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EXECUTIVE SUMMARY 

  
I conducted this study with the mentorship of Field School, particularly its Director, Dr. 

Catherine Macdonald, and Director of Program Development, Dr. Julia Wester. In 2017, shortly 

after realizing I wanted to find work in the environmental field, I took an Introduction to Shark 

Research Skills course with Field School, located in Miami, Florida. Soon after, I entered into an 

internship with Field School and have continued working with them. Much of their research 

centers around ecology, physiology, and the human dimensions of conservation of 

elasmobranchs, the group composed of sharks and rays. I have always gravitated toward the 

human dimensions of environmental problems because of my background in psychology. Most 

of the research I have assisted with has been in that realm. However, I wanted to use the 

Capstone research project as an opportunity to delve into new skills and topics I had not had the 

opportunity to explore as much.  

As I neared the end of my time in the Johns Hopkins Environmental Science and Policy 

(ESP) program, I realized I wanted to use the Capstone to both take advantage of what I have 

learned and fill the gaps in my education and experience from being a remote student by getting 

more hands-on field experience. I chose to take on a physiology-focused project in order to gain 

new skills and explore physiological concepts in a deeper way than I had previously understood 

them.  

This project enabled me to tie in my interest in ecology and policy gained from the ESP 

courses. When I started the program, I deliberated about which track to follow, and ultimately 

chose not to opt-in to a track, choosing instead to take a wide range of classes from each. By 

researching this one aspect of shark stress physiology, I’ve acquired new skills while 

simultaneously touching on a wide variety of topics relevant to my ESP courses. Sound 
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management regulations for sharks and other recreationally and commercially targeted species 

necessitate a clear understanding of their biology and physiology, especially as it relates to 

impacts of their harvest on individuals and overall populations. As predators, sharks occupy 

important niches within their ecosystem, and overexploitation can lead to impacts across all 

trophic levels within an ecosystem. Due to their ecological, commercial, and cultural importance, 

it is imperative that efforts be made to understand the scope of and the causes underlying the 

decline of numerous species, and identify ways to more effectively conserve them. Successful 

conservation is informed by understanding the interactions between all of these seemingly 

diverse topics. I was happy this project afforded me the opportunity to synthesize these topics 

into a single study.  
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1. INTRODUCTION 

Shark fishing is practiced worldwide in both a commercial and recreational capacity, with 

practices ranging from small artisanal and subsistence-based fisheries to massive commercial 

longline operations to recreational land-based catch-and-release angling (Worm et al., 2013; 

United States National Marine Fisheries Service, 2014). In recent years, recreational shark 

fishing has increased in popularity to the extent that, in 2013, more sharks were landed by 

recreational anglers in the United States than were landed by commercial shark fishing 

operations (United States National Marine Fisheries Service, 2014). In recent years, recreational 

shark anglers and clubs worldwide caught hundreds of thousands of sharks yearly and released 

over 70% of their catch (Babcock, 2008). Though much of the recreational shark fishery is catch-

and-release, many targeted species such as great hammerheads (Sphyrna mokarran) are highly 

susceptible to capture stress and post-release mortality, also known as cryptic mortality 

(Gallagher et al., 2014). A likely result is that people who intend to release their catch alive may 

unknowingly contribute to morbidity and mortality post-release (Whitney et al., 2017). Even 

when sharks are released alive and seem to be in good condition, there is a risk of mortality 

within subsequent hours, with certain often targeted species particularly at risk (Gallagher et al., 

2014).  

Catch-and-release fishing is becoming an increasingly popular practice, with recreational 

anglers commonly releasing caught sharks to follow management regulations, because of 

personally-held conservation ethics, or when they have caught a non-targeted species (Gallagher, 

Cooke & Hammerschlag, 2015; Arlinghaus et al., 2007). Scientists may release sharks for 

similar reasons, and also as a way to potentially gather mark-recapture data on populations as 

well as long-term data from individuals. In order to achieve these goals, it is important to 
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minimize the risk of mortality for individual sharks, including through the exploration of 

potential interventions that might reduce stress and facilitate sharks’ healthy release (Cooke & 

Suski, 2005). In the interest of science and conservation, it is important to consider modifying 

fishing practices and gear to minimize post-release mortality for more sensitive species (Marshall 

et al., 2012). 

