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ABSTRACT

This note is concerned with questions of uniqueness, existence

and convergence of successive approximations for a solution of an

initial value problem, where L= f(x,y,z,zx,zy) and z(x,0), z(0,y)

are assigned. There are obtained analogues of the Nagumo and Kamke
criteria in the theory of ordinary differential eguations. The
method employed is related to the arguments used by Viswanatham to
prove the convergence of successive approximastions for ordinary
differential equations under conditions similar to those in Kamke's

general uniqueness theorem.




ON UNTIQUENESS QUESTIONS FOR HYPERBOLIC DIFFERENTTAL EQUATIONS

by

John P. Shanahan

1. Statement gf results. This note is concerned with the existence

and uniqueness of solutions of the initial value problem
2, = £(%,5,2,2,0),2(x,0) = o (x),2(0,5) = T(¥),
where g (0) = T(0) = Z4

on a rectangle R : O § X § 2,00 iy < Db. By a solution is meant a con-

tinuous function having partial derivatives almost everywhere and satis-

fying the integral equation

(1) 2(x,y) = T + T - 7, + Jg"ﬁy £(s,,2(s,t),2,(s,t),

zy(s,t))dsdt.
Actually it will be clear from the conditions imposed on 0‘,'3' and f that
any solution of (l) is uniformly Lipschitz continuous. Let D be the five-
dimensional set D = {(x,y,z,p,q) : (x,y) € R and z,p,q arbitrary'g. Let
£(x,y,2,0,a) be defined and continuous on D, such that |f(x,y,z,p,q)]
< N = const. for (x,y,z,p,q) € D. Let o (x), T(y) be defined and uni-
formly Lipschitz continuous on O < x <a, 0 = ol respectively (so

that |o(x) - oo(X)| <klx - X|, |B(¥) - TF)| <Kly - 7| for some
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constant X) and let o (0) = T(0) = o+ In addition, for (x,y) € R and

arbitrary z,p,q,z,p,q assume that

(2) |f(x,y,z,p,q) = f(X,Y,E,i,a)' g q)(x,y,lz = EI)IP = il:lq = EI)J

where @(X,y,z,p,q) is a continuous, non-negative function defined for
(x,y) € R and non-negative z,p,q, non-decreasing in each of the variables
z,p,q with the property that for every (a,B), where 0 < a 8, 0< B b,
the only solution of

(3) z(x,y) = ngxtjzy'@(s,t,z(s,t),zx(s,t),zy(s,t))dsdt

in the rectangle R 2 (@) § e § ax, 0y 5 B Al v = O

af
Theorem (*). Under the above assumptions on ¢, T, f and ¢, (1)

possesses one and only one solution on R. This solution is the uniform

limit of the successive approximations defined by

(4,) 2o(%,7) = @ (x) + T(y) - 2z,

and nfor ni=SliaiE .,

() z (x,y) = 2z (x,y 0/4 J/‘ A l(s,t),zrl S X(s,t),

N y(s,t))dsdt.
The existence assertion of (%) neither implies nor is implied by that
in Hartman-Wintner [3] and its generalizations due to Conti, Szmydt, Cili-
berto, Kisynski (for references, see [6] and [2]). The uniqueness asser-
tion of (%) can be considered as a crude analogue of Kamke's uniqueness
theorem (cf. [BiEEp.t 1598 int the theory of ordinary differential equations.
Finally, the assertion concerning the convergence of successive approxi-
mations is an analogue of a result on ordinary differential equations
(cf. Viswvanatham [8] and references there to van Kampen, to Wintner and to

Dieudonné, and Coddington and Levinson [1]).

A theorem similar to (*), in which f and ¢ do not depend on pP,q is




proved by Guglielmino [2]. The proof of (¥) below will be a generali-
zation of that of [2]. A uniqueness theorem for (1) involving a majorant
function of the form ¢(z,p,q) = ®(|z| + |p| + |a|) is given in [6].

