs, I04 was revealed to have a metastatic event at >10 years after the initial diagnosis. I04 
was reclassified as LM01. This observation suggests that markers of metastasis can be identified 
years before the actual metastasis event. 
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Figure 6–3: DE genes between non-metastatic and metastatic sample, with LM classified as 
metastatic 

Hierarchical clustering of 140 DE genes identified using Cuffdiff comparing metastatic and non-
metastatic samples, with LM01 classified as a metastatic sample. This was performed to capture 
a set of genes with a purer metastatic signal. Perhaps unsurprisingly, LM01 had a gene 
expression profile intermediate between metastatic and non-metastatic samples. A total of 114 
genes identified by this new analysis overlapped with the genes discovered when LM01 was 
considered an indolent disease. 

 



 172 

 

Figure 6–4: Hallmark EMT gene set enrichment results between metastatic and non-metastatic 
FTC 

a) Enrichment for Hallmark EMT was observed in genes differentially expressed between 
metastatic and non-metastatic FTCs. b) Heatmap showing RSEM values of leading edge genes 
(99th percentile) identified in the EMT geneset. 
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Figure 6–5: Expression of genes DE between metastatic and non-metastatic FTC in different 
subgroups of TCGA thyroid cancer dataset 

a) The expression of four genes, PCSK2, CHI3L1, MFGE8, and DIO1, in TCGA thyroid cancer 
dataset. Tumor adjacent normal and primary thyroid cancer samples were used in this analysis. 
The primary cancer samples were separated into their histological subtypes, papillary thyroid 
cancer (PTC) and follicular variant of papillary thyroid cancer (FVPTC). Beyond that, the 
primary samples were also divided into two classes I, for indolent, and M, for samples with any 
metastasis event – to the lymph node or distant site. From the DE genes identified by the JHU 
FTC cohort, trends of up- and down-regulation were preserved when comparing an aggressive 
phenotype to a less aggressive phenotype. b) Simplified heatmap comparing direction of change 
of 140 genes DE between metastatic and non-metastatic FCs in four different TCGA 
comparisons. PTC-M: Metastatic primary PTC vs. non-metastatic primary PTC; PTC-N: 
Primary PTC vs. tumor adjacent normal tissue. FVPTC-M and FVPTC-N, similar to PTC except 
in the FVPTC subset of primary tumors. Orange shows upregulation and blue downregulation. 
The trend is consistent when comparing a more aggressive to a less aggressive phenotype. 
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Figure 6–6: FVPTC-specific genes identified using Boruta comparing classical PTC and 
FVPTC in the TCGA thyroid cancer dataset 

Using Boruta, we identified a series of genes that were able to distinguish FVPTCs from classical 
PTCs, and results are summarized in this heatmap. PTC classification, histological, and 
molecular features are highlighted on the color bars in the top; BRAF and RAS mutation, 
histological subtype, RAS/BRAF score as measured by TCGA, and follicular fraction estimated 
by TCGA pathologists. Missing information is highlighted in red. We observed separation of 
FVPTCs and PTCs into two separate clusters. More interestingly, we observed the clustering of 
some PTC samples in the FVPTC cluster, with these PTCs having high follicular fractions and 
RAS scores, suggesting that they are molecularly driven by FVPTC-related pathways. 

 

Legend
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Figure 6–7: FTCs are molecularly similar to FVPTCs and markers of distant metastasis in 
FTCs predicts distant metastasis in FVPTCs 

a) Median Spearman distances for each JHU FTC sample was calculated against primary PTCs 
in the TCGA THCA dataset using follicular genes differentially expressed between FVTPC and 
PTC in the TCGA dataset. The median distance between each FTC sample and groups of TCGA 
separated into different follicular fraction groups. FTC samples are molecularly most similar to 
FVTPCs, with a stepwise increased distance from PTCs with decreasing follicular fraction. b-e) 
ROC analysis on the ability to predict metastasis in TCGA thyroid cancer samples. Briefly, 
metastasis scores were calculated using a gene voting method and were used as predictors 
against different metastatic outcomes in different PTC subtype; b) distant metastasis in FVPTC, 
c) distant metastasis in PTC, d) LN metastasis in FVPTC, and e) LN metastasis in PTC. FTC-
metastasis markers were only predictive of distant metastasis in FVPTCs (AUC 0.946, 95% CI: 
0.89 – 1.0). 
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Figure 6–8: Differential splicing event observed in UTRN and mutations in three known FTC 
and FVPTC driver genes 

a) Representative example of splice variant result identifying a preferential exon skipping event 
in UTRN in metastatic FTCs. b) Three genes previously identified as mutated with high frequency 
in FTC and FVPTCs were identified in 5/7 FTC samples, including EIF1AX, KRAS, and NRAS. 
Interestingly, RAS mutations were only present in metastatic samples and EIF1AX mutations 
were only present in non-metastatic samples. 
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Table 10: Patient demographics for FVPTC metastasis study 

 

  

Sample_Name Classification Gender Age Race Size
I01 Indolent F 36 H 7.2
I02 Indolent M 20 W 8
I03 Indolent F 48 W 3.5
I04 Indolent M 77 M 8
A01 Aggressive F 57 B 4.5
A02 Aggressive F 56 W 4.1
A03 Aggressive M 59 W 2.2
A04 Aggressive M 74 W 5
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Table 11:  Top 50 differentially expressed genes between metastatic and non-

metastatic FTC 

 

  

gene Mean_met Mean_nonmet log2_FC test_stat p_value q_value
DIO1 33.81 178.08 2.40 2.73 5.00E-05 0.01
SGIP1 46.86 8.25 -2.51 -1.59 5.00E-05 0.01

AC113949.1,LPHN2 3.31 17.44 2.40 1.54 5.00E-05 0.01
VAV3 42.47 11.11 -1.94 -1.29 5.00E-05 0.01
F5 0.85 48.89 5.85 2.53 5.00E-05 0.01

