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Abstract 

 Prolonged exposure to hypoxia due to high altitude or pulmonary diseases like 

chronic obstructive pulmonary disease causes chronic hypoxia-induced pulmonary 

hypertension (CHPH), which results in right heart hypertrophy, worsens the prognosis of 

the underlying pulmonary diseases, and even death. Chronic hypoxia (CH) impacts 

various targets in the pulmonary vasculature such as pulmonary artery (PA), leading to 

complex physiologic responses during the development of CHPH. It is well established 

that CH alters calcium (Ca2+) homeostasis in pulmonary arterial smooth muscle cells 

(PASMCs) due to the enhancement of extracellular Ca2+ influx as the result of changes in 

the expression and activities of various membrane channels, transporters, and exchangers. 

However, the evidence for alterations of intracellular Ca2+ release in PASMCs caused by 

CH is scanty to date.  

 CD38 is a multifunctional enzyme that synthesizes the endogenous Ca2+ 

mobilizing messengers cyclic adenosine diphosphate-ribose (cADPR) and nicotinic acid 

adenine dinucleotide phosphate (NAADP), which are potent regulators of Ca2+ release 

via ryanodine receptor (RyR)-gated sarcoplasmic reticulum and NAADP-sensitive 

endolysosomal Ca2+ stores, respectively. CD38 is thought to play important roles in 

[Ca2+]i regulation via Ca2+ release, contributing to diverse physiologic responses in many 

different cell types.  However, its functions and regulatory mechanisms in PASMCs are 

still unclear. In particular, there is no systematic study on the mechanism of agonist-

induced activation of CD38 in PASMCs. Furthermore, the effect of CH on CD38-

dependent Ca2+ release in PASMCs has not been examined. The objective of this thesis 

research is to examine systematically the mechanism of agonist-induced CD38 activation 
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and the CH-induced alteration of CD38 expression and activity in PASMCs, as to provide 

novel insight into the contribution of CD38 in the development of CHPH. 

 The first part of this thesis research determined the expression of CD38, and its 

roles in angiotension II (Ang II)-induced vasoconstriction in PAs, and Ang II-induced 

Ca2+ release (AICR) in PASMCs. Examination of the expression profile of CD38 in 

various rat arteries indicates a relatively high level of CD38 expression in PA smooth 

muscle and PASMCs. Application of Ang II to PASMCs elicited Ca2+ response 

composed of both extracellular Ca2+ influx and intracellular Ca2+ release AICR activated 

in the absence of extracellular Ca2+ was significantly reduced by pharmacological or by 

siRNA inhibition of CD38, implying that CD38 mediates AICR in PASMCs.  AICR was 

suppressed by the cADPR antagonist cADPR 8-Br-cADPR or the inhibition of the RyR-

gated Ca2+ released with ryanodine.  It was also suppressed by the NAADP-antagonist 

Ned-19 or the disruption of endolysosomal Ca2+ stores by the vacuolar H+-ATPase 

inhibitor bafilomycin A1. Suppression of AICR by the inhibition of cADPR- and 

NAADP-dependent pathways was non-additive, indicating inter-dependence between 

RyR- and NAADP-gated Ca2+ release in PASMCs. Furthermore, AICR was inhibited by 

the protein kinase C (PKC) inhibitor staurosporine, the non-specific NADPH oxidase 

(NOX) inhibitor apocynin and DPI, the NOX2 specific inhibitor gp91ds-tat, and the 

reactive oxygen (ROS) species scavenger TEMPOL. These results provide direct 

evidence that Ang II activates CD38-dependent Ca2+ release via the PKC-NOX2-ROS 

pathway in PASMCs. 

 The second part of the research characterized the CH-induced alterations in the 

expression and functions of CD38 in PASMCs. The expression of CD38 protein and 
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mRNA were both significantly upregulated in the PA smooth muscle of CH rats. The 

upregulation of CD38 in PA of CH rats was time-dependent, observed after 3–7 days of 

hypoxic exposure and declining after 3 weeks of CH. NADase activity of CD38 in PA 

smooth muscle was significantly increased, whereas the activity in whole lung was 

decreased after 1-week hypoxia, suggesting specific CD38 upregulation in hypoxic PA. 

AICR was significantly increased in PASMCs of CH rat. The CH-induced enhancement 

in AICR was completely vanished by the inhibition of CD38, indicating that CH triggers 

augmentation of CD38 activity in PASMCs.  The CH-induced upregulation of CD38 

expression and activity were due to the direct effect of hypoxia on PASMCs. In vitro 

exposure of PASMCs from normoxic rats to hypoxia caused significant increase in CD38 

expression and enhancement in AICR, which was abolished by the inhibition of CD38 

activity. Moreover, the CH-induced upregulation of CD38 expression in PASMCs was 

inhibited by calcineurin/NFAT inhibitors, indicating that CH induces CD38 upregulation 

in PASMC mediated by the calcineurin/NFAT-pathway. Furthermore, the NAADP-

dependent Ca2+ channel TPC1 and TPC2 was increased in CH rat PA. Hence, these 

results suggest that CH increases the expression and activity of CD38 and the CD38-

dependent Ca2+ release in PASMCs. 

 Collectively, the results indicate the CH-induced enhancement of CD38 

expression and activity in PASMCs may contribute to the alteration of Ca2+ homeostasis 

in PASMCs. It also implies that CD38 could be a possible therapeutic target for the 

treatment of this dreadful disease. 
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CHAPTER 1 

BACKGROUND AND INTRODUCTION: 

OVERVIEW OF CALCIUM REGULATION  
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I. Overview of Ca2+ 

   A. Ca2+ homeostasis 

 Ca2+ plays a pivotal role in the regulation of a wide spectrum of physiological 

functions including cell proliferation, differentiation, membrane trafficking, secretion, 

apoptosis, regulation of endo- and exocytosis, enzyme activity, fertilization, innate 

immunity, gene transcription, progression of cell cycle, and cell contraction 

[1,2,3,4,5,6,7,8]. Resting intracellular Ca2+ concentration ([Ca2+]i) is tightly regulated and 

maintained at approximately 100 nM in skeletal muscle, cardiac muscle, and vascular 

smooth muscle [9,10,11], whereas the concentration of extracellular Ca2+ is 

approximately 1.1 to 1.5 mM [12]. This huge gradient is maintained by energy-

consuming pumps and ion exchangers on the innately ion-impermeable lipid-bilayer 

plasma membrane and intracellular organelle membrane [13]. Because of this Ca2+ 

gradient across the membrane, the regulation of [Ca2+]i depends on many different types 

of extracellular Ca2+ influx and intracellular Ca2+ release pathways, as well as Ca2+ 

removal and uptake pathways [14]. Further, the intracellular Ca2+ signals are 

compartmentalized into local and global Ca2+ signals with specific spatial/temporal 

properties to regulate the effectors in various subcellular compartments and activate 

different Ca2+-dependent physiological processes.  

 

   B. Ca2+ mobilization  

 There are two major mechanisms for increasing [Ca2+]i levels: Ca2+ entry from 

extracellular fluid and intracellular Ca2+ release from a variety of cellular organelles such 

as endoplasmic or sarcoplasmic reticulum (ER/SR), endolysosomes, mitochondria, and 
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the nuclear envelope [7,15,16,17]. The opening of Ca2+-permeating channels in the 

plasma membrane and the organelle membranes leads to gradient-driven Ca2+ 

mobilization into the cytoplasm. Subsequently, cytoplasmic Ca2+ is rapidly removed or 

taken up via different types of exchangers and energy-consuming ATPases on the plasma 

or organelle membranes to restore resting [Ca2+]i [7]. The general overview of the 

intracellular Ca2+ regulatory mechanism is described in Fig. 1. 

 In smooth muscle cells, elevation of [Ca2+]i is essential for cell contraction. Ca2+ 

binds to calmodulin to form Ca2+-calmodulin complex, leading to the activation of 

myosin light chain kinase. Myosin light chain kinase facilitates actin-myosin cross-bridge 

 

 

Figure 2.1. Overview of Ca2+ mobilization in cell   Ca2+ homeostasis is maintained 

by ATPases (PMCA and SERCA) and exchangers in plasma or organelle membrane. 

Ca2+ mobilization is gradient-driven across the cellular and organelle membrane via 

Ca2+ permeable channel on membrane. (Abbreviation: PMCA, plasma membrane Ca2+ 

ATPase; SERCA, sarcoplasmic/endoplasmic reticulum Ca2+ ATPase) 
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formation by phosphorylation of serine residue in myosin light chain, leading to the 

contraction of smooth muscle cells [18,19,20]. Thus, the regulatory mechanism of [Ca2+]i 

is crucial to the physiological functioning of the vasculature. In this chapter, two 

regulatory mechanisms of Ca2+ mobilization—(a) Ca2+ influx from extracellular space 

and (b) Ca2+ release from intracellular Ca2+ stores to cytoplasm—will be reviewed 

focusing on Ca2+-permeable channels with an emphasize on pulmonary arterial smooth 

muscle cells (PASMCs). 

 

 1. Ca2+ influx pathways in PASMCs 

 Activation of Ca2+-permeable channels on the plasma membrane allows Ca2+ 

influx due to the large Ca2+ gradient (high Ca2+ outside and low Ca2+ inside). A variety of 

Ca2+-permeable channels exist in the cell membrane. They can be categorized as either 

voltage-dependent or voltage-gated Ca2+ channels (VDCCs/VGCCs) or voltage 

independent Ca2+ channels [21,22]. Furthermore, channels for other ions, such as K+ and 

Cl-, are required for maintaining and modulating Ca2+ mobilization.  

 

   a. Voltage-dependent (gated) Ca2+ channels (VDCCs/VGCCs) 

 The open-state and closed-state of VDCCs are dependent on the voltage gradient 

across the plasma membrane, which is referred as membrane potential. At the resting 

membrane potential, VDCCs in PASMCs are mainly in the closed-state, and exhibit 

minimal spontaneous activity [23]. Membrane depolarization activates VDCCs and Ca2+ 

influx, leading to various vascular response including pulmonary vasoconstrictions 

[24,25] and myogenic tones [26,27]. Beside the open/closed-state, VDCC can transition 
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from the open-state to the inactivated-state (different from closed-state), which occurs 

slowly in a voltage and time-dependent manner [28]. 

 Based on the voltage dependence, VDCCs in PASMCs are classified into two 

subtypes, the high-voltage activated L-type Ca2+ channel, and the low voltage-activated 

T-type Ca2+ channel. L-type Ca2+ channels are activated at a threshold potential of 

approximately -40 to -50 mV and T-type VDCCs are activated at a lower membrane 

potential of -60 to -70 mV [29,30]. L-type Ca2+ channels have a relatively slower 

inactivation compared to the T-type Ca2+ channels, and contribute to high-K+-induced 

contraction [29,30,31], and hypoxic pulmonary vasoconstriction [32,33]. Although it had 

been little known about T-type Ca2+ channels in PASMCs, recent studies suggested that it 

may control proliferation [30,34] and contribute to the  development of lung disease such 

as chronic hypoxia-induced pulmonary hypertension (PH) [35].  

 

   b. Voltage-independent Ca2+ channels 

     (1)  Transient receptor potential channels 

 Transient receptor potential (TRP) channels are voltage-independent cation 

channels, which play important roles for Ca2+ entry, particularly in vascular smooth 

muscle cells. TRP channels are consisted 7 subfamilies, namely canonical (TRPC), 

vanilloid-related (TRPV), melastatin-related (TRPM), ankyrin (TRPA), polycystin-

related (TRPP), mucolipin-related (TRPML) and no mechanoreceptor potential C (TRPN 

or nompC)  subfamilies [21,36]. All TRP channels have a structural similarity for six 

transmembrane domains, a pore-forming loop between the fifth and sixth transmembrane 

domain with highly conserved TRP domains. TRP channels operate as specific Ca2+ 
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pathways responsive to a variety of stimuli such as depletion of Ca2+ store, ligand-

receptor activation, and mechanical stress by formation of homogenic or heterogenic 

tetrameric structure [21]. TRPC, TRPV, and TRPM channels have been identified in 

pulmonary arterial smooth muscle and several members of TRP subfamilies such as 

TRPC 1/6 and TRPV4 are crucially associated with the enhancement of myogenic tone 

and agonist-induced vasoreactivity in pulmonary vasculature under prolonged hypoxic 

exposure [21,37,38]. 

 The physiologic functions of TRP channels vary depending on the specific 

subtypes in PASMCs. In particular, TRPC1/4 plays a role in Ca2+ influx as a store-

operated Ca2+ channel and TRPC3/6 as a receptor-operated Ca2+ channel [21]. TRPV4 is 

the most abundant member of TRPV subfamily and one of the mechanosensitive Ca2+ 

channels, which is activated by mechanical stress such as stretch, and plays a crucial role 

for the development of  elevated pulmonary arterial pressure in response to prolonged 

hypoxic exposure [39].  

 

     (2)  Receptor-operated Ca2+ entry 

 Receptor-operated Ca2+ entry (ROCE) occurs via Ca2+ permeating channels, 

which are activated as the result of the binding of agonists to their receptor. Activation of 

ROCE does not require membrane depolarization. ROCE can be activated via G-protein-

coupled receptors (GPCRs), receptor tyrosine kinases (RTK) and guanylyl cyclases as 

well as the direct interaction with signaling molecules such as trimeric G proteins and 

polyunsaturated fatty acids (i.e. arachidonic acid)  [40,41]. Activation of receptors such 

as GPCRs increases the synthesis of the second messengers including inositol-1,4,5-
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triphosphate (IP3), and diacylglycerol (DAG), by phospholipase C (PLC). Indeed, it has 

been reported that various TRP channels play a pivotal roles in ROCE as the channels 

activated by those signaling molecules. Particularly, previous studies have indicated that 

several members of TRPC subfamily such as TRPC3/6 in PASMCs might play the role of 

ROCE, contributing to increase in [Ca2+]i [21,42,43]. 

 Ca2+-sensing receptor (CaSR) is a unique type of GPCRs coupled with PLC, 

contributing to Ca2+ mobilization in PASMCs [44]. Particularly, CaSR is another novel 

candidate in the progression of pathophysiologic states such as PH development by 

modulating Ca2+ entry [44,45]. Yamamura et al. demonstrated that the elevation of 

extracellular Ca2+-induced resting [Ca2+]i in PASMCs from idiopathic PH patient was 

prevented by the antagonist of the CaSRs [45]. Moreover, the expression of CaSRs in PA 

from monocrotaline (MCT)-induced pulmonary arterial hypertension animal was 

significantly upregulated compared to control, resulting in the excessive proliferation of 

PASMCs [45].  

 

     (3)  Store-operated Ca2+ entry 

 Depletion of Ca2+ in ER/SR triggers Ca2+ influx to replenish the Ca2+ stores and 

preserve the functions of ER/SR [46]. This mechanism of Ca2+ entry is called 

"capacitative Ca2+ entry" or "store-operated Ca2+ entry (SOCE)" [46,47]. Traditionally, it 

is known that SOCE is initiated typically by Ca2+ release through IP3 receptors (IP3Rs) 

activated by IP3 as the result of GPCR and RTK activation, resulting in store-operated 

inward current (ISOC) or Ca2+-release-activated Ca2+ current (ICRAC) [48]. Thus, "Ca2+ 
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sensors" in ER/SR is required for the coupling of Ca2+ depletion with SOCC in 

membrane. 

 There is strong evidence that SOCE is modulated by the ER/SR-resident Ca2+ 

sensor stromal interaction molecule (STIM) proteins, STIM1 and STIM2 isoforms, which 

have different Ca2+ sensitivity. STIM is a ER/SR membrane-spanning protein, composed 

of ER/SR lumen segment, containing Ca2+-sensitive EF hand near N-terminus, and 

cytoplasm segment containing ezrin/radixin/moesin (ERM) domains in C-terminus [49]. 

Particularly, STIM1 is expressed as a dimer stabilized by ERM domain in basal state, 

while the Ca2+ store depletion in ER/SR lumen, sensed by EF hand, causes the 

oligomerization of STIM1 molecules. The formation of STIM1 multimer results in the 

translocation of STIM1 and coveys the information of Ca2+ depletion to store-operated 

Ca2+ channels in cell membrane, mediated by complex domains in C-terminus [49,50]. 

Furthermore, studies also characterized that STIM2 has lower sensitivity to ER/SR 

[Ca2+]i than STIM1, and acts as another Ca2+ sensor capable of detecting a small decrease 

in ER/SR [Ca2+]i, triggering SOCE [51]. 

 Over the past decade, many studies addressed that TRPC channels, such as 

TRPC1/4, are a crucial candidate for SOCE particularly in PASMCs [52,53]. Particularly, 

TRPC1-mediated SOCE is activated by the formation of a complex with STIM1 in 

PASMCs [54]. This typical Ca2+ current generated by TRPC1-STIM1 interaction is 

namely ISOC [55]. In addition, there is a novel aspect of SOCE mediated by the complex 

of STIM with Orai1, a pore subunit of Ca2+ release-activated Ca2+ channels (CRACs) in 

plasma membrane [55,56]. The mechanism has been shown that the complex of ERM 

domains in oligomerized STIM1 stimulate the dimerization of Orai1 dimers to form 
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tetrameric Orai1 channels, leading to generating inward Ca2+ current, called ICRAC [57]. 

Although Orai and TRPCs clearly function independently, evidence also elucidated that 

Orai-activating region of ERM domains in STIM1 has a capacity for binding to TRPC 

channels, suggesting the interaction between Orai1-STIM-TRPC for inward Ca2+ current 

[58]. Overall, those results implicate that functional activity of Orai1 and TRPC is 

regulated by STIM1 with both dependent and independent manner, contributing to 

generation of inward Ca2+ current for SOCE.  

 

     (4)  Other types of Ca2+ channels in plasma membrane 

 There are other types of Ca2+ permeable cation channels in cell membrane of 

PASMCs. Ligand-gated ion channels are transmembrane proteins which are activated by 

binding of specific ligands such as adenosine triphosphate (ATP) to P2X purinergic 

receptors [59], and urokinase plasminogen activator to N-methyl-d-aspartate receptor-1 

[60]. Another type of Ca2+ permeable channels called cyclic nucleotide-gated ion 

channels are also found in vascular smooth muscle [61,62,63]. They are activated by 

cyclic nucleotides such as cAMP and cGMP. However, their expression in PASMCs has 

not been clearly examined yet. 

 

   c. Ion channels that modulate Ca2+ entry 

     (1)  K+ channels 

 K+ channels are composed of pore-forming subunits (α-subunits) and accessory 

subunits (β-subunits) depending on their functional and structural diversity [64]. In 

PASMCs, there are at least three major groups of K+ channels characterized by several 
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biophysical and pharmacological properties: voltage-dependent K+ (KV) channels, Ca2+-

activated K+ (KCa), and ATP-sensitive K+ channels, contributing to changes in membrane 

potentials. [64,65,66,67]. It is clear that KV channels and KCa channels play important 

roles in modulating Ca2+ influx via voltage-gated Ca2+ channels in PASMCs [66]. 

 KV channels in PASMCs play an important role in regulating membrane resting 

potential [66]. The α subunits of the KV channels have six transmembrane domains and 

pore-formation regions and are encoded by the KV gene family, which comprises at least 

36 members grouped into 12 subfamilies (KV1–KV12) [68]. A reduction of KV channel 

activity causes membrane depolarization and the activation of VDCCs, leading to the 

elevation of [Ca2+]i in PASMCs and eventually pulmonary vasoconstriction. In contrast, 

activation of KV channels results in hyperpolarization and inhibition of Ca2+ influx via 

VDCCs [66,69,70]. 