Wild animals perceive capture and restraint as a threat to their survival and in response, 

exhibit various behavioral, physiological, and biochemical responses that vary across and within 

taxa (Romero, 2004). A shark’s natural response to hooking (e.g., mobilizing energetic resources 

for escape to increase survival likelihood) has negative concomitant impacts, including increased 

physiological stress (Mohan et al., 2020). The physiological impact of capture on all species of 

shark can be profound, and depending upon the species and its stress response, may push the 

individual past the threshold for recovery, even if it is released alive (Marshall et al., 2012; 

Marshall et al., 2015). For scientists releasing tagged sharks with the goal of gathering long-term 

data from individuals, this outcome is problematic.  

Even when sharks are caught and handled by shark scientists attempting to minimize risk 

to the animal, sharks undergoing scientific workup have been shown to exhibit stress during 

capture and handling, leading to cryptic mortality (Gallagher et al., 2014). This mortality can be 

difficult to measure and the impact on a species and its population often goes unnoticed, 

complicating the process of creating effective conservation-minded recreational fishing 

regulations. Regulations must take into account the fact that release alone will not ensure that a 

shark survives capture. It is important to accurately measure cryptic mortality, but even more so 

to identify interventions which can reduce it. This study aims to test the feasibility of one such 

intervention for the blacknose shark, Carcharhinus acronotus. 
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1.1 Shark Conservation 

Marine populations of apex predators are diminishing worldwide (Myers & Worm, 

2005), with evidence of decreases in shark populations documented in south Florida, including in 

the Keys and Gulf of Mexico (Heithaus et al., 2007). Sharks’ ecological niche can vary 

considerably across species and size classes, but they are generally known to be higher level 

tropic predators and many species exhibit K-selected reproductive strategies, with slower growth 

rates and lower fecundity (Renshaw et al., 2012). As such even small amounts of pressure from 

fishing can cause the populations of vulnerable species to decline, with declining populations of 

some species inducing trophic cascades as a result of changes to predator and prey abundance 

(Baum & Worm, 2009; Ferretti et al., 2010). Though teleosts are also susceptible to pressure 

from recreational and commercial fishing, the stress on elasmobranch populations is more 

extreme due to their life history traits,  including smaller populations and an inability to rebound 

quickly from overfishing  (Renshaw et al., 2012).  

The approximate number of sharks landed yearly is difficult to quantify due to the scope 

of the practice, the existence of substantial unreported or illegal catches, and the fact that many 

fisheries are artisanal and recreational, and therefore are not reporting their catch in the same 

way (Worm et al., 2013). Researchers working to estimate the mortality of sharks from fishing 

each year estimate that in 2000, approximately 100 million sharks were landed (Worm et al., 

2013). This was, they concluded, a conservative estimate, with the upper estimate limit of yearly 

mortality ranging to 273 million sharks per year. Many shark species are being harvested at a 

rate which exceeds the average population rebound rate, with exploitation rates ranging from 

6.4% to 7.9% and the average rebound rate measured at 4.9% (Worm et al., 2013). As a result, 

sharks are being harvested faster than they are able to repopulate.   
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1.2 Stress Physiology     

Blacknose sharks are in the Carcharhinidae family and are a ram ventilating species that 

must constantly move forward in order to pass oxygenated water over their gills (Carlson, 

Palmer & Parsons, 1999; Driggers et al., 2004). Interference with the forward motion through 

capture will therefore decrease their ability to adequately respirate. Capture initiates a shark’s 

primary stress response, during which the neuroendocrine system produces corticosteroids to 

maintain performance and oxygenation (Anderson, 2012; Skomal, 2007). Capture stress can be 

lethal for all species, though the relationship between capture stress and mortality varies by 

species as well as differences in gear and handling of individuals (Dapp et al., 2016a; Dapp et al., 

2016b).  