FMOD 8.72 52.60 2.59 2.89 5.00E-05 0.01
ARID5B 4.07 18.21 2.16 2.30 5.00E-05 0.01

C10orf131,CC2D2B,ENTPD1,RP11-248J23.6,RP11-
248J23.7,RP11-429G19.3,RP11-690P14.4

181.29 35.58 -2.35 -1.11 5.00E-05 0.01

RP1-59M18.2,SERGEF,TPH1 71.83 13.62 -2.40 -1.60 5.00E-05 0.01
MUC15 48.84 6.05 -3.01 -3.30 5.00E-05 0.01
LRP4 38.11 2.34 -4.02 -2.90 5.00E-05 0.01

RASGRP2 0.85 3.65 2.10 0.76 5.00E-05 0.01
LRRK2 141.32 2.50 -5.82 -2.95 5.00E-05 0.01

HOXC10,HOXC4,HOXC5,HOXC6,HOXC9,RP11-
834C11.12,RP11-834C11.14

0.30 2.68 3.17 0.94 5.00E-05 0.01

PIWIL1,RP11-117L5.1 91.36 9.76 -3.23 -0.81 5.00E-05 0.01
AVPR1A,RP11-1022B3.1 2.76 112.17 5.35 3.69 5.00E-05 0.01

RP11-230G5.2 18.93 0.32 -5.89 -0.98 5.00E-05 0.01
MIR4495,RP11-1016B18.1 126.86 3.39 -5.23 -1.37 5.00E-05 0.01

NRXN3 1.52 14.89 3.30 1.40 5.00E-05 0.01
ASPG 1.25 14.26 3.51 0.88 5.00E-05 0.01
SLC7A8 7.16 33.37 2.22 1.94 5.00E-05 0.01
LTBP2 27.40 8.50 -1.69 -1.79 5.00E-05 0.01
PGF 9.94 54.09 2.44 2.21 5.00E-05 0.01

IGHA1,IGHD3-
10,IGHG1,IGHG2,IGHG3,IGHG4,IGHGP,IGHJ1,IGHJ2,IGHJ3,I
GHJ3P,IGHJ4,IGHJ5,IGHJ6,IGHM,IGHV1-18,IGHV1-2,IGHV1-
3,IGHV2-5,IGHV3-11,IGHV3-20,IGHV3-21,IGHV3-48,IGHV3-
6,IGHV3-7,IGHV4-4,IGHV6-1,IGHV7-34-1,RP11-731F5.2

185.54 6425.41 5.11 14.93 5.00E-05 0.01

GABRG3 6.15 0.01 -9.95 -0.13 5.00E-05 0.01
BNIP3P5,CAPN3,GANC,RP11-164J13.1 49.74 14.01 -1.83 -1.29 5.00E-05 0.01

ALDH1A2 0.35 2.36 2.74 0.44 5.00E-05 0.01
DAPK2 118.72 24.68 -2.27 -0.99 5.00E-05 0.01

AC245033.1,GOLGA2P10 10.18 0.15 -6.10 -0.64 5.00E-05 0.01
NTRK3 7.68 1.12 -2.77 -0.82 5.00E-05 0.01
SLC47A1 26.31 2.98 -3.14 -1.84 5.00E-05 0.01

HOXB-AS1,HOXB-AS3 0.16 1.49 3.18 0.30 5.00E-05 0.01
CACNA1G 0.13 2.16 4.06 0.98 5.00E-05 0.01
SRCIN1 18.54 2.23 -3.05 -1.63 5.00E-05 0.01

TMC6,TNRC6C-AS1 30.42 8.35 -1.87 -0.94 5.00E-05 0.01
ARHGAP28 1.48 17.11 3.53 1.72 5.00E-05 0.01

CTD-2527I21.4,FXYD1,FXYD7 0.18 1.13 2.63 0.36 5.00E-05 0.01
CTC-339O9.1 0.00 21.70 inf nan 5.00E-05 0.01

CTD-3252C9.4,MIR24-2 16.15 56.83 1.81 2.40 5.00E-05 0.01
DMKN 64.40 183.06 1.51 1.39 5.00E-05 0.01
RHOB 22.43 97.96 2.13 2.89 5.00E-05 0.01

MBOAT2 19.04 3.46 -2.46 -1.11 5.00E-05 0.01
EFEMP1 4.90 28.04 2.52 1.66 5.00E-05 0.01
ST6GAL2 110.21 19.15 -2.53 -2.09 5.00E-05 0.01
TFCP2L1 2.49 21.45 3.11 2.59 5.00E-05 0.01
PCSK2 153.81 2.00 -6.27 -3.95 5.00E-05 0.01
SOGA1 11.69 54.49 2.22 1.29 5.00E-05 0.01
PRAME 0.01 2.92 8.95 0.11 5.00E-05 0.01
SCUBE1 0.20 17.00 6.42 1.44 5.00E-05 0.01
PPARG 3.93 107.71 4.78 2.43 5.00E-05 0.01
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Table 12: Gene set enrichment analysis results of FTC metastasis dataset 

 
 

Table 13: CLASS splice variant analysis results 

 
 

Table 14: Mutations in thyroid driver genes identified in JHU FTC cohort 

 

  