 KCa channels operate as a "negative feedback pathway" for the regulation of 

membrane potential and vasoconstriction [66,71]. KCa channels can be classified into 

three subtypes based on their biophysical properties: large-conductance and voltage-

dependent Ca2+-activated K+ (BKCa) channels, intermediate-conductance Ca2+-activated 

K+ channels, and small-conductance Ca2+-activated K+ (SKCa) channels [72]. A rise in 

[Ca2+]i activates KCa channels, resulting in K+ efflux, outward current, hyperpolarization, 

and deactivation of VDCCs [66,72]. It has been shown that local Ca2+-release events 

through ryanodine receptors (RyRs), called "Ca2+ sparks," evoke hyperpolarization and 

vasorelaxation in systemic vascular smooth muscles while Ca2+ sparks in PASMCs cause 

membrane depolarization vasoconstriction, implying that the coupling of RyR to KCa 

channels in PASMCs may be different from other systemic myocytes [73].  
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     (2)  Ca2+-activated Cl- channels 

 Ca2+-activated Cl- channels (CaCCs) are activated by [Ca2+]i at the range of 0.2–5 

µM, leading to an inward Cl- current in various cell types including PASMCs [74,75]. In 

general, elevated [Ca2+]i triggers activation of CaCCs, resulting in membrane 

depolarization and the subsequent activation of VDCCs to further increase depolarization 

and Ca2+ influx [74]. In particular, CaCC in PA smooth muscle is a major physiological 

target of Ca2+ sparks causing depolarization while other systemic vascular smooth muscle 

is associated with KCa channels leading to hyperpolarization [76]. Recent studies 

demonstrated that TMEM16A, a member of the TMEM16 family, is the main component 

of CaCC subunits in PASMCs [75,77,78]. Recently, Sun et al. demonstrated that 

prolonged hypoxia causes upregulation of TMEM16A and an increase in Cl- current 

through CaCCs in PASMCs [75], which is associated with elevated agonist-induced 

vasoreactivity in PA [79]. These results suggest that CaCCs play a potent role in Ca2+ 

homeostasis and physiological response in PASMCs  [75]. 

   

 2. Ca2+ release from intracellular Ca2+ stores in PASMCs 

 There are three major intracellular Ca2+ stores, namely the IP3R-gated and RyR-

gated Ca2+ stores in the ER/SR, and the nicotinic acid adenine dinucleotide phosphate 

(NAADP) receptor-gated stores in the endolysosomes [43,80,81,82]. Ca2+ release from 

these stores are triggered by specific Ca2+ second messengers, namely IP3, cyclic 

adenosine diphosphate-ribose (cADPR), and NAADP, respectively. These Ca2+-release 

channels may interact with each other through "cross-talk" mechanisms. In particular, 
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activation of Ca2+-release channels may result in depletion of Ca2+ stores in the ER/SR 

and may trigger SOCE. 

 

    a.  IP3R-gated Ca2+ release 

  One of the most well characterized Ca2+ release mechanisms is IP3-dependent 

Ca2+ release. Ligand binding to GPCRs and RTKs activates PLC to convert 

phophatidylinositol 4, 5-bisphosphate (PIP2) to IP3 and DAG. IP3 activates IP3Rs on the 

ER/SR, resulting in Ca2+ release whereas DAG activates other pathways such as PKC 

signaling pathways resulting in diverse cellular activity [43,83]. Various types of agonists 

such as endothelin-1 (ET-1), angiotensin II (Ang II), acetylcholine, 5-HT, thromboxane, 

and growth factors stimulate the production of IP3 and activate to Ca2+ release via the 

IP3R-gated channel in the ER/SR [83]. 

 There are three mammalian IP3R isoforms, IP3R1 to 3 [83,84,85]. IP3R1 is the 

major isoform in systemic vascular smooth muscle cells, and all three isoforms are 

expressed in PASMCs [73,86]. IP3Rs have many regulatory sites, which interact with 

Ca2+, ATP, and protein kinases, leading to modulation of channel function [87,88,89,90]. 

In particular, Ca2+ regulates the channel opening of IP3R in a biphasic manner, 

facilitating the channel opening at low Ca2+ (<300 nM) and inhibiting it at high Ca2+ 

(>300 nM), thereby leading to positive and negative feedback regulation of IP3R-gated 

Ca2+ release [89]. 

 In general, IP3R-gated Ca2+ release is responsible for agonist-induced Ca2+ release 

and evokes "Ca2+ waves" and elevation of global [Ca2+]i, triggering vasoconstriction in 

vascular smooth muscle [73,91]. It has also been demonstrated that local Ca2+ events 
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from IP3Rs, called "Ca2+ puffs," elicit spontaneous outward currents (STOCs) by 

activation of BKCa and SKca, leading to hyperpolarization and a decrease in Ca2+ influx 

through VDCCs/VGCCs in smooth muscle cells [92]. Moreover, agonist-induced Ca2+ 

release through IP3R increases the occurrence of Ca2+ sparks mediated by RyR-gated 

Ca2+ release, implying cross-talk between IP3R- and RyR-gated Ca2+ release in PASMCs 

[73]. 

 

    b.  RyR-gated Ca2+ release 

 There are three different RyR subtypes; RyR1 was originally cloned from skeletal 

muscle, RyR2 was identified in cardiac muscle, and RyR3 was originally described in the 

brain. RyRs are tetrameric channels composed of four RyR monomers of each subtype 

and are distributed in many other tissues including vascular smooth muscles [82,93].  

RyR1 is activated mainly by a voltage-dependent mechanism with dihydropyridine 

receptors (i.e. L-type VDCCs) as the voltage sensor [94]. RyR2 and RyR3 are activated 

by Ca2+ entry or release through the Ca2+-induced Ca2+ release mechanism [4,95,96,97]. 

In addition, the activity of RyRs is regulated by many regulatory proteins and molecules 

including FK506 binding proteins (FKBPs), calmodulin, Ca2+-calmodulin-dependent 

kinase, PKA, triadin, junctin, and calsequestrin [82,88,98]. There is also clear evidence 

that the second messenger, cADPR, activates RyR2, leading to Ca2+ release in vascular 

myocytes including PASMCs [99,100,101]. The detailed mechanism and characteristics 

of cADPR are described in the section on cADPR and CD38. 

 RyR-gated Ca2+ release may operate as a frequency-dependent negative 

modulator of membrane potential [102,103]. There is clear evidence that RyR1 and RyR2 
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play important role in excitation-contraction coupling in skeletal (mechanical coupling) 

[104,105] and cardiac muscle (Ca2+-induced Ca2+ release), respectively [106]. In systemic 

vascular myocytes, RyR1 and RyR2 are required for the generation of Ca2+ sparks, and 

RyR3 is involved in the agonist-induced elevation of global [Ca2+]i [93,107,108]. Ca2+ 

sparks are RyR-gated local Ca2+ release events. The elevation of these local Ca2+ signals 

in systemic myocytes leads to vasodilation and hyperpolarization via activation of KCa 

channels [102]. In contrast, Ca2+ sparks in distal PASMCs cause membrane 

depolarization [73,109,110]. In rat PASMCs, RyR2 is the most abundant of the three 

subtypes, and RyRs are differentially localized in the subsarcolemmal (RyR1/RyR2) and 

perinuclear regions (RyR3). Agonist-induced Ca2+ sparks in peripheral and perinuclear 

regions exhibit different spatiotemporal properties in PASMCs [93].  

 

    c.  NAADP-gated Ca2+ stores 

 Recent evidence indicates that Ca2+ stores are not limited to the ER/SR but are 

also present in other organelles such as endolysosomes [81,111,112]. In endolysosomes, 

vacuolar-type H+-ATPases generate H+ gradient across the organelle membrane. This 

gradient allows Ca2+ entry into endolysosomes via H+-Ca2+ exchangers [113]. Ca2+ 

release from the endolysosomal store is mediated by NAADP-sensitive channels 

[114,115,116]. NAADP is generated from inactive nicotinamide adenine dinucleotide 

phosphate (NADP) by the enzymatic activity of CD38 [116]. It was reported that 

NAADP-sensitive Ca2+ release channels on endolysosomes are encoded by two-pore 

channels (TPCs) [117]. Mainly, there are two subtypes of TPCs: TPC1 and TPC2. TPC1s 

are widely expressed in all stages of endolysosomes, and TPC2s are expressed 
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predominantly in late endosomes and lysosomes [118]. Western blot detected both TPC1 

and TPC2 in rat PA smooth muscle [114]. In particular, the mRNA level of TPC1 was 

approximately five times higher than that of TPC2 [114].  

 Functional studies in systemic vascular smooth muscle showed that NAADP-

gated Ca2+ release contributes to vasoconstriction induced by ET-1 and norepinephrine 

[119,120]. In PASMCs, NAADP triggers a Ca2+ burst (a spatially restricted Ca2+ release) 

and global Ca2+ waves, which are inhibited by depletion of endolysosomal Ca2+ stores 

and inhibition of RyRs, implying that NAADP-gated Ca2+ release is coupled to RyRs 

through Ca2+-induced Ca2+ release [114,121]. Moreover, integrin-specific ligands 

(GRGDSP) also trigger NAADP- and RyR-gated Ca2+ release in PASMCs [122]. These 

results suggest that cross talks between NAADP-gated and other Ca2+ release channels 

(e.g., RyR and IP3R) may play crucial roles in agonist-induced Ca2+ signaling though 

complex interactions in PASMCs. 

 

II. CD38 as a master Ca2+ regulator 

 CD38 is a membrane glycoprotein discovered as a surface marker of lymphocytes 

[123,124]. It was subsequently reported that CD38 is a ubiquitous multifunctional 

ectoenzyme responsible for the synthesis of the second messengers cADPR and NAADP 

[125,126]. In this section, the multifunctionality of CD38 and its products cADPR and 

NAADP is reviewed. The crystal structure of cADPR and NAADP is shown in Figure 1.2 

[115]. 

 

   A. Generation of cADPR and NAADP by CD38 
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  In 1987, Lee et al. showed that a metabolite of nicotinamide adenine dinucleotide  

(NAD+) in sea urchin egg increases Ca2+ release from the intracellular Ca2+ store with a 

potency comparable to IP3 [127,128]. They subsequently identified that the metabolite is 

cADPR [129,130,131], which is the endogenous messenger for the activation of RyR-

gated Ca2+ stores [132,133]. cADPR exerts its action by binding to FKBP12/12.6, an 

accessory protein that stabilizes RyR1/3 and RyR2, respectively, causing its dissociation 

from RyRs to initiate Ca2+ release [134,135]. Furthermore, cADPR may increase the 

 

Figure 1.2. Cristal structure of cADPR and NAADP    Left: The C8 of cADPR is 

indicated by a white asterisk. Attachment of a bromo (8-bromo-cADPR) or an amino 

(8-NH2-cADPR) group at this position converts the compound to a specific 

antagonist of cADPR. Right:  The structure of NAADP is identical to that of its parent 

NADP, except that the amide nitrogen of the nicotinamide group of NADP is changed 

to oxygen as indicated by the circle. Blue, nitrogen; red, oxygen; yellow, phosphorus; 

green, carbon. The image and legend are cited from the following reference [115].  
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activity of SERCA in removing cytosol Ca2+ and refilling the ER/SR [136]. These studies 

clearly suggested that cADPR is an important regulator of intracellular Ca2+ stores and 

release. 

 The enzyme that catalyzes the formation of cADPR from NAD+ was first 

identified in Aplysia Californica and is known as ADP-ribosyl cyclase [137]. Subsequent 

studies found that 86 of the 285 amino acids in ADP-ribosyl cyclase from Aplysia 

Californica are identical to the human lymphocyte surface antigen CD38, which is an 

approximately 45 kDa transmembrane type II glycoprotein ubiquitously distributed in 

mammalian tissues [138,139,140,141,142,143,144]. CD38 was first identified as a T and 

B lymphocyte-specific surface antigen and is expressed at the late stage of maturation 

[123,145]. Subsequently, it was reported that CD38 also converts NAD+ and cADPR to 

ADP-ribose (ADPR), indicating that it is a multifunctional enzyme that uses more than 

one substrate [146,147,148]. The multifunctionality of CD38 is dependent on pH. A 

neutral pH favors cylcase activity for converting NAD+ to cADPR [149]. Under an acidic 

environment, CD38 catalyzes a base-exchange reaction for β-NADP+ and nicotinic acid 

to generate NAADP [149,150].  

As mentioned above, NAADP is a highly potent Ca2+-mobilizing agent, which 

triggers Ca2+ release from thapsigargin-insensitive lysosome-related acidic organelles that 

are fundamentally different from the IP3- or cADPR-dependent stores [112,150,151]. In 

addition, CD38 also hydrolyzes NAADP to ADP-ribose-2’-phosphate (ADPRP) at an 

acidic pH [144]. The pH dependency of CD38 is dictated by Glu-146 and Asp-155 in the 

active site of CD38. Under neutral pH, these "acidic residues" are negatively charged and 

repel the negatively charged nicotinic acid, leading to the selection of substrate and its 
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consequent metabolite [152]. A schematic overview of CD38 enzyme activity is shown in 

Figure 1.3 [126]. 

 Moreover, CD38 is a key enzyme for NAD+ degradation in mammalian cells 

[125]. Research provided strong evidence that nicotinamide phosphoriboxyltransferase 

(NAMPT; the same with visfatin or PBDF) plays a key role in de novo synthesis of 

NAD+ [153,154]. However, little is known about the degradation of cellular NAD+ levels 

 

 

Figure 1.3. Schematic diagram of multifunctionality of CD38   The 

multifunctionality of CD38 activity is dependent on circumstant pH; enhanced 

cyclase activity in neutral pH and catalase activity in acidic pH. The product of 

cyclase and catalase (cADPR and NAADP, respectively) is also hydrolyzed into 

ADPR and ADPPR, respectively, by CD38. Abbreviations used: cyclic ADP-ribose, 

cADPR; ADP-ribose, ADPR; nicotinic acid adenine dinucleotide phosphate, 

NAADP; nicotinic acid, NA; ADP-ribose-2’-phosphate, ADPRP. This image is cited 

from the following reference [126]. 
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except regarding CD38 as a glycohydrolase [155]. The catalytic site of CD38 is located 

on the extracellular domain of the cell; yet the topological model for determining cADPR 

internalization is still unclear [156]. A recent study provided evidence that CD38 can be a 

type II or type III protein. In the latter case, the enzyme-catalytic domain is oriented 

toward the cytoplasm such that it is more efficient in generating intracellular cADPR than 

type II CD38. These results strongly suggest that flipping the catalytic sites of CD38 is an 

important regulatory mechanism for mediating Ca2+ release [157]. A schematic overview 

of CD38-dependent Ca2+ release mechanism is shown in Figure 1.4 

 

   B. CD38 and TRPM2 

 CD38 may modulate other channels in addition to RyR- and NAADP-gated Ca2+ 

stores, such as TRPM2 [158]. TRPM, which is named after the tumor suppressor 

melastatin, has eight mammalian subtypes, TRPM1 to 8, and plays an important role in 

Ca2+ mobilization in different cell types [159,160]. TRPM2, previously called LTRPC2, 

is known as a "chanzyme" (channel enzyme) due to the presence of an enzymatic domain 

in its C terminus [158]. The C terminus of TRPM2 has a regulatory binding motif (a 

Nudix-like domain) that is targeted by ADPR [160,161]. Since CD38 generates ADPR 

through hydrolysis of NAD+ and cADPR at neutral pH, TRPM2-gated Ca2+ mobilization 

is influenced by the enzyme activity of CD38. TRPM2 is expressed in the plasma 

membrane, contributing to Ca2+ influx, but is also found in the lysosomal membrane, 

implying that it may operate as a Ca2+ release channel [161].  

 ADPR triggers the activation of TRPM2, contributing to the elevation of [Ca2+]i  

in various cell types such as pancreas β cells (release) [161], immunocytes (influx) 
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[162,163], and insulinoma cell lines (influx) [164]. In vasculature, TRPM2 plays a 

pivotal role in cell death depending on oxidative and nitrosative stress, as well as 

interaction with silent information regulator 2 [159]. Nonetheless, this information 

suggests that CD38 contributes to diverse cell physiology through the generation of 

different second messengers for Ca2+ mobilization in PASMCs. However, to date, the 

term for the activation of CD38 generally refers to the enhancement of cyclase and 

 

Figure 1.4. Schematic diagram of CD38-dependent Ca2+ release   CD38 

synthesizes two messenger molecules, cADPR and NAADP,  which activate RyR in 

ER/SR and the NAADP-dependent Ca2+ channel two-pore channel (TPC) in 

endolysosme, respectively.  
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catalase activity in synthesizing cADPR and NAADP, respectively, rather than of the 

hydrolase activity for the generation of ADPR. 

 

   C. Physiological function of CD38 

 Because CD38 was first discovered as a surface marker for lymphocyte 

differentiation, the investigation was initially focused on its physiological function as an 

antigen for proliferation to apoptosis of T and B cells, as well as hematopoietic cells 

[123,165,166]. However, it is now clearly established that the enzymatic activity of CD38 

plays an important physiologic function along with NAD+ consumption and 

cADPR/NAADP synthesis, contributing to intracellular Ca2+ mobilization in a variety of 

cells such as cardiomyocytes [167,168], neuronal cells [169,170], osteoblasts [171], 

hepatic stallate cells [172], pancreatic acinar and β cells [173,174], airway smooth muscle 

cells [141,175], renal arterial smooth muscle cells [120], and PASMCs [176,177]. 

 CD38 knockout (KO) mice exhibit phenotypic defects including depressed insulin 

secretion due to impairment in pancreas acinar and β cells [173,178] and increased 

susceptibility to bacterial infection due to disruption in the chemotaxis of neutrophils 

[179]. In addition, recent population studies provided evidence that the functional defect 

of CD38 is correlated with HIV infection, leukemia, myeloma, solid tumors, type II 

diabetes mellitus, asthma, bone metabolism, and autism spectrum disorder 

[180,181,182,183,184]. However, while the cADPR level decreases in many tissues in 

CD38 KO mice, the levels in the heart and brain are not significantly different than those 

of the wild type. This implies that other types of ADP-ribosyl cyclase, in addition to 

CD38, may be present [179,185].  
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   D. Regulation of CD38 in vascular smooth muscle 

CD38 is widely distributed in many different types of vascular smooth muscle. Its 

expression has been reported in the aorta, coronary artery, and PA [122,186,187,188]. 

Furthermore, studies also have found ADP-ribosyl cyclase activity in the aorta, coronary 

artery, renal artery, and PA. Direct application of cADPR to vascular microsomes causes 

intracellular Ca2+ release [186,187,189,190,191]. Activation of the cyclase has been 

implicated in vascular responses induced by norepinephrine, ET-1, Ang II, agonists of 

M1-muscurinic receptors, and reactive oxygen species [192,193,194,195,196]. A study 

demonstrated that Ang II and NE-induced  elevation of [Ca2+]i in renal afferent arterioles 

in vitro and renal vasoconstriction in vivo were attenuated by more than 50% through 

pharmacological inhibition of CD38 or RyRs [197].  Moreover, vascular response to 

agonists including Ang II, NE, and ET-1 decreased in the aorta and renal artery of CD38 

KO mice [186,197].  

Similar to cADPR, application of NAADP promotes vascular smooth muscle 

micosomal Ca2+ release [198,199]. ET-1 and NE also stimulate production of NAADP in 

coronary arterial myocytes and renal afferent arterioles triggering Ca2+ mobilization from 

the lysosomal Ca2+ store [119,120]. In addition, a study using CD38 KO mice showed 

that activation of the death receptor Fas stimulated lysosome-dependent Ca2+ release 

though NAADP [111]. 