Many covariates have been identified that can interact with and impact hematological 

indicators. Different species vary in how they respond to being hooked, with species like blacktip 

sharks (Carcharhinus limbatus) exhibiting more fight behavior than nurse sharks 

(Ginglymostoma cirratum) and tiger sharks (Galeocerdo cuvier) and exhibiting greater increases 

in lactate (Gallagher et al., 2017). Some species demonstrate resilience in spite of longer capture 

and fight times, whereas others are at risk of mortality even after short fight times and rapid 

release. Other covariates that are well documented to alter hematological indicators are fight time 

and handling time. Hematological indicators of stress are significantly related to capture time and 

handling time, with increased time fighting or being handled leading to increased evidence of 

stress (Dapp et al., 2016a; Mohan et al., 2020). These physiological changes do not guarantee 

mortality, but increase its likelihood (Whitney et al., 2017). Another covariate with an impact on 

physiological condition is water temperature. Increased water temperature correlated with 

increased lactate and mortality in a study of recreationally caught blacktip sharks (Whitney et al., 
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2017). Biscayne Bay exhibits a seasonal sea surface temperature difference of 6°C between the 

winter median (23°C) and summer median (29°C) (Caccia & Boyer, 2005) with a high 

temperature of 32.9°C observed between 1994 and 2003. Sharks caught during the warmer 

summer temperatures will be more likely to exhibit increased stress and risk of mortality. 

Ram ventilating species may be particularly susceptible to capture stress because, 

depending upon the method of capture, their ability to extract oxygen from the water might be 

limited by restraint (Dapp et al., 2016b; Manire et al., 2001). Ram ventilators may also, 

compared to buccal pumping species, be susceptible to additional stress during scientific 

workups from being held immobile. It has been suggested that there is a positive influence on 

circulation caused by the lateral movement of a fish’s caudal fin, with tail movement supporting 

blood circulation into the liver and kidneys (Johansen, 1971). However, during capture and 

workup, sharks are often restrained and held immobile, thereby unable to move their tail and 

receive secondary circulatory support that motion might provide. It is possible, therefore, that 

restraint might limit the caudal fin’s ability to provide circulatory support and clear the body of 

lactate and other by-products of stress. 

Catch-and-release fishing is becoming an increasingly popular practice, with recreational 

anglers commonly releasing caught sharks to follow management regulations, because of 

personally-held conservation ethics, or when they have caught a non-targeted species 

(Arlinghaus et al., 2007; Gallagher, Cooke & Hammerschlag, 2015). Scientists may release 

sharks for similar reasons, and also as a way to potentially gather mark-recapture data on 

populations as well as long-term data from individuals. In order to achieve these goals, it is 

important to minimize the risk of mortality for individual sharks, including through the 

exploration of potential interventions that might reduce stress and facilitate sharks’ healthy 
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release (Cooke & Suski, 2005). It is important to consider modifying fishing practices and gear 

to minimize post-release mortality for more sensitive species (Marshall et al., 2012). 

1.3 Experimental Interventions to Reduce Mortality 

This study investigates the feasibility of manually manipulating the tail during scientific 

workup as a way to impact a shark’s circulation and blood chemistry potentially. Improved 

circulation during work-up may improve shark condition by supporting blood flow through the 

liver and kidneys, where the majority of clearance of the by-products of stress and exertion is 

likely taking place (Barrera et al., 2013). 

Several studies document the value of hematological indicators in assessing shark health. 

Both lactate and glucose levels tend to elevate when sharks experience stress, though the scale of 

the response can vary by species (Gallagher et al., 2014; Jerome et al., 2018; Marshall et al., 

2012). Comparing the lactate and glucose values of individual sharks at different times during a 

workup can provide insight into how each individual responds to stressors. Lactate may increase 

or decrease from the beginning to the end of the workup depending upon how sharks respond to 

stressors as well as efforts by researchers to reduce physiological stress. Lactate has been 

demonstrated to be a valuable measurement for predicting mortality, however lactate levels and 

specific impacts of increased levels vary to such a degree that lactate values cannot be used to 

predict poor outcomes across species (Manire et al., 2001; Marshall et al., 2012). There is 

ongoing scientific interest in improving practices to reduce negative effects on sharks, combining 

an understanding of shark physiology and ecology with the human aspects of conservation 

(Arlinghaus, Cooke & Potts, 2013).  
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This study provides preliminary data on whether manual manipulation of the caudal fin 

during shark restraint is feasible without disrupting the workup and leads to reduced lactate 

levels in the blood relative to control animals at release. 