Remark. Tt will be clear from the proofs that (%) remains valid 2y

f,z,p,q,0~, U are n-vectors (say, with the norm |z| = 2 Izk[ or
k =1

1 n 5 il n
[z (®=tmax (2] 50 e, iz |z = (27,0002 )0
A theorem suggested by Nagumo's uniqueness theorem (e BBl g
for ordinary differential equations is the following:

Theorem (**). Let f(x,y,z,p,q) be defined, continuous and bounded

on D, and satisfy, for xy > O and arbitrary z,p,q,z,p,d,

(5) |£(x,¥,2,0,0) - £(x,5,2,5,)| < ey(x,5) |z - Z|/xy + c,(x,7) |p - D
/v + ex(x,)|a - al/x,

where ci(x,y), i =1,2,3, are non-negative, continuous functions such that

cl -+ 02 + c5 = 1.

Let o(x), T(y) be as in (*), and, in addition, let

(6) o, (+0) = - o o (x), T (+0) = ;iﬁ 4 T.(y)

exist. Then (1) has at most one solution z = z(x,y). Furthermore, if

(6%) c,(0,0) > 0,
then the solution is the uniform limit of the successive approximations
().

In (6), x [or y] tends to +0 through the set of values on which(rx

[orlTTy] exists.

Remark 1. (**) is valid if f,z,p,q,9 , T are n-vectors (say z =

1 n iy e k . 1 n
[z e 2 ) B Sithier | wilt == i S oR 1| S Vg B St e

Remark 2. A modification of an example of Perron [7] in the theory

of ordinary differential equations will show that (**) is false if




c, = const. > 1, cp =g = 0 (so that f does not depend on p,a ). Alsa,
o modification of an example of Haviland [4] shows that successive approxi-
mations need not converge if @ = const. > 1, S =205

The proof of (%) will b¢ given in Sections 2-4 below; that of (*%)
in Sections 5-6; finally, the proof of the last remark will be indicated
in Sectilon T.

The results above answer some questions suggested by Professor P.

Hartman. I also wish to acknowledge helpful discussions with him.

2. Proof of (¥). Preliminaries. In the proof of (*) below, there

ig no loss of generality in supposing that @ is bounded, say O < @(x,y,z;$q)
< 2N on D. For othervise ¢ can be replaced by 5, where E(X,y,z,p,q) equals
o(x,y,2,p,q) or 2N according as o(x,y,z,p,q) does or does not exceed 2N.

Tt is clear that @ is continuous and non-decreasing in each of the vari-
ables z,p,q. Furthermore, the only solution z(x,y) of

(3] z(x,y) = ‘IZf\/Zy E(S,t,x(s,t),zx(s,t),zy(s,t))dsdt

on any rectangle R , : 0 <X < o (< ) RoR iyl B (<b) i 2= 0,

p
Tn order to see this, note that 9(x,y,0,0,0,) = 0, so that there

exists an € > O such that 0 < o(x,y,2,p,q) < 2N if |z|, |pl, la] <e.
suppose that z(x,y) # 0 is a solution of (Z)¥on Raﬁ' i Ll e
(a? +-B2)%, be the largest value of r for which z(x,y) = @ in the inter-
section Sr of x2 +»y2 § r2 and R@B. If U is any neighborhood of Sd

(relative to RGB)’ there exists a rectangle R in U on which z % (0,

75
Since z = 0 on 8y, it is clear that if U is "sufficiently small", then,
on U (hence on Rﬂi)’ Izl < ¢ and, almost everywhere, sz| S |zy| = €t

But then z # 0 is a solution of (3) on R Since this is impossible,

5
0.

the only solution of (3') on RaB is z =




It will be convenient to have the following notation. Rl denotes a
subset (not always the same) of R of the form E x [O,b], where E is a
(Lebesgue) measurable subset of [0,a] with meas E = a. Similarly, R, is
a subset (not always the same) of the form [0,a] x E, where E is a measur=
able subset of [0O,b] and meas E = b. Partial derivatives Z.s zy of a
function z will be denoted by p,q.