 

   E. Regulation of CD38 in PASMCs 
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 Expression of CD38 and the activity of ADP-ribosyl cyclase have been reported 

in PASMCs [122,191]. However, there is little information on the regulatory mechanism 

of CD38 including agonist-induced Ca2+ mobilization mediated by CD38 activation in 

PASMCs. A study examining ET-1-induced elevation of Ca2+ sparks and Ca2+ bursts 

mediated by RyR- and NAADP-gated Ca2+ release, respectively, showed that ET-1 

activates the cyclase and catalase activity of CD38 [114]. It was also reported that the 

specific integrin-ligand GRGDSP stimulates the production of cADPR in PASMCs and 

activates RyR- and NAADP-gate Ca2+ release [122]. Indeed, NAADP induces spatially 

restricted Ca2+ bursts, which initiates global Ca2+ waves [121,200]. It was postulated that 

the lysosome-related Ca2+ stores and RyR-gated Ca2+ stores are co-localized to form a 

highly specialized "trigger zone" for NAADP-dependent Ca2+ signaling such that the 

NAADP-induced Ca2+ signal is amplified by RyRs.  

 One of the unique features of Ca2+ mobilization in PASMCs is hypoxia-induced 

Ca2+ response mediated by RyR-gated Ca2+ release, contributing to hypoxic pulmonary 

vasoconstriction in response to acute hypoxic exposure [201,202,203]. To date, there are 

at least two hypotheses for the mechanism of hypoxia-induced activation of RyRs, which 

are related to cADPR and reactive oxygen species (ROSs), respectively. One of the 

hypotheses proposed that the reduction in the ratio of β-NAD+ to β-NADP+ by hypoxia 

stimulates the activation of RyRs, leading to an increase in [Ca2+]i. Increased β-NADP+ 

inhibits hydrolase activity of CD38, contributing to accumulation of cADPR, which 

triggers RyR-gated Ca2+ release from SR [176]. This hypothesis suggests that CD38 

plays an important role for redox sensing in PASMCs under acute exposure to hypoxia. 
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However, the information has been limited to acute hypoxia, and the possible alteration 

of CD38 under prolonged exposure to hypoxia in PASMC is completely unknown. 

 Indeed, the regulatory mechanism of CD38 and CD38-dependent Ca2+ release 

mechanism as well as CD38-mediated physiologic response in PASMC are very scanty. 

Because of the lack of information, this thesis research focused on the regulatory 

mechanism of CD38 expression and activity as a potent modulator of Ca2+ release in 

PASMC. 
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CHAPTER 2 

BACKGROUND AND INTRODUCTION: 

PULMONARY HYPERTENSION AND ALTERATION OF 

CALCIUM REGULATION   
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 Chapter 1 reviewed the physiology and the regulatory mechanism of intracellular 

Ca2+ with emphasis on pulmonary arterial smooth muscle cell (PASMC). In this chapter, 

it is followed by a overview on pulmonary hypertension (PH) and its association with the 

alteration of Ca2+ homeostasis in PASMC. Review on this chapter further focuses on a 

novel mechanism of intracellular Ca2+ release mediated by the CD38-dependent Ca2+ 

pathways, which may contribute to the regulation and dysregulation of Ca2+ homeostasis 

in PASMC particularly under chronic hypoxic (CH) exposure that may cause chronic 

hypoxia-induced pulmonary hypertension (CHPH). 

 

I. Pulmonary hypertension 

   A. Overview of pulmonary hypertension 

 PH in humans is defined as a mean pulmonary arterial pressure (PAP) higher than 

25 mm Hg at rest or 30 mm Hg during physical activity as well as increased pulmonary 

vascular resistance higher than 240 dynes/sec/cm-5 [204]. According to the recently 

updated clinical classification of PH by the Fourth World Symposium in Dana Point 2008, 

PH is categorized into five groups: (a) pulmonary arterial hypertension, (b) PH with left 

heart disease, (c) PH associated with lung disease and/or hypoxemia, (d) PH due to 

chronic thrombotic and/or embolic disease (CTEPH), and (e) PH due to miscellaneous 

factors [205,206,207]. PH is associated with multiple risk factors including gender, family 

history, disease, toxins, behavior patterns, and environment [205]. Although the 

mechanism varies depending on the type of PH, the elevation of PAP is clearly associated 

with increased pulmonary vascular resistance due to the alteration of structure and 

contractility in vasculature, eventually leading to right heart failure [208]. In particular, 
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exposure to chronic hypoxia due to high altitude or airway/alveolar disease such as 

chronic obstructive pulmonary disease and fibrosis causes CHPH [206]. This dissertation 

focuses on CHPH in order to understand the possible mechanism linked to the underlying 

Ca2+ mechanism in PASMCs. 

Table 2.1. Revised WHO classification of PH (reprinted from ACCF/AHA 2009 
Expert Consensus Document on Pulmonary Hypertension [208]) 
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   B. Hypoxia-induced pulmonary hypertension  

 As described above, acute exposure to hypoxia causes hypoxic pulmonary 

vasoconstriction (HPV) in PA [202]. HPV is a unique feature in PAs that shunts the 

blood to the O2-rich regions of the lungs to match the ventilation-perfusion ratio 

[176,209,210]. However, prolonged exposure to hypoxia causes PH, which is 

characterized by increased vasomotor tone; enhanced  vasoreactivity to agonists 

including ET-1, Ang II, and serotonin (5-HT); and remodeling of pulmonary vasculature 

[75,211,212,213], eventually leading to right heart failure and worsening the prognosis of 

the underlying disease [207].  

 The pathogenesis of CHPH involves multiple factors with a wide spectrum of 

mechanisms in PASMCs. Heterozygous mice of hypoxia-inducible factor-1 (HIF-1), an 

O2-sensitive transcription factor, demonstrated a delayed development of CHPH [214]. 

Inhibition of the translocation of nuclear factor of activated T-cells (NFAT) activated by 

Ca2+-calcineurin attenuates CHPH and decreases [Ca2+]i proliferation in PASMCs 

[215,216,217]. Abnormal regulation of endothelium-derived factors, including enhanced 

ET-1 and reduced nitric oxide production, also contribute to the development of CHPH 

[218,219].  Moreover, the vasoactive agonists that activate Rho A/Rho kinase signaling—

such as ET-1, thromboxane A2, norepinephrine, histamine, and serotonin (5-HT)—all 

contribute to development of CHPH [220,221,222,223,224,225]. Accordingly, elevation 

of Rho kinase activity alters cytoskeleton properties including increased stress fiber 

formation [226] and myofilament Ca2+ sensitivity in PASMCs [227]. Excessive ROS 

generation mediated by NADPH oxidase [228,229] and xanthine oxidase [230,231] are 

also involved in the development of CHPH. Furthermore, alterations of extracellular 
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matrix deposition and production, including collagen production and enhanced serine 

elastase activity, are associated with the development of CHPH [232,233].  

 

II. Alteration of Ca2+ homeostasis in PASMCs 

 Substantial evidence indicates that CH causes intrinsic changes in ionic balance 

and Ca2+ homeostasis in PASMCs, leading to membrane depolarization, elevation of 

resting [Ca2+]i, and changes in electrophysiological and Ca2+ responses to 

vasoconstrictors and vasodilators [234,235,236,237,238]. These functional changes in 

PASMCs involve alterations in multiple Ca2+ pathways and are crucial for the 

development of CHPH [69,239]. An increase in [Ca2+]i stimulates gene transcription 

through activation of Ca2+-regulated transcription factors such as NFAT, a process known 

as excitation-transcription coupling, which is essential for vascular remodeling and 

smooth muscle proliferation [240,241]. Elevated [Ca2+]i also promotes Ca2+ binding to 

calmodulin and activates Ca2+-calmodulin-dependent myosin light chain kinase and 

actin-myosin interactions to enhance vasoconstriction. As mentioned, enhanced agonist-

induced Ca2+ influx [242] and enhanced myofilament Ca2+ sensitivity depending on Rho 

kinase pathways operate synergistically to promote vasoconstriction [227]. 

 

   A. Hypoxic-induced alteration of Ca2+ influx  

 1. K+ channel dependence 

 CH alters Ca2+ influx through multiple mechanisms in PASMCs. It has been 

clearly demonstrated that hypoxia suppresses K+ currents [69]. The activity of KV 

channels (KV1.5 and KV2.1) in PASMCs significantly decreases under CH exposure and is 
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associated with the downregulation of KV channel expression 

[70,234,235,236,237,243,244,245,246,247]. Since the KV channel is the major 

conductance controlling the resting membrane potential [70,238,248], the downregulation 

of KV channels causes membrane depolarization and subsequent activation of the VDCCs, 

leading to Ca2+ influx and increase in [Ca2+]i [234,249]. It is interesting to note that the 

heterogeneity of KV channel expression in proximal and distal PA may lead to differential 

responses to CH in terms of vascular remodeling, cell proliferation, and apoptosis [250] 

 It is unclear, however, which other types of K+ channels are involved in the 

response to CH in PASMC. Large-conductance KCa (BKCa) channels, which are inactive 

at resting membrane potential, apparently do not play a primary role in the development 

of CHPH [251,252,253]. The general consensus on the role of BKCa is that the elevation 

of [Ca2+]i activates BKCa, limiting the extent of depolarization as a form of regulatory 

feedback to VDCC-gated Ca2+ entry in PASMCs. Likewise, although it was reported that 

a fall in ATP during hypoxia triggers ATP-sensitive K+ channels, which are regulated by 

the ADP/ATP ratio, the activity was not directly required for the alteration of K+ entry 

[254]. The activity of the channels is dependent on ATP content, which decreases during 

hypoxic exposure. ATP-sensitive K+ channels may be involved in the vasorelaxation 

phase of HPV [251,254]. Nielsen et al. showed that the expression of polyunsaturated 

fatty acid-activated two-pore domain K+ channel (K2P) is altered in hypoxia, contributing 

to endothelium hyperpolarization and pulmonary artery relaxation in hypoxic PH [255].  

 

 2. TRP channels 
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 CH can also modulate Ca2+ influx through non-voltage-dependent and 

nonselective cation channels such as TRP channels, which are known to have diverse 

physiological functions in vascular smooth muscles [21,256]. In particular, previous 

studies demonstrated that CH upregulates the store-operated TRPC1 and receptor-

operated TRPC6 expression in PAs and enhances both SOCE and ROCE in PASMCs 

[238]. Differential inhibition of those two pathways using a pharmacological blocker 

indicated that the SOCE is responsible for elevated resting [Ca2+]i in PASMCs and resting 

vasotone in PAs from CH animals. A subsequent study also demonstrated that the 

upregulation of TRPC1 and TRPC6 is the direct effect of hypoxia on PASMCs and 

requires the full expression HIF-1α [257]. Sildenafil, a specific phosphodiesterase-5 

inhibitor, which is known to attenuate CHPH [258], significantly reduces basal [Ca2+]i 

and SOCEs mediated by decreased expression of TRPC1 an TRPC6 [259,260,261]. Also, 

sodium tanshinone IIA sulfonate inhibited the CH-induced upregulation of TRPC1/6 in 

PASMCs, contributing to attenuating basal [Ca2+]i and cell proliferation [262].  

 In particular, recent studies also provided evidence that TRPC1 and TRPC6 

differentially contribute to the full development of CHPH. The regulatory mechanism of 

HPV by acute exposure to hypoxia was absent in TRPC6 KO mice while TRPC6 KO 

mice were not protected from CHPH, including vascular remodeling and right heart 

hypertrophy [263]. In contrast, TRPC1 KO mice was failed to experience pulmonary 

vascular remodeling underlying the development of CHPH [264]. In particular, CH-

induced enhancement of the vasomotor tone of PA was blunted in TRPC1 KO mice but 

not in TRPC6 KO mice CHPH, whereas CH-induced augmentation of vasoreactivity to 

5-HT decreased in both TRPC1 and TRPC6 KO mice PAs [38]. These results strongly 
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indicate that TRPC1 and TRPC6 in PA differentially contribute to the development of 

CHPH with discrete, time-dependent roles when exposed to hypoxia. 

 In the monocrotaline (MCT)-induced pulmonary arterial hypertension model 

(MCT causes pulmonary endothelial damage and PA remodeling) results in increased 

SOCE mediated by the upregulation of TRPC1 and TRPC4, leading to the enhancement 

of vasoreactivity to ET-1 in PASMCs [265]. Further studies demonstrated that the 

absence and inactivation of TRPC4 attenuated the severity of lesion formation in PA and 

right heart failure, indicating that TRPC4 is critically associated with the development of 

pulmonary arterial hypertension [265,266].  

 An increasing number of studies have also implicated the roles of other TRP 

channels in CHPH development. A recent study demonstrated that TRPV, a mechano-

sensitive vanilloid TRP channel, is the only CH-induced upregulated channel among the 

members of the TRPV and TRPM subfamilies. Since pharmacological activation of 

TRPV1 and TRPV4 can trigger an increase in the migration of PASMCs, its upregulation 

may contribute to PH development [39,267]. In particular, the development of CHPH 

was significantly attenuated in TRPV4 KO mice [37,39]. TRPV4 gene deletion also 

decrease 5-HT-induced [Ca2+]i and reduce vasoreactivity to 5-HT compared to the wild 

type under CH exposure [37,39].  

It was also reported that a TRPV4-mediated increase in [Ca2+]i was significantly 

attenuated by the inhibition of RyR2, and both TRPV4 and RyR2 expression are 

enhanced in CH rats. This suggests complex interplay between TRPV4 and RyR2 may 

also contribute to the development of CHPH [268]. Moreover, the expression of TRPM8 

is significantly declined in the PAs of both CHPH and MCT-induced PH. It is associated 
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with decreased TRPM8 menthol-induced vasorelaxation in PH rats, indicating that the 

downregulation of TRPM8 may associate with increased vasoreactivity in PH  [269]. 

 

 3. Ca2+ channels 

 It is unequivocal that VDCC-gated Ca2+ influx increases with membrane 

depolarization mediated by K+ channels in PASMCs during CHPH [270,271]. 

Pharmacological inhibition of L-type Ca2+ channels (Cav1.2), such as nifedipine or 

verpamil, partially attenuated CHPH [35,272,273,274,275], implying that the activity of 

Cav1.2 may be enhanced in PAs under CH exposure [35,276]. In addition, evidence also 

demonstrates that the expression of VDCCs in PASMCs is upregulated in response to CH.  

Wan et al. demonstrated that both Cav1.2 (L-type) and Cav3.2 (T-type) are specifically 

upregulated in PA but not in systemic vasculature under CH exposure, suggesting that 

upregulation of both L- and T-type VDCCs may play a role in CHPH development [35]. 

 However, it was reported that an ET-1-induced change in [Ca2+]i in PASMCs is 

altered and mediated by VDCC independent from the alteration of membrane potential 

after CH exposure. Meanwhile, ET-1 neither triggers Ca2+ release nor alters membrane 

potential mediated by the inhibition of K+ channels following CH exposure [236,274]. 

Subsequent studies demonstrated that ET-1 initiates a Ca2+ influx through VDCCs in 

PASMCs from CH rats, mediated by activation of PKC, Rho kinase, and tyrosine kinases 

[277]. 

 

 4. Other channels  
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 The Ca2+-dependent channels of PASMCs are also affected in CHPH. Although 

KCa channels may not contribute to the process of CHPH development, Sun et al. recently 

demonstrated that CH enhances the activity of CaCCs in PASMCs through upregulation 

of TMEM16A, a member of the TMEM16 family, contributing to increased agonist-

induced pulmonary vasoconstriction via the activation of VDCC-gated Ca2+ influx [75]. 

In addition, the acid-sensing ion channel 1 (ASIC1), another novel channel, may 

modulate other mechanisms of Ca2+ entry, contributing to CHPH. In particular, Jernigan 

et al. showed that ASIC1 may contribute to SOCE in pulmonary vascular smooth muscle 

[278]. A subsequent study also demonstrated that elevation of SOCE in PA from CH rats 

was prevented by the inhibition of ASIC1, leading to the speculation that the CH-induced 

enhancement of SOCE is mediated in part by ASIC1 in PASMCs and contributes to the 

development of CHPH [279,280]. 

   

   B. Hypoxic-induced alteration of intracellular Ca2+ release 

 Despite the well-established investigation of the extracellular Ca2+ influx, the 

information on the alteration of intracellular Ca2+ release mechanisms in PASMCs during 

CH is scant. Bonnet et al. found that in the early stage (1–2 weeks) of CH, the main PA 

rings in rats exhibited spontaneous and rhythmic contractions, spike-like membrane 

depolarization, and elevation in resting [Ca2+]i. The spontaneous rhythmic contraction 

was inhibited by disabling Ca2+ release from SR using ryanodine, tetracaine, or CPA 

[281]. This spontaneous rhythmic contraction of the main PA diminished after 3–4 weeks 

of CH when vascular remodeling and PH was fully established, suggesting that there is a 

time-dependent alteration of the Ca2+ release mechanism from SR stores under CH. 
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 Increasing evidence indicates that CH increases the level of intracellular ROS 

originating from mitochondria and NADPH oxidase in PASMCs [282,283]. Accordingly, 

the elevation of ROS is responsible for hypoxic-induced elevation of [Ca2+]i mediated by 

Ca2+ release [284]. In particular, the CH-induced generation of ROS triggers dissociation 

of the complex of RyR2 and FK506 binding protein 12.6 (FKBP12.6) [285]. As 

mentioned above, FKBP12.6 dissociation can be regulated by cADPR [286]. Yet, the 

regulation of cADPR synthesis in PASMCs by CH has not been established. Moreover, 

exogenous application of ROS also activates Ca2+ release via both IP3R- and RyR-gated 

Ca2+ stores in PASMCs [287]. These results imply that CH may enhance generation of 

ROS, triggering the activation of RyR- and IP3R-gated Ca2+ release in PASMCs. 

  

   C. Regulation of CD38 by hypoxia in PASMCs 

 Recent studies demonstrated that CD38 appears to play an important role in acute 

HPV. The hypoxic response in PAs or PASMCs has been shown to be consistently 

suppressed by the inhibition of RyRs [177,191,201,288,289]. Studies of rabbit and rat 

PAs showed that acute exposure to hypoxia promotes the accumulation of cADPR to 

elicit Ca2+ release from RyR-gated Ca2+ stores to initiate vasoconstriction in PAs 

[177,191]. Particularly, Wilson et al. demonstrated that (a) acute hypoxia reduces the 

ratio of β-NAD+ to β-NADH+ in PA, (b) β-NADH+ inhibits the hydrolase activity of 

CD38, and (c) accumulation of cADPR leads to HPV mediated by RyR-gated Ca2+ 

release. Based on these observations, acute hypoxia may have a direct influence on 

CD38-dependent mechanisms, and CD38 may act as a redox sensor in PASMCs [191]. 
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 Nevertheless, although there is still controversy about the role of CD38 as a redox 

sensor in HPV [290], there is no systematic research on the role of CD38 in the 

regulation of intracellular Ca2+ mobilization, in particular Ca2+ release, in PASMCs. 

Furthermore, it is completely unknown whether CH regulates the expression and activity 

of CD38, as well as cADPR and NAADP-dependent Ca2+ release, in PASMCs.  

 

III. Statement of thesis objective 

 Ca2+ is an indispensible element that plays a pivotal role in maintaining normal 

cell function. The regulatory mechanism of intracellular Ca2+ is a complex response to 

chemical and physical stimulus in PASMCs. Profound changes in [Ca2+]i homeostasis 

occur due to CH, but the mechanisms for these changes are still not fully understood. In 

particular, the functional alterations in intracellular Ca2+ release processes in PASMCs 

have been barely investigated. Thus, the overall aim of this thesis research is to 

investigate the novel mechanism of CD38-dependent Ca2+ release and the changes in its 

enzymatic activity and expression in PASMCs under exposure to CH.  