Gene_set P_value FDR N Leading_edge_genes_95th_percentile
EPITHELIAL_MESENCHYMAL_TRANSITION 0 0 176 IGFBP3,	RHOB,	SGCD,	FMOD,	GJA1,	DPYSL3
ESTROGEN_RESPONSE_EARLY 0 0 175 CA12,	GJA1,	FRK,	FOXC1,	DEPTOR,	TOB1,	SLC7A2
NOTCH_SIGNALING 1.00E-05 7.00E-05 26 FZD1
ADIPOGENESIS 1.00E-05 7.00E-05 164 PPARG,	TOB1
P53_PATHWAY 2.00E-05 0.00019 172 TOB1
TNFA_SIGNALING_VIA_NFKB 5.00E-05 0.00038 179 DUSP1,	RCAN1,	RHOB,	DUSP4
ESTROGEN_RESPONSE_LATE 0.00013 0.00092 180 CA12,	FRK,	FOXC1,	TOB1,	SERPINA1
UV_RESPONSE_DN 0.00015 0.00095 131 MET,	PPARG,	GJA1,	DUSP1,	ID1
OXIDATIVE_PHOSPHORYLATION 2.00E-04 0.00114 163
HYPOXIA 0.00115 0.00577 182 IGFBP3,	PGF,	DUSP1,	CA12
MTORC1_SIGNALING 0.0015 0.00684 179
INTERFERON_GAMMA_RESPONSE 0.00178 0.00741 171 NOD1,	ARID5B
ANDROGEN_RESPONSE 0.00202 0.00775 88 ARID5B
IL2_STAT5_SIGNALING 0.00325 0.01161 174 RHOB
KRAS_SIGNALING_UP 0.01118 0.03725 173 IGFBP3,	KIF5C
GLYCOLYSIS 0.01592 0.04974 173 IGFBP3,	B3GAT1,	MET

Gene_symbol chr strand exonStart exonEnd upstreamES upstreamEE downstreamES downstreamEE FDR Delta_inclusion
NPC2 chr14 - 74480701 74480779 74480003 74480288 74484414 74484587 7.39E-08 0.026
TG chr8 + 132869728 132869826 132868114 132868223 132871347 132871551 2.98E-05 0.033

MACF1 chr1 + 39480919 39481030 39479797 39480009 39484600 39485195 0.00077644 0.321
ACSL3 chr2 + 222900673 222900780 222887829 222887888 222908732 222908781 0.00337043 0.589
ARID1B chr6 + 157150724 157150853 157148623 157148951 157167039 157167185 0.01897395 0.325
UTRN chr6 + 144827347 144827386 144820881 144821018 144827610 144827659 0.02312159 -0.292
RMST chr12 + 97496493 97496554 97495930 97496056 97530654 97530859 0.02312159 -0.029

Sample_ID Reclassify Status EIF1AX KRAS NRAS
I02 I02 Indolent p.A113_splice 0 0
I03 I03 Indolent p.A113_splice 0 0
I04 M05 Late	metastatic 0 p.G12S 0
M03 M03 Metastatic 0 0 p.Q61R
M04 M04 Metastatic 0 p.Q61R p.Q61R
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Table 15: FVPTC-specific genes when compared to PTC identified by Boruta 

 
(cont) 

 

 

SYMBOL ENTREZID GENENAME MAP
AHNAK2 113146 AHNAK	nucleoprotein	2 14q32.33

AKT1 207 v-akt	murine	thymoma	viral	oncogene	homolog	1 14q32.32

ALOX5 240 arachidonate	5-lipoxygenase 10q11.2

ANXA2P2 304 annexin	A2	pseudogene	2 9p13

ANXA2 302 annexin	A2 15q22.2

B3GNT3 10331 UDP-GlcNAc:betaGal	beta-1,3-N-acetylglucosaminyltransferase	3 19p13.1

BCAP29 55973 B-cell	receptor-associated	protein	29 7q22.3

BCL2L1 598 BCL2-like	1 20q11.21

BCL3 602 B-cell	CLL/lymphoma	3 19q13.1-q13.2

C16orf89 146556 chromosome	16	open	reading	frame	89 16p13.3

C1orf130 NA NA NA

C7orf23 NA NA NA

CARKD 55739 carbohydrate	kinase	domain	containing 13q34

CCL18 6362 chemokine	(C-C	motif)	ligand	18	(pulmonary	and	activation-regulated) 17q12

CD24 100133941 CD24	molecule 6q21

CD276 80381 CD276	molecule 15q23-q24

CD36 948 CD36	molecule	(thrombospondin	receptor) 7q11.2

CD47 961 CD47	molecule 3q13.1-q13.2

CDC42EP3 10602 CDC42	effector	protein	(Rho	GTPase	binding)	3 2p21

CEACAM6 4680 carcinoembryonic	antigen-related	cell	adhesion	molecule	6	(non-specific	cross	reacting	antigen) 19q13.2

CETN2 1069 centrin,	EF-hand	protein,	2 Xq28

CFI 3426 complement	factor	I 4q25

CNTNAP2 26047 contactin	associated	protein-like	2 7q35

CYP1B1 1545 cytochrome	P450,	family	1,	subfamily	B,	polypeptide	1 2p22.2

DDX60 55601 DEAD	(Asp-Glu-Ala-Asp)	box	polypeptide	60 4q32.3

DSC2 1824 desmocollin	2 18q12.1

DSC3 1825 desmocollin	3 18q12.1

DUOXA2 405753 dual	oxidase	maturation	factor	2 15q15.1

EDA 1896 ectodysplasin	A Xq12-q13.1

EHBP1L1 254102 EH	domain	binding	protein	1-like	1 11q13.1

ELF3 1999 E74-like	factor	3	(ets	domain	transcription	factor,	epithelial-specific	) 1q32.2