 

2. METHODS 

2.1 Fishing Site 

Fishing for this project took place in Biscayne Bay, a shallow, oligotrophic bay in 

southeastern Florida. Biscayne Bay is within Florida waters and is bounded to the west by the 

developed coastline of Miami as well as mangrove forests, and to the east by multiple barrier 

islands separated by channels. Within the bay, there are seagrass beds, coral reefs, and sandy 

bottom habitats. Biscayne Bay is a culturally and economically significant resource in south 

Florida, providing habitat for more than 30 endangered species or species of special concern 

(Cantillo et al., 2000), and more than 100 species that are important to local recreational and 

commercial fisheries (Stoa, 2016).  

2.2 Case Study Species 

The blacknose shark (Carcharhinus acronotus) is an ideal study species because we 

commonly encounter them on scientific surveys in the waters of the nearshore Atlantic and 

Biscayne Bay, Florida inhabiting seagrass, sandy, and coral bottom habitats.The blacknose shark 

is a small coastal species found in tropical and warmer temperate waters in the Western Atlantic 

Ocean, Gulf of Mexico, and Caribbean Sea from Brazil to Virginia, USA (Castro, 2011). 

Blacknose sharks closely resemble and share similar habitats and morphological characteristics 

with blacktips (Carcharhinus limbatus), however, blacknose can be differentiated by the black 

smudge present on their snout (Castro, 2011). Blacknose sharks grow to a maximum size of 140 
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cm total length (Castro, 2011). Males reach maturity at a total length between 97 and 106 cm and 

females reach maturity around 103 cm (Castro, 2011; Compagno, 2005; Driggers et. al., 2004). 

Blacknose sharks tend to inhabit shallow sandy and coral bottoms on continental shelves (Castro, 

2011; Compagno, 2005).  

As a result of the 2007 Stock Assessment of Small Coastal Sharks in the US Atlantic and 

Gulf, the National Marine Fisheries Service determined that blacknose were overfished and that 

overfishing was still occuring (SEDAR, 2007). The 2007 Stock Assessment was regulated as 

part of the Small Coastal Shark Complex, but they are now managed separately and reduced 

species-specific quotas have been assigned. Blacknose sharks were last assessed by the 

International Union for the Conservation of Nature (IUCN) Red List in 2008, when they were 

evaluated as “Near Threatened” and identified as showing decreasing population trends (Morgan, 

et al. 2009). 

2.3 Sampling 

Fieldwork for this project was conducted with scientists from Field School, located in 

Miami, Florida. Field School conducts scientific sampling of coastal waters in southeast Florida 

using longline and drumline fishing methods as part of ongoing research projects. Field School 

routinely employs techniques such as modified gear including circle hooks and bilge pump hoses 

inserted into the shark’s mouth during workup to decrease shark mortality. They also rely on 

short “soak times” (i.e., the length of time fishing gear is in the water is kept under 90 minutes) 

and brief scientific workups (i.e., length of time sharks are restrained is kept under 5 minutes) to 

improve animal outcomes.  

From July 2018 to November 2020, over 100 blacknose sharks were captured, and 81 

yielded data relevant to this study via scientific longlines and drumlines in Biscayne Bay, 
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Florida. As part of ongoing research conducted by Field School, researchers deploy both 

longlines and drumlines designed to minimize the risk of mortality.  

Longline gear consisted of a 15-meter line sitting horizontally in the water column with a 

danforth anchor and polyform ball affixed to both ends to keep the line stationary and mark it 

visually. At regular lengths along the longline, gangions, short lengths of wire and 

monofilament, ending in a either a 13/0 or 15/0 non-offset non-stainless steel baited circle hook, 

were attached with tuna clips. Knots in the horizontal rope at regular intervals allowed for the 

tuna clips to slide back and forth if pulled by a fish, without tangling. Two such lines, each with 

twenty-two 13/0 or 15/0 circle hooks, were set at a time. 

Drumline gear consisted of a 40-pound weight attached to a vertical length of rope topped 

with a buoy. At the top of the weight, a swivel was attached to a gangion ending in a 15/0 or 16/0 

circle hook. Drumlines were set at regular intervals, spaced apart so fish caught on different  

drums were unlikely to tangle.  