 To investigate the objectives, the first aim of this dissertation is to determine the 

underlying mechanism of agonist-induced CD38 activation using Ang II as the activator 

of intracellular Ca2+ release in PASMCs. The second aim is to investigate the CH-

induced alterations of CD38-dependent Ca2+ pathways in PASMCs to elucidate their 

contributions in the pathophysiology of CHPH.   

 This research successfully reveals the novel roles of CD38-dependent Ca2+ 

pathways in the physiological regulation of pulmonary vascular reactivity and the 
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pathophysiology of CH-induced PH. Proof of these concepts may lead to the discovery of 

a new therapeutic target for the treatment of CHPH.  
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CHAPTER 3 

CD38 MEDIATES ANGIOTENSIN II-INDUCED INTRACELLUAR CALCIUM 

RELEASE IN RAT PULMONARY ARTERIAL SMOOTH MUSCLE CELL
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Abstract 

 CD38 is a multifunctional enzyme that synthesizes the endogenous Ca2+ 

mobilizing messengers cADPR and NAADP. cADPR and NAADP activate ryanodine 

receptors (RyRs) of the endoplasmic/sarcoplasmic reticulum (ER/SR) and NAADP-

sensitive endolysosomal Ca2+ stores, respectively; further, they are thought to play 

important roles in the regulation of [Ca2+]i and vascular functions.  However, information 

on the physiologic functions and the regulatory mechanisms of CD38 in PASMCs is 

scanty. This study characterized the expression of CD38, and its roles in angiotension II 

(Ang II)-induced vasoconstriction in PAs and Ang II-induced Ca2+ release (AICR) in 

PASMCs. Examination of the expression profile of CD38 in various rat arteries found a 

relatively high level of CD38 expression in PA-smooth muscle. Application of Ang II to 

PASMCs elicited Ca2+ response composed of both extracellular Ca2+ influx and 

intracellular Ca2+ release AICR activated in the absence of extracellular Ca2+ was 

significantly reduced by pharmacological or by siRNA inhibition of CD38, implying that 

CD38 mediates AICR in PASMCs.  AICR was suppressed by the cADPR antagonist 

cADPR 8-Br-cADPR or the inhibition of the RyR-gated Ca2+ released with ryanodine.  It 

was also suppressed by the NAADP-antagonist Ned-19 or the disruption of 

endolysosomal Ca2+ stores by the vacuolar H+-ATPase inhibitor bafilomycin A1. 

Suppression of AICR by the inhibition of cADPR- and NAADP-dependent pathways was 

non-additive, indicating inter-dependence between RyR- and NAADP-gated Ca2+ release 

in PASMCs. Furthermore, AICR was inhibited by the PKC inhibitor staurosporine, the 

non-specific NADPH oxidase (NOX) inhibitor apocynin and DPI, the NOX2 specific 

inhibitor gp91ds-tat, and the ROS scavenger TEMPOL. These results, for the first time, 
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provide evidence that Ang II activates CD38-dependent Ca2+ release via the PKC-NOX2-

ROS pathway in PASMCs.  

 

Introduction 

 CD38 is a 45 kDa trans-membrane glycoprotein ubiquitously distributed in 

mammalian tissues, including inflammatory cells, brain tissue, pancreas, cardiac muscles, 

and airway and vascular smooth muscle cells [126,137,291]. CD38 is a multifunctional 

enzyme that serves as an ADP-ribosyl cyclase, synthesizes cyclic ADP-ribose (cADPR) 

from β-NAD+, and acts as a catalase, producing nicotinic acid adenosine diphosphate 

(NAADP) from β-NADP+ through a base-exchange reaction [148,149,152]. Additionally, 

both products, cADPR and NAADP, can be hydrolyzed by CD38 to form ADP-ribose 

and ADP-ribose phosphate, respectively [152,292,293]. cADPR is the endogenous ligand 

of RyRs [132,133]. It binds to the FK506 binding protein, an accessory protein that 

stabilizes RyRs on endoplasmic/sarcoplasmic reticulum (ER/SR), causing its dissociation 

from RyRs to initiate channel activation [134,135]. NAADP is the most potent Ca2+ 

mobilizing messenger to date, which triggers Ca2+ release from endolysosomes [150,151]. 

Recent studies identified the two-pore channels (TPC1 and TPC2) as the NAADP-

activated Ca2+-release channels [117,294,295]. It has been suggested that NAADP either 

binds directly to TPCs or to an accessory protein of the TPC complex to activate 

endo/lysosomal Ca2+ release [296].  

To date, CD38 expression has been reported in various types of systemic arteries 

[186,187,188,196]. Endogenous vasoconstrictors such as norepinephrine (NE), 

endothelin-1 (ET-1), and angiotensin II (Ang II) can activate the cyclase and catalase 

activities of CD38, contributing to the elevation of [Ca2+]i and vasoconstriction in 
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systemic arteries [120,168,193,297,298].  These agonists of mediated by G-protein 

coupled receptor (GPCR) signaling pathways activate phospholipase C (PLC) to 

synthesize inositol trisphosphate (IP3) and diacyglycerol (DAG) from 

phosphatidylinositol bisphosphate. IP3 activates the IP3 receptor, which releases 

intracellular Ca2+ from SR in vascular smooth muscle cells (VSMCs) [299,300]. 

Evidence also demonstrated that Ang II can activate NAD(P)H oxidases (NOXs), in 

particular NOX2, to increase the production of reactive oxygen species (ROS) in VSMCs 

[301,302,303,304,305,306]. Ang II facilitates the assembly of NOX2 subunits by the 

phosphorylation of p47phox, leading to the coupling of p47phox and gp91phox, and ROS 

generation [307]. Moreover, previous studies showed that ROS production is associated 

CD38 activation [194,308,309,310], and that Ang II stimulates NOX to generate ROS, 

leading to enhanced ADP-ribosyl cyclase activity in afferent arterioles [305].  

 CD38 expression and its cyclase and hydrolase activity have been reported in rat 

pulmonary arteries (PA) and pulmonary arterial smooth muscle cells (PASMCs) 

[122,176,191].  ET-1 has also been shown to elicit Ca2+ responses in PASMCs, partially 

through NAADP-gated Ca2+ release and cross-activation of RyRs by Ca2+-induced Ca2+ 

release [114,121]. Moreover, integrin-ligand GRGDSP increases the production of 

cADPR and activates Ca2+ release from both the RyR-gated Ca2+ stores and the 

endolysosomal Ca2+ store [122]. However, the mechanism underlying agonist-induced 

activation of CD38 in PASMCs is still unclear. In this study, we compared the expression 

of CD38 in pulmonary and systemic arteries, determined the contribution of CD38 in 

Ang II-induced Ca2+ release (AICR), and examined the signaling mechanism of Ang II-
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induced activation of CD38 in PASMCs. We found that Ang II activates CD38 dependent 

Ca2+ release via the PKC-NOX2-ROS pathway in PASMCs. 

 

Method 

Preparation of rat PA tissue and PASMC   All animal procedures in this study 

conformed with the Laboratory Animals Care and Use guidelines published by the United 

States National Institutes of Health and was approved by the Johns Hopkins University 

Animal Care and Use Committee.  PA tissues were surgically dissected and PASMCs 

were enzymatically isolated from the tissues as previously described [311]. Briefly, lungs 

were harvested from male Wistar rats (150–200 g) anesthetized with an overdose of 

sodium pentobarbital (130 mg/kg intraperitoneally). Intrapulmonary arteries of second to 

fourth  generations (800 to 300 µm) were then dissected in a 1.5 mM Ca2+ HEPES-

buffered salt solution (HBSS) containing 130 mM NaCl, 5 mM KCl, 1.2 mM MgCl2, 1.5 

mM CaCl2, 10 mM HEPES, and 10 mM glucose (pH 7.2 adjusted with 5 M NaOH). PAs 

were cleaned of connective tissue and cut open to remove their endothelial layers by 

rubbing the luminal surface thoroughly with a cotton swab. For the isolation of PASMCs, 

PA tissues were incubated in cold HBSS for 30 min, and then in HBSS with reduced Ca2+ 

(20 µM) at room temperature for 20 min. PAs were digested in a reduced-Ca2+ HBSS 

containing type I collagenase (1,750 U/ml), papain (9.5 U/ml), bovine serum albumin (2 

mg/ml), and dithiothreitol (1 mM ) at 37 °C for 20 min. After digestion, tissue was 

transferred to Ca2+-free HBSS and the PASMCs were gently dispersed from the tissues 

by trituration in Ca2+-free HBSS. The PASMCs were cultured transiently on 25 mm glass 
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cover slips (18–24 hrs) in HAM’s F-12 media (#10-080-CV,  Mediatech, Inc., VA) with 

0.5% FBS and antibiotics for Ca2+ fluorescence experiments.  

Preparation of protein   Total protein was isolated from PA and other artery tissues, 

including the aorta, mesenteric (MA), renal (RA), femoral (FA), tail (TA), and cerebral 

artery (CA), and the PASMCs were cultured for Western blot analysis of CD38 

expression. Endothelium-denuded PAs were frozen in liquid nitrogen and then pulverized 

with pestle and mortar in the liquid nitrogen. Ground tissues were transferred to a protein 

lysis buffer containing 50 mM Tris, 150 mM NaCl, 300 mM Sucrose, 0.5% NP-40, 1% 

deoxycholic acid, and 0.1% SDS with 5 mM EDTA and HaltTM protease inhibitor 

cocktail (Thermo Scientific, #78430). Tissue and cell lysate were centrifuged by 3,000 g 

at 4 °C for 10 min, and the protein concentrations were measured with the BCA Protein 

Assay Kit (Pierce, #23225).  

Western blot   Protein samples were separated with 10% polyacrylamide gel (20 µg from 

artery tissues and 10 µg from PASMCs per lane), and the separated proteins were 

transferred to an Immobilion®-P PVDF transfer membrane (#IPVH00010, EMD 

Millipore, Billerica, MA) using a tank system filled with transfer buffer containing 3.03 

g/L Tris-base, 14.4 g/L glycine, and 10% methanol (80V, 3 hours, 4 °C). After blocking 

with 5% skim milk in PBS containing 0.0 1% Tween-20 (PBST) at room temperature for 

1 hour, the membranes were incubated overnight with primary antibodies diluted in 3% 

BSA-PBST at 4 °C. The primary antibody for CD38 was diluted by 1:500 (#SC-7049, 

goat-anti rat, Santa Cruz Biotechnology, Inc.) and actin by 1: 5,000 (#SC-1615, goat-anti 

rat, Santa Cruz Biotechnology, Inc.). After a wash in PBST, the membranes were 

incubated with horseradish peroxidase-coupled secondary antibody (#SC-2020, donkey-
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anti goat, Santa Cruz Biotechnology, Inc.) diluted by 1:5,000 in 3% BSA-PBST at room 

temperature for 1 hour, and then washed extensively. Upon incubation of the membrane 

with the enhanced chemiluminenscence substrate (#Pierce Biotechnologies), protein 

signals were detected on autoradiography film and quantified with Gel Logic 200 Image 

System (#Kodak, New Haven, CT). CD38 expression data were normalized with the 

actin level of each sample to correct sample variability.   

 Because of the similarity in size between actin and CD38 protein, the membrane 

was stripped and reprobed after the measurement of CD38. The membrane was gently 

agitated in 100 % acetonitrile for 10 min, submerged in stripping buffer (2% SDS, 62.5 

mM Tris-HCL buffer pH 6.7) containing 100 mM 2-mercaptoethanol, and incubated at 

50 ºC for 25 min. After a wash in PBST, the same protocol with typical a Western blot 

from a blocking step was undertaken. 

Quantitative reverse-transcriptional PCR   Endothelium-denuded PAs frozen in liquid 

nitrogen were mechanically homogenized with pestle and mortar. Total RNA from the 

PA tissues and cultured PASMCs was extracted using an RNeasy® minikit (#74104, 

Qiagen, Valencia, CA), followed by a first-strand cDNA synthesis using random hexamer 

primers and Superscript Ш-reverse transcriptase (#18080-051, Invitrogen, Grand Island, 

NY) according to the manufacturer's protocol. Quantitative real-time RT-PCR (qRT-PCR) 

data was used to quantify the expression of CD38 in PA and other arterial tissues with iQ 

SYBR Green PCR Supermix (#170-8880, Bio-Rad, Hercules, CA) following the 

manufacture’s protocol. Gene-specific primers of qRT-PCR for 18S rRNA and CD38 of 

the following sequences were used: 18S rRNA forward 5′–CGGCTACCACATCCAAGG 

AA–3′ and reverse 5′–AGCTGGAATTACCGCGGC–3′ (accession number: 57149; 
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position: 452-639; expected size: 188 bp), CD38 forward 5′–TGGAGCAAGTCCAAAC 

ACCTGGC–3′, and reverse 5′–CTGGGGTCTCCACACCACCTGA–3′ (accession 

number: 6978628; position: 382-500; expected size: 119 bp). A qRT-PCR protocol, 

consisting of an initial step at 95°C for 5 min, followed by 40 cycles at 95°C for 15 s, 

60°C for 30 s, and 72°C for 1 min, was performed using the iQ5 Multicolor real-time 

PCR detection system (Bio-Rad, Hercules, CA). Absolute copy numbers were calculated 

using standard curves generated from serial dilutions of the known copy number of the 

purified PCR products defined according to each product’s size. All data were 

normalized by the copy number 18s rRNA in each sample to compensate for sample 

variability. 

Calcium Imaging   [Ca2+]i was measured with fluorescent microscopy as previously 

described [311]. Fresh-isolated PASMCs on 25 mm cover-slip incubated overnight were 

loaded with fluo-3 AM (#F1242, Invitrogen, Grand Island, NY) and dissolved in DMSO 

containing 20% pluronic acid for 45 min at room temperature in the dark. Cells were 

washed with a 2 mM CaCl2 tyrode solution containing 137 mM NaCl, 5.44 mM KCl, 1 

mM MgCl2, 10 mM D-glucose, and 10 mM HEPES, with pH 7.4 adjusted with NaOH, 

followed by 20 min of incubation for the deesterification of the cytosolic dye. Fluo-3 

fluorescence, excited at 488 nm and emitted with 515 nm, was detected using a Diaphot 

microscope (Nikon TE2000U) equipped with epifluorescence attachments and a 

microfluometer (PTI, model D-104). Protocols were executed and data collected on-line 

with a Digidata analog-to-digital interface and the pClamp software package (Axon 

Instruments Inc.). Fluorescence intensity (F) was used to calculate the absolute [Ca2+]i 

with the equation: [Ca2+]i =[KD · (F – Fbg )]/(Fmax – F), where Fbg is the background 



46 
 

fluorescence and F max is the maximum fluorescence. The value for KD of fluo-3 is 1.1 

µM. Fmax was determined in situ using the Ca2+ ionophore 4-Bromo-A23187 (#100107, 

Calbiochem, La Jolla, CA) and 10 mM Ca2+, and Fbg was measured in an area devoid of 

cells after Mn2+ quenching. 

Isometric tension measurements in PAs   Isometric contraction of PAs induced by 

agonists were examined by an organ chamber experiment described previously [75]. 

Briefly, rat intralobar PAs (outer diameter: 300–800µm) were surgically harvested, 

endothelium-disrupted by gently rubbing the lumen with a fine wooden stick, and cut into 

ring segments of 4 mm in length. The PA rings were mounted in organ chambers warmed 

at 37°C and filled with Krebs solution (containing 118.3 mM NaCl, 4.7 mM KCl, 1.2 

mM MgSO4, 25 mM NaHCO3, 11.1 mM glucose, 1.2 mM KH2PO4, and 2 mM CaCl2,) 

and gassed with 16% O2-5% CO2 to maintain a pH of 7.4 during the entire experiment. 

Isometric tension was measured using force-displacement transducers (Grass Instruments, 

Quincy, MA), amplified by a PowerLab system controlled by the Chart software 

(ADInstruments Inc. Colorado Springs, CO). After equilibrium under a resting tension of 

approximately 0.8 g for 90 min, three 60 mM KCl-induced vasoconstrictions for 15 min 

each and washouts were performed to attain the stable optimal contraction of PA rings. 

Concentration-dependent responses to Ang II were examined by the cumulative addition 

(0.5 log unit increments) of Ang II into each chamber in the presence or absence of CD38 

inhibitors. All inhibitors were preincubated for 10 min before the addition of AngII. At 

the end of experiments, the PA ring was exposed to phenylephrine (3 x 10-7 M) followed 

by acetylcholine (10-6 M) to verify the disruption of endothelium. Data from PA rings 

with >20% maximal contraction to the phenylephrine were discarded. The Ang II-
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induced isometric tension was normalized to the maximal tension generated by 60 mM 

KCl.  For the estimation of EC50 and maximum response (Emax), the concentration-

response curves were analyzed using a 3-parameter logistic model or Hill equation as 

follows: E= (Emax )/{1+([Agonist]/EC50)
-b}], where E is the response and b is the slope 

factor.  

siRNA knockdown of CD38  Isolated PASMCs in 0.5% FBS-containing HAM’s F-12 

media, incubated overnight, were cultured in 5% FBS-SmGM for 6 days with two cell 

passages. Short interfering RNA (siRNA) for CD38 was commercially purchased from 

Origene (#SR509476A, sequence: 5'-ACCAUACCAUGUAACAAGACUCUCT-3'), 

along with the scrambled control sequence. Prepared PASMCs were transfected with 100 

nM siRNA or scramble control by electroporation using the Amaxa 96-well ShuttleTM 

system (Lonza) and immediately seeded on 25 mm cover-slips in 5% FBS containing 

SmGM and incubated overnight. After 24 hrs, the medium was changed to serum-free 

SmGM for overnight starvation. Intracellular Ca2+ measurements and Western blots were 

performed within 48 hours of the siRNA transfection. 

Chemicals and inhibitors  All chemicals were commercially purchased: Ang II 

( #A9525), nicotinamide (#N0636, an ADP-ribosyl  cyclase inhibitor), 8-Bromo-cADPR 

(#B5416, an antagonist of cADPR), staurosporine (#S-4400, PKC inhibitor), and 

diphenyleneiodonium (DPI, #D2926, NADPH oxidase inhibitor) from Sigma-Aldrich (St. 

Louis, MO); ryanodine (#181-00961, RyRs blocker) from Wako Pure Chemical 

Industries, LTD (Osaka, Japan); trans-Ned-19 (#270-503, a NAADP antagonist) and 

bafilomycin A1(#BML-CM110, a vacuolar-type H+-ATPase inhibitor), from Enzo Life 

Sciences (Farmingdale, NY); apocynin (#178385, NADPH oxidase inhibitor) from EMD 
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millipore (Billerica, MA); and TEMPOL (#4653, ROS scavenger) from TOCRIS 

bioscience (Bristol, UK). The NOX2-specific peptide inhibitor gp91ds-tat (#63818) was 

purchased from ANASpec (Fremont, CA). 

Statistical Analysis   All data are shown as a mean ± S.E.M, calculated by Sigmaplot 11 

(Systat Software Inc). The numbers of duplicates (n) are specified in the text. Statistical 

significance (p<0.05) was assessed with unpaired Student’s t-tests, ANOVA with the 

Holm-Sidak method, or Newman-Keuls post hoc analyses if applicable.  

 

Result 

Profile of CD38 expression in vascular smooth muscle.  