EPHA4 2043 EPH	receptor	A4 2q36.1

EPHB3 2049 EPH	receptor	B3 3q27.1

ERBB3 2065 erb-b2	receptor	tyrosine	kinase	3 12q13

F5 2153 coagulation	factor	V	(proaccelerin,	labile	factor) 1q23

FAM155B 27112 family	with	sequence	similarity	155,	member	B Xq13.1

FGFBP1 9982 fibroblast	growth	factor	binding	protein	1 4p15.32

FN1 2335 fibronectin	1 2q34

FNDC4 64838 fibronectin	type	III	domain	containing	4 2p23.3

FOSL2 2355 FOS-like	antigen	2 2p23.3

GABRB2 2561 gamma-aminobutyric	acid	(GABA)	A	receptor,	beta	2 5q34

GNAS 2778 GNAS	complex	locus 20q13.3

GPR110 NA NA NA

GPX1 2876 glutathione	peroxidase	1 3p21.3

GTF3C1 2975 general	transcription	factor	IIIC,	polypeptide	1,	alpha	220kDa 16p12

HDGF 3068 hepatoma-derived	growth	factor 1q23.1

HHATL 57467 hedgehog	acyltransferase-like 3p22.1

HSPA1B 3304 heat	shock	70kDa	protein	1B 6p21.3

IGF1 3479 insulin-like	growth	factor	1	(somatomedin	C) 12q23.2

IL10RA 3587 interleukin	10	receptor,	alpha 11q23

IL8 NA NA NA

ITGA3 3675 integrin,	alpha	3	(antigen	CD49C,	alpha	3	subunit	of	VLA-3	receptor) 17q21.33

ITGAX 3687 integrin,	alpha	X	(complement	component	3	receptor	4	subunit) 16p11.2

IVL 3713 involucrin 1q21

KCNIP3 30818 Kv	channel	interacting	protein	3,	calsenilin 2q21.1

KCNN4 3783 potassium	channel,	calcium	activated	intermediate/small	conductance	subfamily	N	alpha,	member	419q13.2

KCNQ1 3784 potassium	channel,	voltage	gated	KQT-like	subfamily	Q,	member	1 11p15.5

KIAA1217 56243 KIAA1217 10p12.31

KRT19 3880 keratin	19,	type	I 17q21.2

LCN2 3934 lipocalin	2 9q34
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(Table 15, cont) 

 

  

SYMBOL ENTREZID GENENAME MAP
LDLR 3949 low	density	lipoprotein	receptor 19p13.2
LETM1 3954 leucine	zipper-EF-hand	containing	transmembrane	protein	1 4p16.3
LGR6 59352 leucine-rich	repeat	containing	G	protein-coupled	receptor	6 1q32.1
LOC286002 NA NA NA
LRP1 4035 low	density	lipoprotein	receptor-related	protein	1 12q13.3
LSR 51599 lipolysis	stimulated	lipoprotein	receptor 19q13.12
LTBP3 4054 latent	transforming	growth	factor	beta	binding	protein	3 11q13.1
MACC1 346389 metastasis	associated	in	colon	cancer	1 7p21.1
MARCO 8685 macrophage	receptor	with	collagenous	structure 2q14.2
MIDN 90007 midnolin 19p13.3
MMP15 4324 matrix	metallopeptidase	15	(membrane-inserted) 16q13
MMP7 4316 matrix	metallopeptidase	7 11q22.2
MSR1 4481 macrophage	scavenger	receptor	1 8p22
MUC1 4582 mucin	1,	cell	surface	associated 1q21
MXRA8 54587 matrix-remodelling	associated	8 1p36.33
MYH10 4628 myosin,	heavy	chain	10,	non-muscle 17p13
NFE2L3 9603 nuclear	factor,	erythroid	2-like	3 7p15.2
NOTCH2 4853 notch	2 1p13-p11
POR 5447 P450	(cytochrome)	oxidoreductase 7q11.2
PPL 5493 periplakin 16p13.3
PTDSS1 9791 phosphatidylserine	synthase	1 8q22
PTPRF 5792 protein	tyrosine	phosphatase,	receptor	type,	F 1p34
PVRL4 81607 poliovirus	receptor-related	4 1q23.3
QSOX1 5768 quiescin	Q6	sulfhydryl	oxidase	1 1q24
RASGRF1 5923 Ras	protein-specific	guanine	nucleotide-releasing	factor	1 15q24.2
REEP5 7905 receptor	accessory	protein	5 5q22-q23
RGN 9104 regucalcin Xp11.3
RPS6KA2 6196 ribosomal	protein	S6	kinase,	90kDa,	polypeptide	2 6q27
RUNX1 861 runt-related	transcription	factor	1 21q22.3
S100B 6285 S100	calcium	binding	protein	B 21q22.3
SCD 6319 stearoyl-CoA	desaturase	(delta-9-desaturase) 10q24.31
SEMA4B 10509 sema	domain,	immunoglobulin	domain	(Ig),	transmembrane	domain	(TM)	and	short	cytoplasmic	domain,	(semaphorin)	4B15q25
SEZ6L2 26470 seizure	related	6	homolog	(mouse)-like	2 16p11.2
SFTPB 6439 surfactant	protein	B 2p12-p11.2
SLC20A1 6574 solute	carrier	family	20	(phosphate	transporter),	member	1 2q13
SLC25A23 79085 solute	carrier	family	25	(mitochondrial	carrier;	phosphate	carrier),	member	23 19p13.3
SLC25A38 54977 solute	carrier	family	25,	member	38 3p22.1
SLC39A11 201266 solute	carrier	family	39,	member	11 17q24.3-q25.1
SLC5A8 160728 solute	carrier	family	5	(sodium/monocarboxylate	cotransporter),	member	8 12q23.1
SNRPB 6628 small	nuclear	ribonucleoprotein	polypeptides	B	and	B1 20p13
SPATS2L 26010 spermatogenesis	associated,	serine-rich	2-like 2q33.1
ST6GALNAC5 81849 ST6	(alpha-N-acetyl-neuraminyl-2,3-beta-galactosyl-1,3)-N-acetylgalactosaminide	alpha-2,6-sialyltransferase	51p31.1
SYT12 91683 synaptotagmin	XII 11q13.2
TAGLN2 8407 transgelin	2 1q21-q25
TCTA 6988 T-cell	leukemia	translocation	altered 3p21
TEX261 113419 testis	expressed	261 2p13.3
TM7SF4 NA NA NA
TMEM63B 55362 transmembrane	protein	63B 6p21.1
TMPRSS6 164656 transmembrane	protease,	serine	6 22q12.3
TSPAN7 7102 tetraspanin	7 Xp11.4
TUBB3 10381 tubulin,	beta	3	class	III 16q24.3
WASF3 10810 WAS	protein	family,	member	3 13q12
YWHAE 7531 tyrosine	3-monooxygenase/tryptophan	5-monooxygenase	activation	protein,	epsilon 17p13.3
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Chapter 7: Concluding remarks and recommendations 
 