3. Lemma for (¥). The proof of (*) will depend on the following

lemma,

Lemma 1. Let a(x,y), B(x,y) 7(x,y) be non-negative, measurable

functions defined on R, R,, R

12 Bos respectively, such that a is continuous,

p is uniformly Lipschitz continuous with respect to y and y is unifor@ég

Lipschitz continuous with respect to x. 1In addition, let

(7) a(x,y) < kfj ij o(s,t,a(s,t),p(s,t),7(s,t))dsdt,

(8) B(x,y) < ﬁ)‘ ple, b el bl Rl tllnie t))de,
(9) ) < [ ole,y,ale,),B(s,3),7(5,5))as,

where ¢ satisfies the conditions of (*) and is bounded. Then a =p =y = 0.

Note that the Lipschitz continuity of B [or a] with respect to y [or x]
is assumed to be uniform with respect to x and y.

The proof of the lemma below follows a suggestion made by R. Sacks-
teder. My original proof, which will be omitted, depended on two results.
The first result 1s an existence theorem for
(10) z(x,7) = Vix, 5]+ /;X/;y o(s,t,2(s,t),p(s,t),q(s,t))dsdt,
where f’ is a non-negative, uniformly Lipschitz continuous function which
is non-decreasing in x and in y. This existence theorem is proved by us-

ing the successive approximations z = (x ,7) and

(11) z (x = 2 (x,y) + qu b/7 (= e e l)dsdt




which satisfy

(12) <z

“n ol = Php+12 9 = T iy

The second result is the fact that if Y/ is replaced by another function
Y’with similar properties and

(13) o (4 O R

then the corresponding solution z satisfies

(l)*) Zﬁz, Péi, ‘15?1.-

Proof. Define sequences of successive approximations as follows: Let

(15) zo(x,¥) = alx,¥), uy(x,y) = B(x,y), vo(x,¥) = 7(x,¥)

and SRtorentoel S

(16) zn(x,y) = : o l(s,t),un L l(S,t),Vn i l(S,t))de‘t,

(17) u (x,y) = el e (e t) v 1(x,t))at,

(18) vn(X,y) a s l(S’Y)’un o l(S)y),vn = l(s)Y))dSF

n

The functions 2., U, Vv, are defined on sets R, Rl’ R2’ respectively,
which can be taken independent of n. The inequalities (7), (8), (9) give
the case n = O of

(19) z <=

)
n =

<
Nt e e S

n+ 1> n n+1°

The cases n > 0 of these inequalities follow by induction by virtue of the
monotony of @.

The boundedness of ¢ implies the uniform boundedness of the functions
2.5 W, Ve Hence, as n >
(20) z=1lmz ,u=1lmnw,v=1Hnv,

exist on R, Ry, R,, respectively. It is clear from (15) and (19), (20) that

l)
(21) 0 § (o% § z, 0 <P § u, 0<y < v.
Lebesgue's theorem on term-by-term integration under bounded conver-

gence implies




(22) z(x,y) ‘]1 ‘/0 (g, tizle 6 unl = vt idad,
(23) u(x,y) @(x B e, byl e ) el B N a el
(2k) v(x,y) @(s,y,Z(s,y »u(s,y),v(s,y))ds.

Thiiseleans that zX 157+ Zy = v almost everywhere. Thus the assumption

on @ concerning (6) shows that z =u =v = 0. Lemma 1 follows from (21).
4, Proof of (*). (i). Let z(x,y) be a solution of (1). There
exist functions u(x,y v(x,y) defined on sets Rl’ R2, respectively,

such that

(5)  alxy) - o) + TW) - 2o+ foF [T £(s,0,2(6,6) 0s,0),
v(s,t)dsdt

(26) u(x,y) = o, (x) + foy P(x,t,2(x,t),ulx,t),v(x,t))dt,

(2 vioy) = T ) + [ 2e,y,2(a,9) u(e,5),v(s,y)as,

and the relations u = z. and v = zy hold almost everywhere. In order

to see this, note that almost everywhere on R,
ZX(X)y) = rx(x) + L/;y f(X,t,Z(X,t),u(x,t),v(x,t))dt,

Zy(X;Y) = «1&(y) ok L/Zx £(s,y,2(s,y),uls,y),v(s,y))ds.