After a period between 60 and 90 minutes, gear was hauled and checked for sharks. Upon 

capture of a blacknose shark, larger individuals were secured on a semi-submerged platform 

while the majority were small enough to bring on deck where they were similarly secured. A 

bilge pump hose was positioned into the mouth to allow saltwater to continuously flow over the 

shark’s gills for respiration during sampling. Immediately after the shark was restrained, the first 

blood draw (<4ml blood) occurred through caudal venipuncture and blood was immediately 

processed using commercial point-of-care meters for glucose and lactate levels.  

Immediately after the first blood draw, the scientific workup began during which the 

person securing the caudal fin of the shark moved the tail back and forth in a prescribed arc to 

simulate the movement of swimming. For the duration of the work-up, the person securing the 
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tail continued to move it back and forth except when it needed to be stationary for the length 

measurements and blood draws. The workup process was timed to establish the time difference 

between the first and second blood draws. A researcher took measurements of each shark’s 

precaudal length, caudal fork length, total length, and girth, measured to the nearest centimeter. 

Pre-caudal length (PCL) was measured from the tip of the rostrum to the precaudal pit. Fork 

length (FL) was measured from the tip of the rostrum to the fork in the caudal fin. Total length 

(TL) was measured from the tip of the rostrum to the tip of the upper lobe of the caudal fin. Girth 

is a measurement of the shark’s circumference, taken from just behind the pectoral fins and in 

front of the dorsal and extending over the top of the body from pectoral to pectoral. Additionally, 

each shark was sexed based on an external visual survey of the cloaca. Researchers used scissors 

to collect a small sample of the trailing edge of the dorsal fin (<5mm) and put it into a vial of 

dimethyl sulfoxide. A 4mm biopsy punch was used to collect a white muscle sample from the 

shark’s flank below the dorsal fin. Each shark was tagged with a unique mark-recapture 

identification tag (M-type dart tag) at the base of the dorsal fin. The hook was removed or cut 

and a second sample of blood was drawn and processed for glucose and lactate levels, and then  

the shark was released. Time was recorded upon the identification of a shark on the line, at the 

moment the shark was removed from the water, at first and second blood draw, and at release. 

Sea surface temperature was recorded for each subject. The only way this workup differed from 

others was in the manual manipulation of the caudal fin. 

Glucose was measured on whole blood using a commercially available point-of-care 

glucose metre (ACCU-CHEK glucose metre; Roche Diagnostics, Basel, Switzerland; see Cooke 

et al. 2008 for validation study with teleost fish). Lactate was measured on whole blood using a 

lactate metre (Lactate Pro LT-1710 portable lactate analyser; Arkray Inc., Kyoto, Japan; see 
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Cooke et al. 2008 for validation study with teleost fish). 

Variables used in analysis included what group the shark was assigned to (treatment vs. 

control), change in lactate from first to second blood draw, blood draw (initial vs. final), and 

change in time from the beginning to the end of the workup. Results were analyzed using a linear 

regression to investigate whether being assigned to either treatment or control predicted a 

difference in how lactate changed from the beginning to the end of the workup. Subsequent 

model iterations also included temperature, shark total length, and time between blood draws as 

predictors of change in lactate. 
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3. RESULTS 

A total of 20 blacknose sharks were subjected to the manual manipulation of the tail from 

March to November 2020. Of those 20, six yielded either error messages or “hi” values on the 

lactate metre, with no corresponding numerical value for either or both blood draws. Fourteen 

yielded numerical values for both blood draws, and these were included in the data. The glucose 

metre proved more capricious, with error messages occurring in one or both blood draws for ten 

individuals. With such a small sample size yielding numerical values for both glucose and 

lactate, and because lactate has been found to be a more reliable indicator of stress and cryptic 

mortality (Marshall et al., 2012), I have decided to focus the preliminary data for this project on 

lactate. Sixty-seven sharks subjected to a normal workup (control group) yielded lactate values 

for both their initial and final blood draws from July 2018 to June 2020.  