This body of work describes and addresses important fundamental questions 

about the feasibility of performing genomic analysis on formalin fixed paraffin embedded 

(FFPE) tissue using high-throughput genome-wide technologies such as sequencing and 

microarrays. We define this as a problem of performing sparse, high dimensional data 

analysis in a low resource setting given the relatively low nucleic acid yield and quality, 

often due to limited availability of tissue.  

In the process of answering these questions, we have optimized extraction 

methods for maximizing yield and quality of RNA and DNA from FFPE materials, 

developed FFPE-specific quality control metrics and workflows pre- and post- 

microarray and sequencing experiments, and identified operating limits of sequencing 

and microarray technologies. Ultimately, we demonstrated the ability to obtain high 

quality datasets from FFPE-derived RNA and DNA, and showed increased 

reproducibility by implementing FFPE-specific approaches or modifications to existing 

protocols. 

Beyond that, we developed Epicopy, which is a computational method that allows 

users to obtain copy number variation (CNV) information from methylation microarrays, 

extending the information measured by a single microarray technology. We developed 

Epicopy using the relatively CNV neutral thyroid carcinoma dataset and validated it on 

the CNV rich breast and lung squamous carcinoma datasets, allowing us to assess 

Epicopy’s performance through the whole spectrum of CNV change across a gamut of 

human tumors. We showed good concordance between Epicopy- and SNP-derived CNV 
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profiles and that reproducibility rates between Epicopy and SNP microarrays are 

comparable to rates between different SNP microarray platforms. 

Finally, we used the tools developed in the first part of this thesis to profile the 

molecular landscape of ductal carcinoma in situ (DCIS) in the context of disease 

progression, ER-negative breast cancer of patients who did not receive adjuvant 

chemotherapy in the context of disease recurrence, and follicular thyroid cancer (FTC) in 

the context of distant metastasis. 

In the DCIS study, we analyzed the methylation profile and copy number 

alterations in a retrospective case-control study of DCIS that progressed to IDC and those 

that did not. We observed a global methylation field effect in DCIS-adjacent normal 

tissue and classified DCIS into four stable methylation phenotypes or epitypes that show 

associations with tumor nuclear grade and a CIMP-like phenotype. While differential 

methylation analyses revealed few differences between progressors and non-progressors, 

copy number analysis identified regions of the genome with differential CNV events 

between these groups.  

Our multiomic analysis of ER-negative breast cancer was motivated by the 

clinical need to identify patients who will do well without adjuvant chemotherapy. We 

aimed to identify subtypes within ER-negative disease, the molecular processes that drive 

these tumors, and discover biomarkers of recurrence in a cohort of patients with long-

term clinical follow-up that did not receive chemotherapy. We observed three stable 

clusters, that we defined as AR-driven, immune-high, and CNV-high. The AR-driven 

tumors displayed hallmarks of luminal breast cancers, with high expression of hormone 

receptor response genes. In these histologically ER-negative tumors, ER expression was 
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low, and androgen receptor (AR) was upregulated, suggesting that the AR is driving 

hormonal response. The immune-high tumors had high levels of expression of cytotoxic 

markers by expression data, and were estimated to have high degree of leukocytic 

infiltrates by methylation data. The immune exhaustion marker LAG3 and immune 

checkpoint gene CTLA4 were upregulated, while PD-1 and PDL-1 were not, suggesting 

that CTLA4-driven immune evasion occurred. The CNV high tumors displayed genomic 

instability manifesting as a high incidence of amplifications and deletions across the 

genome. These tumors showed down-regulation of genes related to the DNA damage 

repair pathway, consistent with the observed molecular phenotype. We proposed the use 

of more targeted therapies for each subtype of tumor, with androgen-targeted therapy for 

the AR-driven tumors, CTLA4 inhibitors for the immune high tumors, and chemotherapy 

or PARP1 inhibitors for the CNV high tumors. The analysis was also extended to identify 

gene expression markers of recurrence, and identified 130 genes with the ability to do so. 

A recurrence score (RS) calculated from these genes showed the ability to predict 

recurrence in the JHU ER-negative cohort and an independent external TNBC dataset of 

patients who did not receive adjuvant chemotherapy. 

Lastly, we demonstrated the ability to perform total RNA-seq analysis of a series 

of primary FTC tumors. These tumors were obtained from patients who either presented 

with distant metastasis (stage IV) or were metastasis-free for more than 6 years. The 

clinical question asked was the ability to identify tumors with the capacity to form distant 

metastasis using molecular markers at the time of diagnosis. We identified a series of 140 

genes, enriched for epithelial-mesenchymal transition (EMT) genes, that were 

differentially expressed between metastatic and non-metastatic disease. This gene set also 
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predicted the metastasis of a single FTC tumor 10 years before its clinical manifestation. 

Using TCGA data, we further demonstrated that FTCs and FVPTCs are molecularly 

similar and showed the ability of our markers to predict distant metastasis in FVPTCs, 

suggesting that we are capturing the signature of a biological process with these markers. 