 The expression of CD38 protein in endothelium-denuded rat arteries was detected 

by Western blot. The specificity of the CD38 antibody was verified using a specific 

blocking peptide (SC-7049P, Santa Cruz Biotechnology), which was pre-mixed with 

CD38 antibody (1 antibody: 5 antibody-blocking peptide) and incubated overnight at  

4 C before used. As shown in Figure. 3.1A, CD38 was detected as a single band of 

approximately 45 kDa in the resolved protein samples of PA, the renal artery (RA), and 

the cerebral artery (CA). The signals were completely blocked by the blocking peptide, 

whereas the non-specific signals of 50 kDa were unaffected. The molecular size of CD38 

detected in CA samples was slightly smaller compared to those in PA and RA, 

presumably due to differences in the post-translational modification of glycosylation and 

phosphorylation.  

 We further compared CD38 protein expression in different types of arteries, 

including the aorta (Aor), PA, mesenteric artery (MA), femoral artery (FA), tail artery 
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(TA), RA and CA, as well as in isolated PASMCs (Fig. 3.1B). Immunoblots were 

performed using protein samples from different arteries at the same time. PDVF 

membranes were stripped and reprobed for actin as a loading control for normalization. 

Clear signals of CD38 were detected in PA, RA, CA, and PASMCs, compared to the 

weaker signals in Aor, MA, FA, and TA, with a CD38 expression profile of  

CA>RA=PA>MA>Aor=FA=TA (Fig. 3.1C). qRT-PCR was performed to further 

examine CD38 mRNA expression in the different types of arteries (Fig. 3.1D). CD38 

transcript levels were similar to the protein levels with the exception of a relatively high 

mRNA level in the aorta.  These results indicate that CD38 are differentially expressed in 

different types of arteries, with very clear expression in PA and PASMCs.  

 

Ang II-induced activation of CD38 contributes to PA contraction. 

 To determine the contribution of CD38 activity in vasoreactivity, we examined 

the Ang II-induced isometric contraction of endothelium-denuded rat PA in the presence 

of 20 mM nicotinamide (NA) for the inhibition of CD38 (Fig. 3.2).  Application of 0.1 

nM to 100 nM Ang II activated concentration-dependent contraction expressed as % K-

induced maximum response. Preincubation of PA rings with 20 mM nicotinamide (NA) 

for 20 min significantly reduced the maximal response (control : 89.60±5.06%, n=7; 

nicotinamide: 44.07±4.55%, n=7, p<0.01) and increased the EC50 (control: 1.48±0.25 nM, 

n=7; 3.76±0.53 nM, n=7, p<0.01) as compared to the control  (Fig. 3.2A). Moreover, 

preincubation with 50 μM ryanodine for the inhibition of RyRs also caused a reduction in 

Ang II-induced maximum vasoconstriction (Emax=61.43±15.59%, n=5, p=0.016) 

compared to the control (Emax=111.72±9.78%, n=5), even though it had no significant 
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effect on EC50 (Fig. 3.2B).  Suppression of Ang II-induced PA contraction by NA and 

ryanodine suggests that CD38 may play an important role in Ang II-induced pulmonary 

vasoconstriction. 

 

Ang II-induced Ca2+ release in PASMCs is mediated in part by CD38. 

 Previous studies have demonstrated that CD38 contributes to agonist-induced 

Ca2+ mobilization in different types of cells and tissues [120,168,172,312]. Hence, we 

characterized Ang II-induced Ca2+ mobilization to determine the involvement of CD38 

dependent mechanisms in PASMCs. The Ang II-induced Ca2+ response was determined 

in PASMCs in the presence extracellular Ca2+, or after Ca2+ containing external solution 

was exchanged with 1 mM EGTA containing Ca2+-free Tyrode solution 100 seconds 

prior to Ang II application to minimize changes in SR Ca2+ stores (Fig. 3.3). Ang II at 

concentrations between 10 nM to 1µM elicited concentration-dependent increases in 

[Ca2+]i, which rose rapidly to the peak and returned to the baseline within 100 seconds. 

The differences between the baseline and the peak  [Ca2+]i (∆[Ca2+]i) induced by 10 nM, 

100 nM, and 1 µM Ang II were 88.5±32.6 (n= 6), 405.6±51.3 (n=7), and 741.4±122.5 

nM (n=6), respectively, in the presence of 2 mM Ca2+; and 69.6±26 (n=6), 165.5±68 (n=7) 

and 418.6±126.4 nM (n=6), respectively, in the absence of extracellular Ca2+. Ca2+ 

responses activated by 100 nM Ang II were significantly reduced after the removal of 

extracellular Ca2+ (p=0.016). These results clearly suggest that Ang II-induced Ca2+ 

responses consisted of both Ca2+ release and Ca2+ influx in PASMCs. 

 To further elucidate whether AICR is dependent on the cyclase activity of CD38, 

PASMCs were incubated for 20 min with the ADP-cyclase inhibitor NA before the 
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application of 100 nM Ang II under Ca2+-free condition (Fig. 3.4). NA at concentrations 

between 2–20 mM had no significant effect on the basal [Ca2+]i in PASMCs. The kinetics 

of AICR was similar in the presence of NA. In contrast, peak Ca2+ response to 100 nM 

Ang II was reduced by NA in a concentration-dependent manner, with maximum 

[Ca2+]i equal to 469.9±60.2 (n=10), 375±65.8 (n=8, p=N.S.), 268.9±49.3 (n=8, p=0.007), 

221.7±31.6 (n=9, P<0.001), and 152.9±28.6 nM (n=10, p<0.001) at 0, 2 , 5 , 10, and 20 

mM NA respectively. 

 

Knockdown of CD38 expression decreases AngII-induced Ca2+ release in PASMCs.   

 To clarify whether AICR is indeed mediated by activation of CD38 in PASMCs, 

we examined AICR in siRNA-transfected PASMCs. The efficiency of siRNA treatment 

was determined by Western blot (Fig. 3.5A). CD38 protein levels were significantly 

reduced, by 69.05±5.35%, in siRNA transfected PASMCs compared to those in 

scrambled sequence transfected control cells (p=0.006, n=5).  The reduced CD38 

expression was associated with attenuated AICR in the siRNA transfected PASMCs (Fig. 

3.5B). The AICR peaks [Ca2+]i were 1028±114.5 nM in control cells (n=10) and 

552.6±103.1 nM in CD38 siRNA (n=8)(p=0.003). Moreover, the significant reduction of 

AICR caused by 20 mM NA in the scrambled sequence transfected cells (637.8±119.2 

nM, n=8, p=0.012) was not observed in the CD38 siRNA transfected PASMCs 

(574.6±71.9 nM, n=8). Accordingly, the proportion of the reduction in the peak [Ca2+]i 

by 20 mM NA was 37.96±11.59% in the control group, and -3.97±13.02% in CD38 

siRNA transfected PASMCs (p=0.031). These results provide direct evidence that AICR 

is mediated, in part, through CD38 activation in PASMCs. 
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AICR in PASMCs is mediated in part by the cADPR-RyRs and NAADP-TPCs pathway. 

 The cyclase activity of CD38 generates cADPR, which causes Ca2+ release via 

RyRs on the ER/SR in various types of cells, including vascular smooth muscle cells 

[100,141].  To examine the role of the cADPR-RyRs pathway in PASMCs, we 

determined the effects of the specific cADPR antagonist 8-Br-cADPR and ryanodine on 

the AICR in PASMCs (Fig. 3.6). Preincubation of PASMCs with various concentrations 

of 8-Bromo-cADPR for 20 min had no effect on the basal [Ca2+]i, but it caused 

significant reductions in the AICR peaks. The peaks [Ca2+]I elicited by 100 nM Ang II 

were 333.5±32.2 (n=9), 234.2±31.3 (n=6, p=0.026), 198.3±24.4 (n=7, p=0.002), 

185.3±26.5 (n=9, p<0.001), and 190.8±26.3 nM (n= 9, p<0.001) at 0, 0.1, 1, 10, and 100 

µM 8-Br-cADPR, respectively (Fig. 3.6A). An apparent maximum inhibition of 40–50% 

of the control response was reached at 1 µM 8-Bromo-cADPR.  Moreover, inhibition of 

RyRs by 50 μM ryanodine reduced the peak AICR from 299.5±57.3 to 125.4±21.1nM 

(n=9, p=0.034) (Fig. 3.6B). Hence, our data clearly suggest that Ang II-induced increases 

in [Ca2+]i are mediated in part through the activation of ryanodine receptors by cADPR in 

PASMCs. 

 In addition to the cADPR-RyRs pathway, CD38 is responsible for Ca2+ 

mobilization through the activation of catalase, which  generates NAADP targeting the 

two-pore channels (TPCs) that gate the endolysosomal Ca2+ stores [117]. To evaluate the 

contribution of the NAADP-lysosomal Ca2+ pathways, we have examined AICR in the 

presence of the specific NAADP antagonist Ned-19. Our previous study showed that 1 

μM Ned-19 significantly inhibited intracellular Ca2+ release induced by membrane 

permeable NAADP-AM in PASMCs [114]. Preincubation of PASMCs with 1 µM Ned-
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19 for 20 min significantly reduced the peak Ca2+ response induced by 100 nM Ang II 

from 186.9±44 to 67.6±14.8nM (n=9, p=0.021) (Fig. 3.7A).  Moreover,  3μM 

bafilomycin A1(Baf A1), which blocks the vacuolar-type H+-ATPase and disrupts the 

lysosomal proton gradient for Ca2+ uptake by the H+-Ca2+ exchanger [313,314], 

significantly suppressed AICR (control: 299.5±57.3nM, n=9; Baf A1: 125.4±21.1nM, 

n=8, p=0.014) (Fig. 3.7B). These results suggest that NAADP-mediated Ca2+ release 

from endolysosomal stores also contributes significantly to the Ang II induced Ca2+ 

response in PASMCs. 

 CD38-dependent cADPR-RyRs and NAADP-lysosome pathways may operate 

independently or interdependently to facilitate Ang II induced Ca2+ mobilization. Our 

previous study provided evidence that Ca2+ release from NAADP-sensitive stores is 

amplified by cross-activation of Ca2+ release  from RyRs-gated Ca2+ stores in PASMCs 

[114]. This possibility was examined by inhibiting both pathways with 10 µM 8-Br-

cADPR and 1 µM Ned-19.  The combined inhibitory effect of 8-Br-cADPR and Ned-19 

(peak  [Ca2+]i: control=330.4±40.8nM, n=12; 8-Br-cADPR+Ned-19=157.7±19.5nM, 

n=10, P=0.002) was similar to 8-Br-cADPR or Ned-19 alone, indicating that the effects 

of two inhibitors are non-additive (Fig. 3.7C). These results suggest that the two Ca2+ 

release pathways operate inter-dependently for AICR in PASMCs.  

 

Ang II-induced CD38 activation is mediated by NADPH oxidase-dependent pathways 

in PASMC.  

 We further examined whether Ang II-induced CD38 activation is mediated by the 

PKC-NOX pathway (Fig. 3.8).  Preincubation of PASMCs with the PKC inhibitor 
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staurosporine (STAS, 10 nM)  for 20 min significantly reduced the peak Ca2+ response 

induced by 100 nM Ang II from 332.9±30.9 nM (n=8) to 204.7±34.3 nM (n=9, p=0.019). 

The addition of 20 mM NA to inhibit CD38 did not cause further reduction in the AICR 

(STAS+NA: 163.7±37.2 nM, n=10, p=0.432) (Fig. 3.8A). These results imply that 

activation of PKC is an upstream step in the signaling pathway for Ang II-induced CD38 

activation. 

 To determine the contribution of NOX in Ang II-induced CD38 activation, AICR 

was measured in the absence or presence of the NOX inhibitors apocynin (APC) and 

diphenyleneiodonium (DPI). The peak Ca2+ response elicited by Ang II was significantly 

reduced by 30 µM APC (control: 304±56.9 nM, n=5; APC: 96.7±25.1 nM, n=6, p<0.001).   

Inhibition of CD38 by NA in the presence of APC did not lead to any additional decrease 

in AICR (APC+NA: 111.4±18.1nM, n=6, P=0.002) (Fig. 3.8B). Additionally, Ang II-

induced peak Ca2+ was significantly reduced by 30 µM DPI (control: 333±30.9 nM, n=8; 

DPI: 205.7±34.3 nM, n=9, p=0.019). Likewise, NA did not lead to an additional decrease 

in AICR after inhibition of NOX by DPI (DPI+NA: 164±37.2 nM, n=10, p=0.003) (Fig. 

3.8C). These results suggest that Ang II-induced CD38 activation is mediated by 

activation of NOX. 

 Furthermore, AICR was examined in the presence of the superoxide scavenger 

TEMPOL (TEMP). Preincubation of PASMCs with 100 µM TEMP caused a significant 

reduction in AICR (control: 227.6±33.9 nM, n= 8; TEMP: 120.5±18.4nM, n=9, p=0.007), 

but the addition of NA did not cause further reduction in the response (TEMP+NA: 

92.7±22.4 nM, n=9, p=0.001) (Fig. 3.8D). These data indicate that Ang II-induced 

activation of CD38 is mediated by ROS produced by NOX. 
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Ang II-induced activation of CD38 is specifically mediated by NOX2. 

 To further examine the involvement of specific NOX subtypes in Ang II-mediated 

CD38 activation, we tested AICR in the presence of the small molecule NOX inhibitor 

VAS2870, the NOX1 specific antagonist ML171, and gp91ds-tat, a specific inhibitory 

peptide targeting NOX2. 30 µM VAS2870 had no significant effect on AICR (control: 

275±38.9 nM, n=10; VAS2870: 248±49.5 nM, n=10, p=N.S.) (Fig. 3.9A); likewise, 2 μM 

ML171 did not suppress AICR (control: 326±51.3 nM, n=6; ML171: 315±61.4 nM, n=6, 

p=N.S.) in PASMCs (Fig. 3.9B). 

 In contrast, the pretreatment of PASMCs with 10µM gp91ds-tat caused 

significant reduction in the peak Ca2+ response (control: 364.6±38.7 nM, n=13; gp91ds-

tat: 252.4±24.9 nM, n=13, p=0.045). Furthermore, there was no significant difference in 

the AICR between the gp91ds-tat and gp91ds-tat+NA treated cells (206.5±44.7 nM, n= 8, 

p=0.018). These results suggest that Ang II-induced CD38-dependent Ca2+ release is 

mediated primarily by the activation of NOX2 (Fig. 3.9C). In summary, these results 

suggest that Ang II activates CD38 through the PKC-dependent activation of ROS 

production from NOX2.     
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Figure 3.1. CD38 expression in rat pulmonary artery, systemic arteries and 

PASMCs.   (A) Verification of the specificity of CD38 antibody in samples of 

pulmonary artery (PA), renal artery (RA), and cerebral artery (CA) with (right panel) and 

without (left panel) pretreatment of the antibody with a blocking peptide. (B)  An 

immunoblot of CD38 from samples of aorta, PA, mesenteric (MA), renal (RA), femoral 

(FA), tail (TA) and CA arteries. (C) Averaged normalized CD38 protein level in various 

arteries using β-actin for normalization (n=5). (D) Quantitative real-time polymerase 

chain reaction of CD38 mRNA expression from different vascular smooth muscle tissues. 

The data are normalized with 18S RNA (n=5).  
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Figure 3.2. Inhibition of Ang II-induced isometric contraction of PA by 

nicotinamide and ryanodine.  (A) Concentration-dependent curves of Ang II-induced 

PA contraction in the presence or absence of 20 mM nicotinamide (n=7, Left panel). 

Mean maximum contractile force (Emax, right upper panel) and EC50 (right-bottom panel) 

values of Ang II concentration-response curves. Asterisk (*) indicates significant 

difference compared to the untreated control (p<0.001, n=7). (B) Concentration-

dependent curves of Ang II-induced PA contraction in the presence or absence of 50 µM 

ryanodine (n=5)(Left panel). Emax (right upper panel) and EC50 (right-bottom panel) 

values of Ang II concentration-response curves. * indicates significant inhibition by 

ryanodine compared to the untreated control (p=0.016, n=5). EC50 was not significantly 

increased in the ryanodine treated group (p=0.311). 
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Figure 3.3. Concentration-dependent increase in [Ca2+]i activated by Ang II in rat 

PASMCs.   (A and B) Average Ca2+ transient ([Ca2+]i) activated by different 

concentrations of Ang II (10 nM, 100 nM and 1 µM) in the presence (2 mM Ca2+) or 

absence (containing 1mM EGTA) of extracellular Ca2+. (C) The average increase ( peak, 

right panel) in [Ca2+]i  induced by different concentrations of Ang II. 

* indicates significant difference between the groups (n=6-7, p<0.05)  
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Figure 3.4. Inhibition of AICR by different concentrations of nicotinamide in 

PASMCs   (A) Averaged traces of Ang II-induced Ca2+ transients elicited 100 seconds 

after removal of Ca2+ in the absence or presence of different concentrations (2 mM, 5 

mM, 10 mM, and 20 mM) of the CD38 inhibitor nicotinamide. (B) Averaged peak 

change in [Ca2+]i in the various groups. * indicates significant differences when 

compared to the control (5 mM, p=0.007; 10 mM, p<0.001; and 20 mM, p<0.001) (n=8–

10). 
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Figure 3.5. Effect of siRNA mediated suppression of CD38 expression on AICR in 

PASMCs.   (A) Left panel shows an immunoblot of CD38 from samples of PASMCs 

transfected with a CD38-targeting siRNA and a control scrambled sequence.  Right panel 

shows the mean CD38 expression data from the two groups after normalization with β-

actin (n=5). * indicates significant decrease in expression compared to the scramble 

control (p=0.006). Note that there was no change in the pattern of the non-specific band 

between the scrambled control and the CD38 siRNA-transfected cells on the blot. (B) 

Left panel shows the mean traces of AICR in the transfected PASMCs in the absence or 

presence of 20 mM nicotinamide (NA). Right panel shows the mean peak [Ca2+]i in the 

control scrambled sequence and CD38 siRNA transfected PASMCs in the absence or 

presence of  20 mM NA. n equals 8 for each group. * indicate significant difference from 

the control group in the absence of NA, and n.s. indicates no significant difference 

between the groups indicated.  



61 
 

 

 

 

Figure 3.6.  Effect of inhibition of cADPR-dependent Ca2+ release on AICR in 

PASMCs.   (A) Left panel shows mean traces of Ang II-induced changes in [Ca2+]i in the 

absence or presence of different concentrations of the cADPR antagonist 8-Br-cADPR. 

Right panel shows the mean data from each group. * indicates significant difference from 

control, 1µM (p=0.002), 10µM (p<0.001) and 100µM (p<0.001)(n=6-9).  (B) Left panel 

shows Ang II-induced changes in [Ca2+]i  in the absence or presence of 50µM ryanodine. 

Preincubation with ryanodine significantly decreased AICR (n=9, p=0.034). 



62 
 

 

Figure 3.7 Effect of inhibition of NAADP-dependent pathway on AICR in PASMCs.  