Of the fourteen sharks in the treatment group, six (42.9%) experienced declines in lactate 

from the beginning to end of the work-up and eight (57.1%) experienced increases. Of the 

control group, the lactate values of three did not change (44.8%), 25 decreased (37.3%), and 39 

(58.2%) increased from the beginning to the end of the work-up. 

The linear regression results investigating whether the group predicted lactate indicated 

treatment group membership did not significantly predict change in lactate (F(1, 160) = 0.43, p = 

0.51). In subsequent models, I incorporated change in time from blood draw one to two as a 

predictor variable. Similarly, this model indicated there was not a significant effect between the 

group and change in lactate while controlling for time between blood draws (t = -0.58, p = 0.56). 

Time between blood draws was also not a significant (t = -0.77, p = 0.44; F(2, 145) = 0.39, p = 

0.68). 
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Figure 1. Data visualized as a scatterplot with a regression line showing non-significant 

relationship between group (control vs. treatment) and change in lactate from draw one to draw 

two. 
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Figure 2. Data visualized as a boxplot with a regression line showing non-significant 

relationship between group (control vs. treatment) and change in lactate from draw one to draw 

two. 
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4. DISCUSSION 

 The coronavirus pandemic imposed numerous challenges during the 2020 field season. 

The goal of the project changed over time, as the coronavirus impacted our ability to conduct 

fieldwork. Initially, I hoped to have a large enough sample size to make a more definitive 

determination of whether manipulation of the tail had an effect on how lactate in the blood 

changes from the beginning to the end of the work-up. We previously identified a need for a 

minimum of thirty blacknose in both the control and treatment group, however, we were only 

able to sample during a few weeks of the normal field season. I was able to gather some 

preliminary data, and most importantly, validate that this intervention is possible to apply to a 

shark undergoing a scientific workup. We considered the possibility that having their tails moved 

might cause the sharks to tense or thrash and that the desired intervention might actually cause a 

distraction that prolonged the workup. Fortunately, that did not occur, the movement of the tail 

did not distract from or prolong the duration of workups. Due to the small effect size and small 

treatment group sample size, there was no significant difference in lactate change between the 

control and treatment groups based on this preliminary data. More data should be gathered to 

further assess if this intervention has an impact on physiological stress, as measured through 

hematological parameters such as lactate. I plan to continue gathering this data over the next 

year. 

A significant impact on how lactate changes over the course of the work-up would be an 

important result. This would provide researchers with an intervention that can reduce harm and 

potentially increase the odds of post-release survival. It would also suggest that the movement of 

the caudal fin plays an important role in circulation for at least some ram ventilating shark 
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species. A significant difference between the groups would suggest that tail movement assists in 

blood movement through the liver and kidneys, increasing circulation and lactate clearance.  

A non-significant difference, even with a larger sample size does not necessarily mean 

there is no relationship between the caudal fin movement during swimming and circulation. This 

type of secondary circulatory support has been demonstrated in teleosts (Johansen, 1971) and 

therefore, there is no reason to think that cartilaginous fish do not also share this trait. Even so, 

there can be multiple explanations for why it is not possible to impact how lactate changes 

during the time of the workup. It is possible that the assistance given by moving the tail is not 

evident in such a short time, as researchers strive usually to make the process of workup as quick 

as possible. Perhaps there are greater benefits, but they would not be interpreted through the 

blood until a point after the shark has already been released. Another possibility represented by a 

non-significant difference between the groups is that secondary circulatory support necessitates 

the contraction of muscles associated with a shark voluntarily moving its tail during swimming; 

manual manipulation might replicate the movement but not the underlying physiological 

processes leading to increased circulation. 

 A third possible scenario is that lactate does change in a significant way, but that we see 

statistically significant increases in lactate in the treatment group. This might be an indication 

that having their tails manipulated increases their stress more than being held immobile. 

Hopefully, this would have been evident in a change in behavior in sharks in the treatment group, 

and as previously mentioned, no difference in behavior was observed. 

Although the small sample and effect size of this data does not allow us to draw any 

conclusions, I believe that further investigation is warranted. Due to the amount of noise 

inevitable in the data, a larger treatment group is necessary. This project has demonstrated the 
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feasibility of tail movement as a non-disruptive addition to a normal workup. The sharks did not 

exhibit additional resisting or squirming as a result, and the other researchers were able to 

continue gathering samples unhindered. 