The expressions on the right side of these equations are defined for (x,y)

R,, respectively. Define u(x,y), v(x,y) to be these expres-

on sets Rl’ o

sions on Rl’ Rg‘

Hence (26), (27) hold on (possibly different) sets Ry R

In particular Bec=u and Zy = v almost everywhere.
5+ Clearly (25)
is valid for all (x,y) on R.

{ Al Uniqueness in (*¥). Suppose that (1) possesses two solutions

z = zl(x,y), zg(x,y) o R et ul( ,Y) (x,y) and u2( s (x,y)

be the functions associated with 215 %o B Ll Tt o= 22|,

B = lul - u2|, 7 4= 1vl - V,|. If the relations (25) for 'z = z

1 %o &are

substracted, it is seen that the inequality (2) for f implies (7). Similarly




(26), (27) imply (8), (9) respectively.
The functions a, B, ¥ satisfy the assumptions of Lemma 1l. Hence

the uniqueness assertion in (%) follows from Lemma 1.

(ii1). Existence and successive approximations. Let zo(x,y),
zl(x,y),... be the successive approximations defined by (4). Correspond-
ing to each zn(x,y), it is possible to introduce functions un(x,y),
Vn(x,y) defined on sets Rl’ R2, respectively, and satisfying uy =
o (x), vg = T (¥),
(28 ) e (o it (o) B R ) S f;"f;y f(s,t,z, _ 1(s,t),

e l(s,t),vn £ l(s,t))dsdt,

(29n) un(x,y) = 0;(x) +—L[;y f(x,t,zn i l(x,t),un 7 l(x,t),vn B l(x,t))dt,
(30n) vn(x,y) = 'U&(y) +-L/;X f(s,y,zn i l(x,t),un J l(s,y),vn X l(x,t))ds.

The gets R,, R. can be assumed to be independent of n.

a2
Leb\Zi = iz 5= g ], U = ]u - u |, V = lv - v_| and
mn m n mn m n mn m n
o dLa@sle _aisle A1 ;
(51) O[k(x"ﬂ E it > Bk(x,y) T Yn 7k(x,y) " myn >k Vin®

It is clear that Z , U , V  are uniformly Lipschitz continuous with
mn’ “mn’ ‘mn

respect to (x,y),x,y, respectively, and that a corresponding statement
holds for %, Bk’ ;U

By subtracting the relation <28n) from (28n g l) and using the
inequality (2) for £, it is seen that

X VA
Zmn(x’y) = V/g k/Z CP(S’t’zm - 1ln - l(s’t)’Um -1ln - l(s’t)’

Wil ES e l(s,t))dsdt.

Thus, if m,n > k, the monotony of ¢ shows that

L j;xﬂ)y P(s,t,0 _ 1(s,8),8, _ 1(s,8),7 _ (s,t))dsdt.

o (x,7) ifoxf;y o(s b, _ 1(s,8),B, _ 1(s,8),7, _ ;(s,t))dsat.




Similarly

Bk(x,y) = L/Z)y CP(X,t,(Ik ) l(x)t)JBk = l(x)t)lyk = l(x)t))dt’

X
7 (%7) € o @(evso 1 (s,9),8 o 1 (s,¥)sy _ 4(8,¥))ds.

By (31), the sequences {ak(x,y)}, {Bk(x,y)f, gyk(x,y)} are non-
increasing ( and non-negative). Let a(x,y), B(x,y), 7(x,y) denote the
respective limits of these sequences. The Lipschitz continuity of
o 5 Bk’ Y is preserved under the limiting process. Lebesgue's theorem
on term-by-term integration under bounded convergence gives the in-
equalities (7), (8), (9). Hence Lemma 1 shovs that o= 0, p= 0, y= 0
on R, Rl’ RE’ respectively. This implies the existence of the functions
z = lim Z ., U= lim U lim v, on B Rl, RE’ as n > o, satisfying
(25), (26), (27). It is clear that the limit function z(x,y) is a solu-
tlon of (1)<

Finally, the equicontinuity of the functions zn(x,y) (implied by
their uniform Lipschitz continuity) shows that z(x,y) is the uniform
limit of the zn(x,y). This proves (¥*).