(A) Left panel shows the mean traces of Ang II-induced changes in [Ca2+]i  in the absence 

or presence of the NAADP antagonist Ned-19 (1µM). Right panel shows the peak change 

in [Ca2+]i in each group (n=9, p=0.021).  (B) AICR in PASMCs with or without 

preincubation with the vacuolar H+-ATPase blocker Bafilomycin A1 (3µM)(n=8~9, 

p=0.014). (C) AICR in PASMCs with or without treated with both 8-Br-cADPR (10µM) 

and Ned-19 (1 µM) (n=10–12, p=0.002). * indicates significant difference from the 

control.  
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Figure 3.8  PKC-NOX dependent activation of CD38 in PASMCs.  (A) The effect of 

PKC inhibition with staurosporine (STAS, 10 nM) on AICR in PASMCs.  Left panel 

shows the mean traces of AICR in the absence or presence of STAS and STAS+NA (20 

mM).  Right panel shows the mean peak [Ca2+]i in the control (n=8), STAS (n=9, 

p=0.019), and STAS+NA (n=10, p=0.002) treated group. Note that there was no 

additional reduction of [Ca2+]i in the STAS+NA group. (B and C) The effect of the 

NOX inhibitor apocynin (APC, 30μM) and diphenyleneiodonium (DPI, 30μM) on AICR 

in PASMCs. * indicates significant inhibition of AICR by APC (n=6, p<0.001) and 

APC+NA (n=6, p=0.002) compared to control (n=5). There was no significant difference 

between APC and APC+NA treated cells. Likewise, there was significant inhibition of 

AICR by DPI (n=9, p=0.019) and DPI+NA (n=10, p=0.003) compared to the control 

(n=8), while no significant difference between APC and APC+NA treated cells was 

observed. (D) The effect of the ROS scavenger tempol (TEMP, 100 μM) on AICR 

Preincubation of TEMP (n=9, p=0.007) and TEMP+NA+ (n=9, p=0.001), showing a 

significant reduction in AICR, whereas there was no additional inhibition of AICR in 

cells treated with the two inhibitor.  
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Figure 3.9. The effects of NOX1 and NOX2 specific antagonist on AICR in PASMCs   

(A and B) The effect of the NOX1 specific inhibitor VAS2870 (30μM) and ML171 

(30μM) on AICR in PASMCs.  Treatment of the specific NOX inhibitors VAS2870 

(n=10) and ML171 (n=6) failed to decrease AICR. (C) The effects of the NOX2 specific 

peptide inhibitor gp91ds-tat (10μM) on AICR in PASMCs. There was a significant 

reduction in AICR with gp91ds-tat (n=13, p=0.045) and gp91ds-tat+NA (n=8, p=0.018) 

treated cells compared to the untreated control.  There was no significant different 

between gp91ds-tat and gp91ds-tat+NA cells.   
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Discussion 

 CD38, through its multifunctional enzymatic activities, generates cADPR and 

NAADP, which contribute to a wide variety of physiologic responses, such as egg 

fertilization [315], vascular smooth muscle contraction [316], insulin secretion [302,317], 

and the asthmatic phenotype in smooth muscle airways [175]. In the present study, we 

found that the expression level of CD38 protein and mRNA in PA smooth muscle is 

relatively higher compared to other vascular smooth muscles. Ang II evokes 

vasoconstriction in PA smooth muscle and induces intracellular Ca2+ release in part 

through both the cADPR- and NAADP-dependent pathways by activating CD38 in 

PASMCs. Furthermore, Ang II induces CD38 activation through the PKC-dependent 

activation of NOX2 in PASMCs. These results provide clear evidence that CD38 is a 

potent regulator of Ca2+ homeostasis in pulmonary vasculature and establish the signaling 

pathway for AICR in PASMCs.   

 CD38 expression has been reported in various types of arteries including systemic 

arteries and PA [122,186,187,188,191,196]. Comparing CD38 expression in different 

arteries, we found that CD38 protein levels vary greatly in different vascular smooth 

muscle tissues, with the highest level in the cerebral artery, followed by the PA and renal 

arteries; whereas the expression in the aorta, mesenteric artery, femoral artery, and tail 

artery are minimal. These observations indicate that CD38 contributes quite differently to 

the physiological functions of various vasculatures. The functions of CD38 have not been 

examined in cerebral arteries; however, they are well characterized in renal arteries and 

arterioles [120,192,197,298,305,316]. It has been shown that CD38-dependent pathways 

mediate significant changes in cytosolic [Ca2+]i and contractile functions in renal afferent 
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arteries and arterioles, and can account for more than 50% of the contractile response 

during Ang II, ET-1 and NE stimulation [197]. Comparable expressions of CD38 protein 

in PA and renal arteries suggest that CD38 may play a similarly significant role in 

pulmonary vasculatures.   

 The important contribution of CD38-dependent pathways in Ca2+ signaling in 

pulmonary vasculature is clearly evident in this study of AICR in PASMCs. Removal of 

extracellular Ca2+ revealed that about 50% of the Ca2+ response is mediated by 

intracellular Ca2+ release, implying that Ang II-induced Ca2+ mobilization is composed of 

extracellular Ca2+ influx and intracellular Ca2+ release. When focusing on the mechanism 

of Ca2+ release in PASMCs, both pharmacological inhibition of CD38 with NA and 

genetic suppression with CD38 siRNA proved to cause significant inhibition of AICR, 

indicating the participation of CD38 in the Ca2+ release process. The specificity of the 

inhibitory effect of NA was verified under our experimental conditions, as NA did not 

cause further reduction of AICR in CD38 siRNA-transfected cells. Moreover, 

nicotinamide caused significant reduction in the sensitivity, and 60% reduction in the 

maximal contraction, induced by Ang II in isolated PAs.  This further suggests a 

significant contribution of CD38 in pulmonary vascular reactivity.  

AICR in PASMCs is mediated in part by the cADPR-dependent Ca2+ release from 

RyR-gated stores and by the NAADP-dependent Ca2+ release from the acidic 

endolysosomes. Antagonism of cADPR with the 8-bromo-cADPR [318] and inhibition of 

RyRs with ryanodine were each effective in suppressing AICR. Inhibition of NAADP 

with its specific antagonist Ned-19 [319], or depleting endolysosomal Ca2+ stores by 

disrupting the H+ gradient for H+-Ca2+ exchange with the vacuolar H+-ATPase inhibitor 
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Baf A1 [320], also reduced AICR. These results suggest that Ang II stimulates both the 

cyclase and catalase activities of CD38 for the production of cADPR and NAADP, 

respectively.    

It is interesting to note that the cADPR- and NAADP-dependent mechanisms 

operate interdependently during AICR because the suppression of AICR by co-inhibition 

of cADPR and NAADP remain comparable to the inhibition of either cADPR or NAADP 

alone. These results are consistent with previous findings including ours on the cross-

activation of RyRs by NAADP-mediated Ca2+ release in PASMCs [114,121,200], 

implying that NAADP-channels are coupled with Ca2+ release via RyRs, and that cADPR 

may sensitize RyRs for the cross-activation by Ca2+-induced Ca2+ release under 

physiological stimulation. The remaining AICR in PASMCs, after co-inhibition of 

cADPR and NAADP, was likely due to IP3R-gated Ca2+ release mediated by the well-

recognized PLC-IP3 pathway of angiotensin receptors [321,322]. 

 An increasing amount of evidence suggests that Ang II enhances ROS production 

through the activation of NOX, contributing to the Ca2+ response in vascular smooth 

muscle cells [323]. Several studies have demonstrated that CD38 activity is regulated by 

redox-state and oxidative stress [191,194,309,324,325]. However, the mechanism of Ang 

II-induced CD38 activation in PASMCs has not been established. This study 

demonstrates that Ang II activates CD38 in PASMCs via ROS generation by NOX. This 

is based on the finding that AICR, which is mediated by the activation of CD38, was 

inhibited significantly by the NOX inhibitors APC and DPI, and the ROS scavenger 

TEMPOL. Inhibition of CD38 with NA in the presence of the NOX inhibitors or the ROS 

scavenger did not further suppress the Ang II-induced Ca2+ response in PASMCs, 
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suggesting that ROS plays a pivotal role in the activation of CD38 in PASMCs. These 

observations are consistent with findings on renal afferent arterioles and cardiac 

myocytes that Ang II stimulates NOX to generate ROS, leading to enhanced ADP-ribosyl 

cyclase activity [305,326]. 

There are five NOX homologues (NOX1–5) with different subunit compositions 

and localizations [323,327].  It has been reported that Ang II-induced ROS production in 

vascular smooth muscle cells from large arteries is mediated by NOX1 [328] and, in 

resistance arteries, is mainly depend on NOX2 [307].  NOX1 and NOX2 can be activated 

through Rac1 [323,327,329].  It has been shown that ET-1 stimulates Rac1-NOX1-

dependent ROS production to activate CD38 in coronary arteries [329].  NOX2 can also 

be activated by PKC dependent phosphorylation of p47phox to facilitate the assembly of 

the oxidase complex [323].  We found that preincubation of PASMCs with specific 

NOX1 inhibitors ML171 [330] and VAS2870 [331] had no significant inhibitory effect 

on AICR.   In contrast, the NOX2 specific peptide inhibitor gp91ds-tat caused a 

significant decrease in AICR but no further reduction with inhibition of CD38 by NA, 

indicating that the Ang II-induced activation of CD38 is specifically mediated by NOX2. 

Moreover, inhibition of PKC with STAS also suppressed AICR.  These results, therefore, 

are consistent with Ang II-induced CD38 activation through the PKC-NOX2-ROS 

pathway to elicit Ca2+ release in PASMCs.    

In this study, NA was used as a CD38 inhibitor. Although NA may have other 

non-specific effects, NA has been widely used and accepted for the purpose of CD38 

inhibition in previous as well as recent studies [167,298,332]. Since the activity of CD38 

is dependent on the substrate NAD+, high concentration of the NAD+ analog operates as a 
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competitive antagonist to inhibit the CD38 enzyme activity. In fact, recent studies on 

novel CD38 inhibitors have continuously designed analogs, which are structurally 

derived from NAD+ [333]. Despite the high concentration used in this study, the cell 

morphology and resting [Ca2+]i were not altered in the presence of NA during Ca2+ 

imaging experiment, indicating that NA does not cause significant disturbance in Ca2+ 

homeostasis. A recent study demonstrated that apigenin, a flavonoid, is a specific 

inhibitor for NADase activity of CD38 in vivo [334]. However, apigenin could not 

applicable for AICR measurement due to its toxicity during the preincubation. 

Nonetheless, NA could not cause additional reduction in AICR when CD38 was 

knockdown by siRNA suggesting that NA is useful tool in our research on CD38 

dependent Ca2+ release in PASMC.  

  In conclusion, this study systematically characterized the mechanism of Ca2+ 

release induced by Ang II in PASMCs and demonstrated that it is in part mediated by 

CD38 activation through NOX2-dependent ROS production, leading to the synergistic 

Ca2+ release from cADPR- and NAADP-gated Ca2+ stores. These findings, hence, 

provide the evidence to support a critical role for CD38 in Ca2+ signaling of pulmonary 

vasculature. 
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CHAPTER 4 

CHRONIC HYPOXIA REGULATES THE EXPRESSION AND ACTIVITY OF 

CD38 IN RAT PULMONARY ARTERIAL SMOOTH MUSCLE CELL
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Abstract 

 The pathophysiological changes in chronic hypoxia-induced pulmonary 

hypertension (CHPH) are multi-factorial and complex. Accumulating evidence suggests a 

role for aberrant alterations in the regulation of intracellular Ca2+ of pulmonary arterial 

smooth muscle cells (PASMCs). Previous studies have reported elevation of [Ca2+]i in 

PASMCs due to enhanced Ca2+ influx in CHPH, but the changes of intracellular Ca2+ 

release under chronic hypoxia (CH) have not been examined. This study characterized 

the CH-induced alterations in the expression and functions of CD38, a multi-functional 

enzyme that produces the Ca2+ mobilizing messengers cyclic ADP-ribose and nicotinic 

acid adenine dinucleotide phosphate in PASMCs. The expression of CD38 protein and 

mRNA were both significantly upregulated in the PA smooth muscle of CH rats. This 

upregulation of CD38 in PA of CH rats was time-dependent, observed after 3–7 days of 

hypoxic exposure and declining after 3 weeks of CH. NADase activity of CD38 in PA 

smooth muscle was significantly increased, whereas the same activity in whole lung was 

decreased after 1-week hypoxia, suggesting specific CD38 upregulation in hypoxic PA. 

Angiotensin II-induced Ca2+ release (AICR), which is mediated in part by CD38, was 

significantly increased in PASMCs isolated from CH rats. The difference between AICR 

in PASMCs of normoxic and 1-week CH rats was completely abolished by the CD38 

inhibitor nicotinamide. The CH-induced upregulation of CD38 expression and activity 

were due to the direct effect of hypoxia on PASMCs. In vitro exposure of PASMCs from 

normoxic rats to hypoxia for 3 days caused significant increase in CD38 expression and 

enhancement in AICR, which was equalized by nicotinamide. Sequence analysis of the 

putative promoter region of CD38 gene found multiple putative binding motifs of nuclear 
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factor of activated T-cells (NFAT). CH-induced upregulation of CD38 expression in 

isolated PASMCs was inhibited by the specific NFAT-inhibitor VIVIT and the 

calcineurin inhibitor cyclosporine A, indicating that CH-induced CD38 upregulation in 

PASMCs is mediated by the calcineurin/NFAT-pathway. Moreover, the expressions of 

the NAADP-sensitive channels (TPC1 and TPC2) were significantly increased in the PA 

smooth muscle of CH rat. All these results clearly indicate that CH has a profound effect 

on CD38-dependent mechanisms that may play crucial roles in the alterations of Ca2+ 

homeostasis in PASMCs. 

 

Introduction 

 Chronic alveolar hypoxia (CH), as occur in high altitude inhabitants or patients 

with chronic pulmonary diseases such as COPD, triggers the development of pulmonary 

hypertension (PH). CH-induced pulmonary hypertension (CHPH) is characterized by 

increased vascular tone, altered vasoreactivity, and profound vascular remodeling, 

leading to an increase in pulmonary vascular resistance, right heart hypertrophy and 

eventually right heart failure [335,336,337]. The mechanism for the pathogenesis of 

CHPH is complex and multifactorial [338], but many of the pathophysiological changes 

in the pulmonary vasculature in CHPH is clearly associated with the alteration in Ca2+ 

homeostasis of pulmonary arterial smooth muscle cells (PASMCs) [238,239]. It is well 

recognized that CH leads to the elevation of cytoplasmic [Ca2+]i in PASMCs via many 

different mechanisms; for example, downregulation of voltage-gated K+ (Kv) channels 

[66,70,247,339], enhanced Ca2+ entry mediated through upregulation of store-operated 

Ca2+ entry (SOCE) [52,238,265,279], receptor-operated Ca2+ entry [38,238,340], 
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mechanosensitive cation channels  [37,39], acid-sensing ion channels (ASIC) 

[278,279,280], voltage-dependent Ca2+ channels (VDCC) [35,276], and Ca2+-activated 

Cl-  channels [75]. However, there is very limited information on the effects of CH on 

intracellular Ca2+ release pathways in PASMCs. 

 CD38 is a multifunctional enzyme, that syntheses the Ca2+ mobilization second 

messenger cADPR and NAADP, which are endogenous ligands of ryanodine receptors 

(RyRs) of sarcoplasmic reticulum and NAADP-sensitive channels of endolysosomes, 

respectively [144,341]. Hence, it plays important roles in regulating intracellular Ca2+ 

release.  Moreover, Ca2+ release from RyRs may further enhance Ca2+ influx by initiating 

SOCE [342,343], and activating Ca2+-activated Cl- channels (CaCC) to cause membrane 

depolarization and activation of VDCC [74,76]. However, only few studies provided 

evidence that CD38 plays a role in [Ca2+]i regulation in response to hypoxia in PASMCs. 

Previous studies had shown that acute hypoxia promotes accumulation of cADPR 

causing Ca2+ release from RyR-gated Ca2+ stores to initiate pulmonary vasoconstriction 

[191,324]. Indeed, it has been proposed that CD38 acts as a redox sensor for HPV. A 

reduction of β-NAD+:β-NADH ratio during hypoxia stimulates cyclase activity and 

inhibits hydrolase activity of CD38, leading to the accumulation of cADPR to cause 

intracellular Ca2+ release. However, this hypothesis is challenged by a recent study which 

showed that HPV in isolated PAs requires neither cADPR- nor NAADP-dependent Ca2+ 

release in the absence of preconstriction, but rather is mediated by SOCE independent of 

CD38 mediated Ca2+ release [290]. Besides these studies, there is no published record on 

the regulation of CD38 expression and activity by CH in PASMCs.  
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In this study, we tested the hypothesis that CD38-dependent mechanisms play a 

crucial role in the alterations of Ca2+ homeostasis in PAs and PASMCs of CH rats.  We 

examined CD38 expression and the CD38-dependent angiotensin II (Ang II) induced 

Ca2+ release (AICR) in PAs of CH rats and hypoxic PASMCs, as well as the 

transcriptional regulation of CD38 by CH. Furthermore, we examined the expression of 

the NAADP-sensitive channels (two-pore channels, TPC1 and TRPC2) in PAs of CH rats, 

as to understand the regulation of Ca2+ release mediated by CD38 under CH. 

 

Methods 

Animal care   All animal procedures were compliant with the Guide for the Care and Use 

of Laboratory Animals published by the United States National Institutes of Health and 

was approved by the Johns Hopkins University Animal Care and Use Committee. Male 

Wistar rats (150–200g) were commercially purchased from Harlan laboratories. 

Hypoxia exposure   Adult male rats were placed in hypoxic chamber (10% O2) for 

maximum 3–4 weeks (wk) as described previously [344]. Hypoxic air, a mixture of N2 

and room air, was continuously flushed into chamber. O2 concentration in the chamber 

was continuously monitored. Food and water were replenished two times a week. PA 

tissues were harvested at different time-point based on the experimental protocol. Isolated 

PASMCs from hypoxic rats were placed in a modular incubation chamber (Billups-

Rothenberg Inc.) filled with 4% O2 hypoxic air. PASMCs from normoxic rat were 

cultured under 2% O2 for 3 days to induce the hypoxic response. 

Preparation of rat PA tissues and PASMCs   Intralobar PA tissues and PASMCs were 

isolated as described in Chapter II. Briefly, rats were anesthetized using sodium 
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pentobarbital (130 mg/kg intraperitoneally) and the second to the fourth generations (800 

to 300 µm) of intralobar PA were harvested in HEPES-buffer. After endothelium-

denudation, PASMCs were enzymatically digested and cultured in HAM's F-12 media 

overnight. PASMCs were platted on 25 mm glass cover slips and transiently cultured for 

12–18 hours before the Ca2+ fluorescence experiments. PASMCs were cultured in 

Smooth muscle Cell Basal Medium (#CC-3181, Lonza, MD) with 5% FBS and 

antibiotics for 3 days after overnight incubation with HAM's F-12 media for protein and 

mRNA determination. 

Western blot   Total protein was isolated from PA tissues and cultured PASMCs for 

Western blot analysis of CD38 expression as previously described in Chapter II. Briefly, 

tissue and cell lysates were resolved by 10% polyacrylamide gel and transferred to PVDF 

transfer membrane using a tank system filled with transfer buffer.  After blocking, the 

membrane was incubated with primary antibodies diluted in 3% BSA-PBST at 4 °C 

overnight. The primary antibody for CD38 was diluted by 1:500 (#SC-7049, goat, Santa 

Cruz Biotechnology, Inc.), TPC1 by 1:500 (#ab80961, rabbit, Abcam), TPC 2 by 1:2,500 

(#ACC-072, rabbit, Alomone Labs), actin by 1:5,000 (#SC-1615, goat, Santa Cruz 

Biotechnology, Inc.), and β-actin by 1:50,000 (#A1978, mouse, Sigma-Aldrich).  After 

wash, membranes were incubated with horseradish peroxidase-coupled secondary 

antibody diluted by 1:5,000 for CD38 and actin (#SC-2020, donkey anti-goat, Santa Cruz 

Biotechnology, Inc.), 1:5,000 for TPC1/2 (#SC- 2313, donkey anti-rabbit, Santa Cruz 

Biotechnology, Inc.) and 1:50,000 for β-actin (#NA931V, sheep anti- mouse, GE 

healthcare UK limited) in 3% BSA-PBST. Protein signals were detected by enhanced 

chemiluminescence (Pierce) on autoradiography film and quantified by Gel Logic 200 
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Image System (Kodak, New Haven, CT).  After CD38 determination, the membrane was 

stripped and reprobed for actin/β-actin in the same blot as previously described in 

Chapter 3. 