This speaks to the potential of not only using these markers for predicting metastasis, but 

also using them to discover more appropriate druggable targets. 

Collectively, this body of work demonstrated our ability to recover nucleic acids 

from FFPE tissues, obtain high quality data from high-throughput microarray & NGS 

molecular platforms, and maximize the data obtained from the generated datasets. The 

identification of biologically relevant molecular landscapes in three different tumors 

types suggests the broad applicability of these methods. Clinically relevant biomarkers 

were discovered in the ER-negative breast cancer and FTC studies, and we are hopeful 

that with additional molecular information on the DCIS cohort that we will be able to 

obtain subtype-specific markers of progression.  

Cell culture models can be used to validate biological findings of the ER-negative 

cohorts, and experiments can be designed to identify both available and novel drugs to 

more appropriately treat these patients. Genes that best distinguish these classes can be 

used, either in the form of IHC markers or molecular panels, as companion diagnostics 

for appropriate treatment. 

In the ER-negative and FTC studies, the discovered prognostic biomarkers can be 

explored as candidates for feature selection and used in the development of a bench-

based molecular assay. With appropriate technical and independent external validation, 
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these can serve as clinical markers in addition to routinely available clinicopathological 

information for better stratification of patient treatment groups. 

Looking forward, this work confirms the ability to perform retrospective studies 

with well-controlled clinical parameters in FFPE material, granting us access to the 

treasure trove of information previously locked in archival disease tissue repositories. We 

are optimistic about the promise of these methodologies, and their applicability in 

discovering ways to improve clinical outcomes in the most resource efficient manner. 
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Appendix 

I: Protocols 

Optimized Protocol for processing FFPE tissue for RNA/DNA extraction 

This protocol uses the AllPrep-DNA/RNA FFPE kit (#80234).  For deparaffinization and initial 
tissue dissection, refer to part (A) for cores and (B) for tissue sections. Continue with RNA 
purification once completed. 
 
A) FFPE Cores (2 cores per tube, ~ 0.6mm X 2 mm) 
Deparaffinize 

1. Fill each 1.5 ml microtube with tissue cores (transfer them dry with a tweezers or in some 
xylene) and approximately 1 ml of PCR-clean xylene total.  Pulse vortex 15 sec on high. 
Incubate 10 min.  Centrifuge 1 min. at full speed, room temp.  Pipette off xylene.  Leave 
about 20 microliters and don’t suck up the sample!   

2. Repeat twice for a total of 3x 10 min incubations, totaling 30 min. Attempt to pipette off 
all xylene. 

3. Add 1 ml 100% ethanol.  Pulse vortex 15 sec., centrifuge 1 min full speed.  Pipette off 
last couple microliters of ethanol.  Open cap and air dry 10 min. 
 

Digest the core tissue 
4. Add to the samples 150 µl PKD (supplied) + 10 µl proteinase K (20 mg/ml; supplied), 

flick to mix.  Incubate at 56oC for 3 hr total.  When the incubation time is complete, place 
the samples on ice for 3 minutes.   

5. Centrifuge at 20,000 x g for 15 min at 4oC.   
6. Transfer the RNA-containing supernatant to a 2 ml low binding Eppendorf 

microcentrifuge tube (can freeze at ≤ -80oC for up to 1 week). Can also freeze the tissue 
pellet at ≤ -80oC for later DNA extraction.   

 

B) FFPE Sections (5 sections, 10um each, max 100mm2) 
Deparaffinize 

1. Using a clean surgical blade, macro-dissect tissue to enrich for lesion of interest ( > 70%) 
and transfer tissue into 1.7mL Eppendorf tube. Add 1mL of xylene. Pulse vortex 15 sec., 
and incubate at RT for 10 minutes. Centrifuge 5 min full speed. Pipette off xylene.  

2. Repeat twice. 
3. Add 1 ml 100% ethanol.  Pulse vortex 15 sec., centrifuge 5 min full speed.  Pipette off 

last couple microliters of ethanol.  Open cap and air dry 10 min. 
 

Digest the tissue 
4. Add to the samples 150 µl PKD (supplied) + 10 µl proteinase K (20 mg/ml; supplied), 

flick to mix.  Incubate at 56oC for 1 hr.  When the incubation time is complete, place the 
samples on ice for 3 minutes.   

5. Centrifuge at 20,000 x g for 15 min at 4oC.   
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6. Transfer the RNA-containing supernatant to a 2 ml low binding Eppendorf 
microcentrifuge tube (can freeze at ≤ -80oC for up to 1 week). Can also freeze the tissue 
pellet at ≤ -80oC for later DNA extraction.   
 

A&B)  
Purification of RNA  

7. Equilibrate the RNA supernatant to room temperature.  Preheat a block to 80oC.  Transfer 
the RNA tube to 80oC for exactly 15 min in the preheated heating block.   

8. Immediately chill on ice.  
9. Processing all tubes at once at room temperature, add 320 µl Buffer RLT (binding buffer, 

supplied), mix by pipetting gently. 
10. Add 1120 µl absolute ethanol (100%), mix by pipetting.   
11. Transfer 700 µl to RNeasy MinElute spin (supplied) column placed in a 2 ml collection 

tube (supplied).  Centrifuge  ≥ 8,000 x g (≥ 10,000 rpm) for 15s. Discard flow through. 
Repeat, reusing the column until all the RNA has passed through the column. 

12. Wash the column with 350 µl Buffer FRN (supplied), centrifuge 15s  ≥ 8,000 x g.  
Discard the flow through. Change to new collection tube. 

13. Add 80 µl of mix containing 10 µl DNaseI stock solution (supplied) + 70µl Buffer RDD 
(supplied) directly to the membrane.  Incubate at room temperature 30 min.  
NOTE: DNaseI stock is prepared, aliquoted, then frozen at -20oC.  It can only be F/T 
once. Handle DNaseI with care. Do not vortex DNaseI mixture, mix by inversion. 