5. Lemma for (**). The proof of (**) will depend on the following
lemma

Lemma 2. Let a(x,y), B(x,y), y(x,y) be non-negative, measurable

functions defined on R, Ry 5 RE’ respectively, so that a is continuous,

B is uniformly Lipschitz continuous with respect to y and y is uniformly

Lipschitz continuous with respect to x. Furthermore, assume that

(32) a(x,y)/xy > 0as 0<xy > 0

and that, uniformly with respect_ég eI Re s e CEivelays

(53) B(x,¥)/y > O as y > 0 and y(x,¥)/x > 0 as x > 0.

Finally, suppose that




(3k4) a(x,y) < L/;XU/ZY é—cl(s,t)a(s,t)/st +Ac2(s,t)B(s,t)/t =

G C (S,t s,t)/g} dsdt,

(35) B(x,y) < quy { (x,t)alx,t)/xt 4-c2(x,t)ﬁ(x,t)/t +

4—05(x,t)7(x,t /x}(ﬂg
(36) wha e |l gkjfs,y)a(s,y)/sy + e, (e,y)B(8,¥)/y

e c5(s,y)7(s,y)/s}ds,

— —— ——

where c , ¢y, c; are as in the first part of (**). Then a
Proof. By (32), if a(x,y)/xy is defined as O when xy =
comes a continuous function on R. Hence, it assumes its maximum Ml

at some point (xl,yl) € R. Let M, = l.u.b. B(x,y)/y and M3

Pork (% o) fefR.

Note that there nxi st numbers Mjk’ where J,k = 1,2,3, satisfying

(37) M > 0 and :§{ Mjk =l e g e e

and

Iiii Ml £ 0, then M. = a(xl,yl)/xlyl holds for some point (xl,yl) of

1
R with xlyl > 0. In this case, (581) follows from (34) with (x,y) =

Qe
(X Y it

(39) Mo = ll']f f

If My = 05 1ot M. = (o 0)

In order to obtain (582), let (xj,yj), where j = 1,2,..., be points

2 P
o REs U e Cha G s B (ol SratEing,, i Be . . = and
(x,575) = (x7,57) ; Bx sy )y = My

1im B(xj,y) = B(y) exists uniformly for 0 <y < b. Then (35) leads to

(582) with
2
(40) M (yg)'l-Lf;y ck(xg,t)dt or M, = ck(xg,O)

(2]

according as y- > 0O or y2 = 0. A relation of the type (385) is obtained

= 1.u.b. y(x,

y)/x




similarly.

Let MJ = max (Ml’ME’M3)' Suppose, if possible, that MJ > 0. Assume,

for the moment, that M, > Mj if j £ J. Then by {57) and (38JL G =

and M = O for k # J. But the derivation of (58J) can then be modified

to obtain M, < M;. For example, if J = 1, then cl(s,t) = 1 and cg(s,t)
a8

= ca(s,t) =00 to (Bl nghien (i )= e ,yl), while a(s,t)/st is nearly

zero for small st, so that one obtains Ml < Ml' Qe el JE =2 s sthen y2 =0

and cl(xz,t) =l c2(x2,t) = c5(x2,t) =0for 0<t < y2, while the rela-

tions

B(y) < f;y pe)at/t, By )/y" = M,
give Mé < ME since B(t)/t is nearly O for small t by the uniformity of
the first limit relation in (33).

Similar arguments show that if two or three of the numbers Mil,ME,M3
are equal to MJ 28 0Nencl isllliadivaNalicontradietiion s lence MJ = 0. This
proves the lemma.

6. Proof of (**). (i). Unigueness in (**). ILet z = zl(x,y),
zg(x,y) be two solutions of (1) on R. Let ul(x,y), vl(x,y) and uz(x,y),
vg(x,y) be the functions associated with them as in the proof of (*).