Quantitative reverse-transcription PCR   Total RNA was extracted from endothelium-

denuded PA tissues and cultured PASMCs using RNeasy® minikit (#74104, Qiagen, 

Valencia, CA) and followed by first-strand cDNA synthesis using random hexamer 

primers and Superscript III-reverse transcriptase (#18080-051, Invitrogen, Grand Island, 

NY) according to the manufacturer's protocol. Quantitative real-time RT-PCR (qRT-PCR) 

using iQ SYBR Green PCR Supermix (#170-8880, Bio-Rad, Hercules, CA) was used to 

quantify the expression of CD38 in PAs and PASMCs. The sequence for the gene-

specific primers was described in table 1. The copy number of target mRNA expression 

was normalized by the copy number of TATA-box binding protein (TBP) as an internal 

control. 

Ca2+ imaging for intracellular Ca2+ release   [Ca2+]i was measured with fluorescent 

 

Table 4.1. Primer sequence for qRT-PCR 
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microscopy as previously described in Chapter II. Briefly, fluo-3 AM (#F1242, 

Invitrogen, Grand Island, NY) was loaded into isolated PASMCs on 25 mm cover-slip 

and incubated for 45 min at room temperature in the dark. After washed and incubation 

for deesterification of cytosolic dye, Fluo-3 was excited at 488 nm and the emitted light 

at 515 nm was detected by inverted microscope (Diaphot, Nikon TE2000U) equipped 

with epifluorescence attachments and a microfluometer (PTI, model D-104). PASMCs 

were pretreated with the CD38 inhibitor nicotinamide for 20 min. To examine 

intracellular Ca2+ release, Ca2+ containing (2 mM) Tyrode solution was changed with 

Ca2+-free Tyrode (containing 1 mM EGTA) 100 seconds prior to the application of Ang 

II. Fluorescence intensity (F) was used to calculate the absolute [Ca2+]i using the equation: 

[Ca2+]i =[KD · (F – Fbg )]/(Fmax – F). Fbg is the background fluorescence, Fmax is the 

maximum fluorescence, and KD of fluo-3 is 1.1. Fmax was determined in situ using the 

Ca2+ ionophore 4-Bromo-A23187 (#100107, Calbiochem, La Jolla, CA) and 10 mM Ca2+, 

and Fbg was measured in a cell-free area after Mn2+ quenching  

Identification of putative transcription factor binding motifs in CD38 gene    Rat CD38 

promoter region sequence was pulled from the Rat Genome Database, and the ALGGEN 

PROMO, which uses TRANSFAC database for transcription factor binding sites, was 

utilized to determine putative transcription factor binding motifs for NFAT, HIF-1, NF-

κB, and CREB-like motif. The sequences were manually validated for the presence of 

putative HIF-1 (ACGTG or CACGT), NFAT (GGAAA or TTTCC), NF- κB 

(GGGATTCC or GGGGC) and CREB-like (TGGCGTCA) binding core motif. 

Determination of NADase activity   Measurement of NADase activity was performed by 

a fluorometric method (by Dr. Eduardo Chini’s laboratory) as previously described 



79 
 

[345,346]. The enzyme activity was determined by measuring change in fluorescence 

with excitation (300 nm) and emission (410 nm) wavelengths in the presence of the 

NADase substrate 1-etheno-NAD. Tissue samples from PA and whole lung tissue with a 

final protein concentration of 0.5 mg per ml were incubated in a medium containing 0.2 

mM 1-etheno-NAD, 0.25 M sucrose, and 40 mM Tris–HCl (pH 7.2) at 37°C. After 

baseline fluorescence was recorded, 80 μM of 1-etheno-NAD was added to start the 

reaction and fluorescence was recorded for 200 sec. The activity was calculated as the 

fluorescence units per unit time normalized by the amount of protein in the samples 

(unit/sec/mg protein). 

Chemicals and inhibitors   All chemicals were commercially available to be purchased; 

Ang II (#A9525, Sigma-Aldrich), nicotinamide (#N0636, Sigma-Aldrich), cell-permeable 

VIVIT (#480401, Calbiochem) and cyclosporine A (#C-6000, LC Laboratories). 

Statistical Analysis   All data are expressed as mean ± S.E.M. The numbers of replicates 

(n) are specified in the text. Statistical significance (p<0.05) was assessed by unpaired 

Student’s t-tests or ANOVA with Holm-Sidak method if applicable. 

 

Results 

CD38 expression in PA smooth muscle tissue was increased in PA tissue from CH rat 

for 3–4wk.  

 As the first step of investigating the effects of CH on CD38 dependent 

mechanisms, we determined the expression of CD38 protein and mRNA in PAs of 

normoxic and CH rats (Fig. 4.1A). Immunoblot analysis showed that the expression of 

CD38 protein in endothelium-denuded PAs of 3–4 week CH rats (1.21±0.06) was slightly 
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but significantly increased compared to that of normoxic rats (1.00±0.07) (n=12, 

p=0.042). The CD38 mRNA level, quantified by qRT-PCR, was also significantly higher 

in the PA of CH rats. (CH: 0.199±0.032; normoxia: 0.094±0.019, n=7, p=0.016).  

 To examine the possible changes in the functional activity of CD38 caused by CH, 

AICR was determined in PASMCs isolated from normoxic control and 3–4 week CH rats 

(Fig. 4.1B). Intracellular Ca2+ release was elicited by 100 nM Ang II 100 seconds after 

removal of extracellular Ca2+. Similar to the expression of CD38 protein, the peak 

[Ca2+]i ([Ca2+]i, peak - [Ca2+]i, baseline) of AICR was slightly but significantly elevated  in 

PASMCs of CH rat (353.6±26.8 nM , n=11) compared to those of normoxic control 

(274.3± 21.6 nM, n=12) (p=0.05). These results implied that CH increases the expression 

and functional activity of CD38 in PASMCs.  

 

CD38 expression and activity in PA were greatly enhanced during the early 

development of CHPH.   

 A previous study showed spontaneous rhythmic contractions, spike-like 

membrane depolarization, and elevated resting [Ca2+]i in the PAs of rats after 1 weeks of 

CH [281]. These activities were blocked by ryanodine or cyclopiazonic acid and subsided 

after prolonged CH exposure (4 week). These results indicate that intracellular Ca2+ 

release contributes to spontaneous contraction of PA during the early development of 

CHPH.  

 To examine the possible changes in CD38 dependent mechanism during the early 

stage of CHPH development, we examined the time-course of change in CD38 

expression in PAs of CH rats. CD38 protein expression in PAs was determined after 0, 1, 
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2, 3, and 7 days of CH exposure, with normalized values of  1.03±0.15, 0.89±0.12, 

1.63±0.26, 2.00±0.13, 2.52±0.22, respectively  (n=5 for each group) (Fig. 4.2A). CD38 

protein levels significantly increased by day 3 and day 7 (p=0.001 and p<0.001, 

respectively), compared to the day 0 control. Similar time-course changes were found in 

the mRNA level of CD38 in the PAs after CH exposure (day 0: 0.27±0.05; day 1: 

0.19±0.03; day 2: 0.34±0.09; day 3: 0.57±0.05; and day 7: 0.88±0.26, n=5 for each group) 

(Fig. 4.2B). The mRNA level of CD38 was significantly upregulated in PAs after 3 and 7 

days of CH exposure (p=0.003 and p=0.008, respectively).  These results indicate that the 

CH upregulates the expression of CD38 protein and mRNA of PA smooth muscle in a 

time-dependent manner. The 2–3 fold increase in CD38 expression after 3 to 7 days of 

hypoxic exposure, as compared to the marginal increase in 3–4 weeks CH suggests that 

CD38 may be more involved during the early development of CHPH. 

 

NADase activity was increased in PA smooth muscle from hypoxic rat.   

 To examine whether the upregulation of CD38 expression by CH was associated 

with increased enzymatic activity, NADase activity (i.e. CD38) was measured 

(collaboration with Dr. Eduardo N. Chini, in Mayo Clinic, Rochester, MN) (Fig.4.2C).  

NADase activity was significantly increased in PAs of 1-week CH rats, with 6.61±2.03 

units/sec/mg protein in normoxic control and 18.38±3.15 units/sec/mg protein in CH PAs 

(n=9, p=0.006). In contrast, NADase activity was significantly lower in whole lung tissue 

in hypoxic rat (38.03±2.33 units/sec/mg protein) compared to normoxic control 

(51.33±5.02 units/sec/mg protein) (n=6, p=0.037).  These data suggest that the effects of 

CH on CD38 activity, and perhaps expression, are different in the whole lung and PA 
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tissues. We also examined the weight of whole lung tissue, and right heart hypertrophy 

(RV/(LV+S)) from normoxic and CH rats (Fig. 4.3). The weight of lungs of 1 week 

hypoxic rat (1.29±0.10 g, n=9) was significantly higher than that of normoxic control 

(0.93±0.05 g, n=9) (p<0.001, respectively). Likewise, the weight of PA smooth muscle 

tissue of 1 week hypoxic rat (0.0461±0.00206 g, n=16) was significantly higher than the 

normoxic control (0.0351±0.00235 g, n=16, p=0.001). RV/(LV+S) was also significantly 

higher in 1-week hypoxic rats (control: 27.63±0.73 %, n=12; CH: 44.29±0.80 %, n=12, 

p<0.001). These results implicate that the 1 week hypoxia exposure causes the 

development of CHPH including right heart hypertrophy, pulmonary vascular remodeling, 

and alteration in CD38 activity.   

 

AICR was increased in PASMCs of 1 week hypoxic rats. 

 To examine the CD38 dependent Ca2+ release processes, AICR was determined in 

PASMCs of normoxic control and 1 week hypoxic rats (Fig. 4.4). Ca2+ release induced 

by 100 nM Ang II was examined and recorded in the presence or absence of 20 mM 

nicotinamide (NA) (Fig. 4.4A). AICR was significant greater in hypoxic PASMCs 

(455.3±63.3 nM, n=12) than in normoxic PASMCs (289.9±32.3 nM, n=9, p=0.04). The 

Ca2+ response was significantly suppressed by inhibition of CD38 with NA (normoxic: 

124.3±20.4 nM, n=8, p<0.001; CH: 115.4±15.7 nM, n=9, p=0.037), and there was no 

difference between the two groups in the presence of NA (Fig. 4.4B). The percent 

inhibition of AICR by NA was significantly greater in the hypoxic cells (74.65±4.16%) 

compared to the normoxic cells (55.61±6.16%, p=0.014) (Fig. 4.4C). These results 
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suggest that the CD38-dependent Ca2+ release activated by Ang II was potentiated in 

PASMCs of 1 week CH rats. 

 

Hypoxia directly enhanced CD38 expression and activity in PASMCs of normoxic rats. 

 Upregulation of CD38 expression in the CH rat model could be related to multiple 

factors.  To determine whether hypoxia induces CD38 expression through a direct effect 

on PASMCs, PASMCs isolated from normoxic rat were exposed to 21 or 2% O2 for 3 

days, and the expression of CD38 in the two groups were compared (Fig. 4.5A). Western 

blot analysis showed that CD38 protein level was significantly increased in the hypoxia 

PASMCs (2.19±0.35, n=5) compared to the normoxic control (1.25±0.05, n=5, p=0.025). 

The CD38 mRNA level of hypoxic PASMCs (5.43±0.13×105) was also significantly 

higher than that of normoxic cells (2.07±0.42×105, n=5, p=0.036). These data clearly 

indicate that hypoxia exerts a direct effect on PASMCs to upregulate the expression of 

CD38. 

 AICR was performed to examine the functional changes in CD38 activity caused 

by the direct effect of hypoxia (2% O2, 3 days) in PASMCs (Fig. 4.5B). Peak [Ca2+]i 

induced by Ang II (100 nM) was 325.2±16.6 nM in normoxic (n=14) and 593.3±77.0 nM 

in hypoxic PASMCs (n=15) in the absence of NA; and 152.9±21.0 nM in normoxic (n=7) 

and 111.5±31.9 nM in hypoxic PASMCs (n=6) after CD38 was blocked by 20 mM NA.  

AICR was significant greater in the hypoxic PASMCs compared to the normoxic control 

(p=0.002).  The Ca2+ response was significantly suppressed by the inhibition of CD38 

(p<0.001 for both), but there was no significant difference between the normoxic and 

hypoxic PAMSCs in the presence 20 mM NA. The percent inhibition of AICR by 20 mM 
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NA was 81.21±5.37% in hypoxic PASMCs and 52.98±6.47% in normoxic cell.  The 

percent inhibition was significantly greater in the hypoxic PASMCs (p=0.007). These 

data show that the upregulation of CD38 expression in PASMCs caused by direct 

hypoxia exposure was associated with enhanced CD38-dependent Ca2+ response. 

 

NFAT is putative regulatory transcription factor for CD38 expression in rat PASMCs. 

 To further investigate the molecular mechanism of CD38 upregulation by hypoxia, 

the putative binding sites for transcription factors in the promoter region of rat CD38 

gene were explored in a 3.0 kbp  5'-UTR promoter region of CD38 (Fig. 4.6). We found 

that there are ten NFAT, three HIF, two NF-κB, and one CREB-like putative binding- 

motifs in the region, indicating that these transcriptional factors could be involved in the 

upregulation of CD38 expression by hypoxia. 

 

CH-induced CD38 upregulation was dependent on the calcineurin/NFAT pathway.  

 Since there are multiple putative NFAT binding sites in the promoter region of the 

CD38 gene, we tested the involvement of the calcineurin/NFAT pathway in the hypoxia-

induced upregulation of CD38 in PASMCs.  Expression of CD38 protein was examined 

in PASMCs isolated from normoxic rat and cultured under hypoxia (2% O2) for three 

days in the absence or presence of the peptide inhibitor of NFAT activation VIVIT (3 µM) 

or the calcineurin inhibitor cyclosporine A (Cyc A, 5 µM) (Fig. 4.7). Semi-quantitative 

Western blot analysis showed that the relative CD38 protein level was 0.984±0.0632 in 

normoxic control, 0.844±0.0603 in VIVIT treated, and 0.808±0.0477 in Cyc A treated 

normoxic cells (n=5). It was not significantly altered by VIVIT and Cyc A treatment for 3 
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days.  CD38 was significantly increased in the hypoxic cells (1.562±0.0633, p=0.005) 

compared to normoxic control. The hypoxia-induced increase in CD38 protein was 

blocked by VIVIT (1.131±0.167, p<0.001) and Cyc A (1.070±0.199, p<0.001). There 

was no significant upregulation of CD38 by hypoxia in the presence of both inhibitors. 

These results suggest that the hypoxia-induced upregulation of CD38 in PASMCs is 

mediated by calcineurin/NFAT-dependent pathway. 

 

CH alters the expression of NAADP-sensitive Ca2+ release channels in PA smooth 

muscle. 

 To further elucidate the changes in the CD38-dependent mechanism in PASMCs 

under CH exposure, we examined the expression of the NAADP-sensitive Ca2+ channels 

TPC1 and TPC2 in PAs of normoxic and CH rats (Fig. 4.8). Semi-quantitative Western 

blot analysis found that the expression of TPC1 protein in PA tissue of 3–4 week hypoxic 

rat (0.65±0.21, n=6) was significantly increased compared to that of normoxic rats 

(0.14±0.05, n=6, p=0.031) (Fig. 4.8A). Similar increase in TPC2 expression was 

observed in hypoxic PAs (normoxic: 0.94±0.15, n=6; CH: 1.75±0.26, n=6, p=0.021). We 

also examined the expression of TPC1 and TPC2 protein in PAs of rats exposed to CH 

for different durations (Fig. 4.8B). The relative TPC1 protein level was 0.88±0.12 in day 

0, 0.99±0.19 in day 1, 1.18±0.25 in day 2, 1.27±0.18 in day 3 and 1.47±0.29 in day 7 

(n=5 rats for each time-point). The expression level of TPC2 protein was 1.49±0.52 in 

day 0, 1.58±0.41 in day 1, 4.49±0.99 in day 2, 6.12±1.45 in day 3 and 5.24±0.98 in day 7 

(n=5 rats for each time-point). The TPC2 protein level was significantly increased in PAs 

of rats after 2, 3, and 7 days of CH (p=0.028, p=0.010, and p=0.033, respectively) 
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compared to that of normoxic control. TPC1 protein showed a tendency of increase while 

there is no statistical significance in the hypoxic PA tissue. In contrast, mRNA level of 

TPC1/2 in PA tissue was not significantly changed in CH rats compared to the normoxic 

control. These results suggest that CH exposure induces TPC1/2 protein expression in PA 

smooth muscle in a time-dependent manner possibly through a post-transcriptional 

mechanism.  
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Figure 4.1. Upregulation of CD38 in PA smooth muscle tissue and enhancement of 

AICR in PASMCs of 3–4 week CH rat (A) Upper panel shows representative 

immunoblot of CD38 and β-actin in PA samples of normoxic (Nx) and CH (Hypx) rats.  

Lower panels show mean data of semi-quantitative Western blot and quantitative real-

time polymerase chain reaction (qRT-PCR) analysis of CD38 protein and mRNA in PA 

smooth muscle of 3–4 week hypoxic and normoxic rats. Asterisk (*) indicates significant 

increase compared to Nx rats (n=7 for each groups, P=0.042 for CD38 protein and 

p=0.0014 for CD38 mRNA). (B) Mean traces of An II-induced increase in [Ca2+]i (left 

pannel) and mean peak [Ca2+]i elicited in PASMCs of normoxic (n=11) and CH rats 

(n=12) (right panel). * indicates significant increase in Ca2+ response compared to 

normoxic control (p=0.05).  
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Figure 4.2. CD38 expression and activity in PA smooth muscle of rats after different 

periods of CH (10% O2) exposure   (A) Western blot analysis of CD38 protein 

expression in PA of rat at different time-points of CH exposure. * indicates that CD38 

protein increased significantly in day 3 (n=5, p<0.001) and day 7 (n=5, p<0.001) 

compared to day 0. (B) Conventional RT-PCR (upper panel) and qRT-PCR (lower panel) 

analysis of CD38 mRNA expression in PA tissue. * indicates that CD38 mRNA 

increased significantly in day 3 (n=5, 0.004), and day 7 (n=5, p<0.001) compared to day 

0. (C) NADase (i.e. CD38) activity measured in whole lung lobe and PA smooth muscle 

of normoxic and 1wk hypoxic rats.* indicates that NADase activity in PAs of 1week 

hypoxic rat was significantly increased (n=9, p=0.006), while the activity in whole lung 

lobe tissue of 1wk hypoxic rat was significantly decreased (n=6, p=0.037), compared to 

those of normoxic control. 
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Figure 4.3. CH-induced lung, PA and cardiac remodeling   (A and B) The weight of 

whole lung lobe and PA of 1 week hypoxic rat. * indicates significant difference in lung 

lobe (n=9, p<0.001) and PA tissue (n=16, p=0.001) compared to Nx control (n=9 and 

n=16, respectively). (C) Measurement of RV/(LV+S) for right heart hypertrophy. 