14. Add 500 µl Buffer FRN (supplied) to wash out the DNase, centrifuge 15s and SAVE the 
flow through.  Transfer the column to a new collection tube. Mix well and pass the flow 
through over the column again, centrifuge and DISCARD the new flow through. 

15. Wash the column with 500 µl Buffer RPE (supplied), centrifuge 15s, discard the flow 
through. Repeat. 

16. Place the column in a new collection tube. Centrifuge “empty” column at full speed for 5 
min.  

17. Transfer the column to a new collection tube.  Open the cap and air dry 5 min. 
18. Elute RNA by adding 20 µl of RNase-free water (supplied) applied directly to the 

membrane, incubating the column 10 min at room temperature, and centrifuging at full 
speed for 1 min. Transfer the eluted RNA to a 500 µl microcentrifuge tube and snap 
freeze on dry ice.  Store at -80oC. 

 
Purification of DNA  

19. Resuspend the pellet in 180 µl Buffer ATL (supplied), add 40 µl proteinase K (20 mg/ml 
stock; 3.6 mg/ml final; supplied), and pulse vortex.  (total volume = 220µl). Incubate at 
56oC overnight (~16 hr).  

20. Day 2: Add 10µl PK. Incubate 5 hr at 56oC or until tissue is fully digested.   
21. Preheat a heating block to 90oC. Incubate the DNA at 90oC for 2 hr without agitation (to 

partially reverse formaldehyde modification of nucleic acids). 
22. Briefly centrifuge the DNA at room temperature.  Add 4 µl RNase (100 mg/ml; supplied) 

and incubate 2 min at room temperature. (total volume = 224µl) 
23. Add 400 µl of a 1:1 mix of Buffer AL (supplied) and absolute ethanol, mix with the 

sample by pulse vortexing. (total volume = 624µl). Transfer all to QIAmp MinElute 
Column. 
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24. Centrifuge column 1 min at ≥ 8,000 x g at room temperature.  Discard the flow through. 
25. Place the column in a new collection tube, add 700 µl Buffer AW1(supplied), centrifuge 

15s at ≥ 8,000 x g. Discard the flow through. 
26. Add 700 µl Buffer AW2 (supplied), centrifuge 15s at ≥ 8,000 x g. Discard the flow 

through. 
27. Add 700 µl 100% ethanol, centrifuge 15s at ≥ 8,000 x g. Discard the flow through. 
28. Place the column in a new collection tube. Centrifuge full speed 5 min. Discard the 

collection tube. 
29. Air dry column for 5 minutes to remove residual ethanol. 
30. Place the QIAamp MinElute (supplied) spin column in a new 1.5 ml collection tube.  

Elute with 22µl Buffer ATE (supplied) directly to the center of the spin column 
membrane.  Incubate for 10 min at room temp.  Centrifuge at full speed for 1 min to elute 
the DNA. Repeat once with an additional 22 µl of buffer (no incubation), pooling eluates.  
Store at -80oC. 
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DNA Bisulfite Conversion 

Using EZ DNA Methylation kit from Zymo Research #D5001, D5002 
Fackler Modifications 7-18-11 
 

1. Mix DNA (up to 2.0 µg) + ddH2O to make a final volume of 42.5 µl in a 500 µl 
eppendorf tube.  Add 7.5 µl M-dilution buffer (supplied in the Zymo kit). Heat at 42o 
C 30 min in PCR machine to denature the DNA.  Up to 3 µg input DNA can be used. 

2. During the 30 min incubation in step #1, prepare the CT reagent:   
On a per sample basis combine 71.4 µl water + 17.6 µl M-dilution buffer and 54 mg 
of conversion reagent.  

On a per vial basis (sufficient for 10.5 -11 samples) add 750 µl ddH2O + 185 µl 
M-dilution buffer to the 1.7 ml brown vial containing 567 mg of CT reagent.  
Rotate in the dark at room temp for 10 min to dissolve.  Use immediately. 

3. To each sample, add 97.5 µl CT conversion reagent.  Mix well with pipette tip.  Final 
volume is 150 µl. 

4. Incubate by cycling overnight in PCR machine: 95o C 30 sec, 50-55o C 1 hr for 16 
cycles.  Hold at 4o C. 

5. Clean up: EZ DNA Clean-up (Zymo Research)  
a. Add 4 volumes of M-Binding Buffer to the Zymo-Spin 1C column in a collection 

tube (e.g. if bisulfite reaction is 150 µl, add 600 µl M-Binding Buffer).  Add the 
sodium bisulfite/DNA reaction to the M-binding buffer in the column. Close the 
cap and invert tube at least 20 times to mix completely.   

b. Centrifuge at full speed 30 sec and discard the flow-through. 
c. Add 100 µl M-Wash Buffer to the column.  Centrifuge at full speed 30 sec. 
d. Add 200 µl M-Desulfonation Buffer to the column.  Incubate 15 min at room 

temperature.  Centrifuge full speed for 30 sec.  
e. Add 200 µl M-Wash Buffer to the column.  Centrifuge at full speed for 30 sec.  