There is a hole in our knowledge of how ram ventilating species’ circulation differs from 

that of buccal pumping species. The fact that all methods of capture rely on impeding the 

unrestricted forward motion of sharks means that obligate ram ventilators are exposed to reduced 

respiration, while species that buccal pump can continue to actively respirate. It is not 

unreasonable to suspect that this might lead to an elevated stress response to capture among ram 

ventilators (Dapp et al., 2016b). If restraint and immobilization of the tail also limits circulation, 

ram ventilators might have difficulty clearing lactate as effectively. Increased morbidity and 

mortality are a possible result. It is important to further study this topic because it is imperative 

to craft the best species-specific conservation and management strategies.  

A suggestion of this difference can be found by looking at how the IUCN has classified 

shark species. A search of the IUCN Red list database, filtering for sharks present along the US's 

Atlantic coast, suggests challenges worth exploring to understand how different respiratory 

strategies might impact a species conservation. When filtering the results to only show species in 

this geographic area that have been designated as “Least Concern” or “Near Threatened,” the 

search returned twenty sharks, with a mix of species known to use buccal pumping, including the 

tiger shark (Galeocerdo cuvier) and bull shark (Carcharhinus leucas) and obligate ram 

ventilators, including the Bonnethead (Sphyrna tiburon) and the Atlantic sharpnose 

(Rhizoprionodon terraenovae) (IUCN, 2020). A search of the same filters altered to show only 

sharks designated as “Critically Endangered” or “Endangered” resulted in a list of seven species, 

all of which are obligate ram ventilators, including the scalloped hammerhead (Sphyrna lewini) 
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and shortfin mako (Isurus oxyrinchus). A complicating factor in this rudimentary analysis is that 

a large number of sharks and rays that are recognized by the IUCN database are listed as “Data 

Deficient.” As such, while this comparison between the less and more endangered species is 

incomplete, it does provide an interesting suggestion of where to focus future research questions.  

Different reproductive strategies could also help explain the differences between the two 

groups within the IUCN data, and explain some of the resilience of certain obligate ram 

ventilating species that are listed as species of “Least Concern.” Those species show more r-

selected life history traits  (e.g. small-bodied, faster growth and maturity, higher levels of natural 

morality) than their buccal pumping counterparts (Carlson & Parsons, 1997; Parsons, 1983). 

Diverse life history strategies could make a species more vulnerable or resilient to fishery 

pressure (Adams, 1980). Further study on this subject could lead to a greater understanding of 

how the disparate ways circulation functions in species with varying respiratory strategies and 

how it interacts with their life characteristics. 

As researchers, it is imperative to understand and use best practices to mitigate risk of 

serious injury to species during scientific sampling. Some species with which we interact such as 

the great and scalloped hammerheads are designated “Endangered” by the IUCN assessments, 

but this is important for all of our targeted species, because scientific knowledge is enriched by 

data gained through recapture of tagged animals. In addition to being a tool for use by scientists 

sampling sharks, this intervention could inform best practices for recreational fishers targeting 

sharks or who may catch sharks as bycatch. Educational initiatives by government agencies and 

not-for-profit conservation organizations disseminate information on how to reduce cryptic 

mortality through proper gear and techniques for reeling fish in and releasing them (Florida 

Wildlife Commission, 2020; Cooke & Schramm, 2007). Anglers participating in catch-and-
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release fishing with the goal of releasing the shark alive would likely be willing to follow these, 

or more species-specific guidelines, when possible. 

I will continue gathering data over the next year to expand upon this project and collect a 

large enough treatment group to assess the efficacy of the intervention more accurately. I will 

further investigate how covariates such as sea surface temperature, shark’s TL, and fight time 

interact with the shark’s assigned groups to impact change in lactate. Understanding what factors 

predispose a shark to severe capture stress is important for minimizing those factors if possible, 

or adjusting practices so other stress-inducing factors are minimized. For instance, a strong 

correlation between sea surface temperature and increase in lactate could be mitigated by 

shortened gear soak times to reduce fight time.  There is value in identifying best practices to 

reduce mortality as a tool for conservation and more effective scientific sampling. 
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