= lu - U o e It will be verified

Let @ = tz 1 2], % BTy 2|.

s

that, as x (or v O, tlen exeepoidor Eevs of measure zero,
(41) a(x,y), B(x,y), 7(x,5) > o.

Consider the case x - 0. The assertions (U41) concerning a and 4
clear. In order to verify assertion (41) for the function B, it
first be shown that if z = z(x,y) is any solution of (1) (say, z
zZ = 22) and if u(x,y), v(x,y) are its associated functions, then

(42) AHmlx e = rD(y), as x > 0, exists uniformly in y.




To see this, let Xj’ where J = 1,2,5,... be afsequence of x Vvalues such

(i

that 1lim xj — (0) el tabm u(xj,Y) = f(y) exists uniformly as j > ~. Put-

g o= Xy in (26) and letting j - «, it is seen that
o T ¥
(43) ely) =0 (+0) A (/; £(0,5, (L) )sp(t), “C(t
We note that f(y) is continuous. Furthermore, F(y‘ does not depend

on the sequence x Suppose that another sequence leads to a

1%
different limit Q(y) (J(y). By substituting T) for O in (43), and
subtracting, we get
(1) PRGN fy lf(o,t,t(t),F(t), (1)) -

=Sp( o el P(t ”G )
8ince f,(),?; are continuous and ()(O) = ?3(0) = (Fk(+0), the integrand
of (hh) can be made small by making y small. Hence
(145) 18°(v) - e)|/y >0, as ¥y > 0.
By relation (5),

) - ey < v L[())3%:2(0;«:)IP'(t) - e (t)|at/t,
Using (L5) as before, this leads to a contradiction. Hence E;EE e 5
Therefore every sequence, for which the limit in (L42) exists, leads to
the same 1limit. Hence (L42) holds.

i lim,ul(x,y) = (ﬁﬁy) and 1im ug(x,y) = Fé(y), as x > 0, we can
repeat the above argument and obtain (21 = (32. This completes the
verification of (Ll).

We now verify assumptions (32) and (33) of Lemma 2. Consider, for
example, the assertion
(46) B(x,y)/y > 0 as y = O.

By putting u = u,, u, in (26) and subtracting we get
(1) By < [ et (et (i, 8) v (x,0)) -
- f(x,t

Zo (bl (et Yliae,

))p 2(XL
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Now the integrand of (47) can be made small, by making ¥ small, and using
(41). This proves (46). The other limits in (32) and (33) are veri-
fied similarly. The other assumptions of Lemma 2 are quite straight-
forward. Therefore a = p = 7y = 0. This proves "uniqueness".

(ii). Existence and successive approximations in (*%). Let zo(x,y),

zl(x,y),..., be the successive approximations defined by () EBor-
responding to zn(x,y) it ig possible to introduce, as in the proof of (%),
functions un(x,y), vn(x,y) defined on sets Ry, R, (independent of n) and

0 0

U s Vp, be defined as in the existence proof of (*) above. It will be

gatisfying u. = G&ﬂx), v, = 'Cy(y), (28n), (29n) and (BOn). Let Zmn’

verified that, given e, there exists a (e) and an N(e), such that

(48) 7 (%), U (x,5), Vi (x,y) < e

for x < 8(e) and for all m,n > N(e). A similar statement will be seen
to hold when x is replaced by y. The assertion (48) concerning Z_, and
v, 1s clear. Tn order to verify (48) for the function U 1t will
first be shown that

(49) lim.un(x,y) = hn(y), as x > 0, exists uniformly in y and n.

Tt is easily verified, by induction, that hn(y) exists uniformly in y
Reor i ibxedSniviiene

(50.) () = 50400 + [o¥ 20,6, T ()b, 4 (), T(e))ae.