* indicates that RV/(LV+S) was significantly higher in hypoxic rats (n=12) compared to 

the value of Nx control (n=12, p<0.001).    
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Figure 4.4.  CH-induced increase in AICR mediated by CD38   (A) Mean trace of 

[Ca2+]i by 100nM Ang II in PASMCs from 1wk Hypx and Nx rat in the presence of 20 

mM nicotinamide (NA) to inhibit CD38. (B) Mean peak [Ca2+]i of AICR. Double 

asterisk (**) demonstrates the significant enhancement of peak [Ca2+]i of AICR in 

PASMCs from Hypx rat (n=12) compared to Nx control (n=9, p=0.04). * indicates that 

NA significantly suppressed peak [Ca2+]i of AICR in both Hypx (n=9) and Nx PASMCs 

(n=8) compared to its experimental control (p<0.001 and p=0.037, respectively). Note 

that inhibition of CD38 by NA lead to no difference in AICR between Hypx and Nx 

PASMCs. (C) The proportion of inhibition of peak [Ca2+] by NA (%decrease in 20 mM 

NA to control) in hypoxic PASMCs was significantly higher than the proportion in 

normoxic cells (p=0.014).  
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Figure 4.5. Hypoxic-induced enhancement of CD38 expression and AICR in 

PASMCs in vitro  (A) The expression of CD38 protein and mRNA in rat PASMCs 

isolated from normoxic rat cultured under normoxic (21% O2) and hypoxic conditions (2% 

O2) for 3 days. * indicates that CD38 protein and mRNA in Hypx PASMCs (n=6 and n=5, 

respectively) were significantly increased compared to the expression in Nx control 

PASMCs (n=6, p=0.025 and n=5, p=0.036, respectively). (B) Mean traces of Δ[Ca2+]i 

activated by 100 nM Ang II in Hypx and Nx PASMCs in the absence or presence of 20 

mM NA (left panel). Mean peak [Ca2+]i of AICR (middle panel). ** indicates 

significant enhancement of peak [Ca2+]i of AICR in Hypx PASMCs (n=15) compared to 

Nx control (n=14, p=0.02).* indicates that NA significantly suppressed the peak [Ca2+]i 

of AICR in both Hypx (n=7) and Nx PASMCs (n=6) (p<0.001 for both). Inhibition of 

CD38 by NA lead to no difference in the peak [Ca2+]i of AICR between Hypx and Nx 

PASMCs. The proportion of inhibition of peak [Ca2+] by NA (% decrease in 20 mM NA 

to control) in hypoxic PASMCs was significantly higher than the proportion in normoxic 

cells (p=0.007).    
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NFAT (10), Hif-1 (3),  NF-κB (2), and CREB-like (1)  motifs. 

 
Figure 4.6. DNA sequence of the putative 3.0 kbp 5'-UTR promoter region of rat 

CD38 gene   Transcription factor-binding sites are underlined. Note that there are 

multiple putative binding motifs for NFAT (10), HIF-1 (3), NF-κB (2) and CREB-like (1) 

in the region. 
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Figure 4.7. Suppression of CH-induced CD38 upregulation by inhibition of 

calcineurin/NFAT-pathway   Western blot analysis for CD38 expression in PASMCs 

cultured under normoxic or hypoxic conditions for 3 days in the absence or presence of 3 

µM VIVIT (NFAT inhibitor) and 5 µM cyclosporin A (Cyc A) (n=5). * indicates that 

CD38 expression in PASMCs was significantly upregulated by hypoxic exposure for 3 

days in control (p=0.005), while the upregulation of CD38 was blocked in the presence of 

VIVIT or Cyc A. ** indicates that there was a significant difference between control and 

the VIVIT (p=0.015) or Cyc A (p=0.013) treated hypoxic cells. Note that hypoxia-

induced CD38 upregulation was blocked in the presence of VIVIT and Cyc A compared 

to the experimental control group (n.s.).  
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Figure 4.8. Increased expression of TPC1/2 in PA smooth muscle tissue of CH rats 

(10% O2)   (A) Western blot analysis of TPC1/2 protein in PA smooth muscle tissue 

from 4 week CH rats for. * indicates significant increase in both TPC1 and 2 in Hypx 

compared to Nx PA (n=6, p=0.031 and p=0.021, respectively). (B) Hypoxia-induced 

alteration of TPC1/2 protein and mRNA in PA tissues of rats after different period of 

hypoxic exposure. * indicates that TPC2 protein increased significantly in day 2, 3 and 7 

compared to day 0 (n=5, p=0.028, p=0.010, and p=0.033, respectively), whereas there 

was no significant increase in TPC1 protein in CH PAs. Note that mRNA expression of 

TPC1/2 was not altered by hypoxic exposure up to 1 week compared to the expression in 

day 0 control.  
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Discussion 

 The major finding of this research project is that CH enhances the expression and 

activity of CD38 in rat PASMCs. While CD38 expression and activity in smooth muscle 

is known to be regulated by various cytokines and hormones such as TNF-α, endothelin-1, 

and Ang II [138,316,347], there is no systematic research on the regulation of CD38 in 

PASMCs with an emphasis on prolonged hypoxic exposure. This study first characterized 

the effect of CH on CD38 expression in the PAs of rats and found that CD38 expression 

was increased in a time-dependent manner in the first week of hypoxia exposure. The 

increase in CD38 expression was associated with enhanced CD38 enzymatic activity in 

PA smooth muscle and CD38-dependent AICR in PASMCs of CH rats. The effect of 

hypoxia on CD38 was reproduced in cultured PASMCs isolated from normoxic rats in 

vitro, indicating that these effects are due to the direct actions of hypoxia on PASMCs.  

Furthermore, CH-induced CD38 upregulation in hypoxic PASMCs was blocked by the 

inhibition of calcineurin or NFAT, suggesting that it underlies the calcineurin/NFAT 

pathway. Additionally, the expression of TPC2, which is the NAADP-sensitive Ca2+ 

release channel in the endolysosomes, were significantly increased in the PA smooth 

muscle of CH rat. These results provide the first evidence that CD38 may participate in 

the development of CHPH.  

 This study clearly demonstrated that CH induces CD38 expression in the PAs of 

rats. This effect of CH is time-dependent, with CD38 protein and mRNA increasing 

gradually in the first week of CH exposure, followed by a decline in the protein level 

after 3–4 week of CH, while the increased mRNA level remained unchanged. Since most 

of the changes in the development of PH, including increased PA pressure and vascular 
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remodeling, occur within the first week of hypoxia exposure [348,349,350], the 

upregulation of CD38 protein specifically in this period suggest that this could be related 

primarily to the progression, rather than the maintenance, of CHPH.  

 The significant increase found in the functional CD38 in the PA of week 1 

hypoxic rats is supported by the enhanced enzymatic activity of CD38. It is well 

established that CD38 is the major multi-catalytic NAD+-glycohydrolase (NADase), 

influencing the activity of cyclase, catalase, and hydrolase in the lungs [351] and other 

tissues [125]. We found that NADase activity was significantly increased in the PAs, 

while it decreased in the whole lung tissue, of hypoxic rats. Although we have not 

determined the individual enzymatic functions of the NADase activity due to its 

multifunctionality, the results clearly suggest that hypoxia alters the activity of CD38 

specifically in PA, independent of the other lung tissues.  These results, hence, suggest 

that CD38 upregulation in PA could be a unique characteristic in the development of 

CHPH.  

 In additional to NADase activity, we examined AICR to gauge the functional 

activity of CD38 in PASMCs. As shown in Chapter 3, Ang II induces CD38-dependent 

Ca2+ release in PASMCs. The magnitude of AICR in the PASMCs of week 4 CH rats 

was slightly but significantly increased, consistent with the moderate increase in CD38 

expression, suggesting that CD38 may contribute to enhanced Ca2+ release in CH 

PASMCs.  Consistent with CD38 expression data, AICR in the PASMCs of week 1 

hypoxic rats was greatly enhanced compared to that of the normoxic control. The 

augmentation of AICR is clearly related to the upregulation of CD38, because the 

difference between PASMCs of week 1 hypoxic and normoxic rats was completely 



97 
 

eliminated in the presence of the CD38 inhibitor NA, and the percent inhibition of AICR 

in PASMCs of the hypoxic rats was significantly greater than in those of the normoxic 

cells. It has been reported that members of the Ang II signaling pathway, including the 

level of Ang II and the Ang receptors, are elevated in animals and patients with 

pulmonary hypertension and that this is associated with the pathophysiology of CHPH 

[352,353,354,355]. The enhanced CD38-dependent Ca2+ release can provide an 

additional mechanism for the increased vasoreactivity to Ang II in CHPH.  Our previous 

studies found that other vasoactive agonists, such as ET-1 and integrin-ligands GRGDSP, 

also activate Ca2+ release through CD38 dependent mechanisms [114,122]. Our present 

results, hence, suggest that the increased CD38 expression may contribute to the 

enhanced agonist induced vasoreactivity in hypoxic PASMCs.  

 Hypoxia may exert its effect on CD38 expression by the direct modulation of 

gene expression in PASMCs or indirectly through other endocrinal or paracrinal agents/ 

factors released in the circulation and in the lung tissues [336]. Our observations that 

incubation of PASMCs from normoxic rats in 2% O2 for 3 days evoked a significant 

increase in CD38 protein and mRNA and that AICR was enhanced in hypoxic PASMCs 

clearly suggest that hypoxia alone can directly lead to CD38 upregulation, even through 

when the participation of other mechanisms under in vivo conditions are not excluded.    

 To date, there is no report on the regulation of CD38 expression by CH in 

PASMCs or any other tissue. However, previous studies have shown that several 

transcriptional factors, such as HIF and NFAT, play very important roles in gene 

regulation during CH [216,356,357,358]. We analyzed the 3.0 kbp 5'-UTR promoter 

region of CD38 in rats and found multiple putative binding sites for transcription factors 
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including HIF-1, NF-κB, CREB, and NFAT. Among the candidates, the putative binding 

motifs for NFAT are most abundant in that region, and a similar observation was made in 

the promoter regions of human and mouse CD38 genes (data not shown). This raises the 

interesting possibility that CD38 upregulation by hypoxia may be dependent on the 

NFAT-signaling pathway. NFAT is a transcription factor ubiquitously distributed in 

various cell types and regulated by dephosphorylation by calcineurin [359]. Indeed, 

NFATc3 plays a pivotal role in vascular development [360,361], cell proliferation, cell 

differentiation [362,363], and the characteristic of smooth muscle cell contractility 

[364,365]. Studies have also demonstrated that CH induces pulmonary arterial 

remodeling mediated, in part, by the activation of NFATc3 [366]. 

To test this possibility, we designed two different approaches to inhibit the NFAT 

pathway: inhibiting calcineurin with Cyc A and blocking the dephosphorylation site of 

NFAT with the specific peptide antagonist VIVIT. Both inhibitors mitigated the 

increased expression of CD38 by hypoxia in PASMCs. These results suggest that the 

hypoxic-induced upregulation of CD38 in PASMCs requires a functional activation of 

the NFAT signaling pathways. However, the possible roles of other hypoxia-related 

transcription factors such as HIF-1 and NF-κB in the regulation of CD38 expression in 

PASMCs require further investigation.   

 In addition to the enhancement of CD38 expression and activity, other members 

of the CD38-dependent Ca2+ release pathway, such as the RyRs and TPC channels, could 

also be affected by CH.  We have previously shown that NAADP evokes intracellular 

Ca2+ release via TPC1/2 of the endolysosomes and cross-activates RyRs to amplify Ca2+ 

release in PAMSCs [114]. In this study, we observed that TPC2 protein expression in PA 
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smooth muscle tissue was enhanced by CH exposure in a time-dependent manner during 

the early development of CHPH. Interestingly, CD38 expression was highest at 1 week 

and declined at 3–4 weeks of CH exposure, while elevated TPC1/2 protein levels were 

sustained.  In particular, TPC1 protein, which was not significantly increased at 1 week, 

was significantly increased after 4 weeks of CH. These data suggest that CH 

differentially regulates the components of the CD38-dependent mechanism at different 

stages in the development of CHPH.  

 Previous studies provided the evidence that the mechanism of CHPH 

development is complex and depends on many factors. Studies have established that an 

increased [Ca2+]i in PASMCs of CH animals stimulates pathophysiological changes 

including cell contraction, migration, and proliferation, eventually resulting in pulmonary 

vascular remodeling under CH. The current consensus on the alteration of Ca2+ levels in 

CH PASMCs is that it is due to the inhibition of the voltage-dependent K+ channel in 

exposure to CH, leading to membrane depolarization and an increase in [Ca2+]i [274,339]. 

It is recognized that CH also affects other Ca2+ influx mechanisms, including store-

operated and receptor-operated Ca2+ entry [238], mechanosensitive Ca2+ channels [37,39], 

and Ca2+ activated Cl- channels in PASMCs [75], leading to the elevation of [Ca2+]i. 

Moreover, recent studies have clearly demonstrated the differential roles of transient 

receptor potential (TRP) channels, including TRPC1, TRPC6 and TRPV4, in the 

development of CHPH and the alteration of vasoreactivity in PA from CH animals 

[37,38,367]. The diversity of [Ca2+]i the regulation mechanism in PASMC under CH is 

not fully understood, particularly for intracellular Ca2+ release. Our findings clearly 
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indicate that CH induces alterations of intracellular Ca2+ release mechanisms via an 

increase in the expression and activity of CD38 in PASMCs. 

  In conclusion, this study demonstrated that CH upregulates CD38 expression and 

activity in PASMCs and enhances the functional activity in response to Ang II. The 

upregulation of CD38 expression is mediated by Ca2+ dependent NFAT-pathways in 

PASMCs. These findings, therefore, provide novel information for improving our 

understanding of the mechanism for the development of CHPH. 
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Summary 

 Ca2+ homeostasis is crucial for almost every physiological function and is 

maintained by different types of regulatory mechanisms in response to various 

environmental stimuli including hypoxic exposure. It is clearly recognized that [Ca2+]i is 

elevated in pulmonary arterial smooth muscle cells (PASMCs) from chronic hypoxia-

induced pulmonary hypertension (CHPH)  animals due to CH-induced increase in Ca2+ 

influx via functional and expressional enhancement of Ca2+ mobilization gated by 

membrane channels. Yet, the changes in the other part of Ca2+ regulation, intracellular 

Ca2+ release, have not been clearly established in PASMCs. An increasing number of 

studies have provided evidence that the multifunctional enzyme CD38 plays crucial roles 

in Ca2+ release, leading to multiple physiological responses in various cell types. 

However, the regulatory mechanism of CD38 has not been systematically established in 

PASMCs. Further, no study has investigated whether chronic hypoxia (CH) modulates 

the expression and activity of CD38 in PASMCs. 

  Based on these two questions, the work presented in this dissertation was 

proposed to describe the mechanisms of intracellular Ca2+ release mediated by CD38 in 

PASMCs and the alteration of the CD38 induced by CH exposure. The hypothesis and 

major findings for each aim are summarized as follows. 

 

1. The first hypothesis in this dissertation states that CD38 plays a role in 

intracellular Ca2+ in PASMCs and contributes to agonist-induced vasoconstriction in 

pulmonary arterial (PA) smooth muscle. CD38 is highly expressed in PA smooth muscle 

and PASMCs compared to other vascular smooth muscles. CD38 partially mediates 

angiotensin II (Ang II)-induced vasoconstriction in PA smooth muscle. Ang II-induced 
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intracellular Ca2+ release (AICR) in PASMCs is significantly reduced by 

pharmacological or by siRNA inhibition of CD38, indicating that AICR in PASMC is 

mediated by CD38. AICR is subsided with the inhibition of cADPR- and NAADP-

dependent Ca2+ release. In particular, suppression of these two Ca2+ release mechanisms 

is non-additive, indicating the inter-dependence between RyR- and NAADP-gated Ca2+ 

release in PASMCs. The Ang II-induced CD38-dependent intracellular Ca2+ release in 

PASMCs is mediated via PKC-NADPH oxidase 2-reactive oxygen species. For the first 

time, these results establish the signaling mechanism of CD38 activation in response to 

Ang II leading to Ca2+ release in PAMSCs. 

 

2. The second hypothesis of this dissertation states that the expression and activity of 

CD38 is altered by CH in PASMCs. CH induces the upregulation of CD38 expression in 

PASMCs in both in vivo and in vitro experiments. In particular, the activity of CD38 in 

PA smooth muscle from hypoxic rat was significantly increased compared to that from 

normoxic control rat, whereas the same activity in whole lung was decreased, suggesting 

a specific CD38 upregulation in hypoxic PA. AICR is significantly increased in hypoxic 

PASMCs both in vivo and in vitro. The difference between AICR in CH and normoxic 

PASMCs is completely abolished by the inhibition of CD38, indicating that CH 

stimulates the enhancement of CD38 activity in PASMCs. The CH-induced upregulation 

of CD38 expression in isolated PASMCs is inhibited by calcineurin/NFAT pathway, 

indicating that CH-induced CD38 upregulation in PASMCs is mediated by the 

calcineurin/NFAT-pathway. Beside, the NAADP-dependent Ca2+ channel TPC 1 and 

TPC 2 is increased in CH PA. Hence, for the first time, these results clearly support our 
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hypothesis that CH increases the expression and activity of CD38 and the CD38-

dependent Ca2+ release in PASMCs. 

 

 In conclusion, the results of this thesis reveal that CH triggers an increase in 

expression and activity of CD38, leading to alteration of Ca2+ homeostasis through 

increased Ca2+ in PASMCs. These results may suggest that CD38 is associated with 

development of CHPH and is a novel therapeutic target for pulmonary vasculature 

disease.  

 

Figure 5.1. Summary of the thesis research   CD38 in PASMCs plays an important 

role in the regulation of Ca2+ release from two different stores, RyR- and NAADP-

gated Ca2+ stores activated by cADPR and NAADP, respectively. The signaling 

mechanism of Ang II-induced CD38 activation is mediated by PKC-NOX2-ROS 

pathways. CH triggers enhancement of CD38 activity and expression. In particular, 

CH-induced CD38 regulation is mediated by calcineurin/NFAT pathway in PASMCs. 
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Future directions 

 While the experimental results revealed the novel aspects of expression and 

function of CD38 in PASMCs, particularly related to the alteration of Ca2+ signaling in 

the CHPH model, it also opens up many interesting directions for future research.  

 First, it is important to explore the detailed mechanism of how CH induces CD38 

upregulation beyond the calcineurin/NFAT-dependent pathway. For example, the role of 

hypoxia-inducible factor-1 (HIF-1) in the regulation of CD38 expression in PASMCs 

during CH has not been adequately described. It will be interesting to examine whether 

there is any interactions between HIF-1 and NFAT-pathways in the regulation of CD38 

in CH PASMCs. Further researches are required for establishing the translational 

mechanism of CH-induced upregulation of CD38 in PASMCs.  

 Secondly, future studies should provide evidence as to whether increased CD38 

expression and activity contribute to the alteration of PA properties such as myogenic 

tone and vasoreactivity in CHPH. It is well known that CH contributes to augmented 

vasoreactivity in mouse PA [75,211]. However, it is still unknown whether CD38 

contributes to changes in pulmonary vascular physiology through regulation of 

intracellular Ca2+ release during CHPH. These questions could be approached using the 

measurement of isometric contraction in PA smooth muscle tissues from CH rat in the 

presence of inhibitors for CD38-dependent mechanism (e.g., nicotinamide, 8-brom-

cADPR, and Ned-19), similar to the methods in chapter 2. In addition to the findings in 

chapter 4, such evidence could elucidate how the changes in mechanism of Ca2+ release 

potentiate and contribute to the development of vascular remodeling during CHPH. 
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 Finally, it is important to further explore the roles and mechanisms of other CD38 

agonists that are clearly associated with CHPH. ET-1 is a potential candidate and plays 

an important role in Ca2+ regulation during CH by altering the activity of Ca2+ regulatory 

molecules including augmentation of NCX and the voltage-gated Ca2+ channel, inhibition 

of voltage-gated K+ channels, and increased myofilament sensitivity in PASMCs 

[227,277,368]. Likewise, there has been no systematic research on the signaling 

mechanism of ET-1-induced activation of CD38 in PASMCs. Understanding the 

systematic mechanism of agonist-induced CD38 activation could elicit the novel aspects 

and strategies for development of CHPH. 
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