Empty the collection tube. Add 200 µl M-Wash Buffer to the column and invert 
the column several times.  Centrifuge full speed for 30 sec.  Discard the flow 
through. 

f. Centrifuge the column 1 min empty to remove all remaining wash buffer. 
g. Transfer the column to a new collection tube.  Add 15 µl of either water or elution 

buffer, preheated to 70o.  Allow the water/buffer to sit for 5 min on the column.  
Centrifuge the column 1 min, recovering the DNA.  Keep on ice (it is single 
stranded). 

h. Prepare a 1:5 aliquot:  Mix 2 µl eluted DNA with 8 µl water, and quantitate the 
1:5 dilution by using a nanodrop instrument, using a factor of 40 (like for RNA; 
dilute in water).  Use this value to adjust the undiluted stock DNA to 75 ng/µl for 
methylation microarray.  

i. Use 2µl of the 1:5 dilution for MSP (20 ng/reaction is ideal) to verify that the 
DNA is amplifiable, indicating that bisulfite conversion was successful.   

j. Freeze bisulfite converted DNA at -70o C or less.  Submit 10 µl of DNA at ~30 
ng/µl for RESTORATION.  It is possible to use a lower concentration of DNA, 
but array results may be suboptimal. 
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MMLV reverse transcription 

Dnase I Treatment 

Prepare reaction mix: 

 1x 
RNA Amount for input of interest  

(1ug generally, 50ng for GAPDH QC) 
10x Buffer 1 ul 
DNase I 1 ul 
DEPC Water 8 – RNA ul 
Total 10 ul 
 

1. Incubate at room temp < 15 mins 
2. Add 1ul 25mM EDTA 
3. Heat inactivate at 65°C for 10 mins 

Reverse Transcription 

1. Add primers 
a. 4ul random primers (final 0.5ug/1ug RNA) – dilute 1:8 1ug/ul stock 

NOTE: Must use random primers for FFPE-derived RNA 
b. 4ul oligoDT (final 0.5ug/1ug RNA) – dilute 1:20 2.5ug/ul stock 

2. Incubate at 70°C for 5 minutes 
3. Quick chill on ice for 1 minute and spin briefly 
4. Make M-MLV mix (per): 

a. 5 ul M-MLV 5x Rxn Buffer 
b. 0.5 ul 25mM dNTP 
c. 1 ul M-MLV 

Note: For control, do not add M-MLV. Add all other components of the mix and water for M-
MLV. 

d. 3.5 ul DEPC water 
5. Mix by flicking and spin briefly; 
6. Incubate for 1 hr. 

a. 37°C for random primers 
b. 42°C for oligoDT 

7. Heat inactivate RTase @ 70°C for 15 mins. 
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Illumina FFPE QC Kit 

 
Sample preparation 

1. Measure	the	concentration	of	DNA	using	fluorescence	dye	assays	such	as	Picogreen	
or	Qubit.	

2. Dilute	samples	to	1ng/μL	
 
Standard preparation 

1. Thaw	QCP	and	QCT	to	room	temperature.	
a. Make	six	10μL	aliquots	of	QCT	in	a	1.7mL	Eppendorf	tube	and	store	at	-20°C	

2. Take	a	fresh	10μL	aliquot	of	QCT	and	add	990μL	DiH2O	to	create	a	100-fold	dilution.	
3. Vortex	and	quick	spin.	

 
Assay 

1. Prepare	the	QPCR	mix	as	follows:	
	
	 10μL	reaction	volume	 20μL	reaction	volume	
2x	qPCR	Master	Mix	 5	μL	 10	μL	
QCP	 1	μL	 2	μL	
DiH2O	 2	μL	 4	μL	
Total	volume	per	well	 8	μL	 16	μL	
	
	
	

2. For	10μL	reactions,	add	8μL	of	reaction	mix	into	each	well	that	will	be	used.	For	
20μL	reactions	add	16μL.	

3. For	10μL	reactions,	pipette	2μL	of	sample	(QCT,	sample,	or	water	as	NTC)	in	
triplicate	into	the	wells.	For	20uL	reactions,	pipette	4μL	of	sample	in	triplicate.	

4. Seal	and	quick	spin	plate.	
5. Run	the	following	QPCR	program,	using	the	appropriate	reference	dye	

a. Activation	 :	50°C	for	2	min	
b. Denaturation	:	95°C	for	10	min	

Cycle	40	times:	
c. Denaturation	:	95°C	for	30	sec	
d. Priming	 :	57°C	for	30	sec	
e. Extension	 :	72°C	for	30	sec	

 
Data analysis 

1. Flag	and	remove	any	replicates	which	Ct	diverge	more	than	0.5	cycles.	
2. Calculate	average	Ct	and	calculate	ΔCt	against	the	QCT	controls.	
3. Check	NTC	for	negative	amplification.	Data	is	acceptable	if	NTC	samples	are	>10	

cycles	after	the	QCT	samples.	
4. Samples	with	<8	ΔCt		(manufacturer	recommends	<5)	can	be	used	for	methylation	

microarray.	Prioritize	samples	with	lower	ΔCt	as	it	fits	the	study	design.	
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Bioinformatics pipelines 

 
The source code for analysis pipelines are available at a public Github repository: 
https://github.com/sean-cho/scu_pipelines. 
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II: Abbreviations 
 

AR Androgen receptor 
BCS Breast conserving surgery 
BRCA Breast cancer 
CN Copy number 
CNV Copy number variation 
DCIS Ductal carcinoma in situ 
ER/ESR1 Estrogen receptor 
FFPE Formalin-fixed paraffin embedded 
FTC Follicular thyroid cancer 
FVPTC Follicular variant papillary thyroid cancer 
GSA Gene set analysis 
GSEA Gene set enrichment analysis 
HM450K Illumina Human Methylation 450K microarray 
IDC Invasive ductal carcinoma 
IQR Interquartile range 
LRR Log R ratio 
LUSC Lung squamous cell carcinoma 
MAF Minor allelle frequency 
NGS Next-generation sequencing 
PK Proteinase K 
PR/PGR Progesterone receptor 
PTC Papillary thyroid cancer 
RCT Randomized clinical trial 
SNP Single nucleotide polymoprhisms 
SNP6 Affymetrix SNP6 microarray 
Tam Tamoxifen 
TCGA The Cancer Genome Atlas 
THCA Thyroid cancer 
TNBC Triple negative breast cancer 
VPNI Van Nuys prognostic index 
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