To see the uniformity in n, define

(51 ) En(xgy) Zn(xyy) 5 T(X) i -c(y) A ZO; Gn(xyy) = un(x,Y) - O—X(x);
n

Rt e e e U Gl
(52) (o6, Z,p0d) = PGy, O (i 10 Gl etz T (x),

q + "Gy(y))-

For En meNdeiiime Fﬁ corresponding to h. Clearly g satisfies a condition




analogous to (5), ﬁo(x,y) =T (y)'“ 0, and

(53,) u (x,y) = J; g(x,t,2 _ ((x,t),u  _ (x,6),v _ (x,%))dt, n

0 A ¥ ; = .
(5un) hn(b’) = ﬂ g(O,t,O,hn - l(t),O)dt, n > 1.
To prove (49) it suffices to verify that
(55) 1im ﬁn(x,y) = Hn(y), ag x - 0, exists uniformly in y and n.
By subtracting (5un) from (55n), it is seen that

(56) [0 - Bl g o Tley - el + lay - glf

where g, = g(x,t,E 3 l(x,t),ﬁ y 1(x’t)’;n i l(x,t)), g, = 8(0,t,0,

a (x t),0) and 85 = alo,t,0} h 1<t)’0)‘ We note that, given € > 0,

there exists a &(e) such that |g &) forralliyiand I,

k)
Hence, noting (5),
(57,) o (x,7) - B y)l<f g oot im e e i gdt.
By continuity, because of (6%), c2(0,t < 1 for small t > O. Hence there
exiaste a number &, O < ® < 1, such that
j;y ¢,(0,£)at < © y for 0 <y < b.

A simple induction shows that
(58) [T (xy) -R ()] <(1-e)ey/(1-0)<be/(1-a0).
This proves (55). Hence (49) is established.

Next we note that hn(y), n = 0,1,2,... , are the successive approxi-
mations for the initial value problem

(59) dw/dt = F(t,w), w(0) = (fO)

where F(t,w) = £(0,t,T (t),w,'Uy(El}n. Hence, by (5),
[ (60) F(t,u) - F(6,5)| < v - ]/t
| Note that the existence of ‘Gy_(+o) implies that F(t,w) - F(O,w) =
(01400, TP vy _C'(iO)) as t > +0. The proof of the main theorem in [8]

shows that these successive approximations converge uniformly, (60) being

L{is bounded, measurable and continuous in w (for almost all fixeﬁail;J
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Nagumo's uniqueness condition (cf.l MJ, p- 97). Hence
(61) 1im hn(y) = h(y), exists uniformly in y as n - o,
Now (61) and (49) together verify (48) for Umn(x,y). Hence (48) is es-
tablished.
By an argument similar to that used in verifying (h6) it is seen
that, given € > 0, there exists & (e) such that
(Xy)—l Zmn(x,y) < e, for xy <5(e¢), for m,n > N(e)
(62) x L Umn(x,y) < €, for x <5 (e), for m,n > N(e)
y-l an(x,y) < e, for y<5(e), for m,n > N(e).
Now defining % Bk’ Y, as in (31), we note that we can substitute
them for 7z , U , V_, respectively, in (62) changing m,n > N(e) to
k > N(e). Proceeding as in the analogous section of the proof of
theorem (%), we conclude that «, B, 7 satisfy (34), (35) and (36) and
also (52) and (55). Therefore, by Lemma 2, the successive approximations

converge uniformly to a solution of L)

7. Counter-examples. (a). Let a =D

Let f(x,y,z,p,q) be independent of p,q and defined by

0 JiS (e N e ER el <t ¢

f(x,v,2,0,d4) = § (1 + €) z/xy LE Gy eR, 0 iz <

(e e PR R Gl e

Then f(x,y,z,p,q) is continuous and satisfies (5) for cl(x,y) = 1 e,

(and Cp = Cp = 0). Let g-(x) = T(y) = 0. Then (1) has an infinity of

solutions, namely, z = elcay) ) hene O e = T (D) S e £ et b

0 . : )
B {kX:Y) SROi= iy PGS, @ = 0, > 0 and

(3, 5,%,0,0)
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Then f(x,y,%,p,q) satisfies the same relation (5) as in example (a). How-

eve D (M), = (xy)6/82, gso that the successive approxi-

ZZn i

mations (4) do not converge.

JOHNS HOPKINS UNIVERSITY
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